en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

周亚龙,男,1984年生。正高级工程师,主要从事石油及天然气水合物地球化学勘查研究。E-mail:zyalong@mail.cgs.gov.cn。

参考文献
Bernard B B, Brooks J M, Sackett W M. 1976. Natural gas seepage in the Gulf of Mexico. Earth and Planetary Science Letters, 31(1): 48~54.
参考文献
Cao Daiyong, Liu Tianji, Wang Dan, Wang Tong, Wen Huaijun, Pan Yulu. 2009. Analysis of formation conditions of natural gas hydrate in Muli coalfield, Qinghai Province. Coal Geology of China, 21(9): 3~6 (in Chinese with English abstract).
参考文献
Cao Daiyong, Qin Rongfang, Wang Anmin, Chen Limin, Li Jing, Wei Yingchun. 2022. Accumulation model and exploration and development suggestions of coal measure gas hydrates in Sanlutian area of Muli coalfield, Qinghai Province. Coal Geology & Exploration, 50(3): 92~101 (in Chinese with English abstract).
参考文献
Carlson R, Chamberlain D E. 1986. Steroid biomarker-clay mineral adsorption free energies: Implications to petroleum migration indices. Organic Geochemistry, 10(1-3): 163~180.
参考文献
Chen Xiaohui, Zhang Min, Gong Jianming. 2014. Molecular geochemical characteristics of potential source rocks of the Wuli premofrost in the Tibet Plateau, China. Natural Gas Geoscience, 25(6): 882~888 (in Chinese with English abstract).
参考文献
Collett T S, Dallimore S R. 2000. Permafrost-Associated Gas Hydrate. Natural Gas Hydrate. Springer Neth, 43~60.
参考文献
Collett T S, Lee M W, Agena W F, Miller J J, Lewis K A, Zyrianova M V, Boswell R, Inks T L. 2011. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Marine and Petroleum Geology, 28(2): 279~294.
参考文献
Collett T S. 1994. Permafrost-associated gas hydrate accumulations. Annals of the New York Academy of Sciences, 715(1): 247~269.
参考文献
Collett T S, Johnson A H, Knapp C C, Bosewell R. 2009. Natural gas hydrates: A review. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. American Association of Petroleum Geologists Memoir, 89: 274~297.
参考文献
Dai Jinxing. 1993. The characteristics of carbon and hydrogen isotopes and the identification of various types of natural gas. Natural Gas Geoscience, 4(2/3): 1~40 (in Chinese with English abstract).
参考文献
Dai Jinxing, Ni Yunyan, Huang Shipeng, Peng Weilong, Han Wenxue, Gong Deyu, Wei Wei. 2017. Genetic types of gas hydrates in China. Petroleum Exploration and Development, 44(6): 887~898 (in Chinese with English abstract).
参考文献
Deng Zhonglin, An Yongsheng, Wang Qinghai, An Shouwen, Shi Lianchang, Chen Jian, Zhuang Yongcheng, Ren Jinqi, Yang Yanxing. 2014. Regional Geological Survey of the People's Republic of China—the Tuotuo River Map Sheet (I46C002002). Wuhan: China University of Geosciences Press, 11~97 (in Chinese with English abstract).
参考文献
Espitalié J, Laporte J L, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A. 1977. Méthode rapide de caractérisation des roches méres, de leur potentiel pétrolieret de leur degré d'évolution. Revue de l'Institut Français du Pétrole, 32(1): 23~42.
参考文献
Fang Hui, Xu Mingcai, Lin Zhengzhou, Zhong Qing, Bai Dawei, Liu Jianxun, Pei Fagen, He Meixing. 2017. Geophysical characteristics of gas hydrate in the Muli area, Qinghai Province. Journal of Natural Gas Science and Engineering, 37: 539~550.
参考文献
Gong Jianming, Zhang Jian, Chen Xiaohui, Liao Jing, Li Xiaoyu, He Xingliang, Jiang Yubo. 2014a. Gashydrate accumulation conditions between Qilian Mountain and Wuli permafrost region in Qinghai-Tibetan Plateau. Journal of Oil and Gas Technology, 36(2): 1~6 (in Chinese with English abstract).
参考文献
Gong Jianming, Zhang Li, Chen Xiaohui, Zhang Min, Li Xiaoyu, Shi Jiannan, Yang Deshou, Yang Zhicheng. 2014b. Discussion on original organic types of over-mature source rocks in Wuli permafrost zone of Qinghai-Tibeatean Plateau. Northwestern Geology, 47(2): 208~215 (in Chinese with English abstract).
参考文献
Gong Jianming, Zhang Li, Zhang Jia, Li Yonghong, Chen Xiaohui, Wang Weichao, Yang Zhicheng. 2015. Discussion on gas hydrate accumulation conditions in Wuli permafrost zone, Qinghai-Tibetan Plateau. Marine Geology & Quaternary Geology, 35(1): 145~151 (in Chinese with English abstract).
参考文献
Hu Chengfei. 2020. Characteristics of hydrate reservoir and vertical stability zone in the northeast of Qiangtang basin. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Huang Xia, Liu Hui, Zhang Jiazheng, Wang Pingkang, Xiao Rui, Pang Shouji, Zhang Shuai, Zhu Youhai. 2016. Genetic-type and its significance of hydrocarbon gases from permafrost-associated gas hydrate in Qilian Mountain. Chinese Journal of Geology, 51(3): 934~945 (in Chinese with English abstract).
参考文献
Kvenvolden K A. 1993. Gas hydrates-geological perspective and global change. Reviews of Geophysics, 31(2): 173~187.
参考文献
Li Xiaoyu, Gong Jianming, Chen Xiaohui, Wang Huidong, Chen Junwen, Yang Zhicheng, Jiang Yubo. 2013. Source rock potential of Permian in Wuli permafrost zone in Qinghai-Tibetan Plateau. Geoscience, 27(6): 1384~1391.
参考文献
Li Ying, Liu Shengqian, Xia Zhongyuan, Lu Xiaofeng. 2018. The evaluation on source rocks for natural gas hydrate in Permian Nayixiong Formation of southern Qinghai permafrost. Science Technology and Engineering, 18(12): 148~153 (in Chinese with English abstract).
参考文献
Lin Zhengzhou, Pan Heping, Fang Hui, Gao Wenli, Liu Dongming. 2018. High-altitude well log evaluation of a permafrost gas hydrate reservoir in the Muli area of Qinghai, China. Scientific Reports, 8(1): 12596.
参考文献
Liu Hui, Zhu Youhai, Pang Shouji, Zhang Yongqin, Liang Jian, Zhang Jiazheng. 2019. Important evidence for gas hydrate occurrence in Wuli, Qinghai Province. Geology in China, 46(5): 1243~1244 (in Chinese with English abstract).
参考文献
Liu Shengqian, Jiang Zaixing, Liu Hui, Pang Shouji, Xia Zhongyuan, Jin Zhonghui, Wang Junhui, Wei Xiaojie. 2016. The natural-gas hydrate exploration prospects of the Nayixiong Formation in the Kaixinling-Wuli permafrost, Qinghai-Tibet Plateau. Marine and Petroleum Geology, 72: 179~192.
参考文献
Liu Shengqian, Liu Hui, Jiang Zaixing, Xia Zhongyuan, Pang Shouji, Ma Wenxian. 2017. Controlling factors of gas hydrate formation in southern Qinghai permafrost. Earth Science Frontiers, 24(6): 242~253 (in Chinese with English abstract).
参考文献
Lu Zhenquan, Zhu Youhai, Zhang Yongqin, Wen Huaijun, Li Yonghong, Jia Zhiyao, Liu Changling, Wang Pingkang, Li Qinghai. 2010. Basic geological characteristics of gas hydrates in Qilian Mountain permafrost area, Qinghai Province. Mineral Deposits, 29(1): 182~191.
参考文献
Lu Zhengquan, Zhu Youhai, Zhang Yongqin, Wen Huaijun, Li Yonghong, Liu Changling. 2011. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China. Cold Regions Science and Technology, 66(2~3): 93~104.
参考文献
Lu Zhengquan, Zhu Youhai, Liu Hui, Zhang Yongqin, Jin Chunshuang, Huang Xia, Wang Pingkang. 2013. Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai. Marine and Petroleum Geology, 43: 341~348.
参考文献
Lu Zhenquan, Li Yonghong, Wang Weichao, Liu Changling, Wen Huaijun. 2015. Study on the accumulation pattern for permafrost-associated gas hydrate in Sanlutian of Muli, Qinghai. Geoscience, 29(5): 1014~1023 (in Chinese with English abstract).
参考文献
Lu Zhenquan, Tang Shiqi, Luo Xiaoling, Zhai Gangyi, Fan Dongwen, Liu Hui, Wang Ting, Zhu Youhai, Xiao Rui. 2020. A natural gas hydrate-oil-gas system in the Qilian Mountain permafrost area, northeast of Qinghai-Tibet Plateau. China Geology, 3: 511~523.
参考文献
Makogon Yuri F, Holditch S A, Makogon T Y. 2007. Natural gas hydrates-A potential energy source for the 21st century. Journal of Petroleum Science and Engineering, 56: 14~31.
参考文献
Max M D, Johnson A H. 2011. Diagenetic methane hydrate formation in permafrost: A new gas play? OTC Arctic Technology Conference. OnePetro, DOI: 10. 4043/22094-MS.
参考文献
Ning Fulong, Liang Jinqiang, Wu Nengyou, Zhu Youhai, Wu Shiguo, Liu Changling, Wei Changfu, Wang Dongdong, Zhang Zhun, Xu Meng, Liu Zhichao, Li Jing, Sun Jiaxin, Ou Wenjia. 2020. Reservoir characteristics of natural gas hydrates in China. Natural Gas Industry, 40(8): 1~24+203 (in Chinese with English abstract).
参考文献
Qi Fucheng, Qin Mingkuan, Liu Wusheng, Xiao Shuqing, Wang Zhiming, Zou Shungen, Huang Jingbai. 2007. Time-space configuration of uranium mineralization, sedimentary facies and oil & gas-induced alteration zone in Zhiluo Formation, Ordos basin. Uranium Geology, 23(2): 65~70 (in Chinese with English abstract).
参考文献
Qin Yulu, Zhu Beier, Yuan Duo, Qin Yinlun. 2021. Analysis on the possibility of existence of gas hydrate in Wuli area Qinghai Province. Journal of Henan Science and Technology, 40(10): 128~130 (in Chinese with English abstract).
参考文献
Sun Zhongjun, Yang Zhibin, Mei Hai, Qin Aihua, Zhang Fugui, Zhou Yalong, Zhang Shunyao, Mei Bowen. 2014. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China. Journal of Geochemical Exploration, 139: 160~169.
参考文献
Tan Jieqing. 2015. Control effect of tectonic framework on coal measures in northern Qinghai-Tibet Plateau. Doctoral dissertation of China University of Mining and Technology (Beijing) (in Chinese with English abstract).
参考文献
Tang Shiqi, Lu Zhenquan, Luo Xiaolin, Wang Ting, Tan Panpan. 2015. Gas hydrate source in Wuli-Kaixinling permafrost, southern Qinghai Province. Petroleum Geology & Experiment, 37(1): 40~46 (in Chinese with English abstract).
参考文献
Tang Yuping, Ding Xiangyu, Wu Xianghua, Wei Wei, Li Shanggang. 2001. Features and genesis of regional geochemical fields of the main hydrocarbon-bearing basins in China. Petroluem Exploration and Development, 28(3): 1~4 (in Chinese with English abstract).
参考文献
Wang Pingkang, Huang Xia, Pang Shouji, Zhu Youhai, Lu Zhengquan, Zhang Shuai, Liu Hui, Yang Kaili, Li Bing. 2015. Geochemical dynamics of the gas hydrate system in the Qilian Mountain permafrost, Qinghai, Northwest China. Marine and Petroleum Geology, 59: 72~90.
参考文献
Wang Pingkang, Zhu Youhai, Zhang Xuhui, Zhang Shuai, Pang Shouji, Xiao Rui, Li Bing. 2015. Permafrost structures and their effects on the accumulation of the natural gas hydrates in the Qiangtang basin, northern Xizang. Sedimentary Geology and Tethyan Geology, 35(1): 57~67 (in Chinese with English abstract).
参考文献
Wang Pingkang, Zhu Youhai, Lu Zhengquan Bai Minggang, Huang Xia, Pang Shouji, Zhang Shuai, Liu Hui, Xiao Rui. 2019. Research progress of gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China: Review. Scientia Sinica: Physica Mechanica Astronomica, 49(3): 76~95 (in Chinese with English abstract).
参考文献
Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1-3): 291~314.
参考文献
Wu Junhu. 2011. Late Permian tectonic evolution and coal accumulation pattern analysis in Wuli-Kaixinling area, Qinghai. Coal Geology of China, 23(6): 9~13 (in Chinese with English abstract).
参考文献
Xia Zhongyuan. 2018. Analysis on generation and reservoir characteristics of Permian gas hydrate in permafrost region, southern Qinghai Province, China. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Xing Xuewen, Liu Song, Zhou Hongying, Zou Liqun, Li Guangzhi, Gao Wei. 2014. Geochemical behaviors of shallow soil in Muli permafrost and their significance as gas hydrate indicators. Oil & Gas Geology, 35(1): 159~166 (in Chinese with English abstract).
参考文献
Zhang Fugui, Sun Zhongjun, Yang Zhibin, Zhou Yalong, Zhang Shunyao, Cao Changmao, Wang Huiyan, Tang Ruiling, Pang Shouji, Wang Pingkang, Tang Shiqi, Zhu Youhai. 2019. Geochemical investigation of gas hydrate in the permafrost area, China. Bulletin of Mineralogy, Petrology and Geochemistry, 38(6): 1224~1234 (in Chinese with English abstract).
参考文献
Zhang Hongtao, Zhu Youhai. 2011. Survey and research on gas hydrate in permafrost region of China. Geological Bulletin of China, 30(12): 1809~1815 (in Chinese with English abstract).
参考文献
Zhang Huishan, Ji Wenhua, He Shiping, Chen Shoujian, Hong Jun, Chen Fenning, Zhang Haidi, Shi Chao, Wu Zhongnan, Peng Yan. 2014. Middle Permian-Early Triassic mafic magmatic events in Kaixinling zone, Tuotuo River area, Qinghai Province, and their geological significance. Geological Bulletin of China, 33(6): 830~840 (in Chinese with English abstract).
参考文献
Zhao Zhenming, Chen Shoujian, Ji Wenhua, Zhang Gengxin, Zha Xianfeng, Zhang Haijun. 2013. The geological characteristics and formation of the magnetite-rich Kaixinling iron ore-deposit during Permian in Qinghai Province, China. Geotectonica et Metallogenia, 37(3): 422~439 (in Chinese with English abstract).
参考文献
Zhou Yalong, Yang Zhibin, Zhang Shunyao, Zhang Fugui, Sun Zhongjun, Wang Huiyan. 2021. Study on application mode of headspace gas light hydrocarbon in geochemistry exploration of natural gas hydrate in permafrost regions. Acta Geologica Sinica, 95(6): 1995~2007 (in Chinese with English abstract).
参考文献
Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. 2000. Geocryology in China. Beijing: Science Press, 1~450 (in Chinese with English abstract).
参考文献
Zhu Youhai, Zhang Yongqin, Wen Huaijun, Lu Zhenquan, Jia Zhiyao, Li Yonghong, Li Qinghai, Liu Changling, Wang Pingkang, Guo Xingwang. 2009. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. Acta Geologica Sinica, 83(11): 1762~1771 (in Chinese with English abstract).
参考文献
Zhu Youhai, Zhang Yongqin, Wen Huaijun, Lu Zhengquan, Jia Zhiyao, Li Yonghong, Li Qinghai, Liu Changling, Wang Pingkang, Guo Xingwang. 2010. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. Acta Geologica Sinica, 84(1): 1~10.
参考文献
Zhu Youhai, Lu Zhenquan, Xie Xilin. 2011. Potential distribution of gas hydrate in the Qinghai-Tibetan Plateau. Geological Bulletin of China, 30(12): 1918~1926 (in Chinese with English abstract).
参考文献
Zhu Youhai, Pang Shouji, Wang Pingkang, Zhang Shuai, Xiao Rui. 2021. A review of the resource potentials and test productions of natural gas hydrates in China. Sedimentary Geology and Tethyan Geology, 41(4): 524~535 (in Chinese with English abstract).
参考文献
曹代勇, 刘天绩, 王丹, 王佟, 文怀军, 潘语录. 2009. 青海木里地区天然气水合物形成条件分析. 中国煤炭地质, 21(9): 3~6.
参考文献
曹代勇, 秦荣芳, 王安民, 陈利敏, 李靖, 魏迎春. 2022. 青海木里三露天井田煤系天然气水合物成藏模式与勘查开发建议. 煤田地质与勘探, 50(3): 92~101.
参考文献
陈小慧, 张敏, 龚建明. 2014. 青藏高原乌丽冻土区烃源岩地球化学特征. 天然气地球科学, 25(6): 882~888.
参考文献
戴金星. 1993. 天然气碳氢同位素特征和各类天然气鉴别. 天然气地球科学, 4(2/3): 1~40.
参考文献
戴金星, 倪云燕, 黄士鹏, 彭威龙, 韩文学, 龚德瑜, 魏伟. 2017. 中国天然气水合物气的成因类型. 石油勘探与开发, 44(6): 837~848.
参考文献
邓中林. 2014. 中华人民共和国区域地质调查报告. 沱沱河幅(I46C002002) 比例尺1: 250000. 武汉: 中国地质大学出版社.
参考文献
龚建明, 张剑, 陈小慧, 廖晶, 李小豫, 贺行良, 蒋玉波. 2014a. 青藏高原祁连山与乌丽冻土区水合物成藏条件研究. 石油天然气学报, 36(2): 1~6.
参考文献
龚建明, 张莉, 陈小慧, 张敏, 李小豫, 史建南, 杨德寿, 杨志承. 2014b. 青藏高原乌丽冻土区过成熟烃源岩原始有机质类型讨论. 西北地质, 47(2): 208~215.
参考文献
龚建明, 张莉, 张剑, 李永红, 陈晓慧, 王伟超, 杨志承. 2015. 青藏高原乌丽冻土区天然气水合物成藏条件. 海洋地质与第四纪地质, 35(1): 145~151.
参考文献
胡承飞. 2020. 羌塘东北部水合物储集特征与垂向稳定带. 成都理工大学硕士学位论文.
参考文献
黄霞, 刘晖, 张家政, 王平康, 肖睿, 庞守吉, 张帅, 祝有海. 2016. 祁连山冻土区天然气水合物烃类气体成因及其意义. 地质科学, 51(3): 934~945.
参考文献
李莹, 刘圣乾, 夏中源, 陆晓峰. 2018. 青海南部冻土区二叠系那益雄组天然气水合物烃源岩评价. 科学技术与工程, 18(12): 148~153.
参考文献
李小豫, 龚建明, 陈小慧, 王慧东, 陈俊文, 杨志承, 蒋玉波. 2013. 青藏高原乌丽冻土区二叠纪煤系烃源岩特征. 现代地质, 27(6): 1384~1391.
参考文献
刘晖, 祝有海, 庞守吉, 张永勤, 梁健, 张家政. 2019. 青海乌丽地区发现天然气水合物赋存的重要证据. 中国地质, 46(5): 1243~1244.
参考文献
刘圣乾, 刘晖, 姜在兴, 夏中源, 庞守吉, 马文贤. 2017. 青海南部冻土区天然气水合物成藏控制因素. 地学前缘, 24(6): 242~253.
参考文献
卢振权, 李永红, 王伟超, 刘昌岭, 文怀军. 2015. 青海木里三露天冻土天然气水合物成藏模式研究. 现代地质, 29(5): 1014~1023.
参考文献
宁伏龙, 梁金强, 吴能友, 祝有海, 吴时国, 刘昌岭, 韦昌富, 王冬冬, 张准, 徐猛, 刘志超, 李晶, 孙嘉鑫, 欧文佳. 2020. 中国天然气水合物赋存特征. 天然气工业, 40(8): 1~24+203.
参考文献
漆富成, 秦明宽, 刘武生, 肖树青, 王志明, 邹顺根, 黄净白. 2007. 鄂尔多斯盆地直罗组赋铀沉积相与油气蚀变带的时空配置. 铀矿地质, 23(2): 65~70.
参考文献
谭节庆. 2015. 青藏高原北部构造格局对煤系赋存的控制作用. 中国矿业大学(北京)博士学位论文.
参考文献
覃雨璐, 朱贝尔, 袁铎, 覃英伦. 2021. 青海乌丽地区气体水合物存在的可能性. 河南科技, 40(10): 128~130.
参考文献
汤玉平, 丁相玉, 吴向华, 魏巍, 李尚刚. 2001. 中国主要含油气盆地区域地球化学场参数特征及其成因研究. 石油勘探与开发, 28(3): 1~4.
参考文献
唐世琪, 卢振权, 罗晓玲, 王婷, 谭盼盼. 2015. 青海南部乌丽—开心岭冻土区天然气水合物气源条件研究. 石油实验地质, 37(1): 40~46.
参考文献
王平康, 祝有海, 张旭辉, 张帅, 庞守吉, 肖睿, 李冰. 2015. 羌塘盆地冻土结构特征及其对天然气水合物成藏的影响. 沉积与特提斯地质, 35(1): 57~67.
参考文献
王平康, 祝有海, 卢振权, 白名岗, 黄霞, 庞守吉, 张帅, 刘晖, 肖睿. 2019. 青海祁连山冻土区天然气水合物研究进展综述. 中国科学: 物理学力学天文学, 49(3): 76~95.
参考文献
吴军虎. 2011. 青海乌丽—开心岭地区晚二叠世构造演化与聚煤规律作用分析. 中国煤炭地质, 23(6): 9~13.
参考文献
夏中源. 2018. 青海南部冻土区二叠系天然气水合物生储特征分析. 中国地质大学(北京)硕士学位论文.
参考文献
邢学文, 刘松, 周红英, 邹立群, 李广之, 高伟. 2014. 木里冻土带天然气水合物赋存区浅层土壤地球化学特征及指示意义. 石油与天然气地质, 35(1): 159~166.
参考文献
赵振明, 陈守建, 计文化, 张更新, 查显锋, 张海军. 2013. 青海开心岭二叠纪铁矿床富磁铁矿体的地质特征及成因分析. 大地构造与成矿学, 37(3): 422~439.
参考文献
张富贵, 孙忠军, 杨志斌, 周亚龙, 张舜尧, 曹长茂, 王惠艳, 唐瑞玲, 庞守吉, 王平康, 唐世琪, 祝有海. 2019. 中国冻土区天然气水合物的地球化学调查. 矿物岩石地球化学通报, 38(6): 1224~1234.
参考文献
张洪涛, 祝有海. 2011. 中国冻土区天然气水合物调查研究. 地质通报, 30(12): 1809~1815.
参考文献
张辉善, 计文化, 何世平, 陈守建, 洪俊, 陈奋宁, 张海迪, 时超, 吴中楠, 彭岩. 2014. 青海沱沱河地区开心岭一带中二叠世—早三叠世基性岩浆事件及其地质意义. 地质通报, 33(6): 830~840.
参考文献
周亚龙, 杨志斌, 张舜尧, 张富贵, 孙忠军, 王惠艳. 2021. 陆域冻土区天然气水合物地球化学勘查中顶空气轻烃应用模式试验. 地质学报, 95(6): 1995~2007.
参考文献
周幼吾, 郭东信, 邱国庆, 程国栋, 李树德. 2000. 中国冻土. 北京: 科学出版社, 1~450.
参考文献
祝有海, 张永勤, 文怀军, 卢振权, 贾志耀, 李永红, 李清海, 刘昌岭, 王平康, 郭星旺. 2009. 青海祁连山冻土区发现天然气水合物. 地质学报, 83(11): 1762~1771.
参考文献
祝有海, 卢振权, 谢锡林. 2011. 青藏高原天然气水合物潜在分布区预测. 地质通报, 30(12): 1918~1926.
参考文献
祝有海, 庞守吉, 王平康, 张帅, 肖睿. 2021. 中国天然气水合物资源潜力及试开采进展. 沉积与特提斯地质, 41(4): 524~535.
目录contents

