en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

梁文栋,男,1989年生。博士,硕士生导师,主要从事现代河流沉积及源-汇系统研究。E-mail:liangwendong09@163.com。

通讯作者:

胡修棉,男,1974年生。教授,博士生导师,主要从事沉积地质学科研与教学工作。E-mail:huxm@nju.edu.cn。

参考文献
Allen P A. 2017. Sediment Routing Systems: The Fate of Sediments from Source to Sink. Cambridge: Cambridge University Press.
参考文献
Allen P A, Michael N A, D'Arcy M, Roda-Boluda D C, Whittaker A C, Duller R A, Armitage J J. 2016. Fractionation of grain-size in terrestrial sediment routing systems. Basin Research, 27: 1~23.
参考文献
Anderson R S, Anderson S P. 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge: Cambridge University Press.
参考文献
Andò S, Garzanti E, Padoan M, Limonta M. 2012. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 280: 165~178.
参考文献
Andò S, Garzanti E. 2014. Raman spectroscopy in heavy-mineral studies. In: Scott R A, Smyth H R, Morton A C, Richardson N, eds. Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological Society, London, Special Publication, 386(1): 395~412.
参考文献
Armitage J J, Duller R A, Whittaker A C, Allen P A. 2011. Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4: 231~235.
参考文献
Arribas J, Critelli S, Le Pera E, Tortosa A. 2000. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, Central Spain). Sedimentary Geology, 133(1-2): 27~48.
参考文献
Arribas J, Tortosa A. 2003. Detrital modes in sedimenticlastic sands from low-order streams in the Iberian Range, Spain: The potential for sand generation by different sedimentary rocks. Sedimentary Geology, 159(3-4): 275~303.
参考文献
Augustsson C. 2021. Influencing factors on petrography interpretations in provenance research—A case-study review. Geosciences, 11(5): 205.
参考文献
Basu A. 1985. Influence of climate and relief on compositions of sands released at source areas. In: Zuffa G G, ed. Provenance of Arenites. Dordrecht, Holland, D. Reidel: NATO ASI Series 148, 1~18.
参考文献
Bickle M J, Bunbury J, Chapman H J, Harris N B, Fairchild I J, Ahmad T. 2003. Fluxes of Sr into the headwaters of the Ganges. Geochimica et Cosmochimica Acta, 67(14): 2567~2584.
参考文献
Breyer J A, Bart H A. 1978. The composition of fluvial sands in a temperate semiarid region. Journal of Sedimentary Research, 48(4): 1311~1320.
参考文献
Bridge J, Demicco R. 2008. Earth Surface Processes, Landforms and Sediment Deposits. New York: Cambridge University Press.
参考文献
Bunaciu A A, UdriŞTioiu E G, Aboul-Enein H Y. 2015. X-ray diffraction: Instrumentation and applications. Critical Reviews in Analytical Chemistry, 45(4): 289~299.
参考文献
Burbank D, Blythe A, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A, Ojha T. 2003. Decoupling of erosion and precipitation in the Himalayas. Nature, 426(6967): 652~655.
参考文献
Cao Fang, Yang Shouye, Yang Chengfan, Guo Yulong, Bi Lei, Li Yuze. 2021. Using lithium isotopes to quantitatively decode continental weathering signal: A case study in the Changjiang (Yangtze River) Estuary. Science China Earth Sciences, 64(10): 1698~1708 (in Chinese with English abstract).
参考文献
Caracciolo L. 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Science Reviews, 103226.
参考文献
Caracciolo L, von Eynatten H, Tolosana-Delgado R, Critelli S, Manetti P, Marchev P. 2012. Petrological, geochemical, and statistical analysis of Eocene-Oligocene sandstones of the western Thrace basin, Greece and Bulgaria. Journal of Sedimentary Research, 82(7): 482~498.
参考文献
Caracciolo L, Andò S, Vermeesch P, Garzanti E, McCabe R, Barbarano M, Pareari C, Rittner M, Pearce T. 2019. A multidisciplinary approach for the quantitative provenance analysis of siltstone: Mesozoic Mandawa basin, southeastern Tanzania. In: Dowey P, Osborne M, Volk H, eds. Application of Analytical Techniques to Petroleum Systems. Geological Society, London, Special Publications, 484.
参考文献
Chew D, O'Sullivan G, Caracciolo L, Mark C, Tyrrell S. 2020. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth-Science Reviews, 202: 103093.
参考文献
Cordani U G, Milani E J, Thomaz Filho A, Campos D A. 2000. Tectonic Evolution of South America. 31st International Geological Congress.
参考文献
Dai S, Yang S, Li M. 2009. The sharp decrease in suspended sediment supply from China's rivers to the sea: Anthropogenic and natural causes. Hydrological Sciences Journal, 54(1): 135~146.
参考文献
Dellinger M, Gaillardet J, Bouchez J, Calmels D, Galy V, Hilton R G, Louvat P, France-Lanord C. 2014. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth and Planetary Science Letters, 401: 359~372.
参考文献
Dickinson W R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G G, ed. Provenance of Arenites. Dordrecht, Holland, D. Reidel: NATO ASI Series 148, 333~361.
参考文献
Dickinson W R, Beard L S, Brakenridge G R, Erjavec J L, Ferguson R C, Inman K F, Knepp R A, Lindberg F A, Ryberg P T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2): 222~235.
参考文献
Dong Xiaolong, Hu Xiumian, Guo Ronghua, Lai Wen. 2022. Comparative experimental research on detrital statistics of river sand. Acta Sedimentologica Sinica, 40(4): 871~882 (in Chinese with English abstract).
参考文献
Doran L M, Marsaglia K M, Browne G H. 2020. Reconnaissance composition of river sand from northern South Island, New Zealand: A modern analogue for southern Taranaki basin. New Zealand Journal of Geology and Geophysics, 63(1): 35~57.
参考文献
Dosseto A, Bourdon B, Gaillardet J, Maurice-Bourgoin L, Allegre C J. 2006. Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes. Earth and Planetary Science Letters, 248(3-4): 759~771.
参考文献
Drewery S, Cliff R A, Leeder M R. 1987. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons. Nature, 325(6099): 50~53.
参考文献
Dunkl I, Frisch W, Kuhlemann J, Brügel A. 2009. Pebble population dating as an additional tool for provenance studies—examples from the Eastern Alps. Geological Society, London, Special Publications, 324(1): 125~140.
参考文献
Dunne T, Mertes L K, Meade R H, Richey J E, Forsberg B R. 1998. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geological Society of America Bulletin, 110(4): 450~467.
参考文献
Fan Daidu, Wang Yangyang, Wu Yijing. 2012. Advances in provenance studies of Changjiang riverine sediments. Advances in Earth Science, 27(5): 515~528 (in Chinese with English abstract).
参考文献
Gabriel K R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58: 453~467.
参考文献
Gao Zhiyong, Shi Yuxin, Mao Zhiguo, Feng Jiarui, Cui Jinggang. 2017. Current hot topics and advances of fluvial sedimentology: A summary from 11th international conference on fluvial sedimentology. Acta Sedimentologica Sinica, 35(6): 1097~1109 (in Chinese with English abstract).
参考文献
Garzanti E. 2016. From static to dynamic provenance analysis—Sedimentary petrology upgraded. In: Caracciolo L, Garzanti E, von Eynatten H, Weltje G J, eds. Sediment generation and provenance: Processes and pathways. Sedimentary Geology, 336: 3~13.
参考文献
Garzanti E. 2017. The maturity myth in sedimentology and provenance. Journal of Sedimentary Research, 87(4): 353~365.
参考文献
Garzanti E. 2019. Petrographic classification of sand and sandstone. Earth-Science Reviews, 192: 545~563.
参考文献
Garzanti E, Vezzoli G. 2003. A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73: 830~837.
参考文献
Garzanti E, Andò S, Vezzoli G, Megid A A A, El Kammar A. 2006. Petrology of Nile River sands (Ethiopia and Sudan): Sediment budgets and erosion patterns. Earth and Planetary Science Letters, 252 (3-4): 327~341.
参考文献
Garzanti E, Doglioni C, Vezzoli G, Andò S. 2007. Orogenic belts and orogenic sediment provenances. The Journal of Geology, 115: 315~334.
参考文献
Garzanti E, Andò S, Vezzoli G. 2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273: 138~151.
参考文献
Garzanti E, Andò S, Vezzoli G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277(3-4): 422~432.
参考文献
Garzanti E, Andò S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y. 2010. Mineralogical and chemical variability of fluvial sediments 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299: 368~381.
参考文献
Garzanti E, Resentini A, Vezzoli G, Andò S, Malusà M, Padoan M. 2012. Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 280: 149~164.
参考文献
Garzanti E, Padoan M, Andò S, Resentini A, Vezzoli G, Lustrino M. 2013. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6): 547~580.
参考文献
Garzanti E, Andò S, Padoan M, Vezzoli G, El Kammar A. 2015a. The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 130: 9~56.
参考文献
Garzanti E, Resentini A, Andò S, Vezzoli G, Pereira A, Vermeesch P. 2015b. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology, 62(4): 971~996.
参考文献
Garzanti E, Resentini A. 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81~95.
参考文献
Garzanti E, Limonta M, Vezzoli G, An Wei, Wang Jiangang, Hu Xiumian. 2018a. Petrology and multimineral fingerprinting of modern sand generated from a dissected magmatic arc (Lhasa River, Tibet). In: Ingersoll R V, Lawton T F, Graham S A, eds. Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson's Career. Geological Society of America, Special Paper 540: 197~221.
参考文献
Garzanti E, Dinis P, Vermeesch P, Andò S, Hahn A, Huvi J, Limonta M, Padoan M, Resentini A, Rittner M, Vezzoli G. 2018b. Sedimentary processes controlling ultralong cells of littoral transport: Placer formation and termination of the Orange sand highway in southern Angola. Sedimentology, 65(2): 431~460.
参考文献
Garzanti E, Andò S. 2019. Heavy minerals for junior woodchucks. Minerals, 9: 148.
参考文献
Garzanti E, Vermeesch P, Vezzoli G, Andò S, Botti E, Limonta M, Dinis P, Hahn A, Baudet D, De Grave J, Yaya N K. 2019. Congo River sand and the equatorial quartz factory. Earth-Science Reviews, 197: 102918.
参考文献
Garzanti E, Liang Wendong, Andò S, Clift P, Resentini A, Vermeesch P, Vezzoli G. 2020. Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland-basin deposition driven by latest Quaternary climate change. Earth-Science Reviews, 103220.
参考文献
Garzanti E, Capaldi T, Vezzoli G, Limonta M, Sosa N. 2021a. Transcontinental retroarc sediment routing controlled by subduction geometry and climate change (Central and Southern Andes, Argentina). Basin Research, 33(6): 3406~3437.
参考文献
Garzanti E, He Jie, Barbarano M, Resentini A, Li Chao, Yang Lu, Yang Shouye, Wang Hua. 2021b. Provenance versus weathering control on sediment composition in tropical monsoonal climate (South China)-2. Sand petrology and heavy minerals. Chemical Geology, 119997.
参考文献
Godard V, Bourlès D, Spinabella F, Burbank D, Bookhagen B, Fisher G, Moulin A, Léanni L. 2014. Dominance of tectonics over climate in Himalayan denudation. Geology, 42(3): 243~246.
参考文献
Griffiths J C. 1962. Statistical methods in sedimentary petrography. In: Milner H B, ed. Sedimentary Petrography, 4th edition: Methods in Sedimentary Petrography, vol. I. London: Allen and Unwin, 565~617.
参考文献
Guo Ronghua, Hu Xiumian, Garzanti E, Lai Wen, Yan Bing, Mark C. 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews, 201: 103082.
参考文献
Guyez A, Bonnet S, Reimann T, Carretier S, Wallinga J. 2023. A novel approach to quantify sediment transfer and storage in rivers-testing feldspar single-grain pIRIR analysis and numerical simulations. Journal of Geophysical Research: Earth Surface, 128: e2022JF006727.
参考文献
Harel M A, Mudd S M, Attal M. 2016. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology, 268: 184~196.
参考文献
Hovius N. 1996. Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8: 29~44.
参考文献
Hu Xiumian. 2017. A misunderstanding in provenance analysis: Sand changes of mineral, roundness, and size in flowing-water transportation. Journal of Palaeogeography, 19(1): 175~184 (in Chinese with English abstract).
参考文献
Hu Xiumian, Xue Weiwei, Lai Wen, Wang Jiangang, An Wei, Li Juan. 2021. Sedimentary basin in orogenic belt and continental geodynamics. Acta Geologica Sinica, 95(1): 139~158 (in Chinese with English abstract).
参考文献
Ibbeken H, Schleyer R. 2013. Source and Sediment: A Case Study of Provenance and Mass Balance at An Active Plate Margin (Calabria, Southern Italy). Springer Science & Business Media.
参考文献
Ingersoll R V, Bullard T F, Ford R L, Grimm J P, Pickle J D, Sares S W. 1984. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54(1): 103~116.
参考文献
Jarvis K E, Williams J G. 1993. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): A rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples. Chemical Geology, 106(3-4): 251~262.
参考文献
Jian Xing, Zhang Wei, Yang Shouye, Kao Shuh-Ji. 2020a. Climate-dependent sediment composition and transport of mountainous rivers in tectonically stable, subtropical East Asia. Geophysical Research Letters, 47(3): e2019GL086150.
参考文献
Jian Xing, Yang Shouye, Hong Dongming, Liang Hanghai, Zhang Shuo, Fu Hanjing, Zhang Wei. 2020b. Seasonal geochemical heterogeneity of sediments from a subtropical mountainous river in SE China. Marine Geology, 422: 106120.
参考文献
Jin Zhangdong, Hilton R G, West A J, Li Gen, Zhang Fei, Wang Jin, Li Gaojun, Fan Xuanmei, Xie Menglong. 2022. The role of earthquake-induced landslides in erosion and weathering from active mountain ranges: Progress and perspectives. Science China Earth Sciences, 52(2): 222~237 (in Chinese with English abstract).
参考文献
Johnson D. 2009. The Geology of Australia. Cambridge: Cambridge University Press.
参考文献
Johnson J I, Sharman G R, Szymanski E, Huang X. 2022. Machine learning applied to a Modern-Pleistocene petrographic data set: The global prediction of sand modal composition (GloPrSM) model. Journal of Geophysical Research: Earth Surface, 127(7): e2022JF006595.
参考文献
Johnsson M J. 1993. The system controlling the composition of clastic sediments. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments. 284. Geological Society of America, Special Paper, 1~19.
参考文献
Johnsson M J, Stallard R F, Meade R H. 1988. First cycle quartz arenites in the Orinoco River basin: Venezuela and Colombia. The Journal of Geology, 96(3): 263~277.
参考文献
Johnsson M J, Meade R H. 1990. Chemical weathering of fluvial sediments during alluvial storage: The Macuapanim Island point bar, Solimoes River, Brasil. Journal of Sedimentary Research, 60(6): 827~842.
参考文献
Johnsson M J, Stallard R F, Lundberg N. 1991. Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia. Geological Society of America Bulletin, 103(12): 1622~1647.
参考文献
Kempe U, Götze J. 2002. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66(1): 151~172.
参考文献
Korup O, Schlunegger F. 2009. Rock-type control on erosion-induced uplift, eastern Swiss Alps. Earth and Planetary Science Letters, 278(3-4): 278~285.
参考文献
Krippner A, Meinhold G, Morton A C, von Eynatten H. 2016. Heavy-mineral and garnet compositions of stream sediments and HP-UHP basement rocks from the Western Gneissregion, SW Norway. Norwegian Journal of Geology, 96(1): 7~17.
参考文献
Krynine P D. 1942. Differential sedimentation and its products during one complete geosynclinal cycle. Proceedings of the 1st Pan American Congress on Mining Engineering Geology, Part 1, 537~560.
参考文献
Le Pera E, Arribas J, Critelli S, Tortosa A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): Implications for provenance studies. Sedimentology, 48(2): 357~378.
参考文献
Li Chao, Yang Shouye, Zhao Jianxin, Dosseto A, Bi Lei, Clark T R. 2016. The time scale of river sediment source-to-sink processes in East Asia. Chemical Geology, 446: 138~146.
参考文献
Liang Wendong, Garzanti E, Andò S, Gentile P, Resentini A. 2019. Multimineral fingerprinting of Transhimalayan and Himalayan sources of Indus-derived Thal Desert sand (central Pakistan). Minerals, 9(8): 457.
参考文献
Liang Wendong, Resentini A, Guo Ronghua, Garzanti E. 2020. Multimineral fingerprinting of modern sand generated from the Tethys Himalaya (Nianchu River, Tibet). Sedimentary Geology, 399: 105604.
参考文献
Liang Wendong, Garzanti E, Hu Xiumian, Resentini A, Vezzoli G, Yao Wensheng. 2022a. Tracing erosion patterns in South Tibet: Balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa block. Basin Research, 34(1): 411~439.
参考文献
Liang Wendong, Hu Xiumian, Garzanti E. 2022b. A global database of petrographic composition and heavy minerals in modern river sediment. DDE Repository, doi: 10. 12297/dpr. dde. 202210. 4.
参考文献
Liu-Lu Baiyang, Jin Zhangdong, Gou Longfei, Zhang Fei, He Maoyong, Xu Yang. 2022. Seasonal river chemistry and lithium isotopes in the Min Jiang at eastern Tibetan Plateau: Roles of silicate weathering and hydrology. Frontiers in Earth Science, 10: 519.
参考文献
Lu Jinfa. 1989. Preliminary study on variation of erosion and sediment yield of drainage basins in Yanshan, North China, associated with geology and geomorphology. Journal of Sediment Research, (1): 25~33 (in Chinese with English abstract).
参考文献
Luo Chao, Zheng Hongbo, Wu Weihua, Yang Shouye. 2014. Temporal variation in Sr and 87Sr/86Sr of Yangtze River: An example from Datong hydrological station. Advances in Earth Science, 29(7): 835~843 (in Chinese with English abstract).
参考文献
Ma Zifa, Zhang Huiping, Ma Yuanxu, Zhao Xudong. 2022. Downstream changes of riverbed grain size and its controls. Acta Geologica Sinica, 96(10): 3658~3673 (in Chinese with English abstract).
参考文献
Mack G H. 1981. Composition of modern stream sand in a humid climate derived from a low-grade metamorphic and sedimentary foreland fore-thrust belt of north Georgia. Journal of Sedimentary Research, 51(4): 1247~1258.
参考文献
Malmon D V, Dunne T, Reneau S L. 2003. Stochastic theory of particle trajectories through alluvial valley floors. The Journal of Geology, 111(5): 525~542.
参考文献
Mange M A, Wright D T. 2007. Heavy minerals in use. In: Developments in Sedimentology Series. Amsterdam: Elsevier, Volume 58, 1~1283.
参考文献
McBride E F, Abel-Wahab A, McGilvery T A. 1996. Loss of sand-size feldspar and rock fragments along the South Texas Barrier Island, USA. Sedimentary Geology, 107: 37~44.
参考文献
Molinaroli E, Blom M, Basu A. 1991. Methods of provenance determination tested with discriminant function analysis. Journal of Sedimentary Research, 61: 900~908.
参考文献
Montgomery D R, Brandon M T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201: 481~489.
参考文献
Moosdorf N, Cohen S, von Hagke C. 2018. A global erodibility index to represent sediment production potential of different rock types. Applied Geography, 101: 36~44.
参考文献
Morton A C. 1985. A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32(4): 553~566.
参考文献
Müller G, Middelburg J J, Sluijs A. 2021. Introducing GloRiSe—A global database on river sediment composition. Earth System Science Data, 13(7): 3565~3575.
参考文献
Munday C, Savage N, Jones R G, Washington R. 2023. Valley formation aridifies East Africa and elevates Congo basin rainfall. Nature, 615: 276~279.
参考文献
Nie Junsheng, Stevens T, Rittner M, Stockli D, Garzanti E, Limonta M, Bird A, Andò S, Vermeesch P, Saylor J, Lu Huayu, Breecker D, Xiaofei, Liu Shanpin, Resentini A, Peng Wenbin, Carter A, Ji Shunchuan, Pan Baotian. 2015. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment. Nature Communications, 6(1): 1~10.
参考文献
Norrish K, Chappell B W. 1977. X-ray fluorescence spectrometry. In: Zussman, ed. Physical Methods in Determinative Mineralogy. London: Academic Press, 201~272.
参考文献
Palomares M, Arribas J. 1993. Modern stream sands from compound crystalline sources: Composition and sand generation index. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 284: 313~322.
参考文献
Pinot P, Souriau M. 1988. Continental erosion and large-scale relief. Tectonics, 7: 563~582
参考文献
Potter P E. 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86: 423~449.
参考文献
Potter P E. 1994. Modern sands of South America: Composition, provenance and global significance. Geologische Rudschau, 83: 212~232.
参考文献
Rai S K, Singh S K. 2007. Temporal variation in Sr and 87Sr/86Sr of the Brahmaputra: Implications for annual fluxes and tracking flash floods through chemical and isotope composition. Geochemistry, Geophysics, Geosystems, 8.
参考文献
Resentini A, Malusà M G, Garzanti E. 2013. MinSORTING: An Excel work sheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies. Computers & Geosciences, 59: 90~97.
参考文献
Resentini A, Goren L, Castelltort S, Garzanti E. 2017. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. Journal of Geophysical Research: Earth Surface, 122(7): 1430~1454.
参考文献
Resentini A, Andò S, Garzanti E. 2018. Quantifying roundness of detrital minerals by image analysis: Sediment transport, shape effects, and provenance implications. Journal of Sedimentary Research, 88(2): 276~289.
参考文献
Riebe C S, Sklar L S, Lukens C E, Shuster D L. 2015. Climate and topography control the size and flux of sediment produced on steep mountain slopes. Proceedings of the National Academy of Sciences, 112(51): 15574~15579.
参考文献
Rubey W W. 1933. The size distribution of heavy minerals within a water-laid sandstone. Journal of Sedimentary Research, 3(1): 3~29.
参考文献
Russell R D. 1937. Mineral composition of Mississippi River sands. Bulletin of the Geological Society of America, 48(9): 1307~1348.
参考文献
Russell R D, Taylor R E. 1937. Roundness and shape of Mississippi River sands. The Journal of Geology, 45(3): 225~267.
参考文献
Shi Xuefa, Qiao Shuqing, Yang Shouye, Li Jingrui, Wan Shiming, Zou Jianjun, Xiong Zhifang, Hu Limin, Yao Zhengquan, Dong Linsen, Wang Kunshan, Liu Shengfa, Liu Yanguang. 2021. Progress in sedimentology research of the Asian continental margin (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 319~336 (in Chinese with English abstract).
参考文献
Spalla M I, Zanoni D, Gosso G, Zucali M. 2009. Deciphering the geologic memory of a Permian conglomerate of the southern Alps by pebble P-T estimates. International Journal of Earth Sciences, 98(1): 203~226.
参考文献
Sun Hu, Gan Zhimao, Wu Chengji. 1997. Analysis on sediment yielding from eroded strata in Hekou-Longmen middle reaches of Yellow River. Journal of Desert Research, 17(3): 261~268 (in Chinese with English abstract).
参考文献
Syvitski J P, Vörösmarty C J, Kettner A J, Green P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720): 376~380.
参考文献
Tipper E T, Bickle M J, Galy A, West A J, Pomiès C, Chapman H J. 2006. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta, 70(11): 2737~2754.
参考文献
Vermeesch P, Garzanti E. 2015. Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chemical Geology, 409: 20~27.
参考文献
Vezzoli G, Garzanti E, Monguzzi S. 2004. Erosion in the western Alps (Dora Baltea basin): 1. Quantifying sediment provenance. Sedimentary Geology, 171(1~4): 227~246.
参考文献
Vezzoli G, Garzanti E, Limonta M, Andó S, Yang Shouye. 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology, 261: 177~192.
参考文献
Vezzoli G, Garzanti E, Limonta M, Radeff G. 2020. Focused erosion at the core of the Greater Caucasus: Sediment generation and dispersal from Mt. Elbrus to the Caspian Sea. Earth-Science Reviews, 200: 102987.
参考文献
von Eynatten H, Dunkl I. 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Reviews, 115(1-2): 97~120.
参考文献
Wang Hong, Sun Fubao. 2021. Variability of annual sediment load and runoff in the Yellow River for the last 100 years (1919-2018). Science of the Total Environment, 758: 143715.
参考文献
Wang Ping, Scherler D, Liu-Zeng Jing, Mey J, Avouac J P, Zhang Yunda, Shi Dingguo. 2014. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in southern Tibet. Science, 346(6212): 978~981.
参考文献
Wang Ping, Chen Xiyun, Zhu Longchen, Xie Hongsen, Lü Kailai, Wei Xiaochun. 2022. Principles and biases of quantitative provenance analysis using detrital zircon U-Pb geochronology: Insight from modern river sands. Acta Sedimentologica Sinica, 40(6): 1599~1614 (in Chinese with English abstract).
参考文献
Wang Qilian, Liu Congqiang, Zhao Zhiqi, Chetelat Benjami, Ding Hu. 2008. Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China. Advance in Earth Science, 23(9): 952~958 (in Chinese with English abstract).
参考文献
Weltje G J. 2006. Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V, eds. Compositional Data Analysis: From Theory to Practice. Geological Society of London Special Publications 264, 611~627.
参考文献
Weltje G J. 2012. Quantitative models of sediment generation and provenance: State of the art and future developments. Sedimentary Geology, 280: 4~20.
参考文献
Weltje G J, Brommer M B. 2011. Sediment-budget modelling of multi-sourced basin fills: Application to recent deposits of the western Adriatic mud wedge (Italy). Basin Research, 23(3): 291~308.
参考文献
Weltje G J, Bertrand S, Chew D. 2018. Analysis of sediment properties: Tools for palaeo-environmental reconstruction. Sedimentary Geology, 375: 1~308.
参考文献
Worden R H, Armitage P J, Butcher A R, Churchill J M, Csoma A, Wu Z, Zhao D, Syvitski J P, Saito Y, Zhou J, Wang M. 2020. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 1954—2015. Science of the Total Environment, 739: 139653.
参考文献
Xu Jiongxin, Yang Jishan, Yan Yunxia. 2006. Erosion and sediment yields as influenced by coupled eolian and fluvial processes: The Yellow River, China. Geomorphology, 73 (1): 1~15.
参考文献
Xu Miaomiao, Wei Xiaochun, Yang Rong, Wang Ping, Cheng Xiaogan. 2021. Research progress of provenance tracing method for heavy mineral analysis. Advances in Earth Science, 36(2): 154~171 (in Chinese with English abstract).
参考文献
Yang Chengfan, Yang Shouye, Song Jiaze, Vigier N. 2019. Progressive evolution of the Changjiang (Yangtze River) sediment weathering intensity since the three gorges dam operation. Journal of Geophysical Research: Earth Surface, 124(10): 2402~2416.
参考文献
Yang Liu, Zhang Fei, Hu Yadan, Zhan Yun, Deng Li, Huang Huayu, Sun Hui, Wei Yaben, Li Xiangliang. 2022. Seasonal variations of chemical weathering and CO2 consumption processes in the headwater (Datong River basin) of the Yellow River draining the Tibetan Plateau. Frontiers in Earth Science, 10: 909749.
参考文献
Yang Shouye, Li Chao, Wang Zhongbo, Wang Xiaodan, Shu Jinsong. 2013. Heterogeneity of geochemical compositions of the Changjiang River sediments and provenance indication. Quaternary Sciences, 33(4): 645~655 (in Chinese with English abstract).
参考文献
Yang Shouye, Yin Ping. 2018. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities. Marine Geology & Quaternary Geology, 38(1): 1~10 (in Chinese with English abstract).
参考文献
Zhang Changmin, Zhang Shangfeng, Li Shaohua, Dan Weidong, Hou Lu. 2004. Advances in Chinese fluvial sedimentology from 1983 to 2003. Acta Sedimentologica Sinica, 22(2): 183~192 (in Chinese with English abstract).
参考文献
Zhang Guangya, Yu Zhaohua, Chen Zhongmin, Zhang Diqiu, Wen Zhixin, Huang Tongfei, Wang Yanqi, Liu Xiaobing, Ma Feng, Zhao Jian. 2018. Tectonic evolution and hydrocarbon distribution in African basins. Earth Science Frontiers, 25(2): 1~14 (in Chinese with English abstract).
参考文献
Zhang Xiang, Li Zhanbin, Li Peng, Cheng Shengdong, Zhang Yang, Tang Shanshan, Wang Tian. 2015. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed. Sedimentary Geology, 330: 132~140.
参考文献
Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, Li Wei, Qin Yi, Zhang Zili. 2019. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress. Acta Sedimentologica Sinica, 37(1): 1~16 (in Chinese with English abstract).
参考文献
曹昉, 杨守业, 杨承帆, 郭玉龙, 毕磊, 李雨泽. 2021. 锂同位素定量提取河流碎屑沉积物中大陆风化信号. 中国科学: 地球科学, 51(10): 1742~1752.
参考文献
董小龙, 胡修棉, 郭荣华, 赖文. 2022. 河流砂碎屑统计方法的对比实验研究. 沉积学报, 40(4): 871~882.
参考文献
范代读, 王扬扬, 吴伊婧. 2012. 长江沉积物源示踪研究进展. 地球科学进展, 27 (5): 515~528.
参考文献
高志勇, 石雨昕, 毛治国, 冯佳睿, 崔京钢. 2017. 河流沉积学研究热点与进展——第11届国际河流沉积学大会综述. 沉积学报, 35(6): 1097~1109.
参考文献
胡修棉. 2017. 物源分析的一个误区: 砂粒在河流搬运过程中的变化. 古地理学报, 19(1): 175~184.
参考文献
胡修棉, 薛伟伟, 赖文, 王建刚, 安慰, 李娟. 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139~158.
参考文献
金章东, Hilton R G, West A J, 李根, 张飞, 汪进, 李高军, 范宣梅, 谢孟龙. 2022. 地震滑坡在活跃造山带侵蚀和风化中的作用: 进展与展望. 中国科学: 地球科学, 52(2): 222~237.
参考文献
景可, 陈浩. 1986. 黄河中游粗沙区的范围、数量及其基岩产沙的研究. 科学通报, 31(12): 927~931.
参考文献
卢金发. 1989. 燕山地区流域侵蚀产沙与流域地质地貌的初步研究. 泥沙研究, (1): 25~33.
参考文献
罗超, 郑洪波, 吴卫华, 杨守业. 2014. 长江河水87Sr/86Sr值的季节性变化及其指示意义: 以长江大通站为例. 地球科学进展, 29(7): 835~843.
参考文献
马字发, 张会平, 马元旭, 赵旭东. 2022. 河道沉积物粒度沿程变化特征及其影响因素. 地质学报, 96(10): 3658~3673.
参考文献
石学法, 乔淑卿, 杨守业, 李景瑞, 万世明, 邹建军, 熊志方, 胡利民, 姚政权, 董林森, 王昆山, 刘升发, 刘焱光. 2021. 亚洲大陆边缘沉积学研究进展(2011—2020). 矿物岩石地球化学通报, 40(2): 319~336.
参考文献
孙虎, 甘枝茂, 吴成基. 1997. 黄河中游河口镇至龙门区间不同岩层对河流粗泥沙贡献的分析. 中国沙漠, 17(3): 261~268.
参考文献
汪齐连, 刘丛强, 赵志琦, Chetelat B, 丁虎. 2008. 长江流域河水和悬浮物的锂同位素地球化学研究. 地球科学进展, 23(9): 952~958.
参考文献
王平, 陈玺贇, 朱龙辰, 谢鸿森, 吕开来, 魏晓椿. 2022. 碎屑锆石U-Pb年代学定量物源分析的基本原理与影响因素. 沉积学报, 40(6): 1599~1614.
参考文献
许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 2021. 重矿物分析物源示踪方法研究进展. 地球科学进展, 36(2): 154~171.
参考文献
杨守业, 李超, 王中波, 王晓丹, 舒劲松. 2013. 现代长江沉积物地球化学组成的不均一性与物源示踪. 第四纪研究, 33(4): 645~655.
参考文献
杨守业, 印萍. 2018. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程. 海洋地质与第四纪地质, 38(1): 1~10.
参考文献
张昌民, 张尚锋, 李少华, 淡卫东, 侯路. 2004. 中国河流沉积学研究20年. 沉积学报, 22(2): 183~192.
参考文献
张光亚, 余朝华, 陈忠民, 张荻萩, 温志新, 黄彤飞, 王彦奇, 刘小兵, 马锋, 赵健. 2018. 非洲地区盆地演化与油气分布. 地学前缘, 25(2): 1~14.
参考文献
朱筱敏, 谈明轩, 董艳蕾, 李维, 秦祎, 张自力. 2019. 当今沉积学研究热点讨论——第20届国际沉积学大会评述. 沉积学报, 37(1): 1~16.
目录contents

