en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

闫兵,男,1987年生。博士,讲师,主要从事青藏高原及周缘构造地貌研究。E-mail:bingyan@hhu.edu.cn。

参考文献
Babault J, Bonnet S, Van Den Driessche J, Crave A. 2007. High elevation of low-relief surfaces in mountain belts: Does it equate to post-orogenic surface uplift? Terra Nova, 19(4): 272~277.
参考文献
Bonnet S. 2009. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nature Geoscience, 2(12): 897~897.
参考文献
Chen Hanlin, Luo Juncheng, Guo Qunying, Liao Lin, Xiao Zhongyao, Cheng Xiaogan, Yang Shufeng, Wang Buqing. 2009. Deformation history and tectonic evolution of southeastern Tarim basin in Mesozoic and Cenozoic. Geotectonica et Metallogenia, 33(1): 38~45 (in Chinese with English abstract).
参考文献
Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006.
参考文献
Clift P D, Blusztajn J, Nguyen A D. 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi basin, Vietnam. Geophysical Research Letters, 33(19): L19403.
参考文献
Gooley J T, Nieminski N M. 2022. Detrital zircon provenance of the Cretaceous-Neogene East Coast Basin reveals changing tectonic conditions and drainage reorganization along the Pacific margin of Zealandia. Geosphere, 18: 616~646.
参考文献
Graveleau F, Hurtrez J E, Dominguez S, Malavieille J. 2011. A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics, 513(1-4): 68~87.
参考文献
Graveleau F, Malavieille J, Dominguez S. 2012. Experimental modelling of orogenic wedges: A review. Tectonophysics, 538-540: 1~66.
参考文献
Graveleau F, Strak V, Dominguez S, Malavieille J, Chatton M, Manighetti I, Petit C. 2015. Experimental modelling of tectonics-erosion-sedimentation interactions in compressional, extensional, and strike-slip settings. Geomorphology, 244: 146~168.
参考文献
Guerit L, Dominguez S, Malavieille J, Castelltort S. 2016. Deformation of an experimental drainagenetwork in oblique collision. Tectonophysics, 693, Part B: 210~222.
参考文献
Hubert-Ferrari A, Armijo R, King G, Meyer B, Barka A. 2002. Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth, 107(B10): 2235.
参考文献
Jia Chengzao, Li Benliang, Lei Yongliang, Chen Zhuxin. 2013. The structure of the circum-Tibetan Plateau basin-range system and the large gas provinces. Science China: Earth Sciences, 56: 1853~1863 (in Chinese with English abstract).
参考文献
Kong Ping, Zheng Yong, Caffee M W. 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 13(6): Q06017.
参考文献
Li Benliang, Jia Chengzao, Pang Xiongqi, Guan Shuwei, Yang Geng, Shi Xin, Li Chuanxin. 2007. The spatial distribution of the foreland thrust tectonic deformation in the circum-Tibetan Plateau basin and range system. Acta Geologica Sinica, 81(9): 1200~1207 (in Chinese with English abstract).
参考文献
Ma Zifa, Zhang Huiping, Wang Yizhou, Tao Yaling, Li Xuemei. 2020. Inversion of Daduriver bedrock channels for the late Cenozoic uplift history of the eastern Tibetan Plateau. Geophysical Research Letters, 47(4): e2019GL086882.
参考文献
Paola C, Mullin J, Ellis C, Mohrig D C, Swenson J B, Parker G, Hickson T, Heller P L, Pratson L, Syvitski. 2001. Experimental Stratigraphy. GSA today, 11(7): 4~9.
参考文献
Rohais S, Bonnet S, Eschard R. 2012. Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment-fan system. Basin Research, 24(2): 198~212.
参考文献
Smale D. 1991. Provenance changes and movement on the Alpinefault indicated by heavy minerals from Cretaceous-Cenozoic sediments in south Westland. Journal of the Royal Society of New Zealand, 21(2): 151~160.
参考文献
Sutherland R. 1994. Displacement since the Pliocene along the southern section of the Alpine fault, New Zealand. Geology, 22(4): 327~330.
参考文献
Viaplana-Muzas M, Babault J, Dominguez S, Van Den Driessche J, Legrand X. 2019. Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt. Basin Research, 31(2): 290~310.
参考文献
Walker F, Allen M B. 2012. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan fault, Iran. Tectonophysics, 530-531: 251~263.
参考文献
Wang Huilin, Gurnis M, Skogseid J. 2020. Continent-wide drainage reorganization in North America driven by mantle flow. Earth and Planetary Science Letters, 530: 115910.
参考文献
Yan Bing, Lin Aiming. 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe fault zone, Tibetan Plateau. Journal of Geodynamics, 87: 13~25.
参考文献
Yan Bing, Jia Dong, Wang Maomao. 2023. Drainage development on the northern Tibetan Plateau controlled by the Altyn Taghfault: Insights from analog modeling. Earth Surface Processes and Landforms (accepted).
参考文献
Yin An, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Qing, Zhou Xianqiang, Wang Xiaofeng, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10): 1257~1295.
参考文献
Yue Yongjun, Ritts B D, Graham S A. 2001. Initiation and long-term slip history of the Altyn Tagh fault. International Geology Review, 43(12): 1087~1093.
参考文献
Yue Yongjun, Ritts B D, Graham S A, Wooden J L, Gehrels G E, Zhang Zhicheng. 2004. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters, 217(1-2): 111~122.
参考文献
Zheng Hongbo, Clift P D, Wang Ping, Tada R, Jia Juntao, He Mengying, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556~7561.
参考文献
Zheng Hongbo, Clift P D, He Mengying, Bian Zixuan, Liu Gaozheng, Liu Xiaochun, Xia Lei, Yang Qing, Jourdan F. 2020. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China. Geology, 49(1): 35~39.
参考文献
陈汉林, 罗俊成, 郭群英, 廖林, 肖中尧, 程晓敢, 杨树锋, 王步清. 2009. 塔里木盆地东南缘中新生代变形史与构造演化. 大地构造与成矿学, 33(1): 38~45.
参考文献
贾承造, 李本亮, 雷永良, 陈竹新. 2013. 环青藏高原盆山体系构造与中国中西部天然气大气区. 中国科学: 地球科学, 43(10): 1621~1631.
参考文献
李本亮, 贾承造, 庞雄奇, 管树巍, 杨庚, 石昕, 李传新. 2007. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律. 地质学报, 81(9): 1200~1207.
目录contents

    摘要

    以走滑断层为边界的隆升剥蚀区和山前沉积区组合是盆山体系的重要类型之一。由于走滑断层两盘不断发生相对滑动,因此走滑断层两侧的源区和沉积区之间的空间关系随走滑运动不断发生变化。走滑断层两侧的源-汇系统之间的耦合机制是一个有待研究的问题。针对这一问题,本文设计了一个简化的构造地貌砂箱实验,用来揭示源区特定母岩的沉积物分布特征以及两者之间的时空关系。实验结果表明,特定母岩在沉积区的沉积信号分布范围受包括山前洪积扇形态、岩体在流域内的分布等多种因素影响。由于洪积扇向沉积区呈扇状展开的形态特征,沉积信号在离走滑断层更远的位置分布范围更宽。当一个岩体分布在不同流域内时,其沉积物分布在两个洪积扇内,从而使其沉积信号分布范围更宽。相反,规模较小的洪积扇会被相邻较大的洪积扇限制形态从而使得沉积范围变窄。由于上述原因,在利用沉积信号和岩体之间的错开距离计算获得的走滑速率,可能会低估或者高估真实的走滑速率。本文的实验为研究以走滑断层为边界的盆山耦合系统及其源-汇体系提供了重要的模型参考。

    Abstract

    The combination of uplift denudation area and piedmont depositional area bounded by strike-slip fault is one of the important types of basin-mountain system. Due to the continuous relative slip between the two plates of the strike-slip fault, the spatial relationship between the source and sedimentary area on both sides of the strike-slip fault constantly changes as the fault slips. The coupling mechanism between source and sedimentary systems on both sides of the strike-slip fault needs to be investigated. Towards this end, a simplified geomorphic sandbox experiment was designed to reveal the distribution of sediment eroded from the intrusive bodies in the source area. The experimental results showed that the distribution area of the sedimentary signal of the intrusive bodies in the sedimentary area was affected by many factors, including the shape of the piedmont alluvial fan and the distribution of the intrusive bodies in different drainages. Due to the fan-shaped development of the alluvial sediment, the sedimentary signals were distributed in a wider range further away from the strike-slip fault. When the same intrusive bodies were distributed in different drainage basins, its sediment was distributed in two alluvial fans, which makes its sedimentary signal distribution range wider. Conversely, the sedimentary area of an alluvial fan became narrower when restricted by larger adjacent fans. Due to the above relationships, the calculated strike-slip rate might be underestimated or overestimated using the offset amount between the strata with sedimentary signal and the source intrusive body. The experiment in this paper provide an important model for studying the source-to-sink system bounded by strike-slip faults.

  • 构造活动区域的大规模构造变形能够造成流域的大范围重组(Clark et al.,2004; Wang Huilin et al.,2020)。因此,通过下游沉积物揭示的源区变化可以反映流域的演化历史和区域构造变形过程(Clift et al.,2006; Zheng Hongbo et al.,2013; Ma Zifa et al.,2020)。例如,长江在袭夺红河上游的过程中,导致长江和红河下游沉积物同位素特征的变化(Clift et al.,2006; Kong Ping et al.,2012; Zheng Hongbo et al.,2020)。走滑活动断层是重要的活动构造类型之一。由于走滑断层两盘的持续滑动,源区和沉积区的相对位置也在不断发生变化。根据河流在走滑断层两盘是否发育稳定河道,源区和沉积区的对应关系及其演化也具有不同的特点。当河流在断层两盘具有稳定的基岩河道时,随着走滑断层的持续滑动,河道会持续累积位错量,直至发生河流袭夺(Hubert-Ferrari et al.,2002; Walker and Allen,2012; Yan Bing and Lin Aiming,2015)。河流袭夺会造成原先相关联的物源区和沉积区中断联系。这一源区的突变会被沉积地层所记录,因而能够成为判断断层大规模走滑活动的依据。例如,Hubert-Ferrari et al.(2002)在调查北安纳托利亚断裂的大规模水系位错时发现,河流发生袭夺会造成原先的沉积盆地失去水源,进而导致沉积过程中断。而当走滑断层两侧为盆山关系时,河流下游为冲洪积扇,没有相对稳定的河道,同一个洪积扇的沉积随着走滑断层的活动而不断发生时空变化,其沉积物和源区信号也随之变化。例如,Yue Yongjun et al.(2001)在调查青藏高原北缘阿尔金走滑断裂带北侧索尔库里盆地的物源变化时发现,随着阿尔金走滑断裂的持续活动,其源区由北祁连山逐渐变为中-南祁连山,这成为判断阿尔金断裂带走滑量和长期滑动速率的重要地质依据。然而,现今研究的走滑断层两侧源区和沉积区之间的空间关系是一个静态结果,两者在演化过程中相互作用所遵循的规律和主控因素仍不明确。针对这一问题,本研究设置了一个侵蚀砂箱实验,并采用了模拟示踪的实验方法来探讨源区母岩在沉积区的信号反馈。本文旨在深入研究走滑断层相关源-汇体系的时空变化规律,并探讨其控制机制。