    摘要

    为探讨青海南部陆域冻土区烃源岩地球化学异常成因及气源条件,通过分析青海开心岭冻土区TK-1钻孔岩芯样品中酸解烃、荧光光谱、甲烷碳同位素含量及垂向迁移变化特征,解析其烃类地球化学异常成因,剖析岩芯中烃类异常与裂隙或破碎带、水合物稳定带、烃类运聚成藏过程的响应关系,研究其对天然气水合物及烃类运聚的地球化学指示意义。结果显示:钻孔岩芯中烃类在62~80 m、112~119 m、150~169 m和254~350 m深度段出现明显的地球化学异常富集特征,钻孔岩芯酸解烃中烃类组成、参数比值(C1/ΣC1-5、C1/ΣC2-5、C1/ΣC2-3iC4/nC4等)、甲烷碳同位素(δ13CPDB)显示烃类以热解成因为主,包括油型裂解气、凝析油伴生气、煤成气和少量的无机成因气。二叠系那益雄组煤系烃源岩处于高—过成熟阶段,其热演化过程中的生排烃气可能是形成水合物所需气体的重要来源。冻土带的封盖“挡板效应”,在冻土层下方形成烃类地球化学强异常,可作为天然气水合物及烃类运聚等异常现象的指示。裂隙或破碎带内岩芯酸解烃组分含量相对较高,随着深度变化,烃类组分呈现明显的“色层效应”,显示裂隙或破碎带对烃类的运移、聚集具有一定控制作用。

    Abstract

    In order to explore thegenesis of hydrocarbon geochemical anomalies and gas source conditions of hydrocarbon source rocks in the permafrost region of southern Qinghai, we analyze the content of acidolysis hydrocarbon, fluorescence spectrum, and methane carbon isotope of core samples from the TK-1 borehole in the Kaixinling permafrost region. We also examine the vertical migration characteristics of these samples and discuss the causes of hydrocarbon geochemical anomalies. Our research delves into the relationship between hydrocarbon anomalies and the fractures or fracture zones, hydrate stability zones, and the process of hydrocarbon formation. By analyzing this relationship, we aim to understand the significance of geochemical anomalies in hydrocarbon migration and accumulation. The results show significant geochemical anomaly enrichment of hydrocarbons at depths of 62~80 m, 112~119 m, 150~169 m, and 254~350 m. Based on the hydrocarbon composition, parameter ratio (C1/ΣC1-5, C1/ΣC2-5, C1/ΣC2-3, iC4/nC4, etc.), and methane carbon isotope (δ13CPDB) characteristics, we conclude that the hydrocarbons are mainly pyrolytic in nature. This includes oil-type cracking gas, condensate-associated gas, coal-derived gas, and a small amount of inorganic gas. Furthermore, the coal series source rocks of the Permian Nayixiong Formation have reached the high-to-over-mature stage. The hydrocarbon generation and expulsion of gas during thermal evolution might be an important source of gas for hydrate formation. The “baffle effect” of the permafrost zone forms a strong geochemical anomaly of hydrocarbons beneath the permafrost layer, which can be used as an indicator of natural gas hydrates and abnormal phenomena. Additionally, the content of acidolysis hydrocarbon components in the fractures or fracture zones is relatively high. With the change of depth, hydrocarbon components show an obvious “color layer effect” indicating that the fractures or fracture zones exert a certain control effect over the migration and accumulation of hydrocarbons.

