en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

程丰,男,1989年生。研究员,主要从事地表过程-构造-气候相互作用和造山带与盆地演化研究。E-mail:chengfeng@pku.edu.cn。

参考文献
Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. New York: John Wiley & Sons.
参考文献
Angrand P, Ford M, Watts A B. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine basin (SW France). Tectonics, 37(2): 430~449.
参考文献
Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Caves Rugenstein J K. 2019. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 363(6430): 1436.
参考文献
Boutelier D, Gagnon L, Johnston S, Cruden A. 2019. Buckling of orogens: Insights from analogue modelling. Journal of Structural Geology, 125: 213~217.
参考文献
Braitenberg C, Wang Y, Fang J, Hsu H. 2003. Spatial variations of flexure parameters over the Tibet-Quinghai plateau. Earth and Planetary Science Letters, 205(3): 211~224.
参考文献
Brook E J, Brown E T, Kurz M D, Ackert Jr R P, Raisbeck G M, Yiou F. 1995. Constraints on age, erosion, and uplift of Neogene glacial deposits in the transantarctic mountains determined from in situ cosmogenic 10Be and 26Al. Geology, 23(12): 1063~1066.
参考文献
Chang Hong, Li Leyi, Qiang Xiaoke, Garzione C N, Pullen A, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.
参考文献
Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2016. Source to sink relation between the Eastern Kunlun Range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Bulletin, 128(1-2): 258~283.
参考文献
Cheng Feng, Jolivet M, Hallot E, Zhang Daowei, Zhang Changhao, Guo Zhaojie. 2017. Tectono-magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Research, 49: 248~263.
参考文献
Cheng Feng, Garzione C N, Jolivet M, Li Xiangzhong, Salzmann U, Schwarz F, Haywood A M. 2019. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam basin. Tectonics, 38(2): 741~766.
参考文献
Cheng Feng, Jolivet M, Guo Zhaojie, Wang Lin, Zhang Changhao, Li Xiangzhong. 2021a. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan Plateau: A review. Earth-Science Reviews, 220: 103730.
参考文献
Cheng Feng, Wang Lin, Guo Zhaojie. 2021b. Flexural modeling reveals along-strike variable rigidity of the Junggar terrane. Central Asian Orogenic Belt (CAOB). AGU Fall Meeting Abstracts, T52B~03.
参考文献
Cheng Feng, Garzione C, Li Xiangzhong, Salzmann U, Schwarz F, Haywood A M, Tindall J, Nie J, Lin Li, Lin Wang, Abbott B W, Elliott B, Liu Weiguo, Upadhyay D, Arnold A, Tripati A. 2022. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 13(1): 1329.
参考文献
Cloetingh S, Marzo M, Munoz J, Verges A. 2002. Tectonics of sedimentary basins: From crustal structure to basin fill. Tectonophysics, 340: 1~135.
参考文献
Curry M E, vander Beek P, Huismans R S, Wolf S G, Muñoz J A. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters, 515: 26~37.
参考文献
Dávila F M, Astini R A, Jordan T E, Gehrels G, Ezpeleta M. 2007. Miocene forebulge development previous to broken foreland partitioning in the southern Central Andes, west-central Argentina. Tectonics: 26(5): TC5016.
参考文献
DeCelles P G. 2011. Foreland basin systems revisited: Variations in response to tectonic settings. In: Tectonics of Sedimentary Basins: Recent Advances. Wiley Online Library, 405~426.
参考文献
DeCelles P G, Giles K. 1996. Foreland basin systems. Basin Research, 8: 105~123.
参考文献
Ding Lin, Xu Qiang, Yue Yahui, Wang Houqi, Cai Fulong, Li Shun. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou basin. Earth and Planetary Science Letters, 392: 250~264.
参考文献
Ding Lin, Kapp P, Cai Fulong, Garzione C N, Xiong Zhongyu, Wang Houqi, Wang Chao. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3(10): 652~667.
参考文献
Doucouré C M, de Wit M J, Mushayandebvu M F. 1996. Effective elastic thickness of the continental lithosphere in South Africa. Journal of Geophysical Research: Solid Earth, 101(B5): 11291~11303.
参考文献
Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining basin. Geology, 36(12): 987~990.
参考文献
Ehlers T A, Poulsen C J. 2009. Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters, 281(3-4): 238~248.
参考文献
Fang Xiaomin, Galy A, Yang Yibo, Zhang Weilin, Ye Chengcheng, Song Chunhui. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47(10): 992~996.
参考文献
Flemings P B, Jordan T E. 1989. A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research: Solid Earth, 94(B4): 3851~3866.
参考文献
Garcia-Castellanos D, Fernandez M, Torné M. 2002. Modeling the evolution of the Guadalquivir foreland basin (southern Spain). Tectonics, 21(3): 1~9.
参考文献
Garzione C N, Hoke G D, Libarkin J C, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A. 2008. Rise of the Andes. Science, 320(5881): 1304~1307.
参考文献
Guo Zhaojie, Yin An, Robinson A, Jia Chengzao. 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. Journal of Asian Earth Sciences, 25(1): 45~56.
参考文献
Hu Xiaoyi, Wu Lei, Zhang Yongshu, Zhang Junyong, Wang Chuanwu, Tang Jianchao, Xiao Ancheng, Chen Hanlin, Yang Shufeng. 2022. Multiscale lithospheric buckling dominates the Cenozoic subsidence and deformation of the Qaidam basin: A new model for the growth of the northern Tibetan Plateau. Earth-Science Reviews, 234: 104201.
参考文献
Jha S, Harry D L, Schutt D L. 2017. Toolbox for analysis of flexural isostasy (TAFI)—A MATLAB toolbox for modeling flexural deformation of the lithosphere. Geosphere, 13(5): 1555~1565.
参考文献
Ji Junliang, Zhang Kexin, Clift P D, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.
参考文献
Jordan T E. 1981. Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bulletin, 65(12): 2506~2520.
参考文献
Kaya M Y, Dupont-Nivet G, Proust J N, Roperch P, Bougeois L, Meijer N, Guo Zhaojie. 2019. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma. Basin Research, 31(3): 461~486.
参考文献
Li Dewei, Xia Yiping, Xu Ligui. 2009. Basin-mountain coupling and basin-mountain genesis within the continental plate——An example from the Qinghai-Tibet plateau and surrounding basins. Geological Frontiers, 16(3): 110~119(in Chinese with English abstract).
参考文献
Li Jiliang, Xiao Wenjiao, Yan Zhen. 2003. Basin-mountain coupling and sedimentation. Journal of Sedimentology, 21(1): 52~60(in Chinese with English abstract).
参考文献
Li Lin, Garzione C N. 2017. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction. Earth and Planetary Science Letters, 460: 302~314.
参考文献
Li Yong, Wang Chengshan, Zeng Yunfu. 2000. Mountain building and sedimentary response. Mineral Rocks, 20(2): 49~56(in Chinese with English abstract).
参考文献
Li Zhiyang, Aschoff J. 2023. Location, extent, and magnitude of dynamic topography in the Late Cretaceous Cordilleran Foreland Basin, USA: New insights from 3D flexural backstripping. Basin Research, 35(1): 120~140.
参考文献
Licht A, Van Cappelle M, Abels H, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519): 501~506.
参考文献
Lin A T, Watts A B. 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9): ETG~2.
参考文献
Liu Chiyang, Zhao Hongge, Yang Xingke, Wang Feng. 2002. Foreland basins and their identification and study. Petroleum and Natural Gas Geology, 4: 307~313(in Chinese with English abstract).
参考文献
Liu Hefu. 2001. Basin-mountain coupled system and geodynamic mechanism. Earth Science, (6): 581~596(in Chinese with English abstract).
参考文献
Ma Jian, Wu Chaodong, Uveges B T, Ding Weiming, Summons R E, Cui Xingqian. 2022. Biomarkers reveal Eocene marine incursions into the Qaidam basin, north Tibetan Plateau. Organic Geochemistry, 166: 104380.
参考文献
Ma Wanli. Geochemical characteristics and paleoenvironmental and paleoclimatic significance of the mudstones of the Upper Ganchagou Formation on the northwestern margin of the Qaidam basin. 2021. Master's thesis of Lanzhou University(in Chinese with English abstract).
参考文献
Ma Xintao, Ding Jianjian, Abulimiti Yiming, Liu Hailei, Zhao Longmei. 2023. Mechanisms of influence of marine intrusion events on hydrocarbon source rock development in terrestrial lake basins. Frontiers in Marine Geology, 39(2): 28~37(in Chinese with English abstract).
参考文献
McElwain J C. 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology, 32(12): 1017~1020.
参考文献
Meng Qingren, Fang Xiang. 2008. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Geological Society of America Special Paper, 444: 1~24.
参考文献
Miao Yunfa, Fang Xiaomin, Sun Jimin, Xiao Wenjiao, Yang Yongheng, Wang Xuelian, Utescher T. 2022. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau. Science, 378(6624): 1074~1079.
参考文献
Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4): 357~396.
参考文献
Naylor M, Sinclair H D. 2008. Pro-vs. retro-foreland basins. Basin Research, 20(3): 285~303.
参考文献
Nie Junsheng, Ren Xueping, Saylor J E, Su Qingda, Horton B K, Bush M A, Chen Wenhan, Pfaff K. 2019. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2): 310~320.
参考文献
Poblete F, Dupont-Nivet G, Licht A, van Hinsbergen D J J, Roperch P, Mihalynuk M G, Johnston S T, Guillocheau F, Baby G, Fluteau F, Robin C, van der Linden T J M, Ruiz D, Baatsen M L J. 2021. Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma. Earth-Science Reviews, 214: 103508.
参考文献
Quade J, Leary M, Dettinger M P, Orme D, Krupa A, DeCelles P G, Kano A, Kato H, Waldrip R, Huang W, Kapp P. 2020. Resetting southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry. Global and Planetary Change, 191: 103194.
参考文献
Ren Jishun. 1984. The indo-china movement and its significance in the tectonic evolution of the Chinese continent. Journal of the Chinese Academy of Geological Sciences, 9: 31~42(in Chinese with English abstract).
参考文献
Rowley D B, Garzione C N. 2007. Stable isotope-based paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35: 463~508.
参考文献
Royden L H. 1993. The tectonic expression slab pull at continental convergent boundaries. Tectonics, 12(2): 303~325.
参考文献
Sahagian D L, Maus J E. 1994. Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation. Nature, 372(6505): 449~451.
参考文献
Saura E, Garcia-Castellanos D, Casciello E, Parravano V, Urruela A, Vergés J. 2015. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq). Tectonics, 34(3): 377~395.
参考文献
Saylor J E, Jordan J C, Sundell K E, Wang Xiaoming, Wang Shiqi, Deng Tao. 2018. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Research, 30(3): 544~563.
参考文献
Song Bowen. 2013. Early Eocene-Pliocene environmental evolution and biota of the northern margin of the Qaidam basin. Doctoral dissertation of China University of Geosciences(in Chinese with English abstract).
参考文献
Spicer R A, Harris N B, Widdowson M, HermanA B, Guo Shuangxing, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421(6923): 622~624.
参考文献
Tǎrǎpoancǎ M, Garcia-Castellanos D, Bertotti G, Matenco L, Cloetingh S A P L, Dinu C. 2004. Role of the 3-D distributions of load and lithospheric strength in orogenic arcs: Polystage subsidence in the Carpathians foredeep. Earth and Planetary Science Letters, 221(1-4): 163~180.
参考文献
Teson E, Teixell A, Ayarza P, Arboleya M L, Alvarez-Lobato F, Garc1a-Castellanos D, Amrhar M. 2006. Geometry and evolution of the Ouarzazate basin in the foreland of the High Atlas Mountains (Morocco). Geophysical Research Abstracts, 8: 01253.
参考文献
Tikoff B, Siddoway C, Sokoutis D, Willingshofer E. 2022. The lithospheric folding model applied to the Bighorn uplift during the Laramide orogeny. Geological Society of America, 555: 221~239.
参考文献
Turcotte D L, Schubert G. 1982. Applications of continuum physics to geological problems. AGU, 64(11): 106~107.
参考文献
Wang Hongzhen. 1986. On the delineation of the Precambrian geological age and chronost-ratigraphy in China. Earth Science, 5: 447~453(in Chinese with English abstract).
参考文献
Wang Lin, Cheng Feng, Zuza A V, Jolivet M, Liu Yiduo, Guo Zhaojie, Li Xiangzhong, Zhang Chaohao. 2021. Diachronous growth of the northern Tibetan Plateau derived from flexural modeling. Geophysical Research Letters, 48(8): e2020GL092346.
参考文献
Wang Qingchen, Li Zhong. 2003. Basin-mountain coupling and sedimentary basin genesis. Journal of Sedimentology, 21(1): 24~30(in Chinese with English abstract).
参考文献
Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby E, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8: 15887.
参考文献
Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.
参考文献
Watts A, Bodine J, Steckler M. 1980. Observations of flexure and the state of stress in the oceanic lithosphere. Journal of Geophysical Research: Solid Earth, 85(B11): 6369~6376.
参考文献
Willett S D, Schlunegger F, Picotti V. 2006. Messinian climate change and erosional destruction of the central European Alps. Geology, 34(8): 613~616.
参考文献
Wu Fuli, Fang Xiaomin, Yang Yibo, Dupont-Nivet G, Nie Junsheng, Fluteau F, Zhang Tao, Han Wenxia. 2022. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3: 684~700.
参考文献
Wu Qingfu. 1986. Tectonic evolution and hydrocarbon-bearing prospects in the Junggar basin. Xinjiang Geology, 4(3): 1~19(in Chinese with English abstract).
参考文献
Xiong Xiong, Wang Yingjie, Li Yongdong. 2022. A study of the strength of the continental lithosphere. Geodesy and Geodynamics, 42(5): 441~450(in Chinese with English abstract).
参考文献
Xu Xi, Zuza A V, Yin An, Lin Xiubin, Chen Hanlin, Yang Shufeng. 2021. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49(1): 96~100.
参考文献
Yang Wanshu, Xiong Xin, Xi Dangpeng, Wan Xiaoqiao. 2023. The Shell Mountains of Ucha County: A witness to the vicissitudes of the western Tarim basin. Journal of Nature, 45(2): 148~154(in Chinese with English abstract).
参考文献
Yang Xusong, Tian Xiaobao, Windley B F, Zhao Liang, Lu Yifan, Yuan Huaiyu, Xiao Wenjiao. 2022. The role of multiple trapped oceanic basins in continental growth: Seismic evidence from the southern Altaids. Geophysical Research Letters, 49(11): e2022GL098548.
参考文献
Yin An, Dang Yuqi, Zhang Min, Chen Xuanhua, McRivette M W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7-8): 847~876.
参考文献
Zhang Mingli, Jin Zhijun, Tang Liangjie, Liu Guolin. 2002. Review and prospects of foreland basin research. Geological Review, 48(2): 214~220(in Chinese with English abstract).
参考文献
Zhang Yuanqing, Qian Xianglin. 2001. Concept and mechanism of basin-mountain coupling. Geology of China, 3: 47(in Chinese with English abstract).
参考文献
Zhu Xiaosan, Wang Tao, Huang He, Zheng Hongwei. 2022. An aeromagnetic study of fault structures underneath the region across the Chinese Altai orogen, Junggar basin, Tianshan orogen, and Tarim basin. Journal of Asian Earth Sciences, 239: 105418.
参考文献
李德威, 夏义平, 徐礼贵. 2009. 大陆板内盆山耦合及盆山成因——以青藏高原及周边盆地为例. 地学前缘, 16(3): 110~119.
参考文献
李继亮, 肖文交, 闫臻. 2003. 盆山耦合与沉积作用. 沉积学报, 21(1): 52~60.
参考文献
李勇, 王成善, 曾允孚. 2000. 造山作用与沉积响应. 矿物岩石, 20(2): 49~56.
参考文献
刘池洋, 赵红格, 杨兴科, 王锋. 2002. 前陆盆地及其确定和研究. 石油与天然气地质, 4: 307~313.
参考文献
刘和甫. 2001. 盆地-山岭耦合体系与地球动力学机制. 地球科学, (6): 581~596.
参考文献
马万里. 2021. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义. 兰州大学硕士学位论文.
参考文献
马新涛, 丁修建, 阿布力米提·依明, 刘海磊, 赵龙梅. 2023. 陆相湖盆海侵事件对烃源岩发育影响机制. 海洋地质前沿, 39(2): 28~37.
参考文献
任纪舜. 1984. 印支运动及其在中国大陆构造演化中的意义. 中国地质科学院院报, 9: 31~42.
参考文献
宋博文. 2013. 柴达木盆地北缘早始新世—上新世环境演变及生物群研究. 中国地质大学博士学位论文.
参考文献
王鸿祯. 1986. 论中国前寒武纪地质时代及年代地层的划分. 地球科学, 5: 447~453.
参考文献
王清晨, 李忠. 2003. 盆山耦合与沉积盆地成因. 沉积学报, 21(1): 24~30.
参考文献
吴庆福. 1986. 准噶尔盆地构造演化及含油气远景. 新疆地质, 4(3): 1~19.
参考文献
熊熊, 王英杰, 李永东. 2022. 大陆岩石圈强度研究. 大地测量与地球动力学, 42(5): 441~450.
参考文献
杨婉舒, 熊昕, 席党鹏, 万晓樵. 2023. 乌恰县贝壳山: 塔里木盆地西部沧海桑田的见证者. 自然杂志, 45(2): 148~154.
参考文献
张明利, 金之钧, 汤良杰, 刘国林. 2002. 前陆盆地研究的回顾与展望. 地质论评, 48(2): 214~220.
参考文献
张原庆, 钱祥麟. 2001. 盆山耦合概念及机制. 中国地质, 3: 47.
目录contents

    摘要

    盆山耦合研究在大地构造和地球动力学研究中占有重要地位。地貌负载引起的大陆岩石圈挠曲与沉积盆地沉降是盆山耦合的一种重要体现方式。本论文聚焦于挤压背景下大陆岩石圈挠曲盆地与造山带的耦合过程,系统梳理了单个或者多个地貌负载的几何形态、挠曲盆地几何形态以及岩石圈有效弹性厚度(Te)三者之间的数学关系。在此基础上,论文介绍了岩石圈挠曲模拟方法在恢复岩石圈刚性程度、造山带演化过程以及盆地沉积沉降方面的具体应用。结合古环境分析与岩石圈挠曲模拟实验,本文提出了一种定量恢复造山带古海拔的新方法。有别于基于温度、压力以及动植物分布与海拔之间关系所建立的传统古高度计,该方法强调在海侵时期地貌负载与沉积盆地间的高度差即为造山带的古海拔。该方法的提出为重建中亚以及其他曾受海侵影响并与岩石圈挠曲相关造山带的古海拔提供了新的思路。论文最后介绍了岩石圈挠曲模拟在定量分析造山带与盆地演化的研究过程中存在的问题与不足,并提出了在探究沉积盆地基底属性、重建岩石圈挠曲相关造山带古海拔以及有关挠曲模拟软件开发方面的新展望。

    Abstract

    Determining the relationship between the orogens and sedimentary basins is an important aspect of tectonics and geodynamics research. This is well-exemplified by the coupling between the orogens and sedimentary basin due to continental lithospheric flexure. This contribution focuses on the continental lithospheric flexure and shows the relationship between the shape of the single or multiple topographic loads, the shape of the flexural basin, and the effective elastic thickness (Te). Based on theory and case studies, this study shows how flexural modeling applies to research associated with the orogens and sedimentary basin evolution. By combining paleoenvironment indicators with flexural modeling, we also propose a novel approach to quantitatively estimate the paleoelevation of an orogenic belt that accounts for the flexural subsidence of a basin that was influenced by sea incursion. Different from other paleoaltimetry approaches that connect the temperature or pressure and elevation, this new approach emphasizes that the relief of the topographic load equals the paleoelevation of the orogenic belt during the time when the sea incursion occurs in the flexural basin, providing a new way to understand the paleoelevation of the orogenic belts. Finally, this work summarizes the caveats of flexural modeling and gives some new perspectives on documenting the basement feature of sedimentary basins, paleoelevation reconstruction, and the design and application of the software associated with flexural modeling.

  • 沉积盆地与造山带不仅是地球表面最为显著的两个地貌形态,也是大陆地壳上最为重要的两个构造单元(李勇等,2000)。早期针对沉积盆地与造山带的研究相对独立,随着20世纪90年代起大陆动力学的发展,人们逐渐发现沉积盆地演化与造山带的构造演化间存在密切联系,有必要将二者联系起来共同研究,“盆山耦合”的概念以及大量的研究实例因此应运而生(Cloetingh et al.,2002王清晨等,2003)。沉积盆地与造山带的耦合作用也成为了大陆动力学领域的研究热点,同时成为固体地球科学的一个重要研究方向(刘池洋等,2002李德威等,2009)。

  • 沉积盆地与造山带耦合的具体机制与地球内部构造应力密切相关(刘池洋等,2002李继亮等,2003)。在统一的应力背景下,沉积盆地与造山带往往相伴而生。因此人们根据构造应力的不同,将盆山耦合关系具体分为以下三种类型:① 挤压背景下挠曲盆地与造山带的耦合;② 伸展背景下裂陷盆地与造山带的耦合;③ 走滑断裂控制背景下走滑盆地与造山带的耦合(刘和甫,2001)。而对于大陆岩石圈的挠曲变形动力机制的分析,一种主张认为在水平屈曲的持续作用下地壳厚度发生改变。在多尺度屈曲机制的控制作用下,盆地的整体沉降格局得以改变,体现了水平驱动力在盆山耦合构造演化中起着主导作用(Boutelier et al.,2019Hu Xiaoyi et al.,2022Tikoff et al.,2022)。而另一种普遍的观点是,挠曲盆地与造山带耦合的本质是由于造山带的汇聚作用造成地壳物质的垂向加载,在重力均衡作用下地壳产生挠曲下沉,从而形成盆山耦合(张原庆等,2001)。由于该过程记录并反映了汇聚构造环境演化的关键时期及重要特征,因而挤压背景下挠曲盆地与造山带的耦合在地球动力学演化和大地构造研究中占有重要地位(刘池洋等,2002)。在系统分析前人工作的基础上,论文聚焦于挤压背景下挠曲盆地与造山带的耦合,总结了大陆岩石圈挠曲背景下盆山耦合研究的核心理论和关键技术方法,并讨论了该理论的研究前沿与方向。

  • 1 岩石圈挠曲理论

  • 1.1 岩石圈挠曲与前陆盆地

  • 岩石圈挠曲是指在外力系统的作用下引起的岩石圈的长波长有限弯曲。大洋和大陆岩石圈都能够进行长波长弯曲,这一过程称为挠曲。大洋岩石圈的挠曲多发生在海沟、洋中脊、海山链以及零星的海洋火山岛处,而大陆岩石圈的挠曲则多发生在板块汇聚处(Allen et al.,2013)。受到构造缩短和重力负载的影响,由大陆岩石圈挠曲造成的沉积盆地多沿构造走向方向展布,而在垂直于此方向的横截面上,该盆地往往呈现出向造山带不断加深的特征,盆地中多充填有丰富的沉积物,而这类沉积盆地以前陆盆地最为典型(DeCelles et al.,1996Allen et al.,2013)。

  • 根据盆地的分布特征、平面展布规律、剖面结构、地壳性质以及动力学机制与发育时限,前陆盆地可定义为:在挤压背景下发育在造山带与临近克拉通之间,平行于造山带且呈狭条状展布的冲断型挠曲盆地(DeCelles et al.,1996刘池洋等,2002张明利等,2002Allen et al.,2013)。DeCelles et al.(1996)则进一步将与前陆盆地有关的构造单元整体归纳为“前陆盆地系统”。该前陆盆地系统自造山带向盆地方向依次发育楔顶(wedge top)、前渊(foredeep)、前隆(forebulge)、后隆(back-bulge)。造山带的几何形态则表现为造山带楔状体(orogenic wedge),包含褶皱冲断带(fold-thrust belt)和楔顶两部分(图1)。

  • 1.2 岩石圈挠曲的数学表达

  • 岩石圈挠曲产生的前陆盆地的几何形状主要与地形负载和形状以及控制岩石圈弯曲行为的参数有关 (Jordan,1981Flemings et al.,1989Allen et al.,2013)。岩石圈挠曲过程可以与弹性薄板变形这一过程进行类比 (图2)。当弹性薄板受到垂直外力、水平力、扭矩或弯矩的作用下,弹性薄板会在垂向上发生变形(Turcotte et al.,1982;Wangen,2010)。而这一变形过程,可由挠曲方程来表征:

  • ω(x)=ρcHWgα38De-xαcosxα+sinxα
    (1)
  • 式中,ωx)是岩石圈板块在x处的挠曲程度(相对于载荷中心的水平距离),ρc是地形荷载(地壳)的密度;HW分别是载荷的高度和宽度,g是重力。α是挠曲参数,是挠曲刚度(D)、流体软流层密度(ρm)、盆地填充物的密度(ρs)和重力(g)的函数,具体表示为:

  • α=4Dρm-ρsg14
    (2)
  • 挠曲刚度(D)反映了岩石圈强度,它是杨氏模量(E)、泊松比(σ)和地壳有效弹性厚度(Te)的函数,具体表示为:

  • D=ETe3121-σ2
    (3)
  • 由于杨氏模量和泊松比一般可视为常数,因此人们一般多用岩石圈有效弹性厚度(Te)来描述岩石圈强度(Turcotte et al.,1982)。其物理意义可以理解为:假定一上覆于软流圈流体的弹性薄板在相同的重力载荷作用下,产生了与实际岩石圈相同的挠曲变形,那么此时弹性板厚度即可作为岩石圈有效弹性厚度TeWatts et al.,1980Xiong Xiong et al.,2022)。

  • 由此可见,挠曲盆地的几何形态、地貌负载的几何形态以及岩石圈有效弹性厚度三者之间存在定量的数学关系。若已知地貌负载的几何形态和岩石圈有效弹性厚度,就可以模拟挠曲盆地可能的几何形态。同样的,当知道地貌负载的形态和挠曲盆地的几何形态,我们即可恢复岩石圈有效弹性厚度。需要注意的是,挠曲盆地可能同时受到多个地貌负载的影响。近年来有不少研究(Cheng Feng et al.,2019; Wang Lin et al.2021)针对两个及以上地貌负载,并建立了挠曲方程(图3)。基于两个地貌负载引起的地貌负载挠曲具体表示为:

  • 图1 前陆盆地系统剖面结构图(据DeCelles et al.,1996

  • Fig.1 Schematic cross-section depicting foreland basin system (after DeCelles et al., 1996)

  • 图2 单一地貌负载与盆地挠曲关系图

  • Fig.2 Schematic cross-section showing the relationship between a single topographic load and flexural subsidence of the basin

  • ω(x)=ω1(x)+ω2(x)
    (4)
  • ω1(x)=ρc×H1×W1×g×α38De-x-0.5W1αcosx-0.5W1α+sinx-0.5W1α
    (5)
  • ω2(x)=ρc×H1×W1×g×α38De-L+0.5W1+0.5W2-xαcosL+0.5W1+0.5W2-xα+sinL+0.5W1+0.5W2-xα
    (6)
  • 式中,ω1xω2x分别表征了地貌负载1和地貌负载2在x处的挠度程度,而H1W1以及H2W2分别代表了地貌负载1和地貌负载2的高度与宽度。

  • 图3 双向地貌负载与盆地挠曲关系图 (据Wang Lin et al.,2021

  • Fig.3 Schematic cross-section showing the relationship between double topographic load and flexural subsidence of the basin (after Wang Lin et al., 2021)

  • 2 岩石圈挠曲模拟经典应用

  • 盆山演化过程是以整体观为依据探讨造山作用与盆地演化之间运动学与动力学的相互关系,而挠曲模拟在研究其沉降过程及机制上起了十分重要的作用。在过去的数十年里,大陆岩石圈的挠曲建模研究旨在:① 将挠曲盆地内沉积物充填的几何形状与造山运动的构造历史相协调来确定造山带演化与盆地沉降的机制;② 定量评估大陆岩石圈的力学属性(即岩石圈有效地壳厚度,Te);③ 根据弹性挠曲板片理论和实际观测之间的不一致性,进一步约束岩石圈内更深层次动力学过程的性质。

  • 2.1 岩石圈挠曲模拟在解释盆山演化过程中的应用

  • 近年来,随着全球含油气盆地地质勘探的不断深入,沉积盆地之下与岩石圈挠曲有关的沉积地层的三维展布规律不断被揭露。这些新的发现为大陆岩石圈挠曲研究注入了新的血液。例如,Saylor et al.(2018)系统地研究了青藏高原东北缘拉脊山东侧宁夏盆地的三个新生代地层剖面,并以此作为参考点,在设定青藏高原东北缘岩石圈有效地壳厚度的基础之上,揭露了拉脊山自中新世以来的近1 km的地表抬升过程。Curry et al.(2019)基于比利牛斯山(Pyrenees Mountains)南北两侧的南埃布罗前陆盆地(southern Ebro)和阿基坦前陆盆地(northern Aquitaine)自古新世以来地层的空间展布规律,开展了大陆岩石圈三维挠曲模拟工作。该工作不仅揭露了现今相对软弱的欧洲板块和伊比利亚板块的岩石圈强度,并且进一步定量恢复了比利牛斯山新生代多阶段的构造演化与古海拔演化过程。Li Zhiyang et al.(2023)利用早白垩世至晚白垩纪高分辨率的地层厚度图,运用挠曲模拟方法定量研究了北美地区科迪勒拉山的演化过程。相较于地层厚度图,该方法更为精细地刻画了该地区盆山演化的时空格局与演化历史。

  • 同时,将基于弹性挠曲板片理论的模拟结果与实际观测的地貌负载与盆地形态对比有助于加深我们对于造山带演化和盆地沉降过程的认识。例如,Yin An et al.(2008)通过对比东昆仑山南北两侧可可西里盆地和柴达木盆地新生代地层,发现两者新生代地层架构相似,沉积环境相近,从而提出了“古柴达木盆地”模型。该模型认为古近纪时期青藏高原北缘地区发育一个大型的沉积盆地,其盆地范围南起青藏高原中部风火山地区,向北则延伸至祁连山—阿尔金山地区,该大型沉积盆地随着渐新世—中新世以来东昆仑山快速隆升而一分为二,在东昆仑山北侧形成了柴达木盆地,在其南侧形成了可可西里盆地。然而,在柴达木盆地的南缘逐渐发现了大量古近纪的近缘沉积(Cheng Feng et al.,2016),因此人们开始对“古柴达木盆地”模型有了新的思考(图4)。

  • 地震勘探资料表明古新世在祁连山的作用下,柴达木盆地逐渐演变为挠曲盆地,如果“古柴达木盆地”模型正确,那么祁连山地貌负载所造成的柴达木盆地之下的岩石圈挠曲形态将与柴达木盆地古新世的盆地形态一致。基于这一思路,Cheng Feng et al.(2019)模拟了祁连山挠曲负载情况下柴达木盆地之下的岩石圈形态,模拟结果显示无论如何调整相关参数,模拟的岩石圈形态均与由残余厚度图所揭示出来的盆地形态相差甚远。这种不一致现象说明在古新世,单一的祁连山地貌负载不能造成足够的盆地沉降。为进一步探讨祁连山-柴达木盆地-东昆仑山三者之间的关系,Cheng Feng et al.(2019)将盆地挠曲模拟由单一造山带控制的假设进行改进,假定东昆仑山与祁连山在古近纪均隆起,并均对柴达木盆地产生地貌负载,在此条件下通过不断改变两个造山带的形态,来观测柴达木盆地之下的岩石圈挠曲形态变化。模拟结果显示,东昆仑山和祁连山于柴达木盆地的地貌差分别为~1 km和~2.5 km。该模拟结果进一步证明了,在新生代早期东昆仑山可能并非如“古柴达木盆地”模型所推测的深埋于地下,而可能已发生部分隆起,并对柴达木盆地产生强烈的地貌负载(图4)。

  • 再如,早期研究多认为比利牛斯山的地貌负载是造成其北部的阿基坦(Aquitaine)前陆盆地沉降的原因。然而,近期的研究发现,比利牛斯山的地貌负载不足以完全解释阿基坦盆地的沉降。Angrand et al.(2018)基于法国南部阿基坦(Aquitaine)前陆盆地新生代地层展布规律和比利牛斯山造山带新生代的演化历史,对该地区开展了自西向东精细地定量化挠曲模拟分析。模拟结果显示不论在盆地的西部、中部或者东部地区,该盆山系统由地貌负载、埋藏负载、地貌与埋藏沉降相结合产生的岩石圈挠曲形态都与观察到的基底沉降及阿基坦前陆盆地的剖面形态之间存在巨大区别。这一现象说明在盆地西部、中部和东部地区,单一的地貌负载无法产生足够的盆地沉降。综合其他沉积学和地球物理资料,该研究推测除了地貌负载,热沉降在该盆地演化过程中起到关键性作用。由此可见,对于在挤压背景下产生的沉积盆地,通过构建适当的挠曲模拟模型,可以进一步精细解释盆地沉降动力学机制(图5)。

  • 图4 柴达木盆地挠曲与东昆仑山和祁连山双向地貌负载关系图

  • Fig.4 Schematic map showing the relationship between topographic loads of Eastern Kunlun Shan and Qilian Shan and flexural subsidence of the Qaidam basin

  • (a)—古柴达木盆地模型(据Yin An et al.,2008);(b)—孤立柴达木盆地模型(据Cheng Feng et al.,2021a);(c)—柴达木盆地挠曲与东昆仑山和祁连山地貌负载关系图(据Cheng Feng et al.,2021a

  • (a) —Paleo-Qaidam basin model (after Yin An et al., 2008) ; (b) —isolated Qaidam basin model (after Cheng Feng et al., 2021a) ; (c) —cross-sections showing the relationship between topographic loads of Eastern Kunlun Shan and Qilian Shan and flexural subsidence of the Qaidam basin (after Cheng Feng et al., 2021a)

  • 2.2 岩石圈挠曲模拟在定量评估岩石圈有效弹性厚度中的应用

  • 大陆岩石圈的挠曲模拟多被应用于评估岩石圈强度(有效地壳厚度)。就岩石圈的机械属性(力学性质)而言,大陆岩石圈的有效地壳厚度值主要是通过前陆盆地沉降的正演模拟得到的。正演模拟是指通过改变作用在板块上的构造力和重力来迭代计算挠曲变形量,直到与实际观测值一致。岩石圈的有效地壳厚度被定义为最适合观察到的岩石圈弯曲的均质弹性板块厚度。例如Doucour et al.(1996)在现今非洲南部地貌特征和布格重力异常图的基础之上,运用挠曲模拟的手段,分别恢复出前寒武Kaapvaal克拉通以及中元古代Namaqua-Natal构造活动带的岩石圈有效地壳厚度为72 km和38~48 km。基于伊朗西南部Lurestan地区的Amiran盆地中新生代地层的展布规律,Saura et al.(2015)对扎格罗斯造山带开展了挠曲模拟实验,模拟结果显示该地区的有效地壳厚度随时间不断变化,从90~50 Ma期间的20 km,逐渐增加到过去20 Ma间的55 km。

  • 图5 阿基坦(Aquitaine)前陆盆地挠曲模拟结果与观测结果对比图(据Angrand et al.,2018

  • Fig.5 Observed flexure and combined modeled flexure and variations of Te along the profiles in the Aquitaine basin (after Angrand et al., 2018)

  • (a)—剖面1挠曲模拟对比结果; (b)—剖面2挠曲模拟对比结果; (c)—剖面3挠曲模拟对比结果;(d)—剖面4挠曲模拟对比结果

  • (a) —flexural modeling result along the section 1; (b) —flexural modeling result along the section 2; (c) —flexural modeling result along the section 3; (d) —flexural modeling result along the section 4

  • 大陆岩石圈的挠曲模拟在应用于评估岩石圈强度的同时,也可以据此确定研究盆地基地的性质。受地理环境和石油勘探条件所限,早期对于中亚地区盆地基底属性的研究多基于航磁、地震速度特征等地球物理资料以及出露于盆地周缘的基底岩石,因此人们对于这些盆地基底的属性一直存在不同认识。例如,准噶尔盆地基底属性备受地球科学界关注,一直存在两个端元模型,即洋壳基底还是古老的陆壳基地。部分研究者基于早期重磁、航磁等地球物理资料的研究认为准噶尔基底以前寒武系古老的结晶基底为主(任纪舜,1984王鸿祯,1986吴庆福,1986)。然而,随着近年来石油勘探的突破、地球物理、地质年代学和地球化学等研究手段的普及与发展,越来越多的研究表明准噶尔基底可能受到多次后期岩浆热事件改造,并发育年轻的洋壳(Yang Xusong et al.,2022Zhu Xiaosan et al.,2022)。由此可见,解决该争议的核心是准噶尔盆地之下是否存在刚性的岩石圈。该问题可运用挠曲来解决。受到欧亚板块碰撞远程效应的影响,准噶尔盆地南部自新生代以来可被认为是北天山地貌负载下的挠曲盆地。另一方面,随着准南地区石油勘探的深入,该地区新生代地层的空间展布规律得到精准的刻画。在已知现今北天山的地貌负载形态和准南挠曲盆地几何形态的情况下,准噶尔基底有效地壳厚度得以恢复。基于此方法,Cheng Feng et al.(2021b)发现准噶尔盆地基底有效地壳厚度不到30 km,说明准噶尔盆地不是简单的前寒武系陆壳结晶基底。相似的争议也出现于对塔里木盆地和柴达木盆地基底的研究过程中(Braitenberg et al.,2003Guo Zhaojie et al.,2005Cheng Feng et al.,2017Xu Xi et al.,2021)。由此可见,对于目前石油勘探程度较高的挠曲型含油气盆地,基于沉积盆地几何形态与地貌负载形态,挠曲模拟有助于明确含油气盆地之下岩石圈的强度,进而确定盆地基底的组成与属性。

  • 2.3 岩石圈挠曲模拟在古海拔重建中的应用

  • 2.3.1 造山带古海拔恢复

  • 在过去几十年中,如何定量恢复地质历史时期造山带与高原的古海拔一直是地质工作者关心的重点科学问题。这一问题的解决不仅有助于我们恢复造山带与高原造山演化过程(Garzione et al.,2008Ehlers et al.,2009Ding Lin et al.,20142022Miao Yunfa et al.,2022),同时也使我们对区域造山带演化与全球气候之间的关系有了更深入的了解(Molnar et al.,1993Dupont-Nivet et al.,2008Licht et al.,2014Botsyun et al.,2019Wu Fuli et al.,2022),为进一步理解地球系统科学提供重要理论依据。地球上绝大部分地区现今及地质历史时期的海拔基本是在海平面上下几千米范围之内。目前所提出的古高度计主要是通过探究温度或者压力与海拔之间的关系而建立的,例如以叶相学、动物化石为基础的古生物学(Spicer et al.,2003)、稳定同位素(Rowley et al.,2007)、玄武岩孔隙气泡大小(Sahagian et al.,1994)、植物叶片气孔密度(McElwain,2004)、宇宙核素(Brook et al.,1995)等。其中以稳定同位素古高程计(氧同位素、氢同位素)、碳酸盐岩团簇同位素古高度计、古植物古高度计以及古环境分析这几种研究手段应用得最为普遍。然而上述方法均存在一定的限制。例如,氧同位素和氢同位素在地质历史时期的水汽来源问题是困扰其被广泛应用的关键(Li Lin et al.,2017)。碳酸盐岩的团簇同位素则容易受到成岩作用、后期构造热事件(Quade et al.,2020)、外源碎屑碳酸盐混染(Cheng Feng et al.,2022)等因素的影响。古植物和古环境分析受限于化石的保存情况等(Spicer et al.,2003)。这一系列问题在青藏高原及中亚地区的古海拔恢复过程中均有所体现。例如,基于氧同位素、氢同位素的古海拔恢复只适合应用于高原中部与南侧。而相较于具有来自印度洋的单一水汽来源的高原中部与南部,高原北部的水汽来源较为复杂,不能用简单的瑞利分馏来表征海拔与同位素之间的关系(Li Lin et al.,2017)。另外,该地区受到中亚地区干旱化的影响,如柴达木盆地、索尔库里盆地、塔里木盆地等地区,这些地区中的绝大部分现今被第四系所覆盖(Cheng Feng et al.,2021a),如何找到合适的研究剖面进而开展团簇同位素、古植物与古环境分析等工作也成为制约该地区古海拔研究的一大难题。由于该地区的古海拔恢复对于我们认识青藏高原构造演化、中亚地区的干旱化过程以及生物多样性变化有着决定性作用,因此亟需建立一种新的手段来重建该地区的古海拔。

  • 2.3.2 挠曲模拟和古环境结合的古海拔恢复方法

  • 根据岩石圈挠曲的基本定义,挠曲盆地沉积物填充的几何形状、岩石圈有效地壳厚度以及地貌负载几何形态三者之间存在数学关系。因此,在已知挠曲盆地沉积物充填的几何形状以及岩石圈有效地壳厚度的前提下,我们可以获得地貌负载的形态。如果垂直于地貌负载的宽度得以限定,那么地貌负载相对于沉积盆地的地形差就可以被约束。需要特别指出的是,如果沉积盆地处于海平面附近,那么上述地貌负载产生的地形差则可被认为是相关地貌负载的古海拔(图6)。而沉积盆地是否处于海平面附近则可以用古气候和古环境指标来确定。

  • 目前对于海侵事件的识别主要通过生物学特征、矿物岩石学特征和地球化学特征等,其中生物学特征主要包括生物标志物、古遗迹标志等。生物标志物的存在虽然不是该地区发生海侵的决定性证据,但它的存在指向该时代水环境的发育,而最新的生物标志物研究显示,柴达木盆地的始新世地层中存在水侵入的证据,并推测可能发生海侵事件。此海侵与中亚地区始新世的副特提斯洋演化有关,在始新世柴达木盆地可能位于海平面附近(Ma Jian et al.,2022);杨婉舒等(2023)在塔西地区乌恰县贝壳山发现始新世中期(距今~46 Ma)的浅海相牡蛎化石,表明在始新世中期,塔里木盆地西部还是一片属于副特提斯洋东北缘的海湾;柴达木盆地地层的年龄模型一直存在很多争议,主要可分为年轻地层模型和年老地层模型。根据热年代学、磁地层学、地震资料等地质证据表明年轻地层模型与柴达木盆地的西北部和南部地层可能不适配(Cheng Feng et al.,2021a)。当然针对柴达木盆地新生代地层的年代学亟需进一步研究。依据年老地层模型,在始新世(约42~27 Ma)柴达木盆地发育干柴沟组(Cheng Feng et al.,2021a),而研究表明在~40 Ma时,塔西南盆地干柴沟组发生副特提斯洋海退事件(马万里,2021)。综上,推测在始新世(约42~40 Ma)柴达木盆地发生海侵事件。宋博文(2013)通过对柴达木盆地大红沟剖面下段早始新世—早中中新世地层(52.0~18.5 Ma)开展全岩地球化学,并结合黏土矿物,沉积物颜色和孢粉学的研究指出在早始新世,副特提斯残留海仍然为中国西北地区(包括柴达木盆地)提供大量的水汽来源,而从大的构造背景上看,始新世时期青藏高原早期变形程度小,地形起伏低,阿尔金断裂没有大规模发育,此时柴达木盆地和塔里木盆地具有较好的连通性,可以推断此时塔里木盆地也可能发生海侵作用。总的来说,虽然需要进一步证实,但本文认为在始新世期间柴达木盆地西部地区可能存在部分海侵。由此可见,若能定量约束柴达木盆地与周缘造山带的相对地貌差,即可定量限定青藏高原北缘地区的古海拔。Wang Lin et al.(2021)首先构建了基于此挠曲理论的高原古海拔定量模拟方法,重建了青藏高原北缘地区始新世的古地貌。利用柴达木盆地始新世沉积地层残余厚度图,Wang Lin et al.(2021)恢复了柴达木盆地新生代早期的原始盆地形态,并基于挠曲模拟模型,动态改变祁连山与东昆仑山的地貌负载形态,模拟出与柴达木盆地当时原始形态最为相似的盆山形态,进而约束当时东昆仑山与祁连山可能的古地貌。重建结果显示,始新世青藏高原北缘已存在正地形,东昆仑山和祁连山的古海拔分别为0.4~1.0 km和0.4~1.5 km,而中新世以来青藏高原北缘的构造隆升更多集中在东昆仑地区,揭示出青藏高原北缘各构造单元不协调、不等时的地表隆升过程。由此可见,青藏高原在新生代早期的古海拔相对较低,高原的整体抬升可能较晚。这一结果与近期孢粉学所揭示出的柴达木盆地于中新世开始快速抬升的结果一致(Miao Yunfa et al.,2022)。

  • 图6 海侵背景下地貌负载挠曲模拟与古海拔关系

  • Fig.6 Schematic profile showing the relationship between the flexure of the topographic load and the paleoelevation during the sea incursion

  • 3 存在问题与未来展望

  • 3.1 存在问题

  • 尽管岩石圈挠曲模拟加深了我们对于挤压背景下盆山耦合关系的认识,然而该方法尚存在多方面的不足。大多数的大陆岩石圈挠曲建模为了突出主控因素,多只考虑沉积盆地几何形态、岩石圈有效地壳厚度以及地貌负载的几何形态,而淡化了其他一些边界条件或影响因素,如俯冲板块的重量(Royden,1993)、地幔分层或板块断裂(Teson et al.,2006)、岩石圈地幔厚度的侧向变化(Garcia-Castellanos et al.,2002)、地幔对流(Davila et al.,2007)、水平外力(构造力)(Hu Xiaoyi et al.,2022)、气候变化引起的临界楔平衡状态变化(Willett et al.,2006)等。若忽略上述因素,岩石圈挠曲模拟结果与真实的造山带演化、盆地沉降观测结果存在一定差异。另外,在进行岩石圈挠曲模拟前,往往需要对挠曲盆地内沉积地层进行去压实、平衡剖面恢复等一系列过程,这些过程中必将产生一定程度的误差。因此,虽然挠曲模拟提供了一种定量分析造山带与盆地演化的研究手段,然而其误差往往较大,只能反映出相关造山带与盆地的几何形态、在岩石圈有效地壳厚度区域范围内的总体特征,而无法刻画出研究位置的具体特征。另外,由于造山带不断发展与演化,相关挠曲盆地下方岩石圈有效地壳厚度的横向变化可能对深部的平面沉降分布产生显著影响(Tarapoanca et al.,2004)。均质弹性板挠曲模型表明:岩石圈对水平构造力的响应,不仅包括弯曲,还包括该模型没有考虑的折叠和屈曲(Cloetingh et al.,2002)。

  • 3.2 未来展望

  • 如上文所述,将挠曲盆地与古环境分析结合可为重建造山带的古海拔提供关键约束。尽管Wang Lin et al.(2021)基于此理论方法已成功恢复出了东昆仑山—柴达木盆地—祁连山古近纪的古海拔,然而目前地质工作者在诸多问题上,如柴达木盆地在始新世是否处于典型的挠曲盆地(Meng Qingren et al.,2008Yin An et al.,2008Hu Xiaoyi et al.,2022)、柴达木盆地新生代地层年龄大小(Chang Hong et al.,2015Ji Junliang et al.,2017Wang Weitao et al.,20172022Fang Xiaomin et al.,2019Nie Junsheng et al.,2019)、副特提斯洋在始新世是否侵入了柴达木盆地还存在不同认识(Yin An et al.,2008Ma Jian et al.,2022)。因此还需要将此方法在那些现今或曾经发生过海水侵入的挠曲盆地中进行验证。另外,挠曲盆地中沉积地层的空间展布和地层年代需要良好的约束,而受副特提斯洋影响的塔里木盆地和台湾地区西部的前陆盆地均满足上述条件,是探究此问题的良好场所(图7)。

  • 图7 中亚地区始新世副特提斯洋分布图(据Poblete et al.,2021

  • Fig.7 Distribution of the proto-Paratethys sea in Centra Asia (after Poblete et al., 2021)

  • 需要特别指出,自岩石圈挠曲这一概念提出以来,研究工作者运用此理论成功地解决了诸多重要科学问题。然而除运用Flexit(DeCelles,2011)、TAF1(Jha et al.,2017)等极少量开源代码或程序外,绝大多数工作者需要根据岩石圈挠曲的基本定义自行编译相关代码从而开展挠曲模拟实验。虽然部分代码与软件可以下载,然而编译环境的不同以及各自对相关问题理解的差异,极大地影响了该方法更为广泛的应用。鉴于挠曲模拟是构造地质学、大陆动力学研究中重要的研究方法,地质工作者亟需设计并共享一款全面的、界面友好、易操作、开源的挠曲模拟软件。该软件的开发与共享不仅能极大程度地推广挠曲模拟研究方法,同时也能促进盆山耦合相关领域研究的不断发展。

  • 致谢:本文相关工作得益于肖文交院士、韩宝福教授、陈汉林教授的指导,感谢编辑部与两位匿名审稿人的宝贵意见,在此一并致谢。

  • 参考文献

    • Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. New York: John Wiley & Sons.

    • Angrand P, Ford M, Watts A B. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine basin (SW France). Tectonics, 37(2): 430~449.

    • Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Caves Rugenstein J K. 2019. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 363(6430): 1436.

    • Boutelier D, Gagnon L, Johnston S, Cruden A. 2019. Buckling of orogens: Insights from analogue modelling. Journal of Structural Geology, 125: 213~217.

    • Braitenberg C, Wang Y, Fang J, Hsu H. 2003. Spatial variations of flexure parameters over the Tibet-Quinghai plateau. Earth and Planetary Science Letters, 205(3): 211~224.

    • Brook E J, Brown E T, Kurz M D, Ackert Jr R P, Raisbeck G M, Yiou F. 1995. Constraints on age, erosion, and uplift of Neogene glacial deposits in the transantarctic mountains determined from in situ cosmogenic 10Be and 26Al. Geology, 23(12): 1063~1066.

    • Chang Hong, Li Leyi, Qiang Xiaoke, Garzione C N, Pullen A, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.

    • Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2016. Source to sink relation between the Eastern Kunlun Range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Bulletin, 128(1-2): 258~283.

    • Cheng Feng, Jolivet M, Hallot E, Zhang Daowei, Zhang Changhao, Guo Zhaojie. 2017. Tectono-magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Research, 49: 248~263.

    • Cheng Feng, Garzione C N, Jolivet M, Li Xiangzhong, Salzmann U, Schwarz F, Haywood A M. 2019. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam basin. Tectonics, 38(2): 741~766.

    • Cheng Feng, Jolivet M, Guo Zhaojie, Wang Lin, Zhang Changhao, Li Xiangzhong. 2021a. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan Plateau: A review. Earth-Science Reviews, 220: 103730.

    • Cheng Feng, Wang Lin, Guo Zhaojie. 2021b. Flexural modeling reveals along-strike variable rigidity of the Junggar terrane. Central Asian Orogenic Belt (CAOB). AGU Fall Meeting Abstracts, T52B~03.

    • Cheng Feng, Garzione C, Li Xiangzhong, Salzmann U, Schwarz F, Haywood A M, Tindall J, Nie J, Lin Li, Lin Wang, Abbott B W, Elliott B, Liu Weiguo, Upadhyay D, Arnold A, Tripati A. 2022. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 13(1): 1329.

    • Cloetingh S, Marzo M, Munoz J, Verges A. 2002. Tectonics of sedimentary basins: From crustal structure to basin fill. Tectonophysics, 340: 1~135.

    • Curry M E, vander Beek P, Huismans R S, Wolf S G, Muñoz J A. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters, 515: 26~37.

    • Dávila F M, Astini R A, Jordan T E, Gehrels G, Ezpeleta M. 2007. Miocene forebulge development previous to broken foreland partitioning in the southern Central Andes, west-central Argentina. Tectonics: 26(5): TC5016.

    • DeCelles P G. 2011. Foreland basin systems revisited: Variations in response to tectonic settings. In: Tectonics of Sedimentary Basins: Recent Advances. Wiley Online Library, 405~426.

    • DeCelles P G, Giles K. 1996. Foreland basin systems. Basin Research, 8: 105~123.

    • Ding Lin, Xu Qiang, Yue Yahui, Wang Houqi, Cai Fulong, Li Shun. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou basin. Earth and Planetary Science Letters, 392: 250~264.

    • Ding Lin, Kapp P, Cai Fulong, Garzione C N, Xiong Zhongyu, Wang Houqi, Wang Chao. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3(10): 652~667.

    • Doucouré C M, de Wit M J, Mushayandebvu M F. 1996. Effective elastic thickness of the continental lithosphere in South Africa. Journal of Geophysical Research: Solid Earth, 101(B5): 11291~11303.

    • Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining basin. Geology, 36(12): 987~990.

    • Ehlers T A, Poulsen C J. 2009. Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters, 281(3-4): 238~248.

    • Fang Xiaomin, Galy A, Yang Yibo, Zhang Weilin, Ye Chengcheng, Song Chunhui. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47(10): 992~996.

    • Flemings P B, Jordan T E. 1989. A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research: Solid Earth, 94(B4): 3851~3866.

    • Garcia-Castellanos D, Fernandez M, Torné M. 2002. Modeling the evolution of the Guadalquivir foreland basin (southern Spain). Tectonics, 21(3): 1~9.

    • Garzione C N, Hoke G D, Libarkin J C, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A. 2008. Rise of the Andes. Science, 320(5881): 1304~1307.

    • Guo Zhaojie, Yin An, Robinson A, Jia Chengzao. 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. Journal of Asian Earth Sciences, 25(1): 45~56.

    • Hu Xiaoyi, Wu Lei, Zhang Yongshu, Zhang Junyong, Wang Chuanwu, Tang Jianchao, Xiao Ancheng, Chen Hanlin, Yang Shufeng. 2022. Multiscale lithospheric buckling dominates the Cenozoic subsidence and deformation of the Qaidam basin: A new model for the growth of the northern Tibetan Plateau. Earth-Science Reviews, 234: 104201.

    • Jha S, Harry D L, Schutt D L. 2017. Toolbox for analysis of flexural isostasy (TAFI)—A MATLAB toolbox for modeling flexural deformation of the lithosphere. Geosphere, 13(5): 1555~1565.

    • Ji Junliang, Zhang Kexin, Clift P D, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.

    • Jordan T E. 1981. Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bulletin, 65(12): 2506~2520.

    • Kaya M Y, Dupont-Nivet G, Proust J N, Roperch P, Bougeois L, Meijer N, Guo Zhaojie. 2019. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma. Basin Research, 31(3): 461~486.

    • Li Dewei, Xia Yiping, Xu Ligui. 2009. