en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘鑫,男,1997年生。博士研究生,从事沉积盆地构造-热演化方面研究。E-mail:lx_cup@163.com。

通讯作者:

邱楠生,男,1968年生。教授,主要从事沉积盆地-构造热演化方面研究。E-mail:qiunsh@cup.edu.cn。

参考文献
Bernasconi S M, Daëron M, Bergmann K D, Bonifacie M, Meckler A N, Affek H P, Anderson N, Bajnai D, Barkan E, Beverly E, Blamart D, Burgener L, Calmels D, Chaduteau C, Clog M, Davidheiser-Kroll B, Davies A, Dux F, Eiler J, Elliott B, Fetrow A C, Fiebig J, Goldberg S, Hermoso M, Huntington K W, Hyland E, Ingalls M, Jaggi M, John C M, Jost A B, Katz S, Kelson J, Kluge T, Kocken I J, Laskar A, Leutert T J, Liang D, Lucarelli J, Mackey T J, Mangenot X, Meinicke N, Modestou S E, Müller I A, Murray S, Neary A, Packard N, Passey B H, Pelletier E, Petersen S, Piasecki A, Schauer A, Snell K E, Swart P K, Tripati A, Upadhyay D, Vennemann T, Winkelstern I, Yarian D, Yoshida N, Zhang N, Ziegler M. 2021. Intercarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009588.
参考文献
Chen Jianping, Li Wei, Ni Yunyan, Dai Xin, Liang Digang, Deng Chunping, Bian Lizeng. 2018. The Permian source rocks and their natural gas prospects in the Sichuan basin (II): The geochemical characteristics of source rocks and the potential of natural gas resources. Natural Gas Industry, 38(6): 33~45 (in Chinese with English abstract).
参考文献
Cong Fuyun, Tian Jinqiang, Hao Fang, Licht A, Liu Yuchen, Cao Zicheng, Eiler J M. 2021. A thermal pulse induced by a Permian mantle plume in the Tarim basin, northwest China: Constraints from clumped isotope thermometry and in situ calcite U-Pb dating. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB020636.
参考文献
Eiler J M. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30(25-26): 3575~3588.
参考文献
Fan Jianping, Song Jinmin, Jiang Qingchun, Liu Shugen, Ye Yuehao, Huang Shipeng, Wang Jiarui, Su Wang, Li Liji, Jin Xin, Feng Yuxiang. 2022. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan basin. Oil & Gas Geology, 43(6): 1413~1430 (in Chinese with English abstract).
参考文献
Feng Qianqian, Qiu Nansheng, Fu Xiaodong, Li Wenzheng, Xu Qing, Li Xiao, Wang Jiangshan. 2021. Permian geothermal units in the Sichuan basin: Implications for the thermal effect of the Emeishan mantle plume. Marine and Petroleum Geology, 132: 105226.
参考文献
Feng Qianqian, Qiu Nansheng, Fu Xiaodong, Li Wenzheng, Liu Xin, Ji Ruiyun. 2022. Maturity evolution of Permian source rocks in the Sichuan basin, southwestern China: The role of the Emeishan mantle plume. Journal of Asian Earth Sciences, 229: 105180.
参考文献
Grossman E L, Yancey T E, Jones T E, Bruckschen P, Chuvashov B, Mazzullo S J, Mii H. 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 222~233
参考文献
He Bin, Xu Yigang, Xiao Long, Wang Yamei, Wang Kangming, Sha Shaoli. 2006. Sedimentary response to uplift of Emeishan mantle plume and its implications. Geological Review, 52(1): 30~37 (in Chinese with English abstract).
参考文献
He Lijuan, Xu Hehua, Wang Jiyang. 2011. Thermal evolution and dynamic mechanism of the Sichuan basin during the Early Permian-Middle Triassic. Science China Earth Science, 41(12): 1884~1891 (in Chinese with English abstract).
参考文献
He Lijuan. 2022. Emeishan mantle plume and its potential impact on the Sichuan basin: Insights from numerical modeling. Physics of the Earth and Planetary Interiors, 323: 106841.
参考文献
Hemingway J D, Henkes G A. 2021. A disordered kinetic model for clumped isotope bond reordering in carbonates. Earth and Planetary Science Letters, 566: 116962.
参考文献
Hu Di, Tian Yuntao, Hu Jie, Rao Song, Wang Yibo, Zhang Chao, Hu Shengbiao. 2020. Thermal imprints of late Permian Emeishan basalt effusion: Evidence from zircon fission-track thermochronology. Lithos, 352-353: 105224.
参考文献
Hu Guoyi, He Fei, Mi Jingkui, Yuan Yilin, Guo Jinhao. 2021. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan basin. Natural Gas Geoscience, 32(3): 319~333 (in Chinese with English abstract).
参考文献
Jiang Qiang, Qiu Nansheng, Zhu Chuanqing. 2018. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume. Tectonophysics, 724-725: 11~27.
参考文献
Kim S, O'Neil J R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16): 3461~3475.
参考文献
Korte C, Jasper T, Kozur H W, Veizer J. 2005. δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(4): 333~351.
参考文献
Li Bin, Mei Wenhua, Li Qiqi, Zhuo Qingong, Lu Xuesong, Guo Qiang. 2020. Influence of tectonic evolution of foreland basin in northwestern Sichuan basin on Paleozoic marine hydrocarbon accumulation. Natural Gas Geoscience, 31(7): 993~1003 (in Chinese with English abstract).
参考文献
Li Hongbo, Zhang Zhaochong, Santosh M, Lü Linsu, Liu Han, Liu Wei. 2017. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction. Journal of Asian Earth Sciences, 134: 293~308.
参考文献
Li Pingping, Duan Jianbao, Cheng Zhongzhen, Zou Huayao. 2021. Using clumped isotopes to reconstruct the maximum burial temperature: A case study in the Sichuan basin. Frontiers in Earth Science, 9: 759372.
参考文献
Liu Ran, Li Ya, Zhao Like, Wang Wei, Li Hongbo, Li Changquan, Li Botong. 2022. Geochemical characteristics of the Late Permian basalts in Pianyanzi, Huaying, Sichuan and their genetic relationship with Emeishan large igneous province. Acta Petrologica et Mineralogica, 41(1): 1~17 (in Chinese with English abstract).
参考文献
Liu Shugen, Sun Wei, Song Jinmin, Deng Bin, Zhong Yong, Luo Chao, Ran Bo, Tian Yanhong, Li Zhiwu, Peng Hanlin, Yin Kewei. 2015. Tectonics-controlled distribution of marine petroleum accumulations in the Sichuan basin, China. Earth Science Frontiers, 22(3): 146~160 (in Chinese with English abstract).
参考文献
Liu Shugen, Yang Yu, Deng Bin, Zhong Yong, Wen Long, Sun Wei, Li Zhiwu, Jansa L, Li Jinxi, Song Jinmin, Zhang Xinhua, Peng Hanling. 2021. Tectonic evolution of the Sichuan basin, Southwest China. Earth-Science Reviews, 213: 103470.
参考文献
Liu Xiaoyu, Qiu Nansheng, Søager N, Fu Xiaodong, Liu Ran. 2022. Geochemistry of Late Permian basalts from boreholes in the Sichuan basin, SW China: Implications for an extension of the Emeishan large igneous province. Chemical Geology, 588: 120636.
参考文献
Liu Yuchen, Qiu Nansheng, Chang Jian, Jia Jingkun, Li Huili, Ma Anlai. 2020. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: A case study of Shuntuoguole area in Tarim basin. Chinese Journal of Geophysics, 63(2): 597~611 (in Chinese with English abstract).
参考文献
Ma Yongsheng, Cai Xunyu, Zhao Peirong, Luo Yi, Zhang Xuefeng. 2010. Distribution and further exploration of the large-medium sized gas fields in Sichuan basin. Acta Petrolei Sinica, 31(3): 347~354 (in Chinese with English abstract).
参考文献
Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science, 35(2): 161~174 (in Chinese with English abstract).
参考文献
Murray S T, Arienzo M M, Swart P K. 2016. Determining the Δ47 acid fractionation in dolomites. Geochimica et Cosmochimica Acta, 174: 42~53.
参考文献
Naylor H N, Defliese W F, Grossman E L, Maupin C R. 2020. Investigation of the thermal history of the delaware basin (west Texas, USA) using carbonate clumped isotope thermometry. Basin Research, 32(5): 1140~1155.
参考文献
Passey B H, Henkes G A. 2012. Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 351-352: 223~236.
参考文献
Qiu Nansheng, Liu Wen, Fu Xiaodong, Li Wenzheng, Xu Qiuchen, Zhu Chuanqing. 2021. Maturity evolution of Lower Cambrian Qiongzhusi Formation shale of the Sichuan basin. Marine and Petroleum Geology, 128: 105061.
参考文献
Qiu Nansheng, Chang Jian, Zhu Chuanqing, Liu Wen, Zuo Yinhui, Xu Wei, Li Dan. 2022. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth-Science Reviews, 224: 103884.
参考文献
Stolper D A, Eiler J M. 2015. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315(5): 363~411.
参考文献
Swart P K, Murray S T, Staudigel P T, Hodell D A. 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates. Geochemistry, Geophysics, Geosystems, 20(7): 3730~3750.
参考文献
Wang Ruirui, Zhang Yueqiao, Xie Guoai, Xu Huaizhi. 2011. Origin of the Dabashan foreland convex zone: Insights from sandbox modeling. Acta Geologica Sinica, 85(9): 1409~1419 (in Chinese with English abstract).
参考文献
Wang Xuejun, Yang Zhiru, Han Bing. 2015. Superposed evolution of Sichuan basin and its petroleum accumulation. Earth Science Frontiers, 22(3): 161~173 (in Chinese with English abstract).
参考文献
Wu Hang, Qiu Nanshang, Chang Jian, Zhang Jixin, Wang Ye. 2019. Physical simulation on development of multilayer detachment fold belt in eastern Sichuan. Earth Science, 44(3): 784~797 (in Chinese with English abstract).
参考文献
Xu Ming, Zhu Chuanqing, Tian Yuntao, Rao Song, Hu Shengbiao. 2011. Borehole temperature logging and characteristics of subsurface temperature in Sichuan basin. Chinese Journal of Geophysics, 54(4): 1052~1060 (in Chinese with English abstract).
参考文献
Xu Qiuchen, Qiu Nansheng, Liu Wen, Shen Anjiang, Wang Xiaofang. 2018. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan basin, Southwest China. Journal of Asian Earth Sciences, 164: 143~158.
参考文献
Xu Qiuchen, Qiu Nansheng, Liu Wen, Chang Qing. 2019. Reconstructing the basin thermal history with clumped isotope. Chinese Science Bulletin, 64(5-6): 566~578 (in Chinese with English abstract).
参考文献
Xu Yigang, He Bin, Chung Sunlin, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32(10): 917~920.
参考文献
Yuan Yusong, Sun Dongsheng, Wo Yujin, Zhou Yan. 2010. The relationship between burial history of marine strata and tectonic movements in Mid-Upper Yangtze area. Chinese Journal of Geology, 45(3): 707~717 (in Chinese with English abstract).
参考文献
Yuan Yusong, Sun Dongsheng, Li Shuangjian, Lin Juanhua. 2013. Caledonian erosion thickness reconstruction in the Sichuan basin. Chinese Journal of Geology, 48(3): 581~591 (in Chinese with English abstract).
参考文献
Zhai Guangming, Zhang Jiming, Tang Zeyao. 1987. Petroleum Geology of China. Beijing: Petroleum Industry Press (in Chinese).
参考文献
Zhang Jian, Zhou Gang, Zhang Guangrong, Li Guohui, Wang Hua. 2018. Geological characteristics and exploration orientation of Mid-Permian natural gas in the Sichuan basin. Natural Gas Industry, 38(1): 10~20 (in Chinese with English abstract).
参考文献
Zhang Yu, Cao Qinggu, Luo Kaiping, Li Longlong, Liu Jinlian. 2022. Reservoir exploration of the Permian Maokou Formation in the Sichuan basin and enlightenment obtained. Oil & Gas Geology, 43(3): 610~620 (in Chinese with English abstract).
参考文献
Zhang Yueqiao, Shi Wei, Li Jianhua, Wang Ruirui, Li Hailong, Dong Shuwen. 2010. Formation mechanism of the Dabashan foreland arc-shaped structural belt. Acta Geologica Sinica, 84(9): 1300~1315 (in Chinese with English abstract).
参考文献
Zheng Zhihong, Li Denghua, Bai Senshu, Jia Jun, Zan Xin, Liu Zhuoya, Gao Nuan. 2017. Resource potentials of natural gas in Sichuan basin. China Petroleum Exploration, 22(3): 12~20 (in Chinese with English abstract).
参考文献
Zhu Chuanqing, Xu Ming, Shan Jinnan, Yuan Yusong, Zhao Yongqing, Hu Shengbiao. 2009. Quantifying the denudations of major tectonic events in Sichuan basin: Constrained by the paleothermal records. Geology in China, 36(6): 1268~1277 (in Chinese with English abstract).
参考文献
Zhu Chuanqing, Xu Ming, Yuan Yusong, Zhao Yongqing, Shan Jingnan, He Zhiguo, Tian Yuntao, Hu Shengbiao. 2010. Palaeo-geothermal response and record of the effusing of Emeishan basalts in Sichuan basin. Chinese Science Bulletin, 55(6): 474~482 (in Chinese with English abstract).
参考文献
Zhu Chuanqing, Qiu Nansheng, Cao Huanzi, Liu Yifeng, Jiang Qiang. 2017. Tectono-thermal evolution of the eastern Sichuan basin: Constraints from the vitrinite reflectance and apatite fission track data. Earth Science Frontiers, 24(3): 94~104 (in Chinese with English abstract).
参考文献
Zhu Chuanqing, Hu Shengbiao, Qiu Nansheng, Jiang Qiang, Rao Song, Liu Shuai. 2018. Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan basin, SW China. International Journal of Earth Sciences, 107: 71~88.
参考文献
Zou Yutao, Duan Jinbao, Zhao Yanjun, Zhang Xin, Li Rangbin. 2015. Tectonic characteristics and evolution of the high and steep fault folding belt in East Sichuan. Acta Geologica Sinica, 89(11): 2046~2052 (in Chinese with English abstract).
参考文献
陈建平, 李伟, 倪云燕, 戴鑫, 梁狄刚, 邓春萍, 边立曾. 2018. 四川盆地二叠系烃源岩及其天然气勘探潜力(二)——烃源岩地球化学特征与天然气资源潜力. 天然气工业, 38(6): 33~45.
参考文献
范建平, 宋金民, 江青春, 刘树根, 叶玥豪, 黄士鹏, 王佳蕊, 苏旺, 李立基, 金鑫, 冯宇翔. 2022. 川东地区中二叠统茅口组一段储层特征与形成模式. 石油与天然气地质, 43(6): 1413~1430.
参考文献
何斌, 徐义刚, 肖龙, 王雅玫, 王康明, 沙绍礼. 2006. 峨眉山地幔柱上升的沉积响应及其地质意义. 地质论评, 52(1): 30~37.
参考文献
何丽娟, 许鹤华, 汪集旸. 2011. 早二叠世-中三叠世四川盆地热演化及其动力学机制. 中国科学: 地球科学, 41(12): 1884~1891.
参考文献
胡国艺, 贺飞, 米敬奎, 袁懿琳, 郭谨豪. 2021. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力. 天然气地球科学, 32(3): 319~333.
参考文献
李斌, 梅文华, 李琪琪, 卓勤功, 鲁雪松, 郭强. 2020. 四川盆地西北部前陆盆地构造演化对古生界海相油气成藏的影响. 天然气地球科学, 31(7): 993~1003.
参考文献
刘冉, 李亚, 赵立可, 王尉, 李宏博, 李常权, 李博通. 2022. 四川华蓥偏岩子晚二叠世玄武岩地球化学特征及其与峨眉山大火成岩省的成因关系. 岩石矿物学杂志. 41(1): 1~17.
参考文献
刘树根, 孙玮, 宋金民, 邓宾, 钟勇, 罗超, 冉波, 田艳红, 李智武, 彭瀚霖, 尹柯维. 2015. 四川盆地海相油气分布的构造控制理论. 地学前缘, 22 (3): 146~160.
参考文献
刘雨晨, 邱楠生, 常健, 贾京坤, 李慧莉, 马安来. 2020. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例. 地球物理学报, 63(2): 597~611.
参考文献
马永生, 蔡勋育, 赵培荣, 罗毅, 张学丰. 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347~354.
参考文献
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学(中国地质大学学报), 35(2): 161~174.
参考文献
王瑞瑞, 张岳桥, 解国爱, 许怀智. 2011. 大巴山前陆弧形构造的成因: 来自砂箱实验的认识. 地质学报, 85(9): 1409~1419.
参考文献
王学军, 杨志如, 韩冰. 2015. 四川盆地叠合演化与油气聚集. 地学前缘, 22(3): 161~173.
参考文献
吴航, 邱楠生, 常健, 张纪新, 王晔. 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784~797.
参考文献
徐明, 朱传庆, 田云涛, 饶松, 胡圣标. 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052~1060.
参考文献
徐秋晨, 邱楠生, 刘雯, 常青. 2019. 利用团簇同位素恢复沉积盆地热历史的探索. 科学通报, 64(5-6): 566~578.
参考文献
袁玉松, 孙冬胜, 沃玉进, 周雁. 2010. 中上扬子海相层系埋藏史与构造运动的关系. 地质科学, 45(3): 707~717.
参考文献
袁玉松, 孙冬胜, 李双建, 林娟华. 2013. 四川盆地加里东期剥蚀量恢复. 地质科学, 48(3): 581~591.
参考文献
翟光明, 张继铭, 唐泽尧. 1987. 中国石油地质志. 北京: 石油工业出版社.
参考文献
张健, 周刚, 张光荣, 李国辉, 汪华. 2018. 四川盆地中二叠统天然气地质特征与勘探方向. 天然气工业, 38(1): 10~20.
参考文献
张宇, 曹清古, 罗开平, 李龙龙, 刘金连. 2022. 四川盆地二叠系茅口组油气藏勘探发现与启示. 石油与天然气地质, 43(3): 610~620.
参考文献
张岳桥, 施炜, 李建华, 王瑞瑞, 李海龙, 董树文. 2010. 大巴山前陆弧形构造带形成机理分析. 地质学报, 84(9): 1300~1315.
参考文献
郑志红, 李登华, 白森舒, 贾君, 昝昕, 刘卓亚, 高煖. 2017. 四川盆地天然气资源潜力. 中国石油勘探. 22(3): 12~20.
参考文献
朱传庆, 徐明, 单竞男, 袁玉松, 赵永庆, 胡圣标. 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268~1277.
参考文献
朱传庆, 徐明, 袁玉松, 赵永庆, 单竞男, 何志国, 田云涛, 胡圣标. 2010. 峨眉山玄武岩喷发在四川盆地的地热学响应. 科学通报, 55(6): 474~482.
参考文献
朱传庆, 邱楠生, 曹环字, 刘一锋, 江强. 2017. 四川盆地东部构造-热演化: 来自镜质体反射率和磷灰石裂变径迹的约束. 地学前缘, 24(3): 94~104.
参考文献
邹玉涛, 段金宝, 赵艳军, 张新, 李让彬. 2015. 川东高陡断褶带构造特征及其演化. 地质学报, 89(11): 2046~2052.
目录contents