  • 广泛分布于海底沉积物和陆地永久冻土层中的天然气水合物(主要由甲烷组成)是人类未来不可多得的清洁能源(Makogon et al.,2007; Collett et al.,2009)。天然气水合物具有能量密度高、分布广、规模大、埋藏浅、成藏物化条件优越等特点(Kvenvolden,1993; Collett,1994; Collett et al.,20002011)。中国陆域多年永久冻土区天然气水合物资源潜力巨大(祝有海等,200920112021; Zhu Youhai et al.,2010; 张洪涛等,2011; Lu Zhengquan et al.,2011)。2008年中国地质调查局在青海祁连山首次获得天然气水合物实物样品,这也是世界上首次在中纬度地区发现天然气水合物(祝有海等,2009)。我国陆域冻土区天然气水合物勘查方法技术方面取得了系列成果(Lu Zhengquan et al.,2013; Sun Zhongjun et al.,2014; Wang Pingkang et al.,2015; 王平康等,20152019; 黄霞等,2016; Fang Hui et al.,2017; Lin Zhengzhou et al.,2018; 张富贵等,2019; 宁伏龙等,2020; 周亚龙等,2021),证实我国陆域冻土区天然气水合物分布较为复杂,其水合物成藏控制因素及指示标志还缺乏深入了解(Lu Zhengquan et al.,2010,2020)。

  • 青海开心岭冻土区是中国陆域冻土区天然气水合物远景区之一(祝有海等,2011; 宁伏龙,2020)。该区域具备较好的形成水合物的温度压力条件,冻土平均厚度达84 m(Liu Shengqian et al.,2016),区内上二叠统乌丽群那益雄组和上三叠统结扎群巴贡组烃源岩处于生湿气和干气阶段,满足水合物形成所需的气源条件(唐世琪等,2015; 李莹等,2018);多个岩芯横切面和裂隙面红外测温呈现低温异常,发育自生碳酸盐和黄铁矿矿物(刘晖等,2019); 钻探取芯现场见大量气泡从岩芯裂隙、孔隙中冒出,岩芯见断层泥、断层角砾、断层破碎带等,裂隙、溶蚀孔隙等储集空间发育(夏中源,2018),那益雄组发育中孔-中渗型及中/低孔-高渗型储层(胡承飞,2020),区域断层和破碎带可提供流体渗流通道(刘圣乾等,2017);地球物理测井曲线显示在250~450 m具有多层低密度、高侧向电阻率和高声波波速响应特征(刘晖等,2019),地震剖面显示的“弱振幅”与那益雄组所在层位基本吻合(覃雨璐等,2021)。总之,该区域具有天然气水合物形成的温压条件、气源条件、储集空间等各要素,具备良好的天然气水合物勘探前景。

  • 目前,已有学者对该区域的冻土条件(图1a)(周幼吾等,2000)、温度压力条件(龚建明等,2014a2015; Liu Shengqian et al.,2016)、烃源岩(李小豫等,2013; 陈小慧等,2014; 龚建明等,2014b; 唐世琪等,2015)、储存条件(Liu Shengqian et al.,2016)等天然气水合物成藏条件开展了较多的基础研究。未实现天然气水合物勘查突破,气源问题是一个重要因素(唐世琪等,2015)。气源可能与二叠系煤系地层热解成因气有关(李小豫等,2013),这些气源能否满足天然气水合物形成的物质条件不清楚,其与深部运移作用、运移通道或断层的依赖关系如何也不清楚。本文利用开心岭冻土区TK-1钻孔不同深度岩芯样品酸解烃、荧光光谱和甲烷碳同位素数据,对比研究岩芯中烃类随深度的变化特征及其对水合物异常现象的指示作用,剖析岩芯中烃类含量与裂隙或破碎带的响应关系,探讨该地区天然气水合物形成的气源条件及烃类异常成因,研究其对水合物及烃类运移作用的地球化学指示意义。

  • 1 地质背景

  • 开心岭地区位于青海南部沱沱河一带,平均海拔4500 m,年平均气温为-4.4℃,处于青藏高原永久冻土区(周幼吾等,2000)。大地构造上位于青藏高原腹地北羌塘陆块构造区,区内断裂构造普遍发育,断裂主体为北西西向(吴军虎,2011),多为新生代以来的构造,断层性质主要为逆冲兼走滑(张辉善等,2014)。在挤压构造背景下,地层经历多期褶皱变形和断层破坏,形成开心岭复背斜、乌丽复背斜等复杂褶皱,并为断层所截切、分割成小块,常见断层接触、假整合、角度不整合等地层接触方式,区域上分布连续性较差(刘圣乾等,2017)。开心岭冻土区主要出露二叠系、三叠系、古近系、新近系、第四系等。冻土区潜在烃源岩主要有中二叠统开心岭群九十道班组(P2j)、上二叠统乌丽群那益雄组(P3n)、上三叠统结扎群巴贡组(T3bg)等(唐世琪等,2015)(图1b)。

  • 图1 青藏高原多年冻土区分布(a)(据周幼吾等,2000修改)和开心岭冻土区的构造地质图(b) (据邓中林,2014刘圣乾等,2017修改)

  • Fig.1 Distribution of permafrost areas in the Qinghai-Tibet Plateau and locations of the study areas (a) (modified from Zhou Youwu et al., 2000) ; tectonic and geographic location of the Kaixinling area (b) (modified from Deng Zhonglin, 2014; Liu Shengqian et al., 2017)

  • 1 —第四系; 2—古近系; 3—上三叠统侵入岩(灰绿色辉绿岩); 4—上三叠统巴贡组; 5—上三叠统波里拉组; 6—上三叠统甲丕拉组; 7—上二叠统拉卜查日组; 8—上二叠统那益雄组; 9—中二叠统九十道班组; 10—下二叠统诺日巴尕日保组; 11—上石炭统—下二叠统扎日根组; 12—断层; 13—不整合接触面; 14—TK-1钻井

  • 1 —Quaternary; 2—Paleogene; 3—Upper Triassic intrusive rocks; 4—Upper Triassic Bakun Formation; 5—Upper Triassic Polila Formation; 6—Upper Triassic Jiapila Formation; 7—Upper Permian Labchari Formation; 8—Upper Permian Nayixiong Formation; 9—Middle Permian Jiushidaoban Formation; 10—Lower Permian Nuoribagaribao Formation; 11—Upper Carboniferous-Lower Permian Zarigen Formation; 12—fault; 13—unconformable contact; 14—TK-1 well drilling

  • 青海南部开心岭冻土区实施的天然气水合物钻探试验井TK-1井从上至下依次钻遇第四系、上二叠统那益雄组(P3n)和下二叠统诺日巴尕日保组(P1nr)。第四系深度为0~15.2 m。那益雄组(P3n)深度15.2~155.5 m,岩性为灰色—深灰色粉细砂岩、灰黑色—黑色泥岩、碳质泥岩夹薄层煤或煤线和薄层含生物碎屑泥灰岩,偶见灰—灰白色含砾砂岩。该套含煤地层沉积环境主要为陆表海环境的海陆交互相(吴军虎,2011; 邓中林等,2014),诺日巴尕日保组(P1nr)深度155.5~646.86 m,岩性为灰色、灰紫色粉细砂岩,灰色、灰绿色、灰白色细—中砂岩,紫红色泥岩、粉砂岩,沉积环境为浅海—半深海相(赵振明等,2013)。

  • 2 样品与测试方法

  • 青海南部开心岭冻土区TK-1钻孔最大钻探深度646.86 m,在该钻孔0~645 m深度共采集岩芯样品500件,其中第四系采集岩芯样品7件,上二叠统那益雄组(P3n)采集岩芯样品98件,下二叠统诺日巴尕日保组(P1nr)采集岩芯样品395件。青海南部冻土层厚度最小值为40 m,最大值为150 m,平均厚度达84 m,冻土层下的平均地温梯度为2.2℃/100 m。根据研究区温压条件,冻土厚度为84 m时,水合物稳定带深度范围为240~450 m;当冻土厚度达到150 m 时,最小110 m深度时即可形成水合物(刘圣乾等,2017)。此外,根据地球物理测井响应显示,在250~450 m 具有多层天然气水合物赋存的低密度、高侧向电阻率和高声波波速的特征(刘晖等,2019),结合钻井岩芯现场观测,本次钻孔岩芯100~450 m深度加密采样,每间隔1 m采集1件岩芯样品;0~100 m和450~640 m深度范围内每间隔2 m采集1件岩芯样品。

  • 岩芯样品送实验室分析酸解烃、荧光光谱、甲烷稳定碳同位素,分析测试工作由中国石化石油勘探开发研究院勘查地球化学实验室完成。分析测试过程中采用标准物质监控测试的准确度,采用重复样监控测试的精密度,各指标分析质量的准确度、精密度均满足GB/T29173—2012规范要求,分析质量可靠。

  • 酸解烃测试:取人工研磨至粒径< 0.419 mm(约40目)的岩芯样品在真空、恒温条件下经酸分解,释放出来的气体经碱溶液吸收除去CO2,其余气体经碱溶液驱赶至量气管,记录脱出的气体体积,根据含量注入适量所脱出的气体,用气相色谱仪测定C1~C5烃类组分,用外标法定量计算烃类气体含量。分析指标为甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷、正戊烷,乙烯和丙烯,所有测试指标的检出限均为0.01 μL/kg。检测依据GB/T29173—2012标准。荧光光谱测试:取人工研磨至粒径 <0.176 mm(约10目)的岩芯样品5 g,加石油醚进行冷溶抽提,振荡萃取,以波长265 nm的紫外光作激发光源,在荧光分光光度计上检测320 nm、360 nm、405 nm波长发射峰的相对荧光强度,检测依据GB/T29173—2012标准。甲烷稳定碳同位素测试:取人工研磨至粒径<0.419 mm(约40目)的岩芯样品50 g进行脱气(方法同酸解烃分析),将制备好的烃类,转化为CO2和H2O,然后利用色谱分离技术把CO2与其他组分分离开来,并收集CO2密封保存,利用气相色谱-质谱法(GC-MS)测定CO2中碳同位素组成。测试过程采用GBW04407等碳同位素标准物质控制分析测试精密度。所用仪器为美国热电公司的MAT-253型稳定同位素质谱仪,检出限为0.2×10-9,检测依据GB/T18340.2—2010标准。

  • 3 结果与分析

  • 3.1 地球化学指标含量特征

  • TK-1钻孔岩芯样品酸解烃浓度和荧光光谱分析测试结果见附表1和表1。酸解烃均检测出甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷和正戊烷(C1~C5),其含量均值分别为737.71 μL/kg、12.11 μL/kg、4.26 μL/kg、0.54 μL/kg、1.406 μL/kg、0.66 μL/kg和0.48 μL/kg。酸解烃含量具有C1>>C2 > C3 > C4 > C5的特征,与发现天然气水合物的青海祁连山木里地区DK-8钻孔岩芯烃类组成特征类似,均呈现以甲烷为主的特征,且甲烷含量显著高于常规油气盆地。变异系数(Cv=标准偏差S/均值X)是地球化学场均匀程度的定性描述,变异系数越大,越可能成矿(汤玉平等,2001; 邢学文等,2014)。TK-1孔岩芯酸解烃轻烃指标变异系数均大于1,属于非均匀场,特别是酸解烃甲烷变异系数为3.98,属于高度非均匀场。这一结果表明TK-1井存在轻烃异常富集特征。

  • 为区分不同层系TK-1钻孔岩芯酸解烃C1~C5分布的差异性和共同性,绘制了以C1、C2+C3、C4+C5为指标的三角图(图2)。如图2所示,所有样品都位于右下角,样品分布相对比较集中,暗示不同时期地层岩芯中的吸附烃可能具有同源性。C1所占比例相对较高,C2+C3含量大于C4+C5,而C4+C5含量则相对较小,这一组分结构特征说明烃类来源可能是深部热解气渗漏。第四系岩芯样品C1含量均在90%以上,61.2%的上二叠统那益雄组(P3n)岩芯样品C1含量在90%以上,20.76%的下二叠统诺日巴尕日保组(P1nr)岩芯样品C1含量在90%以上。