    摘要

    现代河流沉积物忠实地记录了流域盆地内的母岩、风化、搬运和沉积过程中的化学、物理过程以及人类活动的改造作用,是探索和验证源-汇系统等理论的重要媒介。本文以全球现代河流砂组分数据库为基础,总结了碎屑组分、重矿物组分在不同大陆的分布特征,探讨了其在物源识别、源区贡献率计算、沉积物产生及搬运过程中气候-构造等影响因素的评估、对源-汇系统的研究启示等方面的应用。今后建议加强基于大数据的沉积物组分对气候-构造-人类活动的响应、沉积物产生及通量、高时间分辨率的沉积物组分变异性、不同物源定量化方法的差异等方面的研究。

    Abstract

    Modern fluvial sediments faithfully record the source signals of parent rocks and weathering conditions, as well as the transformation caused by chemical, physical processes and human activities during the transportation and deposition in the drainage basin, which are important media for exploring and verifying the sedimentological theories such as source-sink system.Based on the database of detrital components of global modern river sand, we summarized the distribution characteristics of petrographic and heavy minerals in different continents, and explored their applications in provenance identification, quantification of sediment contribution, evaluation of climatic and tectonic impacts during sediment generation and transport, and implications for the study of source-sink system.In future, it is suggested to strengthen the research on the compositional response to climatic, tectonic and human activities on the basis of big data analysis, sediment generation and production, sediment compositional variability with high time resolution, and differences among various provenance analysis methods.