  • 1 研究方法

  • 砂箱物理模拟实验是地质学领域一种传统有效的正演模拟方法。利用细颗粒材料和降雨系统进行的构造地貌物理模拟实验(也被称为侵蚀砂箱)被用于研究造山带构造隆升、气候、地表过程之间的相互作用(Bonnet,2009; Graveleau et al.,2012; Yan Bing et al.,2023)。该方法在研究剥蚀和沉积的耦合关系方面也有大量的研究应用(Babault et al.,2007; Rohais et al.,2012; Viaplana-Muzas et al.,2019)。Babault et al.(2007)利用硅质黏土研究了造山带地势起伏对山前沉积的响应。Rohais et al.(2012)利用硅质黏土研究了冲洪积扇沉积过程对气候和构造响应过程的区别。本研究采用一种由硅微粉、玻璃微珠、聚氯乙烯(PVC)粉等粉末制成的饱水复合黏土(Graveleau et al.,2011)。Graveleau et al.(2011)发明的这种饱水复合黏土能够模拟沉积物的剥蚀、搬运和堆积过程,形成与自然界具有可比性的各种河流地貌,并利用这一材料实现了对造山带河流阶地、冲洪积扇等地貌-物质演化过程的模拟(例如Graveleau et al.,2015; Guerit et al.,2016)。本文参考这一复合黏土材料并加以改进,用以模拟走滑断层两侧的源区剥蚀和沉积区沉积的动态构造地貌演化过程。

  • 1.1 实验设置

  • 本文设置了一个简化模型来探讨源区特殊类型的母岩在走滑断层相关的沉积区中的时空演化特征(图1)。实验整体设置在一个斜坡上,可以斜向上滑动。实验箱一面的侧板固定,并且连接宽度为110 mm的水平平台,用于接收被剥蚀并搬运下来的物质发生沉积,代表山前沉积区。实验箱在水平推动作用下可以沿斜坡向前滑动,其水平分量模拟走滑断层的水平滑动,垂向分量模拟构造抬升。水平分量占主导,代表走滑断层边界。加入少量的垂向分量,可以代表侵蚀基准面的降低,也可以代表高原或造山带的隆升。黏土块能够对侵蚀基准面的降低或构造抬升过程进行响应,从而产生持续剥蚀,为沉积区提供物源。通过调整斜坡的坡度可以改变滑动水平分量和垂向分量的比例,本次研究设置的水平分量和垂向分量的比例为10∶1,水平滑动速率设置为2 mm/min,垂直抬升速率则为0.2 mm/min。本文设计的是一个适用于各个尺度走滑断层源-汇体系的基础模型,在此不对模型与自然界的相似比进行讨论。

  • 图1 实验设置示意图

  • Fig.1 Sketch of the experimental setup

  • 山前沉积区平台在实验第二个阶段加入; 可移动箱体可以在固定斜坡上斜向上滑动

  • Piedmont sedimentary board was added in the second phase of the experiment; the mobile box could slide obliquely upward along the fixed wedge

  • 实验箱上方设置降雨模拟系统,由压力泵、输水管道和一系列雾化喷头等部件组成。压力泵通过输水管道对雾化喷头施加水压,从而形成喷雾,降落在实验材料表表面并形成径流,模拟降雨的侵蚀、搬运和堆积过程。自然界中的雨滴直径通常是毫米级的,降落在泥土表面能够产生滴溅效果。侵蚀砂箱实验产生的地貌非常精细,要避免滴溅效果对地貌的破坏,使用能够产生雨滴直径在100 μm以下的雾化喷头。此外,喷头距实验材料表面高度超过1 m,雨滴在到达材料表面之前在空气阻力的作用下能够达到自由落体,不会对地貌产生冲击破坏。利用雨量筒测定水压为500 kPa时的降雨速率为40±5 mm/h。

  • 1.2 实验材料

  • 本研究采用的复合黏土是由硅微粉(D50粒径为36 μm)、玻璃微珠(D50粒径为90 μm)、PVC粉(D50粒径为134 μm)按40∶40∶20的比例混合均匀后,加水制成的饱水黏土。三种颗粒材料的粒径与Graveleau et al.(2011)的实验材料接近。相比于Graveleau et al.(2011)的由四种颗粒材料制成的复合材料,本文没有加入炭粉。加入炭粉主要起染色的作用,几乎不影响材料的物理性质(Graveleau et al.,2011)。本文选择不加炭粉,而是对不同特定岩体进行彩色表示,便于观察不同岩体的沉积过程。整个黏土块长宽高分别为500 mm×270 mm×50 mm,初始表面高出侧板20 mm,用于形成初始河流地貌,缩短实验对实验箱尺寸的要求并缩短实验时间。

  • 如何对源区剥蚀物质进行追踪是本文首先要解决的实验方法。Paola et al.(2001)利用黑色的炭粉和白色的石英砂来标示不同的沉积地层,模拟研究了河口三角洲的沉积过程和地层样式。Viaplana-Muzas et al.(2019)则是在造山带前陆冲洪积扇表面喷涂着色剂来标记不同时期沉积的地层。黑色石炭粉不能很好地区分不同岩体的沉积物,喷涂着色的方式则受人工控制,也不能反映真实的沉积过程。本文创新性地采用彩色玻璃微珠对源区进行示踪,其方法为在母岩中选取四个长宽高分别为40 mm×40 mm×50 mm的长方体区域移除白色黏土材料,然后填入混合了彩色玻璃微珠的彩色黏土材料来代表不同的岩体(编号为岩体1~岩体4)(图1)。彩色黏土材料中硅微粉、玻璃微珠、PVC粉的比例与“母岩”一致,即40∶40∶20,仅将玻璃微珠的50%用相同粒径的彩色玻璃微珠代替,因此与“母岩”具有一致的力学性质。

  • 1.3 实验过程

  • 实验分初始源-汇体系的形成与走滑断层干扰下的源-汇体系演变两个阶段。

  • 第一个阶段,未放置侧板且不施加构造变形的情况下,模拟降雨-侵蚀实验过程持续40 min,以形成初始的源-汇体系。

  • 第二个阶段开始放置侧板,同时施加水平推动,实验持续90 min,总走滑量为180 mm,总抬升量为18 mm。实验箱顶部设置数码相机,实验过程中每隔30 s拍摄一张照片,用以记录地貌演化过程并制作实验视频。实验开始后,随着黏土块不断被水平推移并垂向抬升,包含彩色玻璃微珠在内的黏土材料不断被剥蚀并在山前区域沉积形成洪积扇(图2)。洪积扇范围不断向山前区域扩大,并随着走滑量的累积不断向侧面扩展。不同颜色的玻璃微珠随洪积扇的扩张不断沉积,记录下沉积过程(图3)。实验过程中每隔10 min暂停实验并扫描实验地形,用于后续地形分析。摄影式三维面扫描仪获取的初始数据为点云格式,点云密度约为9 点/mm2,之后在CloudCompare软件中转换为分辨率0.5 mm的DEM数据,用于分析沉积地形。扫描所需时间约为5 min,实验材料仍然保持饱水状态,并不影响后续的实验过程和结果。

  • 2 结果分析

  • 2.1 源区迁移和洪积扇发育

  • 实验第一个阶段除了两个边界流域外,共形成了6个初始源-汇体系。4个岩体分布在其中5个流域内,每一个流域内只有一个岩体(图2)。岩体1、岩体2、岩体4基本分布在一个单独的流域内,岩体3则不均匀分布在两个流域内(图2)。这种流域格局基本持续到实验第二阶段结束,没有发生明显的重组或分水岭迁移。实验第二阶段加入山前沉积平台后,母岩和四个岩体的沉积物被剥蚀并在山前沉积。彩色玻璃微珠标记出不同岩体沉积信号的分布范围。沿走滑断层在两个主要流域之间还形成三角面,该区域发生一定的剥蚀,向山前提供少量白色沉积物,把不同岩体的彩色沉积物分隔开。岩体1、岩体2、岩体4的沉积物都分布在单个洪积扇内。而岩体3则通过两个流域将沉积物搬运到两个洪积扇进行堆积并形成沉积信号,但在右侧出露较少的流域内沉积信号比较微弱(图2; 30 min)。随着实验进行,该流域的剥蚀速率逐渐增大,岩体3在右侧洪积扇的沉积信号逐渐增强(图2; 60 min和90 min)。整个实验过程中,剥蚀区不断向右侧滑动,沉积区也相应的向右迁移(图2,图3)。对比不同时间的照片可以看出,先前沉积的彩色玻璃微珠被后来的沉积物不断覆盖,从而使得同一沉积位置的沉积物在不同时间段呈现出不同的颜色(图3)。

  • 图2 实验过程中主要阶段的顶面照片

  • Fig.2 Top view photos of the experimental process

  • 展示侵蚀区岩体和流域的对应关系; 施加构造变形开始的时间记为0 min

  • Showing the spatial correspondence between intrusive bodies and drainages in the erosional area, time was counted as 0 min as tectonics was added to the experiment

  • 图3 实验过程中沉积区每隔10 min的顶面照片

  • Fig.3 Top view of the sedimentary area during each 10 min intervals

  • 为更好地分析洪积扇的沉积和演化过程,本文利用沉积区的DEM计算了等高线,等高线的凸出形态很好地展示了洪积扇的形态特征(图4)。观察沉积区DEM和等高线可以发现,洪积扇有跟随滑动方向迁移的趋势(图4),与照片观察到的彩色玻璃微珠的迁移方向基本一致。为了定量分析洪积扇的迁移趋势,本文对沉积区的沉积速率进行了计算。沉积速率(v)的计算公式为:

  • v=ztn+1-ztn/Δt
    (1)
  • 其中Δttntn+1的时间间隔,即本文扫描实验地形的时间间隔10 min。本文利用ArcGIS软件Spatial Analyst Tools工具集中的Raster Calculator工具,通过对两次扫描间隔的DEM差值进行差值然后除以时间来计算侵蚀速率。

  • 对这些源-汇体系的沉积结果分析表明,山前沉积区的沉积速率具有明显的不均匀分布特征。其中洪积扇最前缘的沉积速率代表洪积扇的纵向扩张,而在靠近断层处的沉积速率峰值位置则代表山前洪积扇的主要沉积区,与彩色玻璃微珠的沉积分布基本吻合(图5)。沉积速率峰值位置的变化还反映出沉积中心的迁移方向与滑动方向一致(图5)。此外,沉积速率的峰值基本与等高线内凹的位置相吻合,这一趋势与洪积扇的形态有关。等高线内凹的位置即为山前相对低洼处,沉积物有趋向于低洼处沉积的特性。洪积扇由扇顶向两侧和扇缘高度逐渐降低,两个主要流域的洪积扇之间必然存在一个低洼区域(图6a),侵蚀区沿走滑断层侧向滑动的结果使得出水口向低洼处移动,因此新的沉积物必然在低洼处堆积(图6b)。

  • 图4 实验过程沉积区每隔10 min的地形数据

  • Fig.4 Topography of the sedimentary area during each 10 min intervals

  • 等高线间隔为1 mm,其凸出方向可以揭示洪积扇的基本形态和分布

  • Interval of the contour lines is 1 mm, convexity of the contour lines showed the shape and distribution of the fans

  • 2.2 沉积信号的分布特征

  • 自然界研究走滑断层源区变化的时候通常在沉积区一侧选取某个研究点的地质剖面,综合利用地层学、地质年代学等方法提取不同地层中的源区岩体沉积信号。为探讨研究地点的选取对研究源-汇关系带来的影响,本文解译了距断层10 mm和30 mm处不同颜色玻璃微珠沉积信号随时间的变化。总的来说,沉积范围与四个岩体的空间位置基本对应,但具体范围并不稳定,而是不断发生波动(图7)。在岩体1沉积物的左侧边界,由于边界条件的原因,先前沉积的彩色玻璃微珠没有被后来的沉积物覆盖,因此边界位置在50 min之后几乎没有变化(图7)。其他三个岩体的沉积物在距断层30 mm处要比10 mm处范围更宽,这可能与洪积扇呈发散状的沉积范围相关。源于岩体3的沉积物被两个流域剥蚀并汇入沉积区,其沉积区分布在两个洪积扇上(图2),因此其沉积范围比其他岩体要宽得多。

  • 图5 沉积速率分布图及其与彩色玻璃微珠沉积物的对比

  • Fig.5 Distribution of sedimentary rate and comparison to sedimented colored beads of some phases

  • 沉积速率负值则为侵蚀速率;等高线分别为第20 min、50 min和80 min时的等高线,用以观察沉积区相对于洪积扇初始位置的沉积趋势; 沉积速率最高的位置对应最新彩色玻璃微珠沉积的位置

  • Negative sedimentary rate represents erosion rate; contours are 20 min, 50 min and 80 min, respectively, showing the tendency of sedimentary distribution relative to initial location of alluvial fans; highest sedimentary rate is consistent with newly deposited colored glass beads

  • 图6 沿走滑断层洪积扇沉积物分布趋势模式图

  • Fig.6 Sketch showing the tendency of sedimentation of alluvial fans along the strike-slip fault

  • (a)—中间流域面积较小的洪积扇形态受两侧较大洪积扇限制;(b)—随着源区沿走滑断层的左行滑动发生迁移,新的沉积区与源区迁移方向一致

  • (a) —the shape of the fan with smaller drainage area in the middle was constrained by larger fans with larger drainage area on both side; (b) —as the source area migrates along with the sinistral slip of the fault; the newest depositional area migrated in the same direction

  • 图7 距断层10 mm(a)和30 mm(b)处彩色玻璃微珠的沉积范围

  • Fig.7 Sedimentary range of colored micro beads at 10 mm (a) and 30 mm (b) away from the fault

  • 灰色虚线边框多边形的位置为岩体1到岩体4的位置随时间的变化;蓝色、绿色和红色多边形为彩色玻璃微珠沉积范围随时间的变化; 红色虚线为岩体3在两个洪积扇中沉积分布的分界线

  • Grey polygons with dashed line boards are location changing of intrusive body 1 to body 4 with time; blue, green and red polygons are location changing of depositional signals of four source rocks with time

  • 除了距断层10 mm和30 mm之外,可以观察到在70 min以后,岩体2和岩体4的沉积范围向洪积扇前缘明显变窄。对第90 min的流域和洪积扇形态进行解译可以发现(图8),流域大小与洪积扇大小具有明显的正相关关系。流域1、流域3和流域6的面积最大,其洪积扇等高线形态更为凸出,横剖面显示其沉积厚度也更大(图8a、c)。其中流域6位于实验箱边界,因此其厚度偏小。流域2、流域4和流域5的面积较小,其洪积扇等高线的形态较为平缓,厚度也更小(图8a、c)。

  • 图8 第90 min的洪积扇(a)、流域范围(b)和地形剖面(c)

  • Fig.8 Alluvial fans (a) , drainage basins (b) and topographic profiles (c) at 90th min

  • 注意(a)和(b)中流域面积与洪积扇大小和形态之间的关系;规模较小的洪积扇2、洪积扇4和洪积扇5的边界形态分别受到相邻较大洪积扇1、洪积扇3和洪积扇6的限制; 地形剖面(c)表明,洪积扇1、洪积扇3、洪积扇6的扇顶地形更加凸起

  • (a) and (b) notice the relationship between drainage area and shape and size of alluvial fans; the shape of the smaller fans including Fan 2, Fan 4 and Fan 5 was constrained by larger fans including Fan 1, Fan 3 and Fan 6; the top of Fan 1, Fan 3 and Fan 6 are more raised as revealed by topographic profile (c)

  • 3 讨论

  • 3.1 对走滑断层相关源-汇体系的启示

  • 自然界当中以走滑断层为边界的大型盆山系统是一种重要的构造类型,例如青藏高原北缘的阿尔金断裂(Yue Yongjun et al.,20012004; Yin An et al.,2002)。Gooley and Nieminski(2022)通过对新西兰东海岸盆地的锆石物源进行了综述分析,指出该盆地的源区变化受阿尔派恩断裂的走滑活动及其造成的水系重组控制。青藏高原北缘和塔里木盆地新生代巨厚沉积之间的耦合关系是青藏高原周缘的热点研究问题(Yue Yongjun et al.,2001; Yin An et al.,2002; 李本亮等,2007; 陈汉林等,2009; 贾承造等,2013)。青藏高原在新生代发生快速隆升的同时,相对于塔里木盆地向东挤出了数百千米(Yue Yongjun et al.,2001; Yin An et al.,2002)。青藏高原南缘的源区包括北祁连山、南祁连山、东祁连山和可可西里地块,随着大规模水平滑动,同一沉积区接受了来自不同源区的沉积物(Yue Yongjun et al.,20012004)。此外,Yan Bing et al.(2023)对青藏高原北缘水系演化的构造地貌物理模拟实验表明,青藏高原北缘现今的流域在不断向高原内部扩张的同时,受走滑断层和先存地形的控制频繁发生重组。这种重组也会带来源区的变化,包括母岩类型和流域面积的变化。因此,在讨论青藏高原北缘的盆山耦合关系时,必须考虑大规模走滑运动引起的源区和沉积区的时空演化特征。

