en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

赖绍聪,男,1963年生。教授,博士生导师,从事岩石学及地球化学研究。第四届黄汲清青年地质科学技术奖获奖者。E-mail:shaocong@nwu.edu.cn。

参考文献
Ackerman L, Spacek P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K. 2013. Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: Evidence from mantle xenoliths, NE Bavaria, Bohemian massif. Journal of Petrology, 54: 2597~2633.
参考文献
Adam J, Green T. 2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152(1): 1~17.
参考文献
Ahmed H A, Ma Changqian, Wang Lianxun, Palinkaš L A, Girei M B, Zhu Yuxiang, Habib M. 2018. Petrogenesis and tectonic implications of peralkaline A-type granites and syenites from the Suizhou-Zaoyang region, central China. Journal of Earth Science, 29(5): 1181~1202.
参考文献
Andersen T, Elburg M, Erambert M. 2018. Contrasting trends of agpaitic crystallization in nepheline syenite in the Pilanesberg alkaline complex, South Africa. Lithos, 312~313: 375~388.
参考文献
Armbrustmacher T J, Hedge C E. 1982. Genetic implications of minor-element and Sr-isotope geochemistry of alkaline rock complexes in the Wet Mountains area, Fremont and Custer Counties, Colorado. Contributions to Mineralogy and Petrology, 79(4): 424~435.
参考文献
Bailey D K. 1987. Mantle metasomatism—Perspective and prospect. Geological Society, London, Special Publications, 30(1): 1~13.
参考文献
Bell K, Tilton G R. 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: Evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42(10): 1927~1945.
参考文献
Bragagni A, Mastroianni F, Münker C, Conticelli S, Avanzinelli R. 2022. A carbon-rich lithospheric mantle as a source for the large CO2 emissions of Etna volcano (Italy). Geology, 50(4): 486~490.
参考文献
Cabero M T, Mecoleta S, López-Moro F J. 2012. OPTIMASBA: A Microsoft Excel workbook to optimise the mass-balance modelling applied to magmatic differentiation processes and subsolidus overprints. Computers & Geosciences, 42: 206~211.
参考文献
Charlier B, Namur O, Toplis M J, Schiano P, Cluzel N, Higgins M D, Auwera J V. 2011. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907~910.
参考文献
Charlier B, Namur O, Grove T L. 2013. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochimica et Cosmochimica Acta, 113: 79~93.
参考文献
Chen Hong, Tian Mi, Wu Guoli, Hu Jianmin. 2014. The early Paleozoic alkaline and mafic magmatic events in southern Qinling belt, central China: Evidences for the break-up of the paleo-tethyan ocean. Geological Review, 60(6): 1437~1452 (in Chinese with English abstract).
参考文献
Chen Wei, Lu Jue, Jiang Shaoyong, Ying Yuancan, Liu Yongsheng. 2018. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chemical Geology, 494: 80~95.
参考文献
Chen Wei, Ying Yuancan, Lu Jue, Jiang Shaoyong. 2020. Petrogenetic and Metallogenetic Processes of the South Qinling Carbonatite Complexs. Wuhan: China University of Geosciences Press, 1~150(in Chinese).
参考文献
Chen Youzhang, Liu Shuwen, Li Qiugen, Dai Junzhi, Zhang Fan, Yang Pengtao, Guo Lishuang. 2010. Geology, geochemistry of Langao mafic volcanic rocks in South Qinling orogenic belt and its tectonic implications. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4): 607~619 (in Chinese with English abstract).
参考文献
Condamine P, Médard E. 2014. Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism. Earth and Planetary Science Letters, 397: 80~92.
参考文献
Dai Fuqiang, Zhao Zifu, Zheng Yongfei. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabieorogen. Chemical Geology, 454: 25~43.
参考文献
Dai Liqun, Zheng Fei, Zhao Zifu, Zheng Yongfei. 2018. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts inWest Qinling, China. Lithos, 302~303: 86~98.
参考文献
Dalton J A, Wood B J. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters, 119(4): 511~525.
参考文献
Davis F A, Humayun M, Hirschmann M M, Cooper R S. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta, 104: 232~260.
参考文献
Ding Lixue, Ma Changqian, Li Jianwei, Robinson P T, Deng Xiaodong, Zhang Chao, Xu Wangchun. 2011. Timing and genesis of the adakitic and shoshonitic intrusions in the Laoniushan complex, southern margin of the North China Craton: Implications for post-collisional magmatism associated with the Qinling Orogen. Lithos, 126: 212~232.
参考文献
Dobson D P, Jones A P, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S. 1996. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth and Planetary Science Letters, 143(1~4): 207~215.
参考文献
Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.
参考文献
Dong Yunpeng, Sun Shengsi, Yang Zhao, Liu Xiaoming, Zhang Feifei, Li Wei, Cheng Bin, He Dengfeng, Zhang Guowei. 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling belt, China. Precambrian Research, 293: 73~90.
参考文献
Draper D S, Green T H. 1999. P-T phase relations of silicic, alkaline, aluminous liquids: New results and applications to mantle melting and metasomatism. Earth and Planetary Science Letters, 170(3): 255~268.
参考文献
Eggler D H. 1978. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O-CO2 system. American Journal of Science, 278(3): 305~343.
参考文献
Ersoy Y, Helvaci C. 2010. FC-AFC-FCA and mixing modeler: A Microsoft Excel 446 spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Computers and Geosciences, 36(3): 383~390.
参考文献
Falloon T J, Green D H, St C O'Neill H, Hibberson W O. 1997. Experimental tests of low degree peridotite partial melt compositions: Implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth and Planetary Science Letters, 152: 149~162.
参考文献
Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28: 435~453.
参考文献
Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112: 274~283.
参考文献
Freestone I C, Hamilton D L. 1980. The role of liquid immiscibility in the genesis of carbonatites—An experimental study. Contributions to Mineralogy and Petrology, 73(2): 105~117.
参考文献
Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos, 48: 237~262.
参考文献
Gao Shan, Ling Wenli, Qiu Yumin, Lian Zhou, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63: 2071~2088.
参考文献
Gittins J. 1988. The origin of carbonatites. Nature, 335: 295~296.
参考文献
Grant T B, Milke R, Pandey S, Jahnke H. 2013. The Heldburg Phonolite, Central Germany: Reactions between phonolite and xenocrysts from the upper mantle and lower crust. Lithos, 182~183: 86~101.
参考文献
Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52(4): 765~789.
参考文献
Green D H, Wallace M E. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336: 459~462.
参考文献
Gualda G A R, Ghiorso M S, Lemons R V, Carley T L. 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53(5): 875~890.
参考文献
Gudmundsson A, Loetveit I F. 2005. Dyke emplacement in a layered and faulted rift zone. Journal of Volcanology and Geothermal Research, 144: 311~327.
参考文献
Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28(3): 283.
参考文献
Hoernle K, Tilton G, Le Bas M J, Duggen S, Garbe-Schönberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142(5): 520~542.
参考文献
Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.
参考文献
Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A~2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(28): 3564~3579.
参考文献
Huang Yuehua, Ren Youxiang, Xia Linqi, Xia Zuchun, Zhang Cheng. 1992. Early Palaeozoic bimodal igneous suite on northern Daba Mountaina-Gaotan diabase and Haoping trachyte as examples. Acta Petrologica Sinca, 8(3): 243~256(in Chinese with English abstract).
参考文献
Huang Yuehua. 1993. Mineralogical characteristics of phlogopite-amphibole-pyroxenite mantle xenoliths included in the alkali mafic-ultramafic subvolcanic complex from Langao County, China. Acta Petrologica Sinica, 9(4): 367~378 (in Chinese with English abstract).
参考文献
Irving A J, Price R C. 1981. Geochemistry and evolution of iherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany and new zealand. Geochimica et Cosmochimica Acta, 45(8): 1309~1320.
参考文献
Jung S, Vieten K, Romer R L, Mezger K, Hoernes S, Satir M. 2012. Petrogenesis of tertiary alkaline magmas in the Siebengebirge, Germany. Journal of Petrology, 53(11): 2381~2409.
参考文献
Kaszuba J P, Wendlandt R F. 2000. Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks. Journal of Petrology, 41(3): 363~386.
参考文献
Kushiro I. 1996. Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. Earth Processes Reading the Isotopic Code, 95: 109~122.
参考文献
Lai Shaocong, Zhang Guowei, Dong Yunpeng, Pei Xianzhi, Chen Liang. 2004a. Geochemistry and regional distribution of ophiolites and associated volcanics in Mianlüe suture, Qinling-Dabie Mountains. Science in China Series D: Earth Sciences, 47(4): 289~299.
参考文献
Lai Shaocong, Zhang Guowei, Li Sanzhong. 2004b. Ophiolites from the Mianlüe suture in the southern Qinling and their relationship with the eastern paleotethys evolution. Acta Geologica Sinica-English Edition, 78(1): 107~117.
参考文献
Lai Shaocong, Li Yongfei, Qin Jiangfeng. 2007. Geochemistry and LA-ICP-MS zircon U-Pb dating of the Dongjiahe ophiolite complex from the western Bikou terrane. Science in China Series D: Earth Sciences, 50(2): 305~313.
参考文献
Lai Shaocong, Qin Jiangfeng, Khan J. 2014. The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: Implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau. Gondwana Research, 25(4): 1501~1516.
参考文献
Laporte D, Lambart S, Schiano P, Ottolini L. 2014. Experimental Derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth and Planetary Science Letters, 404: 319~331.
参考文献
LaTourrette T, Hervig R L, Holloway J R. 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 135(1~4): 13~30.
参考文献
Le Roux V, Dasgupta R, Lee C T A. 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3~4): 395~408.
参考文献
Lee W J, Wyllie P J. 1998. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Journal of Petrology, 39(11~12): 2005~2013.
参考文献
Li Fujie, Yang Jun. 2011. Tectonic meaning of mafic dyke swarms in Zhenba Eastern area in Shannan. Journal of Sichuan University of Science and Engineering (Natural Science Edition), 24(2): 238~243(in Chinese with English abstract).
参考文献
Li Huaikun, Lu Songnian, Chen Zhihong, Xiang Zhenqun, Zhou Hongying, Hao Guojie. 2003. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Geological Bulletin of China, 22(10): 775~781(in Chinese with English abstract).
参考文献
Li Shi. 1980. Geochemical features and petrogenesis of Miaoya carbonatites. Geochimica, (4): 345~355(in Chinese with English abstract).
参考文献
Li Shi. 1991. Geochemistry and petrogenesis of the Shaxiongdong carbonatite complex, Hubei Province. Geochimica, 3: 245~254 (in Chinese with English abstract).
参考文献
Li Xiaochun, Zhang Yunxiang, Fan Hongrui, Yang Kuifeng. 2022. The REE mineralization and remobilization history of the giant Bayan Obo deposit, Inner Mongolia, China: Constraint from in-situ Sm-Nd isotopes of REE minerals. Acta Petrologica Sinica, 38(10): 2920~2932(in Chinese with English abstract).
参考文献
Li Yujin. 1989. The establishment of the Lower Silurian Taohekou Formation and its relationship with the Doushangou Formation and the Baiyaya Formation in Langao County of Shaanxi. Geology of Shaanxi, 7(2): 7~14(in Chinese with English abstract).
参考文献
Liégeois J P, Navez J, Hertogen J, Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 45(1~4): 1~28.
参考文献
Ling Wenli, Ren Bangfang, Duan Ruichun, Liu Xiaoming, Mao Xinwu, Peng Lianhong, Liu Zaoxue, Cheng Jianping, Yang Hongmei. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin, 53(14): 2192~2199.
参考文献
Liu Wanliang, Liu Chengxin, Yang Cheng, Wan Jun, Chen Mi, Guo Pan, Liu Hongxian, Zhu Zhengyong. 2015. Geological characteristics and prospecting potential ofniobium ore of Tianbao area, Zhuxi, southern Qinling. Resources Environment & Engineering, 29(6): 779~784 (in Chinese with English abstract).
参考文献
Luo Kunli, Duanmu Heshun. 2001. Timing of Early Paleozoic basic igneous rocks in the Daba Mountains. Regional Geology of China, 20(3): 262~266 (in Chinese with English abstract).
参考文献
Ma G S K, Malpas J, Xenophontos C, Chan G H N. 2011. Petrogenesis of latest Miocene-Quaternary continental intraplate volcanism along the northern dead sea fault system (Al ghab-homs volcanic field), western Syria: Evidence for lithosphere-asthenosphere interaction. Journal of Petrology, 52(2): 401~430.
参考文献
Marks M A W, Schilling J, Coulson I M, Wenzel T, Markl G. 2018. The alkaline-peralkaline Tamazeght complex, high Atlas Mountains, Morocco: Mineral chemistry and petrological constraints for Derivation from a compositionally heterogeneous mantle source. Journal of Petrology, 49(6): 1097~1131.
参考文献
McDonough W F, Sun S S. 1995. The composition of the earth. Chemical Geology, 120(3~4): 223~253.
参考文献
Médard E, Schmidt M W, Schiano P, Ottolini L. 2006. Melting of amphibole-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. Journal of Petrology, 47(3): 481~504.
参考文献
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth Science Review, 37: 215~224.
参考文献
Mo Xuanxue. 2011. Magma and magmatic/igneous rocks: A lithoprobe into the deep earth and records of the earth's evolution. Chinese Journal of Nature, 33(5): 255~259+313 (in Chinese with English abstract).
参考文献
Minh P, Hieu P T, Hoang N K. 2018. Geochemical and geochronological studies of the Muong Hum alkaline granitic pluton from the Phan Si Pan zone, Northwest Vietnam: Implications for petrogenesis and tectonic setting. Island Arc, 27: e12250.
参考文献
Nie Xiao, Wang Zongqi, Chen Lei, Yin Jingwu, Wang Gang. 2021. Monazites reveal timing and genesis of Nb-REE mineralization in trachyte from the Pingli area, North Daba Mountain, China. Geosciences Journal, 25(5): 605~617.
参考文献
Niu Yaoling, O'Hara M J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research Solid Earth, 108: 2209~2228.
参考文献
Panter K S, Castillo P, Krans S, Deering C, McIntosh W, Valley J W, Kitajima K, Kyle P, Hart S, Blusztajn J. 2018. Melt origin across a rifted continental margin: A case for subduction-related metasomatic agents in the lithospheric source of alkaline basalt, NW Ross Sea, Antarctica. Journal of Petrology, 59(3): 517~558.
参考文献
Pfänder J A, Jung S, Münker C, Stracke A, Mezger K. 2012. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget-evidence from continental basalts from Central Germany. Geochimica et Cosmochimica Acta, 77: 232~251.
参考文献
Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320(5878): 916~919.
参考文献
Pilet S, Baker M B, Müntener O, Stolper E M. 2011. Monte Carlosimulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. Journal of Petrology, 52(7~8): 1415~1442.
参考文献
Prelević D, Foley S F. 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth and Planetary Science Letters, 256(1~2): 120~135.
参考文献
Prytulak J, Elliott T. 2007. TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters, 263(3~4): 388~403.
参考文献
Qin Jiangfeng, Lai Shaocong, Long Xiaoping, Zhang Zezhong, Ju Yinjuan, Zhu Renzhi, Wang Xingying, Li Yongfei, Wang Jiangbo, Li Tong. 2021. Thermotectonic evolution of the Paleozoic granites along the Shangdan suture zone (central China): Crustal growth and differentiation by magma underplating in an orogenic belt. Geological Society of America Bulletin, 133(3~4): 523~538.
参考文献
Qin Zhengwei, Wu Yuanbao, Siebel W, Gao Shan, Wang Hao, Abdallsamed M I M, Zhang Wenxiang, Yang Saihong. 2015. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling Orogen, central China. Lithos, 238: 1~12.
参考文献
Qiu Jiaxiang. 1993. Alkaline rocks in Qinling and Dabashan. Beijing: Geologucal Publishing House, 1~183(in Chinese).
参考文献
Ren Kangxu. 2003. Sdudy progress of the alkaline rocks: A review. Geology of Chemical Minerals, 25(3): 151~163(in Chinese with English abstract).
参考文献
Rooney T O, Nelson W R, Ayalew D, Hanan B, Yirgu G, Kappelman J. 2017. Melting the lithosphere: Metasomes as a source for mantle-derived magmas Earth and Planetary Science Letters, 461: 105~118.
参考文献
Rudnick R L, Gao Shan. 2003. Composition of the continental crust. In: Heinrich D H, Turekian K K, eds. Treatise on Geochemistry. Oxford: Pergamon, 1~64.
参考文献
Shaw D M. 1970. Trace element fractionation during anatexis. Geochimicaet Cosmochimica Acta, 34(2): 237~243.
参考文献
Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434: 590~597.
参考文献
Song Wenlei, Xu Cheng, Wang Linjun, Wu Min, Zeng Liang, Wang Lize, Feng Meng. 2013. Review of the metallogenesis of the endogenetic rare rlement elements deposits related to carbonatite-alkaline complex. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(4): 725~740(in Chinese with English abstract).
参考文献
Song Wenlei, Xu Cheng, Smith M P, Chakhmouradian A R, Brenna M, Kynický J, Chen Wei, Yang Yueheng, Deng Miao, Tang Haiyan. 2018. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over ~1 b. y. Geology, 46(4): 323~326.
参考文献
Spera F J, Bohrson W A. 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization
参考文献
(EC-AFC) formulation. Journal of Petrology, 42(5): 999~1018.
参考文献
Spilliaert N, Allard P, Métrich N, Sobolev A V. 2006. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research: Solid Earth, 111: B04203.
参考文献
Su Jianhui, Zhao Xinfu, Li Xiaochun, Hu Wei, Chen Mi, Xiong Yilin. 2019. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite. Ore Geology Reviews, 113: 103101.
参考文献
Su Jianhui, Zhao Xinfu, Li Xiaochun, Su Zhikun, Liu Rui, Qin Zhijun, Chen Mi. 2021. Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals. American Mineralogist, 106(10): 1545~1558.
参考文献
Su Jianhui, Zhao Xinfu, Li Xiaochun, Hu Wei, Chen Wei, Slezak P. 2022. Unmixing of REE-Nb enriched carbonatites after incremental fractionation of alkaline magmas in the Shaxiongdong complex, Central China. Lithos, 416~417: 106651.
参考文献
Sun Jinfeng, Yang Jinhui, Wu Fuyuan. 2009. Application of in-situ isotopic analysis to granite genesis. Earth Science Frontiers, 16(2): 129~139(in Chinese with English abstract).
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Tappe S, Foley S F, Jenner G A, Heaman L M, Kjarsgaard B A, Romer R L, Stracke A, Joyce N, Hoefs J. 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology, 47(7): 1261~1315.
参考文献
Tappe S, Romer R L, Stracke A, Steenfelt A, Smart K A, Muehlenbachs K, Torsvik T H. 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters, 466: 152~167.
参考文献
VanTongeren J A, Mathez E A. 2012. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa. Geology, 40(6): 491~494.
参考文献
Veksler I V, Petibon C, Jenner G A, Dorfman A M, Dingwell D B. 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave. Journal of Petrology, 39(11~12): 2095~2104.
参考文献
Walter M J. 1998. Melting ofgarnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29~60.
参考文献
Wan Jun, Liu Chengxin, Yang Cheng, Liu Wanliang, Li Xiongwei, Fu Xiaojuan, Liu Hongxian. 2016. Geochemical characteristics and LA-ICP-MS zircon U-Pb age of the trachytic volcanic rocks in Zhushan area of southern Qinling Mountains and their significance. Geological Bulletin of China, 35(7): 1134~1143(in Chinese with English abstract).
参考文献
Wang Cunzhi, Yang Kunguang, Xu Yang, Cheng Wanqiang. 2009. Geochemistry and LA-ICP-MS zircon U-Pb age of basic dike swarms in North Daba Mountains and its tectonic significance. Geological Science and Technology Information, 28(3): 19~26(in Chinese with English abstract).
参考文献
Wang Gang. 2014. Metallogeny of the Mesozoic and Paleozoic volcanic igneous event in Ziyang-Langao areas, North Daba Mountain. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Wang Ke, Wang Lianxun, Ma Changqian, Zhu Yuxiang, She Zhenbing, Deng Xin, Chen Qi. 2021. Mineralogy and geochemistry of the Zhuxi Nb-rich trachytic rocks, South Qinling (China): Insights into the niobium mineralization during magmatic-hydrothermal processes. Ore Geology Reviews, 138: 104346.
参考文献
Wang Kunming. 2014. Research on the petrogenesis, tectonic and metallogeny for mafic rocks in the Ziyang-Langao area, Shaanxi province. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).
参考文献
Wang Kunming, Wang Zongqi, Zhang Yingli, Wang Gang. 2015. Geochronology and geochemistry of mafic rocks in the Xuhe, Shaanxi, China: Implications for petrogenesis and mantle dynamics. Acta Geologica Sinica (English Edition), 89(1): 187~202.
参考文献
Wang Ruirui, Xu Zhiqin, Santosh M, Liang Fenghua, Fu Xuehai. 2017. Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes. Tectonophysics, 712~713: 270~288.
参考文献
Wang Xiaowei. 2014. Geochemical characteristics and geological significance of the volcanic rocks from Mianlue suture zone (Zhongtanggou-Guozhen), South Qinling. Master thesis of Chang'an University (in Chinese with English abstract).
参考文献
Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1~2), 53~72.
参考文献
Xia Linqi, Xia Zuchun, Zhang Cheng, Xu Xueyi. 1994. Petrogeochemistry of Alkali Basic, Ultrabasic Subvolcanic Complex from Northern Daba Mountain, China. Beijing: Geological Publishing House, 1~80(in Chinese).
参考文献
Xia Linqi, Xia Zuchun, Li Xiangmin, Ma Zhongping, Xu Xueyi. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Northwestern Geology, 41(3): 1~29(in Chinese with English abstract).
参考文献
Xiang Zhongjin, Yan Quanren, Yan Zhen, Wang Zongqi, Wang Tao, Zhang Yingli, Qin Xiaofeng. 2010. Facies succession and architecture of volcaniclastic rocks of the Taohekou Formation: Implication for Early Silurian volcanism in the North Dabashan area, China. Acta Geologica Sinica, 84(3): 311~328(in Chinese with English abstract).
参考文献
Xiang Zhongjin, Yan Quanren, Song Bo, Wang Zongqi. 2016. New evidence for the ages of ultramafic to mafic dikes and alkaline volcanic complexes in the North Daba Mountains and its geological implication. Acta Geologica Sinica, 90(5): 896~916 (in Chinese with English abstract).
参考文献
Xiong Yilin, Zhong Shiyu, Li Zhigang, Huang Jingmeng, Lu Xiansong, Du Yichao, Wu Enzheng, Li Zhonglin, Zhao Shenggui, Zhu Zhengyong. 2018. Geological characteristics and prospecting potential of niobium-tantalum deposit in the Tudiling area, Zhushan. Resources Environment and Engineering, 32(S1): 1~7+43(in Chinese with English abstract).
参考文献
Xu Cheng, Campbell I H, Allen C M, Chen Yanjing, Huang Zhilong, Qi Liang, Zhang Guishan, Yan Zaifei. 2008. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 105(1~2): 118~128.
参考文献
Xu Cheng, Kynicky J, Chakhmouradian A N, Campbell I H, Campbell C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos, 118(1~2): 145~155.
参考文献
Xu Cheng, Chakhmouradian A R, Taylor R N, Kynicky J, Li Wenbo, Song Wenlei, Fletcher I R. 2014. Origin of carbonatites in the South Qinling Orogen: Implications for crustal recycling and timing of collision between the South and North China blocks. Geochimica et Cosmochimica Acta, 143: 189~206.
参考文献
Xu Tong, Zhang Xiaotuan, Jiao Jiangang, Zhang Hongqiang, Jia Li. 2020. The subduction of Neoproterozoic Ocean in the Mianlue tectonic zone: Evidence from zircon U-Pb age and Lu-Hf isotopes from volcanic rocks in the Zhifanggou tectonic slice, Lueyang area. Acta Geologica Sinica, 94(12): 3607~3624(in Chinese with English abstract).
参考文献
Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1996. Characteristics of phlogopite-amphibole pyroxenite xenoliths from Langao County, Shaanxi Province. Acta Petrologiga et Mineralogica, 15(3): 193~202(in Chinese with English abstract).
参考文献
Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1997. Phlogopite-amphibole-pyroxenite xenoliths in Langao, Shaanxi Province: Evidences for mantle metasomatism. Acta Petrologica Sinica, 13(1): 1~13(in Chinese with English abstract).
参考文献
Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1999. Features of the Early Palaeozoic mantle beneath Langao County and its formation mechanism. Acta Geologica Sinica-English Edition, 73(3): 356~365.
参考文献
Yang Cheng, Liu Chengxin, Liu Wanliang, Wan Jun, Duan Xianfeng, Zhang Zhong. 2017. Geochemical characteristics of trachyte and Nb mineralization process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petrologica et Mineralogica, (36)5: 605~618(in Chinese with English abstract).
参考文献
Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhang Fangyi, Zhu Renzhi, Zhu Yu, Liu Min, Zhao Shaowei, Zhang Zezhong. 2022. Petrogenetic evolution of Early Paleozoic trachytic rocks in the South Qinling Belt, Central China: Insights from mineralogy, geochemistry, and thermodynamic modeling. Lithos, 418~419: 106683.
参考文献
Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Zhu Yu, Zhang Fangyi, Zhang Zezhong, Wang Xingying. 2021. Early Palaeozoic alkaline trachytes in the North Daba Mountains, South Qinling Belt: Petrogenesis and geological implications. International Geology Review, 63(16): 2037~2056.
参考文献
Yang Hang, Lai Shaocong, Qin Jiangfeng. 2021. Geochemical characteristics of alkali trachytes in Ziyang-Langao area, North Daba Mountains and petrogenetic relation with the diabases. Geotectonica et Metallogenia, 45(2): 413~424(in Chinese with English abstract).
参考文献
Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhang Fangyi, Zhu Renzhi, Zhu Yu, Liu Min, Zhao Shaowei, Yang Zhen. 2023. Geochronology, geochemical and Sr-Nd-Pb isotope of syenites in the North Daba Mountains, South Qinling belt: Constraints on petrogenetic evolution and tectonic implication. Journal of Earth Science. https: //doi. org/10. 1007/s12583-022- 1784-0. http: //en. earth-science. net.
参考文献
Yang Kuifeng, Fan Hongrui, Pirajno F, Li Xiaochun. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite. Geology, 47(12): 1198~1202.
参考文献
Yang Yizeng, Wang Yan, Siebel W, Zhang Yuanshuo, Chen Fukun. 2020. Zircon U-Pb-Hf, geochemical and Sr-Nd-Pb isotope systematics of Late Mesozoic granitoids in the Lantian-Xiaoqinling region: Implications for tectonic setting and petrogenesis. Lithos, 374~375: 105709.
参考文献
Yang Yueheng, Sun Jinfeng, Xie Liewen, Fan Hongrui, Wu Fuyuan. 2008. In situ Nd isotopic measurement of natural geological materials by LA-MC-ICPMS. Chinese Science Bulletin, 53(7): 1062~1070.
参考文献
Yang Yueheng, Wu Fuyuan, Yang Jinhui, Chew D M, Xie Liewen, Chu Zhuyin, Zhang Yanbin, Huang Chao. 2014. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chemical Geology, 385: 35~55.
参考文献
Yaxley G M, Green D H, Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39(11~12): 1917~1930.
参考文献
Yi Pengfei, Zhang Yafeng, Zhang Geli, Yang Tao, Yao Zheng, Li Qi, Gao Haifeng. 2017. LA-ICP-MS zircon U-Pb ages, geochemical characteristics of Zaomulan granitic pluton in Southern Qinling Orogenic Belt and their geological implications. Geological Review, 63(6): 1479~1511(in Chinese with English abstract).
参考文献
Ying Yuancan, Chen Wei, Lu Jue, Jiang Shaoyong, Yang Yueheng. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290~291: 159~171.
参考文献
Ying Yuancan, Chen Wei, Simonetti A, Jiang Shaoyong, Zhao Kuidong. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochim Cosmochim Acta, 280: 340~359.
参考文献
Ying Yuancan. 2018. Geochronology and geochemistry of the Miaoya carbonatite complex (Hubei Province): Implications for petrogenesis and metallogenesis. Master thesis of China University of Geosciences (in Chinese with English abstract).
参考文献
Yoder H S. 1973. Contemporaneous basaltic and rhyolitic magmas. American Mineralogist, 58(3~4): 153~171.
参考文献
Zhang Chengli, Gao Shan, Yuan Honglin, Zhang Guowei, Yan Yunxiang, Luo Jinglan, Luo Jinhai. 2007. Sr-Nd-Pb isotopes of the Early Paleozoic mafic-ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition. Science in China Series D: Earth Sciences, 50(9): 1293~1301.
参考文献
Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R. 1999. The finero phlogopite-peridotite massif: An example of subduction-related metasomatism. Contributions to Mineralogy and Petrology, 134(2): 107~122.
参考文献
Zanetti A, Vannucci R, Bottazzi P, Oberti R, Ottolini L. 1996. Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein. Chemical Geology, 134(1~3): 113~133.
参考文献
Zhang Chengli, Gao Shan, Zhang Guowei, Liu Xiaoming, Yu Zaiping. 2003. Geochemistry of Early Paleozoic alkali dyke swarms in South Qinling and its geological significance. Science in China Series D: Earth Sciences, 46(12): 1292~1306.
参考文献
Zhang Fangyi. 2022. The oxygen fugacity of mantle-derived magmas: constraints from olivine and clinopyroxene oxybarometers. Doctoral dissertation of Northwest University (in Chinese with English abstract).
参考文献
Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Yang Hang, Zhu Yu. 2020a. Geochemical characteristics and geological significance of Early Paleozoic alkali diabases in North Daba Mountain. Acta Petrologica et Mineralogica, 39(1): 35~46(in Chinese with English abstract).
参考文献
Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Yang Hang, Zhu Yu, Zhang Zezhong. 2020b. Magma source and evolution process of Early Paleozoic basalts in the South Qinling Belt. Acta Petrologica Sinica, 36(7): 2149~2162(in Chinese with English abstract).
参考文献
Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Zhu Yu, Yang Hang. 2020. Vein-plus-wall rock melting model for the origin of Early Paleozoic alkali diabases in the South Qinling Belt, Central China. Lithos, 370~371: 105619.
参考文献
Zhang Guowei, Meng Qingren, Yu Zaiping, Sun Yong, Zhou Dingwu, Guo Anlin. 1996. Orogenesis and dynamics of the Qinling Orogen. Science in China (Series D), 39(3): 225~234.
参考文献
Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1~855(in Chinese).
参考文献
Zhang Guowei, Zhang Zongqing, Dong Yunpeng. 1995. Nature of Main tectono-lithostratigraphic units of the Qinling Orogen: Implications for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101~114(in Chinese with English abstract).
参考文献
Zhang Hongluo, Hirschmann M M, Cottrell E, Withers A C. 2017. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochimica et Cosmochimica Acta, 204: 83~103.
参考文献
Zhang Zongqing, Zhang Guowei, Tang Suohan, Wang Jinhui. 2002. The age of metamorphic rocks of the Wudang Group. Geology in China, 29(2): 117~125(in Chinese with English abstract).
参考文献
Zhao Guochun, Hu Jianmin, Meng Qingren. 2003. Geochemistry of the basic sills in the western Wudang block: The evidences of the Paleozoic underplating in South Qinling. Acta Petrologica Sinica, 19(4): 612~622(in Chinese with English abstract).
参考文献
Zhao Junhong, Asimow P D. 2018. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc- and MORB-like dike swarms in South China. Journal of Petrology, 59(9): 1811~1844.
参考文献
Zhu Jiang, Wang Lianxun, Peng Sanguo, Peng Lianhong, Wu Changxiong, Qiu Xiaofei. 2017. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China. Geological Journal, 52(6): 938~954.
参考文献
Zhu Xiyan. 2008. Zircon U-Pb ages of volcanic and sedimentary rocks of the Wudang Group in the Qinling orogenic belt within western Henan Province. Acta Geoscientica Sinica, 29(6): 817~829(in Chinese with English abstract).
参考文献
Zou Xianwu, Duan Qifa, Tang Chaoyang, Cao Liang, Cui Sen, Zhao Wuqiang, Xia Jie, Wang Lei. 2011. SHRIMP zircon U-Pb dating and lithogeochemical characteristics of diabase from Zhenping area in North Daba Mountain. Geology in China, 38(2): 282~291(in Chinese with English abstract).
参考文献
陈虹, 田蜜, 武国利, 胡健民. 2014. 南秦岭构造带内早古生代碱基性岩浆活动: 古特提斯洋裂解的证据. 地质论评, 60(6): 1437~1452.
参考文献
陈唯, 应元灿, 陆珏, 蒋少涌. 2020. 南秦岭碳酸岩杂岩体成岩成矿过程. 武汉: 中国地质大学出版社, 1~150.
参考文献
陈友章, 刘树文, 李秋根, 代军治, 张帆, 杨朋涛, 郭丽爽. 2010. 南秦岭岚皋基性火山岩的地质学、地球化学及其构造意义. 北京大学学报(自然科学版), 46(4): 607~619.
参考文献
黄月华. 1993. 岚皋碱性镁铁-超镁铁质潜火山杂岩中金云角闪辉石岩类地幔捕虏体矿物学特征. 岩石学报, 9(4): 367~378.
参考文献
黄月华, 任有祥, 夏林圻, 夏祖春, 张诚. 1992. 北大巴山早古生代双模式火成岩套: 以高滩辉绿岩和蒿坪粗面岩为例. 岩石学报, 8(3): 243~256.
参考文献
赖绍聪, 张国伟, 董云鹏, 裴先治, 陈亮. 2003. 秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布. 中国科学(D辑), 33(12): 1174~1183.
参考文献
李夫杰, 杨骏. 2011. 陕南镇巴东部地区基性岩墙群的构造意义. 四川理工学院学报(自然科学版), 24(2): 238~243.
参考文献
李怀坤, 陆松年, 陈志宏, 相振群, 周红英, 郝国杰. 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775~781.
参考文献
李石. 1980. 湖北庙垭碳酸岩地球化学特征及岩石成因探讨. 地球化学, 9(4): 345~355.
参考文献
李石. 1991. 湖北杀熊洞碱性-碳酸岩杂岩体地球化学特征及其成因探讨. 地球化学, 3: 245~254.
参考文献
李晓春, 展云翔, 范宏瑞, 杨奎锋. 2022. 内蒙古白云鄂博矿床巨量稀土的堆积及再活化历史: 来自矿物微区Sm-Nd同位素的制约. 岩石学报, 38(10): 2920~2932.
参考文献
李育敬. 1989. 陕西岚皋下志留统滔河口组的建立及其与陡山沟组、白崖垭组关系的探讨. 陕西地质, 7(2): 7~14.
参考文献
凌文黎, 任邦方, 段瑞春, 柳小明, 毛新武, 彭练红, 刘早学, 程建萍, 杨红梅. 2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 52(12): 1445~1456.
参考文献
刘万亮, 刘成新, 杨成, 万俊, 陈觅, 郭盼, 刘虹显, 朱正勇. 2015. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析. 资源环境与工程, 29(6): 779~784.
参考文献
雒昆利, 端木和顺. 2001. 大巴山区早古生代基性火成岩的形成时代. 中国区域地质, 20(3): 262~266.
参考文献
莫宣学. 2011. 岩浆与岩浆岩: 地球深部“探针”与演化记录. 自然杂志, 33(5): 255~259+313.
参考文献
邱家骧. 1993. 秦巴碱性岩. 北京: 地质出版社, 1~183.
参考文献
任康绪. 2003. 碱性岩研究进展述评. 化工矿产地质, 25(3): 151~163.
参考文献
宋文磊, 许成, 王林均, 吴敏, 曾亮, 王丽泽, 冯梦. 2013. 与碳酸岩碱性杂岩体相关的内生稀土矿床成矿作用研究进展. 北京大学学报(自然科学版), 49(4): 725~740.
参考文献
孙金凤, 杨进辉, 吴福元. 2009. 原位微区同位素分析在花岗岩成因研究中的应用. 地学前缘, 16(2): 129~139.
参考文献
万俊, 刘成新, 杨成, 刘万亮, 李雄伟, 付晓娟, 刘虹显. 2016. 南秦岭竹山地区粗面质火山岩地球化学特征, LA-ICP-MS锆石U-Pb年龄及其大地构造意义. 地质通报, 35(7): 1134~1143.
参考文献
汪晓伟. 2014. 南秦岭勉略构造带(中堂沟—郭镇段)火山岩岩石地球化学特征及其构造意义. 长安大学硕士学位论文.
参考文献
王存智, 杨坤光, 徐扬, 程万强. 2009. 北大巴基性岩墙群地球化学特征, LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 28(3): 19~26.
参考文献
王刚. 2014. 北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用. 中国地质大学(北京)博士学位论文.
参考文献
王坤明. 2014. 陕西紫阳—岚皋地区镁铁质岩岩石成因、构造环境及成矿作用研究. 中国地质科学院博士学位论文.
参考文献
夏林圻, 夏祖春, 张诚, 徐学义. 1994. 北大巴山碱质基性-超基性潜火山岩石地球化学. 北京: 地质出版社.
参考文献
夏林圻, 夏祖春, 李向民, 马中平, 徐学义. 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1~29.
参考文献
向忠金, 闫全人, 闫臻, 王宗起, 王涛, 张英利, 覃小锋. 2010. 北大巴山志留系滔河口组火山碎屑岩相序, 组构特征及古火山作用环境分析. 地质学报, 84(3): 311~328.
参考文献
向忠金, 闫全人, 宋博, 王宗起. 2016. 北大巴山超基性, 基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义. 地质学报, 90(5): 896~916.
参考文献
熊意林, 钟石玉, 李志刚, 黄景孟, 鲁显松, 杜翌超, 吴恩政, 李忠林, 赵生贵, 朱正勇. 2018. 竹山土地岭一带铌钽矿床地质特征及找矿前景分析. 资源环境与工程, 32(S1): 1~7+43.
参考文献
徐通, 张晓团, 焦建刚, 张红强, 贾力. 2020. 勉略构造带新元古代洋盆俯冲作用: 来自略阳地区纸房沟岩片火山岩锆石U-Pb年龄和Lu-Hf同位素的证据. 地质学报, 94(12): 3607~3624.
参考文献
徐学义, 黄月华, 夏林圻, 夏祖春. 1996. 岚皋金云角闪辉石岩类捕虏体特征. 岩石矿物学杂志, 15(3): 193~202.
参考文献
徐学义, 黄月华, 夏林圻, 夏祖春. 1997. 岚皋金云角闪辉石岩类捕虏体: 地幔交代作用的证据. 岩石学报, 13(1): 1~13.
参考文献
杨成, 刘成新, 刘万亮, 万俊, 段先锋, 张众. 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, (36)5: 605~618.
参考文献
杨航, 赖绍聪, 秦江锋. 2021. 北大巴山紫阳-岚皋地区碱性粗面岩地球化学特征: 与本区辉绿岩的成因联系. 大地构造与成矿学, 45(2): 413~424.
参考文献
易鹏飞, 张亚峰, 张革利, 杨涛, 姚征, 李琦, 高海峰. 2017. 南秦岭枣木栏岩体LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义. 地质论评, 63(6): 1479~1511.
参考文献
应元灿. 2018. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程. 中国地质大学硕士学位论文.
参考文献
张成立, 高山, 张国伟, 柳小明, 于在平. 2002. 南秦岭早古生代碱性岩墙群的地球化学及其地质意义. 中国科学(D辑: 地球科学), 32(10): 819~829.
参考文献
张成立, 高山, 袁洪林, 张国伟, 晏云翔, 罗静兰, 罗金海. 2007. 南秦岭早古生代地幔性质: 来自超镁铁质, 镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据. 中国科学(D辑: 地球科学), 37(7): 857~865.
参考文献
张方毅. 2022. 幔源岩浆的氧逸度: 来自橄榄石和单斜辉石氧逸度计的约束. 西北大学博士学位论文.
参考文献
张方毅, 赖绍聪, 秦江锋, 朱韧之, 杨航, 朱毓. 2020a. 大巴山早古生代辉绿岩地球化学特征及其地质意义. 岩石矿物学杂志, 39(1): 35~46.
参考文献
张方毅, 赖绍聪, 秦江锋, 朱韧之, 赵少伟, 杨航, 朱毓, 张泽中. 2020b. 南秦岭早古生代玄武岩的岩浆源区及演化过程. 岩石学报, 36(7): 2149~2162.
参考文献
张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101~114.
参考文献
张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学(D辑: 地球科学), 26(3): 193~200.
参考文献
张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1~855.
参考文献
张宗清, 张国伟, 唐索寒, 王进辉. 2002. 武当群变质岩年龄. 中国地质, 29(2): 117~125.
参考文献
赵国春, 胡健民, 孟庆任. 2003. 武当地块西部席状基性侵入岩群地球化学特征: 南秦岭古生代底侵作用的依据. 岩石学报, 19(4): 612~622.
参考文献
祝禧艳, 陈福坤, 王伟, Pham T H, 王芳, 张福勤. 2008. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄. 地球学报, 29(6): 817~829.
参考文献
邹先武, 段其发, 汤朝阳, 曹亮, 崔森, 赵武强, 夏杰, 王磊. 2011. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征. 中国地质, 38(2): 282~291.
目录contents