  • 河流是地表形态的主要塑造者,也是大陆地表风化物质向海洋搬运的重要媒介。河流体系作为一种常见的陆相沉积,在地质记录中广泛分布,是重要的油气、煤、金、铀矿等的储集单元。河流沉积的研究包括多个方面,从河型分类与变化、河流沉积相与相模式、河流砂体建筑结构与沉积模拟(张昌民等,2004),逐渐扩展到河流动力学、陆缘河流、河流沉积地层学及地貌变化等(高志勇等,2017)。其中,源-汇系统作为地表物质循环中最为重要的一环(Bridge and Demicco,2008),是河流物质搬运、沉积研究的重要组成部分,自提出以来就受到了广泛关注。21世纪以来,许多国家和国际组织开展了多项以水系为物质循环重要核心的源-汇系统研究计划(如,MARGINS Program Science Plans 2004、亚洲大陆边缘源-汇过程与陆海相互作用合作计划等;石学法等,2021),并取得了大量基础数据和研究成果。

  • 河流沉积物作为物源分析的重要研究对象,在沉积盆地的研究中发挥了重要作用,被用来追溯河流系统演化过程、重建高原隆升剥蚀历史,以及恢复不同流域的气候、构造条件等(如,Burbank et al.,2003; 范代读等,2012; Godard et al.,2014; Wang Ping et al.,2014)。然而,沉积物从产生、搬运到沉积过程中不断受到各种物理因素和化学作用的影响,由此而产生的沉积过程之前的“环境偏差”和沉积过程之后“成岩偏差”,使得沉积物/沉积岩的物源分析一直都是一项极具挑战的工作(Garzanti,2016)。大部分针对不同地质年代沉积物物源的反演,结果也存在一定的不确定性(王平等,2022),使得物源定量分析难以取得突破。现代沉积环境中的源-汇系统,是了解地质历史时期源-汇系统的钥匙。相比而言,现代河流体系中沉积物,不受成岩过程中“成岩偏差”的影响,同时,现代沉积物样品所处的地质、地貌和气候条件均已知,各种物理、化学过程造成的“环境偏差”可以定量评估,是了解沉积物产生、搬运和沉积过程,厘清源-汇系统中各种影响因素的最为方便直接的研究对象。随着现代河流沉积物组分研究的开展,使得源区和汇区的沉积物组分可直接对比,大大提高了解译物源信息的能力(Griffiths,1962; Mack,1981; Palomares and Arribas,1993; Arribas et al.,2000; Le Pera et al.,2001; Ibbeken and Schleyer,2013)。从现代河流沉积物研究出发,将现代沉积环境下研究获得的源-汇系统知识成果拓展到第四纪甚至深时源-汇系统研究中去,进而揭示流域剥蚀、构造和气候的相互作用等(如,Garzanti et al.,2020),不失为一种更稳妥的办法。

  • 沉积物矿物组分是追踪沉积物物源和搬运路径的最有效的属性,准确评估沉积物通量以及剥蚀、搬运和沉积过程中物理和化学过程引起的成分变化是理解沉积物路径系统的基本步骤(Caracciolo,2020)。虽然现代河流监测的水文数据可以帮助解释沉积物收支平衡等问题,但由于水文站点覆盖面不全,时间上仅有近几十年来的沉积物浓度、沉积载荷、流量等数据,在探讨更长时间尺度的沉积物收支及通量变化时仍极大依赖于沉积物组分信息。鉴于此,本文依托全球现代河流沉积物组分数据库(Liang Wendong et al.,2022b),系统总结了现代环境背景下不同河流的沉积物组分特征及其主要应用,并在此基础上对未来的河流沉积物组分研究方向进行了展望。

  • 1 全球河流沉积物矿物组分特征

  • 1.1 河流沉积物矿物组分分析方法

  • 河流沉积物组分的研究具体可包括碎屑组分、重矿物组成、黏土矿物、单矿物年龄组成、元素地球化学、同位素地球化学及环境磁学等。其中,沉积物岩相学分析作为最常用的物源分析工具,被广泛用于追溯沉积物来源,重建河流和盆地的演化历史,以及揭示地貌的侵蚀模式等(Krynine,1942; Potter,19781994; Dickinson et al.,1983)。重矿物分析则是最敏感和最广泛使用的技术之一,自现代地质学出现以来,也一直被用于确定沉积物的来源(Mange and Wright,2007; Garzanti and Andò,2019)。因此,高分辨率的岩相学、矿物学研究作为物源分析的主要和必要步骤,可以提供完整的沉积物组分信息和源区的指示性信息,并帮助理解和校正单矿物分析方法、地球化学方法等获得的物源信号(Garzanti,2016; Resentini et al.,2017)。陆源碎屑的粒径从几微米到几米不等,分布范围广,很难用单一的方法进行研究。粗碎屑沉积物如卵石、巨砾等携带着岩性、物源和流域剥蚀等信息(Dunkl et al.,2009; Spalla et al.,2009; Garzanti et al.,2018a),但由于采样不便,大多在野外进行。细粒沉积物难以用光学方法或单颗粒技术进行研究,依赖于X射线衍射、拉曼光谱、扫描电镜、QEMSCAN等测试技术的发展(Andò and Garzanti,2014; Bunaciu et al.,2015; Caracciolo et al.,2019)。砂级沉积物适合于大多数研究方法,且广泛分布于各种河流环境中,研究成果也最多,是本文重点关注的对象。

  • 现代河流沉积物一般通过环氧树脂胶结样品,再切薄片进行镜下鉴定统计。目前常用的碎屑组分统计方法是Gazzi-Dickinson方法,可有效排除沉积物粒度对统计结果的影响,其特点是利用栅格统计的方法,选择栅格间距大于最大砂粒直径以避免重复计数,并对所有粒径大于62.5 μm的矿物颗粒单独计数,每个样品统计颗粒数不少于300,并将统计结果转化为相应的面积百分比(Ingersoll et al.,1984; 董小龙等,2022)。沉积物碎屑组分主要分为石英(Q)、长石(F)、岩屑(L)三大类,实际统计工作中,石英又细分为单晶石英(Qm)和多晶石英(Qp),长石细分为钾长石(Kf)、斜长石(P)等,岩屑细分为沉积岩岩屑(Ls,包括泥质岩(Lp)、碳酸盐岩(Lc)、燧石岩(Lch)等)、火成岩岩屑(Lv,包括长英质火山岩(Lvf)、镁铁质火山岩(Lvm)等)、变质岩岩屑(Lm,根据原岩类型、岩屑内部结构和矿物组成又可进一步划分;Garzanti and Vezzoli,2003)。分类方案则是基于3种主要成分的相对含量来划分(Garzanti,2019),操作简单且能直观反映砂岩的成分信息。

  • 重矿物是指沉积物中密度大于2.89 g/cm3或大于2.90 g/cm3的矿物颗粒,鉴定统计的目标粒径一般为15~500 μm或32~500 μm。由于重矿物颗粒大小不一,点计数法常用于重矿物统计(Garzanti and Andò,2019)。通过统计薄片中网格交点处的颗粒,保证不同颗粒的点数比值等于面积或体积比,以便准确地表示不同种类的重矿物比例。为了保证数据的准确性,需保证统计的透明重矿物颗粒在200颗以上。对于不确定的重矿物可利用激光拉曼光谱或能谱仪、电子探针等手段进行辅助鉴定。重矿物浓度(HMC)常用来表征重矿物占整个样品的比例,透明重矿物浓度(tHMC)表征透明重矿物在整个样品中所占的比例。ZTR则是锆石、电气石、金红石在所有透明重矿物中所占的比例,用来指示成熟度和衡量沉积物再循环的程度(Garzanti,2017),相似水动力行为的重矿物比值,如ATi、GZi等也常用来指示物源信息(许苗苗等,2021)。

  • 1.2 现代河流沉积物组分特征

  • 笔者整理了现代河流沉积物的3034个砂质碎屑组分和1943个重矿物组分数据(Liang Wendong et al.,2022b)。整体来看,大部分河流沉积物样品分布在亚洲(32%),其次为南美洲(23%)、非洲(19%)和欧洲(16%),大洋洲(6%)和北美洲(4%)则分布最少(图1)。大多数河流沉积物样品都提供了碎屑组分数据(~91%),但仅有一半左右的样品有重矿物数据(~58%),因此碎屑组分数据也以亚洲最多(28%),南美洲(23%)、非洲(20%)较多,大洋洲(7%)和北美洲最少(4%),重矿物数据主要分布在亚洲(40%)、非洲(29%)和欧洲(24%),而北美洲和大洋洲不到1%(图1)。

  • 总体来看,全球河流沉积物组分以石英、岩屑为主,长石含量普遍较低(图2;表1)。岩屑组分的分布较为分散,变质岩岩屑、沉积岩岩屑以及火山岩岩屑均有分布(图3)。透明重矿物以角闪石、辉石、绿帘石、石榴子石及锆石等为主(表1)。

  • 非洲大陆的现代河流沉积物组分以石英为主(74%),长石(15%)和岩屑(11%)含量都较低(图2;表1);岩屑以变质岩(50%)和火山岩岩屑(32%) 为主,沉积岩岩屑相对较少(18%)(图3);透明重矿物组分中含有较多稳定重矿物锆石、电气石、金红石(平均ZTR可达20%)以及高级变质矿物等(表1;图4)。非洲板块整体是一个由西非、东非、刚果(扎伊尔)和卡拉哈里克拉通拼合而成的稳定克拉通,发育多期裂谷和有限的褶皱带(张光亚等,2018),因此,非洲发育的河流沉积物组分也以稳定组分如石英、ZTR等为主,长石、变质岩岩屑等次之。

  • 图1 现代河流沉积物样品的空间分布

  • Fig.1 Spatial distribution of modern river sand samples

  • 表1 全球现代河流沉积物组分特征

  • Table1 Compositional characteristics of global modern river sands

  • 注:表中各组分数据为河流沉积物组分的算术平均值;n—沉积物样品数;Q—石英;F—长石;L—岩屑;Lv—火成岩岩屑;Ls—沉积岩岩屑;Lm—变质岩岩屑;ZTR—锆石+电气石+金红石;Ttn—榍石;Ap—磷灰石;Ep—绿帘石族矿物;Grt—石榴子石;Cld—硬绿泥石;HgM—蓝晶石、红柱石、矽线石、十字石等变质矿物;Amp—角闪石;Py—辉石;OS—橄榄石+尖晶石;&tHM—其他透明重矿物。

  • 图2 不同大陆的河流沉积物碎屑组分特征(QFL分类据Garzanti,2019

  • Fig.2 Petrographic characteristics of river sands in different continents (QFL classification according to Garzanti, 2019)

  • 图3 不同大陆的河流沉积物岩屑组分特征

  • Fig.3 Lithic characteristics of river sands in different continents

  • 亚洲、欧洲的河流沉积物组分相似,均以石英和岩屑为主,QFL组分分别为45∶17∶38和35∶16∶49(表1)。相比于非洲河流沉积物,其石英含量(35%~45%)明显降低,而岩屑含量(38%~49%)明显升高(图2);岩屑组分中以变质岩岩屑和沉积岩岩屑为主(87%~94%),火山岩岩屑含量少(6%~13%);不同之处在于亚洲河流含有较多的沉积岩岩屑(50%),而欧洲河流则以变质岩岩屑(61%)为主(图3;表1)。亚洲和欧洲的河流沉积物在透明重矿物组成上也较为一致,均以角闪石、绿帘石、石榴子石、辉石为主,锆石、电气石、金红石等重矿物次之(表1;图4)。然而,亚洲河流沉积物含有较多的角闪石(35%)和较低的石榴子石(8%),欧洲河流沉积物则相反(角闪石24%,石榴子石18%)。欧亚大陆的阿尔卑斯-喜马拉雅造山带是多条世界级大河的发源地,因此河流携带的沉积物成分复杂,考虑到现有的河流沉积物采样点的差异,欧洲河流沉积物主要分布在阿尔卑斯造山带,而亚洲河流沉积物分布范围更广(图1),除造山带提供的物质外,还接受了其他构造单元如珠江流域的华南地块碳酸盐岩、花岗岩等的沉积物质输入(Garzanti et al.,2021b)。因此,亚洲的河流沉积物组分总体来说含有更多的沉积岩岩屑、角闪石等,而欧洲河流沉积物组分则含有相对较多的变质岩岩屑、石榴子石等。

  • 大洋洲的样品数量较少,沉积物组分较为分散,以岩屑含量最高(59%),其次为石英(28%)和长石(13%)(图2);岩屑组分又以沉积岩岩屑(55%)和变质岩岩屑(41%)为主,火山岩岩屑(4%)含量低(表1;图3),与大洋洲广泛分布的沉积岩盖层相吻合(Johnson,2009; Doran et al.,2020)。重矿物组分仅有一组,表现出了极高的稳定重矿物组分(ZTR高达48%;表1)。

  • 北美洲河流沉积物样品量较少,主要以石英(65%)为主,岩屑以沉积岩岩屑(66%)为主(表1),表明大部分河流沉积物样品采集自循环的沉积地层。重矿物数据较少,不具有代表性。南美洲河流沉积物组分同样以石英(64%)为主,但岩屑含量(26%)较北美河流多,同时石英组分比例较高(图2);岩屑则以火山岩岩屑(38%)和变质岩岩屑(35%)为主,沉积岩岩屑(27%)相对较少(表1),与南美大陆的地盾与沉积盆地相间发育的大地构造背景(Cordani et al.,2000)一致。含重矿物数据的河流沉积物样品也大多数分布在西部安第斯山脉的中基性岩浆岩区域(Garzanti et al.,2021a),因此透明重矿物组分以辉石(50%)、角闪石(16%)为主。

  • 2 现代河流沉积物矿物组分的应用

  • 现代河流沉积物产生于不同气候及构造背景的岩性单元中,其组分信息同时也记录了沉积物产生、搬运和沉积过程中的各种影响因素的改造作用。详细的沉积物组分研究可以解释源-汇系统研究中一些悬而未决的问题,如源区岩性对沉积物产生和产量的影响、流域中不同岩性的产沙贡献、沉积物在搬运过程中的组分演变、临时储存以及环境因素对沉积物的影响等(Armitage et al.,2011; Caracciolo,2020),以提高对流域剥蚀和源-汇过程等的认识。具体的应用可以总结为以下3个方面。

  • 2.1 物源识别与沉积物供给量化

  • 不同流域或构造单元由于所含岩性的差异或各岩性单元的分布比例不同,产生的沉积物组分特征也各有差别。不同来源的沉积物组分特征差异是区别不同沉积物供应源区,进行定量物源分析的基础(Garzanti,2016)。以雅鲁藏布江为例,南部喜马拉雅造山带(以年楚河为代表; Liang Wendong et al.,2020)来源的河流沉积物以沉积岩岩屑(含碳酸盐岩岩屑)或低变质沉积岩岩屑为特征,透明重矿物含量较低且以抗风化剥蚀的重矿物(锆石、电气石等)或变质矿物(硬绿泥石、石榴子石等)为主;北部拉萨地体(以拉萨河为代表; Garzanti et al.,2018a)来源的河流沉积物组分以富含长石和火山岩岩屑为特征,透明重矿物以角闪石为主;而来自碰撞造山带中部的蛇绿岩缝合带的沉积物则以富蛇纹岩、基性火山岩或变火山岩岩屑,以及橄榄石、铬尖晶石、顽火辉石、紫苏辉石等重矿物为特征(Liang Wendong et al.,2022a)。这种可相互区别的碎屑组分和重矿物特征为河流下游的河道、阶地及沉积地层的物源追溯及量化分析奠定了科学基础。

  • 沉积物组分是研究流域内某一特定地体(如花岗岩体、玄武岩体等)的沉积物贡献量的绝佳对象,如流经峨眉山玄武岩的河流携带了含有大量的镁铁质火山岩岩屑及单斜辉石等的沉积物(Vezzoli et al.,2016)。同时,沉积物组分也一直被用来追踪河流沉积物由源到汇的沿程变化(Russell,1937)。以雅鲁藏布江干流为例,上游的沉积物组分受支流供给的影响较大,从源头处的岩屑-长石-石英砂向下游方向经历了长石-岩屑-石英砂,岩屑-长石-石英砂与石英-岩屑砂的变化,而在雅鲁藏布江中下游流域,支流输入的沉积物信号很快地被雅鲁藏布江干流的沉积物信号淹没,沉积物组分逐渐变得稳定,以岩屑-长石-石英砂为主。重矿物组合特征也由上游的角闪石、绿帘石、石榴子石、硬绿泥石、磷灰石、单斜辉石等多种重矿物组合变为中下游的角闪石占绝对主导的重矿物组合(Liang Wendong et al.,2022a)。

  • 图4 不同大陆的河流沉积物重矿物特征

  • Fig.4 Heavy minerals of river sands in different continents

  • 双标图据Gabriel,1971;如果射线之间的角度为0°、90°或180°,则对应的变量分别为相关、不相关或反相关关系;各重矿物组分缩写见表1注解

  • Biplot after Gabriel, 1971; if the angle between rays is 0°, 90°, or 180°, the corresponding variables are correlated, uncorrelated, or anti-correlated, respectively; the abbreviations of heavy minerals are shown in Table 1

  • 物源分析作为研究源-汇过程的重要手段,其定量化是学科未来发展的必然趋势(朱筱敏等,2019)。对现代河流沉积物来说,流域内不同支流或不同构造单元的相对沉积物贡献量可以在详实的碎屑组分和重矿物统计基础上通过正演混合模型来计算得到(Garzanti et al.,2012)。模拟计算的基本前提是明确源区不同的端元(不同支流或构造单元)组分和汇区的组分特征,通过赋予各端元不同的比例(各端元比例之和为1)来模拟出各种端元混合情况下的组分特征,并与实测的沉积物组分相对比。两者相差越小,意味着模拟的组分越接近真实组分,代表着所赋予的端元比例越接近实际情况下的各源区的贡献比例。两者之间的差别,也即是拟合程度,可用Aitchison距离来衡量,数值越小则拟合越好(Garzanti et al.,2012; Resentini et al.,2017)。为准确地提炼各端元的真实碎屑组分和重矿物组成,可采用多个可相互替代的样品组分求取平均值。据此计算雅鲁藏布江的砂质沉积物贡献,80%来自北侧拉萨地体,仅有~15%来自南侧喜马拉雅造山带,5%来自雅鲁藏布缝合带(Liang Wendong et al.,2022a)。

  • 2.2 评估气候-构造-人类活动对沉积物的影响

  • 近几十年的水文记录可以帮助我们认识气候变化、构造及人类活动对河流沉积物的影响,但沉积物组分特征以及根据沉积物组分精确量化的不同流域的沉积物产量,可以在更长的时间尺度上来评估盆地的气候、构造活动等。

  • 沉积物的产生过程是机械风化和化学风化共同作用的结果,受温度、降水等气候条件的影响。机械风化通过剥落、日晒(温差等)以及水、盐对孔隙裂缝的渗透和膨胀等使得岩石体积发生变化,进而导致机械破碎和分离 (Anderson and Anderson,2010)。在冰川环境中,极端的机械风化可以导致花岗岩产生富集石英的沉积物,而长石损失可达50%(Caracciolo et al.,2012)。化学风化强度则受温度和降水的相互作用,可极大地改变某些中—低地形的流域中的碎屑组分,可以直接产生富含黏土的石英砂(Potter,1978; Johnsson et al.,1991)。这些沉积物产量则主要由暴露地表的岩石矿物学和结构学参数决定的(Potter,1978; Mack,1981; Johnsson,1993; Caracciolo et al.,2012)。因此,沉积物的特征差异可以反映不同的气候条件。不同矿物的溶蚀特征及差异可以反映风化强度的差异(Andò et al.,2012),尤其石英、锆石等稳定矿物也发生溶蚀的情况下,可能反映了热带地区较为极端的化学风化强度(Andò et al.,2012; Garzanti et al.,2019)。现有的沉积物组分与样品分布也表明,Q/(F+L)值表示的高石英产区随纬度的降低而升高(图5),这种纬向变化趋势可能指示了低纬度地区的强风化作用使得长石被风化溶蚀而稳定矿物石英含量相对增多,有力地解释了赤道地区的石英工厂现象(Garzanti et al.,2013)。因此,沉积物组分及产量可以评估母岩源区的气候条件和风化剥蚀状况。

  • 尽管气候条件有利于化学风化作用的进行,地形因素仍是使得物源信号得以保持的首要因素(Garzanti and Resentini,2016)。研究表明,地形和斜坡形态是控制侵蚀速率的关键参数(Johnsson et al.,1988; Montgomery and Brandon,2002; Riebe et al.,2015)。与环境因素相比,抬升速率对沉积物产量的控制作用更为明显(Hovius,1996; Allen,2017),且抬升速率较快的构造活跃区的剥蚀速率比构造不活跃区的剥蚀速率高达3个数量级(Pinot and Souriau,1988; Hovius,1996)。此外,构造造山作用(如,喜马拉雅山脉,Burbank et al.,2003)产生的雨影效应以及山谷(如,东非大裂谷;Munday et al.,2023)对水汽的通道效应,可进一步影响当地的降雨、植被和风化剥蚀速率等。因此,抬升速率高的地区的沉积物产量高,在下游的沉积物组分中则表现为构造活跃地区产生的沉积物组分特征也越明显,进而可通过沉积物贡献率的计算,评估活跃构造地区的沉积物产量与差异。

  • 图5 石英含量的纬度分布

  • Fig.5 Latitudinal distribution of quartz content

  • 人类活动(包括修建大坝、水电站、采砂、开矿、土地利用等)对河流沉积物的产生和搬运也有显著的控制作用(Syvitski et al.,2005; Dai et al.,2009; Wang Hong and Sun Fubao,2021)。人类活动导致的沉积物组分变化较为复杂,以修建大坝为例,大坝合龙后会大量拦截河流上游的沉积物,尤其是推移质,从而改变其下游的沉积物通量及组分特征;而大坝的排水、周期性泄洪等不仅会使得上游沉积物再次向下游方向搬运和沉积,还会使得坝体下游已沉积的河道沉积物发生强烈冲刷再搬运。尽管东南沿海的河流体系中,气候主控的沉积物组分变化可能会大于人类活动的影响(Jian Xing et al.,2020a2020b),但短时间内河流沉积物组分的突然变化仍可能反映大坝修筑、开矿等(Yang Chengfan et al.,2019; Liang Wendong et al.,2022a)人类活动影响。

  • 2.3 揭示岩性-分选-风化等因素对沉积物组分的影响

  • 现代河流沉积体系的研究,不仅要理解气候、构造、人类活动等与沉积物组分的关系,还要厘清岩性、分选、风化等作用的影响,才能提高对源-汇系统的认识。

  • 岩性是研究沉积物组分首要考虑的问题。不同岩性产生不同粒度沉积物的能力不同。例如,花岗岩类通常产生砂级的沉积物,而低级变质岩、沉积岩等则倾向于产生粉砂、黏土等沉积物(Garzanti et al.,2018a)。在沉积物组分上,花岗岩流域产生的沉积物多以长石、火山岩岩屑为特征,而沉积岩流域更富含岩屑,尤其是沉积岩岩屑、低级变质岩岩屑等(Liang Wendong et al.,2022a)。重矿物特征也是如此,不同岩性的重矿物浓度(HMC、tHMC)、重矿物组合特征差异显著,尤其以中、高级变质岩和镁铁质火山岩中的重矿物含量最为丰富(Garzanti and Andò,2019)。不同支流携带的沉积物汇入干流后,产自不同岩性流域的不同粒径、密度、形状的沉积物颗粒发生混合,通过沉积物组分差异可以识别不同的沉积物来源,但同时也因为水动力分选以及各种物理、化学作用的影响而使得沉积物组分不能完全反映源区的岩性特征。

  • 分选作用是沉积物在搬运和沉积过程中受重力和流体物理规律共同调节而产生的沉积物的重新分布。受水动力大小的影响,特定的搬运机制(悬浮、跳跃、滚动)只能搬运特定粒度范围内的颗粒。沉积物的搬运、沉积受等效沉降法则(Rubey,1933)和选择性挟带作用的共同控制。等效沉降法则即假定在相同的水动力条件下,由牵引流沉积的同一沉积层的颗粒具有相同的沉降速度。由于颗粒的粒度、密度差异,低密度的粗颗粒(如石英、长石等)通常与高密度的细颗粒(如锆石等)一起沉积。因此在牵引流的沉积环境中,泥质颗粒不会与砂质颗粒一起沉积(Garzanti,2017)。选择性挟带作用则是决定了沉积物在牵引流中的状态,在水动力条件较高的情况下(风暴、洪水等),粗颗粒具有较大受力面积、拖曳力以及较小转动角,从而更容易被水动力冲刷而发生再搬运,细粒重矿物则容易被留在原地,进而导致了不同采样地点的沉积物组分差异(Garzanti et al.,20082009; Resentini et al.,2013)。因此,同一来源的沉积物在分选作用下也会产生不同的沉积物组分(Caracciolo et al.,2012; Garzanti and Andò,2019)。重矿物组分由于密度差异巨大,更受分选和粒度效应的影响,如尼罗河流域的角闪石含量在粗粒中较高(Garzanti et al.,2006),来源于麻粒岩等变质岩的石榴子石比花岗岩流域的石榴子石粒度更粗(Krippner et al.,2016)等。这种强烈的分选效应和粒度差异对依靠沉积物组分,尤其是仅依靠单颗粒矿物组分及年龄特征来量化沉积物来源造成了极大的影响。

  • 沉积物搬运过程中还受各种机械和化学风化作用的影响。沉积物颗粒的结构、组分从上游至下游的沿程变化一直以来都存在争议(Russell,1937; Garzanti,2017; 胡修棉,2017; 马字发等,2022)。沉积物颗粒在搬运过程中受机械磨损和矿物分解的共同作用(Johnsson,1993; Allen et al.,2016; Garzanti,2017),但颗粒在从上游向下游搬运过程中是否存在粒径减小、磨圆度变好以及组分成熟度变高的变化趋势,受到了来自现代河流沉积物研究的极大挑战(Russell,1937; Breyer and Bart,1978; Garzanti,2017; 胡修棉,2017)。现代河流沉积物观测表明,沉积物砂级颗粒在长距离的河流搬运过程中粒径并没有明显减小(Russell and Taylor,1937; Garzanti et al.,2015a),颗粒磨圆度可以在风力搬运过程中迅速变好,但在河流搬运过程中变化不明显(Garzanti et al.,2015b; Resentini et al.,2018)。成分成熟度通常被认为随着搬运距离的增加,不稳定矿物含量降低,稳定矿物组分含量升高,但现代河流环境中的研究显示即使在数千千米的高能水动力环境的搬运过程中沉积物组分也没有明显变化(Russell and Taylor,1937; Garzanti et al.,2015a; Garzanti,2017)。相反,河流体系中沉积物在平缓地形中的河道、河口三角洲等沉积环境中的临时储存以及与洪泛平原之间的沉积物交换(Dunne et al.,1998; Malmon et al.,2003),使得沉积物在风化环境中暴露的时间变长,可对沉积物的不稳定矿物组分含量造成显著的影响(Johnsson and Meade,1990; Johnsson et al.,1991)。

  • Russell(1937)曾直言:看似合理的假设往往只是随着时间的推移而成为普遍接受的事实,却缺乏直接的挑战。因此,现代河流体系中的沉积物结构、组分研究将以有力的证据直接对我们某些习以为常的沉积学认识提出挑战,帮助我们更好地了解和认识沉积物的产生、搬运、沉积过程,并对定量化物源分析和源-汇系统研究提供有益的启示和参考。

  • 3 河流沉积物组分未来研究的重点领域

  • 现代河流沉积物组分的研究在各个方面都取得了极大的发展,与此同时,还有许多问题值得深入研究,如河流沉积过程中与风成沉积的相互作用(Xu Jiongxin et al.,2006; Nie Junsheng et al.,2015; Zhang Xiang et al.,2015)、沉积物在河道中的搬运滞留时间(Dosseto et al.,2006; Li Chao et al.,2016; Guyez et al.,2023)、河流沉积物指示的风化信号(汪齐连等,2008; Dellinger et al.,2014; 曹昉等,2021)、河流入海沉积物的端元特征及其在边缘海输移与分布规律(范代读等,2012; 杨守业等,2018)等,这些问题的解决既是未来重要的研究方向,同时也依赖其他分析技术方法的发展。本文仅从河流沉积物的碎屑组分和重矿物组分研究出发,对其在气候-构造-岩性-人类活动等因素的影响、河流沉积物组分的时间变异性及如何精确量化源区的沉积物贡献等方面的发展进行简要介绍和展望。

  • 3.1 基于大数据的沉积物组分与气候-构造-人类活动的关系

  • 对地方性或区域性的河流沉积物的研究层见叠出,而全球尺度上沉积物组分与岩性、气候、构造、人类活动等因素之间关系的研究还寥寥无几。20世纪有零星研究开始探索大陆尺度(如,Potter,1994)或全球尺度(Potter,1978)上的现代河流沉积物组分的异同,而随着近年来现代河流沉积研究力量的不断壮大,大量河流沉积物组分数据的不断产生,进一步验证和拓展了对沉积物产生和沉积物源-汇系统的理解,并使得运用大数据的手段在全球尺度上探讨沉积物组分与其影响因素之间的关系成为了可能(Vermeesch and Garzanti,2015)。最近的一些研究已经认识到沉积物的岩石学、矿物学和地球化学组分在现代(Müller et al.,2021Johnson et al.,2022)或古代(Augustsson,2021)沉积环境研究中的重要价值,并建立了公开可用的数据库(Liang Wendong et al.,2022b),为进一步大数据分析研究奠定了基础。丰富的现代河流沉积数据提供了从全球视角研究沉积物成分变化与气候(图5)、构造之间关系的基础。沉积物组分与构造背景之间的关系较为复杂,以砂岩碎屑组分为例,“砂岩的碎屑模式主要反映了源区母岩不同的构造环境”(Dickinson,1985)这一表述常被当作物源研究的基本信条,Dickinson三角图解更是被一些人视作判断构造环境的标准。然而,这些三元图的实用性有限(胡修棉等,2021),利用Dickinson图解成功识别地球动力学背景的几率为0~78% (Molinaroli et al.,1991; Weltje,2006)。现代沉积物组分及清晰的动力学背景为判断Dickinson模型的适用性提供了便利,考虑到地球动力学与俯冲极性、造山作用和盆地形成之间的密切关系,Garzanti(20162019)将现代沉积物组分信息与俯冲/造山相关的地壳类型联系起来(图6;Garzanti et al.,2007)。

  • 现代沉积环境中的地形、气候、环境及盆地参数等较为容易获得,为探究沉积物组分与其他影响因素的联系,包括岩性(如,Garzanti,2016)、坡度(Basu,1985; Johnsso n et al.,1993)、搬运距离(Garzanti et al.,2018b)、流域面积(如,McBride et al.,1996)等提供了方便。更为重要的是,现代河流沉积体系还是人类活动信息的重要载体,通过追踪千年以来的(Worden et al.,2020; Wang Hong and Sun Fubao,2021)河流沉积物通量及河流演化,以及大型河流体系从源头到下游河口的沉积物组分及通量变化,结合水文学数据,可以从时间和空间变化上评估人类活动对河流沉积体系及源-汇系统的影响。

  • 3.2 沉积物产生及通量

  • 沉积物产生(sediment generation)主要是指在母岩已知的情况下,量化控制沉积物生成和扩散的过程,以及预测在既定构造和气候条件下母岩产生的沉积物的数量和成分-结构性质等(Caracciolo,2020)。沉积物产生是沉积地质学的重要前沿方向,也是国际沉积学界一直关注的问题,为此国际沉积学家协会(IAS)于2009年专门成立了沉积物产生工作组(Working Group on Sediment Generation,WGSG)以定期交流研究进展,迄今已主办了5届国际会议。

  • 图6 汇聚板块边缘的现代河流沉积物组分(据Garzanti et al.,2007修改)

  • Fig.6 Composition of modern sands generated along convergent plate margins (modified after Garzanti et al., 2007)

  • 灰色箭头表示去顶趋势;区域划分来自Dickinson(1985);MA—岩浆弧;CB—大陆块;RO—再旋回造山带;比例尺用不同颜色的条带表示,均为250 μm

  • Grey arrows highlight unroofing trends for each provenance; fields after Dickinson (1985) ; MA—magmatic arc; CB—continental block; RO—recycled orogen; colored scale bars are all 250 μm

  • 沉积物产生重点关注的是岩性与沉积产物的关系。自Palomares and Arribas (1993)提出了砂生成指数(SGI)以来,对不同岩性产砂能力的差异就一直受到关注(Arribas and Tortosa,2003; Vezzoli et al.,2004; Garzanti et al.,2021b)。Vezzoli et al.(2004)将SGI扩展到更多岩性端元的产砂能力研究中,并进一步引入了标准化后的坡度指数ksnA来表征不同岩性的产砂能力(Vezzoli et al.,2020)。相似岩性的产砂能力受岩性结构参数,如母岩晶体大小、分布和矿物界面频率的控制(Caracciolo et al.,2012; Weltje et al.,2018)。不同岩性之间的可蚀性(erodibility)差异可导致不同岩性区域出现差异剥蚀(Korup and Schlunegger,2009; Harel et al.,2016)。基于此,Moosdorf et al.(2018)通过对相似抬升速率地区的其他各岩性与酸性深成岩分布地区的坡度比值定义了岩性的可蚀性指数,并估计了从区域到全球规模的不同岩性的沉积物产生潜力。我国学者也早在二十世纪八九十年代针对黄河流域的基岩产沙及不同岩层的泥沙贡献量进行过研究(如,景可和陈浩,1986孙虎等,1997),卢金发(1989)也在对燕山地区的流域侵蚀产沙的研究中提出了岩性对流域产沙的控制作用。

  • 不管是沙生成指数(SGI)还是可蚀性指数,都不能全面地评估岩性对沉积物产生能力的影响。SGI在计算时所用的数据来自于砂质沉积(Palomares and Arribas,1993; Vezzoli et al.,2004),本身就忽略了更易以悬移质形式搬运的细粒沉积物的影响;且由于长石、碳酸盐颗粒等的溶解、蚀变,SGI表现出了随着降水而变化的趋势(Garzanti et al.,2021b),因此无法准确地表征不同岩性的沉积物产生能力。可蚀性指数则是依靠坡度比值计算而来,而非实际沉积物通量,其结果与SGI计算结果和实际情况均存在较大出入。准确地评估不同构造、气候及地形影响下的不同岩性的产砾、砂、粉砂、泥的能力仍然是未来沉积学研究中极富挑战的科学问题(Vezzoli et al.,2020)。

  • 当然,不同流域的沉积物产生能力及沉积物产量的差异,仍受到气候、构造等因素的影响。以青藏高原东缘为例,根据《中国河流泥沙公报》提供的水文数据,高原内部的河流沉积物通量较低,而随着海拔的下降,在青藏高原山前的水文站测得的沉积物通量陡然增加,表明大量的沉积物产生于青藏高原的周缘地带。青藏高原东缘的地势陡峭,构造活动强烈,且受海拔突然升高的影响,降雨基本集中在山前地带,使得青藏高原东缘地区产生沉积物的能力远高于青藏高原内部,因此,青藏高原东缘不仅是地质、地貌、气候的陡变带,也是河流沉积物组分和通量的陡变带,其产生的沉积物可能是河流下游甚至入海口处沉积物的主要来源(如,Vezzoli et al.,2016)。

  • 不同构造单元由于岩性、地形、地貌及气候条件的差异,而具有不同的剥蚀速率以及产沙能力,导致不同支流或河流不同流域的沉积物通量差异较大,给泥沙监测及灾害预防带来了诸多不便,同时也为地质历史时期的物源判断带来困扰。因此,加强沉积物产生能力及产量控制因素的研究,不仅是推进定量化物源分析的需要,也将为水土流失等环境问题的解决提供参考。

  • 3.3 高时间分辨率的河流沉积物组分观测与研究

  • 现代河流环境中的沉积物组成不仅具有空间差异性,还具有时间差异性。目前研究通常只评估河流沉积物组成的空间变化,而很少考虑其时间变化,因此会导致对物源解释和流域剥蚀模式的认识偏差。

  • 降雨及河流流量在时空上的不均匀分布可能会导致流域侵蚀速率及河流沉积物组分随时间而发生变化。通过对河流水样及悬移质样品的连续监测,可以得到流域内的河水、沉积物在化学元素、同位素以及矿物组成上的季节性变化(Bickle et al.,2003; Tipper et al.,2006; Rai and Singh,2007; 杨守业等,2013; 罗超等,2014; Jian Xing et al.,2020a2020b; Liu-Lu Baiyang et al.,2022; Yang Liu et al.,2022)。这些研究的样品采集频率以月(Bickle et al.,2003)、双周(Tipper et al.,2006; Rai and Singh,2007; Jian Xing et al.,2020a2020b)或周(Liu-Lu Baiyang et al.,2022; Yang Liu et al.,2022)为周期,时间精度不一,且由于河流水样及悬移质样品的粒度较细,大多数研究方法集中于沉积物的地球化学和同位素特征,对沉积物碎屑组分和重矿物组分少有关注。尽管如此,沉积物组分已经明显表现出了季节尺度上的差异与变化。有研究表明,流域内降雨带的迁移可导致沉积物的主要来源发生迁移,悬移质组分特征因此呈现出季节性的变化规律(杨守业等,2013; 罗超等,2014; Jian Xing et al.,2020a)。

  • 受地貌、气候及构造因素影响的局部强降雨、地震、滑坡等突发灾害可引发特定支流或流域段的洪水事件等,并引起河流流量、悬移质浓度以及沉积物的地球化学和矿物组成上的即时响应(Rai and Singh,2007; 金章东等,2021)。突发灾害事件导致的沉积物浓度、组分变化与正常河流搬运的沉积物特征的差异,洪水期沉积物的来源与平水期、枯水期的沉积物来源有何异同,洪水期的河流沉积物来自于流域内的母岩侵蚀还是沉积物的再搬运,以及洪水期悬移质浓度变化与河水径流量变化的关系等问题的解答,也都依赖于高时间精度的连续悬移质浓度、组分特征的监测。

  • 季节性等较小尺度的空间和时间过程(Jian Xing et al.,2020a)、洪水事件(Rai and Singh,2007)、地震事件(金章东等,2021)等会对沉积物组成和物源解释造成影响。查明季节性、甚至事件性的河流沉积物组分变化,既可以增进了解沉积物来源的时空差异,评估不同时间、地点采集的沉积物样品数据的可靠性,又可以提高精确刻画流域侵蚀模式的能力,增强防洪防沙、抗灾减灾的能力。

  • 3.4 物源定量化研究方法的差异

  • 河流砂或砂岩的组分信息等级可从高到低表示为:颗粒组合(沉积物来源)、矿物组合(多矿物颗粒)、矿物(单矿物颗粒)及化学元素或氧化物4个级别(Weltje,2012)。其中低级别的组分特征可以通过化学分析获得,但无法转化为高级别的碎屑组分信息;相反,通过详细的镜下鉴定得到的碎屑组分可以进行细致的物源解释,但更费时且无法自动获取。高分辨率的岩相学、矿物学研究提供的碎屑物质组成和指示信息是物源分析的必要手段,然而,由于不同构造单元产生的沉积物特征可能极其相似,仅靠岩相学、矿物学研究无法区分年轻或古老、异地或本地、甚至造山带或非造山带来源的物质(Garzanti,2016)。因此,为了更好地追踪物源,地球化学和年代学分析等也越来越成为物源分析的必要手段。

  • 沉积物物源示踪的方法从传统手段向高科技手段、从定性向定量化都得到了极大的发展。20世纪80年代以来单矿物光谱学方法(Norrish and Chappell,1977; Kempe and Götze,2002; Andò and Garzanti,2014)、单矿物地球化学方法(Morton,1985; Liang Wendong et al.,2019)及年代学方法(Drewery et al.,1987; Jarvis and Williams,1993)等被逐渐开发并应用到沉积物源分析中。尤其是单矿物测年技术的发展,使得碎屑矿物(锆石、金红石等)年龄谱在物源分析中得到了极大的应用(von Eynatten and Dunkl,2012; Chew et al.,2020),且由于能产生大量高精度、定量化的数据,近年来单矿物分析方法呈现出了比重矿物组合分析方法更加迅猛发展的态势(许苗苗等,2021)。然而,由于分选作用及母岩所含矿物的丰度(fertility)差异等原因,不同的物源分析方法之间、沉积物的碎屑组分与重矿物之间、不同密度的重矿物之间等反映的源区信息都不尽相同。另外,同样是单矿物,锆石年龄可能反映了岩浆活动信息,而金红石、榍石则更多地记录了变质事件的年龄信息(Guo Ronghua et al.,2020),不同的单矿物年龄信息所指示的物源也存在极大差别。因此,根据碎屑组分、重矿物与单矿物年龄等定量计算的物源贡献度与真实的物源供应情况之间的差异需要进一步评估。需要注意的是,不同分析方法针对的可能是不同粒度的沉积物,从而也会因粒度差异而导致物源信息有所不同(Garzanti et al.,20092010; Weltje and Brommer,2011)。因此,如何正视不同研究对象(砾、砂、泥)和不同研究方法之间的差异,综合运用多种分析方法进行全粒径沉积物的物源分析,以更好地消除不同定量化手段带来的影响,对提高物源区贡献率的量化精度至关重要。

  • 4 结语

  • 物源分析是了解现代沉积体系中沉积物行为的最直接的方法,通过沉积物的岩相学、重矿物等组分研究,可以帮助了解沉积物在搬运过程中所受的流体动力分选的影响,评估化学、物理风化作用的强弱,并探究气候、构造或人类活动等对源-汇系统中沉积物的影响,并以此帮助认识到固有思维中的各种不确定性和潜在的陷阱(Garzanti,2016)。分布广泛的现代河流沉积物是研究沉积物组分与岩性、气候、构造及其他相关的化学和物理过程之间的关系,验证和探索沉积学源-汇体系相关理论的重要媒介。以“将今论古”这一地质思维为指导,结合降水、温度、坡度、流域面积、造山带分布、人类活动等条件分析,将加深对现代沉积物产生、搬运及沉积过程的理解,提高解译现代环境及地质历史记录中物源信息的能力,以更好地服务于古源-汇系统恢复和地表演化历史重建。

  • 致谢:感谢米兰比可卡大学Eduardo Garzanti教授在现代河流沉积研究中的交流和指导,感谢南京大学河流砂小组成员赖文、郭荣华、董小龙、张艺秋、陈凤婷等在实际研究过程中的有益讨论。

  • 参考文献

    • Allen P A. 2017. Sediment Routing Systems: The Fate of Sediments from Source to Sink. Cambridge: Cambridge University Press.

    • Allen P A, Michael N A, D'Arcy M, Roda-Boluda D C, Whittaker A C, Duller R A, Armitage J J. 2016. Fractionation of grain-size in terrestrial sediment routing systems. Basin Research, 27: 1~23.

    • Anderson R S, Anderson S P. 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge: Cambridge University Press.

    • Andò S, Garzanti E, Padoan M, Limonta M. 2012. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 280: 165~178.

    • Andò S, Garzanti E. 2014. Raman spectroscopy in heavy-mineral studies. In: Scott R A, Smyth H R, Morton A C, Richardson N, eds. Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological Society, London, Special Publication, 386(1): 395~412.

    • Armitage J J, Duller R A, Whittaker A C, Allen P A. 2011. Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4: 231~235.

    • Arribas J, Critelli S, Le Pera E, Tortosa A. 2000. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, Central Spain). Sedimentary Geology, 133(1-2): 27~48.

    • Arribas J, Tortosa A. 2003. Detrital modes in sedimenticlastic sands from low-order streams in the Iberian Range, Spain: The potential for sand generation by different sedimentary rocks. Sedimentary Geology, 159(3-4): 275~303.

    • Augustsson C. 2021. Influencing factors on petrography interpretations in provenance research—A case-study review. Geosciences, 11(5): 205.

    • Basu A. 1985. Influence of climate and relief on compositions of sands released at source areas. In: Zuffa G G, ed. Provenance of Arenites. Dordrecht, Holland, D. Reidel: NATO ASI Series 148, 1~18.

    • Bickle M J, Bunbury J, Chapman H J, Harris N B, Fairchild I J, Ahmad T. 2003. Fluxes of Sr into the headwaters of the Ganges. Geochimica et Cosmochimica Acta, 67(14): 2567~2584.

    • Breyer J A, Bart H A. 1978. The composition of fluvial sands in a temperate semiarid region. Journal of Sedimentary Research, 48(4): 1311~1320.

    • Bridge J, Demicco R. 2008. Earth Surface Processes, Landforms and Sediment Deposits. New York: Cambridge University Press.

    • Bunaciu A A, UdriŞTioiu E G, Aboul-Enein H Y. 2015. X-ray diffraction: Instrumentation and applications. Critical Reviews in Analytical Chemistry, 45(4): 289~299.

    • Burbank D, Blythe A, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A, Ojha T. 2003. Decoupling of erosion and precipitation in the Himalayas. Nature, 426(6967): 652~655.

    • Cao Fang, Yang Shouye, Yang Chengfan, Guo Yulong, Bi Lei, Li Yuze. 2021. Using lithium isotopes to quantitatively decode continental weathering signal: A case study in the Changjiang (Yangtze River) Estuary. Science China Earth Sciences, 64(10): 1698~1708 (in Chinese with English abstract).

    • Caracciolo L. 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Science Reviews, 103226.

    • Caracciolo L, von Eynatten H, Tolosana-Delgado R, Critelli S, Manetti P, Marchev P. 2012. Petrological, geochemical, and statistical analysis of Eocene-Oligocene sandstones of the western Thrace basin, Greece and Bulgaria. Journal of Sedimentary Research, 82(7): 482~498.

    • Caracciolo L, Andò S, Vermeesch P, Garzanti E, McCabe R, Barbarano M, Pareari C, Rittner M, Pearce T. 2019. A multidisciplinary approach for the quantitative provenance analysis of siltstone: Mesozoic Mandawa basin, southeastern Tanzania. In: Dowey P, Osborne M, Volk H, eds. Application of Analytical Techniques to Petroleum Systems. Geological Society, London, Special Publications, 484.

    • Chew D, O'Sullivan G, Caracciolo L, Mark C, Tyrrell S. 2020. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth-Science Reviews, 202: 103093.

    • Cordani U G, Milani E J, Thomaz Filho A, Campos D A. 2000. Tectonic Evolution of South America. 31st International Geological Congress.

    • Dai S, Yang S, Li M. 2009. The sharp decrease in suspended sediment supply from China's rivers to the sea: Anthropogenic and natural causes. Hydrological Sciences Journal, 54(1): 135~146.

    • Dellinger M, Gaillardet J, Bouchez J, Calmels D, Galy V, Hilton R G, Louvat P, France-Lanord C. 2014. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth and Planetary Science Letters, 401: 359~372.

    • Dickinson W R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G G, ed. Provenance of Arenites. Dordrecht, Holland, D. Reidel: NATO ASI Series 148, 333~361.

    • Dickinson W R, Beard L S, Brakenridge G R, Erjavec J L, Ferguson R C, Inman K F, Knepp R A, Lindberg F A, Ryberg P T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2): 222~235.

    • Dong Xiaolong, Hu Xiumian, Guo Ronghua, Lai Wen. 2022. Comparative experimental research on detrital statistics of river sand. Acta Sedimentologica Sinica, 40(4): 871~882 (in Chinese with English abstract).

    • Doran L M, Marsaglia K M, Browne G H. 2020. Reconnaissance composition of river sand from northern South Island, New Zealand: A modern analogue for southern Taranaki basin. New Zealand Journal of Geology and Geophysics, 63(1): 35~57.

    • Dosseto A, Bourdon B, Gaillardet J, Maurice-Bourgoin L, Allegre C J. 2006. Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes. Earth and Planetary Science Letters, 248(3-4): 759~771.

    • Drewery S, Cliff R A, Leeder M R. 1987. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons. Nature, 325(6099): 50~53.

    • Dunkl I, Frisch W, Kuhlemann J, Brügel A. 2009. Pebble population dating as an additional tool for provenance studies—examples from the Eastern Alps. Geological Society, London, Special Publications, 324(1): 125~140.

    • Dunne T, Mertes L K, Meade R H, Richey J E, Forsberg B R. 1998. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geological Society of America Bulletin, 110(4): 450~467.

    • Fan Daidu, Wang Yangyang, Wu Yijing. 2012. Advances in provenance studies of Changjiang riverine sediments. Advances in Earth Science, 27(5): 515~528 (in Chinese with English abstract).

    • Gabriel K R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58: 453~467.

    • Gao Zhiyong, Shi Yuxin, Mao Zhiguo, Feng Jiarui, Cui Jinggang. 2017. Current hot topics and advances of fluvial sedimentology: A summary from 11th international conference on fluvial sedimentology. Acta Sedimentologica Sinica, 35(6): 1097~1109 (in Chinese with English abstract).

    • Garzanti E. 2016. From static to dynamic provenance analysis—Sedimentary petrology upgraded. In: Caracciolo L, Garzanti E, von Eynatten H, Weltje G J, eds. Sediment generation and provenance: Processes and pathways. Sedimentary Geology, 336: 3~13.

    • Garzanti E. 2017. The maturity myth in sedimentology and provenance. Journal of Sedimentary Research, 87(4): 353~365.

    • Garzanti E. 2019. Petrographic classification of sand and sandstone. Earth-Science Reviews, 192: 545~563.

    • Garzanti E, Vezzoli G. 2003. A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73: 830~837.

    • Garzanti E, Andò S, Vezzoli G, Megid A A A, El Kammar A. 2006. Petrology of Nile River sands (Ethiopia and Sudan): Sediment budgets and erosion patterns. Earth and Planetary Science Letters, 252 (3-4): 327~341.

    • Garzanti E, Doglioni C, Vezzoli G, Andò S. 2007. Orogenic belts and orogenic sediment provenances. The Journal of Geology, 115: 315~334.

    • Garzanti E, Andò S, Vezzoli G. 2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273: 138~151.

    • Garzanti E, Andò S, Vezzoli G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277(3-4): 422~432.

    • Garzanti E, Andò S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y. 2010. Mineralogical and chemical variability of fluvial sediments 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299: 368~381.

    • Garzanti E, Resentini A, Vezzoli G, Andò S, Malusà M, Padoan M. 2012. Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 280: 149~164.

    • Garzanti E, Padoan M, Andò S, Resentini A, Vezzoli G, Lustrino M. 2013. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6): 547~580.

    • Garzanti E, Andò S, Padoan M, Vezzoli G, El Kammar A. 2015a. The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 130: 9~56.

    • Garzanti E, Resentini A, Andò S, Vezzoli G, Pereira A, Vermeesch P. 2015b. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology, 62(4): 971~996.

    • Garzanti E, Resentini A. 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81~95.

    • Garzanti E, Limonta M, Vezzoli G, An Wei, Wang Jiangang, Hu Xiumian. 2018a. Petrology and multimineral fingerprinting of modern sand generated from a dissected magmatic arc (Lhasa River, Tibet). In: Ingersoll R V, Lawton T F, Graham S A, eds. Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson's Career. Geological Society of America, Special Paper 540: 197~221.

    • Garzanti E, Dinis P, Vermeesch P, Andò S, Hahn A, Huvi J, Limonta M, Padoan M, Resentini A, Rittner M, Vezzoli G. 2018b. Sedimentary processes controlling ultralong cells of littoral transport: Placer formation and termination of the Orange sand highway in southern Angola. Sedimentology, 65(2): 431~460.

    • Garzanti E, Andò S. 2019. Heavy minerals for junior woodchucks. Minerals, 9: 148.

    • Garzanti E, Vermeesch P, Vezzoli G, Andò S, Botti E, Limonta M, Dinis P, Hahn A, Baudet D, De Grave J, Yaya N K. 2019. Congo River sand and the equatorial quartz factory. Earth-Science Reviews, 197: 102918.

    • Garzanti E, Liang Wendong, Andò S, Clift P, Resentini A, Vermeesch P, Vezzoli G. 2020. Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland-basin deposition driven by latest Quaternary climate change. Earth-Science Reviews, 103220.

    • Garzanti E, Capaldi T, Vezzoli G, Limonta M, Sosa N. 2021a. Transcontinental retroarc sediment routing controlled by subduction geometry and climate change (Central and Southern Andes, Argentina). Basin Research, 33(6): 3406~3437.

    • Garzanti E, He Jie, Barbarano M, Resentini A, Li Chao, Yang Lu, Yang Shouye, Wang Hua. 2021b. Provenance versus weathering control on sediment composition in tropical monsoonal climate (South China)-2. Sand petrology and heavy minerals. Chemical Geology, 119997.

    • Godard V, Bourlès D, Spinabella F, Burbank D, Bookhagen B, Fisher G, Moulin A, Léanni L. 2014. Dominance of tectonics over climate in Himalayan denudation. Geology, 42(3): 243~246.

    • Griffiths J C. 1962. Statistical methods in sedimentary petrography. In: Milner H B, ed. Sedimentary Petrography, 4th edition: Methods in Sedimentary Petrography, vol. I. London: Allen and Unwin, 565~617.

    • Guo Ronghua, Hu Xiumian, Garzanti E, Lai Wen, Yan Bing, Mark C. 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews, 201: 103082.

    • Guyez A, Bonnet S, Reimann T, Carretier S, Wallinga J. 2023. A novel approach to quantify sediment transfer and storage in rivers-testing feldspar single-grain pIRIR analysis and numerical simulations. Journal of Geophysical Research: Earth Surface, 128: e2022JF006727.

    • Harel M A, Mudd S M, Attal M. 2016. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology, 268: 184~196.

    • Hovius N. 1996. Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8: 29~44.

    • Hu Xiumian. 2017. A misunderstanding in provenance analysis: Sand changes of mineral, roundness, and size in flowing-water transportation. Journal of Palaeogeography, 19(1): 175~184 (in Chinese with English abstract).

    • Hu Xiumian, Xue Weiwei, Lai Wen, Wang Jiangang, An Wei, Li Juan. 2021. Sedimentary basin in orogenic belt and continental geodynamics. Acta Geologica Sinica, 95(1): 139~158 (in Chinese with English abstract).

    • Ibbeken H, Schleyer R. 2013. Source and Sediment: A Case Study of Provenance and Mass Balance at An Active Plate Margin (Calabria, Southern Italy). Springer Science & Business Media.

    • Ingersoll R V, Bullard T F, Ford R L, Grimm J P, Pickle J D, Sares S W. 1984. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54(1): 103~116.

    • Jarvis K E, Williams J G. 1993. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): A rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples. Chemical Geology, 106(3-4): 251~262.

    • Jian Xing, Zhang Wei, Yang Shouye, Kao Shuh-Ji. 2020a. Climate-dependent sediment composition and transport of mountainous rivers in tectonically stable, subtropical East Asia. Geophysical Research Letters, 47(3): e2019GL086150.

    • Jian Xing, Yang Shouye, Hong Dongming, Liang Hanghai, Zhang Shuo, Fu Hanjing, Zhang Wei. 2020b. Seasonal geochemical heterogeneity of sediments from a subtropical mountainous river in SE China. Marine Geology, 422: 106120.

    • Jin Zhangdong, Hilton R G, West A J, Li Gen, Zhang Fei, Wang Jin, Li Gaojun, Fan Xuanmei, Xie Menglong. 2022. The role of earthquake-induced landslides in erosion and weathering from active mountain ranges: Progress and perspectives. Science China Earth Sciences, 52(2): 222~237 (in Chinese with English abstract).

    • Johnson D. 2009. The Geology of Australia. Cambridge: Cambridge University Press.

    • Johnson J I, Sharman G R, Szymanski E, Huang X. 2022. Machine learning applied to a Modern-Pleistocene petrographic data set: The global prediction of sand modal composition (GloPrSM) model. Journal of Geophysical Research: Earth Surface, 127(7): e2022JF006595.

    • Johnsson M J. 1993. The system controlling the composition of clastic sediments. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments. 284. Geological Society of America, Special Paper, 1~19.

    • Johnsson M J, Stallard R F, Meade R H. 1988. First cycle quartz arenites in the Orinoco River basin: Venezuela and Colombia. The Journal of Geology, 96(3): 263~277.

    • Johnsson M J, Meade R H. 1990. Chemical weathering of fluvial sediments during alluvial storage: The Macuapanim Island point bar, Solimoes River, Brasil. Journal of Sedimentary Research, 60(6): 827~842.

    • Johnsson M J, Stallard R F, Lundberg N. 1991. Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia. Geological Society of America Bulletin, 103(12): 1622~1647.

    • Kempe U, Götze J. 2002. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66(1): 151~172.

    • Korup O, Schlunegger F. 2009. Rock-type control on erosion-induced uplift, eastern Swiss Alps. Earth and Planetary Science Letters, 278(3-4): 278~285.

    • Krippner A, Meinhold G, Morton A C, von Eynatten H. 2016. Heavy-mineral and garnet compositions of stream sediments and HP-UHP basement rocks from the Western Gneissregion, SW Norway. Norwegian Journal of Geology, 96(1): 7~17.

    • Krynine P D. 1942. Differential sedimentation and its products during one complete geosynclinal cycle. Proceedings of the 1st Pan American Congress on Mining Engineering Geology, Part 1, 537~560.

    • Le Pera E, Arribas J, Critelli S, Tortosa A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): Implications for provenance studies. Sedimentology, 48(2): 357~378.

    • Li Chao, Yang Shouye, Zhao Jianxin, Dosseto A, Bi Lei, Clark T R. 2016. The time scale of river sediment source-to-sink processes in East Asia. Chemical Geology, 446: 138~146.

    • Liang Wendong, Garzanti E, Andò S, Gentile P, Resentini A. 2019. Multimineral fingerprinting of Transhimalayan and Himalayan sources of Indus-derived Thal Desert sand (central Pakistan). Minerals, 9(8): 457.

    • Liang Wendong, Resentini A, Guo Ronghua, Garzanti E. 2020. Multimineral fingerprinting of modern sand generated from the Tethys Himalaya (Nianchu River, Tibet). Sedimentary Geology, 399: 105604.

    • Liang Wendong, Garzanti E, Hu Xiumian, Resentini A, Vezzoli G, Yao Wensheng. 2022a. Tracing erosion patterns in South Tibet: Balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa block. Basin Research, 34(1): 411~439.

    • Liang Wendong, Hu Xiumian, Garzanti E. 2022b. A global database of petrographic composition and heavy minerals in modern river sediment. DDE Repository, doi: 10. 12297/dpr. dde. 202210. 4.

    • Liu-Lu Baiyang, Jin Zhangdong, Gou Longfei, Zhang Fei, He Maoyong, Xu Yang. 2022. Seasonal river chemistry and lithium isotopes in the Min Jiang at eastern Tibetan Plateau: Roles of silicate weathering and hydrology. Frontiers in Earth Science, 10: 519.

    • Lu Jinfa. 1989. Preliminary study on variation of erosion and sediment yield of drainage basins in Yanshan, North China, associated with geology and geomorphology. Journal of Sediment Research, (1): 25~33 (in Chinese with English abstract).

    • Luo Chao, Zheng Hongbo, Wu Weihua, Yang Shouye. 2014. Temporal variation in Sr and 87Sr/86Sr of Yangtze River: An example from Datong hydrological station. Advances in Earth Science, 29(7): 835~843 (in Chinese with English abstract).

    • Ma Zifa, Zhang Huiping, Ma Yuanxu, Zhao Xudong. 2022. Downstream changes of riverbed grain size and its controls. Acta Geologica Sinica, 96(10): 3658~3673 (in Chinese with English abstract).

    • Mack G H. 1981. Composition of modern stream sand in a humid climate derived from a low-grade metamorphic and sedimentary foreland fore-thrust belt of north Georgia. Journal of Sedimentary Research, 51(4): 1247~1258.

    • Malmon D V, Dunne T, Reneau S L. 2003. Stochastic theory of particle trajectories through alluvial valley floors. The Journal of Geology, 111(5): 525~542.

    • Mange M A, Wright D T. 2007. Heavy minerals in use. In: Developments in Sedimentology Series. Amsterdam: Elsevier, Volume 58, 1~1283.

    • McBride E F, Abel-Wahab A, McGilvery T A. 1996. Loss of sand-size feldspar and rock fragments along the South Texas Barrier Island, USA. Sedimentary Geology, 107: 37~44.

    • Molinaroli E, Blom M, Basu A. 1991. Methods of provenance determination tested with discriminant function analysis. Journal of Sedimentary Research, 61: 900~908.

    • Montgomery D R, Brandon M T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201: 481~489.

    • Moosdorf N, Cohen S, von Hagke C. 2018. A global erodibility index to represent sediment production potential of different rock types. Applied Geography, 101: 36~44.

    • Morton A C. 1985. A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32(4): 553~566.

    • Müller G, Middelburg J J, Sluijs A. 2021. Introducing GloRiSe—A global database on river sediment composition. Earth System Science Data, 13(7): 3565~3575.

    • Munday C, Savage N, Jones R G, Washington R. 2023. Valley formation aridifies East Africa and elevates Congo basin rainfall. Nature, 615: 276~279.

    • Nie Junsheng, Stevens T, Rittner M, Stockli D, Garzanti E, Limonta M, Bird A, Andò S, Vermeesch P, Saylor J, Lu Huayu, Breecker D, Xiaofei, Liu Shanpin, Resentini A, Peng Wenbin, Carter A, Ji Shunchuan, Pan Baotian. 2015. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment. Nature Communications, 6(1): 1~10.

    • Norrish K, Chappell B W. 1977. X-ray fluorescence spectrometry. In: Zussman, ed. Physical Methods in Determinative Mineralogy. London: Academic Press, 201~272.

    • Palomares M, Arribas J. 1993. Modern stream sands from compound crystalline sources: Composition and sand generation index. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 284: 313~322.

    • Pinot P, Souriau M. 1988. Continental erosion and large-scale relief. Tectonics, 7: 563~582

    • Potter P E. 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86: 423~449.

    • Potter P E. 1994. Modern sands of South America: Composition, provenance and global significance. Geologische Rudschau, 83: 212~232.

    • Rai S K, Singh S K. 2007. Temporal variation in Sr and 87Sr/86Sr of the Brahmaputra: Implications for annual fluxes and tracking flash floods through chemical and isotope composition. Geochemistry, Geophysics, Geosystems, 8.

    • Resentini A, Malusà M G, Garzanti E. 2013. MinSORTING: An Excel work sheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies. Computers & Geosciences, 59: 90~97.

    • Resentini A, Goren L, Castelltort S, Garzanti E. 2017. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. Journal of Geophysical Research: Earth Surface, 122(7): 1430~1454.

    • Resentini A, Andò S, Garzanti E. 2018. Quantifying roundness of detrital minerals by image analysis: Sediment transport, shape effects, and provenance implications. Journal of Sedimentary Research, 88(2): 276~289.

    • Riebe C S, Sklar L S, Lukens C E, Shuster D L. 2015. Climate and topography control the size and flux of sediment produced on steep mountain slopes. Proceedings of the National Academy of Sciences, 112(51): 15574~15579.

    • Rubey W W. 1933. The size distribution of heavy minerals within a water-laid sandstone. Journal of Sedimentary Research, 3(1): 3~29.

    • Russell R D. 1937. Mineral composition of Mississippi River sands. Bulletin of the Geological Society of America, 48(9): 1307~1348.

    • Russell R D, Taylor R E. 1937. Roundness and shape of Mississippi River sands. The Journal of Geology, 45(3): 225~267.

    • Shi Xuefa, Qiao Shuqing, Yang Shouye, Li Jingrui, Wan Shiming, Zou Jianjun, Xiong Zhifang, Hu Limin, Yao Zhengquan, Dong Linsen, Wang Kunshan, Liu Shengfa, Liu Yanguang. 2021. Progress in sedimentology research of the Asian continental margin (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 319~336 (in Chinese with English abstract).

    • Spalla M I, Zanoni D, Gosso G, Zucali M. 2009. Deciphering the geologic memory of a Permian conglomerate of the southern Alps by pebble P-T estimates. International Journal of Earth Sciences, 98(1): 203~226.

    • Sun Hu, Gan Zhimao, Wu Chengji. 1997. Analysis on sediment yielding from eroded strata in Hekou-Longmen middle reaches of Yellow River. Journal of Desert Research, 17(3): 261~268 (in Chinese with English abstract).

    • Syvitski J P, Vörösmarty C J, Kettner A J, Green P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720): 376~380.

    • Tipper E T, Bickle M J, Galy A, West A J, Pomiès C, Chapman H J. 2006. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta, 70(11): 2737~2754.

    • Vermeesch P, Garzanti E. 2015. Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chemical Geology, 409: 20~27.

    • Vezzoli G, Garzanti E, Monguzzi S. 2004. Erosion in the western Alps (Dora Baltea basin): 1. Quantifying sediment provenance. Sedimentary Geology, 171(1~4): 227~246.

    • Vezzoli G, Garzanti E, Limonta M, Andó S, Yang Shouye. 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology, 261: 177~192.

    • Vezzoli G, Garzanti E, Limonta M, Radeff G. 2020. Focused erosion at the core of the Greater Caucasus: Sediment generation and dispersal from Mt. Elbrus to the Caspian Sea. Earth-Science Reviews, 200: 102987.

    • von Eynatten H, Dunkl I. 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Reviews, 115(1-2): 97~120.

    • Wang Hong, Sun Fubao. 2021. Variability of annual sediment load and runoff in the Yellow River for the last 100 years (1919-2018). Science of the Total Environment, 758: 143715.

    • Wang Ping, Scherler D, Liu-Zeng Jing, Mey J, Avouac J P, Zhang Yunda, Shi Dingguo. 2014. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in southern Tibet. Science, 346(6212): 978~981.

    • Wang Ping, Chen Xiyun, Zhu Longchen, Xie Hongsen, Lü Kailai, Wei Xiaochun. 2022. Principles and biases of quantitative provenance analysis using detrital zircon U-Pb geochronology: Insight from modern river sands. Acta Sedimentologica Sinica, 40(6): 1599~1614 (in Chinese with English abstract).

    • Wang Qilian, Liu Congqiang, Zhao Zhiqi, Chetelat Benjami, Ding Hu. 2008. Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China. Advance in Earth Science, 23(9): 952~958 (in Chinese with English abstract).

    • Weltje G J. 2006. Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V, eds. Compositional Data Analysis: From Theory to Practice. Geological Society of London Special Publications 264, 611~627.

    • Weltje G J. 2012. Quantitative models of sediment generation and provenance: State of the art and future developments. Sedimentary Geology, 280: 4~20.

    • Weltje G J, Brommer M B. 2011. Sediment-budget modelling of multi-sourced basin fills: Application to recent deposits of the western Adriatic mud wedge (Italy). Basin Research, 23(3): 291~308.

    • Weltje G J, Bertrand S, Chew D. 2018. Analysis of sediment properties: Tools for palaeo-environmental reconstruction. Sedimentary Geology, 375: 1~308.

    • Worden R H, Armitage P J, Butcher A R, Churchill J M, Csoma A, Wu Z, Zhao D, Syvitski J P, Saito Y, Zhou J, Wang M. 2020. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 1954—2015. Science of the Total Environment, 739: 139653.

    • Xu Jiongxin, Yang Jishan, Yan Yunxia. 2006. Erosion and sediment yields as influenced by coupled eolian and fluvial processes: The Yellow River, China. Geomorphology, 73 (1): 1~15.

    • Xu Miaomiao, Wei Xiaochun, Yang Rong, Wang Ping, Cheng Xiaogan. 2021. Research progress of provenance tracing method for heavy mineral analysis. Advances in Earth Science, 36(2): 154~171 (in Chinese with English abstract).

    • Yang Chengfan, Yang Shouye, Song Jiaze, Vigier N. 2019. Progressive evolution of the Changjiang (Yangtze River) sediment weathering intensity since the three gorges dam operation. Journal of Geophysical Research: Earth Surface, 124(10): 2402~2416.

    • Yang Liu, Zhang Fei, Hu Yadan, Zhan Yun, Deng Li, Huang Huayu, Sun Hui, Wei Yaben, Li Xiangliang. 2022. Seasonal variations of chemical weathering and CO2 consumption processes in the headwater (Datong River basin) of the Yellow River draining the Tibetan Plateau. Frontiers in Earth Science, 10: 909749.

    • Yang Shouye, Li Chao, Wang Zhongbo, Wang Xiaodan, Shu Jinsong. 2013. Heterogeneity of geochemical compositions of the Changjiang River sediments and provenance indication. Quaternary Sciences, 33(4): 645~655 (in Chinese with English abstract).

    • Yang Shouye, Yin Ping. 2018. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities. Marine Geology & Quaternary Geology, 38(1): 1~10 (in Chinese with English abstract).

    • Zhang Changmin, Zhang Shangfeng, Li Shaohua, Dan Weidong, Hou Lu. 2004. Advances in Chinese fluvial sedimentology from 1983 to 2003. Acta Sedimentologica Sinica, 22(2): 183~192 (in Chinese with English abstract).

    • Zhang Guangya, Yu Zhaohua, Chen Zhongmin, Zhang Diqiu, Wen Zhixin, Huang Tongfei, Wang Yanqi, Liu Xiaobing, Ma Feng, Zhao Jian. 2018. Tectonic evolution and hydrocarbon distribution in African basins. Earth Science Frontiers, 25(2): 1~14 (in Chinese with English abstract).

    • Zhang Xiang, Li Zhanbin, Li Peng, Cheng Shengdong, Zhang Yang, Tang Shanshan, Wang Tian. 2015. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed. Sedimentary Geology, 330: 132~140.

    • Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, Li Wei, Qin Yi, Zhang Zili. 2019. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress. Acta Sedimentologica Sinica, 37(1): 1~16 (in Chinese with English abstract).

    • 曹昉, 杨守业, 杨承帆, 郭玉龙, 毕磊, 李雨泽. 2021. 锂同位素定量提取河流碎屑沉积物中大陆风化信号. 中国科学: 地球科学, 51(10): 1742~1752.

    • 董小龙, 胡修棉, 郭荣华, 赖文. 2022. 河流砂碎屑统计方法的对比实验研究. 沉积学报, 40(4): 871~882.

    • 范代读, 王扬扬, 吴伊婧. 2012. 长江沉积物源示踪研究进展. 地球科学进展, 27 (5): 515~528.

    • 高志勇, 石雨昕, 毛治国, 冯佳睿, 崔京钢. 2017. 河流沉积学研究热点与进展——第11届国际河流沉积学大会综述. 沉积学报, 35(6): 1097~1109.

    • 胡修棉. 2017. 物源分析的一个误区: 砂粒在河流搬运过程中的变化. 古地理学报, 19(1): 175~184.

    • 胡修棉, 薛伟伟, 赖文, 王建刚, 安慰, 李娟. 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139~158.

    • 金章东, Hilton R G, West A J, 李根, 张飞, 汪进, 李高军, 范宣梅, 谢孟龙. 2022. 地震滑坡在活跃造山带侵蚀和风化中的作用: 进展与展望. 中国科学: 地球科学, 52(2): 222~237.

    • 景可, 陈浩. 1986. 黄河中游粗沙区的范围、数量及其基岩产沙的研究. 科学通报, 31(12): 927~931.

    • 卢金发. 1989. 燕山地区流域侵蚀产沙与流域地质地貌的初步研究. 泥沙研究, (1): 25~33.

    • 罗超, 郑洪波, 吴卫华, 杨守业. 2014. 长江河水87Sr/86Sr值的季节性变化及其指示意义: 以长江大通站为例. 地球科学进展, 29(7): 835~843.

    • 马字发, 张会平, 马元旭, 赵旭东. 2022. 河道沉积物粒度沿程变化特征及其影响因素. 地质学报, 96(10): 3658~3673.

    • 石学法, 乔淑卿, 杨守业, 李景瑞, 万世明, 邹建军, 熊志方, 胡利民, 姚政权, 董林森, 王昆山, 刘升发, 刘焱光. 2021. 亚洲大陆边缘沉积学研究进展(2011—2020). 矿物岩石地球化学通报, 40(2): 319~336.

    • 孙虎, 甘枝茂, 吴成基. 1997. 黄河中游河口镇至龙门区间不同岩层对河流粗泥沙贡献的分析. 中国沙漠, 17(3): 261~268.

    • 汪齐连, 刘丛强, 赵志琦, Chetelat B, 丁虎. 2008. 长江流域河水和悬浮物的锂同位素地球化学研究. 地球科学进展, 23(9): 952~958.

    • 王平, 陈玺贇, 朱龙辰, 谢鸿森, 吕开来, 魏晓椿. 2022. 碎屑锆石U-Pb年代学定量物源分析的基本原理与影响因素. 沉积学报, 40(6): 1599~1614.

    • 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 2021. 重矿物分析物源示踪方法研究进展. 地球科学进展, 36(2): 154~171.

    • 杨守业, 李超, 王中波, 王晓丹, 舒劲松. 2013. 现代长江沉积物地球化学组成的不均一性与物源示踪. 第四纪研究, 33(4): 645~655.

    • 杨守业, 印萍. 2018. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程. 海洋地质与第四纪地质, 38(1): 1~10.

    • 张昌民, 张尚锋, 李少华, 淡卫东, 侯路. 2004. 中国河流沉积学研究20年. 沉积学报, 22(2): 183~192.

    • 张光亚, 余朝华, 陈忠民, 张荻萩, 温志新, 黄彤飞, 王彦奇, 刘小兵, 马锋, 赵健. 2018. 非洲地区盆地演化与油气分布. 地学前缘, 25(2): 1~14.

    • 朱筱敏, 谈明轩, 董艳蕾, 李维, 秦祎, 张自力. 2019. 当今沉积学研究热点讨论——第20届国际沉积学大会评述. 沉积学报, 37(1): 1~16.

  • 参考文献

    • Allen P A. 2017. Sediment Routing Systems: The Fate of Sediments from Source to Sink. Cambridge: Cambridge University Press.

    • Allen P A, Michael N A, D'Arcy M, Roda-Boluda D C, Whittaker A C, Duller R A, Armitage J J. 2016. Fractionation of grain-size in terrestrial sediment routing systems. Basin Research, 27: 1~23.

    • Anderson R S, Anderson S P. 2010. Geomorphology: The Mechanics and Chemistry of Landscapes. Cambridge: Cambridge University Press.

    • Andò S, Garzanti E, Padoan M, Limonta M. 2012. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sedimentary Geology, 280: 165~178.

    • Andò S, Garzanti E. 2014. Raman spectroscopy in heavy-mineral studies. In: Scott R A, Smyth H R, Morton A C, Richardson N, eds. Sediment Provenance Studies in Hydrocarbon Exploration and Production. Geological Society, London, Special Publication, 386(1): 395~412.

    • Armitage J J, Duller R A, Whittaker A C, Allen P A. 2011. Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4: 231~235.

    • Arribas J, Critelli S, Le Pera E, Tortosa A. 2000. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, Central Spain). Sedimentary Geology, 133(1-2): 27~48.

    • Arribas J, Tortosa A. 2003. Detrital modes in sedimenticlastic sands from low-order streams in the Iberian Range, Spain: The potential for sand generation by different sedimentary rocks. Sedimentary Geology, 159(3-4): 275~303.

    • Augustsson C. 2021. Influencing factors on petrography interpretations in provenance research—A case-study review. Geosciences, 11(5): 205.

    • Basu A. 1985. Influence of climate and relief on compositions of sands released at source areas. In: Zuffa G G, ed. Provenance of Arenites. Dordrecht, Holland, D. Reidel: NATO ASI Series 148, 1~18.

    • Bickle M J, Bunbury J, Chapman H J, Harris N B, Fairchild I J, Ahmad T. 2003. Fluxes of Sr into the headwaters of the Ganges. Geochimica et Cosmochimica Acta, 67(14): 2567~2584.

    • Breyer J A, Bart H A. 1978. The composition of fluvial sands in a temperate semiarid region. Journal of Sedimentary Research, 48(4): 1311~1320.

    • Bridge J, Demicco R. 2008. Earth Surface Processes, Landforms and Sediment Deposits. New York: Cambridge University Press.

    • Bunaciu A A, UdriŞTioiu E G, Aboul-Enein H Y. 2015. X-ray diffraction: Instrumentation and applications. Critical Reviews in Analytical Chemistry, 45(4): 289~299.

    • Burbank D, Blythe A, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A, Ojha T. 2003. Decoupling of erosion and precipitation in the Himalayas. Nature, 426(6967): 652~655.

    • Cao Fang, Yang Shouye, Yang Chengfan, Guo Yulong, Bi Lei, Li Yuze. 2021. Using lithium isotopes to quantitatively decode continental weathering signal: A case study in the Changjiang (Yangtze River) Estuary. Science China Earth Sciences, 64(10): 1698~1708 (in Chinese with English abstract).

    • Caracciolo L. 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Science Reviews, 103226.

    • Caracciolo L, von Eynatten H, Tolosana-Delgado R, Critelli S, Manetti P, Marchev P. 2012. Petrological, geochemical, and statistical analysis of Eocene-Oligocene sandstones of the western Thrace basin, Greece and Bulgaria. Journal of Sedimentary Research, 82(7): 482~498.

    • Caracciolo L, Andò S, Vermeesch P, Garzanti E, McCabe R, Barbarano M, Pareari C, Rittner M, Pearce T. 2019. A multidisciplinary approach for the quantitative provenance analysis of siltstone: Mesozoic Mandawa basin, southeastern Tanzania. In: Dowey P, Osborne M, Volk H, eds. Application of Analytical Techniques to Petroleum Systems. Geological Society, London, Special Publications, 484.

    • Chew D, O'Sullivan G, Caracciolo L, Mark C, Tyrrell S. 2020. Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. Earth-Science Reviews, 202: 103093.

    • Cordani U G, Milani E J, Thomaz Filho A, Campos D A. 2000. Tectonic Evolution of South America. 31st International Geological Congress.

    • Dai S, Yang S, Li M. 2009. The sharp decrease in suspended sediment supply from China's rivers to the sea: Anthropogenic and natural causes. Hydrological Sciences Journal, 54(1): 135~146.

    • Dellinger M, Gaillardet J, Bouchez J, Calmels D, Galy V, Hilton R G, Louvat P, France-Lanord C. 2014. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion. Earth and Planetary Science Letters, 401: 359~372.

    • Dickinson W R. 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G G, ed. Provenance of Arenites. Dordrecht, Holland, D. Reidel: NATO ASI Series 148, 333~361.

    • Dickinson W R, Beard L S, Brakenridge G R, Erjavec J L, Ferguson R C, Inman K F, Knepp R A, Lindberg F A, Ryberg P T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94(2): 222~235.

    • Dong Xiaolong, Hu Xiumian, Guo Ronghua, Lai Wen. 2022. Comparative experimental research on detrital statistics of river sand. Acta Sedimentologica Sinica, 40(4): 871~882 (in Chinese with English abstract).

    • Doran L M, Marsaglia K M, Browne G H. 2020. Reconnaissance composition of river sand from northern South Island, New Zealand: A modern analogue for southern Taranaki basin. New Zealand Journal of Geology and Geophysics, 63(1): 35~57.

    • Dosseto A, Bourdon B, Gaillardet J, Maurice-Bourgoin L, Allegre C J. 2006. Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes. Earth and Planetary Science Letters, 248(3-4): 759~771.

    • Drewery S, Cliff R A, Leeder M R. 1987. Provenance of Carboniferous sandstones from U-Pb dating of detrital zircons. Nature, 325(6099): 50~53.

    • Dunkl I, Frisch W, Kuhlemann J, Brügel A. 2009. Pebble population dating as an additional tool for provenance studies—examples from the Eastern Alps. Geological Society, London, Special Publications, 324(1): 125~140.

    • Dunne T, Mertes L K, Meade R H, Richey J E, Forsberg B R. 1998. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geological Society of America Bulletin, 110(4): 450~467.

    • Fan Daidu, Wang Yangyang, Wu Yijing. 2012. Advances in provenance studies of Changjiang riverine sediments. Advances in Earth Science, 27(5): 515~528 (in Chinese with English abstract).

    • Gabriel K R. 1971. The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58: 453~467.

    • Gao Zhiyong, Shi Yuxin, Mao Zhiguo, Feng Jiarui, Cui Jinggang. 2017. Current hot topics and advances of fluvial sedimentology: A summary from 11th international conference on fluvial sedimentology. Acta Sedimentologica Sinica, 35(6): 1097~1109 (in Chinese with English abstract).

    • Garzanti E. 2016. From static to dynamic provenance analysis—Sedimentary petrology upgraded. In: Caracciolo L, Garzanti E, von Eynatten H, Weltje G J, eds. Sediment generation and provenance: Processes and pathways. Sedimentary Geology, 336: 3~13.

    • Garzanti E. 2017. The maturity myth in sedimentology and provenance. Journal of Sedimentary Research, 87(4): 353~365.

    • Garzanti E. 2019. Petrographic classification of sand and sandstone. Earth-Science Reviews, 192: 545~563.

    • Garzanti E, Vezzoli G. 2003. A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73: 830~837.

    • Garzanti E, Andò S, Vezzoli G, Megid A A A, El Kammar A. 2006. Petrology of Nile River sands (Ethiopia and Sudan): Sediment budgets and erosion patterns. Earth and Planetary Science Letters, 252 (3-4): 327~341.

    • Garzanti E, Doglioni C, Vezzoli G, Andò S. 2007. Orogenic belts and orogenic sediment provenances. The Journal of Geology, 115: 315~334.

    • Garzanti E, Andò S, Vezzoli G. 2008. Settling equivalence of detrital minerals and grain-size dependence of sediment composition. Earth and Planetary Science Letters, 273: 138~151.

    • Garzanti E, Andò S, Vezzoli G. 2009. Grain-size dependence of sediment composition and environmental bias in provenance studies. Earth and Planetary Science Letters, 277(3-4): 422~432.

    • Garzanti E, Andò S, France-Lanord C, Vezzoli G, Censi P, Galy V, Najman Y. 2010. Mineralogical and chemical variability of fluvial sediments 1. Bedload sand (Ganga-Brahmaputra, Bangladesh). Earth and Planetary Science Letters, 299: 368~381.

    • Garzanti E, Resentini A, Vezzoli G, Andò S, Malusà M, Padoan M. 2012. Forward compositional modelling of Alpine orogenic sediments. Sedimentary Geology, 280: 149~164.

    • Garzanti E, Padoan M, Andò S, Resentini A, Vezzoli G, Lustrino M. 2013. Weathering and relative durability of detrital minerals in equatorial climate: Sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6): 547~580.

    • Garzanti E, Andò S, Padoan M, Vezzoli G, El Kammar A. 2015a. The modern Nile sediment system: Processes and products. Quaternary Science Reviews, 130: 9~56.

    • Garzanti E, Resentini A, Andò S, Vezzoli G, Pereira A, Vermeesch P. 2015b. Physical controls on sand composition and relative durability of detrital minerals during ultra-long distance littoral and aeolian transport (Namibia and southern Angola). Sedimentology, 62(4): 971~996.

    • Garzanti E, Resentini A. 2016. Provenance control on chemical indices of weathering (Taiwan river sands). Sedimentary Geology, 336: 81~95.

    • Garzanti E, Limonta M, Vezzoli G, An Wei, Wang Jiangang, Hu Xiumian. 2018a. Petrology and multimineral fingerprinting of modern sand generated from a dissected magmatic arc (Lhasa River, Tibet). In: Ingersoll R V, Lawton T F, Graham S A, eds. Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson's Career. Geological Society of America, Special Paper 540: 197~221.

    • Garzanti E, Dinis P, Vermeesch P, Andò S, Hahn A, Huvi J, Limonta M, Padoan M, Resentini A, Rittner M, Vezzoli G. 2018b. Sedimentary processes controlling ultralong cells of littoral transport: Placer formation and termination of the Orange sand highway in southern Angola. Sedimentology, 65(2): 431~460.

    • Garzanti E, Andò S. 2019. Heavy minerals for junior woodchucks. Minerals, 9: 148.

    • Garzanti E, Vermeesch P, Vezzoli G, Andò S, Botti E, Limonta M, Dinis P, Hahn A, Baudet D, De Grave J, Yaya N K. 2019. Congo River sand and the equatorial quartz factory. Earth-Science Reviews, 197: 102918.

    • Garzanti E, Liang Wendong, Andò S, Clift P, Resentini A, Vermeesch P, Vezzoli G. 2020. Provenance of Thal Desert sand: Focused erosion in the western Himalayan syntaxis and foreland-basin deposition driven by latest Quaternary climate change. Earth-Science Reviews, 103220.

    • Garzanti E, Capaldi T, Vezzoli G, Limonta M, Sosa N. 2021a. Transcontinental retroarc sediment routing controlled by subduction geometry and climate change (Central and Southern Andes, Argentina). Basin Research, 33(6): 3406~3437.

    • Garzanti E, He Jie, Barbarano M, Resentini A, Li Chao, Yang Lu, Yang Shouye, Wang Hua. 2021b. Provenance versus weathering control on sediment composition in tropical monsoonal climate (South China)-2. Sand petrology and heavy minerals. Chemical Geology, 119997.

    • Godard V, Bourlès D, Spinabella F, Burbank D, Bookhagen B, Fisher G, Moulin A, Léanni L. 2014. Dominance of tectonics over climate in Himalayan denudation. Geology, 42(3): 243~246.

    • Griffiths J C. 1962. Statistical methods in sedimentary petrography. In: Milner H B, ed. Sedimentary Petrography, 4th edition: Methods in Sedimentary Petrography, vol. I. London: Allen and Unwin, 565~617.

    • Guo Ronghua, Hu Xiumian, Garzanti E, Lai Wen, Yan Bing, Mark C. 2020. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet. Earth-Science Reviews, 201: 103082.

    • Guyez A, Bonnet S, Reimann T, Carretier S, Wallinga J. 2023. A novel approach to quantify sediment transfer and storage in rivers-testing feldspar single-grain pIRIR analysis and numerical simulations. Journal of Geophysical Research: Earth Surface, 128: e2022JF006727.

    • Harel M A, Mudd S M, Attal M. 2016. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates. Geomorphology, 268: 184~196.

    • Hovius N. 1996. Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8: 29~44.

    • Hu Xiumian. 2017. A misunderstanding in provenance analysis: Sand changes of mineral, roundness, and size in flowing-water transportation. Journal of Palaeogeography, 19(1): 175~184 (in Chinese with English abstract).

    • Hu Xiumian, Xue Weiwei, Lai Wen, Wang Jiangang, An Wei, Li Juan. 2021. Sedimentary basin in orogenic belt and continental geodynamics. Acta Geologica Sinica, 95(1): 139~158 (in Chinese with English abstract).

    • Ibbeken H, Schleyer R. 2013. Source and Sediment: A Case Study of Provenance and Mass Balance at An Active Plate Margin (Calabria, Southern Italy). Springer Science & Business Media.

    • Ingersoll R V, Bullard T F, Ford R L, Grimm J P, Pickle J D, Sares S W. 1984. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54(1): 103~116.

    • Jarvis K E, Williams J G. 1993. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS): A rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples. Chemical Geology, 106(3-4): 251~262.

    • Jian Xing, Zhang Wei, Yang Shouye, Kao Shuh-Ji. 2020a. Climate-dependent sediment composition and transport of mountainous rivers in tectonically stable, subtropical East Asia. Geophysical Research Letters, 47(3): e2019GL086150.

    • Jian Xing, Yang Shouye, Hong Dongming, Liang Hanghai, Zhang Shuo, Fu Hanjing, Zhang Wei. 2020b. Seasonal geochemical heterogeneity of sediments from a subtropical mountainous river in SE China. Marine Geology, 422: 106120.

    • Jin Zhangdong, Hilton R G, West A J, Li Gen, Zhang Fei, Wang Jin, Li Gaojun, Fan Xuanmei, Xie Menglong. 2022. The role of earthquake-induced landslides in erosion and weathering from active mountain ranges: Progress and perspectives. Science China Earth Sciences, 52(2): 222~237 (in Chinese with English abstract).

    • Johnson D. 2009. The Geology of Australia. Cambridge: Cambridge University Press.

    • Johnson J I, Sharman G R, Szymanski E, Huang X. 2022. Machine learning applied to a Modern-Pleistocene petrographic data set: The global prediction of sand modal composition (GloPrSM) model. Journal of Geophysical Research: Earth Surface, 127(7): e2022JF006595.

    • Johnsson M J. 1993. The system controlling the composition of clastic sediments. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments. 284. Geological Society of America, Special Paper, 1~19.

    • Johnsson M J, Stallard R F, Meade R H. 1988. First cycle quartz arenites in the Orinoco River basin: Venezuela and Colombia. The Journal of Geology, 96(3): 263~277.

    • Johnsson M J, Meade R H. 1990. Chemical weathering of fluvial sediments during alluvial storage: The Macuapanim Island point bar, Solimoes River, Brasil. Journal of Sedimentary Research, 60(6): 827~842.

    • Johnsson M J, Stallard R F, Lundberg N. 1991. Controls on the composition of fluvial sands from a tropical weathering environment: Sands of the Orinoco River drainage basin, Venezuela and Colombia. Geological Society of America Bulletin, 103(12): 1622~1647.

    • Kempe U, Götze J. 2002. Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66(1): 151~172.

    • Korup O, Schlunegger F. 2009. Rock-type control on erosion-induced uplift, eastern Swiss Alps. Earth and Planetary Science Letters, 278(3-4): 278~285.

    • Krippner A, Meinhold G, Morton A C, von Eynatten H. 2016. Heavy-mineral and garnet compositions of stream sediments and HP-UHP basement rocks from the Western Gneissregion, SW Norway. Norwegian Journal of Geology, 96(1): 7~17.

    • Krynine P D. 1942. Differential sedimentation and its products during one complete geosynclinal cycle. Proceedings of the 1st Pan American Congress on Mining Engineering Geology, Part 1, 537~560.

    • Le Pera E, Arribas J, Critelli S, Tortosa A. 2001. The effects of source rocks and chemical weathering on the petrogenesis of siliciclastic sand from the Neto River (Calabria, Italy): Implications for provenance studies. Sedimentology, 48(2): 357~378.

    • Li Chao, Yang Shouye, Zhao Jianxin, Dosseto A, Bi Lei, Clark T R. 2016. The time scale of river sediment source-to-sink processes in East Asia. Chemical Geology, 446: 138~146.

    • Liang Wendong, Garzanti E, Andò S, Gentile P, Resentini A. 2019. Multimineral fingerprinting of Transhimalayan and Himalayan sources of Indus-derived Thal Desert sand (central Pakistan). Minerals, 9(8): 457.

    • Liang Wendong, Resentini A, Guo Ronghua, Garzanti E. 2020. Multimineral fingerprinting of modern sand generated from the Tethys Himalaya (Nianchu River, Tibet). Sedimentary Geology, 399: 105604.

    • Liang Wendong, Garzanti E, Hu Xiumian, Resentini A, Vezzoli G, Yao Wensheng. 2022a. Tracing erosion patterns in South Tibet: Balancing sediment supply to the Yarlung Tsangpo from the Himalaya versus Lhasa block. Basin Research, 34(1): 411~439.

    • Liang Wendong, Hu Xiumian, Garzanti E. 2022b. A global database of petrographic composition and heavy minerals in modern river sediment. DDE Repository, doi: 10. 12297/dpr. dde. 202210. 4.

    • Liu-Lu Baiyang, Jin Zhangdong, Gou Longfei, Zhang Fei, He Maoyong, Xu Yang. 2022. Seasonal river chemistry and lithium isotopes in the Min Jiang at eastern Tibetan Plateau: Roles of silicate weathering and hydrology. Frontiers in Earth Science, 10: 519.

    • Lu Jinfa. 1989. Preliminary study on variation of erosion and sediment yield of drainage basins in Yanshan, North China, associated with geology and geomorphology. Journal of Sediment Research, (1): 25~33 (in Chinese with English abstract).

    • Luo Chao, Zheng Hongbo, Wu Weihua, Yang Shouye. 2014. Temporal variation in Sr and 87Sr/86Sr of Yangtze River: An example from Datong hydrological station. Advances in Earth Science, 29(7): 835~843 (in Chinese with English abstract).

    • Ma Zifa, Zhang Huiping, Ma Yuanxu, Zhao Xudong. 2022. Downstream changes of riverbed grain size and its controls. Acta Geologica Sinica, 96(10): 3658~3673 (in Chinese with English abstract).

    • Mack G H. 1981. Composition of modern stream sand in a humid climate derived from a low-grade metamorphic and sedimentary foreland fore-thrust belt of north Georgia. Journal of Sedimentary Research, 51(4): 1247~1258.

    • Malmon D V, Dunne T, Reneau S L. 2003. Stochastic theory of particle trajectories through alluvial valley floors. The Journal of Geology, 111(5): 525~542.

    • Mange M A, Wright D T. 2007. Heavy minerals in use. In: Developments in Sedimentology Series. Amsterdam: Elsevier, Volume 58, 1~1283.

    • McBride E F, Abel-Wahab A, McGilvery T A. 1996. Loss of sand-size feldspar and rock fragments along the South Texas Barrier Island, USA. Sedimentary Geology, 107: 37~44.

    • Molinaroli E, Blom M, Basu A. 1991. Methods of provenance determination tested with discriminant function analysis. Journal of Sedimentary Research, 61: 900~908.

    • Montgomery D R, Brandon M T. 2002. Topographic controls on erosion rates in tectonically active mountain ranges. Earth and Planetary Science Letters, 201: 481~489.

    • Moosdorf N, Cohen S, von Hagke C. 2018. A global erodibility index to represent sediment production potential of different rock types. Applied Geography, 101: 36~44.

    • Morton A C. 1985. A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology, 32(4): 553~566.

    • Müller G, Middelburg J J, Sluijs A. 2021. Introducing GloRiSe—A global database on river sediment composition. Earth System Science Data, 13(7): 3565~3575.

    • Munday C, Savage N, Jones R G, Washington R. 2023. Valley formation aridifies East Africa and elevates Congo basin rainfall. Nature, 615: 276~279.

    • Nie Junsheng, Stevens T, Rittner M, Stockli D, Garzanti E, Limonta M, Bird A, Andò S, Vermeesch P, Saylor J, Lu Huayu, Breecker D, Xiaofei, Liu Shanpin, Resentini A, Peng Wenbin, Carter A, Ji Shunchuan, Pan Baotian. 2015. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment. Nature Communications, 6(1): 1~10.

    • Norrish K, Chappell B W. 1977. X-ray fluorescence spectrometry. In: Zussman, ed. Physical Methods in Determinative Mineralogy. London: Academic Press, 201~272.

    • Palomares M, Arribas J. 1993. Modern stream sands from compound crystalline sources: Composition and sand generation index. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 284: 313~322.

    • Pinot P, Souriau M. 1988. Continental erosion and large-scale relief. Tectonics, 7: 563~582

    • Potter P E. 1978. Petrology and chemistry of modern big river sands. The Journal of Geology, 86: 423~449.

    • Potter P E. 1994. Modern sands of South America: Composition, provenance and global significance. Geologische Rudschau, 83: 212~232.

    • Rai S K, Singh S K. 2007. Temporal variation in Sr and 87Sr/86Sr of the Brahmaputra: Implications for annual fluxes and tracking flash floods through chemical and isotope composition. Geochemistry, Geophysics, Geosystems, 8.

    • Resentini A, Malusà M G, Garzanti E. 2013. MinSORTING: An Excel work sheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies. Computers & Geosciences, 59: 90~97.

    • Resentini A, Goren L, Castelltort S, Garzanti E. 2017. Partitioning sediment flux by provenance and tracing erosion patterns in Taiwan. Journal of Geophysical Research: Earth Surface, 122(7): 1430~1454.

    • Resentini A, Andò S, Garzanti E. 2018. Quantifying roundness of detrital minerals by image analysis: Sediment transport, shape effects, and provenance implications. Journal of Sedimentary Research, 88(2): 276~289.

    • Riebe C S, Sklar L S, Lukens C E, Shuster D L. 2015. Climate and topography control the size and flux of sediment produced on steep mountain slopes. Proceedings of the National Academy of Sciences, 112(51): 15574~15579.

    • Rubey W W. 1933. The size distribution of heavy minerals within a water-laid sandstone. Journal of Sedimentary Research, 3(1): 3~29.

    • Russell R D. 1937. Mineral composition of Mississippi River sands. Bulletin of the Geological Society of America, 48(9): 1307~1348.

    • Russell R D, Taylor R E. 1937. Roundness and shape of Mississippi River sands. The Journal of Geology, 45(3): 225~267.

    • Shi Xuefa, Qiao Shuqing, Yang Shouye, Li Jingrui, Wan Shiming, Zou Jianjun, Xiong Zhifang, Hu Limin, Yao Zhengquan, Dong Linsen, Wang Kunshan, Liu Shengfa, Liu Yanguang. 2021. Progress in sedimentology research of the Asian continental margin (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(2): 319~336 (in Chinese with English abstract).

    • Spalla M I, Zanoni D, Gosso G, Zucali M. 2009. Deciphering the geologic memory of a Permian conglomerate of the southern Alps by pebble P-T estimates. International Journal of Earth Sciences, 98(1): 203~226.

    • Sun Hu, Gan Zhimao, Wu Chengji. 1997. Analysis on sediment yielding from eroded strata in Hekou-Longmen middle reaches of Yellow River. Journal of Desert Research, 17(3): 261~268 (in Chinese with English abstract).

    • Syvitski J P, Vörösmarty C J, Kettner A J, Green P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720): 376~380.

    • Tipper E T, Bickle M J, Galy A, West A J, Pomiès C, Chapman H J. 2006. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochimica et Cosmochimica Acta, 70(11): 2737~2754.

    • Vermeesch P, Garzanti E. 2015. Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chemical Geology, 409: 20~27.

    • Vezzoli G, Garzanti E, Monguzzi S. 2004. Erosion in the western Alps (Dora Baltea basin): 1. Quantifying sediment provenance. Sedimentary Geology, 171(1~4): 227~246.

    • Vezzoli G, Garzanti E, Limonta M, Andó S, Yang Shouye. 2016. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets. Geomorphology, 261: 177~192.

    • Vezzoli G, Garzanti E, Limonta M, Radeff G. 2020. Focused erosion at the core of the Greater Caucasus: Sediment generation and dispersal from Mt. Elbrus to the Caspian Sea. Earth-Science Reviews, 200: 102987.

    • von Eynatten H, Dunkl I. 2012. Assessing the sediment factory: The role of single grain analysis. Earth-Science Reviews, 115(1-2): 97~120.

    • Wang Hong, Sun Fubao. 2021. Variability of annual sediment load and runoff in the Yellow River for the last 100 years (1919-2018). Science of the Total Environment, 758: 143715.

    • Wang Ping, Scherler D, Liu-Zeng Jing, Mey J, Avouac J P, Zhang Yunda, Shi Dingguo. 2014. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in southern Tibet. Science, 346(6212): 978~981.

    • Wang Ping, Chen Xiyun, Zhu Longchen, Xie Hongsen, Lü Kailai, Wei Xiaochun. 2022. Principles and biases of quantitative provenance analysis using detrital zircon U-Pb geochronology: Insight from modern river sands. Acta Sedimentologica Sinica, 40(6): 1599~1614 (in Chinese with English abstract).

    • Wang Qilian, Liu Congqiang, Zhao Zhiqi, Chetelat Benjami, Ding Hu. 2008. Lithium isotopic composition of the dissolved and suspended loads of the Yangtze River, China. Advance in Earth Science, 23(9): 952~958 (in Chinese with English abstract).

    • Weltje G J. 2006. Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. In: Buccianti A, Mateu-Figueras G, Pawlowsky-Glahn V, eds. Compositional Data Analysis: From Theory to Practice. Geological Society of London Special Publications 264, 611~627.

    • Weltje G J. 2012. Quantitative models of sediment generation and provenance: State of the art and future developments. Sedimentary Geology, 280: 4~20.

    • Weltje G J, Brommer M B. 2011. Sediment-budget modelling of multi-sourced basin fills: Application to recent deposits of the western Adriatic mud wedge (Italy). Basin Research, 23(3): 291~308.

    • Weltje G J, Bertrand S, Chew D. 2018. Analysis of sediment properties: Tools for palaeo-environmental reconstruction. Sedimentary Geology, 375: 1~308.

    • Worden R H, Armitage P J, Butcher A R, Churchill J M, Csoma A, Wu Z, Zhao D, Syvitski J P, Saito Y, Zhou J, Wang M. 2020. Anthropogenic impacts on the decreasing sediment loads of nine major rivers in China, 1954—2015. Science of the Total Environment, 739: 139653.

    • Xu Jiongxin, Yang Jishan, Yan Yunxia. 2006. Erosion and sediment yields as influenced by coupled eolian and fluvial processes: The Yellow River, China. Geomorphology, 73 (1): 1~15.

    • Xu Miaomiao, Wei Xiaochun, Yang Rong, Wang Ping, Cheng Xiaogan. 2021. Research progress of provenance tracing method for heavy mineral analysis. Advances in Earth Science, 36(2): 154~171 (in Chinese with English abstract).

    • Yang Chengfan, Yang Shouye, Song Jiaze, Vigier N. 2019. Progressive evolution of the Changjiang (Yangtze River) sediment weathering intensity since the three gorges dam operation. Journal of Geophysical Research: Earth Surface, 124(10): 2402~2416.

    • Yang Liu, Zhang Fei, Hu Yadan, Zhan Yun, Deng Li, Huang Huayu, Sun Hui, Wei Yaben, Li Xiangliang. 2022. Seasonal variations of chemical weathering and CO2 consumption processes in the headwater (Datong River basin) of the Yellow River draining the Tibetan Plateau. Frontiers in Earth Science, 10: 909749.

    • Yang Shouye, Li Chao, Wang Zhongbo, Wang Xiaodan, Shu Jinsong. 2013. Heterogeneity of geochemical compositions of the Changjiang River sediments and provenance indication. Quaternary Sciences, 33(4): 645~655 (in Chinese with English abstract).

    • Yang Shouye, Yin Ping. 2018. Sediment source-to-sink processes of small mountainous rivers under the impacts of natural environmental changes and human activities. Marine Geology & Quaternary Geology, 38(1): 1~10 (in Chinese with English abstract).

    • Zhang Changmin, Zhang Shangfeng, Li Shaohua, Dan Weidong, Hou Lu. 2004. Advances in Chinese fluvial sedimentology from 1983 to 2003. Acta Sedimentologica Sinica, 22(2): 183~192 (in Chinese with English abstract).

    • Zhang Guangya, Yu Zhaohua, Chen Zhongmin, Zhang Diqiu, Wen Zhixin, Huang Tongfei, Wang Yanqi, Liu Xiaobing, Ma Feng, Zhao Jian. 2018. Tectonic evolution and hydrocarbon distribution in African basins. Earth Science Frontiers, 25(2): 1~14 (in Chinese with English abstract).

    • Zhang Xiang, Li Zhanbin, Li Peng, Cheng Shengdong, Zhang Yang, Tang Shanshan, Wang Tian. 2015. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed. Sedimentary Geology, 330: 132~140.

    • Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, Li Wei, Qin Yi, Zhang Zili. 2019. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress. Acta Sedimentologica Sinica, 37(1): 1~16 (in Chinese with English abstract).

    • 曹昉, 杨守业, 杨承帆, 郭玉龙, 毕磊, 李雨泽. 2021. 锂同位素定量提取河流碎屑沉积物中大陆风化信号. 中国科学: 地球科学, 51(10): 1742~1752.

    • 董小龙, 胡修棉, 郭荣华, 赖文. 2022. 河流砂碎屑统计方法的对比实验研究. 沉积学报, 40(4): 871~882.

    • 范代读, 王扬扬, 吴伊婧. 2012. 长江沉积物源示踪研究进展. 地球科学进展, 27 (5): 515~528.

    • 高志勇, 石雨昕, 毛治国, 冯佳睿, 崔京钢. 2017. 河流沉积学研究热点与进展——第11届国际河流沉积学大会综述. 沉积学报, 35(6): 1097~1109.

    • 胡修棉. 2017. 物源分析的一个误区: 砂粒在河流搬运过程中的变化. 古地理学报, 19(1): 175~184.

    • 胡修棉, 薛伟伟, 赖文, 王建刚, 安慰, 李娟. 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139~158.

    • 金章东, Hilton R G, West A J, 李根, 张飞, 汪进, 李高军, 范宣梅, 谢孟龙. 2022. 地震滑坡在活跃造山带侵蚀和风化中的作用: 进展与展望. 中国科学: 地球科学, 52(2): 222~237.

    • 景可, 陈浩. 1986. 黄河中游粗沙区的范围、数量及其基岩产沙的研究. 科学通报, 31(12): 927~931.

    • 卢金发. 1989. 燕山地区流域侵蚀产沙与流域地质地貌的初步研究. 泥沙研究, (1): 25~33.

    • 罗超, 郑洪波, 吴卫华, 杨守业. 2014. 长江河水87Sr/86Sr值的季节性变化及其指示意义: 以长江大通站为例. 地球科学进展, 29(7): 835~843.

    • 马字发, 张会平, 马元旭, 赵旭东. 2022. 河道沉积物粒度沿程变化特征及其影响因素. 地质学报, 96(10): 3658~3673.

    • 石学法, 乔淑卿, 杨守业, 李景瑞, 万世明, 邹建军, 熊志方, 胡利民, 姚政权, 董林森, 王昆山, 刘升发, 刘焱光. 2021. 亚洲大陆边缘沉积学研究进展(2011—2020). 矿物岩石地球化学通报, 40(2): 319~336.

    • 孙虎, 甘枝茂, 吴成基. 1997. 黄河中游河口镇至龙门区间不同岩层对河流粗泥沙贡献的分析. 中国沙漠, 17(3): 261~268.

    • 汪齐连, 刘丛强, 赵志琦, Chetelat B, 丁虎. 2008. 长江流域河水和悬浮物的锂同位素地球化学研究. 地球科学进展, 23(9): 952~958.

    • 王平, 陈玺贇, 朱龙辰, 谢鸿森, 吕开来, 魏晓椿. 2022. 碎屑锆石U-Pb年代学定量物源分析的基本原理与影响因素. 沉积学报, 40(6): 1599~1614.

    • 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 2021. 重矿物分析物源示踪方法研究进展. 地球科学进展, 36(2): 154~171.

    • 杨守业, 李超, 王中波, 王晓丹, 舒劲松. 2013. 现代长江沉积物地球化学组成的不均一性与物源示踪. 第四纪研究, 33(4): 645~655.

    • 杨守业, 印萍. 2018. 自然环境变化与人类活动影响下的中小河流沉积物源汇过程. 海洋地质与第四纪地质, 38(1): 1~10.

    • 张昌民, 张尚锋, 李少华, 淡卫东, 侯路. 2004. 中国河流沉积学研究20年. 沉积学报, 22(2): 183~192.

    • 张光亚, 余朝华, 陈忠民, 张荻萩, 温志新, 黄彤飞, 王彦奇, 刘小兵, 马锋, 赵健. 2018. 非洲地区盆地演化与油气分布. 地学前缘, 25(2): 1~14.

    • 朱筱敏, 谈明轩, 董艳蕾, 李维, 秦祎, 张自力. 2019. 当今沉积学研究热点讨论——第20届国际沉积学大会评述. 沉积学报, 37(1): 1~16.