  • 表1 青海南部开心岭冻土区TK-1钻孔岩芯地球化学指标特征值(样品数500)

  • Table1 Characteristics of hydrocarbon geochemical exploration index from the TK-1 core in the Kaixinling permafrost, southern Qinghai (sample number n=500)

  • 图2 青海南部开心岭冻土区TK-1钻孔岩芯酸解烃组分 C1、C2+C3和C4+C5三角图

  • Fig.2 Triangle plot of C1, C2+C3 and C4+C5 detected with acidolysis technique in the TK-1 core in the Kaixinling permafrost, southern Qinghai

  • 3.2 地球化学指标垂向变化

  • TK-1钻孔岩芯样品酸解烃中各烃类气体组分的含量随深度的变化具有相同的规律性(图3)。岩芯样品酸解烃中各烃类含量在62~80 m、112~119 m、150~169 m、254~350 m等深度段上具有明显的异常富集特征。酸解烃各烃类气体组分(甲烷、乙烷、丙烷、异丁烷、正丁烷、异戊烷和正戊烷)含量在62~169 m深度出现多处酸解烃轻烃高度富集的层段,折线形态较窄,其各烃类气体平均值分别为3028.42 μL/kg、27.73 μL/kg、5.65 μL/kg、1.10 μL/kg、1.65 μL/kg、2.04 μL/kg和0.53 μL/kg。酸解烃甲烷组分含量在64 m深度处达最大值,酸解烃乙烷、丙烷、异丁烷、正丁烷和正戊烷组分含量则在164 m深度层位处达最大值。在254~350 m深度酸解烃轻烃异常层位,酸解烃甲烷异常主要富集于276~300 m深度段,折线形态较窄,平均值为518.26 μL/kg,在290 m深度层位处达到最大值2362.17 μL/kg,呈现“指形”曲线特征。酸解烃乙烷、丙烷、异丁烷、正丁烷、异戊烷和正戊烷异常主要富集层段深度为260~310 m,折线形态较宽,在270~291 m深度之间,呈现宽缓的“齿化箱形”曲线特征。

  • TK-1钻孔岩芯样品荧光光谱强度随深度的变化规律与岩芯酸解烃含量富集存在差异(图3)。在62~169 m和276~300 m深度层段,荧光光谱指标异常与岩芯酸解烃异常富集层段相似,不同之处在于,在深度415~449 m层段,荧光光谱指标呈强烈异常显示,荧光光谱F320 nm、F360 nm、F405 nm强度均在深度415 m层段达最大值319.5×10-9、477.0×10-9和130.5×10-9,其强度是非异常层段的数十倍或几十倍,折线形态呈箱形-钟形特征。

  • 图3 青海南部开心岭冻土区TK-1钻孔岩芯地球化学测井剖面图

  • Fig.3 Variation of gas concentrations with depths in acidolysis hydrocarbon from the TK-1 core in the Kaixinling permafrost, southern Qinghai

  • 1 —砾石;2—泥岩;3—细砂岩;4—泥质粉砂岩;5—煤;6—碳质泥岩;7—粉砂岩;8—粉砂质泥岩;9—泥质细砂岩;10—粗砂岩;11—泥灰岩;12—碳质页岩;13—细砾岩;14—含砾粗砂岩;15—中砂岩;16—含砾砂岩;17—灰岩;18—砂质灰岩;19—泥质砂岩;20—含泥细砂岩;21—含泥粉砂岩;22—裂隙

  • 1 —gravel; 2—mudstone; 3—fine sandstone; 4—argillaceous siltstone; 5—coal; 6—carbonaceous mudstone; 7—siltstone; 8—silty mudstone; 9—gritty sandstone; 10—coarse sandstone; 11—marl; 12—carbonaceous shale; 13—fine conglomerate; 14—pebbled gritty sandstone; 15—medium sandstone; 16—pebbled sandstone; 17—limestone; 18—sand limestone; 19—argillaceous sandstone; 20—argillaceous fine sandstone; 21—argillaceous siltstone; 22—crack

  • TK-1孔岩芯酸解烃丁烷异构比(iC4/nC4)总体自下而上呈逐渐减小的趋势;荧光光谱F320 nm、F360 nm、F405 nm指标也有随深度增加而递增的趋势,即自下而上芳烃浓度逐渐降低的趋势;说明烃类运移过程中,由于重力分异及上覆地层“色层效应”(Carlson et al.,1986),分子量大的烃类分子迁移能力弱,而分子量小的烃类具有较强的迁移能力,相对超前,因此,在地层的纵向上油气成分逐渐变轻。

  • 3.3 烃类异常成因解析

  • 由于烃类气体在自然界广泛分布,需判断近地表土壤烃类异常成因。烃气的来源主要有3类,包括有机质在生物化学带内经过微生物降解、热解作用形成的生物气,与成油有机质和石油热解作用形成的油型气和与成煤有机质和煤在变质作用过程中发生热(裂)解作用形成的煤成气。

  • 漆富成等(2007)研究,生物成因气C1/ΣC值为0.99~1、C1/C2+值>100,煤成气的C1/ΣC值为0.90~0.99、C1/C2+值>10,油型气C1/ΣC值为0.70~0.98、C1/C2+值>2。据此,将TK-1钻孔岩芯样品酸解烃数据投入该判别图(图4),从图中看出,除上二叠统那益雄组(P3n)部分岩芯样品落入生物成因范围内,其余岩芯样品酸解烃来源均为热解成因的油型气、煤成气及其混合成因气。

  • 因甲烷碳同位素的动力学分馏作用,应用酸解烃C1/(C2+C3)值与甲烷碳同位素δ13CPDB值可以有效地区分沉积物中烃类成因。一般来说,C1/(C2+C3)>1000、δ13CPDB<-60‰指示气体为微生物成因;C1/(C2+C3)<1000、δ13CPDB>-50‰为热解成因;介于两者之间表明为混合成因(戴金星,19932017)。

  • TK-1钻孔500件岩芯样品酸解烃数据统计显示,C1/(C2+C3)值介于1.26~385.36,平均值为31.82;C1/(C2+C3)值均小于1000。TK-1钻孔岩芯煤系地层(39.19~52.98 m)δ13CPDB范围在-26.5‰~-17.3‰之间,均值为-23.24‰。钻孔岩芯地球化学异常层段甲烷碳同位素δ13CPDB统计显示,62~80 m深度δ13CPDB在-28.9‰~-25.6‰间变化,平均为-27.5‰;112~119 m深度δ13CPDB在-31.3‰~-23.6‰间变化,平均为-29.6‰;150~169 m深度δ13CPDB在-32.1‰~-14.0‰间变化,平均为-25.3‰;254~350 m深度δ13CPDB在-29.9‰~-4.6‰间变化,平均为-15.9‰;415~449 m深度δ13CPDB在-16.6‰~-9.6‰间变化,平均为-13.1‰。据TK-1钻孔岩芯样品δ13CPDB与烃类气体组分判断,TK-1钻孔岩芯烃类异常成因主要为热解成因,包括油型裂解气、凝析油伴生气、煤成气和少量的无机成因气(图5)。钻孔岩芯地球化学异常层段δ13CPDB随着深度增加而变重。一方面烃源岩生排烃时,甲烷等烃类在扩散、垂向运移等过程中δ13CPDB发生分馏效应;另一方面,研究区烃源岩成熟度普遍达到成熟—过成熟阶段,随着烃源岩成熟度的增大,δ13CPDB逐渐变重。下二叠统诺日巴尕日保组62.6%的岩芯样品δ13CPDB大于-20‰,呈深源气特征(无机成因气),其可能与青海沱沱河地区开心岭一带中二叠世—早三叠世基性岩浆事件有关(张辉善等,2014)。

  • 图4 青海南部开心岭冻土区TK-1钻孔岩芯酸解烃C1/∑C和C1/C2+含量关系

  • Fig.4 Point diagram of C1/∑C and C1/C2+from acidolysis hydrocarbon in the TK-1 core in the Kaixinling permafrost, southern Qinghai

  • 据Bernard 图版(Bernard et al.,1976; Whiticar,1999)分析(图5),TK-1钻孔岩芯烃类异常成因同样以热解成因为主,钻孔岩芯酸解烃烃类气体组分与δ13CPDB则均表现出III型(腐殖型)特征,烃源岩热演化成熟度较高,达到高—过成熟阶段。此结果与刘圣乾等(2017)对TK-1孔上二叠统那益雄组泥岩、碳质泥岩等13件岩芯样品的岩石热解分析和镜质组反射率Ro测定的数据结果相吻合。根据上二叠统那益雄组13件岩芯样品的岩石热解测试数据(刘圣乾等,2017),那益雄组烃源岩有机质类型主要为Ⅲ型干酪根,少量样品为Ⅱ型干酪根(图6); 岩芯样品镜质组反射率Ro介于1.58%~2.49%之间,平均值为2.04%,处于高成熟—过成熟阶段。样品的岩石热解峰温Tmax值为545~582℃,指示烃源岩到过成熟阶段并进入生干气阶段。上述热解数据表明,研究区那益群组有机质热演化程度较高,主要以产气为主。

  • 图5 青海南部开心岭冻土区TK-1井烃类异常成因 C1/(C2+C3)-δ13CPDB解析图(图版据Whiticar,1999戴金星,2017

  • Fig.5 The diagram of acidolysis hydrocarbon C1/ (C2+C3) -δ13CPDB of TK-1 core in the Kaixinling permafrost, southern Qinghai (modified from Whiticar, 1999; Dai Jinxing, 2017)

  • 1—生物气;Ⅰ2—生物气和亚生物气;Ⅰ3—亚生物气;Ⅱ1—原油伴生气;Ⅱ2—油型裂解气;Ⅲ1—油型裂解气和煤层气;Ⅲ2—凝析油伴生气和煤层气;Ⅳ—煤成气;Ⅴ1—无机气;Ⅴ2—无机气和煤成气

  • 1—biogenic gas; Ⅰ2—biogenic gas and sub-biogenic gas; Ⅰ3—sub-biogenic gas; Ⅱ1—crude associated gas; Ⅱ2—oil type cracked gas; Ⅲ1—oil type cracked gas and coal gas; Ⅲ2—condensate associated gas; Ⅳ—coal gas; Ⅴ1—inorganic gas; Ⅴ2—inorganic gas and coal gas

  • 图6 开心岭冻土区TK-1钻孔岩芯干酪根类型图解 (图版据 Espitalié et al.,1977; 数据据刘圣乾等,2017

  • Fig.6 Type diagram of kerogen of TK-1 core in the Kaixinling permafrost by IH versus IO (modified from Espitalié et al., 1977; date from Liu Shengqian et al., 2017)

  • 4 讨论

  • 4.1 烃类异常与裂隙/破碎带之间的关系

  • TK-1钻孔所在的开心岭地区在南北向区域挤压应力背景下,褶皱、断层与构造破碎带非常发育。岩层在褶皱变形过程中致使岩石大量破碎、岩层错动,逆冲断裂的活动亦形成了大量破碎带及派生裂隙。钻井岩芯观察显示,那益雄组和诺日巴尕日保组局部岩芯发育大量裂缝和孔隙,裂缝宽度可达0.1~0.5 cm,孔隙大者肉眼可见。TK-1井地球化学异常深度段与裂隙或破碎带发育的深度段具有较好的对比性,在地球化学异常层段发育大量的裂隙或破碎带。其中62~80 m地球化学异常深度段发育5条裂隙或破碎带,分别见于63.3~65.72 m、67.0~68.0 m、68~70.7 m、73.45~75.6 m和77.9~81.3 m处,在67.0 m和73.65 m处见断层泥;在150~169 m地球化学异常深度段发育4条裂隙或破碎带,分别见于149.95~152.05 m、155.9~157.8 m、158.82~159.9 m和164.23~165.6 m处,在162.84 m、163.85 m处见断层泥;在254~350 m地球化学异常深度段发育3条裂隙或破碎带,分别见于262.2~262.73 m、277.85~288.25 m和295.24~298.35 m处;在415~449 m地球化学异常深度段发育2条裂隙或破碎带,分别于426.6~428.1 m和444.45~445.05 m处见泥岩成角砾状,推测为断层破碎带。从TK-1钻孔岩芯地球化学测井剖面可见,上述裂隙/破碎带发育处,岩芯酸解烃呈现明显地球化学异常。从TK-1钻孔深部至顶部,随运移距离增加,烃类成分参数iC4/nC4iC5/nC5、AR=(|iC4/nC4-iC4/C3|/(iC4/C3))等指标在裂隙/破碎带显著增大,反映烃类渗流“色层效应”明显,裂隙/破碎带可为深部气源提供上升通道从而利于天然气水合物的形成。根据岩芯完整程度定性分析,完全破碎带占21.9%,中等破碎带占17.8%(Liu Shengqian et al.,2016)。断层、裂隙的发育既增大了储集空间,又促进了烃类、流体物质的运移、聚集。TK-1孔岩石物性测试结果(夏中源,2018),孔隙度平均值为7.59%,渗透率平均值为0.67×10-3μm2,孔渗条件比较好,有利于烃类气体的聚集。断裂破碎带可以作为烃源岩生排烃运移通道,裂隙/破碎带与烃类异常层位的良好对比性,反映了裂隙/破碎带有利于烃类气体的运移和聚集,为天然气水合物赋存提供了有利的运聚条件,可将断裂附近视为勘探有利目标区。

  • 4.2 烃类异常的指示意义

  • 开心岭—乌丽地区多口钻孔温度测井显示,该区域多年冻土平均厚度达84 m(Liu Shengqian et al.,2016)。研究区发育分布广且厚度稳定的多年永久冻土层,可以作为天然气水合物成藏的天然盖层。多年冻土层具有较强的封盖能力,在烃类垂向运移的途径中形成较好的“挡板效应”,从而使深部运移而来的天然气在冻土层下聚集、保存。因此在冻土层下部毗邻水合物稳定带,深部运移至浅层的烃类气体在稳定带内靠近断裂及裂隙发育的部位进行水合物成藏作用(Max and Johnson,2011),即形成裂隙型水合物。TK-1孔岩芯地球化学测井结果发现,在冻土带下方150~169 m深度层段存在烃类地球化学强异常显示,其异常指示了烃类物质的运聚成藏,也进一步佐证了开心岭地区多年冻土厚度约150 m。钻孔地球化学调查发现的烃类异常深度层段62~80 m、112~119 m、150~169 m和254~350 m与开心岭地区天然气水合物稳定带深度层段吻合。值得注意的是,研究区二叠系煤系地层发育,煤系地层镜质组反射率呈现普遍偏高特征(谭节庆,2018),煤层气的迁移也可能在煤系地层附近形成高浓度甲烷异常,但是煤层气在迁移、聚集过程中,如果遇有利的成藏条件和冻土条件,这些高浓度的甲烷气体也可能为水合物的形成提供充足的气源,形成天然气水合物。如我国陆域冻土区钻获水合物实物样品的祁连山木里地区其气源可能来源于煤层和煤系分散有机质热演化的煤层气(曹代勇等,20092022)或者混合成因的原油伴生气和煤层气(Lu Zhenquan et al.,2010黄霞等,2016)。TK-1钻孔岩芯中共发现3个层位的煤系地层,分别位于39.19~43.7 m深度的黑色末煤,局部夹块状亮煤;43.7~47.5 m深度的灰黑色碳质泥岩中局部夹煤线;48.3~52.98 m深度黑色碳质泥岩局部夹煤线。TK-1钻孔钻遇的煤系地层或含煤地层深度均位于烃类异常层(62~80 m、112~119 m、150~169 m、254~350 m)之上,甲烷烃类异常与煤系地层空间上非对应关系。此外,指示芳烃组分的荧光光谱指标在62~169 m、276~300 m、415~449 m深度层段,也呈现荧光光谱异常显示(图3)。因此,这些烃类异常的成因来源虽然可能受研究区煤系地层煤层气迁移的影响,但是也不能排除与水合物有关。此外,这些煤系地层的煤层气也可能为水合物的形成提供充足的气源。TK-1钻孔岩芯样品中酸解烃、荧光光谱、甲烷碳同位素地球化学异常富集特征及垂向迁移变化特征,反映了二叠系那益雄组煤系烃源岩热演化过程中的生排烃气可能为形成水合物提供了重要气源条件,这些异常也对烃类运聚具有重要指示意义。

  • TK-1钻孔所在的研究区那益雄组发育的煤系烃源岩处于高—过成熟阶段,其热演化过程中的生排烃气可能是形成水合物所需气体的重要来源,天然气水合物稳定带条件及赋存条件可与青海省木里坳陷冻土区天然气水合物分布区相对比,与木里地区的水合物成藏模式(卢振权等,2015)类似,TK-1钻孔所揭示的地球化学异常层段在冻土条件、气源条件、运聚通道等方面虽然达到了陆域冻土区天然气水合物成藏条件,但因酸解烃、荧光光谱等指标反映的是化学吸附烃,也可能反映烃类物质运聚产生的“残留效应”,因此研究区各因素在时间和空间上的配置的有效性是控制其天然气水合物是否成藏的关键因素。

  • 5 结论

  • (1)开心岭冻土区TK-1钻孔岩芯酸解烃轻烃、荧光光谱在62~80 m、112~119 m、150~169 m和254~350 m深度段出现地球化学异常富集特征,特别是在150~169 m深度层段因冻土带的封盖“挡板效应”,在冻土层下方烃类物质的运、聚形成的烃类地球化学强异常可作为水合物或煤层气及其异常现象的指示标志。

  • (2)TK-1钻孔岩芯酸解烃中烃类组成、参数比值、甲烷碳同位素特征显示以热解成因为主,包括油型裂解气、凝析油伴生气、煤成气和少量的无机成因气,二叠系那益雄组煤、煤系烃源岩处于高—过成熟阶段,其热演化过程中生排的轻烃、煤层气等高浓度甲烷气体可能是形成水合物所需的重要气源。

  • (3)TK-1岩芯酸解烃相对高含量与裂隙或破碎带具有明显响应特征。裂隙或破碎带即可增加水合物的储集空间,又可促进烃类物质的运移、聚集,为烃源岩排烃提供运移通道,构成水合物形成所需的运移—聚集体系,对烃类气体的运移、聚集具有一定控制作用。气源、运聚和冻土等因素在时间和空间上的有效配置是研究区水合物最终能否成藏的关键。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202404093?st=article_issue

  • 参考文献

    • Bernard B B, Brooks J M, Sackett W M. 1976. Natural gas seepage in the Gulf of Mexico. Earth and Planetary Science Letters, 31(1): 48~54.

    • Cao Daiyong, Liu Tianji, Wang Dan, Wang Tong, Wen Huaijun, Pan Yulu. 2009. Analysis of formation conditions of natural gas hydrate in Muli coalfield, Qinghai Province. Coal Geology of China, 21(9): 3~6 (in Chinese with English abstract).

    • Cao Daiyong, Qin Rongfang, Wang Anmin, Chen Limin, Li Jing, Wei Yingchun. 2022. Accumulation model and exploration and development suggestions of coal measure gas hydrates in Sanlutian area of Muli coalfield, Qinghai Province. Coal Geology & Exploration, 50(3): 92~101 (in Chinese with English abstract).

    • Carlson R, Chamberlain D E. 1986. Steroid biomarker-clay mineral adsorption free energies: Implications to petroleum migration indices. Organic Geochemistry, 10(1-3): 163~180.

    • Chen Xiaohui, Zhang Min, Gong Jianming. 2014. Molecular geochemical characteristics of potential source rocks of the Wuli premofrost in the Tibet Plateau, China. Natural Gas Geoscience, 25(6): 882~888 (in Chinese with English abstract).

    • Collett T S, Dallimore S R. 2000. Permafrost-Associated Gas Hydrate. Natural Gas Hydrate. Springer Neth, 43~60.

    • Collett T S, Lee M W, Agena W F, Miller J J, Lewis K A, Zyrianova M V, Boswell R, Inks T L. 2011. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Marine and Petroleum Geology, 28(2): 279~294.

    • Collett T S. 1994. Permafrost-associated gas hydrate accumulations. Annals of the New York Academy of Sciences, 715(1): 247~269.

    • Collett T S, Johnson A H, Knapp C C, Bosewell R. 2009. Natural gas hydrates: A review. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. American Association of Petroleum Geologists Memoir, 89: 274~297.

    • Dai Jinxing. 1993. The characteristics of carbon and hydrogen isotopes and the identification of various types of natural gas. Natural Gas Geoscience, 4(2/3): 1~40 (in Chinese with English abstract).

    • Dai Jinxing, Ni Yunyan, Huang Shipeng, Peng Weilong, Han Wenxue, Gong Deyu, Wei Wei. 2017. Genetic types of gas hydrates in China. Petroleum Exploration and Development, 44(6): 887~898 (in Chinese with English abstract).

    • Deng Zhonglin, An Yongsheng, Wang Qinghai, An Shouwen, Shi Lianchang, Chen Jian, Zhuang Yongcheng, Ren Jinqi, Yang Yanxing. 2014. Regional Geological Survey of the People's Republic of China—the Tuotuo River Map Sheet (I46C002002). Wuhan: China University of Geosciences Press, 11~97 (in Chinese with English abstract).

    • Espitalié J, Laporte J L, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A. 1977. Méthode rapide de caractérisation des roches méres, de leur potentiel pétrolieret de leur degré d'évolution. Revue de l'Institut Français du Pétrole, 32(1): 23~42.

    • Fang Hui, Xu Mingcai, Lin Zhengzhou, Zhong Qing, Bai Dawei, Liu Jianxun, Pei Fagen, He Meixing. 2017. Geophysical characteristics of gas hydrate in the Muli area, Qinghai Province. Journal of Natural Gas Science and Engineering, 37: 539~550.

    • Gong Jianming, Zhang Jian, Chen Xiaohui, Liao Jing, Li Xiaoyu, He Xingliang, Jiang Yubo. 2014a. Gashydrate accumulation conditions between Qilian Mountain and Wuli permafrost region in Qinghai-Tibetan Plateau. Journal of Oil and Gas Technology, 36(2): 1~6 (in Chinese with English abstract).

    • Gong Jianming, Zhang Li, Chen Xiaohui, Zhang Min, Li Xiaoyu, Shi Jiannan, Yang Deshou, Yang Zhicheng. 2014b. Discussion on original organic types of over-mature source rocks in Wuli permafrost zone of Qinghai-Tibeatean Plateau. Northwestern Geology, 47(2): 208~215 (in Chinese with English abstract).

    • Gong Jianming, Zhang Li, Zhang Jia, Li Yonghong, Chen Xiaohui, Wang Weichao, Yang Zhicheng. 2015. Discussion on gas hydrate accumulation conditions in Wuli permafrost zone, Qinghai-Tibetan Plateau. Marine Geology & Quaternary Geology, 35(1): 145~151 (in Chinese with English abstract).

    • Hu Chengfei. 2020. Characteristics of hydrate reservoir and vertical stability zone in the northeast of Qiangtang basin. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Huang Xia, Liu Hui, Zhang Jiazheng, Wang Pingkang, Xiao Rui, Pang Shouji, Zhang Shuai, Zhu Youhai. 2016. Genetic-type and its significance of hydrocarbon gases from permafrost-associated gas hydrate in Qilian Mountain. Chinese Journal of Geology, 51(3): 934~945 (in Chinese with English abstract).

    • Kvenvolden K A. 1993. Gas hydrates-geological perspective and global change. Reviews of Geophysics, 31(2): 173~187.

    • Li Xiaoyu, Gong Jianming, Chen Xiaohui, Wang Huidong, Chen Junwen, Yang Zhicheng, Jiang Yubo. 2013. Source rock potential of Permian in Wuli permafrost zone in Qinghai-Tibetan Plateau. Geoscience, 27(6): 1384~1391.

    • Li Ying, Liu Shengqian, Xia Zhongyuan, Lu Xiaofeng. 2018. The evaluation on source rocks for natural gas hydrate in Permian Nayixiong Formation of southern Qinghai permafrost. Science Technology and Engineering, 18(12): 148~153 (in Chinese with English abstract).

    • Lin Zhengzhou, Pan Heping, Fang Hui, Gao Wenli, Liu Dongming. 2018. High-altitude well log evaluation of a permafrost gas hydrate reservoir in the Muli area of Qinghai, China. Scientific Reports, 8(1): 12596.

    • Liu Hui, Zhu Youhai, Pang Shouji, Zhang Yongqin, Liang Jian, Zhang Jiazheng. 2019. Important evidence for gas hydrate occurrence in Wuli, Qinghai Province. Geology in China, 46(5): 1243~1244 (in Chinese with English abstract).

    • Liu Shengqian, Jiang Zaixing, Liu Hui, Pang Shouji, Xia Zhongyuan, Jin Zhonghui, Wang Junhui, Wei Xiaojie. 2016. The natural-gas hydrate exploration prospects of the Nayixiong Formation in the Kaixinling-Wuli permafrost, Qinghai-Tibet Plateau. Marine and Petroleum Geology, 72: 179~192.

    • Liu Shengqian, Liu Hui, Jiang Zaixing, Xia Zhongyuan, Pang Shouji, Ma Wenxian. 2017. Controlling factors of gas hydrate formation in southern Qinghai permafrost. Earth Science Frontiers, 24(6): 242~253 (in Chinese with English abstract).

    • Lu Zhenquan, Zhu Youhai, Zhang Yongqin, Wen Huaijun, Li Yonghong, Jia Zhiyao, Liu Changling, Wang Pingkang, Li Qinghai. 2010. Basic geological characteristics of gas hydrates in Qilian Mountain permafrost area, Qinghai Province. Mineral Deposits, 29(1): 182~191.

    • Lu Zhengquan, Zhu Youhai, Zhang Yongqin, Wen Huaijun, Li Yonghong, Liu Changling. 2011. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China. Cold Regions Science and Technology, 66(2~3): 93~104.

    • Lu Zhengquan, Zhu Youhai, Liu Hui, Zhang Yongqin, Jin Chunshuang, Huang Xia, Wang Pingkang. 2013. Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai. Marine and Petroleum Geology, 43: 341~348.