    摘要

    有效古温标的缺乏制约了碳酸盐岩层系热史的研究,团簇同位素作为一种新兴古温标,对碳酸盐岩层系热史重建具有重要意义。四川盆地二叠系是天然气勘探开发的重点层系,本文通过对川东地区二叠系碳酸盐岩样品进行团簇同位素测试,联合镜质组反射率重建了二叠纪以来的热史,在此基础上明确了二叠系烃源岩的热演化,并讨论了峨眉山地幔柱对川东热体制的影响。川东地区碳酸盐岩的团簇同位素温度在101.7~178.7℃,利用交换/扩散模型进行热史模拟认为:川东地区晚白垩世古温度最高,最高古温度在213~225℃,古地温梯度在23~33 ℃/km;川东地区二叠纪古热流最高,最高古热流约为55~70 mW/m2,二叠纪之后热流逐渐降低至现今大地热流。烃源岩热演化分析认为:川东地区二叠系烃源岩热演化具有阶段性,热演化受控于构造运动,受印支期运动和燕山-喜马拉雅期运动影响存在两期热演化停滞,晚白垩世达到最高古温度后停止生烃,现今处于生气阶段。川东地区二叠纪热流值和烃源岩热演化主要受到地壳拉张减薄作用的影响,受峨眉山地幔柱的影响较小且具有局限性。

    Abstract

    The lack of effective paleo-geothermometers restricts the study of the thermal history of carbonate formations. Clumped isotopes, as an emerging paleo-geothermometer, is of great significance for the thermal history reconstruction of carbonate formations. The Permian is the key stratum for natural gas exploration and development in the Sichuan basin. In this paper, by testing the clumped isotopes of Permian carbonate samples in the eastern Sichuan basin and combined with vitrinite reflectance, the thermal history since Permian was reconstructed. On this basis, the thermal evolution of Permian source rocks was clarified, and the influence of the Emeishan mantle plume on the thermal regime of the eastern Sichuan basin was discussed. The clumped isotope temperature in eastern Sichuan basin is 101.7~178.7℃. The thermal history simulation using the exchange/diffusion model suggests that the highest paleotemperature in the study area was in the late Cretaceous. The highest paleotemperature is between 213~225℃. The paleotemperature gradient is 23~33 ℃/km. The highest paleo-heat flow in the eastern Sichuan basin was in the Permian, about 55~70 mW/m2. The heat flow gradually decreased to the current terrestrial heat flow since the Permian. The thermal evolution analysis of source rocks shows that the thermal evolution of Permian source rocks is staged and controlled by tectonic movements. The Indosinian and Yanshan-Himalayan movements caused two stages of thermal evolution stagnation. After reaching the highest paleotemperature in the late Cretaceous, hydrocarbon generation stopped. It is in the gas generation stage nowadays. The Permian heat flow and thermal evolution of source rocks in the eastern Sichuan basin are mainly affected by crustal tension thinning, and the influence of the Emeishan mantle plume is small and limited.

  • 沉积盆地热史重建是盆地分析中的重要研究内容,也是含油气盆地中有机质成熟生烃的关键因素之一。目前主要利用古温标法来精确重建沉积盆地热历史,常用的方法包括有机质古温标(如镜质组反射率、沥青反射率等)和低温热年代学古温标(如磷灰石和锆石裂变径迹、磷灰石和锆石(U-Th)/He等)。但是,针对海相碳酸盐岩层系,由于镜质组以及磷灰石、锆石等重矿物的缺乏,使得碳酸盐岩层系热史的重建存在极大的困难。

  • 近年来,团簇同位素作为一种新兴的古温标被广泛应用于古气候、古地貌、碳酸盐成岩作用等方面,同时也使得碳酸盐岩层系热史重建成为可能。通过碳酸盐岩矿物中对温度敏感的13C-18O键的丰度变化与温度之间的经验公式获得团簇同位素温度(TΔ47)(Eiler,2011),同时结合固态重排模型即可重建碳酸盐岩层系的热史(Passey et al.,2012; Stolper et al.,2015; Hemingway et al.,2021)。目前国内外已有研究将碳酸盐团簇同位素应用到沉积盆地热史重建中。徐秋晨等(2019)选取了塔里木盆地与四川盆地多口钻井受后期成岩作用影响较弱的碳酸盐岩样品进行团簇同位素古温标(Δ47)测试与分析,探讨了不同岩性的深层自然演化碳酸盐岩样品Δ47温度的意义、方解石团簇同位素13C-18O键固态重排规律以及沉积盆地热史对不同岩性的团簇同位素的影响。刘雨晨等(2020)通过测试塔里木盆地顺托果勒地区奥陶系碳酸盐岩储层中不同结构组分的团簇同位素,利用固态重排模型重建了塔里木盆地顺托果勒地区不同构造单元的奥陶纪以来的热史。Naylor et al.(2020)选取美国特拉华盆地钻井不同深度碳酸盐岩样品进行团簇同位素测试,联合固态重排模型和镜质组反射率重建了特拉华盆地地质历史时期的最大古地温;Li Pingping et al.(2021)选取四川盆地二叠系和三叠系灰岩和白云岩,利用团簇同位素固态重排模型和镜质组反射率Easy%Ro模型进行对比约束,恢复了地层的最高埋藏温度。

  • 四川盆地作为我国重要的含油气盆地,二叠系是其天然气勘探开发的重点层系,已在川东地区二叠系发现普光、元坝等探明储量超千亿立方米的大气田(马永生等,2010; 陈建平等,2018; 范建平等,2022; 张宇等,2022)。由于二叠系海相碳酸盐岩缺乏镜质组反射率、锆石和磷灰石等有效古温标,制约了二叠系热史的系统研究。同时,川东地区部分钻井和露头揭示二叠系发育峨眉山地幔柱成因的玄武岩(Li Hongbo et al.,2017; 刘冉等,2022; Liu Xiaoyu et al.,2022),但是其热效应的时空影响范围及其对川东地区的热体制影响目前尚不清楚。因此,本文通过采集川东地区二叠系碳酸盐岩样品进行团簇同位素测试,利用固态重排模型进行热史模拟,同时联合镜质组反射率重建了川东地区二叠纪以来的热史,在此基础上明确了二叠系烃源岩的成熟度演化过程,并探讨了峨眉山地幔柱对二叠纪热流和烃源岩热演化的影响,为四川盆地进一步的油气勘探提供理论依据。

  • 1 地质概况

  • 四川盆地位于扬子板块西北部,周围被米仓山、大巴山、齐岳山、龙门山环绕,是一个受其外围造山带变形控制的叠合盆地(Liu Shugen et al.,2021)。根据四川盆地内部现今构造展布特点,将其分为川东高陡褶带、川南低陡褶带、川中平缓褶带、川西南低陡褶带、川北低平褶带、川西低隆褶带6个次一级构造单元(翟光明等,1987)(图1)。本文研究区位于川东高陡褶带,其西侧为华蓥山断裂带,东侧为雪峰隆起,北部为大巴山弧形造山带,南部为滇桂黔交界地区,整体上为一系列复背斜和复向斜组成的NNE-NE走向、NW略微凸起的弧形构造带(张岳桥等,2010; 梅廉夫等,2010; 王瑞瑞等,2011)。

  • 四川盆地的结晶基底形成于元古宙,到加里东期,川东地区抬升成陆,经历长期沉积间断与风化剥蚀,产生“三隆三洼”的特征(邹玉涛等,2015)。海西期四川盆地处于伸展环境,并在基底大断裂的控制下发生裂陷作用。印支运动时期,川东地区抬升成陆,开始遭受风化剥蚀,由海相沉积转变为陆相沉积(袁玉松等,2010),同时使研究区所在的华南板块与华北地块等其他周缘地块发生俯冲、碰撞作用,在盆地西部和北部形成一系列造山带,并于晚三叠世完成了克拉通盆地向前陆盆地的转化(王学军等,2015)。之后,盆地构造逐渐平缓,并进入内陆造山阶段,前陆盆地不断向内部移动,直到白垩纪时期川东地区受构造挤压作用开始隆升,导致盆地向西收缩,并遭受抬升剥蚀(刘树根等,2015; 吴航等,2019; Liu Shugen et al.,2021)。

  • 图1 四川盆地构造单元及研究区样品分布图(据郑志红等,2017修改)

  • Fig.1 Tectonic units of the Sichuan basin and the sample distribution of the study area (modified from Zheng Zhihong et al., 2017)

  • 四川盆地是在古生代海相克拉通盆地基础上逐渐发展起来的叠合盆地,发育自震旦系至第四系超过万米厚的地层。其中,震旦系至中三叠统的海相碳酸盐岩、泥页岩厚4100~7000 m,上三叠统至第三系的陆相碎屑岩厚3500~6000 m(图2)。受加里东期运动影响,川东地区缺失上志留统、泥盆系与下石炭统,中石炭统仅残余黄龙组,与上、下地层间均为不整合接触。二叠系作为本次的研究目的层位,可划分为下二叠统梁山组、栖霞组和茅口组,上二叠统龙潭组和长兴组,主要的烃源岩为下二叠统碳酸盐岩和上二叠统泥岩。其中上二叠统烃源岩为含少量煤的泥岩,平均TOC为2.61%(0.12%<TOC<20.30%),厚度范围为20~170 m(陈建平等,2018; 胡国艺等,2021),平均Ro为1.88%~2.14%(胡国艺等,2021);下二叠统烃源岩以泥质灰岩为主,广泛分布于四川盆地,厚度为50~200 m,TOC在0.7%~1.1%之间,平均值为0.8%,Ro值在0.5%~3.0%之间 (张健等,2018; 胡国艺等,2021; 张宇等,2022)。川东地区部分钻井和露头茅口组和龙潭组之间发育玄武岩,厚度在4~65 m,前人分析认为川东地区玄武岩属于峨眉山地幔柱玄武岩(Li Hongbo et al.,2017; 刘冉等,2022; Liu Xiaoyu et al.,2022)。

  • 2 样品与实验

  • 为恢复川东地区二叠系热史,本文共采集7块二叠系茅口组灰岩样品。其中,PG5-02为普光地区PG5井茅口组钻井岩芯样品,样品为泥晶灰岩,埋深为5885 m。其余6块均取自川东地区周缘茅口组地层露头,主要以泥晶灰岩为主,部分样品发育方解石脉体,手标本上可见少量生物碎屑,取样位置如图1所示。

  • 在进行团簇同位素测试前,需要对样品进行岩相、阴极发光观察和XRD分析测试,选取阴极发光为不发光或者弱发光,且方解石含量在90%以上的样品,从而避免重结晶的影响,之后用1 mm钻头对符合条件的灰岩样品的泥晶基质进行微钻。

  • 团簇同位素测试在中国科学院南京地质古生物研究所进行。主要实验步骤包括:① 实验准备:在微钻获得的碳酸盐岩样品粉末中加入3%的H2O2静置8 h,除去样品中的有机质,在使用蒸馏水清洗3~4次后,将样品置于40℃恒温干燥箱内干燥,并称量10~20 mg样品放入胶囊内待用;同时称量标样ETH-1、ETH-2、ETH-3、ETH-4,每个标样5~6 mg,放置于胶囊中,与方解石样品一同置于干燥箱内。每次实验随机选出2个不同的标样与样品一起分析测试,用于构建Δ47数据的绝对参考系,进行MAT253质谱仪非线性校正;将H6P4O13加热,不断加入蒸馏水,同时不断取出并冷却至室温,直到溶液密度为1.92 g/mL,得到105%的磷酸。② 实验测试:首先需利用气相色谱仪(GC)净化CO2气体。打开气相色谱仪系统,使用操作阀门将气相色谱仪系统温度由100℃缓慢上升到180℃,在30~45 min后,操作阀门,将气相色谱仪温度调回100℃。然后将称量好的用胶囊盛装的碳酸盐岩样品以及2个标样放置到相应的自动进样器中。将要测试样品在真空条件下加热至90℃,绝对要隔绝空气,防止水蒸气造成影响。进而与105%磷酸充分反应生成CO2气体,这一过程时间约为30 min。然后将反应产生的CO2气体通过净化装置,去除残留在CO2中的水分以及有机杂质,以避免对后续同位素测试分析产生影响。净化完成后CO2进入MAT253 plus质谱仪,测量各个同位素参数:δ13C、δ18O、Δ47、Δ48、Δ46。详细的测试和处理流程参照Murray et al.(2016)。③ 数据校正:由于不同实验室之间仪器和实验条件的差异,依据Bernasconi et al.(2021)方法将原始团簇同位素数据标准化到绝对参考系,本文所测数据均已标准化。④ 团簇同位素温度计算:依据Swart et al.(2019)的1/T247经验公式将校正后的Δ47值转换为团簇同位素温度。

  • 3 实验结果与讨论

  • 3.1 样品岩石学特征

  • 为避免流体改造、岩石变质以及重结晶对团簇同位素测试的影响,因此对所取样品进行岩相、阴极发光观察和XRD分析测试。图3为GSK样品岩石学特征,该样品主要为泥晶灰岩,单偏光下无多余成岩结构(图3b),阴极发光为不发光(图3d),代表了近地表的氧化成岩环境,说明该样品成岩类型简单,具有较弱的蚀变条件,方解石含量为99.2%(图3c)。通过对所有样品的观察和分析,认为均属于泥晶灰岩,阴极发光均为不发光或者弱发光,且样品的方解石含量均在90%以上,均可进行团簇同位素测试。

  • 3.2 团簇同位素

  • 对所有样品的泥晶基质粉末分别进行团簇同位素测试,测试结果如表1所示。

  • 图2 川东地区地层综合柱状图(据吴航等,2019; Feng Qianqian et al.,2022修改)

  • Fig.2 Comprehensive stratigraphic column of the eastern Sichuan basin (modified from Wu Hang et al., 2019; Feng Qianqian et al., 2022)

  • 图3 川东地区二叠系茅口组灰岩样品GSK手标本(a)、显微镜照片(b)、X射线衍射谱图(c)及阴极发光照片(d)

  • Fig.3 Photograph (a) , photomicrograph (b) , X-ray diffraction pattern (c) , and cathode luminescence (d) of sample GSK from the Permian Maokou Formation in the eastern Sichuan basin

  • 所有样品的δ13C值在1.02‰~4.45‰之间,平均值为3.45‰,δ18O值在-9.81‰~-4.80‰之间,平均值为-6.42‰。前人测试了全球二叠纪腕足动物化石的δ13C值和δ18O值(Korte et al.,2005; Grossman et al.,2008)(图4),其中δ13C值在-3.39‰~7.16‰之间,平均值为3.45‰,δ18O值在-11.21‰~1.08‰之间,平均值为-3.73‰;本次所测试的样品的δ13C和δ18O值与全球二叠纪腕足动物化石的稳定同位素组成基本一致,因此,可以认为所取样品记录了古生代海洋环境信息(图4)。

  • 川东地区样品的Δ47在0.350‰~0.437‰,平均值为0.394‰,根据前人的TΔ47计算公式换算得到样品的团簇同位素温度(Swart et al.,2019)在101.7~178.7℃之间,均高于样品成岩温度和现今温度,这表明样品均受到了后期高温的影响从而发生了13C-18O的固态重排。前人认为当方解石在超过100~120℃条件下持续时间超过1 Ma,13C-18O键固态重排就开始发生,团簇同位素值发生改变(Passey et al.,2012),因此表明样品在地质历史时期均长时间受到了超过120℃以上的高温影响,发生了固态重排作用使得团簇同位素温度高于成岩温度。此外,利用方解石-水氧同位素公式(Kim et al.,1997)计算了样品成岩流体的δ18Owater值在8.09‰~17.07‰之间,平均值为12.36‰,且样品的团簇同位素温度和水的氧同位素具有明显正相关性(图5),样品的TΔ47沿恒定的δ18Ocarb的轮廓增加,表明样品近乎处于封闭系统中,没有经历过后期成岩改造(Eiler,2011),因此样品发生固态重排主要是受到了后期埋藏升温的影响。

  • 图4 川东地区二叠系茅口组灰岩δ18O-δ13C交会图 (二叠纪腕足化石数据据Korte et al.,2005; Grossman et al.,2008

  • Fig.4 Cross-plot of δ18O versus δ13C of limestone from the Permian Maokou Formation in the eastern Sichuan basin (Permian brachiopod fossils data from Korte et al., 2005; Grossman et al., 2008)

  • 表1 川东地区二叠系茅口组灰岩团簇同位素数据

  • Table1 Clumped isotope data of limestone from the Permia Maokou Formation in the eastern Sichuan basin

  • 注:n为样品的重复分析次数;TΔ47为根据Swart et al.(2019)公式计算的团簇同位素温度;δ18Owater为根据Kim et al.(1997)公式所计算的古流体氧同位素;I-CDES为碳间二氧化碳平衡标度(Intercarb-Carbon Dioxide Equilibrium Scale)(Bernasconi et al.,2021)。

  • 3.3 热史模拟

  • 3.3.1 关键参数设置

  • 初始温度作为利用团簇同位素进行热史恢复的初始条件,对于热史模拟具有十分重要的影响。阴极发光为不发光或弱发光、与二叠纪腕足动物化石吻合的碳氧同位素值以及团簇同位素温度(TΔ47)和水的氧同位素(δ18Owater)之间的正相关性均表明川东地区灰岩样品的泥晶基质为原生,几乎没有经历过后期的成岩改造,埋藏升温是导致样品发生固态重排的主要因素。因此,假设样品的初始温度为20℃,和现代海洋温度范围和普遍所接受的温度一致(0~30℃)。

  • 剥蚀量是进行埋藏史和热史恢复的关键参数。前人研究表明四川盆地古生代以来主要经历了4次构造抬升运动,即早古生代末、早二叠世—晚二叠世、中晚三叠世和白垩纪—新近纪,分别对应加里东期运动、东吴期运动、印支期运动和燕山-喜马拉雅期运动(Xu Qiuchen et al.,2018; 李斌等,2020; Qiu Nansheng et al.,2021; Liu Shugen et al.,2021)。其中,加里东期运动导致川中和川西地区剥蚀厚度为1200~1400 m,其他地区为200~400 m(袁玉松等,2013; Xu Qiuchen et al.,2018)。东吴运动时期,川东南地区剥蚀量最大,在200~400 m,川西地区剥蚀量最小在50~100 m,川东地区则在100~200 m(朱传庆等,2009)。晚三叠世印支运动时期,大巴山、米仓山和龙门山的隆升导致上三叠统与四川盆地北部和西部上覆地层之间形成不整合,此时,四川盆地西部剥蚀了100~200 m,北部剥蚀了400~500 m,东部剥蚀了200~300 m(朱传庆等,2009; Qiu Nansheng et al.,2021; Feng Qianqian et al.,2022)。自燕山期以来,四川盆地发生了强烈的隆升和剥蚀,东部和东南部地区经历了从东南向西北的渐进变形,导致了110~90 Ma期间发生3000~4500 m的剥蚀(朱传庆等,20092017; Qiu Nansheng et al.,2021)。利用BasinMod 1D盆地模拟软件恢复川东地区典型单井埋藏史(图6)。

  • 图5 川东地区二叠系茅口组碳酸盐团簇同位素温度(TΔ47)和水的氧同位素(δ18Owater)交会图 (据Cong Fuyun et al.,2022修改)

  • Fig.5 Carbonate clumped isotope temperatures (TΔ47) versus water oxygen isotope compositions of the precipitating waters (δ18Owater) from the Permian Maokou Formation in the eastern Sichuan basin (modified from Cong Fuyun et al., 2022)

  • 3.3.2 团簇同位素热史模拟

  • 利用团簇同位素进行热史恢复主要依据的是13C-18O键固态重排。目前主要的固态重排模型有一阶近似模型(Passey et al.,2012)、交换/扩散模型(Stolper et al.,2015)和无序动力学模型(Hemingway et al.,2021)。前人利用不同固态重排模型对沉积盆地自然演化样品进行模拟,认为交换/扩散模型更适用于沉积盆地自然演化样品(刘雨晨等,2020; Cong Fuyun et al.,2021),因此,本研究选用交换/扩散模型对川东地区进行热史恢复。

  • 图6 川东地区典型单井埋藏史-热史(镜质组反射率数据引自朱传庆等,2017; Li Pingping et al.,2021; Feng Qianqian et al.,2022

  • Fig.6 Burial history and thermal history of typical wells in the eastern Sichuan basin (the vitrinite reflectance data were cited from Zhu Chuanqing et al., 2017; Li Pingping et al., 2021; Feng Qianqian et al., 2022)

  • 川东地区现今地温梯度为20~30℃/km,川东北外缘甚至低至16℃/km左右(徐明等,2011; 朱传庆等,2017),现今热流较低,在40~55 mW/m2之间,川东北大巴山褶皱带前缘的大地热流低至40 mW/m2左右(徐明等,2011; 朱传庆等,2017; Qiu Nansheng et al.,2022)。依据PG5单井埋藏史(图6),通过设定不同的温度-时间(T-t)演化路径,利用交换/扩散模型模拟了样品PG5-02团簇同位素温度(TΔ47)演化路径,最终模拟结果(图7a)表明在该T-t路径下TΔ47在早三叠世之前一直保持成岩温度(20℃)不变,在早三叠世时由于样品温度超过固态重排发生温度(100~120℃),开始固态重排,TΔ47超过成岩温度,并随着样品温度的升高而不断升高,直到晚白垩世时样品温度达最高,约225℃,此时TΔ47亦达最高,随后开始下降,最终TΔ47模拟值为179℃,与PG5-02样品现今实测团簇同位素温度值相同,说明本次所设置的温度-时间(T-t)演化路径合理,能够准确反映样品所经历的热史信息。

  • 对于露头样品由于缺乏相关资料,无法准确地恢复出埋藏史,但是根据露头样品附近的钻井埋藏史(图6)可知,川东地区二叠系大体上经历了前期的大规模沉降和后期的大规模抬升两个阶段,并且在晚白垩世时期埋深达到最大,因此此时地层温度应该达到最高。由于团簇同位素对于地层经历的最高温度极为敏感,为确定露头样品所经历的最高温度范围,分别设置最高地层温度在200℃、210℃、220℃、230℃、240℃等5种不同的理论T-t路径模型,并利用交换/扩散模型进行模拟计算(图8)。由模拟结果可知,露头样品的团簇同位素温度范围(101.7~177.5℃)与最高温度在210~230℃时的模拟结果吻合,表明了川东地区露头样品的所经历的最高古温度应该在210~230℃之间。由于露头样品是受到后期抬升作用而位于地表,但是其在早期的构造演化应该与其附近钻井相似,因此在参考露头附近钻井早期的埋藏史、其所经历的最高古温度范围和现今团簇同位素实测温度三者的约束之下,设定不同的T-t演化路径,并利用交换/扩散模型进行模拟计算,最终模拟结果(图7)表明:川东地区茅口组经历中三叠世、晚三叠世和晚白垩世3次抬升降温,地层温度在晚白垩世达到最高。在早三叠世茅口组达到100~120℃,开始固态重排作用,之后由于地层温度的不断升高,TΔ47亦呈阶梯式上升,并于晚白垩世时期地层温度最大,样品的最高古温度在213~225℃,在最高古温度模型(图8)所模拟的结果范围内,此时,TΔ47也相应达到最大值,之后由于地层大规模抬升降温,TΔ47不断降低,并最终稳定在现今实测团簇同位素温度附近,表明所设定的T-t演化路径合理,能够准确反映样品所经历的热历史信息。

  • 图7 川东地区二叠系茅口组灰岩团簇同位素对地层温度的热模拟结果

  • Fig.7 Clumped isotope thermal simulation result of limestone from the Permian Maokou Formation in the eastern Sichuan basin

  • 图8 川东地区二叠系茅口组灰岩露头样品最高温度模型

  • Fig.8 The highest temperature model of outcrop limestone samples from the Permian Maokou Formation in the eastern Sichuan basin

  • 3.4 对二叠纪热史的约束

  • 通过以上团簇同位素模拟研究发现,川东地区茅口组在早三叠世发生固态重排,表明此时川东地区的温度在100~120℃;晚白垩世时期研究区地层埋深最大,古地温最高,在213~225℃之间,对应的古地温梯度在23~33℃/km之间。在团簇同位素热史模拟结果的基础上,联合镜质组反射率数据,恢复了川东地区典型钻井的埋藏史-热史(图6)以及热流演化历史(图9)。由川东地区典型钻井埋藏史-热史可知,川东地区二叠系茅口组早三叠世时温度约为100~120℃,同时晚白垩世时期茅口组温度最大,在215~225℃范围内,符合团簇同位素热史模拟结果,且模拟镜质组反射率和实测镜质组反射率拟合良好,表明所恢复的单井热史可信度高。

  • 总的来说,川东地区二叠纪以来的热史可以分为两个阶段,二叠纪高热流阶段和三叠纪至现今热流衰退阶段。早二叠世川东地区处于构造活动期,由于峨眉山地幔柱的活动以及地壳的拉张减薄使得川东地区大地热流值急剧升高,并于约 260 Ma热流达到最高,大部分地区约在55~70 mW/m2,前人认为川东TI井早二叠世的热流值超过110 mW/m2朱传庆等,2010; Jiang Qiang et al.,2018; Feng Qianqian et al.,2022),可见川东地区不同位置二叠纪热流值差别较大,之后随着岩浆活动和深部热作用逐渐稳定,川东地区热流在二叠纪末期迅速降低至50~70 mW/m2,此后川东地区逐渐沉降,热流值逐渐降低至现今,现今大地热流在45~65 mW/m2

  • 图9 川东地区大地热流演化历史

  • Fig.9 Evolution history of heat flow in the eastern Sichuan basin

  • 3.5 川东地区二叠系烃源岩热演化

  • 在川东地区典型钻井埋藏史-热史的基础上明确了川东地区二叠系两套烃源岩成熟度演化过程(图10)。其中下二叠统烃源岩自沉积之后由于地层深埋作用,烃源岩成熟度缓慢升高,在早二叠世时由于峨眉山地幔柱以及地壳的拉张减薄造成的热流高峰,导致了下二叠统(P1)烃源岩快速成熟,并在二叠纪末—早三叠世迅速达到中—高成熟阶段,之后受印支期运动的影响,川东地区发生了抬升剥蚀,导致烃源岩热演化停滞,直到早侏罗世地层再次沉降升温,烃源岩快速成熟,到晚白垩世地层埋深最大,温度最高时,烃源岩成熟度达到最大,处于生气阶段,烃源岩成熟度约为2%~3%,之后由于喜马拉雅期运动导致川东地区发生了大规模的抬升剥蚀,烃源岩热演化基本停滞。上二叠统(P2)烃源岩沉积之后由于地层沉降升温,使得烃源岩在二叠纪末期—早三叠世达到早—中成熟,之后由于印支期运动的影响,地层抬升降温,烃源岩热演化停滞,随着印支期运动的结束到早侏罗世,地层再次沉降升温,烃源岩成熟度快速升高,后期热演化与下二叠统烃源岩相近,同样在晚白垩世时期成熟度达最大,处于生气阶段。

  • 图10 川东地区下二叠统(a)和上二叠统(b)烃源岩成熟度演化

  • Fig.10 The maturity evolution of Lower Permian (a) and Upper Permian (b) source rocks in the eastern Sichuan basin

  • 从平面上看,由于P1和P2烃源岩均属于二叠系且两者埋深相差不大,因此两套烃源岩成熟度不同时期分布基本相似(图11),但是二叠纪末期两套烃源岩成熟度差距较为明显。二叠纪末期P1烃源岩成熟度在0.38%~0.59%之间(图11a),P2烃源岩成熟度在0.29%~0.41%之间(图11c),其中石柱附近和川东北普光地区的P1烃源岩成熟度在0.5%以上(图11a),开始生烃,而P2烃源岩均处于未成熟阶段,且两套烃源岩成熟度均表现出由东向西逐渐降低,由北向南逐渐降低的分布特征。之后,除受到印支期运动导致的地层剥蚀抬升产生的热演化放缓外,川东地区二叠系烃源岩整体上表现为持续深埋升温,成熟度快速演化,直到晚白垩世时期,川东地区地层埋深达到最大,烃源岩成熟度达到最大,其中P1烃源岩成熟度在2.4%~3.3%之间(图11b), P2烃源岩成熟度在2.0%~3.0%之间(图11d),两套烃源岩成熟度相似,均处于生气阶段,且具有北高南低的特征,后期由于受燕山-喜马拉雅期运动影响,川东地区持续抬升,烃源岩热演化基本停滞,导致其现今成熟度和晚白垩世相同。总的来说,二叠系两套烃源岩热演化特征基本相似,热演化受构造运动控制,具有阶段性,在二叠纪末—早三叠世达到生烃门限,中三叠世—晚三叠世受印支运动影响导致热演化停滞,早侏罗世晚期—晚白垩世受埋藏升温作用快速成熟,并于晚白垩世成熟度达到最大,晚白垩世—现今受燕山-喜马拉雅期运动影响导致热演化停滞,生烃作用停止。

  • 图11 川东地区下二叠统和上二叠统烃源岩成熟度等值线图

  • Fig.11 The maturity contour map of Lower Permian and Upper Permian source rocks in the eastern Sichuan basin

  • (a)—二叠纪末期P1烃源岩;(b)—现今P1烃源岩;(c)—二叠纪末期P2烃源岩;(d)—现今P2烃源岩

  • (a) —P1 source rock at the end of Permian; (b) —P1 source rock at present; (c) —P2 source rock at the end of Permian; (d) —P2 source rock at present

  • 3.6 峨眉山地幔柱的影响

  • 位于我国西南云贵川三省的峨眉山大火成岩省,前人认为其为地幔柱成因(Xu Yigang et al.,2004),并划分出外带、中带和内带(何斌等,2006)。利用古温标方法恢复四川盆地内多口钻井的热史结果表明,四川盆地二叠纪古热流最高,最高古热流从中带到外带逐渐降低,部分地区的最高热流可达110 mW/m2以上(朱传庆等,2010; Xu Qiuchen et al.,2018; Jiang Qiang et al.,2018; Feng Qianqian et al.,2021)。川东地区钻井和露头茅口组与龙潭组之间发育峨眉山地幔柱成因的玄武岩(Li Hongbo et al.,2017; 刘冉等,2022; Liu Xiaoyu et al.,2022),且二叠纪大地热流表现出明显的区域差异性,有玄武岩发育区的钻井二叠纪热流高达114 mW/m2朱传庆等,2010; Jiang Qiang et al.,2018; Feng Qianqian et al.,2022),其他区域热流值在55~70 mW/m2。由于二叠纪热流的差异导致川东地区二叠系烃源岩成熟度演化和分布在二叠纪具有明显的差异,而二叠纪之后成熟度基本相似。其中,下二叠统烃源岩主要经历了早二叠世时期的地壳拉张减薄作用和峨眉山地幔柱作用。前人研究认为峨眉山地幔柱对沉积盆地热体制的影响主要表现为地幔柱柱体对沉积地层的烘烤,因此对靠近于地幔柱柱头的内带和中带地区的烃源岩的热演化影响较大(Qiu Nansheng et al.,2021; Feng Qianqian et al.,2021; Qiu Nansheng et al.,2022),但是针对远离地幔柱柱头且位于外带之外的川东大部分地区影响较小,仅对钻遇玄武岩或者有玄武岩出露的部分地区,产生了玄武岩侵入体对于围岩的加热作用(Jiang Qiang et al.,2018; Zhu Chuanqing et al.,2018; Feng Qianqian et al.,2022);其次,前人研究认为峨眉山地幔柱主要对深部的寒武系以及志留系烃源岩热演化影响较为明显,导致烃源岩在二叠纪加速演化,并快速成熟(Feng Qianqian et al.,2021; Qiu Nansheng et al.,20212022),而二叠纪地层由于形成时间较晚,距离地幔柱柱头较远,受到峨眉山地幔柱向上的烘烤作用较弱,因此导致川东地区二叠纪热流升高的原因主要是地壳的拉张减薄作用(何丽娟等,2011; Feng Qianqian et al.,2021; He Lijuan et al.,2022),仅玄武岩零星发育地区受到峨眉山地幔柱沿着基底大断裂喷发至地表的玄武岩岩浆的烘烤和加热作用的影响(Zhu Chuanqing et al.,2018; Hu Di et al.,2020; Liu Xiaoyu et al.,2022; Feng Qianqian et al.,2022),导致川东地区钻遇玄武岩的钻井以及部分深大断裂附近的钻井中的镜质组反射率在二叠纪出现了错断(朱传庆等,2010; Jiang Qiang et al.,2018; Feng Qianqian et al.,2022),从而产生了异常高热流(热流值>100 mW/m2);对于无玄武岩发育的钻井和区域,其镜质组反射率在二叠纪并未出现错断,且二叠纪并未出现异常高的热流值。因此,本文认为川东地区二叠纪热流值和烃源岩成熟度演化主要受到了地壳拉张减薄的影响,而峨眉山地幔柱对于二叠纪地层的温度演化影响较小,且其对川东地区二叠纪地层温度演化的影响具有局限性,仅对玄武岩或者深大断裂发育的区域具有明显的影响,而对于其他区域影响较弱。

  • 4 结论

  • (1)川东地区二叠系茅口组灰岩的团簇同位素温度在101.7~178.7℃,其中川东北普光地区钻井样品的团簇同位素温度最高。通过对川东地区露头和钻井样品进行热史模拟认为,川东地区晚白垩世时期地层埋深最大,古温度最高,古地温梯度在23~33℃/km,最高古温度在213~225℃。

  • (2)川东地区二叠纪古热流值最高,约为55~70 mW/m2,二叠纪之后热流值开始降低,并逐渐降至现今大地热流值。

  • (3)川东地区二叠系烃源岩热演化受构造运动控制,具有阶段性。二叠纪末—早三叠世开始生烃,中三叠世—晚三叠世受印支运动影响热演化停滞,早侏罗世晚期—晚白垩世快速成熟,晚白垩世成熟度达到最大,晚白垩世之后受燕山-喜马拉雅期运动影响热演化停滞,生烃作用停止,现今处于生气阶段。

  • (4)川东地区二叠纪热流值和烃源岩热演化主要受到地壳拉张减薄作用的影响,受峨眉山地幔柱的影响较小,且峨眉山地幔柱在川东地区的影响仅仅局限在玄武岩或者深大断裂发育的区域。

  • 参考文献

    • Bernasconi S M, Daëron M, Bergmann K D, Bonifacie M, Meckler A N, Affek H P, Anderson N, Bajnai D, Barkan E, Beverly E, Blamart D, Burgener L, Calmels D, Chaduteau C, Clog M, Davidheiser-Kroll B, Davies A, Dux F, Eiler J, Elliott B, Fetrow A C, Fiebig J, Goldberg S, Hermoso M, Huntington K W, Hyland E, Ingalls M, Jaggi M, John C M, Jost A B, Katz S, Kelson J, Kluge T, Kocken I J, Laskar A, Leutert T J, Liang D, Lucarelli J, Mackey T J, Mangenot X, Meinicke N, Modestou S E, Müller I A, Murray S, Neary A, Packard N, Passey B H, Pelletier E, Petersen S, Piasecki A, Schauer A, Snell K E, Swart P K, Tripati A, Upadhyay D, Vennemann T, Winkelstern I, Yarian D, Yoshida N, Zhang N, Ziegler M. 2021. Intercarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009588.

    • Chen Jianping, Li Wei, Ni Yunyan, Dai Xin, Liang Digang, Deng Chunping, Bian Lizeng. 2018. The Permian source rocks and their natural gas prospects in the Sichuan basin (II): The geochemical characteristics of source rocks and the potential of natural gas resources. Natural Gas Industry, 38(6): 33~45 (in Chinese with English abstract).

    • Cong Fuyun, Tian Jinqiang, Hao Fang, Licht A, Liu Yuchen, Cao Zicheng, Eiler J M. 2021. A thermal pulse induced by a Permian mantle plume in the Tarim basin, northwest China: Constraints from clumped isotope thermometry and in situ calcite U-Pb dating. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB020636.

    • Eiler J M. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30(25-26): 3575~3588.

    • Fan Jianping, Song Jinmin, Jiang Qingchun, Liu Shugen, Ye Yuehao, Huang Shipeng, Wang Jiarui, Su Wang, Li Liji, Jin Xin, Feng Yuxiang. 2022. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan basin. Oil & Gas Geology, 43(6): 1413~1430 (in Chinese with English abstract).

    • Feng Qianqian, Qiu Nansheng, Fu Xiaodong, Li Wenzheng, Xu Qing, Li Xiao, Wang Jiangshan. 2021. Permian geothermal units in the Sichuan basin: Implications for the thermal effect of the Emeishan mantle plume. Marine and Petroleum Geology, 132: 105226.

    • Feng Qianqian, Qiu Nansheng, Fu Xiaodong, Li Wenzheng, Liu Xin, Ji Ruiyun. 2022. Maturity evolution of Permian source rocks in the Sichuan basin, southwestern China: The role of the Emeishan mantle plume. Journal of Asian Earth Sciences, 229: 105180.

    • Grossman E L, Yancey T E, Jones T E, Bruckschen P, Chuvashov B, Mazzullo S J, Mii H. 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 222~233

    • He Bin, Xu Yigang, Xiao Long, Wang Yamei, Wang Kangming, Sha Shaoli. 2006. Sedimentary response to uplift of Emeishan mantle plume and its implications. Geological Review, 52(1): 30~37 (in Chinese with English abstract).

    • He Lijuan, Xu Hehua, Wang Jiyang. 2011. Thermal evolution and dynamic mechanism of the Sichuan basin during the Early Permian-Middle Triassic. Science China Earth Science, 41(12): 1884~1891 (in Chinese with English abstract).

    • He Lijuan. 2022. Emeishan mantle plume and its potential impact on the Sichuan basin: Insights from numerical modeling. Physics of the Earth and Planetary Interiors, 323: 106841.

    • Hemingway J D, Henkes G A. 2021. A disordered kinetic model for clumped isotope bond reordering in carbonates. Earth and Planetary Science Letters, 566: 116962.

    • Hu Di, Tian Yuntao, Hu Jie, Rao Song, Wang Yibo, Zhang Chao, Hu Shengbiao. 2020. Thermal imprints of late Permian Emeishan basalt effusion: Evidence from zircon fission-track thermochronology. Lithos, 352-353: 105224.

    • Hu Guoyi, He Fei, Mi Jingkui, Yuan Yilin, Guo Jinhao. 2021. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan basin. Natural Gas Geoscience, 32(3): 319~333 (in Chinese with English abstract).

    • Jiang Qiang, Qiu Nansheng, Zhu Chuanqing. 2018. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume. Tectonophysics, 724-725: 11~27.

    • Kim S, O'Neil J R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16): 3461~3475.

    • Korte C, Jasper T, Kozur H W, Veizer J. 2005. δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(4): 333~351.

    • Li Bin, Mei Wenhua, Li Qiqi, Zhuo Qingong, Lu Xuesong, Guo Qiang. 2020. Influence of tectonic evolution of foreland basin in northwestern Sichuan basin on Paleozoic marine hydrocarbon accumulation. Natural Gas Geoscience, 31(7): 993~1003 (in Chinese with English abstract).

    • Li Hongbo, Zhang Zhaochong, Santosh M, Lü Linsu, Liu Han, Liu Wei. 2017. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction. Journal of Asian Earth Sciences, 134: 293~308.

    • Li Pingping, Duan Jianbao, Cheng Zhongzhen, Zou Huayao. 2021. Using clumped isotopes to reconstruct the maximum burial temperature: A case study in the Sichuan basin. Frontiers in Earth Science, 9: 759372.

    • Liu Ran, Li Ya, Zhao Like, Wang Wei, Li Hongbo, Li Changquan, Li Botong. 2022. Geochemical characteristics of the Late Permian basalts in Pianyanzi, Huaying, Sichuan and their genetic relationship with Emeishan large igneous province. Acta Petrologica et Mineralogica, 41(1): 1~17 (in Chinese with English abstract).

    • Liu Shugen, Sun Wei, Song Jinmin, Deng Bin, Zhong Yong, Luo Chao, Ran Bo, Tian Yanhong, Li Zhiwu, Peng Hanlin, Yin Kewei. 2015. Tectonics-controlled distribution of marine petroleum accumulations in the Sichuan basin, China. Earth Science Frontiers, 22(3): 146~160 (in Chinese with English abstract).

    • Liu Shugen, Yang Yu, Deng Bin, Zhong Yong, Wen Long, Sun Wei, Li Zhiwu, Jansa L, Li Jinxi, Song Jinmin, Zhang Xinhua, Peng Hanling. 2021. Tectonic evolution of the Sichuan basin, Southwest China. Earth-Science Reviews, 213: 103470.

    • Liu Xiaoyu, Qiu Nansheng, Søager N, Fu Xiaodong, Liu Ran. 2022. Geochemistry of Late Permian basalts from boreholes in the Sichuan basin, SW China: Implications for an extension of the Emeishan large igneous province. Chemical Geology, 588: 120636.

    • Liu Yuchen, Qiu Nansheng, Chang Jian, Jia Jingkun, Li Huili, Ma Anlai. 2020. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: A case study of Shuntuoguole area in Tarim basin. Chinese Journal of Geophysics, 63(2): 597~611 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong, Luo Yi, Zhang Xuefeng. 2010. Distribution and further exploration of the large-medium sized gas fields in Sichuan basin. Acta Petrolei Sinica, 31(3): 347~354 (in Chinese with English abstract).

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science, 35(2): 161~174 (in Chinese with English abstract).

    • Murray S T, Arienzo M M, Swart P K. 2016. Determining the Δ47 acid fractionation in dolomites. Geochimica et Cosmochimica Acta, 174: 42~53.

    • Naylor H N, Defliese W F, Grossman E L, Maupin C R. 2020. Investigation of the thermal history of the delaware basin (west Texas, USA) using carbonate clumped isotope thermometry. Basin Research, 32(5): 1140~1155.

    • Passey B H, Henkes G A. 2012. Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 351-352: 223~236.

    • Qiu Nansheng, Liu Wen, Fu Xiaodong, Li Wenzheng, Xu Qiuchen, Zhu Chuanqing. 2021. Maturity evolution of Lower Cambrian Qiongzhusi Formation shale of the Sichuan basin. Marine and Petroleum Geology, 128: 105061.

    • Qiu Nansheng, Chang Jian, Zhu Chuanqing, Liu Wen, Zuo Yinhui, Xu Wei, Li Dan. 2022. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth-Science Reviews, 224: 103884.

    • Stolper D A, Eiler J M. 2015. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315(5): 363~411.

    • Swart P K, Murray S T, Staudigel P T, Hodell D A. 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates. Geochemistry, Geophysics, Geosystems, 20(7): 3730~3750.

    • Wang Ruirui, Zhang Yueqiao, Xie Guoai, Xu Huaizhi. 2011. Origin of the Dabashan foreland convex zone: Insights from sandbox modeling. Acta Geologica Sinica, 85(9): 1409~1419 (in Chinese with English abstract).

    • Wang Xuejun, Yang Zhiru, Han Bing. 2015. Superposed evolution of Sichuan basin and its petroleum accumulation. Earth Science Frontiers, 22(3): 161~173 (in Chinese with English abstract).

    • Wu Hang, Qiu Nanshang, Chang Jian, Zhang Jixin, Wang Ye. 2019. Physical simulation on development of multilayer detachment fold belt in eastern Sichuan. Earth Science, 44(3): 784~797 (in Chinese with English abstract).

    • Xu Ming, Zhu Chuanqing, Tian Yuntao, Rao Song, Hu Shengbiao. 2011. Borehole temperature logging and characteristics of subsurface temperature in Sichuan basin. Chinese Journal of Geophysics, 54(4): 1052~1060 (in Chinese with English abstract).

    • Xu Qiuchen, Qiu Nansheng, Liu Wen, Shen Anjiang, Wang Xiaofang. 2018. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan basin, Southwest China. Journal of Asian Earth Sciences, 164: 143~158.

    • Xu Qiuchen, Qiu Nansheng, Liu Wen, Chang Qing. 2019. Reconstructing the basin thermal history with clumped isotope. Chinese Science Bulletin, 64(5-6): 566~578 (in Chinese with English abstract).

    • Xu Yigang, He Bin, Chung Sunlin, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32(10): 917~920.

    • Yuan Yusong, Sun Dongsheng, Wo Yujin, Zhou Yan. 2010. The relationship between burial history of marine strata and tectonic movements in Mid-Upper Yangtze area. Chinese Journal of Geology, 45(3): 707~717 (in Chinese with English abstract).

    • Yuan Yusong, Sun Dongsheng, Li Shuangjian, Lin Juanhua. 2013. Caledonian erosion thickness reconstruction in the Sichuan basin. Chinese Journal of Geology, 48(3): 581~591 (in Chinese with English abstract).

    • Zhai Guangming, Zhang Jiming, Tang Zeyao. 1987. Petroleum Geology of China. Beijing: Petroleum Industry Press (in Chinese).

    • Zhang Jian, Zhou Gang, Zhang Guangrong, Li Guohui, Wang Hua. 2018. Geological characteristics and exploration orientation of Mid-Permian natural gas in the Sichuan basin. Natural Gas Industry, 38(1): 10~20 (in Chinese with English abstract).

    • Zhang Yu, Cao Qinggu, Luo Kaiping, Li Longlong, Liu Jinlian. 2022. Reservoir exploration of the Permian Maokou Formation in the Sichuan basin and enlightenment obtained. Oil & Gas Geology, 43(3): 610~620 (in Chinese with English abstract).

    • Zhang Yueqiao, Shi Wei, Li Jianhua, Wang Ruirui, Li Hailong, Dong Shuwen. 2010. Formation mechanism of the Dabashan foreland arc-shaped structural belt. Acta Geologica Sinica, 84(9): 1300~1315 (in Chinese with English abstract).

    • Zheng Zhihong, Li Denghua, Bai Senshu, Jia Jun, Zan Xin, Liu Zhuoya, Gao Nuan. 2017. Resource potentials of natural gas in Sichuan basin. China Petroleum Exploration, 22(3): 12~20 (in Chinese with English abstract).

    • Zhu Chuanqing, Xu Ming, Shan Jinnan, Yuan Yusong, Zhao Yongqing, Hu Shengbiao. 2009. Quantifying the denudations of major tectonic events in Sichuan basin: Constrained by the paleothermal records. Geology in China, 36(6): 1268~1277 (in Chinese with English abstract).

    • Zhu Chuanqing, Xu Ming, Yuan Yusong, Zhao Yongqing, Shan Jingnan, He Zhiguo, Tian Yuntao, Hu Shengbiao. 2010. Palaeo-geothermal response and record of the effusing of Emeishan basalts in Sichuan basin. Chinese Science Bulletin, 55(6): 474~482 (in Chinese with English abstract).

    • Zhu Chuanqing, Qiu Nansheng, Cao Huanzi, Liu Yifeng, Jiang Qiang. 2017. Tectono-thermal evolution of the eastern Sichuan basin: Constraints from the vitrinite reflectance and apatite fission track data. Earth Science Frontiers, 24(3): 94~104 (in Chinese with English abstract).

    • Zhu Chuanqing, Hu Shengbiao, Qiu Nansheng, Jiang Qiang, Rao Song, Liu Shuai. 2018. Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan basin, SW China. International Journal of Earth Sciences, 107: 71~88.

    • Zou Yutao, Duan Jinbao, Zhao Yanjun, Zhang Xin, Li Rangbin. 2015. Tectonic characteristics and evolution of the high and steep fault folding belt in East Sichuan. Acta Geologica Sinica, 89(11): 2046~2052 (in Chinese with English abstract).

    • 陈建平, 李伟, 倪云燕, 戴鑫, 梁狄刚, 邓春萍, 边立曾. 2018. 四川盆地二叠系烃源岩及其天然气勘探潜力(二)——烃源岩地球化学特征与天然气资源潜力. 天然气工业, 38(6): 33~45.

    • 范建平, 宋金民, 江青春, 刘树根, 叶玥豪, 黄士鹏, 王佳蕊, 苏旺, 李立基, 金鑫, 冯宇翔. 2022. 川东地区中二叠统茅口组一段储层特征与形成模式. 石油与天然气地质, 43(6): 1413~1430.

    • 何斌, 徐义刚, 肖龙, 王雅玫, 王康明, 沙绍礼. 2006. 峨眉山地幔柱上升的沉积响应及其地质意义. 地质论评, 52(1): 30~37.

    • 何丽娟, 许鹤华, 汪集旸. 2011. 早二叠世-中三叠世四川盆地热演化及其动力学机制. 中国科学: 地球科学, 41(12): 1884~1891.

    • 胡国艺, 贺飞, 米敬奎, 袁懿琳, 郭谨豪. 2021. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力. 天然气地球科学, 32(3): 319~333.

    • 李斌, 梅文华, 李琪琪, 卓勤功, 鲁雪松, 郭强. 2020. 四川盆地西北部前陆盆地构造演化对古生界海相油气成藏的影响. 天然气地球科学, 31(7): 993~1003.

    • 刘冉, 李亚, 赵立可, 王尉, 李宏博, 李常权, 李博通. 2022. 四川华蓥偏岩子晚二叠世玄武岩地球化学特征及其与峨眉山大火成岩省的成因关系. 岩石矿物学杂志. 41(1): 1~17.

    • 刘树根, 孙玮, 宋金民, 邓宾, 钟勇, 罗超, 冉波, 田艳红, 李智武, 彭瀚霖, 尹柯维. 2015. 四川盆地海相油气分布的构造控制理论. 地学前缘, 22 (3): 146~160.

    • 刘雨晨, 邱楠生, 常健, 贾京坤, 李慧莉, 马安来. 2020. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例. 地球物理学报, 63(2): 597~611.

    • 马永生, 蔡勋育, 赵培荣, 罗毅, 张学丰. 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347~354.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学(中国地质大学学报), 35(2): 161~174.

    • 王瑞瑞, 张岳桥, 解国爱, 许怀智. 2011. 大巴山前陆弧形构造的成因: 来自砂箱实验的认识. 地质学报, 85(9): 1409~1419.

    • 王学军, 杨志如, 韩冰. 2015. 四川盆地叠合演化与油气聚集. 地学前缘, 22(3): 161~173.

    • 吴航, 邱楠生, 常健, 张纪新, 王晔. 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784~797.

    • 徐明, 朱传庆, 田云涛, 饶松, 胡圣标. 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052~1060.

    • 徐秋晨, 邱楠生, 刘雯, 常青. 2019. 利用团簇同位素恢复沉积盆地热历史的探索. 科学通报, 64(5-6): 566~578.

    • 袁玉松, 孙冬胜, 沃玉进, 周雁. 2010. 中上扬子海相层系埋藏史与构造运动的关系. 地质科学, 45(3): 707~717.

    • 袁玉松, 孙冬胜, 李双建, 林娟华. 2013. 四川盆地加里东期剥蚀量恢复. 地质科学, 48(3): 581~591.

    • 翟光明, 张继铭, 唐泽尧. 1987. 中国石油地质志. 北京: 石油工业出版社.

    • 张健, 周刚, 张光荣, 李国辉, 汪华. 2018. 四川盆地中二叠统天然气地质特征与勘探方向. 天然气工业, 38(1): 10~20.

    • 张宇, 曹清古, 罗开平, 李龙龙, 刘金连. 2022. 四川盆地二叠系茅口组油气藏勘探发现与启示. 石油与天然气地质, 43(3): 610~620.

    • 张岳桥, 施炜, 李建华, 王瑞瑞, 李海龙, 董树文. 2010. 大巴山前陆弧形构造带形成机理分析. 地质学报, 84(9): 1300~1315.

    • 郑志红, 李登华, 白森舒, 贾君, 昝昕, 刘卓亚, 高煖. 2017. 四川盆地天然气资源潜力. 中国石油勘探. 22(3): 12~20.

    • 朱传庆, 徐明, 单竞男, 袁玉松, 赵永庆, 胡圣标. 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268~1277.

    • 朱传庆, 徐明, 袁玉松, 赵永庆, 单竞男, 何志国, 田云涛, 胡圣标. 2010. 峨眉山玄武岩喷发在四川盆地的地热学响应. 科学通报, 55(6): 474~482.

    • 朱传庆, 邱楠生, 曹环字, 刘一锋, 江强. 2017. 四川盆地东部构造-热演化: 来自镜质体反射率和磷灰石裂变径迹的约束. 地学前缘, 24(3): 94~104.

    • 邹玉涛, 段金宝, 赵艳军, 张新, 李让彬. 2015. 川东高陡断褶带构造特征及其演化. 地质学报, 89(11): 2046~2052.

  • 参考文献

    • Bernasconi S M, Daëron M, Bergmann K D, Bonifacie M, Meckler A N, Affek H P, Anderson N, Bajnai D, Barkan E, Beverly E, Blamart D, Burgener L, Calmels D, Chaduteau C, Clog M, Davidheiser-Kroll B, Davies A, Dux F, Eiler J, Elliott B, Fetrow A C, Fiebig J, Goldberg S, Hermoso M, Huntington K W, Hyland E, Ingalls M, Jaggi M, John C M, Jost A B, Katz S, Kelson J, Kluge T, Kocken I J, Laskar A, Leutert T J, Liang D, Lucarelli J, Mackey T J, Mangenot X, Meinicke N, Modestou S E, Müller I A, Murray S, Neary A, Packard N, Passey B H, Pelletier E, Petersen S, Piasecki A, Schauer A, Snell K E, Swart P K, Tripati A, Upadhyay D, Vennemann T, Winkelstern I, Yarian D, Yoshida N, Zhang N, Ziegler M. 2021. Intercarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochemistry, Geophysics, Geosystems, 22(5): e2020GC009588.

    • Chen Jianping, Li Wei, Ni Yunyan, Dai Xin, Liang Digang, Deng Chunping, Bian Lizeng. 2018. The Permian source rocks and their natural gas prospects in the Sichuan basin (II): The geochemical characteristics of source rocks and the potential of natural gas resources. Natural Gas Industry, 38(6): 33~45 (in Chinese with English abstract).

    • Cong Fuyun, Tian Jinqiang, Hao Fang, Licht A, Liu Yuchen, Cao Zicheng, Eiler J M. 2021. A thermal pulse induced by a Permian mantle plume in the Tarim basin, northwest China: Constraints from clumped isotope thermometry and in situ calcite U-Pb dating. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB020636.

    • Eiler J M. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30(25-26): 3575~3588.

    • Fan Jianping, Song Jinmin, Jiang Qingchun, Liu Shugen, Ye Yuehao, Huang Shipeng, Wang Jiarui, Su Wang, Li Liji, Jin Xin, Feng Yuxiang. 2022. Reservoir characteristics and development model of the Middle Permian Mao-1 Member in eastern Sichuan basin. Oil & Gas Geology, 43(6): 1413~1430 (in Chinese with English abstract).

    • Feng Qianqian, Qiu Nansheng, Fu Xiaodong, Li Wenzheng, Xu Qing, Li Xiao, Wang Jiangshan. 2021. Permian geothermal units in the Sichuan basin: Implications for the thermal effect of the Emeishan mantle plume. Marine and Petroleum Geology, 132: 105226.

    • Feng Qianqian, Qiu Nansheng, Fu Xiaodong, Li Wenzheng, Liu Xin, Ji Ruiyun. 2022. Maturity evolution of Permian source rocks in the Sichuan basin, southwestern China: The role of the Emeishan mantle plume. Journal of Asian Earth Sciences, 229: 105180.

    • Grossman E L, Yancey T E, Jones T E, Bruckschen P, Chuvashov B, Mazzullo S J, Mii H. 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 222~233

    • He Bin, Xu Yigang, Xiao Long, Wang Yamei, Wang Kangming, Sha Shaoli. 2006. Sedimentary response to uplift of Emeishan mantle plume and its implications. Geological Review, 52(1): 30~37 (in Chinese with English abstract).

    • He Lijuan, Xu Hehua, Wang Jiyang. 2011. Thermal evolution and dynamic mechanism of the Sichuan basin during the Early Permian-Middle Triassic. Science China Earth Science, 41(12): 1884~1891 (in Chinese with English abstract).

    • He Lijuan. 2022. Emeishan mantle plume and its potential impact on the Sichuan basin: Insights from numerical modeling. Physics of the Earth and Planetary Interiors, 323: 106841.

    • Hemingway J D, Henkes G A. 2021. A disordered kinetic model for clumped isotope bond reordering in carbonates. Earth and Planetary Science Letters, 566: 116962.

    • Hu Di, Tian Yuntao, Hu Jie, Rao Song, Wang Yibo, Zhang Chao, Hu Shengbiao. 2020. Thermal imprints of late Permian Emeishan basalt effusion: Evidence from zircon fission-track thermochronology. Lithos, 352-353: 105224.

    • Hu Guoyi, He Fei, Mi Jingkui, Yuan Yilin, Guo Jinhao. 2021. The geochemical characteristics, distribution patterns, and gas exploration potential of marine source rocks in northwest Sichuan basin. Natural Gas Geoscience, 32(3): 319~333 (in Chinese with English abstract).

    • Jiang Qiang, Qiu Nansheng, Zhu Chuanqing. 2018. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume. Tectonophysics, 724-725: 11~27.

    • Kim S, O'Neil J R. 1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta, 61(16): 3461~3475.

    • Korte C, Jasper T, Kozur H W, Veizer J. 2005. δ18O and δ13C of Permian brachiopods: a record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(4): 333~351.

    • Li Bin, Mei Wenhua, Li Qiqi, Zhuo Qingong, Lu Xuesong, Guo Qiang. 2020. Influence of tectonic evolution of foreland basin in northwestern Sichuan basin on Paleozoic marine hydrocarbon accumulation. Natural Gas Geoscience, 31(7): 993~1003 (in Chinese with English abstract).

    • Li Hongbo, Zhang Zhaochong, Santosh M, Lü Linsu, Liu Han, Liu Wei. 2017. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction. Journal of Asian Earth Sciences, 134: 293~308.

    • Li Pingping, Duan Jianbao, Cheng Zhongzhen, Zou Huayao. 2021. Using clumped isotopes to reconstruct the maximum burial temperature: A case study in the Sichuan basin. Frontiers in Earth Science, 9: 759372.

    • Liu Ran, Li Ya, Zhao Like, Wang Wei, Li Hongbo, Li Changquan, Li Botong. 2022. Geochemical characteristics of the Late Permian basalts in Pianyanzi, Huaying, Sichuan and their genetic relationship with Emeishan large igneous province. Acta Petrologica et Mineralogica, 41(1): 1~17 (in Chinese with English abstract).

    • Liu Shugen, Sun Wei, Song Jinmin, Deng Bin, Zhong Yong, Luo Chao, Ran Bo, Tian Yanhong, Li Zhiwu, Peng Hanlin, Yin Kewei. 2015. Tectonics-controlled distribution of marine petroleum accumulations in the Sichuan basin, China. Earth Science Frontiers, 22(3): 146~160 (in Chinese with English abstract).

    • Liu Shugen, Yang Yu, Deng Bin, Zhong Yong, Wen Long, Sun Wei, Li Zhiwu, Jansa L, Li Jinxi, Song Jinmin, Zhang Xinhua, Peng Hanling. 2021. Tectonic evolution of the Sichuan basin, Southwest China. Earth-Science Reviews, 213: 103470.

    • Liu Xiaoyu, Qiu Nansheng, Søager N, Fu Xiaodong, Liu Ran. 2022. Geochemistry of Late Permian basalts from boreholes in the Sichuan basin, SW China: Implications for an extension of the Emeishan large igneous province. Chemical Geology, 588: 120636.

    • Liu Yuchen, Qiu Nansheng, Chang Jian, Jia Jingkun, Li Huili, Ma Anlai. 2020. Application of clumped isotope thermometry to thermal evolution of sedimentary basins: A case study of Shuntuoguole area in Tarim basin. Chinese Journal of Geophysics, 63(2): 597~611 (in Chinese with English abstract).

    • Ma Yongsheng, Cai Xunyu, Zhao Peirong, Luo Yi, Zhang Xuefeng. 2010. Distribution and further exploration of the large-medium sized gas fields in Sichuan basin. Acta Petrolei Sinica, 31(3): 347~354 (in Chinese with English abstract).

    • Mei Lianfu, Liu Zhaoqian, Tang Jiguang, Shen Chuanbo, Fan Yuanfang. 2010. Mesozoic intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section. Earth Science, 35(2): 161~174 (in Chinese with English abstract).

    • Murray S T, Arienzo M M, Swart P K. 2016. Determining the Δ47 acid fractionation in dolomites. Geochimica et Cosmochimica Acta, 174: 42~53.

    • Naylor H N, Defliese W F, Grossman E L, Maupin C R. 2020. Investigation of the thermal history of the delaware basin (west Texas, USA) using carbonate clumped isotope thermometry. Basin Research, 32(5): 1140~1155.

    • Passey B H, Henkes G A. 2012. Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 351-352: 223~236.

    • Qiu Nansheng, Liu Wen, Fu Xiaodong, Li Wenzheng, Xu Qiuchen, Zhu Chuanqing. 2021. Maturity evolution of Lower Cambrian Qiongzhusi Formation shale of the Sichuan basin. Marine and Petroleum Geology, 128: 105061.

    • Qiu Nansheng, Chang Jian, Zhu Chuanqing, Liu Wen, Zuo Yinhui, Xu Wei, Li Dan. 2022. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth-Science Reviews, 224: 103884.

    • Stolper D A, Eiler J M. 2015. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315(5): 363~411.

    • Swart P K, Murray S T, Staudigel P T, Hodell D A. 2019. Oxygen isotopic exchange between CO2 and phosphoric acid: Implications for the measurement of clumped isotopes in carbonates. Geochemistry, Geophysics, Geosystems, 20(7): 3730~3750.

    • Wang Ruirui, Zhang Yueqiao, Xie Guoai, Xu Huaizhi. 2011. Origin of the Dabashan foreland convex zone: Insights from sandbox modeling. Acta Geologica Sinica, 85(9): 1409~1419 (in Chinese with English abstract).

    • Wang Xuejun, Yang Zhiru, Han Bing. 2015. Superposed evolution of Sichuan basin and its petroleum accumulation. Earth Science Frontiers, 22(3): 161~173 (in Chinese with English abstract).

    • Wu Hang, Qiu Nanshang, Chang Jian, Zhang Jixin, Wang Ye. 2019. Physical simulation on development of multilayer detachment fold belt in eastern Sichuan. Earth Science, 44(3): 784~797 (in Chinese with English abstract).

    • Xu Ming, Zhu Chuanqing, Tian Yuntao, Rao Song, Hu Shengbiao. 2011. Borehole temperature logging and characteristics of subsurface temperature in Sichuan basin. Chinese Journal of Geophysics, 54(4): 1052~1060 (in Chinese with English abstract).

    • Xu Qiuchen, Qiu Nansheng, Liu Wen, Shen Anjiang, Wang Xiaofang. 2018. Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan basin, Southwest China. Journal of Asian Earth Sciences, 164: 143~158.

    • Xu Qiuchen, Qiu Nansheng, Liu Wen, Chang Qing. 2019. Reconstructing the basin thermal history with clumped isotope. Chinese Science Bulletin, 64(5-6): 566~578 (in Chinese with English abstract).

    • Xu Yigang, He Bin, Chung Sunlin, Menzies M A, Frey F A. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32(10): 917~920.

    • Yuan Yusong, Sun Dongsheng, Wo Yujin, Zhou Yan. 2010. The relationship between burial history of marine strata and tectonic movements in Mid-Upper Yangtze area. Chinese Journal of Geology, 45(3): 707~717 (in Chinese with English abstract).

    • Yuan Yusong, Sun Dongsheng, Li Shuangjian, Lin Juanhua. 2013. Caledonian erosion thickness reconstruction in the Sichuan basin. Chinese Journal of Geology, 48(3): 581~591 (in Chinese with English abstract).

    • Zhai Guangming, Zhang Jiming, Tang Zeyao. 1987. Petroleum Geology of China. Beijing: Petroleum Industry Press (in Chinese).

    • Zhang Jian, Zhou Gang, Zhang Guangrong, Li Guohui, Wang Hua. 2018. Geological characteristics and exploration orientation of Mid-Permian natural gas in the Sichuan basin. Natural Gas Industry, 38(1): 10~20 (in Chinese with English abstract).

    • Zhang Yu, Cao Qinggu, Luo Kaiping, Li Longlong, Liu Jinlian. 2022. Reservoir exploration of the Permian Maokou Formation in the Sichuan basin and enlightenment obtained. Oil & Gas Geology, 43(3): 610~620 (in Chinese with English abstract).

    • Zhang Yueqiao, Shi Wei, Li Jianhua, Wang Ruirui, Li Hailong, Dong Shuwen. 2010. Formation mechanism of the Dabashan foreland arc-shaped structural belt. Acta Geologica Sinica, 84(9): 1300~1315 (in Chinese with English abstract).

    • Zheng Zhihong, Li Denghua, Bai Senshu, Jia Jun, Zan Xin, Liu Zhuoya, Gao Nuan. 2017. Resource potentials of natural gas in Sichuan basin. China Petroleum Exploration, 22(3): 12~20 (in Chinese with English abstract).

    • Zhu Chuanqing, Xu Ming, Shan Jinnan, Yuan Yusong, Zhao Yongqing, Hu Shengbiao. 2009. Quantifying the denudations of major tectonic events in Sichuan basin: Constrained by the paleothermal records. Geology in China, 36(6): 1268~1277 (in Chinese with English abstract).

    • Zhu Chuanqing, Xu Ming, Yuan Yusong, Zhao Yongqing, Shan Jingnan, He Zhiguo, Tian Yuntao, Hu Shengbiao. 2010. Palaeo-geothermal response and record of the effusing of Emeishan basalts in Sichuan basin. Chinese Science Bulletin, 55(6): 474~482 (in Chinese with English abstract).

    • Zhu Chuanqing, Qiu Nansheng, Cao Huanzi, Liu Yifeng, Jiang Qiang. 2017. Tectono-thermal evolution of the eastern Sichuan basin: Constraints from the vitrinite reflectance and apatite fission track data. Earth Science Frontiers, 24(3): 94~104 (in Chinese with English abstract).

    • Zhu Chuanqing, Hu Shengbiao, Qiu Nansheng, Jiang Qiang, Rao Song, Liu Shuai. 2018. Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan basin, SW China. International Journal of Earth Sciences, 107: 71~88.

    • Zou Yutao, Duan Jinbao, Zhao Yanjun, Zhang Xin, Li Rangbin. 2015. Tectonic characteristics and evolution of the high and steep fault folding belt in East Sichuan. Acta Geologica Sinica, 89(11): 2046~2052 (in Chinese with English abstract).

    • 陈建平, 李伟, 倪云燕, 戴鑫, 梁狄刚, 邓春萍, 边立曾. 2018. 四川盆地二叠系烃源岩及其天然气勘探潜力(二)——烃源岩地球化学特征与天然气资源潜力. 天然气工业, 38(6): 33~45.

    • 范建平, 宋金民, 江青春, 刘树根, 叶玥豪, 黄士鹏, 王佳蕊, 苏旺, 李立基, 金鑫, 冯宇翔. 2022. 川东地区中二叠统茅口组一段储层特征与形成模式. 石油与天然气地质, 43(6): 1413~1430.

    • 何斌, 徐义刚, 肖龙, 王雅玫, 王康明, 沙绍礼. 2006. 峨眉山地幔柱上升的沉积响应及其地质意义. 地质论评, 52(1): 30~37.

    • 何丽娟, 许鹤华, 汪集旸. 2011. 早二叠世-中三叠世四川盆地热演化及其动力学机制. 中国科学: 地球科学, 41(12): 1884~1891.

    • 胡国艺, 贺飞, 米敬奎, 袁懿琳, 郭谨豪. 2021. 川西北地区海相烃源岩地球化学特征、分布规律及天然气勘探潜力. 天然气地球科学, 32(3): 319~333.

    • 李斌, 梅文华, 李琪琪, 卓勤功, 鲁雪松, 郭强. 2020. 四川盆地西北部前陆盆地构造演化对古生界海相油气成藏的影响. 天然气地球科学, 31(7): 993~1003.

    • 刘冉, 李亚, 赵立可, 王尉, 李宏博, 李常权, 李博通. 2022. 四川华蓥偏岩子晚二叠世玄武岩地球化学特征及其与峨眉山大火成岩省的成因关系. 岩石矿物学杂志. 41(1): 1~17.

    • 刘树根, 孙玮, 宋金民, 邓宾, 钟勇, 罗超, 冉波, 田艳红, 李智武, 彭瀚霖, 尹柯维. 2015. 四川盆地海相油气分布的构造控制理论. 地学前缘, 22 (3): 146~160.

    • 刘雨晨, 邱楠生, 常健, 贾京坤, 李慧莉, 马安来. 2020. 碳酸盐团簇同位素在沉积盆地热演化中的应用——以塔里木盆地顺托果勒地区为例. 地球物理学报, 63(2): 597~611.

    • 马永生, 蔡勋育, 赵培荣, 罗毅, 张学丰. 2010. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 31(3): 347~354.

    • 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学(中国地质大学学报), 35(2): 161~174.

    • 王瑞瑞, 张岳桥, 解国爱, 许怀智. 2011. 大巴山前陆弧形构造的成因: 来自砂箱实验的认识. 地质学报, 85(9): 1409~1419.

    • 王学军, 杨志如, 韩冰. 2015. 四川盆地叠合演化与油气聚集. 地学前缘, 22(3): 161~173.

    • 吴航, 邱楠生, 常健, 张纪新, 王晔. 2019. 川东多套滑脱层褶皱构造带形成物理模拟. 地球科学, 44(3): 784~797.

    • 徐明, 朱传庆, 田云涛, 饶松, 胡圣标. 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052~1060.

    • 徐秋晨, 邱楠生, 刘雯, 常青. 2019. 利用团簇同位素恢复沉积盆地热历史的探索. 科学通报, 64(5-6): 566~578.

    • 袁玉松, 孙冬胜, 沃玉进, 周雁. 2010. 中上扬子海相层系埋藏史与构造运动的关系. 地质科学, 45(3): 707~717.

    • 袁玉松, 孙冬胜, 李双建, 林娟华. 2013. 四川盆地加里东期剥蚀量恢复. 地质科学, 48(3): 581~591.

    • 翟光明, 张继铭, 唐泽尧. 1987. 中国石油地质志. 北京: 石油工业出版社.

    • 张健, 周刚, 张光荣, 李国辉, 汪华. 2018. 四川盆地中二叠统天然气地质特征与勘探方向. 天然气工业, 38(1): 10~20.

    • 张宇, 曹清古, 罗开平, 李龙龙, 刘金连. 2022. 四川盆地二叠系茅口组油气藏勘探发现与启示. 石油与天然气地质, 43(3): 610~620.

    • 张岳桥, 施炜, 李建华, 王瑞瑞, 李海龙, 董树文. 2010. 大巴山前陆弧形构造带形成机理分析. 地质学报, 84(9): 1300~1315.

    • 郑志红, 李登华, 白森舒, 贾君, 昝昕, 刘卓亚, 高煖. 2017. 四川盆地天然气资源潜力. 中国石油勘探. 22(3): 12~20.

    • 朱传庆, 徐明, 单竞男, 袁玉松, 赵永庆, 胡圣标. 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268~1277.

    • 朱传庆, 徐明, 袁玉松, 赵永庆, 单竞男, 何志国, 田云涛, 胡圣标. 2010. 峨眉山玄武岩喷发在四川盆地的地热学响应. 科学通报, 55(6): 474~482.

    • 朱传庆, 邱楠生, 曹环字, 刘一锋, 江强. 2017. 四川盆地东部构造-热演化: 来自镜质体反射率和磷灰石裂变径迹的约束. 地学前缘, 24(3): 94~104.

    • 邹玉涛, 段金宝, 赵艳军, 张新, 李让彬. 2015. 川东高陡断褶带构造特征及其演化. 地质学报, 89(11): 2046~2052.