    摘要

    南秦岭地区在早古生代经历了大规模且持续性的碱性岩浆活动,其丰富的碱性岩石记录为探索深部地幔物质组成、壳内岩浆演化过程以及地球动力学演化机制提供了珍贵的地质载体。文章基于团队近期对于区域上典型碱性岩的地球化学分析结果和成因机制探讨,旨在对南秦岭早古生代碱性岩浆的源区和演化过程进行全面地约束。南秦岭早古生代碱性岩石类型主要包括一套成分从碱性玄武质向粗面质变化,呈双峰式分布的碱性火山-侵入岩组合,以及少量与碱性硅酸岩(角闪辉石岩、正长岩)-碳酸岩共生杂岩体。岩相学、年代学和地球化学证据显示这些碱性岩具有相同的地幔源区,其中演化程度较低的镁铁质端元记录了南秦岭早古生代交代岩石圈地幔的部分熔融事件,交代介质主要为硅酸盐熔体。演化程度较高的碱性岩端元(粗面-正长岩、碳酸岩)来源于初始镁铁质组分的岩浆分异过程,其中粗面-正长岩类主要受到以长石和单斜辉石为主的分离结晶作用控制。中生代热液交代过程主要记录在北大巴山东部和武当地块西南缘的早古生代碱性岩体中,热液交代作用促进了碳酸岩杂岩体中稀土元素的富集成矿。副矿物年代学和独居石Nd同位素特征反映了热液可能形成于岩体本身的再活化事件,晚三叠世秦岭地区的造山运动可能对此过程具有促进作用。

    Abstract

    The South Qinling belt experienced large-scale and continuous alkaline magmatism during the Early Paleozoic. The presence of alkaline rocks in this area offers valuable insights into the deep material composition, magmatic evolution, physicochemical environment, and geodynamic evolution. This article aims to provide a comprehensive understanding of the source area and evolution of early Paleozoic alkaline magmatism in the South Qinling Mountains, based on the team's recent work on the genesis of typical alkaline rocks in the region.The Early Paleozoic alkaline rocks in the South Qinling belt mainly consist of a bimodal suite, transitioning in composition from basaltic to trachytic rocks. Additionally, there area small number of carbonatitesthat coexist with alkaline silicate rocks (amphibole pyroxenites and syenite). Petrographical, chronological, and geochemical evidence suggests that these alkaline rocks share the same mantle source. The mafic rocks indicate partial melting of the mantle in the South Qinling Mountains, where the metasomatic agent ismainly silicate melt.The trachyte/syenite and carbonatite rocks are all derived from magmatic differentiation of the initial mafic component. The trachyte/syenite rocks are controlled by the segregation and crystallization of mainly feldspar and clinopyroxene. Hydrothermal processes are mainly concentrated in the Zhuxi-Zhushan area in the eastern part of the Northern Daba Mountains and the southwestern margin of the Wudang region. In these areas, hydrothermal metasomatism has led to the enrichment of rare earth elements in carbonatite. Geochronology and monazite Nd isotopic signatures suggest that the hydrothermal fluids may have originated from a reactivation event within the rocks themselves, and the Late Triassic orogeny in the Qinling region may have contributed to this process.

  • 碱性岩是地球上分布较为稀少且产出环境独特的一类岩石,它囊括了从超镁铁质到长英质岩以及火成碳酸岩在内的多种岩性组合,近几十年来受到了学术界的广泛关注(Armbrustmacher and Hedge,1982; Liégeois et al.,1998; Jung et al.,2012; Andersen et al.,2018; Marks et al.,2018)。碱性岩具有较深的地幔源区以及独特的地球化学组分(Foley,1992; Spilliaert et al.,2006),其具有富集不相容元素以及挥发分的特点,通常产出于拉张型构造或软流圈上涌形成的板内、非造山和伸展环境中,是深部地球动力学过程在浅部地壳的直接表现和历史记录(任康绪,2003)。超镁铁质—镁铁质的碱性岩以及其中的地幔捕掳体通常保留了地幔源区的属性,是人们窥探深部地幔信息的有效工具(Foley et al.,2009; 莫宣学,2011);而一些高分异碱性岩(如正长岩和碳酸岩)的形成通常经历了长期且复杂的地质过程并伴随着稀土元素和高场强元素等战略性金属元素的富集(任康绪,2003; 宋文磊等,2013),它们的地球化学以及矿物学组成记录了重要的岩浆-热液演化过程信息。因此碱性岩被认为是探索地球深部物质组成特征及演化过程、地球动力学、构造和物理化学环境的有效“探针”。

  • 南秦岭构造带处于秦岭造山带与扬子板块的接合部位,其构造位置的特殊性及构造演化的复杂性长久以来受到学者的广泛关注(赵国春等,2003; Dong et al.,2017; Zhao and Asimow,2018)。南秦岭地区早古生代发育广泛的碱性岩浆活动,区域分布多种碱性岩石类型,被认为是勉略洋盆扩张初期的产物。本文基于团队近期对南秦岭早古生代典型的碱性岩体(紫阳辉绿岩、竹溪粗面-正长岩、杀熊洞碳酸岩杂岩体)所开展的岩石学、年代学、矿物学以及地球化学研究工作,试图从碱性岩地球化学和成因演化的视角,探讨其在区域地幔演化和关键金属富集过程中所扮演的特殊角色和地质意义。

  • 1 区域地质背景

  • 秦岭造山带是华北板块与扬子板块汇聚碰撞形成的复合型造山带,向西与昆仑造山带相接,向东与大别-苏鲁三叠纪超高压变质带相连,构成了我国中央造山带(张国伟等,1996; 易鹏飞等,2017)。造山带中存在两条重要的缝合带,即北部的商丹缝合带和南部的勉略缝合带。这两条缝合带将秦岭造山带由北向南依次划分为北秦岭造山带、南秦岭造山带、扬子板块北缘三个构造单元(图1a),其中勉略缝合带被认为是古特提斯洋的北侧分支,其形成演化对于反演华北板块与扬子板块的最终拼合历史具有重要意义。目前,对于勉略洋的形成发育及勉略洋俯冲关闭的构造演化过程已经有大量详细研究成果(Lai et al.,2004a,2004b,2007; 汪晓伟,2014; 徐通等,2020)。其中南秦岭造山带早古生代和中生代大面积碱性岩堤、岩墙和花岗质岩石出露,被认为是勉略洋盆扩张与闭合的相关产物。

  • 南秦岭的前寒武纪结晶基底主要包括一些低级变质岩群(陡岭群、武当群、耀岭河群),基底上覆盖了震旦纪—中生代沉积岩层(Wang et al.,2017)。出露于豫西南淅川县及西峡县的陡岭杂岩构成了区域古元古代的结晶基底,主要由黑云母片麻岩、角闪岩、石英岩和片岩组成(Hu et al.,2013);中新元古代基底杂岩主要由武当群和耀岭河群组成(Dong et al.,2017),其中武当群是一套变质火山-沉积岩系,岩群下部发育一套基性—中基性火山岩,上部为中酸性火山岩,主要出露在湖北省武当地块,豫西地区以及陕西安康也有发育(张宗清等,2002凌文黎等,2007祝禧艳等,2008)。耀岭河群在南秦岭广泛分布,主要呈岛状或残块状出露于武当、陡岭、平利、牛山及小磨岭等地区(李怀坤等,2003凌文黎等,2007),以变玄武质火山岩为主,夹少量变质中酸性火山岩和变泥质岩,具绿片岩相变质特征(黄月华,1993夏林圻等,2008)。南秦岭震旦系从下之上至上分别为陡山沱组和灯影组,与下伏耀岭河群呈平行不整合或断层接触。其中陡山沱组为一套黑色板岩为主的沉积建造,局部具凝灰岩夹层。震旦系灯影组出露于镇安—旬阳地区,下部为石英砂岩和长石石英砂岩,上部为厚层状白云质粉砂岩和白云岩。南秦岭地区古生界包括寒武系—奥陶系的洞河群和志留系的大贵坪组、梅子垭组等。寒武系—奥陶系在北大巴山安康—平利—紫阳地区,主要是以泥灰岩、碳质板岩、白云质灰岩为主的海相沉积。志留系广泛出露于临潭-合作-镇安-板岩镇断裂以南,南秦岭东段志留系(斑鸠关组—水洞沟组)以泥碎屑岩为主,夹火山岩和碳硅质岩,西段(迭部组—卓乌阔组)碳硅质岩夹层较多,仅有少数凝灰岩(张国伟等,1995);大贵坪组和梅子垭组广泛出露在竹溪—竹山和平利—紫阳碱性岩区,主要包括碳质板岩夹泥质板岩和泥质粉砂岩等(邱家骧,1993)。南秦岭地区在晚古生代—中三叠世发育广泛的陆表海沉积岩系,岩性主要以海相碳酸盐岩、砂岩为主,夹杂陆源细碎屑岩和黑色页岩。侏罗系和白垩系在南秦岭地区出露较少,主要是一些杂色砾岩、中粗粒砂岩和细砂岩为主的山间断陷盆地沉积。

  • 图1 秦岭地区构造及地层简图(a,据Dong et al.,2016)和南秦岭地区主要岩体和地层分布图(b,据Wang et al.,2017)

  • Fig.1 Simplified geological map of the Qinling belt (a, after Dong et al., 2016) , and simplified geological map showing the distribution of rock and strata in the South Qinling belt (b, after Wang et al., 2017)

  • 2 岩体地质特征

  • 南秦岭早古生代碱性岩主要分布在北大巴山地区并向东延伸至随州—枣阳地区。在南秦岭北大巴山地区出露有一套由碱性超镁铁质—镁铁质岩脉、双峰式碱性火山杂岩(碱性玄武岩和粗面岩)及少量碳酸岩-正长岩杂岩组成的岩浆杂岩带,这一早古生代碱性岩浆带内不仅出露了喷出地表的碱性玄武岩和粗面质火山岩,还存在大量侵位深度不同、演化程度不同的辉绿岩、辉长辉绿岩、角闪辉石岩和正长岩类(图1b;张成立等,20022007王存智等,2009李夫杰等,2011邹先武等,2011陈虹等,2014万俊等,2016张方毅等,2020a;Zhang et al.,2020; 杨航等,2021;Yang et al.,2021,2022,2023)。碱性火山岩与侵入岩类属于同源岩浆产物,不同的就位深度使这些岩脉记录了岩浆不同演化阶段的特征。其中侵入岩集中出露于紫阳县红椿坝-瓦房店断裂以南的早古生代地层中,岩体多以岩床的形式顺层侵入或以岩脉的形式小角度切割早古生代及之前地层。脉体宽数十米至百余米,长达数百米到数千米不等,整体呈北西-南东向展布,与区域造构线方向一致。岩脉与围岩接触带常具数厘米宽的冷凝边,部分岩脉与围岩接触带发育角岩化等接触变质作用。南秦岭地区碱性火山岩主要出露于北大巴山岚皋—平利—竹溪地区,火山岩与区域内构造线及岩脉走向基本一致,岩性主要包括不同地球化学特征的玄武质火山岩为主及少量粗面岩及中酸性的火山碎屑岩。随州—枣阳地区的碱性岩以霞石正长岩和碱长正长岩为主,比较典型的是关子山和黄羊山岩体,其形成时代和北大巴山碱性岩相近(Wang et al.,2017; Ahmed et al.,2018)。此外,文献中报道了在武当地块西缘存在与碳酸岩相关的碱性杂岩体,分别是湖北庙垭和杀熊洞碳酸岩杂岩体。庙垭碳酸岩杂岩体主要岩性单元为正长岩和方解石碳酸岩,二者在空间上紧密伴生(Xu et al.,2010; 应元灿,2018;Ying et al.,2018;Su et al.,2019,2022; 陈唯等,2020);杀熊洞碳酸岩杂岩体主要由蚀变的辉石岩、正长岩以及黑云母方解石碳酸岩为主(Xu et al.,2008; Chen et al.,2018)。本文系统地收集和整理了南秦岭早古生代主要碱性岩体的年代学与地球化学特征数据,汇总结果见表1。

  • 3 岩相学特征

  • 南秦岭早古生代发育大量碱性岩墙群和碱性火山岩,以及少量的碳酸岩杂岩体(图2)。

  • 在北大巴山紫阳—岚皋地区分布有大量早古生代碱性岩浆作用形成的岩脉,脉体宽数十米至百余米,长达数百米到数千米不等,整体呈北西-南东向展布,与区域造构线方向一致。岩体多以岩床的形式顺层侵入或以岩脉的形式小角度切割早古生代及之前地层。岩脉与围岩接触带常具数厘米宽的冷凝边,部分岩脉与围岩接触带发育角岩化等接触变质作用。南秦岭早古生代基性岩墙群主要由辉绿岩及辉长辉绿岩组成,集中出露于紫阳县红椿坝-瓦房店断裂以南的早古生代地层中(图2a)。独立的岩床成分较为均一,仅在部分岩体中存在岩性的分异现象,这些岩体表现出了由辉长岩-辉绿岩-辉绿玢岩的岩性变化趋势。此外,南秦岭北大巴山地区还出露有少量超镁铁质角闪辉石岩脉(张成立等,2007张方毅,2022)。角闪辉石岩主要分布于小道河地区,具有与辉绿岩类似的产状,多顺层侵入寒武系中。本文以紫阳地区辉绿岩为例(Zhang et al.,2020),紫阳辉绿岩多呈灰绿—灰黑色,具辉绿及辉长结构,块状构造。主要造岩矿物由单斜辉石、斜长石以及少量角闪石组成,副矿物由磁铁矿、磷灰石、榍石及黄铁矿组成。此外,少量粗面岩和正长岩也在紫阳—岚皋地区被报道,这些中酸性岩与同区的基型岩脉产状一致,主要矿物为碱性长石、斜长石以及黑云母,部分可见少量石英(杨航等,2021)。

  • 图2 南秦岭典型碱性岩石类型及其分布图(据Zhang et al.,2020;Yang et al.,2022)

  • Fig.2 Simplified geological map showing the distribution of typical alkaline rocks in the South Qinling belt (after Zhang et al., 2020; Yang et al., 2022)

  • (a)—紫阳地区基性岩脉;(b)—平利—竹溪地区中酸性岩体;(c)—杀熊洞地区碳酸岩-碱性岩杂岩体(据Zhang et al.,2020; Yang et al.,2022)

  • (a) —basic dikes in Ziyang area; (b) —intermediate-acid rocks in Pingli-Zhuxi area; (c) —carbonatite complex in Shaxiongdong area (after Zhang et al., 2020; Yang et al., 2022)

  • 南秦岭地区碱性火山岩主要出露于北大巴山岚皋—平利—竹溪地区,火山岩呈NWW-SEE向展布,与区域内构造线及岩脉走向基本一致。岩性主要以基性—超基性火山岩为主,还有少量的粗面质火山岩。前人将出露于岚皋地区的基性火山杂岩命名为滔河口组,时代为早志留世(李育敬,1989)。滔河口组主要由碱性玄武岩、火山角砾岩及凝灰岩组成,内部夹少量正常海相沉积岩。该组与下伏奥陶系板岩、泥质灰岩及下志留统灰岩、页岩呈断层接触关系,与上覆中志留统笔石页岩呈整合接触关系(雒昆利等,2001)。垂向上具有下部为碱性玄武岩,上部为火山碎屑岩与碳酸盐岩组合的结构特征(向忠金等,2010)。粗面质火山岩主要分布在平利—竹溪地区(图2b),岩性主要包括粗面岩和粗面质火山碎屑岩,还包括少量的次火山相的正长岩,其主要矿物为碱性长石和黑云母,副矿物有榍石、磷灰石(Yang et al.,2021,2022)。

  • 庙垭碳酸岩杂岩体在平面上呈纺锤状出露于湖北竹山县得胜镇境内(图1b)。碳酸岩呈岩脉或岩株状侵入碱性正长岩中构成一个复合杂岩体,沿震旦系耀岭河组石英角斑岩和下寒武统梅子垭组绢云母片岩的构造脆弱带分布(李石,1980)。正长岩占杂岩体90%以上,岩石类型包括正长岩、混染正长岩和正长斑岩;碳酸岩类常呈大小不等的透镜体或微细脉侵入正长岩类中,主要由方解石碳酸岩、含碳方解石碳酸岩和铁白云石碳酸岩组成。庙垭碳酸岩杂岩体经历的围岩蚀变主要有方解石化、绢云母化、黄铁矿化和萤石化等(应元灿,2018)。杀熊洞碳酸岩-碱性岩杂岩体与西北部庙垭碳酸岩杂岩体仅相距仅50 km(图1b),主要由角闪辉石岩、正长岩和方解石碳酸岩三种岩性组成,三者在空间上紧密共生(图2c)。角闪辉石岩主要分布在岩体的东部和西北部。岩石呈暗绿色,块状构造,不等粒结构,主要矿物为单斜辉石、角闪石、黑云母、方解石,副矿物为榍石、钛铁氧化物和锆石等。部分暗色矿物发生绿泥石化,具有明显的堆晶结构。正长岩是杂岩体中出露最广泛的岩石类型,由于受到后期碳酸岩岩浆交代作用的影响,其颜色从砖红色到灰白色到灰黑色变化。岩石主要为块状构造,细粒—粗粒结构均有发育,主要矿物为碱性长石、霓石、黑云母、方解石等,副矿物为榍石、磷灰石、烧绿石、金红石、褐帘石、钛铁矿等。霓长岩化的正长岩和正长岩矿物类型和特征基本一致,主要的差异在于霓长岩化的正长岩中的暗色矿物(霓石)含量明显高,反映了强烈的碱质交代过程。正长岩手标本上可见浅色方解石条带,反映了碳酸盐熔体/流体的交代过程。

  • 表1 南秦岭地区早古生代碱性岩年代学和地球化学特征汇总

  • Table1 Summary of the geochronology and geochemistry features of early Paleozoic alkaline rocks in the South Qinling belt

  • 4 年代学特征

  • 对于南秦岭早古生代碱性岩浆事件的年代学限定,前人已经开展了大量研究工作(表1)。首先,区域地层资料显示这些碱性岩大多主要与寒武纪—奥陶纪—志留纪变质-沉积地层接触。地层岩性主要为泥质板岩、碳质板岩、灰岩和砂岩(雒昆利等,2001张成立等,2007;Wang et al.,2017)。前人在这些地层中报道了活动于中志留世的几丁虫化石以及早志留世晚期的笔石化石(雒昆利等,2001王刚,2014)。副矿物年代学分析手段将南秦岭碱性岩浆活动限定于早—中志留世,其中镁铁质岩的年龄主要分布在450~430 Ma之间(向忠金等,2016张方毅,2022),长英质岩(包括北大巴山地区和随州—枣阳地区)和碳酸岩类形成时代稍晚,主要分布在440~420 Ma之间(王刚,2014万俊等,2016; Wang et al.,2017)。庙垭和杀熊洞杂岩体中的辉石岩和正长岩中的锆石和榍石矿物也记录了440~430 Ma 的侵位时代(Xu et al.,2008; Zhu et al.,2017)。近些年来,随着矿物微区分析手段的进步,研究者们对南秦岭早古生代碱性岩开展了更为精细的年代学工作,并获得了一些新的认识。Nie et al.(2021)对竹溪天宝地区粗面岩中的独居石矿物进行了U-Th-Pb年代学分析,获得了230 Ma的年龄;对庙垭和杀熊洞杂岩体中独居石和氟碳铈矿的U-Th-Pb定年结果也显示这些稀土矿物形成于240~220 Ma(Su et al.,2019,2021,2022)。

  • 本团队对南秦岭早古生代碱性岩同样开展了详尽的年代学工作,锆石U-Pb定年结果显示紫阳辉绿岩的形成年龄为454~446 Ma(Zhang et al.,2020);竹溪地区的正长岩和粗面岩形成年龄分别为454 Ma和427 Ma(Yang et al.,2021,2023);锆石和榍石U-Th-Pb定年结果显示杀熊洞地区的角闪辉石岩形成于444~436 Ma,稍早于正长岩(435~432 Ma)和碳酸岩(约438 Ma)(未发表数据);独居石Th-Pb 年代学结果显示碳酸岩中的独居石形成于约230 Ma(未发表文献)。综合上述年代学数据,本文认为南秦岭地区早古生代碱性岩浆活动主要发育在早—中志留世,三叠纪可能存在热液对碱性岩体的交代事件,此过程主要发生于北大巴山与武当地块的相邻地区。

  • 5 地球化学特征

  • 区域上碱性岩成分从基性到酸性跨度较大,基性岩中辉绿岩占比最多,不同类型的镁铁质岩地球化学特征相似(表1)。中酸性岩以粗面岩和正长岩为主,主要分布在北大巴山东部的竹溪地区。基于本团队近期的研究工作,我们选取了紫阳地区辉绿岩、竹溪地区粗面-正长岩以及杀熊洞碳酸岩杂岩体为代表进行地球化学特征描述。

  • 5.1 紫阳辉绿岩

  • 辉绿岩样品具有较低的SiO2含量(42.10%~50.99%),较高的TiO2含量(2.89%~6.78%),TFe2O3含量(11.98%~16.19%)以及Al2O3含量(11.80%~14.67%),CaO/Al2O3比值介于0.49~0.91之间。MgO含量变化较大(6.60%~10.56%),Mg#值介于54.0~65.8之间。岩石全碱含量高且均属于钠质系列(Na2O=1.49%~3.31%,K2O=0.27%~1.89%,K2O/Na2O=0.16~0.56)。在SiO2-(K2O+Na2O)系列划分图解(图3a)中,所有样品投影点均位于碱性系列范围内,总体上紫阳辉绿岩具贫硅、富钛及富钠的特征(图3b)。

  • 紫阳辉绿岩中的相容元素(Ni、Cr和Sc)与MgO呈正相关关系,在微量元素原始地幔标准化蛛网图中(图4a),所有样品显示出不相容元素Ba、Nb、Ta和Ti,而亏损Rb、K、Pb、Zr和Hf的分布特点(Hf/Hf*=0.35~0.75)。本区辉绿岩稀土总量高,稀土元素配分模式图表现为轻稀土富集,重稀土亏损的右倾模式(图4b)。样品La/Yb介于12.8~16.1之间,平均值为14.7,Dy/Yb介于2.7~3.6之间,平均值为3.0。具微弱Eu异常,Eu/Eu*值在0.88~1.25之间。总体上具有板内玄武岩微量元素的典型特征。紫阳地区辉绿岩具有较为亏损的Sr-Nd同位素特征,初始87Sr/86Sr比值为0.70439~0.70538,εNdt)值为+2.4~+3.5(图5),Hf同位素也表现出了亏损的特征,εHft)值介于+6.1~+7.1之间。

  • 图3 紫阳辉绿岩全岩SiO2-(K2O+Na2O)分类图(a,据Middlemost,1994)和Na2O-K2O判别图(b)

  • Fig.3 Diagrams of SiO2 versus total alkali (a, after Middlemost, 1994) and Na2O versus K2O for Ziyang diabases (b)

  • 紫阳辉绿岩数据引自Zhang et al.,2020;南秦岭镁铁质岩数据引用自张成立等,2002陈虹等,2014;Wang et al.,2015; 向忠金等,2016; Wang et al.,2017; Zhang et al.,2017

  • The published data of Ziyang diabases are from Zhang et al., 2020; the published data of mafic rocks in South Qinling belt are from Zhang Chengli et al., 2002;Chen Hong et al., 2014;Wang et al., 2015, 2017; Xiang Zhongjin et al., 2016; Zhang et al., 2017

  • 图4 紫阳辉绿岩原始地幔标准化微量元素蛛网图(a)和稀土元素配分图解(b)(据Zhang et al.,2020)

  • Fig.4 Primitive mantle (PM) normalized trace element distribution patterns (a) and chondrite-normalized REE distribution patterns (b) for Ziyang diabases (after Zhang et al., 2020)

  • 原始地幔标准化值据McDonough and Sun(1995),球粒陨石标准化值据Sun and McDonough(1989);数据来源同图3

  • The normalized primitive mantle and chondrite data are from McDonough and Sun (1995) and Sun and McDonough (1989) , respectively; same data source as Fig.3

  • 5.2 竹溪粗面-正长岩

  • 竹溪粗面岩具有较高的Si(SiO2=60.88%~66.13%)和全碱(Na2O+K2O=10.19%~12.64%)含量,样品投影点均位于粗面岩系列范围内(图6a),A/CNK [Al2O3/(CaO+Na2O+K2O)]=0.63~0.95,显示出准铝质到过碱性过渡特征(图6b)。粗面岩具有较低的Mg(MgO=0.41%~1.64%)和Ca(CaO=0.40%~0.76%)含量,Na2O/K2O比值变化范围较大(0.5~1.9)。竹溪正长岩和竹溪粗面岩地球化学特征相似,具有较高的Si(SiO2=60.20%~66.48%)和全碱(Na2O+K2O=8.57%~11.9%)含量,样品A/CNK比值分布在0.89~1.02之间,显示出准铝质特征(图6b)。正长岩样品中MgO(0.31%~1.30%)和CaO(0.75%~2.91%)含量变化范围较大,具有较高的Na2O/K2O比值(0.8~2.1)和里特曼指数(4.1~6.6)。

  • 图5 紫阳辉绿岩(87Sr/86Sr)iNdt)图解(a、b)(据Zhang et al.,2020)

  • Fig.5 Diagram of (87Sr/86Sr) i vs. εNd (t) for Ziyang diabases (a, b) (after Zhang et al., 2020)

  • 图中展示了岩浆上升过程中地壳同化混染作用的定量计算结果(EC-AFC; Spera et al.,2001),初始熔体成分选择样品中最为亏损的玄武岩,南秦岭地区地壳成分引自Gao et al.(1999);亏损地幔的同位素组成已校正至450 Ma,南秦岭地区碱性玄武岩中发现的金云角闪辉石岩捕虏体数据引自Xu et al.(1999)

  • The figure shows the quantitative calculation results of crustal assimilation and mixing during magma ascent (EC-AFC; Spera et al., 2001) , the basalt with the most depleted composition was selected for the initial melt composition, and the crustal composition in the South Qinling region are from Gao et al. (1999) ; the isotopic composition of the depleted mantle has been corrected to 450 Ma; the xenolith found in alkaline basalts in the South Qinling belt is from Xu et al. (1999)

  • 图6 竹溪粗面-正长岩TAS图解(a,底图据Middlemost,1994)及A/CNK-A/NK图解(b,据Yang et al.,2022,2023)

  • Fig.6 Total alkali versus SiO2 (TAS) diagram (a, after Middlemost, 1994) and A/CNK-A/NK diagram for Zhuxi trachytes and syenites (b, after Yang et al., 2022, 2023)

  • 竹溪粗面岩和正长岩数据引用自Yang et al.,2022,2023;南秦岭镁铁质岩引用自陈虹等,2014王坤明,2014向忠金等,2016;Zhang et al.,2020;南秦岭中酸性岩引用自Wang et al.,2017,2021

  • The published data of Zhuxi trachytes and syenites are from Yang et al., 2022, 2023; the published data of mafic rocks in South Qinling belt are from Chen Hong et al., 2014; Wang Kunming, 2014; Xiang Zhongjin et al., 2016; Zhang et al., 2020; the published data of intermediate-acid rocks in South Qinling belt are from Wang et al., 2017, 2021

  • 所有样品在微量元素蛛网图中均表现出高场强元素(HFSE)的明显富集以及Sr、Ti、P不同程度的亏损(图7a),Eu具有中等的负异常(Eu/Eu*=0.62~1.08);样品具有较高的稀土元素总量和右倾的稀土配分模式,和洋岛玄武岩(OIB)微量元素分布特征相似。样品轻重稀土的明显分馏(图7b),显示出较高的岩浆演化特征。

  • 竹溪粗面-正长岩具有亏损的Sr-Nd-Pb同位素组成。其初始87Sr/86Sr比值为0.689998~0.719468,初始143Nd/144Nd比值为0.512214~0.512463,εNdt)值为+2.3~+7.3,Nd同位素的单阶段模式年龄tDM值介于1.03~0.54 Ga之间。岩石初始206Pb/204Pb比值为18.02~18.95,初始207Pb/204Pb比值为15.50~15.61,初始208Pb/204Pb比值为37.40~38.53(图8)。

  • 图7 竹溪粗面-正长岩原始地幔标准化微量元素图解(a)和稀土元素配分图解(b)(据Yang et al.,2022,2023)

  • Fig.7 Primitive-mantle normalized trace element distribution pattern (a) and chondrite-normalized rare earth element (REE) pattern (b) for Zhuxi trachytes and syenites (after Yang et al., 2022, 2023)

  • 原始地幔标准化值据McDonough and Sun(1995),球粒陨石标准化值据Sun and McDonough(1989); OIB微量元素配分曲线据Sun and McDonough(1989)

  • Primitive mantle and chondrite data for normalization are from McDonough and Sun (1995) and Sun and McDonough (1989) , respectively;OIB trace element partition curve are from Sun and McDonough (1989)

  • 5.3 杀熊洞碳酸岩杂岩体

  • 杀熊洞角闪辉石岩具有较低的Si(SiO2=40.87%~42.33%)和Al2O3(7.24%~8.34%)含量,岩石中TiO2含量较高,为2.99%~3.38%。TFe2O3含量为13.11%~14.32%,MgO含量为11.83%~13.96%,Mg#值为67.0~71.3。角闪辉石岩显示出较高的Ca含量(CaO=12.04%~12.81%)以及较高的CaO/Al2O3比值(1.46~1.76)。岩石具有较高的全碱含量(Na2O=0.68%~0.99%,K2O=0.27%~0.29%),在SiO2-(K2O+Na2O)系列划分图解(图9a)中,所有样品投影点均位于碱性系列范围内,总体上杀熊洞角闪辉石岩具高镁、高钙、富钛、富碱以及贫硅的特征。在微量元素原始地幔标准化蛛网图中(图10a),所有样品显示出富集的Nb、Ta、Rb、Ba和轻微亏损Th、U、和Zr的分布特点,总体上具有洋岛玄武岩微量元素的典型特征。杀熊洞角闪辉石岩稀土总量高,一般在181.1×10-6~259.2×10-6之间。岩石La/Yb标准化比值介于15.6~17.7之间,轻重稀土显示出一定程度的分馏。Dy/Yb标准化比值介于1.8~2.0之间。在球粒陨石标准化配分图上表现为右倾的曲线(图10b)。

  • 杀熊洞正长岩和霓长岩化正长岩的主量元素变化范围较大,且二者具有明显差异,正长岩具有较高的SiO2(45.92%~57.57%)和Al2O3(16.30%~18.00%)含量,样品具有极高的全碱含量(Na2O=6.04%~8.53%,K2O=1.90%~7.78%),Na2O/K2O比值变化范围极大(0.8~4.1)。正长岩具有较低的TFe2O3(3.82%~7.03%)、MgO(0.47%~1.80%)、CaO(1.70%~5.78%)和TiO2(0.03%~1.72%)含量,部分样品烧失量较高(>5%)。霓长岩化正长岩具有较低的SiO2(39.86%~43.27%)和Al2O3(14.57%~15.44%)含量,而TFe2O3(8.40%~12.62%)、MgO(2.46%~3.55%)、CaO(4.70%~8.59%)和TiO2(2.56%~3.99%)含量相较于正长岩明显偏高。样品中同样具有极高的全碱含量(Na2O=6.49%~7.15%,K2O=3.56%~4.59%),整体显示出富钠的特征(Na2O/K2O=1.41~2.01)。霓长岩化正长岩整体具有较高的烧失量(2.79%~6.75%),显示明显后期蚀变的影响。杀熊洞正长岩和霓长岩化正长岩微量元素分布特征相似,均显示出Nb、U和Ba的富集以及Th和Ta的相对亏损(图10c),样品都具有极高的稀土元素含量,其中霓长岩化正长岩稀土元素富集程度(ΣREE=922×10-6~5714×10-6)相较正长岩(ΣREE=322×10-6~2352×10-6)明显较高(图4),二者均表现出明显的轻重稀土分馏,La/Yb标准化比值介于31.2~334.4之间,在球粒陨石标准化配分图上表现为右倾的曲线(图10d)。

  • 图8 竹溪粗面-正长岩(87Sr/86Sr)iNdt)图解(a)和初始Pb同位素特征(b、c)

  • Fig.8 (87Sr/86Sr) i versus εNd (t) diagram (a) and initial Pb isotopic ratios for Zhuxi trachytes and syenites (b, c)

  • 已发表的同位素数据来源如下:南秦岭镁铁质岩(张成立等,2007王刚,2014张方毅等,2020b;Zhang et al.,2020);南秦岭中酸性岩(王刚,2014);南秦岭地幔捕掳体(Xu et al.,1999);秦岭太华群、南秦岭、北秦岭与扬子板块北缘基底岩石(Yang et al.,2020);亏损地幔的同位素组成已校正至450 Ma(Workman et al.,2005

  • Published isotope data: mafic rocks in South Qinling belt are from Zhang Chengli et al., 2007; Wang Gang, 2014; Zhang Fangyi et al., 2020b; Zhang et al., 2020; intermediate-acid rocks in South Qinling belt are from Wang Gang, 2014; mantle xenoliths in South Qinling belt are fom Xu et al., 1999; basement rocks of Taihua Group, South Qinling, North Qinling and North Yangtze margin are from Yang et al., 2020; isotopic composition of the depleted mantle has been corrected to 450 Ma (Workman et al., 2005)

  • 杀熊洞碳酸岩具有很低的SiO2(1.33%~2.94%)、TFe2O3(1.99%~3.90%)和MgO(0.43%~0.74%)含量,在CaO-MgO-(FeO+MnO)判别图上判定为方解石碳酸岩(钙质碳酸岩)(图9b)。在微量元素原始地幔标准化蛛网图中(图10e),所有碳酸岩样品显示出强烈富集的Sr、Ba和变化范围极大的U,高场强元素如Nb、Ta、Zr、Hf和Th均显示明显的亏损。杀熊洞碳酸岩具有极高的稀土元素含量(2010×10-6~6080×10-6),La/Yb标准化比值介于31.2~334.4之间,表现出明显的轻重稀土分馏(10f)。总体上杀熊碳酸岩表现出典型的火成碳酸岩特征。

  • 与世界上其他典型碳酸岩相比,杀熊洞杂岩体表现出亏损的Sr-Nd同位素特征,靠近HIMU端元。杀熊洞杂岩体与南秦岭早古生代碱性岩具有一致的Nd同位素特征,而Sr同位素稍显亏损(图11a),造成这一现象的原因可能是杂岩体中普遍具有很高的Sr含量,碳酸岩中Sr含量甚至达到了主量元素级别,这一特征会明显缓冲地壳混染或海水蚀变的影响,因此杀熊洞碳酸岩杂岩体更能代表南秦岭早古生代富集地幔的同位素特征。杂岩体Pb同位素变化范围较大(图11b、c),与前人获得的杀熊洞杂岩体中方解石的Pb同位素一致,前人的研究显示这种变化可能是样品中较高的U含量影响的(Chen et al.,2018)。

  • 图9 杀熊洞碳酸岩杂岩体全岩SiO2-(K2O+Na2O)分类图(a,据Middlemost,1994)和碳酸岩CaO-MgO-(FeO+MnO)判别图(b)

  • Fig.9 Diagrams of SiO2- (K2O+Na2O) (a, after Middlemost, 1994) and CaO-MgO- (FeO+MnO) (b) for Shaxiongdong carbonatite complex

  • 6 讨论

  • 6.1 南秦岭早古生代碱性岩的时空格架

  • 南秦岭早古生代碱性岩被认为是勉略洋盆扩张初期地幔在伸展状态下发生部分熔融的重要产物(张成立等,20022007),对这些碱性岩的深入研究有助于理解勉略洋初始扩张过程及其深部动力学机制。在时空分布上,镁铁质岩类主要分布区域西北部的紫阳—岚皋等地区,中酸性岩主要分布在东南部的竹溪—竹山地区,并延伸至随州—枣阳地区(图1),从西向东沿构造线方向岩体演化程度逐渐升高,且地层也逐渐由老至新变化(Yang et al.,2022)。区域碱性岩的年代学数据也支持这一现象,镁铁质岩形成年龄主要分布于455~420 Ma之间,峰值约440 Ma(邹先武等,2011陈虹等,2014向忠金等,2016; Zhang et al.,2020;张方毅,2022),稍早于竹溪粗面-正长岩以及区域上其他中酸性岩石(~430 Ma;王刚,2014万俊,2016;Wang et al.,2017,2021;Yang et al.,2021,2022)。

  • 南秦岭早古生代辉绿岩脉表现了大规模顺层侵位的特点,这种脉体顺构造薄弱层侵位则与伸展或裂谷活动密切相关(Gudmundsson and Loetveit,2005陈虹等,2014)。在滔河口组中与火山岩互层的沉积岩中发现丰富的笔石及牙形石化石证明了在早古生代南秦岭地区发育有富碳富硅裂谷盆地(雒昆利和端木和顺,2001)。这些证据都指示大规模伸展裂陷背景下交代岩石圈地幔的熔融是造成南秦岭地区早古生代岩浆活动的主要原因。

  • 6.2 南秦岭早古生代地幔交代与熔融事件:来自紫阳辉绿岩的约束

  • 镁铁质岩墙群是大规模伸展、裂解背景下深源岩浆沿张性裂隙上升就位的产物,可形成于裂谷、后碰撞造山带及弧后盆地等多种构造环境下。在地质历史时期,短时间内出现大规模的岩墙群被视为超大陆的重建标志。这些产于伸展背景下的镁铁质岩墙可以为岩浆演化过程地幔源区属性、地幔地壳相互作用及地球动力学机制、提供重要信息(Zhao et al.,2018)。南秦岭北大巴山地区发育的早古生代大规模基性岩墙群及碱性火山岩组成了一条呈北西-南东向延伸的岩浆杂岩带(夏林圻等,1994张成立等,20022007王存智等,2009邹先武等,2011陈虹等,2014;Zhang et al.,2020; 张方毅等,2020b张方毅,2022)。该套岩系对研究秦岭早古生代构造演化过程、碱性岩浆作用与早古生代期间扬子板块北缘大陆裂解事件提供了重要载体。本文以南秦岭紫阳地区早古生代的碱性辉绿岩为研究对象,结合已有的岩石学、年代学、全岩地球主微量元素、Sr-Nd-Hf同位素地球化学的系统研究来探讨区域镁铁质岩的演化过程和源区矿物属性。

  • 6.2.1 源区矿物组成

  • 南秦岭岚皋地区早古生代辉绿岩具有明显的贫SiO2(<45%)、富Na2O(>1.5%)同时富TiO2(>2%)及不相容元素的碱性岩浆特征。实验岩石学结果表明在高压下地幔橄榄岩趋向于更低程度的部分熔融进而产生富碱贫硅的熔体(Kushiro,1996; Walter,1998),低程度熔体同时也会导致大量强不相容元素进入熔体中。地幔橄榄岩的低程度熔融理论上可以解释南秦岭碱质基性岩脉富碱及富集不相容元素的特征。然而近些年通过对近固相线情况下橄榄岩低程度熔体成分的测定发现高压下低程度熔体虽然具有类似碱性岩的特征,但是其低铁高铝的特征仍与自然界中碱性岩成分有很大差异(Davis et al.,2013)。此外,Ti为中度不相容元素,其在岩浆中的含量更多地受源区Ti含量及矿物组成控制(Adam et al.,2006)。正常的地幔橄榄岩(亏损地幔、原始地幔)中含有较低的TiO2含量,即使是极低程度的部分熔融也不能产生高钛的岩浆(Prytulak et al.,2007)。要产生富Ti的岩浆就需要源区经历了地幔交代过程或者含有特殊的富集组分(如辉石岩或角闪石岩;Pilet et al.,2008)。

  • 图10 杀熊洞碳酸岩杂岩体原始地幔标准化微量元素蛛网图和稀土元素配分图解

  • Fig.10 Primitive mantle normalized trace element distribution patterns and chondrite-normalized REE distribution patterns for Shaxiongdong carbonatite complex

  • (a、b)—角闪辉石岩;(c、d)—正长岩和霓长岩化正长岩;(e、f)—碳酸岩;原始地幔标准化值据McDonough et al.(1995),球粒陨石标准化值据Sun et al.(1989),OIB微量元素配分曲线据Sun et al.(1989);南秦岭地区已发表的数据来源如下:南秦岭镁铁质岩数据引自陈虹等,2014王坤明,2014向忠金等,2016;Zhang et al.,2020;杀熊洞正长岩数据引自Xu et al.,2008;杀熊洞碳酸岩数据引自Xu et al.,2008; Su et al.,2022

  • (a, b) —amphibole pyroxene; (c, d) —syenite and syenite (fenitization) ; (e, f) —carbonatite; the normalized value of primitive mantle is after McDonough et al. (1995) , and the normalized value of chondrite is after Sun et al. (1989) ; the OIB trace element partition curve is after Sun et al. (1989) ; published data from the South Qinling region are as follows: South Qinling mafic rocks are from Chen Hong et al., 2014; Wang Kunming, 2014; Xiang Zhongjin et al., 2016; Zhang et al., 2020; Shaxiongdong Syenites are from Xu et al., 2008; Shaxiongdong carbonatites are from Xu et al., 2008; Su et al., 2022

  • 图11 杀熊洞碳酸岩杂岩体(87Sr/86Sr)iNdt)图解(a)和初始Pb同位素特征(b、c)

  • Fig.11 (87Sr/86Sr) i versus εNd (t) diagram (a) and initial Pb isotopic ratios for Shaxiongdong carbonatite complex (b, c)

  • 已发表的同位素数据来源如下:南秦岭地幔捕掳体(Xu et al.,1999);南秦岭碱性岩(张成立等,2007王刚,2014张方毅等,2020b;Zhang et al.,2020);杀熊洞正长-碳酸岩及方解石(Xu et al.,2008; Chen et al.,2018; Su et al.,2022);庙垭正长-碳酸岩(Xu et al.,2014;Su et al.,2019);东非裂谷碳酸岩(Bell et al.,2001);白云鄂博碳酸岩(Yang et al.,2019)

  • Published isotope data: mantle xenoliths in South Qinling belt are from Xu et al., 1999; alkaline rocks in South Qinling belt are from Zhang Chengli et al., 2007; Wang Gang, 2014; Zhang Fangyi et al., 2020b; Zhang et al., 2020) ; Shaxiongdong syenite-carbonatites and calcites are from Xu et al., 2008; Chen et al., 2018; Su et al., 2022; Miaoya Syenite-carbonatite are from Xu et al., 2014; Su et al., 2019; Carbonatites in the East African Rift are from Bell et al., 2001; carbonatites in Bayan Obo are from Yang et al., 2019

  • 过渡金属元素比值可以有效反映玄武岩源区矿物组成(Sobolev et al.,2005; Le Roux et al.,2011)。Zn/Fe比值在地幔橄榄岩部分熔融过程中并不会发生分馏,而富单斜辉石和石榴子石的辉石岩或者榴辉岩形成的熔体会有较高的Zn/Fe比值(Davis et al.,2013)。南秦岭辉绿岩具有较低的Zn/Fe比值,所有原始辉绿岩(MgO>6%)的Zn/Fe比值均位于橄榄岩熔体范围(图12),指示辉绿岩的源区为橄榄岩衍生的熔体。在微量元素蛛网图中,所有辉绿岩样品均出现K的负异常暗示源区存在富钾角闪石或金云母的残留(Panter et al.,2018)。K在含水矿物角闪石及金云母中属于相容元素(LaTourrette et al.,1995; Adam et al.,2006),如果地幔源区残留这些富K矿物就会导致岩浆中亏损K,形成具K负异常的熔体(Tappe et al.,2006)。部分熔融实验结果表明与角闪石平衡的熔体为钠质,而与金云母平衡的熔体则为富钾熔体(Médard et al.,2006; Pilet et al.,2008; Condamine et al.,2014),南秦岭辉绿岩岩脉富钠(K2O/Na2O=0.16~0.56)的特征指示角闪石是更可能的源区组分。Furman and Graham(1999)提出与角闪石平衡的熔体具有低Rb/Sr(<0.1)和高Ba/Rb(>10)的特征,而与金云母平衡的熔体则相反,南秦岭辉绿岩中高Ba/Rb(16~127)和低Rb/Sr(0.004~0.078)的特征表明角闪石是源区中的主要含水矿物。

  • 图12 紫阳辉绿岩中Zn/Fe-MgO图解(数据来源同图3)

  • Fig.12 Zn/Fe-MgO diagram for Ziyang diabases (same data source as Fig.3)

  • 稀土元素La/Yb及Dy/Yb比值反映了岩浆起源的相对深度及熔融程度。重稀土元素(HREE)在石榴子石中为相容元素,而在其他地幔矿物中属于不相容元素(Adam et al.,2006),因此中稀土元素与重稀土元素的比值(Dy/Yb、Tb/Yb)可以反映岩浆源区是否存在石榴子石。在地幔部分熔融过程中,轻稀土与重稀土比值La/Yb则主要受部分熔融程度控制。南秦岭辉绿岩具有较高的La/Yb(11~20)和Dy/Yb(3~4)比值暗示了其源区可能有石榴子石存在(图13)。前人研究普遍将南秦岭辉绿岩中的高La/Yb和Dy/Yb比值归功于源区存在残留的石榴子石(张成立等,2002陈友章等,2010;Zhang et al.,2017),然而高La/Yb和Dy/Yb比值特征也可由受交代的尖晶石相方辉橄榄岩低程度部分熔融(Prelević et al.,2007)以及含角闪石的尖晶石相交代地幔部分熔融形成(Pilet et al.,2008; Rooney et al.,2017),因此南秦岭辉绿岩的源区是否位于石榴子石稳定深度还需要进一步约束。

  • 主量元素高度亏损的方辉橄榄岩会产生富SiO2而贫CaO和Al2O3的熔体(Prelević and Foley,2007Condamine et al.,2014),这与南秦岭辉绿岩贫SiO2而富Al2O3的特征截然不同。主微量元素地球化学特征表明角闪石是南秦岭辉绿岩源区中的重要组成部分,因此,含角闪石的尖晶石相交代地幔源区可能是造成南秦岭辉绿岩稀土元素分馏的原因(Zhang et al.,2020)。为更好地约束南秦岭镁铁质岩浆源区特征,本文进行了批次部分熔融模拟(Shaw,1970)。源区地幔橄榄岩成分由单斜辉石角闪岩AG7(Pilet et al.,2008)与亏损地幔(Workman and Hart,2005)混合得出(50∶50),其中尖晶石相异剥橄榄岩由40%橄榄石、30%单斜辉石、25%角闪石和5%金云母组成,而石榴子石相异剥橄榄岩由40%橄榄石、25%单斜辉石、25%角闪石、5%金云母和5%石榴子石组成(张方毅,2022)。部分熔融反应则参照Pilet et al.(2008)Ma et al.(2011),分配系数引自Pilet et al.(2011)。部分熔融模拟结果显示富角闪石及单斜辉石的交代岩石圈地幔在尖晶石稳定区间可以产生南秦岭辉绿岩高La/Yb和Dy/Yb比值的特征(图13),因此富角闪石的尖晶石相橄榄岩是南秦岭辉绿岩的潜在源区。

  • 地幔捕虏体研究表明南秦岭地区早古生代岩石圈地幔已经受到了高程度的地幔交代作用(徐学义等,19961997)。南秦岭早古生代碱性玄武岩中存在着含大量金云母、角闪石以及单斜辉石的金云角闪辉石岩类捕虏体(黄月华,1993),这些地幔捕虏体记录了地幔橄榄岩经历了多阶段的地幔交代作用直到完全被金云母、角闪石、单斜辉石等矿物完全取代。这些特征表明南秦岭早古生代岩石圈地幔存在大量受强烈交代的富角闪石及单斜辉石的区域。

  • 6.2.2 地幔交代介质属性

  • 不同成分的熔体及流体交代地幔是形成具特殊矿物组成的岩石圈地幔的关键步骤(Ackerman et al.,2013)。其中交代作用的端元主要包括碳酸盐熔体(Yaxley et al.,1998; Lai et al.,2014)及硅酸盐熔体(Zanetti et al.,1996)。

  • 碳酸盐熔体具有低黏度、低密度和高反应活性的特征(Dobson et al.,1996),其物理性质决定了碳酸盐熔体具有更强的渗透和迁移能力,是地幔中最有效的交代介质之一(Hammouda et al.,2000; Grassi et al.,2011)。作为硅强烈不饱和熔体,碳酸盐熔体在地幔迁移过程中与地幔中富硅的斜方辉石并不平衡,进而发生反应消耗斜方辉石,生成单斜辉石和橄榄石,析出富CO2的流体,同时伴随着磷灰石及碳酸盐矿物的出现(Dalton et al.,1993; Yaxley et al.,1998)。这一反应过程会增大地幔橄榄岩中的单斜辉石比例,将地幔中难熔的方辉橄榄岩和二辉橄榄岩转变为异剥橄榄岩或单斜辉石岩(Green et al.,1988; Yaxley et al.,1998),当碳酸盐熔体中含水时,也会出现金云母及角闪石等含水矿物(Zanetti et al.,1999)。南秦岭碱性岩的源区矿物组合(含角闪石异剥橄榄岩)与典型受碳酸盐熔体交代的地幔矿物一致,然而碳酸盐熔体具有其特殊的地球化学特征(高Nb/Ta、Zr/Hf、La/Yb比值,低Ti/Eu、Hf/Hf*比值;Hoernle et al.,2002),在交代地幔橄榄岩过程中会留下属于其独特的“烙印”。受碳酸盐熔体交代的地幔会形成具高Nb/Ta、La/Yb,低Hf/Hf*、Zr/Nb比值的岩浆(图14; Dai et al.,2018; Bragagni et al.,2022),然而紫阳辉绿岩低Nb/Ta、La/Yb比值的特征表明纯粹的碳酸盐熔体并不是形成其地幔源区的交代端元(图14)。

  • 图13 紫阳辉绿岩中Dy/Yb-La/Yb(a)和Dy/Dy*-Dy/Yb(b)图解

  • Fig.13 Diagrams of Dy/Yb versus La/Yb (a) and Dy/Dy* versus Dy/Yb (b) for Ziyang diabases

  • 部分熔融模拟结果显示南秦岭地区碱性玄武岩由含角闪石的交代岩石圈地幔低程度部分熔融产生(3%~10%),而辉绿岩则由同一源区高程度部分熔融产生(5%~15%);数据来源同图3

  • The results of partial melting simulation show that alkaline basalts in South Qinling area are produced by low degree partial melting (3%~10%) of the metasomic mantle containing amphibole, while diabase is produced by high degree partial melting (5%~15%) in the same source area; same data source as Fig.3

  • 低程度硅酸盐熔体交代岩石圈地幔是地幔中存在的普遍现象(Niu et al.,2003; Tappe et al.,2006)。从软流圈中释放的低程度熔体具有富集挥发分及不相容元素的特征(Tappe et al.,2017),这些熔体在迁移过程中会造成岩石圈地幔发生不同程度的显性及隐性交代作用(Pilet et al.,2008)。低程度硅酸盐熔体低热容的特征导致其在迁移过程中更加容易停滞在岩石圈地幔中(McKenzie,1989),随着温度的降低,这些硅酸盐熔体会在岩石圈地幔中发生分离结晶作用并连续形成由早期橄榄石±单斜辉石到晚期单斜辉石±角闪石±金云母组成的堆晶体(Foley,1992; Pilet et al.,2011)。在此过程中可以形成包括异剥橄榄岩到金云角闪辉石岩在内的多种地幔岩石。紫阳辉绿岩低Nb/Ta、高Ti/Eu的特征表明其源区可能经历了硅酸盐熔体或碳酸盐化硅酸盐熔体的交代作用(Tappe et al.,2017)。

  • 6.3 岩浆分异过程的识别与重建:来自竹溪粗面-正长岩的约束

  • 6.3.1 中酸性岩浆起源

  • 竹溪粗面-正长岩具有相对高的SiO2(53.34%~66.48%)和全碱含量 (Na2O+K2O=8.57%~12.64%),以及较低的MgO、CaO、TiO2、Cr和Ni含量,代表了南秦岭早古生代碱性岩组合中演化的岩石端元。首要解决的问题是如何敲定这种演化的特征是直接继承自源区岩石的部分熔融,还是后续岩浆分异的结果。前人的研究工作认为北大巴山中部紫阳地区的粗面岩起源于受镁铁质岩底侵引起的下地壳部分熔融(王刚,2014)。这种成因模式受到实验岩石学和地球化学研究的支持(Kaszuba et al.,2000; Dai et al.,2017)。由下地壳物质的部分熔融形成的长英质岩浆通常富Al2O3和Sr(>300×10-6),贫Y (<20×10-6)and Yb(<2×10-6),表现出极高的Sr/Y比值(>40; Ding et al.,2011),秦岭地区典型的例子包括早古生代的铁峪铺花岗岩(~439 Ma)和灰池子花岗岩(~422 Ma; Qin et al.,2015,2021)。然而,竹溪粗面-正长岩整体具有中等含量的Al2O3(13.12%~17.71%),较低的Sr(平均为295×10-6)含量以及Sr/Y比值(平均为4.6);此外竹溪粗面-正长岩具有明显的Nb-Ta正异常以及极高的Nb/U(60.3)和Ce/Pb(25.1)平均比值,明显区别于具有低Nb/U(<9.7)和 Ce/Pb(<5)比值的壳源岩浆成分(Rudnick et al.,2003),说明壳源物质在其形成过程中没有明显的贡献。

  • 图14 紫阳辉绿岩中Nb/Ta-Zr/Hf(a)和Hf/Hf*-La/Yb(b)图解

  • Fig.14 Diagrams of Nb/Ta versus Zr/Hf (a) and Hf/Hf* versus La/Yb (b) for Ziyang diabases

  • 图中用于对比的数据来源如下:MORB、OIB和球粒陨石(Pfänder et al.,2012),蓝色十字代表西秦岭受碳酸盐交代地幔衍生熔体(Dai et al.,2018),MORB中Hf/Hf*值(Hofmann,1988); 数据来源同图3

  • The data sources for comparison are as follows: MORB, OIB and chondrites (Pfänder et al., 2012) ; blue crosses represent carbonated metasomatized mantle-derived melts in the West Qinling belts (Dai et al., 2018) ; Hf/Hf* values in MORB are from Hofmann, 1988; same data source as Fig.3

  • 实验岩石学研究表明直接由上地幔超镁铁质岩石部分熔融产生碱性的长英质熔体是可行的(Yoder,1973; Bailey,1987),之后越来越多的实验岩石学证据证明了富碱质与挥发分的地幔源区在低压条件下(< 1.5 GPa)经历低程度的部分熔融(<5%)能够产生粗面质或响岩质的熔体成分(Falloon et al.,1997; Draper et al.,1999; Laporte et al.,2014)。这种长英质岩浆通常具有高的Mg#(通常大于50;Laporte et al.,2014),有时还会携带地幔捕掳体,例如在Heldburg响岩中发现的橄榄石-斜方辉石捕掳体(Grant et al.,2013);此外,由于在地幔相对高的压力环境下不利于长石的分离结晶,直接由地幔衍生出的熔体中通常具有极高含量的Sr和Ba含量,且不显示明显的Eu负异常(Irving et al.,1981)。然而,竹溪粗面-正长岩具有相对较低的Mg#(平均为34.9)、Sr和Ba含量以及中等的Eu负异常(Eu/Eu*=0.62~1.08);含金云母-角闪石-单斜辉石的地幔捕掳体在南秦岭早古生代玄武岩中广泛存在(黄月华,1993; 徐学义等,1997),但却未在中酸性端元报道。这些特征都表明竹溪粗面-正长岩并非直接来源于地幔的部分熔融过程,而是镁铁质的母岩浆经历岩浆分异过程的产物。

  • 6.3.2 与区域镁铁质岩的成因联系

  • 在讨论岩浆分异过程之前,确定其母岩浆的成分是至关重要的。南秦岭早古生代广泛分布的镁铁质岩与竹溪粗面-正长岩有着紧密的时空联系(黄月华等,1992张方毅等,2020b;Zhang et al.,2020;Wang et al.,2021),大量证据暗示竹溪粗面-正长岩与区域上的镁铁质岩可能属于同源岩浆产物:① 岩相学特征显示竹溪粗面-正长岩与南秦岭镁铁质岩大多以岩墙、岩床的形式呈NWW-SEE向展布,与区域构造线一致,这些岩石大多顺层接触或侵入周围下古生界变质-沉积地层(陈虹等,2014),对应于伸展构造环境;② 锆石U-Pb年代学证据记录了二者有着相近的形成年龄,镁铁质岩形成年龄主要分布于455~420 Ma之间,峰值约440 Ma(邹先武等,2011陈虹等,2014向忠金等,2016; Zhang et al.2020),与竹溪粗面-正长岩以及区域上其他中酸性岩石相近(王刚,2014万俊,2016;Wang et al.,2017,2021);③ 二者具有相似的Sr-Nd-Pb同位素特征,且均表现出轻稀土元素和高场强元素的富集(Zhang et al.,2020; Yang et al.,2022)。上述证据显示竹溪粗面-正长岩与南秦岭早古生代镁铁质岩具有相同的交代地幔源区,二者的成分差异受到岩浆就位过程中的岩浆分异作用控制。黄月华等(1992)提出了硅酸盐液态不混溶假说用以解释南秦岭同源碱性岩的成因联系。近些年的实验岩石学工作也证实了通过液体不混溶作用从初始玄武质岩浆中产生共存的富Fe熔体和富Si熔体的可行性(Charlier et al.,20112013)。然而,目前所观察到的不混溶现象通常是小规模的(毫米至米级别),即便是像Bushveld岩体那样较大的规模不混溶现象,也仅仅达到了百米级别(VanTongeren et al.,2012)。因此,自然界中能否会发生富Fe和富Si熔体组分的大规模分离还没有得到证实。此外,竹溪粗面-正长岩与南秦岭镁铁质岩的地球化学组分也不符合前人实验岩石学总结的不混溶熔体分布模式(图15),而更接近天然存在的流纹质熔体成分。因此,我们认为竹溪粗面-正长岩并非初始岩浆经历液态不混溶作用的产物。

  • 在幔源岩浆分异过程中,分离结晶作用扮演着至关重要的角色。从镁铁质端元到竹溪粗面-正长岩显示出连续的主量元素变化趋势和相似的微量元素分布,指示这套同源岩浆极有可能是通过分离结晶作用相联系的。这种成因联系同样体现在Ce/Pb-Ce和εNdt)-SiO2图解中的分离结晶趋势上(图16)。因此,同源岩浆经历不同程度分离结晶作用可能是导致南秦岭镁铁质岩与竹溪粗面-正长岩成分差异的主要原因。

  • 图15 竹溪粗面-正长岩SiO2-(CaO+MgO+FeO+TiO2+P2O5)-(Na2O+K2O+Al2O3)(a)和SiO2/4-3TFeO-Al2O3(b)和CaO-Al2O3-(Na2O+K2O+TiO2+P2O5)(c)三角判别图

  • Fig.15 SiO2- (CaO+MgO+FeO+TiO2+P2O5) - (Na2O+K2O+Al2O3) (a) , SiO2/4-3TFeO-Al2O3 (b) and CaO-Al2O3- (Na2O+K2O+TiO2+P2O5) (c) diagrams for Zhuxi trachytes and syenites

  • 图16 竹溪粗面-正长岩Ce/Pb-Ce(a)和εNdt)-SiO2(b)协变图

  • Fig.16 Ce/Yb-Ce (a) and εNd (t) -SiO2 (b) diagrams for Zhuxi trachytes and syenites

  • 6.3.3 岩浆分离结晶过程的约束

  • 南秦岭粗面岩具有相对较高的硅和全碱含量,较低的镁和铝含量。粗面岩中斑晶含量很低,且主要为碱性长石,样品烧失量总体也较低,因此粗面岩是代表南秦岭最演化的熔体组分的最佳选择。正长岩和粗面岩地球化学成分相近,矿物组成也一致,二者的主要区别仅为岩浆就位形式的不同,因此我们认为正长岩代表了研究区与粗面岩对应的次火山岩相。基于上述考虑,我们将竹溪粗面-正长岩的全岩地球化学组成视为南秦岭演化的熔体端元,并以此进行岩浆分异过程的识别与重建。哈克图解显示竹溪粗面-正长岩与南秦岭镁铁质岩的主量元素具有良好的正相关或负相关关系。MgO和CaO含量随着岩石SiO2含量的增加而降低,表明结晶矿物相中可能存在单斜辉石和/ 或角闪石等富Ca和Mg的矿物相;TFe2O3、TiO2和SiO2之间明显的负相关以及Ti的明显负异常暗示Fe-Ti氧化物和/或榍石的分离。上述分离结晶趋势也反映在微量元素的变化中(图17)。由于Sc在单斜辉石中是相容元素,Sc与SiO2之间的负相关关系(图17a)指示单斜辉石可能在岩浆演化过程中的大量分离(Li,2018);此外,从镁铁质端元到粗面-正长岩V 含量的降低可能是Fe-Ti氧化物分离结晶的结果(图17b);前人的研究工作显示角闪石的大量分离会导致残余熔体中Zr的富集与Sm、Y、Dy和Yb的亏损,竹溪粗面-正长岩中的Dy/Yb和Zr/Sm呈负相关关系(图17c),可能是角闪石分馏的标志(Minh et al.,2018);从镁铁质端元到粗面-正长岩端元,Eu从轻微的正异常变化至中等的负异常,指示斜长石的分离结晶作用(图17e);Rb与SiO2之间的负相关关系可能是(图17f)碱性长石或黑云母的分离结晶造成的,斜长石和碱性长石的分离结晶趋势同样在显示在Ba和Sr协变图解上(图17d)。总的来说,通过单斜辉石、角闪石、斜长石、碱性长石、黑云母和Fe-Ti氧化物的分离结晶作用可以解释南秦岭早古生代镁铁质岩与竹溪粗面-正长岩之间的主微量元素变化。

  • 南秦岭镁铁质岩中单斜辉石是最普遍的矿物相,这些镁铁质岩具有变化范围很广的SiO2、MgO,Cr和Ni含量(Zhang et al.,2020; 张方毅,2022)。计算得到南秦岭玄武岩的单斜辉石斑晶结晶压力为0.76~1.40 GPa,结晶温度为1201~1268℃(张方毅等,2020b),指示这些镁铁质岩在相对高温高压的条件下发生了以镁铁质矿物为主的分离结晶作用。与之相对,粗面岩-正长岩具有高的SiO2高的SiO2(60.20%~66.48%)和全碱含量(Na2O+K2O=8.57%~12.64%),以及低的MgO、CaO、TiO2,代表了南秦岭早古生代双峰式碱性岩中演化程度最高的熔体。这些岩石中以长英质矿物为主,几乎不含高温高压条件下形成的镁铁质矿物(如单斜辉石、角闪石),这说明粗面-正长岩的形成主要受浅部的分离结晶过程控制。为了更好地约束竹溪粗面-正长岩的演化过程,我们借助了热力学软件程序 Rhyolite-MELTS进行分离结晶过程模拟(Gualda et al.,2012)。我们选取了演化的镁铁质样品(XHK-10-2,SiO2=49.52%,MgO=4.52%; Zhang et al.,2020)来代表最接近粗面-正长岩端元的母岩浆成分。模拟在氧逸度(铁橄榄石-磁铁矿-石英,FMQ)为-0.5和不同压力(0.15~0.2 GPa)下的恒压条件下进行。考虑到南秦岭早古生代地幔源区具有相对较低的潜在温度(Xu et al.,1997; Zhang et al.,2020)以及大量含水交代矿物相的存在(金云母和角闪石)(Xu et al.,1997)。我们将模拟的温度区间设置在1100°C至820℃,初始含水量为2.0% 至3.0%。模拟结果如图18、19所示。MELTS模拟结果显示在设定的条件下,初始镁铁质组分经历72%~80%分离结晶作用可以演化至竹溪粗面-正长岩的组分,分离结晶的矿物组合包括50%~53% 斜长石,15%~17% 单斜辉石,10%~11% 斜方辉石,10%~11% 磁铁矿,5% 钛铁矿,3%~5% 黑云母以及3%的磷灰石。斜长石成分从早期富钙特征向富钠成分过渡,斜长石中钾长石分子含量较低(图19),这与竹溪粗面-正长岩中Na2O和Al2O3在SiO2到达62%时开始轻微下降这一现象符合。

  • 图17 竹溪粗面-正长岩地球化学谐变图

  • Fig.17 Geochemical covariant diagrams for Zhuxi trachytes and syenites

  • 然而,Rhyolite-MELTS不能对岩浆过程中角闪石的行为做出很好的约束(Gualda et al.,2012),因此,我们同样利用质量平衡方程计算软件(OPTIMASBA; Cabero et al.,2012)进一步约束了竹溪粗面-正长岩分离结晶过程的细节。由于竹溪粗面-正长岩之间依然存在着一定的成分变化(SiO2=60.20%~66.48%),我们将这一分离结晶过程分为两个阶段,第一阶段是从镁铁质母岩浆(XHK-10-2; Zhang et al.,2020)演化至相对低硅的粗面-正长岩组分(DGP-3-3,SiO2=60.20%);第二阶段是从低硅的正长岩演化至高硅的粗面-正长岩组分(DGP-2-3,SiO2=66.48%),代表了粗面-正长岩内部的演化。质量平衡方程采用最小二乘法拟合了最符合熔体主量元素变化趋势的路径。所有的结果均显示出可信的拟合度(R2>99.96%,SEE=0.0002~1.1613)。第一阶段涉及约43%结晶矿物相的分离,矿物组合包括包括34%角闪石、30%单斜辉石、20%磁铁矿和16%斜长石(图20)。随着这些矿物的分离,熔体从镁铁质组分逐渐演化至演化程度较低的粗面质组分;第二阶段模型的结果显示竹溪粗面-正长岩内部的成分变化主要受长英矿物的分离控制。通过约76%的结晶相分离可以重建这一过程,其中包括58%斜长石、15%钾长石、10%黑云母、10%石英、3%单斜辉石、2%角闪石和2%钛铁矿(图20)。

  • 除了对分离结晶过程中主量元素变化进行约束外,我们还采用瑞利分馏模型对全岩Hf和Zr浓度和Eu/Eu*比值进行了微量元素二阶段建模(Ersoy and Helvac1,2010)。根据不同阶段熔体成分的差异,选取了不同的元素分配系数。模拟得到的分离矿物相的种类和比例与质量平衡计算结果相似。结果显示第一阶段通过约48%的分离结晶过程可以还原从镁铁质端元到低演化程度的粗面质组分,分离的矿物组合包括40%角闪石、30%单斜辉石、20%斜长石和10%钛铁矿;在之后的第二阶段又经历了约70%的分离结晶作用达到了最演化的粗面质端元,这一阶段的结晶相为50%斜长石、20%钾长石、10%黑云母、5%角闪石、5%单斜辉石、5%磁铁矿和5%钛铁矿(图21)。

  • 图18 不同地质条件下Rhyolite-MELTS 软件主量元素模拟结果

  • Fig.18 Simulation results of major elements from Rhyolite-MELTS at different conditions of oxygen fugacity, pressure and water content

  • 综上,结合热力学软件与公式模拟,我们认为竹溪粗面-正长岩是南秦岭镁铁质组分在地壳浅部经历了以斜长石、单斜辉石、角闪石为主的分离结晶作用的残余组分。

  • 6.4 热液交代与成矿:来自杀熊洞碳酸岩杂岩体的约束

  • 区域年代学资料显示杀熊洞碳酸岩杂岩体的成岩时代为早古生代,然而杀熊洞碳酸岩杂岩体整体显示明显的后期蚀变影响,角闪辉石岩的烧失量相对较低(LOI=2.6%~3.0%),后期蚀变对岩石的影响主要体现在镁铁质矿物的绿泥石化方面。正长岩和霓长岩化的正长岩具有很高的烧失量(LOI=2.72%~6.72%),造成这一现象的原因主要是碳酸岩熔体/流体的交代。从正长岩到霓长岩化正长岩交代程度逐渐加深,体现在霓长岩化正长岩具有较低的SiO2以及较高的霓石含量。杀熊洞正长岩和碳酸岩样品中锆石显示复杂的内部结构,裂隙发育,表明正长岩和碳酸岩中锆石遭受了热液流体的交代。野外观察和岩相学证据也支持杀熊洞正长岩和碳酸岩经历了后期热液的交代,从而形成了独居石、褐帘石和氟碳钙铈矿等次生稀土矿物,部分碳酸岩样品还可见颗粒大且自形程度高的黄铁矿。如前文所述,TIMA面扫描图显示氟碳钙铈矿和独居石普遍存在于方解石颗粒之间的缝隙和孔洞中(图22),氟碳钙铈矿在背散射图下呈纤维状或放射状集合体,独居石常与磷灰石伴生,多呈自形或半自形,褐帘石以不规则卵圆状形式存在,这些矿物均表现出典型的后期热液贯入特征。此外,缝隙中还存在重晶石、钠长石以及少量萤石,指示了热液中可能富集碱质、F以及SO42-(图22)。这些热液稀土矿物的存在记录了战略性金属元素在热液中的运移并沉降,结合区域上已有的矿床学工作(李石,1991; Su et al.,2021),指示了杀熊洞碳酸岩具有较好的成矿潜质。

  • 图19 Rhyolite-MELTS分离结晶矿物相(a)和长石成分(b)随温度变化图(模拟条件为0.2 GPa; 2% H2O; FQM-0.5)

  • Fig.19 Mass variation of fraction phase as a function (a) and variation in feldspar composition as a function (b) of temperature (0.2 GPa; 2% H2O; FQM-0.5)

  • 图20 南秦岭碱性岩二阶段质量平衡模型(据Cabero et al.,2012)计算结果

  • Fig.20 Results of mass-balance modeling (two-stage) (after Cabero et al., 2012) of the alkaline rocks in the South Qingling belt

  • 杀熊洞碳酸岩中独居石Th-Pb年代学分析记录了独居石约230 Ma的年龄,与前人的副矿物年代学结果一致(Xu et al.,2014; Ying et al.,2017; Zhu et al.,2017; 应元灿,2018;Su et al.,2019;Zhang et al.,2019),这一特征暗示了杀熊洞碳酸岩杂岩体在三叠纪可能还经历了热液交代过程。类似现象在南秦岭庙垭碳酸岩杂岩体中也有报道,庙垭碳酸岩中的独居石、磷灰石和氟碳铈矿等副矿物记录了约230 Ma的年龄(Su et al.,2019);竹溪东南部的朱家院粗面岩中也发现了独居石矿物,近期开展的独居石年代学工作显示其形成年龄同样在230 Ma 左右(Nie et al.,2022),这些年代学数据反应了南秦岭北大巴山东部以及武当地块西缘的早古生代岩体在三叠纪经历了大规模的热液交代事件。热液交代事件对区域碱性岩中战略性金属元素(铌和稀土)的富集成矿具有重要意义(刘万亮等,2015万俊等,2016杨成等,2017熊意林等,2018;Wang et al.,2021)。

  • 图21 南秦岭碱性岩二阶段瑞利分馏模型(据Ersoy and Helvacl.,2010)计算结果

  • Fig.21 Results of two stage differentiation trends FC models (after Ersoy and Helvacl., 2010) of the alkaline rocks in the South Qingling belt

  • 图22 杀熊洞碳酸岩TIMA面扫描结果

  • Fig.22 TESCAN integrated mineral analyzer (TIMA) mineral maps of the Shaxiongdong carbonatites

  • 副矿物的Sm-Nd同位素组成代表了其结晶时熔体/流体的同位素特征,且不易受到外界因素影响,因此副矿物微区Sm-Nd同位素为示踪岩浆源区和后期热液性质的约束提供了有效手段(孙金凤等,2009)。本文对杀熊洞杂岩体中的副矿物(榍石、磷灰石和独居石)进行了原位Nd同位素分析,结果显示不论是岩浆阶段的磷灰石和榍石,还是形成与热液阶段的独居石,它们的143Nd/144Nd比值实测值都相似。磷灰石和榍石的εNdt)(t=430 Ma)与杀熊洞杂岩体全岩εNdt)值相似,若将磷灰石和榍石的εNdt)换算至t=230 Ma,则此时的εNdt)值和独居石εNdt)值 (t=230 Ma)几乎一致(图23),类似的现象在我国白云鄂博碳酸岩中也有发现,白云鄂博碳酸岩中不同期次的独居石Nd同位素呈线性排列指示了岩体多期次的热液再活化历史(Song et al.,2018; 李晓春等,2022)。这种现象指示了杀熊洞地区的热液流体可能来源于杀熊洞杂岩体本身(主要为碳酸岩),而并非外来热液流体。岩体在晚三叠纪发生再活化,产生富集不相容元素的热液流体,后续的热液交代进入原生岩体的缝隙中,最终导致了热液稀土矿物以及一些硫化物的形成。秦岭造山带在三叠纪经历了勉略洋自东向西闭合并向北俯冲的过程,三叠纪末期转化为陆陆碰撞造山的环境(张国伟等,2001赖绍聪等,2003)。区域存在的大规模构造活动为杀熊洞碳酸岩杂岩体的再次活化提供了有利条件。

  • 图23 杀熊洞杂岩体中副矿物εNdt)值与年龄关系图

  • Fig.23 Plots of εNd (t) versus age for accessory minerals in the Shaxiongdong carbonatite complex

  • 蓝色区域为榍石和磷灰石143Nd/144Nd实测值在不同年龄下计算得到的εNdt)值范围

  • The areas in blue are the ranges of εNd (t) calculated under different ages from measured values of titanite and apatite 143Nd/144Nd

  • 7 存在问题与研究展望

  • 本文对南秦岭地区早古生代碱性岩的地球化学和成因机制进行了较为详细的研究,然而碱性岩浆的岩浆-热液演化过程是一个复杂的多阶段过程,从较深部的地幔源区到地表浅层受到的后期改造均会对碱性岩的地球化学组分造成显著的影响,要更加准确地约束该过程还需要进一步的研究工作:

  • (1)岩浆-热液物理性质的约束:黑云母温压计和榍石温度计有助于约束岩浆-热液演化过程中副矿物结晶时熔体/流体的物理性质,这些物理性质可以为我们划分副矿物形成阶段提供参考。

  • (2)年代学的约束:碱性岩中锆石结晶通常会受到限制,因此需要借助其他副矿物对岩浆-热液形成时代进行约束。竹溪粗面-正长岩中锆石年龄较差,可以考虑利用磷灰石矿物进行定年,此外竹溪粗面-正长岩体缺乏热液年代学的限制,可以考虑利用独居石矿物进行年代学分析。对于杀熊洞杂岩体,尽管对其开展了锆石、榍石以及独居石的年代学约束,也取得了早古生代的成岩年龄以及中生代的热液年龄,但是纵观全球范围内,碱性岩受到的热液交代可能是多期次的,因此可以考虑氟碳铈矿以及金红石原位定年技术对热液期次进行进一步限定。

  • (3)下一步计划将南秦岭碱性岩和世界上其他地区典型的碱性岩联系起来,通过对比它们成因演化模式的异同,寻找深部地幔演化和战略性金属元素富集的规律和启示。

  • 8 结论

  • 综合上述讨论,我们认为南秦岭早古生代碱性岩具有相同的地幔源区,其中镁铁质端元记录了地幔交代事件,交代介质为硅酸盐熔体。对于演化的碱性岩端元(粗面-正长岩、碳酸岩),它们都来源于初始镁铁质组分的岩浆分异过程:粗面-正长岩类主要受到以长石为主的分离结晶作用控制。热液交代过程主要集中在北大巴山东部的竹溪—竹山地区和武当地块西南缘,后期热液交代作用导致岩体高场强元素和稀土元素的显著富集,在碳酸岩杂岩体中稀土元素富集成矿。副矿物年代学和独居石Nd同位素特征反映了热液可能来源于岩体本身的再活化事件,晚三叠世秦岭地区的造山运动可能对此过程具有促进作用。

  • 参考文献

    • Ackerman L, Spacek P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K. 2013. Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: Evidence from mantle xenoliths, NE Bavaria, Bohemian massif. Journal of Petrology, 54: 2597~2633.

    • Adam J, Green T. 2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152(1): 1~17.

    • Ahmed H A, Ma Changqian, Wang Lianxun, Palinkaš L A, Girei M B, Zhu Yuxiang, Habib M. 2018. Petrogenesis and tectonic implications of peralkaline A-type granites and syenites from the Suizhou-Zaoyang region, central China. Journal of Earth Science, 29(5): 1181~1202.

    • Andersen T, Elburg M, Erambert M. 2018. Contrasting trends of agpaitic crystallization in nepheline syenite in the Pilanesberg alkaline complex, South Africa. Lithos, 312~313: 375~388.

    • Armbrustmacher T J, Hedge C E. 1982. Genetic implications of minor-element and Sr-isotope geochemistry of alkaline rock complexes in the Wet Mountains area, Fremont and Custer Counties, Colorado. Contributions to Mineralogy and Petrology, 79(4): 424~435.

    • Bailey D K. 1987. Mantle metasomatism—Perspective and prospect. Geological Society, London, Special Publications, 30(1): 1~13.

    • Bell K, Tilton G R. 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: Evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42(10): 1927~1945.

    • Bragagni A, Mastroianni F, Münker C, Conticelli S, Avanzinelli R. 2022. A carbon-rich lithospheric mantle as a source for the large CO2 emissions of Etna volcano (Italy). Geology, 50(4): 486~490.

    • Cabero M T, Mecoleta S, López-Moro F J. 2012. OPTIMASBA: A Microsoft Excel workbook to optimise the mass-balance modelling applied to magmatic differentiation processes and subsolidus overprints. Computers & Geosciences, 42: 206~211.

    • Charlier B, Namur O, Toplis M J, Schiano P, Cluzel N, Higgins M D, Auwera J V. 2011. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907~910.

    • Charlier B, Namur O, Grove T L. 2013. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochimica et Cosmochimica Acta, 113: 79~93.

    • Chen Hong, Tian Mi, Wu Guoli, Hu Jianmin. 2014. The early Paleozoic alkaline and mafic magmatic events in southern Qinling belt, central China: Evidences for the break-up of the paleo-tethyan ocean. Geological Review, 60(6): 1437~1452 (in Chinese with English abstract).

    • Chen Wei, Lu Jue, Jiang Shaoyong, Ying Yuancan, Liu Yongsheng. 2018. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chemical Geology, 494: 80~95.

    • Chen Wei, Ying Yuancan, Lu Jue, Jiang Shaoyong. 2020. Petrogenetic and Metallogenetic Processes of the South Qinling Carbonatite Complexs. Wuhan: China University of Geosciences Press, 1~150(in Chinese).

    • Chen Youzhang, Liu Shuwen, Li Qiugen, Dai Junzhi, Zhang Fan, Yang Pengtao, Guo Lishuang. 2010. Geology, geochemistry of Langao mafic volcanic rocks in South Qinling orogenic belt and its tectonic implications. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4): 607~619 (in Chinese with English abstract).

    • Condamine P, Médard E. 2014. Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism. Earth and Planetary Science Letters, 397: 80~92.

    • Dai Fuqiang, Zhao Zifu, Zheng Yongfei. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabieorogen. Chemical Geology, 454: 25~43.

    • Dai Liqun, Zheng Fei, Zhao Zifu, Zheng Yongfei. 2018. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts inWest Qinling, China. Lithos, 302~303: 86~98.

    • Dalton J A, Wood B J. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters, 119(4): 511~525.

    • Davis F A, Humayun M, Hirschmann M M, Cooper R S. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta, 104: 232~260.

    • Ding Lixue, Ma Changqian, Li Jianwei, Robinson P T, Deng Xiaodong, Zhang Chao, Xu Wangchun. 2011. Timing and genesis of the adakitic and shoshonitic intrusions in the Laoniushan complex, southern margin of the North China Craton: Implications for post-collisional magmatism associated with the Qinling Orogen. Lithos, 126: 212~232.

    • Dobson D P, Jones A P, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S. 1996. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth and Planetary Science Letters, 143(1~4): 207~215.

    • Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.

    • Dong Yunpeng, Sun Shengsi, Yang Zhao, Liu Xiaoming, Zhang Feifei, Li Wei, Cheng Bin, He Dengfeng, Zhang Guowei. 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling belt, China. Precambrian Research, 293: 73~90.

    • Draper D S, Green T H. 1999. P-T phase relations of silicic, alkaline, aluminous liquids: New results and applications to mantle melting and metasomatism. Earth and Planetary Science Letters, 170(3): 255~268.

    • Eggler D H. 1978. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O-CO2 system. American Journal of Science, 278(3): 305~343.

    • Ersoy Y, Helvaci C. 2010. FC-AFC-FCA and mixing modeler: A Microsoft Excel 446 spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Computers and Geosciences, 36(3): 383~390.

    • Falloon T J, Green D H, St C O'Neill H, Hibberson W O. 1997. Experimental tests of low degree peridotite partial melt compositions: Implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth and Planetary Science Letters, 152: 149~162.

    • Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28: 435~453.

    • Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112: 274~283.

    • Freestone I C, Hamilton D L. 1980. The role of liquid immiscibility in the genesis of carbonatites—An experimental study. Contributions to Mineralogy and Petrology, 73(2): 105~117.

    • Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos, 48: 237~262.

    • Gao Shan, Ling Wenli, Qiu Yumin, Lian Zhou, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63: 2071~2088.

    • Gittins J. 1988. The origin of carbonatites. Nature, 335: 295~296.

    • Grant T B, Milke R, Pandey S, Jahnke H. 2013. The Heldburg Phonolite, Central Germany: Reactions between phonolite and xenocrysts from the upper mantle and lower crust. Lithos, 182~183: 86~101.

    • Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52(4): 765~789.

    • Green D H, Wallace M E. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336: 459~462.

    • Gualda G A R, Ghiorso M S, Lemons R V, Carley T L. 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53(5): 875~890.

    • Gudmundsson A, Loetveit I F. 2005. Dyke emplacement in a layered and faulted rift zone. Journal of Volcanology and Geothermal Research, 144: 311~327.

    • Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28(3): 283.

    • Hoernle K, Tilton G, Le Bas M J, Duggen S, Garbe-Schönberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142(5): 520~542.

    • Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A~2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(28): 3564~3579.

    • Huang Yuehua, Ren Youxiang, Xia Linqi, Xia Zuchun, Zhang Cheng. 1992. Early Palaeozoic bimodal igneous suite on northern Daba Mountaina-Gaotan diabase and Haoping trachyte as examples. Acta Petrologica Sinca, 8(3): 243~256(in Chinese with English abstract).

    • Huang Yuehua. 1993. Mineralogical characteristics of phlogopite-amphibole-pyroxenite mantle xenoliths included in the alkali mafic-ultramafic subvolcanic complex from Langao County, China. Acta Petrologica Sinica, 9(4): 367~378 (in Chinese with English abstract).

    • Irving A J, Price R C. 1981. Geochemistry and evolution of iherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany and new zealand. Geochimica et Cosmochimica Acta, 45(8): 1309~1320.

    • Jung S, Vieten K, Romer R L, Mezger K, Hoernes S, Satir M. 2012. Petrogenesis of tertiary alkaline magmas in the Siebengebirge, Germany. Journal of Petrology, 53(11): 2381~2409.

    • Kaszuba J P, Wendlandt R F. 2000. Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks. Journal of Petrology, 41(3): 363~386.

    • Kushiro I. 1996. Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. Earth Processes Reading the Isotopic Code, 95: 109~122.

    • Lai Shaocong, Zhang Guowei, Dong Yunpeng, Pei Xianzhi, Chen Liang. 2004a. Geochemistry and regional distribution of ophiolites and associated volcanics in Mianlüe suture, Qinling-Dabie Mountains. Science in China Series D: Earth Sciences, 47(4): 289~299.

    • Lai Shaocong, Zhang Guowei, Li Sanzhong. 2004b. Ophiolites from the Mianlüe suture in the southern Qinling and their relationship with the eastern paleotethys evolution. Acta Geologica Sinica-English Edition, 78(1): 107~117.

    • Lai Shaocong, Li Yongfei, Qin Jiangfeng. 2007. Geochemistry and LA-ICP-MS zircon U-Pb dating of the Dongjiahe ophiolite complex from the western Bikou terrane. Science in China Series D: Earth Sciences, 50(2): 305~313.

    • Lai Shaocong, Qin Jiangfeng, Khan J. 2014. The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: Implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau. Gondwana Research, 25(4): 1501~1516.

    • Laporte D, Lambart S, Schiano P, Ottolini L. 2014. Experimental Derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth and Planetary Science Letters, 404: 319~331.

    • LaTourrette T, Hervig R L, Holloway J R. 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 135(1~4): 13~30.

    • Le Roux V, Dasgupta R, Lee C T A. 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3~4): 395~408.

    • Lee W J, Wyllie P J. 1998. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Journal of Petrology, 39(11~12): 2005~2013.

    • Li Fujie, Yang Jun. 2011. Tectonic meaning of mafic dyke swarms in Zhenba Eastern area in Shannan. Journal of Sichuan University of Science and Engineering (Natural Science Edition), 24(2): 238~243(in Chinese with English abstract).

    • Li Huaikun, Lu Songnian, Chen Zhihong, Xiang Zhenqun, Zhou Hongying, Hao Guojie. 2003. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Geological Bulletin of China, 22(10): 775~781(in Chinese with English abstract).

    • Li Shi. 1980. Geochemical features and petrogenesis of Miaoya carbonatites. Geochimica, (4): 345~355(in Chinese with English abstract).

    • Li Shi. 1991. Geochemistry and petrogenesis of the Shaxiongdong carbonatite complex, Hubei Province. Geochimica, 3: 245~254 (in Chinese with English abstract).

    • Li Xiaochun, Zhang Yunxiang, Fan Hongrui, Yang Kuifeng. 2022. The REE mineralization and remobilization history of the giant Bayan Obo deposit, Inner Mongolia, China: Constraint from in-situ Sm-Nd isotopes of REE minerals. Acta Petrologica Sinica, 38(10): 2920~2932(in Chinese with English abstract).

    • Li Yujin. 1989. The establishment of the Lower Silurian Taohekou Formation and its relationship with the Doushangou Formation and the Baiyaya Formation in Langao County of Shaanxi. Geology of Shaanxi, 7(2): 7~14(in Chinese with English abstract).

    • Liégeois J P, Navez J, Hertogen J, Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 45(1~4): 1~28.

    • Ling Wenli, Ren Bangfang, Duan Ruichun, Liu Xiaoming, Mao Xinwu, Peng Lianhong, Liu Zaoxue, Cheng Jianping, Yang Hongmei. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin, 53(14): 2192~2199.

    • Liu Wanliang, Liu Chengxin, Yang Cheng, Wan Jun, Chen Mi, Guo Pan, Liu Hongxian, Zhu Zhengyong. 2015. Geological characteristics and prospecting potential ofniobium ore of Tianbao area, Zhuxi, southern Qinling. Resources Environment & Engineering, 29(6): 779~784 (in Chinese with English abstract).

    • Luo Kunli, Duanmu Heshun. 2001. Timing of Early Paleozoic basic igneous rocks in the Daba Mountains. Regional Geology of China, 20(3): 262~266 (in Chinese with English abstract).

    • Ma G S K, Malpas J, Xenophontos C, Chan G H N. 2011. Petrogenesis of latest Miocene-Quaternary continental intraplate volcanism along the northern dead sea fault system (Al ghab-homs volcanic field), western Syria: Evidence for lithosphere-asthenosphere interaction. Journal of Petrology, 52(2): 401~430.

    • Marks M A W, Schilling J, Coulson I M, Wenzel T, Markl G. 2018. The alkaline-peralkaline Tamazeght complex, high Atlas Mountains, Morocco: Mineral chemistry and petrological constraints for Derivation from a compositionally heterogeneous mantle source. Journal of Petrology, 49(6): 1097~1131.

    • McDonough W F, Sun S S. 1995. The composition of the earth. Chemical Geology, 120(3~4): 223~253.

    • Médard E, Schmidt M W, Schiano P, Ottolini L. 2006. Melting of amphibole-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. Journal of Petrology, 47(3): 481~504.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth Science Review, 37: 215~224.

    • Mo Xuanxue. 2011. Magma and magmatic/igneous rocks: A lithoprobe into the deep earth and records of the earth's evolution. Chinese Journal of Nature, 33(5): 255~259+313 (in Chinese with English abstract).

    • Minh P, Hieu P T, Hoang N K. 2018. Geochemical and geochronological studies of the Muong Hum alkaline granitic pluton from the Phan Si Pan zone, Northwest Vietnam: Implications for petrogenesis and tectonic setting. Island Arc, 27: e12250.

    • Nie Xiao, Wang Zongqi, Chen Lei, Yin Jingwu, Wang Gang. 2021. Monazites reveal timing and genesis of Nb-REE mineralization in trachyte from the Pingli area, North Daba Mountain, China. Geosciences Journal, 25(5): 605~617.

    • Niu Yaoling, O'Hara M J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research Solid Earth, 108: 2209~2228.

    • Panter K S, Castillo P, Krans S, Deering C, McIntosh W, Valley J W, Kitajima K, Kyle P, Hart S, Blusztajn J. 2018. Melt origin across a rifted continental margin: A case for subduction-related metasomatic agents in the lithospheric source of alkaline basalt, NW Ross Sea, Antarctica. Journal of Petrology, 59(3): 517~558.

    • Pfänder J A, Jung S, Münker C, Stracke A, Mezger K. 2012. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget-evidence from continental basalts from Central Germany. Geochimica et Cosmochimica Acta, 77: 232~251.

    • Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320(5878): 916~919.

    • Pilet S, Baker M B, Müntener O, Stolper E M. 2011. Monte Carlosimulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. Journal of Petrology, 52(7~8): 1415~1442.

    • Prelević D, Foley S F. 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth and Planetary Science Letters, 256(1~2): 120~135.

    • Prytulak J, Elliott T. 2007. TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters, 263(3~4): 388~403.

    • Qin Jiangfeng, Lai Shaocong, Long Xiaoping, Zhang Zezhong, Ju Yinjuan, Zhu Renzhi, Wang Xingying, Li Yongfei, Wang Jiangbo, Li Tong. 2021. Thermotectonic evolution of the Paleozoic granites along the Shangdan suture zone (central China): Crustal growth and differentiation by magma underplating in an orogenic belt. Geological Society of America Bulletin, 133(3~4): 523~538.

    • Qin Zhengwei, Wu Yuanbao, Siebel W, Gao Shan, Wang Hao, Abdallsamed M I M, Zhang Wenxiang, Yang Saihong. 2015. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling Orogen, central China. Lithos, 238: 1~12.

    • Qiu Jiaxiang. 1993. Alkaline rocks in Qinling and Dabashan. Beijing: Geologucal Publishing House, 1~183(in Chinese).

    • Ren Kangxu. 2003. Sdudy progress of the alkaline rocks: A review. Geology of Chemical Minerals, 25(3): 151~163(in Chinese with English abstract).

    • Rooney T O, Nelson W R, Ayalew D, Hanan B, Yirgu G, Kappelman J. 2017. Melting the lithosphere: Metasomes as a source for mantle-derived magmas Earth and Planetary Science Letters, 461: 105~118.

    • Rudnick R L, Gao Shan. 2003. Composition of the continental crust. In: Heinrich D H, Turekian K K, eds. Treatise on Geochemistry. Oxford: Pergamon, 1~64.

    • Shaw D M. 1970. Trace element fractionation during anatexis. Geochimicaet Cosmochimica Acta, 34(2): 237~243.

    • Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434: 590~597.

    • Song Wenlei, Xu Cheng, Wang Linjun, Wu Min, Zeng Liang, Wang Lize, Feng Meng. 2013. Review of the metallogenesis of the endogenetic rare rlement elements deposits related to carbonatite-alkaline complex. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(4): 725~740(in Chinese with English abstract).

    • Song Wenlei, Xu Cheng, Smith M P, Chakhmouradian A R, Brenna M, Kynický J, Chen Wei, Yang Yueheng, Deng Miao, Tang Haiyan. 2018. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over ~1 b. y. Geology, 46(4): 323~326.

    • Spera F J, Bohrson W A. 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization

    • (EC-AFC) formulation. Journal of Petrology, 42(5): 999~1018.

    • Spilliaert N, Allard P, Métrich N, Sobolev A V. 2006. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research: Solid Earth, 111: B04203.

    • Su Jianhui, Zhao Xinfu, Li Xiaochun, Hu Wei, Chen Mi, Xiong Yilin. 2019. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite. Ore Geology Reviews, 113: 103101.

    • Su Jianhui, Zhao Xinfu, Li Xiaochun, Su Zhikun, Liu Rui, Qin Zhijun, Chen Mi. 2021. Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals. American Mineralogist, 106(10): 1545~1558.

    • Su Jianhui, Zhao Xinfu, Li Xiaochun, Hu Wei, Chen Wei, Slezak P. 2022. Unmixing of REE-Nb enriched carbonatites after incremental fractionation of alkaline magmas in the Shaxiongdong complex, Central China. Lithos, 416~417: 106651.

    • Sun Jinfeng, Yang Jinhui, Wu Fuyuan. 2009. Application of in-situ isotopic analysis to granite genesis. Earth Science Frontiers, 16(2): 129~139(in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tappe S, Foley S F, Jenner G A, Heaman L M, Kjarsgaard B A, Romer R L, Stracke A, Joyce N, Hoefs J. 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology, 47(7): 1261~1315.

    • Tappe S, Romer R L, Stracke A, Steenfelt A, Smart K A, Muehlenbachs K, Torsvik T H. 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters, 466: 152~167.

    • VanTongeren J A, Mathez E A. 2012. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa. Geology, 40(6): 491~494.

    • Veksler I V, Petibon C, Jenner G A, Dorfman A M, Dingwell D B. 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave. Journal of Petrology, 39(11~12): 2095~2104.

    • Walter M J. 1998. Melting ofgarnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29~60.

    • Wan Jun, Liu Chengxin, Yang Cheng, Liu Wanliang, Li Xiongwei, Fu Xiaojuan, Liu Hongxian. 2016. Geochemical characteristics and LA-ICP-MS zircon U-Pb age of the trachytic volcanic rocks in Zhushan area of southern Qinling Mountains and their significance. Geological Bulletin of China, 35(7): 1134~1143(in Chinese with English abstract).

    • Wang Cunzhi, Yang Kunguang, Xu Yang, Cheng Wanqiang. 2009. Geochemistry and LA-ICP-MS zircon U-Pb age of basic dike swarms in North Daba Mountains and its tectonic significance. Geological Science and Technology Information, 28(3): 19~26(in Chinese with English abstract).

    • Wang Gang. 2014. Metallogeny of the Mesozoic and Paleozoic volcanic igneous event in Ziyang-Langao areas, North Daba Mountain. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Ke, Wang Lianxun, Ma Changqian, Zhu Yuxiang, She Zhenbing, Deng Xin, Chen Qi. 2021. Mineralogy and geochemistry of the Zhuxi Nb-rich trachytic rocks, South Qinling (China): Insights into the niobium mineralization during magmatic-hydrothermal processes. Ore Geology Reviews, 138: 104346.

    • Wang Kunming. 2014. Research on the petrogenesis, tectonic and metallogeny for mafic rocks in the Ziyang-Langao area, Shaanxi province. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Wang Kunming, Wang Zongqi, Zhang Yingli, Wang Gang. 2015. Geochronology and geochemistry of mafic rocks in the Xuhe, Shaanxi, China: Implications for petrogenesis and mantle dynamics. Acta Geologica Sinica (English Edition), 89(1): 187~202.

    • Wang Ruirui, Xu Zhiqin, Santosh M, Liang Fenghua, Fu Xuehai. 2017. Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes. Tectonophysics, 712~713: 270~288.

    • Wang Xiaowei. 2014. Geochemical characteristics and geological significance of the volcanic rocks from Mianlue suture zone (Zhongtanggou-Guozhen), South Qinling. Master thesis of Chang'an University (in Chinese with English abstract).

    • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1~2), 53~72.

    • Xia Linqi, Xia Zuchun, Zhang Cheng, Xu Xueyi. 1994. Petrogeochemistry of Alkali Basic, Ultrabasic Subvolcanic Complex from Northern Daba Mountain, China. Beijing: Geological Publishing House, 1~80(in Chinese).

    • Xia Linqi, Xia Zuchun, Li Xiangmin, Ma Zhongping, Xu Xueyi. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Northwestern Geology, 41(3): 1~29(in Chinese with English abstract).

    • Xiang Zhongjin, Yan Quanren, Yan Zhen, Wang Zongqi, Wang Tao, Zhang Yingli, Qin Xiaofeng. 2010. Facies succession and architecture of volcaniclastic rocks of the Taohekou Formation: Implication for Early Silurian volcanism in the North Dabashan area, China. Acta Geologica Sinica, 84(3): 311~328(in Chinese with English abstract).

    • Xiang Zhongjin, Yan Quanren, Song Bo, Wang Zongqi. 2016. New evidence for the ages of ultramafic to mafic dikes and alkaline volcanic complexes in the North Daba Mountains and its geological implication. Acta Geologica Sinica, 90(5): 896~916 (in Chinese with English abstract).

    • Xiong Yilin, Zhong Shiyu, Li Zhigang, Huang Jingmeng, Lu Xiansong, Du Yichao, Wu Enzheng, Li Zhonglin, Zhao Shenggui, Zhu Zhengyong. 2018. Geological characteristics and prospecting potential of niobium-tantalum deposit in the Tudiling area, Zhushan. Resources Environment and Engineering, 32(S1): 1~7+43(in Chinese with English abstract).

    • Xu Cheng, Campbell I H, Allen C M, Chen Yanjing, Huang Zhilong, Qi Liang, Zhang Guishan, Yan Zaifei. 2008. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 105(1~2): 118~128.

    • Xu Cheng, Kynicky J, Chakhmouradian A N, Campbell I H, Campbell C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos, 118(1~2): 145~155.

    • Xu Cheng, Chakhmouradian A R, Taylor R N, Kynicky J, Li Wenbo, Song Wenlei, Fletcher I R. 2014. Origin of carbonatites in the South Qinling Orogen: Implications for crustal recycling and timing of collision between the South and North China blocks. Geochimica et Cosmochimica Acta, 143: 189~206.

    • Xu Tong, Zhang Xiaotuan, Jiao Jiangang, Zhang Hongqiang, Jia Li. 2020. The subduction of Neoproterozoic Ocean in the Mianlue tectonic zone: Evidence from zircon U-Pb age and Lu-Hf isotopes from volcanic rocks in the Zhifanggou tectonic slice, Lueyang area. Acta Geologica Sinica, 94(12): 3607~3624(in Chinese with English abstract).

    • Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1996. Characteristics of phlogopite-amphibole pyroxenite xenoliths from Langao County, Shaanxi Province. Acta Petrologiga et Mineralogica, 15(3): 193~202(in Chinese with English abstract).

    • Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1997. Phlogopite-amphibole-pyroxenite xenoliths in Langao, Shaanxi Province: Evidences for mantle metasomatism. Acta Petrologica Sinica, 13(1): 1~13(in Chinese with English abstract).

    • Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1999. Features of the Early Palaeozoic mantle beneath Langao County and its formation mechanism. Acta Geologica Sinica-English Edition, 73(3): 356~365.

    • Yang Cheng, Liu Chengxin, Liu Wanliang, Wan Jun, Duan Xianfeng, Zhang Zhong. 2017. Geochemical characteristics of trachyte and Nb mineralization process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petrologica et Mineralogica, (36)5: 605~618(in Chinese with English abstract).

    • Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhang Fangyi, Zhu Renzhi, Zhu Yu, Liu Min, Zhao Shaowei, Zhang Zezhong. 2022. Petrogenetic evolution of Early Paleozoic trachytic rocks in the South Qinling Belt, Central China: Insights from mineralogy, geochemistry, and thermodynamic modeling. Lithos, 418~419: 106683.

    • Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Zhu Yu, Zhang Fangyi, Zhang Zezhong, Wang Xingying. 2021. Early Palaeozoic alkaline trachytes in the North Daba Mountains, South Qinling Belt: Petrogenesis and geological implications. International Geology Review, 63(16): 2037~2056.

    • Yang Hang, Lai Shaocong, Qin Jiangfeng. 2021. Geochemical characteristics of alkali trachytes in Ziyang-Langao area, North Daba Mountains and petrogenetic relation with the diabases. Geotectonica et Metallogenia, 45(2): 413~424(in Chinese with English abstract).

    • Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhang Fangyi, Zhu Renzhi, Zhu Yu, Liu Min, Zhao Shaowei, Yang Zhen. 2023. Geochronology, geochemical and Sr-Nd-Pb isotope of syenites in the North Daba Mountains, South Qinling belt: Constraints on petrogenetic evolution and tectonic implication. Journal of Earth Science. https: //doi. org/10. 1007/s12583-022- 1784-0. http: //en. earth-science. net.

    • Yang Kuifeng, Fan Hongrui, Pirajno F, Li Xiaochun. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite. Geology, 47(12): 1198~1202.

    • Yang Yizeng, Wang Yan, Siebel W, Zhang Yuanshuo, Chen Fukun. 2020. Zircon U-Pb-Hf, geochemical and Sr-Nd-Pb isotope systematics of Late Mesozoic granitoids in the Lantian-Xiaoqinling region: Implications for tectonic setting and petrogenesis. Lithos, 374~375: 105709.

    • Yang Yueheng, Sun Jinfeng, Xie Liewen, Fan Hongrui, Wu Fuyuan. 2008. In situ Nd isotopic measurement of natural geological materials by LA-MC-ICPMS. Chinese Science Bulletin, 53(7): 1062~1070.

    • Yang Yueheng, Wu Fuyuan, Yang Jinhui, Chew D M, Xie Liewen, Chu Zhuyin, Zhang Yanbin, Huang Chao. 2014. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chemical Geology, 385: 35~55.

    • Yaxley G M, Green D H, Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39(11~12): 1917~1930.

    • Yi Pengfei, Zhang Yafeng, Zhang Geli, Yang Tao, Yao Zheng, Li Qi, Gao Haifeng. 2017. LA-ICP-MS zircon U-Pb ages, geochemical characteristics of Zaomulan granitic pluton in Southern Qinling Orogenic Belt and their geological implications. Geological Review, 63(6): 1479~1511(in Chinese with English abstract).

    • Ying Yuancan, Chen Wei, Lu Jue, Jiang Shaoyong, Yang Yueheng. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290~291: 159~171.

    • Ying Yuancan, Chen Wei, Simonetti A, Jiang Shaoyong, Zhao Kuidong. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochim Cosmochim Acta, 280: 340~359.

    • Ying Yuancan. 2018. Geochronology and geochemistry of the Miaoya carbonatite complex (Hubei Province): Implications for petrogenesis and metallogenesis. Master thesis of China University of Geosciences (in Chinese with English abstract).

    • Yoder H S. 1973. Contemporaneous basaltic and rhyolitic magmas. American Mineralogist, 58(3~4): 153~171.

    • Zhang Chengli, Gao Shan, Yuan Honglin, Zhang Guowei, Yan Yunxiang, Luo Jinglan, Luo Jinhai. 2007. Sr-Nd-Pb isotopes of the Early Paleozoic mafic-ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition. Science in China Series D: Earth Sciences, 50(9): 1293~1301.

    • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R. 1999. The finero phlogopite-peridotite massif: An example of subduction-related metasomatism. Contributions to Mineralogy and Petrology, 134(2): 107~122.

    • Zanetti A, Vannucci R, Bottazzi P, Oberti R, Ottolini L. 1996. Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein. Chemical Geology, 134(1~3): 113~133.

    • Zhang Chengli, Gao Shan, Zhang Guowei, Liu Xiaoming, Yu Zaiping. 2003. Geochemistry of Early Paleozoic alkali dyke swarms in South Qinling and its geological significance. Science in China Series D: Earth Sciences, 46(12): 1292~1306.

    • Zhang Fangyi. 2022. The oxygen fugacity of mantle-derived magmas: constraints from olivine and clinopyroxene oxybarometers. Doctoral dissertation of Northwest University (in Chinese with English abstract).

    • Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Yang Hang, Zhu Yu. 2020a. Geochemical characteristics and geological significance of Early Paleozoic alkali diabases in North Daba Mountain. Acta Petrologica et Mineralogica, 39(1): 35~46(in Chinese with English abstract).

    • Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Yang Hang, Zhu Yu, Zhang Zezhong. 2020b. Magma source and evolution process of Early Paleozoic basalts in the South Qinling Belt. Acta Petrologica Sinica, 36(7): 2149~2162(in Chinese with English abstract).

    • Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Zhu Yu, Yang Hang. 2020. Vein-plus-wall rock melting model for the origin of Early Paleozoic alkali diabases in the South Qinling Belt, Central China. Lithos, 370~371: 105619.

    • Zhang Guowei, Meng Qingren, Yu Zaiping, Sun Yong, Zhou Dingwu, Guo Anlin. 1996. Orogenesis and dynamics of the Qinling Orogen. Science in China (Series D), 39(3): 225~234.

    • Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1~855(in Chinese).

    • Zhang Guowei, Zhang Zongqing, Dong Yunpeng. 1995. Nature of Main tectono-lithostratigraphic units of the Qinling Orogen: Implications for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101~114(in Chinese with English abstract).

    • Zhang Hongluo, Hirschmann M M, Cottrell E, Withers A C. 2017. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochimica et Cosmochimica Acta, 204: 83~103.

    • Zhang Zongqing, Zhang Guowei, Tang Suohan, Wang Jinhui. 2002. The age of metamorphic rocks of the Wudang Group. Geology in China, 29(2): 117~125(in Chinese with English abstract).

    • Zhao Guochun, Hu Jianmin, Meng Qingren. 2003. Geochemistry of the basic sills in the western Wudang block: The evidences of the Paleozoic underplating in South Qinling. Acta Petrologica Sinica, 19(4): 612~622(in Chinese with English abstract).

    • Zhao Junhong, Asimow P D. 2018. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc- and MORB-like dike swarms in South China. Journal of Petrology, 59(9): 1811~1844.

    • Zhu Jiang, Wang Lianxun, Peng Sanguo, Peng Lianhong, Wu Changxiong, Qiu Xiaofei. 2017. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China. Geological Journal, 52(6): 938~954.

    • Zhu Xiyan. 2008. Zircon U-Pb ages of volcanic and sedimentary rocks of the Wudang Group in the Qinling orogenic belt within western Henan Province. Acta Geoscientica Sinica, 29(6): 817~829(in Chinese with English abstract).

    • Zou Xianwu, Duan Qifa, Tang Chaoyang, Cao Liang, Cui Sen, Zhao Wuqiang, Xia Jie, Wang Lei. 2011. SHRIMP zircon U-Pb dating and lithogeochemical characteristics of diabase from Zhenping area in North Daba Mountain. Geology in China, 38(2): 282~291(in Chinese with English abstract).

    • 陈虹, 田蜜, 武国利, 胡健民. 2014. 南秦岭构造带内早古生代碱基性岩浆活动: 古特提斯洋裂解的证据. 地质论评, 60(6): 1437~1452.

    • 陈唯, 应元灿, 陆珏, 蒋少涌. 2020. 南秦岭碳酸岩杂岩体成岩成矿过程. 武汉: 中国地质大学出版社, 1~150.

    • 陈友章, 刘树文, 李秋根, 代军治, 张帆, 杨朋涛, 郭丽爽. 2010. 南秦岭岚皋基性火山岩的地质学、地球化学及其构造意义. 北京大学学报(自然科学版), 46(4): 607~619.

    • 黄月华. 1993. 岚皋碱性镁铁-超镁铁质潜火山杂岩中金云角闪辉石岩类地幔捕虏体矿物学特征. 岩石学报, 9(4): 367~378.

    • 黄月华, 任有祥, 夏林圻, 夏祖春, 张诚. 1992. 北大巴山早古生代双模式火成岩套: 以高滩辉绿岩和蒿坪粗面岩为例. 岩石学报, 8(3): 243~256.

    • 赖绍聪, 张国伟, 董云鹏, 裴先治, 陈亮. 2003. 秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布. 中国科学(D辑), 33(12): 1174~1183.

    • 李夫杰, 杨骏. 2011. 陕南镇巴东部地区基性岩墙群的构造意义. 四川理工学院学报(自然科学版), 24(2): 238~243.

    • 李怀坤, 陆松年, 陈志宏, 相振群, 周红英, 郝国杰. 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775~781.

    • 李石. 1980. 湖北庙垭碳酸岩地球化学特征及岩石成因探讨. 地球化学, 9(4): 345~355.

    • 李石. 1991. 湖北杀熊洞碱性-碳酸岩杂岩体地球化学特征及其成因探讨. 地球化学, 3: 245~254.

    • 李晓春, 展云翔, 范宏瑞, 杨奎锋. 2022. 内蒙古白云鄂博矿床巨量稀土的堆积及再活化历史: 来自矿物微区Sm-Nd同位素的制约. 岩石学报, 38(10): 2920~2932.

    • 李育敬. 1989. 陕西岚皋下志留统滔河口组的建立及其与陡山沟组、白崖垭组关系的探讨. 陕西地质, 7(2): 7~14.

    • 凌文黎, 任邦方, 段瑞春, 柳小明, 毛新武, 彭练红, 刘早学, 程建萍, 杨红梅. 2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 52(12): 1445~1456.

    • 刘万亮, 刘成新, 杨成, 万俊, 陈觅, 郭盼, 刘虹显, 朱正勇. 2015. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析. 资源环境与工程, 29(6): 779~784.

    • 雒昆利, 端木和顺. 2001. 大巴山区早古生代基性火成岩的形成时代. 中国区域地质, 20(3): 262~266.

    • 莫宣学. 2011. 岩浆与岩浆岩: 地球深部“探针”与演化记录. 自然杂志, 33(5): 255~259+313.

    • 邱家骧. 1993. 秦巴碱性岩. 北京: 地质出版社, 1~183.

    • 任康绪. 2003. 碱性岩研究进展述评. 化工矿产地质, 25(3): 151~163.

    • 宋文磊, 许成, 王林均, 吴敏, 曾亮, 王丽泽, 冯梦. 2013. 与碳酸岩碱性杂岩体相关的内生稀土矿床成矿作用研究进展. 北京大学学报(自然科学版), 49(4): 725~740.

    • 孙金凤, 杨进辉, 吴福元. 2009. 原位微区同位素分析在花岗岩成因研究中的应用. 地学前缘, 16(2): 129~139.

    • 万俊, 刘成新, 杨成, 刘万亮, 李雄伟, 付晓娟, 刘虹显. 2016. 南秦岭竹山地区粗面质火山岩地球化学特征, LA-ICP-MS锆石U-Pb年龄及其大地构造意义. 地质通报, 35(7): 1134~1143.

    • 汪晓伟. 2014. 南秦岭勉略构造带(中堂沟—郭镇段)火山岩岩石地球化学特征及其构造意义. 长安大学硕士学位论文.

    • 王存智, 杨坤光, 徐扬, 程万强. 2009. 北大巴基性岩墙群地球化学特征, LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 28(3): 19~26.

    • 王刚. 2014. 北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用. 中国地质大学(北京)博士学位论文.

    • 王坤明. 2014. 陕西紫阳—岚皋地区镁铁质岩岩石成因、构造环境及成矿作用研究. 中国地质科学院博士学位论文.

    • 夏林圻, 夏祖春, 张诚, 徐学义. 1994. 北大巴山碱质基性-超基性潜火山岩石地球化学. 北京: 地质出版社.

    • 夏林圻, 夏祖春, 李向民, 马中平, 徐学义. 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1~29.

    • 向忠金, 闫全人, 闫臻, 王宗起, 王涛, 张英利, 覃小锋. 2010. 北大巴山志留系滔河口组火山碎屑岩相序, 组构特征及古火山作用环境分析. 地质学报, 84(3): 311~328.

    • 向忠金, 闫全人, 宋博, 王宗起. 2016. 北大巴山超基性, 基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义. 地质学报, 90(5): 896~916.

    • 熊意林, 钟石玉, 李志刚, 黄景孟, 鲁显松, 杜翌超, 吴恩政, 李忠林, 赵生贵, 朱正勇. 2018. 竹山土地岭一带铌钽矿床地质特征及找矿前景分析. 资源环境与工程, 32(S1): 1~7+43.

    • 徐通, 张晓团, 焦建刚, 张红强, 贾力. 2020. 勉略构造带新元古代洋盆俯冲作用: 来自略阳地区纸房沟岩片火山岩锆石U-Pb年龄和Lu-Hf同位素的证据. 地质学报, 94(12): 3607~3624.

    • 徐学义, 黄月华, 夏林圻, 夏祖春. 1996. 岚皋金云角闪辉石岩类捕虏体特征. 岩石矿物学杂志, 15(3): 193~202.

    • 徐学义, 黄月华, 夏林圻, 夏祖春. 1997. 岚皋金云角闪辉石岩类捕虏体: 地幔交代作用的证据. 岩石学报, 13(1): 1~13.

    • 杨成, 刘成新, 刘万亮, 万俊, 段先锋, 张众. 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, (36)5: 605~618.

    • 杨航, 赖绍聪, 秦江锋. 2021. 北大巴山紫阳-岚皋地区碱性粗面岩地球化学特征: 与本区辉绿岩的成因联系. 大地构造与成矿学, 45(2): 413~424.

    • 易鹏飞, 张亚峰, 张革利, 杨涛, 姚征, 李琦, 高海峰. 2017. 南秦岭枣木栏岩体LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义. 地质论评, 63(6): 1479~1511.

    • 应元灿. 2018. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程. 中国地质大学硕士学位论文.

    • 张成立, 高山, 张国伟, 柳小明, 于在平. 2002. 南秦岭早古生代碱性岩墙群的地球化学及其地质意义. 中国科学(D辑: 地球科学), 32(10): 819~829.

    • 张成立, 高山, 袁洪林, 张国伟, 晏云翔, 罗静兰, 罗金海. 2007. 南秦岭早古生代地幔性质: 来自超镁铁质, 镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据. 中国科学(D辑: 地球科学), 37(7): 857~865.

    • 张方毅. 2022. 幔源岩浆的氧逸度: 来自橄榄石和单斜辉石氧逸度计的约束. 西北大学博士学位论文.

    • 张方毅, 赖绍聪, 秦江锋, 朱韧之, 杨航, 朱毓. 2020a. 大巴山早古生代辉绿岩地球化学特征及其地质意义. 岩石矿物学杂志, 39(1): 35~46.

    • 张方毅, 赖绍聪, 秦江锋, 朱韧之, 赵少伟, 杨航, 朱毓, 张泽中. 2020b. 南秦岭早古生代玄武岩的岩浆源区及演化过程. 岩石学报, 36(7): 2149~2162.

    • 张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101~114.

    • 张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学(D辑: 地球科学), 26(3): 193~200.

    • 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1~855.

    • 张宗清, 张国伟, 唐索寒, 王进辉. 2002. 武当群变质岩年龄. 中国地质, 29(2): 117~125.

    • 赵国春, 胡健民, 孟庆任. 2003. 武当地块西部席状基性侵入岩群地球化学特征: 南秦岭古生代底侵作用的依据. 岩石学报, 19(4): 612~622.

    • 祝禧艳, 陈福坤, 王伟, Pham T H, 王芳, 张福勤. 2008. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄. 地球学报, 29(6): 817~829.

    • 邹先武, 段其发, 汤朝阳, 曹亮, 崔森, 赵武强, 夏杰, 王磊. 2011. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征. 中国地质, 38(2): 282~291.

  • 参考文献

    • Ackerman L, Spacek P, Magna T, Ulrych J, Svojtka M, Hegner E, Balogh K. 2013. Alkaline and carbonate-rich melt metasomatism and melting of subcontinental lithospheric mantle: Evidence from mantle xenoliths, NE Bavaria, Bohemian massif. Journal of Petrology, 54: 2597~2633.

    • Adam J, Green T. 2006. Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152(1): 1~17.

    • Ahmed H A, Ma Changqian, Wang Lianxun, Palinkaš L A, Girei M B, Zhu Yuxiang, Habib M. 2018. Petrogenesis and tectonic implications of peralkaline A-type granites and syenites from the Suizhou-Zaoyang region, central China. Journal of Earth Science, 29(5): 1181~1202.

    • Andersen T, Elburg M, Erambert M. 2018. Contrasting trends of agpaitic crystallization in nepheline syenite in the Pilanesberg alkaline complex, South Africa. Lithos, 312~313: 375~388.

    • Armbrustmacher T J, Hedge C E. 1982. Genetic implications of minor-element and Sr-isotope geochemistry of alkaline rock complexes in the Wet Mountains area, Fremont and Custer Counties, Colorado. Contributions to Mineralogy and Petrology, 79(4): 424~435.

    • Bailey D K. 1987. Mantle metasomatism—Perspective and prospect. Geological Society, London, Special Publications, 30(1): 1~13.

    • Bell K, Tilton G R. 2001. Nd, Pb and Sr isotopic compositions of East African carbonatites: Evidence for mantle mixing and plume inhomogeneity. Journal of Petrology, 42(10): 1927~1945.

    • Bragagni A, Mastroianni F, Münker C, Conticelli S, Avanzinelli R. 2022. A carbon-rich lithospheric mantle as a source for the large CO2 emissions of Etna volcano (Italy). Geology, 50(4): 486~490.

    • Cabero M T, Mecoleta S, López-Moro F J. 2012. OPTIMASBA: A Microsoft Excel workbook to optimise the mass-balance modelling applied to magmatic differentiation processes and subsolidus overprints. Computers & Geosciences, 42: 206~211.

    • Charlier B, Namur O, Toplis M J, Schiano P, Cluzel N, Higgins M D, Auwera J V. 2011. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology, 39(10): 907~910.

    • Charlier B, Namur O, Grove T L. 2013. Compositional and kinetic controls on liquid immiscibility in ferrobasalt-rhyolite volcanic and plutonic series. Geochimica et Cosmochimica Acta, 113: 79~93.

    • Chen Hong, Tian Mi, Wu Guoli, Hu Jianmin. 2014. The early Paleozoic alkaline and mafic magmatic events in southern Qinling belt, central China: Evidences for the break-up of the paleo-tethyan ocean. Geological Review, 60(6): 1437~1452 (in Chinese with English abstract).

    • Chen Wei, Lu Jue, Jiang Shaoyong, Ying Yuancan, Liu Yongsheng. 2018. Radiogenic Pb reservoir contributes to the rare earth element (REE) enrichment in South Qinling carbonatites. Chemical Geology, 494: 80~95.

    • Chen Wei, Ying Yuancan, Lu Jue, Jiang Shaoyong. 2020. Petrogenetic and Metallogenetic Processes of the South Qinling Carbonatite Complexs. Wuhan: China University of Geosciences Press, 1~150(in Chinese).

    • Chen Youzhang, Liu Shuwen, Li Qiugen, Dai Junzhi, Zhang Fan, Yang Pengtao, Guo Lishuang. 2010. Geology, geochemistry of Langao mafic volcanic rocks in South Qinling orogenic belt and its tectonic implications. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(4): 607~619 (in Chinese with English abstract).

    • Condamine P, Médard E. 2014. Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism. Earth and Planetary Science Letters, 397: 80~92.

    • Dai Fuqiang, Zhao Zifu, Zheng Yongfei. 2017. Partial melting of the orogenic lower crust: Geochemical insights from post-collisional alkaline volcanics in the Dabieorogen. Chemical Geology, 454: 25~43.

    • Dai Liqun, Zheng Fei, Zhao Zifu, Zheng Yongfei. 2018. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts inWest Qinling, China. Lithos, 302~303: 86~98.

    • Dalton J A, Wood B J. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth and Planetary Science Letters, 119(4): 511~525.

    • Davis F A, Humayun M, Hirschmann M M, Cooper R S. 2013. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochimica et Cosmochimica Acta, 104: 232~260.

    • Ding Lixue, Ma Changqian, Li Jianwei, Robinson P T, Deng Xiaodong, Zhang Chao, Xu Wangchun. 2011. Timing and genesis of the adakitic and shoshonitic intrusions in the Laoniushan complex, southern margin of the North China Craton: Implications for post-collisional magmatism associated with the Qinling Orogen. Lithos, 126: 212~232.

    • Dobson D P, Jones A P, Rabe R, Sekine T, Kurita K, Taniguchi T, Kondo T, Kato T, Shimomura O, Urakawa S. 1996. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth and Planetary Science Letters, 143(1~4): 207~215.

    • Dong Yunpeng, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1~40.

    • Dong Yunpeng, Sun Shengsi, Yang Zhao, Liu Xiaoming, Zhang Feifei, Li Wei, Cheng Bin, He Dengfeng, Zhang Guowei. 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling belt, China. Precambrian Research, 293: 73~90.

    • Draper D S, Green T H. 1999. P-T phase relations of silicic, alkaline, aluminous liquids: New results and applications to mantle melting and metasomatism. Earth and Planetary Science Letters, 170(3): 255~268.

    • Eggler D H. 1978. The effect of CO2 upon partial melting of peridotite in the system Na2O-CaO-Al2O3-MgO-SiO2-CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O-CO2 system. American Journal of Science, 278(3): 305~343.

    • Ersoy Y, Helvaci C. 2010. FC-AFC-FCA and mixing modeler: A Microsoft Excel 446 spreadsheet program for modeling geochemical differentiation of magma by crystal fractionation, crustal assimilation and mixing. Computers and Geosciences, 36(3): 383~390.

    • Falloon T J, Green D H, St C O'Neill H, Hibberson W O. 1997. Experimental tests of low degree peridotite partial melt compositions: Implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth and Planetary Science Letters, 152: 149~162.

    • Foley S. 1992. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos, 28: 435~453.

    • Foley S F, Yaxley G M, Rosenthal A, Buhre S, Kiseeva E S, Rapp R P, Jacob D E. 2009. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos, 112: 274~283.

    • Freestone I C, Hamilton D L. 1980. The role of liquid immiscibility in the genesis of carbonatites—An experimental study. Contributions to Mineralogy and Petrology, 73(2): 105~117.

    • Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province. Lithos, 48: 237~262.

    • Gao Shan, Ling Wenli, Qiu Yumin, Lian Zhou, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63: 2071~2088.

    • Gittins J. 1988. The origin of carbonatites. Nature, 335: 295~296.

    • Grant T B, Milke R, Pandey S, Jahnke H. 2013. The Heldburg Phonolite, Central Germany: Reactions between phonolite and xenocrysts from the upper mantle and lower crust. Lithos, 182~183: 86~101.

    • Grassi D, Schmidt M W. 2011. The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology, 52(4): 765~789.

    • Green D H, Wallace M E. 1988. Mantle metasomatism by ephemeral carbonatite melts. Nature, 336: 459~462.

    • Gualda G A R, Ghiorso M S, Lemons R V, Carley T L. 2012. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. Journal of Petrology, 53(5): 875~890.

    • Gudmundsson A, Loetveit I F. 2005. Dyke emplacement in a layered and faulted rift zone. Journal of Volcanology and Geothermal Research, 144: 311~327.

    • Hammouda T, Laporte D. 2000. Ultrafast mantle impregnation by carbonatite melts. Geology, 28(3): 283.

    • Hoernle K, Tilton G, Le Bas M J, Duggen S, Garbe-Schönberg D. 2002. Geochemistry of oceanic carbonatites compared with continental carbonatites: Mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology, 142(5): 520~542.

    • Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297~314.

    • Hu Juan, Liu Xiaochun, Chen Longyao, Qu Wei, Li Huaikun, Geng Jianzhen. 2013. A~2. 5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(28): 3564~3579.

    • Huang Yuehua, Ren Youxiang, Xia Linqi, Xia Zuchun, Zhang Cheng. 1992. Early Palaeozoic bimodal igneous suite on northern Daba Mountaina-Gaotan diabase and Haoping trachyte as examples. Acta Petrologica Sinca, 8(3): 243~256(in Chinese with English abstract).

    • Huang Yuehua. 1993. Mineralogical characteristics of phlogopite-amphibole-pyroxenite mantle xenoliths included in the alkali mafic-ultramafic subvolcanic complex from Langao County, China. Acta Petrologica Sinica, 9(4): 367~378 (in Chinese with English abstract).

    • Irving A J, Price R C. 1981. Geochemistry and evolution of iherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany and new zealand. Geochimica et Cosmochimica Acta, 45(8): 1309~1320.

    • Jung S, Vieten K, Romer R L, Mezger K, Hoernes S, Satir M. 2012. Petrogenesis of tertiary alkaline magmas in the Siebengebirge, Germany. Journal of Petrology, 53(11): 2381~2409.

    • Kaszuba J P, Wendlandt R F. 2000. Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks. Journal of Petrology, 41(3): 363~386.

    • Kushiro I. 1996. Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. Earth Processes Reading the Isotopic Code, 95: 109~122.

    • Lai Shaocong, Zhang Guowei, Dong Yunpeng, Pei Xianzhi, Chen Liang. 2004a. Geochemistry and regional distribution of ophiolites and associated volcanics in Mianlüe suture, Qinling-Dabie Mountains. Science in China Series D: Earth Sciences, 47(4): 289~299.

    • Lai Shaocong, Zhang Guowei, Li Sanzhong. 2004b. Ophiolites from the Mianlüe suture in the southern Qinling and their relationship with the eastern paleotethys evolution. Acta Geologica Sinica-English Edition, 78(1): 107~117.

    • Lai Shaocong, Li Yongfei, Qin Jiangfeng. 2007. Geochemistry and LA-ICP-MS zircon U-Pb dating of the Dongjiahe ophiolite complex from the western Bikou terrane. Science in China Series D: Earth Sciences, 50(2): 305~313.

    • Lai Shaocong, Qin Jiangfeng, Khan J. 2014. The carbonated source region of Cenozoic mafic and ultra-mafic lavas from western Qinling: Implications for eastern mantle extrusion in the northeastern margin of the Tibetan Plateau. Gondwana Research, 25(4): 1501~1516.

    • Laporte D, Lambart S, Schiano P, Ottolini L. 2014. Experimental Derivation of nepheline syenite and phonolite liquids by partial melting of upper mantle peridotites. Earth and Planetary Science Letters, 404: 319~331.

    • LaTourrette T, Hervig R L, Holloway J R. 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth and Planetary Science Letters, 135(1~4): 13~30.

    • Le Roux V, Dasgupta R, Lee C T A. 2011. Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 307(3~4): 395~408.

    • Lee W J, Wyllie P J. 1998. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Journal of Petrology, 39(11~12): 2005~2013.

    • Li Fujie, Yang Jun. 2011. Tectonic meaning of mafic dyke swarms in Zhenba Eastern area in Shannan. Journal of Sichuan University of Science and Engineering (Natural Science Edition), 24(2): 238~243(in Chinese with English abstract).

    • Li Huaikun, Lu Songnian, Chen Zhihong, Xiang Zhenqun, Zhou Hongying, Hao Guojie. 2003. Zircon U-Pb geochronology of rift-type volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Geological Bulletin of China, 22(10): 775~781(in Chinese with English abstract).

    • Li Shi. 1980. Geochemical features and petrogenesis of Miaoya carbonatites. Geochimica, (4): 345~355(in Chinese with English abstract).

    • Li Shi. 1991. Geochemistry and petrogenesis of the Shaxiongdong carbonatite complex, Hubei Province. Geochimica, 3: 245~254 (in Chinese with English abstract).

    • Li Xiaochun, Zhang Yunxiang, Fan Hongrui, Yang Kuifeng. 2022. The REE mineralization and remobilization history of the giant Bayan Obo deposit, Inner Mongolia, China: Constraint from in-situ Sm-Nd isotopes of REE minerals. Acta Petrologica Sinica, 38(10): 2920~2932(in Chinese with English abstract).

    • Li Yujin. 1989. The establishment of the Lower Silurian Taohekou Formation and its relationship with the Doushangou Formation and the Baiyaya Formation in Langao County of Shaanxi. Geology of Shaanxi, 7(2): 7~14(in Chinese with English abstract).

    • Liégeois J P, Navez J, Hertogen J, Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids: The use of sliding normalization. Lithos, 45(1~4): 1~28.

    • Ling Wenli, Ren Bangfang, Duan Ruichun, Liu Xiaoming, Mao Xinwu, Peng Lianhong, Liu Zaoxue, Cheng Jianping, Yang Hongmei. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Science Bulletin, 53(14): 2192~2199.

    • Liu Wanliang, Liu Chengxin, Yang Cheng, Wan Jun, Chen Mi, Guo Pan, Liu Hongxian, Zhu Zhengyong. 2015. Geological characteristics and prospecting potential ofniobium ore of Tianbao area, Zhuxi, southern Qinling. Resources Environment & Engineering, 29(6): 779~784 (in Chinese with English abstract).

    • Luo Kunli, Duanmu Heshun. 2001. Timing of Early Paleozoic basic igneous rocks in the Daba Mountains. Regional Geology of China, 20(3): 262~266 (in Chinese with English abstract).

    • Ma G S K, Malpas J, Xenophontos C, Chan G H N. 2011. Petrogenesis of latest Miocene-Quaternary continental intraplate volcanism along the northern dead sea fault system (Al ghab-homs volcanic field), western Syria: Evidence for lithosphere-asthenosphere interaction. Journal of Petrology, 52(2): 401~430.

    • Marks M A W, Schilling J, Coulson I M, Wenzel T, Markl G. 2018. The alkaline-peralkaline Tamazeght complex, high Atlas Mountains, Morocco: Mineral chemistry and petrological constraints for Derivation from a compositionally heterogeneous mantle source. Journal of Petrology, 49(6): 1097~1131.

    • McDonough W F, Sun S S. 1995. The composition of the earth. Chemical Geology, 120(3~4): 223~253.

    • Médard E, Schmidt M W, Schiano P, Ottolini L. 2006. Melting of amphibole-bearing wehrlites: An experimental study on the origin of ultra-calcic nepheline-normative melts. Journal of Petrology, 47(3): 481~504.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth Science Review, 37: 215~224.

    • Mo Xuanxue. 2011. Magma and magmatic/igneous rocks: A lithoprobe into the deep earth and records of the earth's evolution. Chinese Journal of Nature, 33(5): 255~259+313 (in Chinese with English abstract).

    • Minh P, Hieu P T, Hoang N K. 2018. Geochemical and geochronological studies of the Muong Hum alkaline granitic pluton from the Phan Si Pan zone, Northwest Vietnam: Implications for petrogenesis and tectonic setting. Island Arc, 27: e12250.

    • Nie Xiao, Wang Zongqi, Chen Lei, Yin Jingwu, Wang Gang. 2021. Monazites reveal timing and genesis of Nb-REE mineralization in trachyte from the Pingli area, North Daba Mountain, China. Geosciences Journal, 25(5): 605~617.

    • Niu Yaoling, O'Hara M J. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research Solid Earth, 108: 2209~2228.

    • Panter K S, Castillo P, Krans S, Deering C, McIntosh W, Valley J W, Kitajima K, Kyle P, Hart S, Blusztajn J. 2018. Melt origin across a rifted continental margin: A case for subduction-related metasomatic agents in the lithospheric source of alkaline basalt, NW Ross Sea, Antarctica. Journal of Petrology, 59(3): 517~558.

    • Pfänder J A, Jung S, Münker C, Stracke A, Mezger K. 2012. A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget-evidence from continental basalts from Central Germany. Geochimica et Cosmochimica Acta, 77: 232~251.

    • Pilet S, Baker M B, Stolper E M. 2008. Metasomatized lithosphere and the origin of alkaline lavas. Science, 320(5878): 916~919.

    • Pilet S, Baker M B, Müntener O, Stolper E M. 2011. Monte Carlosimulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. Journal of Petrology, 52(7~8): 1415~1442.

    • Prelević D, Foley S F. 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth and Planetary Science Letters, 256(1~2): 120~135.

    • Prytulak J, Elliott T. 2007. TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters, 263(3~4): 388~403.

    • Qin Jiangfeng, Lai Shaocong, Long Xiaoping, Zhang Zezhong, Ju Yinjuan, Zhu Renzhi, Wang Xingying, Li Yongfei, Wang Jiangbo, Li Tong. 2021. Thermotectonic evolution of the Paleozoic granites along the Shangdan suture zone (central China): Crustal growth and differentiation by magma underplating in an orogenic belt. Geological Society of America Bulletin, 133(3~4): 523~538.

    • Qin Zhengwei, Wu Yuanbao, Siebel W, Gao Shan, Wang Hao, Abdallsamed M I M, Zhang Wenxiang, Yang Saihong. 2015. Genesis of adakitic granitoids by partial melting of thickened lower crust and its implications for early crustal growth: A case study from the Huichizi pluton, Qinling Orogen, central China. Lithos, 238: 1~12.

    • Qiu Jiaxiang. 1993. Alkaline rocks in Qinling and Dabashan. Beijing: Geologucal Publishing House, 1~183(in Chinese).

    • Ren Kangxu. 2003. Sdudy progress of the alkaline rocks: A review. Geology of Chemical Minerals, 25(3): 151~163(in Chinese with English abstract).

    • Rooney T O, Nelson W R, Ayalew D, Hanan B, Yirgu G, Kappelman J. 2017. Melting the lithosphere: Metasomes as a source for mantle-derived magmas Earth and Planetary Science Letters, 461: 105~118.

    • Rudnick R L, Gao Shan. 2003. Composition of the continental crust. In: Heinrich D H, Turekian K K, eds. Treatise on Geochemistry. Oxford: Pergamon, 1~64.

    • Shaw D M. 1970. Trace element fractionation during anatexis. Geochimicaet Cosmochimica Acta, 34(2): 237~243.

    • Sobolev A V, Hofmann A W, Sobolev S V, Nikogosian I K. 2005. An olivine-free mantle source of Hawaiian shield basalts. Nature, 434: 590~597.

    • Song Wenlei, Xu Cheng, Wang Linjun, Wu Min, Zeng Liang, Wang Lize, Feng Meng. 2013. Review of the metallogenesis of the endogenetic rare rlement elements deposits related to carbonatite-alkaline complex. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(4): 725~740(in Chinese with English abstract).

    • Song Wenlei, Xu Cheng, Smith M P, Chakhmouradian A R, Brenna M, Kynický J, Chen Wei, Yang Yueheng, Deng Miao, Tang Haiyan. 2018. Genesis of the world's largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over ~1 b. y. Geology, 46(4): 323~326.

    • Spera F J, Bohrson W A. 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization

    • (EC-AFC) formulation. Journal of Petrology, 42(5): 999~1018.

    • Spilliaert N, Allard P, Métrich N, Sobolev A V. 2006. Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research: Solid Earth, 111: B04203.

    • Su Jianhui, Zhao Xinfu, Li Xiaochun, Hu Wei, Chen Mi, Xiong Yilin. 2019. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite. Ore Geology Reviews, 113: 103101.

    • Su Jianhui, Zhao Xinfu, Li Xiaochun, Su Zhikun, Liu Rui, Qin Zhijun, Chen Mi. 2021. Fingerprinting REE mineralization and hydrothermal remobilization history of the carbonatite-alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals. American Mineralogist, 106(10): 1545~1558.

    • Su Jianhui, Zhao Xinfu, Li Xiaochun, Hu Wei, Chen Wei, Slezak P. 2022. Unmixing of REE-Nb enriched carbonatites after incremental fractionation of alkaline magmas in the Shaxiongdong complex, Central China. Lithos, 416~417: 106651.

    • Sun Jinfeng, Yang Jinhui, Wu Fuyuan. 2009. Application of in-situ isotopic analysis to granite genesis. Earth Science Frontiers, 16(2): 129~139(in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tappe S, Foley S F, Jenner G A, Heaman L M, Kjarsgaard B A, Romer R L, Stracke A, Joyce N, Hoefs J. 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology, 47(7): 1261~1315.

    • Tappe S, Romer R L, Stracke A, Steenfelt A, Smart K A, Muehlenbachs K, Torsvik T H. 2017. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth and Planetary Science Letters, 466: 152~167.

    • VanTongeren J A, Mathez E A. 2012. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa. Geology, 40(6): 491~494.

    • Veksler I V, Petibon C, Jenner G A, Dorfman A M, Dingwell D B. 1998. Trace element partitioning in immiscible silicate-carbonate liquid systems: An initial experimental study using a centrifuge autoclave. Journal of Petrology, 39(11~12): 2095~2104.

    • Walter M J. 1998. Melting ofgarnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1): 29~60.

    • Wan Jun, Liu Chengxin, Yang Cheng, Liu Wanliang, Li Xiongwei, Fu Xiaojuan, Liu Hongxian. 2016. Geochemical characteristics and LA-ICP-MS zircon U-Pb age of the trachytic volcanic rocks in Zhushan area of southern Qinling Mountains and their significance. Geological Bulletin of China, 35(7): 1134~1143(in Chinese with English abstract).

    • Wang Cunzhi, Yang Kunguang, Xu Yang, Cheng Wanqiang. 2009. Geochemistry and LA-ICP-MS zircon U-Pb age of basic dike swarms in North Daba Mountains and its tectonic significance. Geological Science and Technology Information, 28(3): 19~26(in Chinese with English abstract).

    • Wang Gang. 2014. Metallogeny of the Mesozoic and Paleozoic volcanic igneous event in Ziyang-Langao areas, North Daba Mountain. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wang Ke, Wang Lianxun, Ma Changqian, Zhu Yuxiang, She Zhenbing, Deng Xin, Chen Qi. 2021. Mineralogy and geochemistry of the Zhuxi Nb-rich trachytic rocks, South Qinling (China): Insights into the niobium mineralization during magmatic-hydrothermal processes. Ore Geology Reviews, 138: 104346.

    • Wang Kunming. 2014. Research on the petrogenesis, tectonic and metallogeny for mafic rocks in the Ziyang-Langao area, Shaanxi province. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Wang Kunming, Wang Zongqi, Zhang Yingli, Wang Gang. 2015. Geochronology and geochemistry of mafic rocks in the Xuhe, Shaanxi, China: Implications for petrogenesis and mantle dynamics. Acta Geologica Sinica (English Edition), 89(1): 187~202.

    • Wang Ruirui, Xu Zhiqin, Santosh M, Liang Fenghua, Fu Xuehai. 2017. Petrogenesis and tectonic implications of the Early Paleozoic intermediate and mafic intrusions in the South Qinling Belt, Central China: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes. Tectonophysics, 712~713: 270~288.

    • Wang Xiaowei. 2014. Geochemical characteristics and geological significance of the volcanic rocks from Mianlue suture zone (Zhongtanggou-Guozhen), South Qinling. Master thesis of Chang'an University (in Chinese with English abstract).

    • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1~2), 53~72.

    • Xia Linqi, Xia Zuchun, Zhang Cheng, Xu Xueyi. 1994. Petrogeochemistry of Alkali Basic, Ultrabasic Subvolcanic Complex from Northern Daba Mountain, China. Beijing: Geological Publishing House, 1~80(in Chinese).

    • Xia Linqi, Xia Zuchun, Li Xiangmin, Ma Zhongping, Xu Xueyi. 2008. Petrogenesis of the Yaolinghe Group, Yunxi Group, Wudangshan Group volcanic rocks and basic dyke swarms from eastern part of the South Qinling Mountains. Northwestern Geology, 41(3): 1~29(in Chinese with English abstract).

    • Xiang Zhongjin, Yan Quanren, Yan Zhen, Wang Zongqi, Wang Tao, Zhang Yingli, Qin Xiaofeng. 2010. Facies succession and architecture of volcaniclastic rocks of the Taohekou Formation: Implication for Early Silurian volcanism in the North Dabashan area, China. Acta Geologica Sinica, 84(3): 311~328(in Chinese with English abstract).

    • Xiang Zhongjin, Yan Quanren, Song Bo, Wang Zongqi. 2016. New evidence for the ages of ultramafic to mafic dikes and alkaline volcanic complexes in the North Daba Mountains and its geological implication. Acta Geologica Sinica, 90(5): 896~916 (in Chinese with English abstract).

    • Xiong Yilin, Zhong Shiyu, Li Zhigang, Huang Jingmeng, Lu Xiansong, Du Yichao, Wu Enzheng, Li Zhonglin, Zhao Shenggui, Zhu Zhengyong. 2018. Geological characteristics and prospecting potential of niobium-tantalum deposit in the Tudiling area, Zhushan. Resources Environment and Engineering, 32(S1): 1~7+43(in Chinese with English abstract).

    • Xu Cheng, Campbell I H, Allen C M, Chen Yanjing, Huang Zhilong, Qi Liang, Zhang Guishan, Yan Zaifei. 2008. U-Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 105(1~2): 118~128.

    • Xu Cheng, Kynicky J, Chakhmouradian A N, Campbell I H, Campbell C M. 2010. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China. Lithos, 118(1~2): 145~155.

    • Xu Cheng, Chakhmouradian A R, Taylor R N, Kynicky J, Li Wenbo, Song Wenlei, Fletcher I R. 2014. Origin of carbonatites in the South Qinling Orogen: Implications for crustal recycling and timing of collision between the South and North China blocks. Geochimica et Cosmochimica Acta, 143: 189~206.

    • Xu Tong, Zhang Xiaotuan, Jiao Jiangang, Zhang Hongqiang, Jia Li. 2020. The subduction of Neoproterozoic Ocean in the Mianlue tectonic zone: Evidence from zircon U-Pb age and Lu-Hf isotopes from volcanic rocks in the Zhifanggou tectonic slice, Lueyang area. Acta Geologica Sinica, 94(12): 3607~3624(in Chinese with English abstract).

    • Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1996. Characteristics of phlogopite-amphibole pyroxenite xenoliths from Langao County, Shaanxi Province. Acta Petrologiga et Mineralogica, 15(3): 193~202(in Chinese with English abstract).

    • Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1997. Phlogopite-amphibole-pyroxenite xenoliths in Langao, Shaanxi Province: Evidences for mantle metasomatism. Acta Petrologica Sinica, 13(1): 1~13(in Chinese with English abstract).

    • Xu Xueyi, Huang Yuehua, Xia Linqi, Xia Zuchun. 1999. Features of the Early Palaeozoic mantle beneath Langao County and its formation mechanism. Acta Geologica Sinica-English Edition, 73(3): 356~365.

    • Yang Cheng, Liu Chengxin, Liu Wanliang, Wan Jun, Duan Xianfeng, Zhang Zhong. 2017. Geochemical characteristics of trachyte and Nb mineralization process in Tianbao Township, Zhuxi County, Southern Qinling. Acta Petrologica et Mineralogica, (36)5: 605~618(in Chinese with English abstract).

    • Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhang Fangyi, Zhu Renzhi, Zhu Yu, Liu Min, Zhao Shaowei, Zhang Zezhong. 2022. Petrogenetic evolution of Early Paleozoic trachytic rocks in the South Qinling Belt, Central China: Insights from mineralogy, geochemistry, and thermodynamic modeling. Lithos, 418~419: 106683.

    • Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Zhu Yu, Zhang Fangyi, Zhang Zezhong, Wang Xingying. 2021. Early Palaeozoic alkaline trachytes in the North Daba Mountains, South Qinling Belt: Petrogenesis and geological implications. International Geology Review, 63(16): 2037~2056.

    • Yang Hang, Lai Shaocong, Qin Jiangfeng. 2021. Geochemical characteristics of alkali trachytes in Ziyang-Langao area, North Daba Mountains and petrogenetic relation with the diabases. Geotectonica et Metallogenia, 45(2): 413~424(in Chinese with English abstract).

    • Yang Hang, Lai Shaocong, Qin Jiangfeng, Zhang Fangyi, Zhu Renzhi, Zhu Yu, Liu Min, Zhao Shaowei, Yang Zhen. 2023. Geochronology, geochemical and Sr-Nd-Pb isotope of syenites in the North Daba Mountains, South Qinling belt: Constraints on petrogenetic evolution and tectonic implication. Journal of Earth Science. https: //doi. org/10. 1007/s12583-022- 1784-0. http: //en. earth-science. net.

    • Yang Kuifeng, Fan Hongrui, Pirajno F, Li Xiaochun. 2019. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite. Geology, 47(12): 1198~1202.

    • Yang Yizeng, Wang Yan, Siebel W, Zhang Yuanshuo, Chen Fukun. 2020. Zircon U-Pb-Hf, geochemical and Sr-Nd-Pb isotope systematics of Late Mesozoic granitoids in the Lantian-Xiaoqinling region: Implications for tectonic setting and petrogenesis. Lithos, 374~375: 105709.

    • Yang Yueheng, Sun Jinfeng, Xie Liewen, Fan Hongrui, Wu Fuyuan. 2008. In situ Nd isotopic measurement of natural geological materials by LA-MC-ICPMS. Chinese Science Bulletin, 53(7): 1062~1070.

    • Yang Yueheng, Wu Fuyuan, Yang Jinhui, Chew D M, Xie Liewen, Chu Zhuyin, Zhang Yanbin, Huang Chao. 2014. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chemical Geology, 385: 35~55.

    • Yaxley G M, Green D H, Kamenetsky V. 1998. Carbonatite metasomatism in the southeastern Australian lithosphere. Journal of Petrology, 39(11~12): 1917~1930.

    • Yi Pengfei, Zhang Yafeng, Zhang Geli, Yang Tao, Yao Zheng, Li Qi, Gao Haifeng. 2017. LA-ICP-MS zircon U-Pb ages, geochemical characteristics of Zaomulan granitic pluton in Southern Qinling Orogenic Belt and their geological implications. Geological Review, 63(6): 1479~1511(in Chinese with English abstract).

    • Ying Yuancan, Chen Wei, Lu Jue, Jiang Shaoyong, Yang Yueheng. 2017. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China. Lithos, 290~291: 159~171.

    • Ying Yuancan, Chen Wei, Simonetti A, Jiang Shaoyong, Zhao Kuidong. 2020. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochim Cosmochim Acta, 280: 340~359.

    • Ying Yuancan. 2018. Geochronology and geochemistry of the Miaoya carbonatite complex (Hubei Province): Implications for petrogenesis and metallogenesis. Master thesis of China University of Geosciences (in Chinese with English abstract).

    • Yoder H S. 1973. Contemporaneous basaltic and rhyolitic magmas. American Mineralogist, 58(3~4): 153~171.

    • Zhang Chengli, Gao Shan, Yuan Honglin, Zhang Guowei, Yan Yunxiang, Luo Jinglan, Luo Jinhai. 2007. Sr-Nd-Pb isotopes of the Early Paleozoic mafic-ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition. Science in China Series D: Earth Sciences, 50(9): 1293~1301.

    • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R. 1999. The finero phlogopite-peridotite massif: An example of subduction-related metasomatism. Contributions to Mineralogy and Petrology, 134(2): 107~122.

    • Zanetti A, Vannucci R, Bottazzi P, Oberti R, Ottolini L. 1996. Infiltration metasomatism at Lherz as monitored by systematic ion-microprobe investigations close to a hornblendite vein. Chemical Geology, 134(1~3): 113~133.

    • Zhang Chengli, Gao Shan, Zhang Guowei, Liu Xiaoming, Yu Zaiping. 2003. Geochemistry of Early Paleozoic alkali dyke swarms in South Qinling and its geological significance. Science in China Series D: Earth Sciences, 46(12): 1292~1306.

    • Zhang Fangyi. 2022. The oxygen fugacity of mantle-derived magmas: constraints from olivine and clinopyroxene oxybarometers. Doctoral dissertation of Northwest University (in Chinese with English abstract).

    • Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Yang Hang, Zhu Yu. 2020a. Geochemical characteristics and geological significance of Early Paleozoic alkali diabases in North Daba Mountain. Acta Petrologica et Mineralogica, 39(1): 35~46(in Chinese with English abstract).

    • Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Yang Hang, Zhu Yu, Zhang Zezhong. 2020b. Magma source and evolution process of Early Paleozoic basalts in the South Qinling Belt. Acta Petrologica Sinica, 36(7): 2149~2162(in Chinese with English abstract).

    • Zhang Fangyi, Lai Shaocong, Qin Jiangfeng, Zhu Renzhi, Zhao Shaowei, Zhu Yu, Yang Hang. 2020. Vein-plus-wall rock melting model for the origin of Early Paleozoic alkali diabases in the South Qinling Belt, Central China. Lithos, 370~371: 105619.

    • Zhang Guowei, Meng Qingren, Yu Zaiping, Sun Yong, Zhou Dingwu, Guo Anlin. 1996. Orogenesis and dynamics of the Qinling Orogen. Science in China (Series D), 39(3): 225~234.

    • Zhang Guowei, Zhang Benren, Yuan Xuecheng, Xiao Qinghui. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1~855(in Chinese).

    • Zhang Guowei, Zhang Zongqing, Dong Yunpeng. 1995. Nature of Main tectono-lithostratigraphic units of the Qinling Orogen: Implications for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101~114(in Chinese with English abstract).

    • Zhang Hongluo, Hirschmann M M, Cottrell E, Withers A C. 2017. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochimica et Cosmochimica Acta, 204: 83~103.

    • Zhang Zongqing, Zhang Guowei, Tang Suohan, Wang Jinhui. 2002. The age of metamorphic rocks of the Wudang Group. Geology in China, 29(2): 117~125(in Chinese with English abstract).

    • Zhao Guochun, Hu Jianmin, Meng Qingren. 2003. Geochemistry of the basic sills in the western Wudang block: The evidences of the Paleozoic underplating in South Qinling. Acta Petrologica Sinica, 19(4): 612~622(in Chinese with English abstract).

    • Zhao Junhong, Asimow P D. 2018. Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc- and MORB-like dike swarms in South China. Journal of Petrology, 59(9): 1811~1844.

    • Zhu Jiang, Wang Lianxun, Peng Sanguo, Peng Lianhong, Wu Changxiong, Qiu Xiaofei. 2017. U-Pb zircon age, geochemical and isotopic characteristics of the Miaoya syenite and carbonatite complex, central China. Geological Journal, 52(6): 938~954.

    • Zhu Xiyan. 2008. Zircon U-Pb ages of volcanic and sedimentary rocks of the Wudang Group in the Qinling orogenic belt within western Henan Province. Acta Geoscientica Sinica, 29(6): 817~829(in Chinese with English abstract).

    • Zou Xianwu, Duan Qifa, Tang Chaoyang, Cao Liang, Cui Sen, Zhao Wuqiang, Xia Jie, Wang Lei. 2011. SHRIMP zircon U-Pb dating and lithogeochemical characteristics of diabase from Zhenping area in North Daba Mountain. Geology in China, 38(2): 282~291(in Chinese with English abstract).

    • 陈虹, 田蜜, 武国利, 胡健民. 2014. 南秦岭构造带内早古生代碱基性岩浆活动: 古特提斯洋裂解的证据. 地质论评, 60(6): 1437~1452.

    • 陈唯, 应元灿, 陆珏, 蒋少涌. 2020. 南秦岭碳酸岩杂岩体成岩成矿过程. 武汉: 中国地质大学出版社, 1~150.

    • 陈友章, 刘树文, 李秋根, 代军治, 张帆, 杨朋涛, 郭丽爽. 2010. 南秦岭岚皋基性火山岩的地质学、地球化学及其构造意义. 北京大学学报(自然科学版), 46(4): 607~619.

    • 黄月华. 1993. 岚皋碱性镁铁-超镁铁质潜火山杂岩中金云角闪辉石岩类地幔捕虏体矿物学特征. 岩石学报, 9(4): 367~378.

    • 黄月华, 任有祥, 夏林圻, 夏祖春, 张诚. 1992. 北大巴山早古生代双模式火成岩套: 以高滩辉绿岩和蒿坪粗面岩为例. 岩石学报, 8(3): 243~256.

    • 赖绍聪, 张国伟, 董云鹏, 裴先治, 陈亮. 2003. 秦岭-大别勉略构造带蛇绿岩与相关火山岩性质及其时空分布. 中国科学(D辑), 33(12): 1174~1183.

    • 李夫杰, 杨骏. 2011. 陕南镇巴东部地区基性岩墙群的构造意义. 四川理工学院学报(自然科学版), 24(2): 238~243.

    • 李怀坤, 陆松年, 陈志宏, 相振群, 周红英, 郝国杰. 2003. 南秦岭耀岭河群裂谷型火山岩锆石U-Pb年代学. 地质通报, 22(10): 775~781.

    • 李石. 1980. 湖北庙垭碳酸岩地球化学特征及岩石成因探讨. 地球化学, 9(4): 345~355.

    • 李石. 1991. 湖北杀熊洞碱性-碳酸岩杂岩体地球化学特征及其成因探讨. 地球化学, 3: 245~254.

    • 李晓春, 展云翔, 范宏瑞, 杨奎锋. 2022. 内蒙古白云鄂博矿床巨量稀土的堆积及再活化历史: 来自矿物微区Sm-Nd同位素的制约. 岩石学报, 38(10): 2920~2932.

    • 李育敬. 1989. 陕西岚皋下志留统滔河口组的建立及其与陡山沟组、白崖垭组关系的探讨. 陕西地质, 7(2): 7~14.

    • 凌文黎, 任邦方, 段瑞春, 柳小明, 毛新武, 彭练红, 刘早学, 程建萍, 杨红梅. 2007. 南秦岭武当山群、耀岭河群及基性侵入岩群锆石U-Pb同位素年代学及其地质意义. 科学通报, 52(12): 1445~1456.

    • 刘万亮, 刘成新, 杨成, 万俊, 陈觅, 郭盼, 刘虹显, 朱正勇. 2015. 南秦岭竹溪天宝一带铌矿地质特征及找矿前景分析. 资源环境与工程, 29(6): 779~784.

    • 雒昆利, 端木和顺. 2001. 大巴山区早古生代基性火成岩的形成时代. 中国区域地质, 20(3): 262~266.

    • 莫宣学. 2011. 岩浆与岩浆岩: 地球深部“探针”与演化记录. 自然杂志, 33(5): 255~259+313.

    • 邱家骧. 1993. 秦巴碱性岩. 北京: 地质出版社, 1~183.

    • 任康绪. 2003. 碱性岩研究进展述评. 化工矿产地质, 25(3): 151~163.

    • 宋文磊, 许成, 王林均, 吴敏, 曾亮, 王丽泽, 冯梦. 2013. 与碳酸岩碱性杂岩体相关的内生稀土矿床成矿作用研究进展. 北京大学学报(自然科学版), 49(4): 725~740.

    • 孙金凤, 杨进辉, 吴福元. 2009. 原位微区同位素分析在花岗岩成因研究中的应用. 地学前缘, 16(2): 129~139.

    • 万俊, 刘成新, 杨成, 刘万亮, 李雄伟, 付晓娟, 刘虹显. 2016. 南秦岭竹山地区粗面质火山岩地球化学特征, LA-ICP-MS锆石U-Pb年龄及其大地构造意义. 地质通报, 35(7): 1134~1143.

    • 汪晓伟. 2014. 南秦岭勉略构造带(中堂沟—郭镇段)火山岩岩石地球化学特征及其构造意义. 长安大学硕士学位论文.

    • 王存智, 杨坤光, 徐扬, 程万强. 2009. 北大巴基性岩墙群地球化学特征, LA-ICP-MS锆石U-Pb定年及其大地构造意义. 地质科技情报, 28(3): 19~26.

    • 王刚. 2014. 北大巴山紫阳-岚皋地区古生代火山岩浆事件与中生代成矿作用. 中国地质大学(北京)博士学位论文.

    • 王坤明. 2014. 陕西紫阳—岚皋地区镁铁质岩岩石成因、构造环境及成矿作用研究. 中国地质科学院博士学位论文.

    • 夏林圻, 夏祖春, 张诚, 徐学义. 1994. 北大巴山碱质基性-超基性潜火山岩石地球化学. 北京: 地质出版社.

    • 夏林圻, 夏祖春, 李向民, 马中平, 徐学义. 2008. 南秦岭东段耀岭河群、陨西群、武当山群火山岩和基性岩墙群岩石成因. 西北地质, 41(3): 1~29.

    • 向忠金, 闫全人, 闫臻, 王宗起, 王涛, 张英利, 覃小锋. 2010. 北大巴山志留系滔河口组火山碎屑岩相序, 组构特征及古火山作用环境分析. 地质学报, 84(3): 311~328.

    • 向忠金, 闫全人, 宋博, 王宗起. 2016. 北大巴山超基性, 基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义. 地质学报, 90(5): 896~916.

    • 熊意林, 钟石玉, 李志刚, 黄景孟, 鲁显松, 杜翌超, 吴恩政, 李忠林, 赵生贵, 朱正勇. 2018. 竹山土地岭一带铌钽矿床地质特征及找矿前景分析. 资源环境与工程, 32(S1): 1~7+43.

    • 徐通, 张晓团, 焦建刚, 张红强, 贾力. 2020. 勉略构造带新元古代洋盆俯冲作用: 来自略阳地区纸房沟岩片火山岩锆石U-Pb年龄和Lu-Hf同位素的证据. 地质学报, 94(12): 3607~3624.

    • 徐学义, 黄月华, 夏林圻, 夏祖春. 1996. 岚皋金云角闪辉石岩类捕虏体特征. 岩石矿物学杂志, 15(3): 193~202.

    • 徐学义, 黄月华, 夏林圻, 夏祖春. 1997. 岚皋金云角闪辉石岩类捕虏体: 地幔交代作用的证据. 岩石学报, 13(1): 1~13.

    • 杨成, 刘成新, 刘万亮, 万俊, 段先锋, 张众. 2017. 南秦岭竹溪县天宝乡粗面岩地球化学特征与铌成矿. 岩石矿物学杂志, (36)5: 605~618.

    • 杨航, 赖绍聪, 秦江锋. 2021. 北大巴山紫阳-岚皋地区碱性粗面岩地球化学特征: 与本区辉绿岩的成因联系. 大地构造与成矿学, 45(2): 413~424.

    • 易鹏飞, 张亚峰, 张革利, 杨涛, 姚征, 李琦, 高海峰. 2017. 南秦岭枣木栏岩体LA-ICP-MS锆石U-Pb年龄、岩石地球化学特征及其地质意义. 地质论评, 63(6): 1479~1511.

    • 应元灿. 2018. 湖北庙垭碳酸岩杂岩体年代学和地球化学特征及成岩成矿过程. 中国地质大学硕士学位论文.

    • 张成立, 高山, 张国伟, 柳小明, 于在平. 2002. 南秦岭早古生代碱性岩墙群的地球化学及其地质意义. 中国科学(D辑: 地球科学), 32(10): 819~829.

    • 张成立, 高山, 袁洪林, 张国伟, 晏云翔, 罗静兰, 罗金海. 2007. 南秦岭早古生代地幔性质: 来自超镁铁质, 镁铁质岩脉及火山岩的Sr-Nd-Pb同位素证据. 中国科学(D辑: 地球科学), 37(7): 857~865.

    • 张方毅. 2022. 幔源岩浆的氧逸度: 来自橄榄石和单斜辉石氧逸度计的约束. 西北大学博士学位论文.

    • 张方毅, 赖绍聪, 秦江锋, 朱韧之, 杨航, 朱毓. 2020a. 大巴山早古生代辉绿岩地球化学特征及其地质意义. 岩石矿物学杂志, 39(1): 35~46.

    • 张方毅, 赖绍聪, 秦江锋, 朱韧之, 赵少伟, 杨航, 朱毓, 张泽中. 2020b. 南秦岭早古生代玄武岩的岩浆源区及演化过程. 岩石学报, 36(7): 2149~2162.

    • 张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101~114.

    • 张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学(D辑: 地球科学), 26(3): 193~200.

    • 张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1~855.

    • 张宗清, 张国伟, 唐索寒, 王进辉. 2002. 武当群变质岩年龄. 中国地质, 29(2): 117~125.

    • 赵国春, 胡健民, 孟庆任. 2003. 武当地块西部席状基性侵入岩群地球化学特征: 南秦岭古生代底侵作用的依据. 岩石学报, 19(4): 612~622.

    • 祝禧艳, 陈福坤, 王伟, Pham T H, 王芳, 张福勤. 2008. 豫西地区秦岭造山带武当群火山岩和沉积岩锆石U-Pb年龄. 地球学报, 29(6): 817~829.

    • 邹先武, 段其发, 汤朝阳, 曹亮, 崔森, 赵武强, 夏杰, 王磊. 2011. 北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征. 中国地质, 38(2): 282~291.