    • Lu Zhenquan, Li Yonghong, Wang Weichao, Liu Changling, Wen Huaijun. 2015. Study on the accumulation pattern for permafrost-associated gas hydrate in Sanlutian of Muli, Qinghai. Geoscience, 29(5): 1014~1023 (in Chinese with English abstract).

    • Lu Zhenquan, Tang Shiqi, Luo Xiaoling, Zhai Gangyi, Fan Dongwen, Liu Hui, Wang Ting, Zhu Youhai, Xiao Rui. 2020. A natural gas hydrate-oil-gas system in the Qilian Mountain permafrost area, northeast of Qinghai-Tibet Plateau. China Geology, 3: 511~523.

    • Makogon Yuri F, Holditch S A, Makogon T Y. 2007. Natural gas hydrates-A potential energy source for the 21st century. Journal of Petroleum Science and Engineering, 56: 14~31.

    • Max M D, Johnson A H. 2011. Diagenetic methane hydrate formation in permafrost: A new gas play? OTC Arctic Technology Conference. OnePetro, DOI: 10. 4043/22094-MS.

    • Ning Fulong, Liang Jinqiang, Wu Nengyou, Zhu Youhai, Wu Shiguo, Liu Changling, Wei Changfu, Wang Dongdong, Zhang Zhun, Xu Meng, Liu Zhichao, Li Jing, Sun Jiaxin, Ou Wenjia. 2020. Reservoir characteristics of natural gas hydrates in China. Natural Gas Industry, 40(8): 1~24+203 (in Chinese with English abstract).

    • Qi Fucheng, Qin Mingkuan, Liu Wusheng, Xiao Shuqing, Wang Zhiming, Zou Shungen, Huang Jingbai. 2007. Time-space configuration of uranium mineralization, sedimentary facies and oil & gas-induced alteration zone in Zhiluo Formation, Ordos basin. Uranium Geology, 23(2): 65~70 (in Chinese with English abstract).

    • Qin Yulu, Zhu Beier, Yuan Duo, Qin Yinlun. 2021. Analysis on the possibility of existence of gas hydrate in Wuli area Qinghai Province. Journal of Henan Science and Technology, 40(10): 128~130 (in Chinese with English abstract).

    • Sun Zhongjun, Yang Zhibin, Mei Hai, Qin Aihua, Zhang Fugui, Zhou Yalong, Zhang Shunyao, Mei Bowen. 2014. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China. Journal of Geochemical Exploration, 139: 160~169.

    • Tan Jieqing. 2015. Control effect of tectonic framework on coal measures in northern Qinghai-Tibet Plateau. Doctoral dissertation of China University of Mining and Technology (Beijing) (in Chinese with English abstract).

    • Tang Shiqi, Lu Zhenquan, Luo Xiaolin, Wang Ting, Tan Panpan. 2015. Gas hydrate source in Wuli-Kaixinling permafrost, southern Qinghai Province. Petroleum Geology & Experiment, 37(1): 40~46 (in Chinese with English abstract).

    • Tang Yuping, Ding Xiangyu, Wu Xianghua, Wei Wei, Li Shanggang. 2001. Features and genesis of regional geochemical fields of the main hydrocarbon-bearing basins in China. Petroluem Exploration and Development, 28(3): 1~4 (in Chinese with English abstract).

    • Wang Pingkang, Huang Xia, Pang Shouji, Zhu Youhai, Lu Zhengquan, Zhang Shuai, Liu Hui, Yang Kaili, Li Bing. 2015. Geochemical dynamics of the gas hydrate system in the Qilian Mountain permafrost, Qinghai, Northwest China. Marine and Petroleum Geology, 59: 72~90.

    • Wang Pingkang, Zhu Youhai, Zhang Xuhui, Zhang Shuai, Pang Shouji, Xiao Rui, Li Bing. 2015. Permafrost structures and their effects on the accumulation of the natural gas hydrates in the Qiangtang basin, northern Xizang. Sedimentary Geology and Tethyan Geology, 35(1): 57~67 (in Chinese with English abstract).

    • Wang Pingkang, Zhu Youhai, Lu Zhengquan Bai Minggang, Huang Xia, Pang Shouji, Zhang Shuai, Liu Hui, Xiao Rui. 2019. Research progress of gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China: Review. Scientia Sinica: Physica Mechanica Astronomica, 49(3): 76~95 (in Chinese with English abstract).

    • Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1-3): 291~314.

    • Wu Junhu. 2011. Late Permian tectonic evolution and coal accumulation pattern analysis in Wuli-Kaixinling area, Qinghai. Coal Geology of China, 23(6): 9~13 (in Chinese with English abstract).

    • Xia Zhongyuan. 2018. Analysis on generation and reservoir characteristics of Permian gas hydrate in permafrost region, southern Qinghai Province, China. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Xing Xuewen, Liu Song, Zhou Hongying, Zou Liqun, Li Guangzhi, Gao Wei. 2014. Geochemical behaviors of shallow soil in Muli permafrost and their significance as gas hydrate indicators. Oil & Gas Geology, 35(1): 159~166 (in Chinese with English abstract).

    • Zhang Fugui, Sun Zhongjun, Yang Zhibin, Zhou Yalong, Zhang Shunyao, Cao Changmao, Wang Huiyan, Tang Ruiling, Pang Shouji, Wang Pingkang, Tang Shiqi, Zhu Youhai. 2019. Geochemical investigation of gas hydrate in the permafrost area, China. Bulletin of Mineralogy, Petrology and Geochemistry, 38(6): 1224~1234 (in Chinese with English abstract).

    • Zhang Hongtao, Zhu Youhai. 2011. Survey and research on gas hydrate in permafrost region of China. Geological Bulletin of China, 30(12): 1809~1815 (in Chinese with English abstract).

    • Zhang Huishan, Ji Wenhua, He Shiping, Chen Shoujian, Hong Jun, Chen Fenning, Zhang Haidi, Shi Chao, Wu Zhongnan, Peng Yan. 2014. Middle Permian-Early Triassic mafic magmatic events in Kaixinling zone, Tuotuo River area, Qinghai Province, and their geological significance. Geological Bulletin of China, 33(6): 830~840 (in Chinese with English abstract).

    • Zhao Zhenming, Chen Shoujian, Ji Wenhua, Zhang Gengxin, Zha Xianfeng, Zhang Haijun. 2013. The geological characteristics and formation of the magnetite-rich Kaixinling iron ore-deposit during Permian in Qinghai Province, China. Geotectonica et Metallogenia, 37(3): 422~439 (in Chinese with English abstract).

    • Zhou Yalong, Yang Zhibin, Zhang Shunyao, Zhang Fugui, Sun Zhongjun, Wang Huiyan. 2021. Study on application mode of headspace gas light hydrocarbon in geochemistry exploration of natural gas hydrate in permafrost regions. Acta Geologica Sinica, 95(6): 1995~2007 (in Chinese with English abstract).

    • Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. 2000. Geocryology in China. Beijing: Science Press, 1~450 (in Chinese with English abstract).

    • Zhu Youhai, Zhang Yongqin, Wen Huaijun, Lu Zhenquan, Jia Zhiyao, Li Yonghong, Li Qinghai, Liu Changling, Wang Pingkang, Guo Xingwang. 2009. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. Acta Geologica Sinica, 83(11): 1762~1771 (in Chinese with English abstract).

    • Zhu Youhai, Zhang Yongqin, Wen Huaijun, Lu Zhengquan, Jia Zhiyao, Li Yonghong, Li Qinghai, Liu Changling, Wang Pingkang, Guo Xingwang. 2010. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. Acta Geologica Sinica, 84(1): 1~10.

    • Zhu Youhai, Lu Zhenquan, Xie Xilin. 2011. Potential distribution of gas hydrate in the Qinghai-Tibetan Plateau. Geological Bulletin of China, 30(12): 1918~1926 (in Chinese with English abstract).

    • Zhu Youhai, Pang Shouji, Wang Pingkang, Zhang Shuai, Xiao Rui. 2021. A review of the resource potentials and test productions of natural gas hydrates in China. Sedimentary Geology and Tethyan Geology, 41(4): 524~535 (in Chinese with English abstract).

    • 曹代勇, 刘天绩, 王丹, 王佟, 文怀军, 潘语录. 2009. 青海木里地区天然气水合物形成条件分析. 中国煤炭地质, 21(9): 3~6.

    • 曹代勇, 秦荣芳, 王安民, 陈利敏, 李靖, 魏迎春. 2022. 青海木里三露天井田煤系天然气水合物成藏模式与勘查开发建议. 煤田地质与勘探, 50(3): 92~101.

    • 陈小慧, 张敏, 龚建明. 2014. 青藏高原乌丽冻土区烃源岩地球化学特征. 天然气地球科学, 25(6): 882~888.

    • 戴金星. 1993. 天然气碳氢同位素特征和各类天然气鉴别. 天然气地球科学, 4(2/3): 1~40.

    • 戴金星, 倪云燕, 黄士鹏, 彭威龙, 韩文学, 龚德瑜, 魏伟. 2017. 中国天然气水合物气的成因类型. 石油勘探与开发, 44(6): 837~848.

    • 邓中林. 2014. 中华人民共和国区域地质调查报告. 沱沱河幅(I46C002002) 比例尺1: 250000. 武汉: 中国地质大学出版社.

    • 龚建明, 张剑, 陈小慧, 廖晶, 李小豫, 贺行良, 蒋玉波. 2014a. 青藏高原祁连山与乌丽冻土区水合物成藏条件研究. 石油天然气学报, 36(2): 1~6.

    • 龚建明, 张莉, 陈小慧, 张敏, 李小豫, 史建南, 杨德寿, 杨志承. 2014b. 青藏高原乌丽冻土区过成熟烃源岩原始有机质类型讨论. 西北地质, 47(2): 208~215.

    • 龚建明, 张莉, 张剑, 李永红, 陈晓慧, 王伟超, 杨志承. 2015. 青藏高原乌丽冻土区天然气水合物成藏条件. 海洋地质与第四纪地质, 35(1): 145~151.

    • 胡承飞. 2020. 羌塘东北部水合物储集特征与垂向稳定带. 成都理工大学硕士学位论文.

    • 黄霞, 刘晖, 张家政, 王平康, 肖睿, 庞守吉, 张帅, 祝有海. 2016. 祁连山冻土区天然气水合物烃类气体成因及其意义. 地质科学, 51(3): 934~945.

    • 李莹, 刘圣乾, 夏中源, 陆晓峰. 2018. 青海南部冻土区二叠系那益雄组天然气水合物烃源岩评价. 科学技术与工程, 18(12): 148~153.

    • 李小豫, 龚建明, 陈小慧, 王慧东, 陈俊文, 杨志承, 蒋玉波. 2013. 青藏高原乌丽冻土区二叠纪煤系烃源岩特征. 现代地质, 27(6): 1384~1391.

    • 刘晖, 祝有海, 庞守吉, 张永勤, 梁健, 张家政. 2019. 青海乌丽地区发现天然气水合物赋存的重要证据. 中国地质, 46(5): 1243~1244.

    • 刘圣乾, 刘晖, 姜在兴, 夏中源, 庞守吉, 马文贤. 2017. 青海南部冻土区天然气水合物成藏控制因素. 地学前缘, 24(6): 242~253.

    • 卢振权, 李永红, 王伟超, 刘昌岭, 文怀军. 2015. 青海木里三露天冻土天然气水合物成藏模式研究. 现代地质, 29(5): 1014~1023.

    • 宁伏龙, 梁金强, 吴能友, 祝有海, 吴时国, 刘昌岭, 韦昌富, 王冬冬, 张准, 徐猛, 刘志超, 李晶, 孙嘉鑫, 欧文佳. 2020. 中国天然气水合物赋存特征. 天然气工业, 40(8): 1~24+203.

    • 漆富成, 秦明宽, 刘武生, 肖树青, 王志明, 邹顺根, 黄净白. 2007. 鄂尔多斯盆地直罗组赋铀沉积相与油气蚀变带的时空配置. 铀矿地质, 23(2): 65~70.

    • 谭节庆. 2015. 青藏高原北部构造格局对煤系赋存的控制作用. 中国矿业大学(北京)博士学位论文.

    • 覃雨璐, 朱贝尔, 袁铎, 覃英伦. 2021. 青海乌丽地区气体水合物存在的可能性. 河南科技, 40(10): 128~130.

    • 汤玉平, 丁相玉, 吴向华, 魏巍, 李尚刚. 2001. 中国主要含油气盆地区域地球化学场参数特征及其成因研究. 石油勘探与开发, 28(3): 1~4.

    • 唐世琪, 卢振权, 罗晓玲, 王婷, 谭盼盼. 2015. 青海南部乌丽—开心岭冻土区天然气水合物气源条件研究. 石油实验地质, 37(1): 40~46.

    • 王平康, 祝有海, 张旭辉, 张帅, 庞守吉, 肖睿, 李冰. 2015. 羌塘盆地冻土结构特征及其对天然气水合物成藏的影响. 沉积与特提斯地质, 35(1): 57~67.

    • 王平康, 祝有海, 卢振权, 白名岗, 黄霞, 庞守吉, 张帅, 刘晖, 肖睿. 2019. 青海祁连山冻土区天然气水合物研究进展综述. 中国科学: 物理学力学天文学, 49(3): 76~95.

    • 吴军虎. 2011. 青海乌丽—开心岭地区晚二叠世构造演化与聚煤规律作用分析. 中国煤炭地质, 23(6): 9~13.

    • 夏中源. 2018. 青海南部冻土区二叠系天然气水合物生储特征分析. 中国地质大学(北京)硕士学位论文.

    • 邢学文, 刘松, 周红英, 邹立群, 李广之, 高伟. 2014. 木里冻土带天然气水合物赋存区浅层土壤地球化学特征及指示意义. 石油与天然气地质, 35(1): 159~166.

    • 赵振明, 陈守建, 计文化, 张更新, 查显锋, 张海军. 2013. 青海开心岭二叠纪铁矿床富磁铁矿体的地质特征及成因分析. 大地构造与成矿学, 37(3): 422~439.

    • 张富贵, 孙忠军, 杨志斌, 周亚龙, 张舜尧, 曹长茂, 王惠艳, 唐瑞玲, 庞守吉, 王平康, 唐世琪, 祝有海. 2019. 中国冻土区天然气水合物的地球化学调查. 矿物岩石地球化学通报, 38(6): 1224~1234.

    • 张洪涛, 祝有海. 2011. 中国冻土区天然气水合物调查研究. 地质通报, 30(12): 1809~1815.

    • 张辉善, 计文化, 何世平, 陈守建, 洪俊, 陈奋宁, 张海迪, 时超, 吴中楠, 彭岩. 2014. 青海沱沱河地区开心岭一带中二叠世—早三叠世基性岩浆事件及其地质意义. 地质通报, 33(6): 830~840.

    • 周亚龙, 杨志斌, 张舜尧, 张富贵, 孙忠军, 王惠艳. 2021. 陆域冻土区天然气水合物地球化学勘查中顶空气轻烃应用模式试验. 地质学报, 95(6): 1995~2007.

    • 周幼吾, 郭东信, 邱国庆, 程国栋, 李树德. 2000. 中国冻土. 北京: 科学出版社, 1~450.

    • 祝有海, 张永勤, 文怀军, 卢振权, 贾志耀, 李永红, 李清海, 刘昌岭, 王平康, 郭星旺. 2009. 青海祁连山冻土区发现天然气水合物. 地质学报, 83(11): 1762~1771.

    • 祝有海, 卢振权, 谢锡林. 2011. 青藏高原天然气水合物潜在分布区预测. 地质通报, 30(12): 1918~1926.

    • 祝有海, 庞守吉, 王平康, 张帅, 肖睿. 2021. 中国天然气水合物资源潜力及试开采进展. 沉积与特提斯地质, 41(4): 524~535.

  • 参考文献

    • Bernard B B, Brooks J M, Sackett W M. 1976. Natural gas seepage in the Gulf of Mexico. Earth and Planetary Science Letters, 31(1): 48~54.

    • Cao Daiyong, Liu Tianji, Wang Dan, Wang Tong, Wen Huaijun, Pan Yulu. 2009. Analysis of formation conditions of natural gas hydrate in Muli coalfield, Qinghai Province. Coal Geology of China, 21(9): 3~6 (in Chinese with English abstract).

    • Cao Daiyong, Qin Rongfang, Wang Anmin, Chen Limin, Li Jing, Wei Yingchun. 2022. Accumulation model and exploration and development suggestions of coal measure gas hydrates in Sanlutian area of Muli coalfield, Qinghai Province. Coal Geology & Exploration, 50(3): 92~101 (in Chinese with English abstract).

    • Carlson R, Chamberlain D E. 1986. Steroid biomarker-clay mineral adsorption free energies: Implications to petroleum migration indices. Organic Geochemistry, 10(1-3): 163~180.

    • Chen Xiaohui, Zhang Min, Gong Jianming. 2014. Molecular geochemical characteristics of potential source rocks of the Wuli premofrost in the Tibet Plateau, China. Natural Gas Geoscience, 25(6): 882~888 (in Chinese with English abstract).

    • Collett T S, Dallimore S R. 2000. Permafrost-Associated Gas Hydrate. Natural Gas Hydrate. Springer Neth, 43~60.

    • Collett T S, Lee M W, Agena W F, Miller J J, Lewis K A, Zyrianova M V, Boswell R, Inks T L. 2011. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Marine and Petroleum Geology, 28(2): 279~294.

    • Collett T S. 1994. Permafrost-associated gas hydrate accumulations. Annals of the New York Academy of Sciences, 715(1): 247~269.

    • Collett T S, Johnson A H, Knapp C C, Bosewell R. 2009. Natural gas hydrates: A review. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. American Association of Petroleum Geologists Memoir, 89: 274~297.

    • Dai Jinxing. 1993. The characteristics of carbon and hydrogen isotopes and the identification of various types of natural gas. Natural Gas Geoscience, 4(2/3): 1~40 (in Chinese with English abstract).

    • Dai Jinxing, Ni Yunyan, Huang Shipeng, Peng Weilong, Han Wenxue, Gong Deyu, Wei Wei. 2017. Genetic types of gas hydrates in China. Petroleum Exploration and Development, 44(6): 887~898 (in Chinese with English abstract).

    • Deng Zhonglin, An Yongsheng, Wang Qinghai, An Shouwen, Shi Lianchang, Chen Jian, Zhuang Yongcheng, Ren Jinqi, Yang Yanxing. 2014. Regional Geological Survey of the People's Republic of China—the Tuotuo River Map Sheet (I46C002002). Wuhan: China University of Geosciences Press, 11~97 (in Chinese with English abstract).

    • Espitalié J, Laporte J L, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A. 1977. Méthode rapide de caractérisation des roches méres, de leur potentiel pétrolieret de leur degré d'évolution. Revue de l'Institut Français du Pétrole, 32(1): 23~42.

    • Fang Hui, Xu Mingcai, Lin Zhengzhou, Zhong Qing, Bai Dawei, Liu Jianxun, Pei Fagen, He Meixing. 2017. Geophysical characteristics of gas hydrate in the Muli area, Qinghai Province. Journal of Natural Gas Science and Engineering, 37: 539~550.

    • Gong Jianming, Zhang Jian, Chen Xiaohui, Liao Jing, Li Xiaoyu, He Xingliang, Jiang Yubo. 2014a. Gashydrate accumulation conditions between Qilian Mountain and Wuli permafrost region in Qinghai-Tibetan Plateau. Journal of Oil and Gas Technology, 36(2): 1~6 (in Chinese with English abstract).

    • Gong Jianming, Zhang Li, Chen Xiaohui, Zhang Min, Li Xiaoyu, Shi Jiannan, Yang Deshou, Yang Zhicheng. 2014b. Discussion on original organic types of over-mature source rocks in Wuli permafrost zone of Qinghai-Tibeatean Plateau. Northwestern Geology, 47(2): 208~215 (in Chinese with English abstract).

    • Gong Jianming, Zhang Li, Zhang Jia, Li Yonghong, Chen Xiaohui, Wang Weichao, Yang Zhicheng. 2015. Discussion on gas hydrate accumulation conditions in Wuli permafrost zone, Qinghai-Tibetan Plateau. Marine Geology & Quaternary Geology, 35(1): 145~151 (in Chinese with English abstract).

    • Hu Chengfei. 2020. Characteristics of hydrate reservoir and vertical stability zone in the northeast of Qiangtang basin. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Huang Xia, Liu Hui, Zhang Jiazheng, Wang Pingkang, Xiao Rui, Pang Shouji, Zhang Shuai, Zhu Youhai. 2016. Genetic-type and its significance of hydrocarbon gases from permafrost-associated gas hydrate in Qilian Mountain. Chinese Journal of Geology, 51(3): 934~945 (in Chinese with English abstract).

    • Kvenvolden K A. 1993. Gas hydrates-geological perspective and global change. Reviews of Geophysics, 31(2): 173~187.

    • Li Xiaoyu, Gong Jianming, Chen Xiaohui, Wang Huidong, Chen Junwen, Yang Zhicheng, Jiang Yubo. 2013. Source rock potential of Permian in Wuli permafrost zone in Qinghai-Tibetan Plateau. Geoscience, 27(6): 1384~1391.

    • Li Ying, Liu Shengqian, Xia Zhongyuan, Lu Xiaofeng. 2018. The evaluation on source rocks for natural gas hydrate in Permian Nayixiong Formation of southern Qinghai permafrost. Science Technology and Engineering, 18(12): 148~153 (in Chinese with English abstract).

    • Lin Zhengzhou, Pan Heping, Fang Hui, Gao Wenli, Liu Dongming. 2018. High-altitude well log evaluation of a permafrost gas hydrate reservoir in the Muli area of Qinghai, China. Scientific Reports, 8(1): 12596.

    • Liu Hui, Zhu Youhai, Pang Shouji, Zhang Yongqin, Liang Jian, Zhang Jiazheng. 2019. Important evidence for gas hydrate occurrence in Wuli, Qinghai Province. Geology in China, 46(5): 1243~1244 (in Chinese with English abstract).

    • Liu Shengqian, Jiang Zaixing, Liu Hui, Pang Shouji, Xia Zhongyuan, Jin Zhonghui, Wang Junhui, Wei Xiaojie. 2016. The natural-gas hydrate exploration prospects of the Nayixiong Formation in the Kaixinling-Wuli permafrost, Qinghai-Tibet Plateau. Marine and Petroleum Geology, 72: 179~192.

    • Liu Shengqian, Liu Hui, Jiang Zaixing, Xia Zhongyuan, Pang Shouji, Ma Wenxian. 2017. Controlling factors of gas hydrate formation in southern Qinghai permafrost. Earth Science Frontiers, 24(6): 242~253 (in Chinese with English abstract).

    • Lu Zhenquan, Zhu Youhai, Zhang Yongqin, Wen Huaijun, Li Yonghong, Jia Zhiyao, Liu Changling, Wang Pingkang, Li Qinghai. 2010. Basic geological characteristics of gas hydrates in Qilian Mountain permafrost area, Qinghai Province. Mineral Deposits, 29(1): 182~191.

    • Lu Zhengquan, Zhu Youhai, Zhang Yongqin, Wen Huaijun, Li Yonghong, Liu Changling. 2011. Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China. Cold Regions Science and Technology, 66(2~3): 93~104.

    • Lu Zhengquan, Zhu Youhai, Liu Hui, Zhang Yongqin, Jin Chunshuang, Huang Xia, Wang Pingkang. 2013. Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai. Marine and Petroleum Geology, 43: 341~348.

    • Lu Zhenquan, Li Yonghong, Wang Weichao, Liu Changling, Wen Huaijun. 2015. Study on the accumulation pattern for permafrost-associated gas hydrate in Sanlutian of Muli, Qinghai. Geoscience, 29(5): 1014~1023 (in Chinese with English abstract).

    • Lu Zhenquan, Tang Shiqi, Luo Xiaoling, Zhai Gangyi, Fan Dongwen, Liu Hui, Wang Ting, Zhu Youhai, Xiao Rui. 2020. A natural gas hydrate-oil-gas system in the Qilian Mountain permafrost area, northeast of Qinghai-Tibet Plateau. China Geology, 3: 511~523.

    • Makogon Yuri F, Holditch S A, Makogon T Y. 2007. Natural gas hydrates-A potential energy source for the 21st century. Journal of Petroleum Science and Engineering, 56: 14~31.

    • Max M D, Johnson A H. 2011. Diagenetic methane hydrate formation in permafrost: A new gas play? OTC Arctic Technology Conference. OnePetro, DOI: 10. 4043/22094-MS.

    • Ning Fulong, Liang Jinqiang, Wu Nengyou, Zhu Youhai, Wu Shiguo, Liu Changling, Wei Changfu, Wang Dongdong, Zhang Zhun, Xu Meng, Liu Zhichao, Li Jing, Sun Jiaxin, Ou Wenjia. 2020. Reservoir characteristics of natural gas hydrates in China. Natural Gas Industry, 40(8): 1~24+203 (in Chinese with English abstract).

    • Qi Fucheng, Qin Mingkuan, Liu Wusheng, Xiao Shuqing, Wang Zhiming, Zou Shungen, Huang Jingbai. 2007. Time-space configuration of uranium mineralization, sedimentary facies and oil & gas-induced alteration zone in Zhiluo Formation, Ordos basin. Uranium Geology, 23(2): 65~70 (in Chinese with English abstract).

    • Qin Yulu, Zhu Beier, Yuan Duo, Qin Yinlun. 2021. Analysis on the possibility of existence of gas hydrate in Wuli area Qinghai Province. Journal of Henan Science and Technology, 40(10): 128~130 (in Chinese with English abstract).

    • Sun Zhongjun, Yang Zhibin, Mei Hai, Qin Aihua, Zhang Fugui, Zhou Yalong, Zhang Shunyao, Mei Bowen. 2014. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China. Journal of Geochemical Exploration, 139: 160~169.

    • Tan Jieqing. 2015. Control effect of tectonic framework on coal measures in northern Qinghai-Tibet Plateau. Doctoral dissertation of China University of Mining and Technology (Beijing) (in Chinese with English abstract).

    • Tang Shiqi, Lu Zhenquan, Luo Xiaolin, Wang Ting, Tan Panpan. 2015. Gas hydrate source in Wuli-Kaixinling permafrost, southern Qinghai Province. Petroleum Geology & Experiment, 37(1): 40~46 (in Chinese with English abstract).

    • Tang Yuping, Ding Xiangyu, Wu Xianghua, Wei Wei, Li Shanggang. 2001. Features and genesis of regional geochemical fields of the main hydrocarbon-bearing basins in China. Petroluem Exploration and Development, 28(3): 1~4 (in Chinese with English abstract).

    • Wang Pingkang, Huang Xia, Pang Shouji, Zhu Youhai, Lu Zhengquan, Zhang Shuai, Liu Hui, Yang Kaili, Li Bing. 2015. Geochemical dynamics of the gas hydrate system in the Qilian Mountain permafrost, Qinghai, Northwest China. Marine and Petroleum Geology, 59: 72~90.

    • Wang Pingkang, Zhu Youhai, Zhang Xuhui, Zhang Shuai, Pang Shouji, Xiao Rui, Li Bing. 2015. Permafrost structures and their effects on the accumulation of the natural gas hydrates in the Qiangtang basin, northern Xizang. Sedimentary Geology and Tethyan Geology, 35(1): 57~67 (in Chinese with English abstract).

    • Wang Pingkang, Zhu Youhai, Lu Zhengquan Bai Minggang, Huang Xia, Pang Shouji, Zhang Shuai, Liu Hui, Xiao Rui. 2019. Research progress of gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China: Review. Scientia Sinica: Physica Mechanica Astronomica, 49(3): 76~95 (in Chinese with English abstract).

    • Whiticar M J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1-3): 291~314.

    • Wu Junhu. 2011. Late Permian tectonic evolution and coal accumulation pattern analysis in Wuli-Kaixinling area, Qinghai. Coal Geology of China, 23(6): 9~13 (in Chinese with English abstract).

    • Xia Zhongyuan. 2018. Analysis on generation and reservoir characteristics of Permian gas hydrate in permafrost region, southern Qinghai Province, China. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Xing Xuewen, Liu Song, Zhou Hongying, Zou Liqun, Li Guangzhi, Gao Wei. 2014. Geochemical behaviors of shallow soil in Muli permafrost and their significance as gas hydrate indicators. Oil & Gas Geology, 35(1): 159~166 (in Chinese with English abstract).

    • Zhang Fugui, Sun Zhongjun, Yang Zhibin, Zhou Yalong, Zhang Shunyao, Cao Changmao, Wang Huiyan, Tang Ruiling, Pang Shouji, Wang Pingkang, Tang Shiqi, Zhu Youhai. 2019. Geochemical investigation of gas hydrate in the permafrost area, China. Bulletin of Mineralogy, Petrology and Geochemistry, 38(6): 1224~1234 (in Chinese with English abstract).

    • Zhang Hongtao, Zhu Youhai. 2011. Survey and research on gas hydrate in permafrost region of China. Geological Bulletin of China, 30(12): 1809~1815 (in Chinese with English abstract).

    • Zhang Huishan, Ji Wenhua, He Shiping, Chen Shoujian, Hong Jun, Chen Fenning, Zhang Haidi, Shi Chao, Wu Zhongnan, Peng Yan. 2014. Middle Permian-Early Triassic mafic magmatic events in Kaixinling zone, Tuotuo River area, Qinghai Province, and their geological significance. Geological Bulletin of China, 33(6): 830~840 (in Chinese with English abstract).

    • Zhao Zhenming, Chen Shoujian, Ji Wenhua, Zhang Gengxin, Zha Xianfeng, Zhang Haijun. 2013. The geological characteristics and formation of the magnetite-rich Kaixinling iron ore-deposit during Permian in Qinghai Province, China. Geotectonica et Metallogenia, 37(3): 422~439 (in Chinese with English abstract).

    • Zhou Yalong, Yang Zhibin, Zhang Shunyao, Zhang Fugui, Sun Zhongjun, Wang Huiyan. 2021. Study on application mode of headspace gas light hydrocarbon in geochemistry exploration of natural gas hydrate in permafrost regions. Acta Geologica Sinica, 95(6): 1995~2007 (in Chinese with English abstract).

    • Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. 2000. Geocryology in China. Beijing: Science Press, 1~450 (in Chinese with English abstract).

    • Zhu Youhai, Zhang Yongqin, Wen Huaijun, Lu Zhenquan, Jia Zhiyao, Li Yonghong, Li Qinghai, Liu Changling, Wang Pingkang, Guo Xingwang. 2009. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. Acta Geologica Sinica, 83(11): 1762~1771 (in Chinese with English abstract).

    • Zhu Youhai, Zhang Yongqin, Wen Huaijun, Lu Zhengquan, Jia Zhiyao, Li Yonghong, Li Qinghai, Liu Changling, Wang Pingkang, Guo Xingwang. 2010. Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China. Acta Geologica Sinica, 84(1): 1~10.

    • Zhu Youhai, Lu Zhenquan, Xie Xilin. 2011. Potential distribution of gas hydrate in the Qinghai-Tibetan Plateau. Geological Bulletin of China, 30(12): 1918~1926 (in Chinese with English abstract).

    • Zhu Youhai, Pang Shouji, Wang Pingkang, Zhang Shuai, Xiao Rui. 2021. A review of the resource potentials and test productions of natural gas hydrates in China. Sedimentary Geology and Tethyan Geology, 41(4): 524~535 (in Chinese with English abstract).

    • 曹代勇, 刘天绩, 王丹, 王佟, 文怀军, 潘语录. 2009. 青海木里地区天然气水合物形成条件分析. 中国煤炭地质, 21(9): 3~6.

    • 曹代勇, 秦荣芳, 王安民, 陈利敏, 李靖, 魏迎春. 2022. 青海木里三露天井田煤系天然气水合物成藏模式与勘查开发建议. 煤田地质与勘探, 50(3): 92~101.

    • 陈小慧, 张敏, 龚建明. 2014. 青藏高原乌丽冻土区烃源岩地球化学特征. 天然气地球科学, 25(6): 882~888.

    • 戴金星. 1993. 天然气碳氢同位素特征和各类天然气鉴别. 天然气地球科学, 4(2/3): 1~40.

    • 戴金星, 倪云燕, 黄士鹏, 彭威龙, 韩文学, 龚德瑜, 魏伟. 2017. 中国天然气水合物气的成因类型. 石油勘探与开发, 44(6): 837~848.

    • 邓中林. 2014. 中华人民共和国区域地质调查报告. 沱沱河幅(I46C002002) 比例尺1: 250000. 武汉: 中国地质大学出版社.

    • 龚建明, 张剑, 陈小慧, 廖晶, 李小豫, 贺行良, 蒋玉波. 2014a. 青藏高原祁连山与乌丽冻土区水合物成藏条件研究. 石油天然气学报, 36(2): 1~6.

    • 龚建明, 张莉, 陈小慧, 张敏, 李小豫, 史建南, 杨德寿, 杨志承. 2014b. 青藏高原乌丽冻土区过成熟烃源岩原始有机质类型讨论. 西北地质, 47(2): 208~215.

    • 龚建明, 张莉, 张剑, 李永红, 陈晓慧, 王伟超, 杨志承. 2015. 青藏高原乌丽冻土区天然气水合物成藏条件. 海洋地质与第四纪地质, 35(1): 145~151.

    • 胡承飞. 2020. 羌塘东北部水合物储集特征与垂向稳定带. 成都理工大学硕士学位论文.

    • 黄霞, 刘晖, 张家政, 王平康, 肖睿, 庞守吉, 张帅, 祝有海. 2016. 祁连山冻土区天然气水合物烃类气体成因及其意义. 地质科学, 51(3): 934~945.

    • 李莹, 刘圣乾, 夏中源, 陆晓峰. 2018. 青海南部冻土区二叠系那益雄组天然气水合物烃源岩评价. 科学技术与工程, 18(12): 148~153.

    • 李小豫, 龚建明, 陈小慧, 王慧东, 陈俊文, 杨志承, 蒋玉波. 2013. 青藏高原乌丽冻土区二叠纪煤系烃源岩特征. 现代地质, 27(6): 1384~1391.

    • 刘晖, 祝有海, 庞守吉, 张永勤, 梁健, 张家政. 2019. 青海乌丽地区发现天然气水合物赋存的重要证据. 中国地质, 46(5): 1243~1244.

    • 刘圣乾, 刘晖, 姜在兴, 夏中源, 庞守吉, 马文贤. 2017. 青海南部冻土区天然气水合物成藏控制因素. 地学前缘, 24(6): 242~253.

    • 卢振权, 李永红, 王伟超, 刘昌岭, 文怀军. 2015. 青海木里三露天冻土天然气水合物成藏模式研究. 现代地质, 29(5): 1014~1023.

    • 宁伏龙, 梁金强, 吴能友, 祝有海, 吴时国, 刘昌岭, 韦昌富, 王冬冬, 张准, 徐猛, 刘志超, 李晶, 孙嘉鑫, 欧文佳. 2020. 中国天然气水合物赋存特征. 天然气工业, 40(8): 1~24+203.

    • 漆富成, 秦明宽, 刘武生, 肖树青, 王志明, 邹顺根, 黄净白. 2007. 鄂尔多斯盆地直罗组赋铀沉积相与油气蚀变带的时空配置. 铀矿地质, 23(2): 65~70.

    • 谭节庆. 2015. 青藏高原北部构造格局对煤系赋存的控制作用. 中国矿业大学(北京)博士学位论文.

    • 覃雨璐, 朱贝尔, 袁铎, 覃英伦. 2021. 青海乌丽地区气体水合物存在的可能性. 河南科技, 40(10): 128~130.

    • 汤玉平, 丁相玉, 吴向华, 魏巍, 李尚刚. 2001. 中国主要含油气盆地区域地球化学场参数特征及其成因研究. 石油勘探与开发, 28(3): 1~4.

    • 唐世琪, 卢振权, 罗晓玲, 王婷, 谭盼盼. 2015. 青海南部乌丽—开心岭冻土区天然气水合物气源条件研究. 石油实验地质, 37(1): 40~46.

    • 王平康, 祝有海, 张旭辉, 张帅, 庞守吉, 肖睿, 李冰. 2015. 羌塘盆地冻土结构特征及其对天然气水合物成藏的影响. 沉积与特提斯地质, 35(1): 57~67.

    • 王平康, 祝有海, 卢振权, 白名岗, 黄霞, 庞守吉, 张帅, 刘晖, 肖睿. 2019. 青海祁连山冻土区天然气水合物研究进展综述. 中国科学: 物理学力学天文学, 49(3): 76~95.

    • 吴军虎. 2011. 青海乌丽—开心岭地区晚二叠世构造演化与聚煤规律作用分析. 中国煤炭地质, 23(6): 9~13.

    • 夏中源. 2018. 青海南部冻土区二叠系天然气水合物生储特征分析. 中国地质大学(北京)硕士学位论文.

    • 邢学文, 刘松, 周红英, 邹立群, 李广之, 高伟. 2014. 木里冻土带天然气水合物赋存区浅层土壤地球化学特征及指示意义. 石油与天然气地质, 35(1): 159~166.

    • 赵振明, 陈守建, 计文化, 张更新, 查显锋, 张海军. 2013. 青海开心岭二叠纪铁矿床富磁铁矿体的地质特征及成因分析. 大地构造与成矿学, 37(3): 422~439.

    • 张富贵, 孙忠军, 杨志斌, 周亚龙, 张舜尧, 曹长茂, 王惠艳, 唐瑞玲, 庞守吉, 王平康, 唐世琪, 祝有海. 2019. 中国冻土区天然气水合物的地球化学调查. 矿物岩石地球化学通报, 38(6): 1224~1234.

    • 张洪涛, 祝有海. 2011. 中国冻土区天然气水合物调查研究. 地质通报, 30(12): 1809~1815.

    • 张辉善, 计文化, 何世平, 陈守建, 洪俊, 陈奋宁, 张海迪, 时超, 吴中楠, 彭岩. 2014. 青海沱沱河地区开心岭一带中二叠世—早三叠世基性岩浆事件及其地质意义. 地质通报, 33(6): 830~840.

    • 周亚龙, 杨志斌, 张舜尧, 张富贵, 孙忠军, 王惠艳. 2021. 陆域冻土区天然气水合物地球化学勘查中顶空气轻烃应用模式试验. 地质学报, 95(6): 1995~2007.

    • 周幼吾, 郭东信, 邱国庆, 程国栋, 李树德. 2000. 中国冻土. 北京: 科学出版社, 1~450.

    • 祝有海, 张永勤, 文怀军, 卢振权, 贾志耀, 李永红, 李清海, 刘昌岭, 王平康, 郭星旺. 2009. 青海祁连山冻土区发现天然气水合物. 地质学报, 83(11): 1762~1771.

    • 祝有海, 卢振权, 谢锡林. 2011. 青藏高原天然气水合物潜在分布区预测. 地质通报, 30(12): 1918~1926.

    • 祝有海, 庞守吉, 王平康, 张帅, 肖睿. 2021. 中国天然气水合物资源潜力及试开采进展. 沉积与特提斯地质, 41(4): 524~535.