  • 3.2 对估算走滑速率的启示

  • 在研究自然界走滑断层滑动量和走滑速率过程中,通常是沿断层选择某个地层剖面,利用剖面位置距距物源区岩体的距离(D)和该剖面包含源区信息的最老地层年龄(t),计算走滑速率(s = D/t)。对阿尔派恩断裂西侧沉积物的源区变化分析是判断该断层于中新世开始活动的重要沉积学依据(Smale,1991)。Sutherland(1994)利用一个上新世沉积地层到其源区的距离,估算了阿尔派恩断裂的长期滑动速率。Yue Yongjun et al.(2001)通过索尔库里盆地沉积地层碎屑锆石年龄峰揭示出的源区变化,提出了东阿尔金断裂贯穿的时间和长期滑动速率。Yue Yongjun et al.(2004)之后又根据索尔库里盆地下中新统上部地层中的锆石年龄峰及其与晚古生代花岗岩源区之间的距离,指出阿尔金断裂晚中新世晚期以来的滑动速率不超过10 mm/a,并据此提出阿尔金断裂中新世以来的两阶段滑动速率。

  • 本文参考自然界研究物源区的方法,选取位置1和位置2来估算走滑速率。该点出现某一岩体沉积信号的时间可以通过照片读取,也可以在图7中通过横坐标读取,即代表该点沉积地层的年龄;该点距所有岩体现今位置(即实验结束时的位置)的距离也可以直接测得。因此可以获得一个相对于实验设置的“真”走滑速率而言的“伪”走滑速率范围。本文在图7中选取两个点,并从图7中读取沉积信号距岩体的距离和距实验结束的时间,并据此计算了“伪”走滑速率,图中的斜率代表走滑速率(图9)。位错距离分别选取岩体右侧边界和岩体中心线位置,可以看出,选取研究点到岩体右侧边界测得的位错量偏大,因此算得的走滑速率也偏大;而选取研究点到岩体中线距离算得的走滑速率也偏小。总的来说,位置1处计算得的“伪”走滑速率与真实的走滑速率非常接近。自然界实际工作中,由于地层剥蚀、第四系坡积物覆盖、地层厚度、取样间隔等原因,经常不能够精确找到沉积信号出现的最老地层,使得测定的沉积信号出现的地层年龄(t’)小于实际时间(t’ < t),因此计算得到的走滑速率(s’ = D/t’ > D/t)通常偏大。因此算得的“伪”走滑速率应当看做是真实走滑速率的上限值。

  • 图9 通过沉积信号与岩体距离算得的“伪”走滑速率

  • Fig.9 False slip rate calculated using sedimentary record and distances to intrusive bodies

  • 计算位置1和位置2的位置见图3和图7,虚线为实验设置的“真”走滑速率

  • See Figs.3 and 7 for locations 1 and 2 of calculation; dashed line is real horizontal slip rate set during experiment

  • 实验中算得的“伪”走滑速率除了受到走滑量测量方法之外,还受到沉积范围波动等各种因素的影响。在位置1,岩体2所在流域的洪积扇明显受到左右两侧洪积扇的挤压,因此绿色玻璃微珠的沉积范围也受到一定的影响(图2),因此利用岩体2算得的走滑速率比岩体3要偏小(图9a、c)。在位置2,由于岩体3的红色玻璃微珠通过两个流域搬运到沉积区,其沉积范围要更宽(图2),因此大多数情况下算得的走滑速率要比真走滑速率要低的多(图9b、d)。总的来说,任何一种计算方法在计算走滑速率时都存在一定的误差,要综合考虑沉积物范围的波动受洪积扇形态、源区岩体在多个流域中的分布及其在流域中的位置等因素的共同影响。

  • 3.3 实验局限性

  • 自然界构造活动区域的河谷呈V型,出水口河道宽度较小,相比于整个流域范围通常可以简化成一个点,上游砂质以下的沉积物在流经出水口进入洪积扇时已充分混合,来自特定母岩的沉积信号能够均匀地分布在沉积区。而实验过程中的河口宽度较宽,与整个流域范围相比不能简化成点(图8b、c)。以岩体3为例,岩体3主体位于所在流域的右侧(图2),上游剥蚀下来的物质进入沉积区时没有充分混合,因此红色玻璃微珠主要沉积在该流域下方洪积扇的右侧,左侧则主要沉积白色玻璃微珠(图8a),因此对红色玻璃微珠的沉积物分布范围的左侧边界有一定影响。在3.2章节中计算“伪”走滑速率的时候,使用的是沉积物范围的右侧边界,因此对讨论没有影响。

  • 4 结论

  • 本文对沿走滑断层相关源-汇体系开展的构造地貌砂箱物理模拟实验结果表明,在以走滑断层为边界的盆山系统中,由于走滑断层两盘的水平滑动,同一个岩体的沉积区域会不断迁移。其沉积区域受山前洪积扇形态和岩体在流域中的分布关系影响,而洪积扇的大小和形态则受上游侵蚀区面积和相邻洪积扇的限制。源区岩体是否位于多个流域及其在流域中的位置,也会影响沉积信号相对于源区的位置关系。因此,当利用一个沉积区特定岩体的沉积信号与其源区岩体的距离估算走滑速率时,结果会受到沉积物分布范围的影响。需要说明的是,实验并没有穷尽自然界所有可能的实际情况,但本文的结果揭示出研究走滑断层相关源-汇体系的时空变化特征所需考虑的重要影响因素。

  • 参考文献

    • Babault J, Bonnet S, Van Den Driessche J, Crave A. 2007. High elevation of low-relief surfaces in mountain belts: Does it equate to post-orogenic surface uplift? Terra Nova, 19(4): 272~277.

    • Bonnet S. 2009. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nature Geoscience, 2(12): 897~897.

    • Chen Hanlin, Luo Juncheng, Guo Qunying, Liao Lin, Xiao Zhongyao, Cheng Xiaogan, Yang Shufeng, Wang Buqing. 2009. Deformation history and tectonic evolution of southeastern Tarim basin in Mesozoic and Cenozoic. Geotectonica et Metallogenia, 33(1): 38~45 (in Chinese with English abstract).

    • Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006.

    • Clift P D, Blusztajn J, Nguyen A D. 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi basin, Vietnam. Geophysical Research Letters, 33(19): L19403.

    • Gooley J T, Nieminski N M. 2022. Detrital zircon provenance of the Cretaceous-Neogene East Coast Basin reveals changing tectonic conditions and drainage reorganization along the Pacific margin of Zealandia. Geosphere, 18: 616~646.

    • Graveleau F, Hurtrez J E, Dominguez S, Malavieille J. 2011. A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics, 513(1-4): 68~87.

    • Graveleau F, Malavieille J, Dominguez S. 2012. Experimental modelling of orogenic wedges: A review. Tectonophysics, 538-540: 1~66.

    • Graveleau F, Strak V, Dominguez S, Malavieille J, Chatton M, Manighetti I, Petit C. 2015. Experimental modelling of tectonics-erosion-sedimentation interactions in compressional, extensional, and strike-slip settings. Geomorphology, 244: 146~168.

    • Guerit L, Dominguez S, Malavieille J, Castelltort S. 2016. Deformation of an experimental drainagenetwork in oblique collision. Tectonophysics, 693, Part B: 210~222.

    • Hubert-Ferrari A, Armijo R, King G, Meyer B, Barka A. 2002. Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth, 107(B10): 2235.

    • Jia Chengzao, Li Benliang, Lei Yongliang, Chen Zhuxin. 2013. The structure of the circum-Tibetan Plateau basin-range system and the large gas provinces. Science China: Earth Sciences, 56: 1853~1863 (in Chinese with English abstract).

    • Kong Ping, Zheng Yong, Caffee M W. 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 13(6): Q06017.

    • Li Benliang, Jia Chengzao, Pang Xiongqi, Guan Shuwei, Yang Geng, Shi Xin, Li Chuanxin. 2007. The spatial distribution of the foreland thrust tectonic deformation in the circum-Tibetan Plateau basin and range system. Acta Geologica Sinica, 81(9): 1200~1207 (in Chinese with English abstract).

    • Ma Zifa, Zhang Huiping, Wang Yizhou, Tao Yaling, Li Xuemei. 2020. Inversion of Daduriver bedrock channels for the late Cenozoic uplift history of the eastern Tibetan Plateau. Geophysical Research Letters, 47(4): e2019GL086882.

    • Paola C, Mullin J, Ellis C, Mohrig D C, Swenson J B, Parker G, Hickson T, Heller P L, Pratson L, Syvitski. 2001. Experimental Stratigraphy. GSA today, 11(7): 4~9.

    • Rohais S, Bonnet S, Eschard R. 2012. Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment-fan system. Basin Research, 24(2): 198~212.

    • Smale D. 1991. Provenance changes and movement on the Alpinefault indicated by heavy minerals from Cretaceous-Cenozoic sediments in south Westland. Journal of the Royal Society of New Zealand, 21(2): 151~160.

    • Sutherland R. 1994. Displacement since the Pliocene along the southern section of the Alpine fault, New Zealand. Geology, 22(4): 327~330.

    • Viaplana-Muzas M, Babault J, Dominguez S, Van Den Driessche J, Legrand X. 2019. Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt. Basin Research, 31(2): 290~310.

    • Walker F, Allen M B. 2012. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan fault, Iran. Tectonophysics, 530-531: 251~263.

    • Wang Huilin, Gurnis M, Skogseid J. 2020. Continent-wide drainage reorganization in North America driven by mantle flow. Earth and Planetary Science Letters, 530: 115910.

    • Yan Bing, Lin Aiming. 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe fault zone, Tibetan Plateau. Journal of Geodynamics, 87: 13~25.

    • Yan Bing, Jia Dong, Wang Maomao. 2023. Drainage development on the northern Tibetan Plateau controlled by the Altyn Taghfault: Insights from analog modeling. Earth Surface Processes and Landforms (accepted).

    • Yin An, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Qing, Zhou Xianqiang, Wang Xiaofeng, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10): 1257~1295.

    • Yue Yongjun, Ritts B D, Graham S A. 2001. Initiation and long-term slip history of the Altyn Tagh fault. International Geology Review, 43(12): 1087~1093.

    • Yue Yongjun, Ritts B D, Graham S A, Wooden J L, Gehrels G E, Zhang Zhicheng. 2004. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters, 217(1-2): 111~122.

    • Zheng Hongbo, Clift P D, Wang Ping, Tada R, Jia Juntao, He Mengying, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556~7561.

    • Zheng Hongbo, Clift P D, He Mengying, Bian Zixuan, Liu Gaozheng, Liu Xiaochun, Xia Lei, Yang Qing, Jourdan F. 2020. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China. Geology, 49(1): 35~39.

    • 陈汉林, 罗俊成, 郭群英, 廖林, 肖中尧, 程晓敢, 杨树锋, 王步清. 2009. 塔里木盆地东南缘中新生代变形史与构造演化. 大地构造与成矿学, 33(1): 38~45.

    • 贾承造, 李本亮, 雷永良, 陈竹新. 2013. 环青藏高原盆山体系构造与中国中西部天然气大气区. 中国科学: 地球科学, 43(10): 1621~1631.

    • 李本亮, 贾承造, 庞雄奇, 管树巍, 杨庚, 石昕, 李传新. 2007. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律. 地质学报, 81(9): 1200~1207.

  • 参考文献

    • Babault J, Bonnet S, Van Den Driessche J, Crave A. 2007. High elevation of low-relief surfaces in mountain belts: Does it equate to post-orogenic surface uplift? Terra Nova, 19(4): 272~277.

    • Bonnet S. 2009. Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nature Geoscience, 2(12): 897~897.

    • Chen Hanlin, Luo Juncheng, Guo Qunying, Liao Lin, Xiao Zhongyao, Cheng Xiaogan, Yang Shufeng, Wang Buqing. 2009. Deformation history and tectonic evolution of southeastern Tarim basin in Mesozoic and Cenozoic. Geotectonica et Metallogenia, 33(1): 38~45 (in Chinese with English abstract).

    • Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006.

    • Clift P D, Blusztajn J, Nguyen A D. 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi basin, Vietnam. Geophysical Research Letters, 33(19): L19403.

    • Gooley J T, Nieminski N M. 2022. Detrital zircon provenance of the Cretaceous-Neogene East Coast Basin reveals changing tectonic conditions and drainage reorganization along the Pacific margin of Zealandia. Geosphere, 18: 616~646.

    • Graveleau F, Hurtrez J E, Dominguez S, Malavieille J. 2011. A new experimental material for modeling relief dynamics and interactions between tectonics and surface processes. Tectonophysics, 513(1-4): 68~87.

    • Graveleau F, Malavieille J, Dominguez S. 2012. Experimental modelling of orogenic wedges: A review. Tectonophysics, 538-540: 1~66.

    • Graveleau F, Strak V, Dominguez S, Malavieille J, Chatton M, Manighetti I, Petit C. 2015. Experimental modelling of tectonics-erosion-sedimentation interactions in compressional, extensional, and strike-slip settings. Geomorphology, 244: 146~168.

    • Guerit L, Dominguez S, Malavieille J, Castelltort S. 2016. Deformation of an experimental drainagenetwork in oblique collision. Tectonophysics, 693, Part B: 210~222.

    • Hubert-Ferrari A, Armijo R, King G, Meyer B, Barka A. 2002. Morphology, displacement, and slip rates along the North Anatolian Fault, Turkey. Journal of Geophysical Research: Solid Earth, 107(B10): 2235.

    • Jia Chengzao, Li Benliang, Lei Yongliang, Chen Zhuxin. 2013. The structure of the circum-Tibetan Plateau basin-range system and the large gas provinces. Science China: Earth Sciences, 56: 1853~1863 (in Chinese with English abstract).

    • Kong Ping, Zheng Yong, Caffee M W. 2012. Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochemistry, Geophysics, Geosystems, 13(6): Q06017.

    • Li Benliang, Jia Chengzao, Pang Xiongqi, Guan Shuwei, Yang Geng, Shi Xin, Li Chuanxin. 2007. The spatial distribution of the foreland thrust tectonic deformation in the circum-Tibetan Plateau basin and range system. Acta Geologica Sinica, 81(9): 1200~1207 (in Chinese with English abstract).

    • Ma Zifa, Zhang Huiping, Wang Yizhou, Tao Yaling, Li Xuemei. 2020. Inversion of Daduriver bedrock channels for the late Cenozoic uplift history of the eastern Tibetan Plateau. Geophysical Research Letters, 47(4): e2019GL086882.

    • Paola C, Mullin J, Ellis C, Mohrig D C, Swenson J B, Parker G, Hickson T, Heller P L, Pratson L, Syvitski. 2001. Experimental Stratigraphy. GSA today, 11(7): 4~9.

    • Rohais S, Bonnet S, Eschard R. 2012. Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment-fan system. Basin Research, 24(2): 198~212.

    • Smale D. 1991. Provenance changes and movement on the Alpinefault indicated by heavy minerals from Cretaceous-Cenozoic sediments in south Westland. Journal of the Royal Society of New Zealand, 21(2): 151~160.

    • Sutherland R. 1994. Displacement since the Pliocene along the southern section of the Alpine fault, New Zealand. Geology, 22(4): 327~330.

    • Viaplana-Muzas M, Babault J, Dominguez S, Van Den Driessche J, Legrand X. 2019. Modelling of drainage dynamics influence on sediment routing system in a fold-and-thrust belt. Basin Research, 31(2): 290~310.

    • Walker F, Allen M B. 2012. Offset rivers, drainage spacing and the record of strike-slip faulting: The Kuh Banan fault, Iran. Tectonophysics, 530-531: 251~263.

    • Wang Huilin, Gurnis M, Skogseid J. 2020. Continent-wide drainage reorganization in North America driven by mantle flow. Earth and Planetary Science Letters, 530: 115910.

    • Yan Bing, Lin Aiming. 2015. Systematic deflection and offset of the Yangtze River drainage system along the strike-slip Ganzi-Yushu-Xianshuihe fault zone, Tibetan Plateau. Journal of Geodynamics, 87: 13~25.

    • Yan Bing, Jia Dong, Wang Maomao. 2023. Drainage development on the northern Tibetan Plateau controlled by the Altyn Taghfault: Insights from analog modeling. Earth Surface Processes and Landforms (accepted).

    • Yin An, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Qing, Zhou Xianqiang, Wang Xiaofeng, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10): 1257~1295.

    • Yue Yongjun, Ritts B D, Graham S A. 2001. Initiation and long-term slip history of the Altyn Tagh fault. International Geology Review, 43(12): 1087~1093.

    • Yue Yongjun, Ritts B D, Graham S A, Wooden J L, Gehrels G E, Zhang Zhicheng. 2004. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters, 217(1-2): 111~122.

    • Zheng Hongbo, Clift P D, Wang Ping, Tada R, Jia Juntao, He Mengying, Jourdan F. 2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences, 110(19): 7556~7561.

    • Zheng Hongbo, Clift P D, He Mengying, Bian Zixuan, Liu Gaozheng, Liu Xiaochun, Xia Lei, Yang Qing, Jourdan F. 2020. Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China. Geology, 49(1): 35~39.

    • 陈汉林, 罗俊成, 郭群英, 廖林, 肖中尧, 程晓敢, 杨树锋, 王步清. 2009. 塔里木盆地东南缘中新生代变形史与构造演化. 大地构造与成矿学, 33(1): 38~45.

    • 贾承造, 李本亮, 雷永良, 陈竹新. 2013. 环青藏高原盆山体系构造与中国中西部天然气大气区. 中国科学: 地球科学, 43(10): 1621~1631.

    • 李本亮, 贾承造, 庞雄奇, 管树巍, 杨庚, 石昕, 李传新. 2007. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律. 地质学报, 81(9): 1200~1207.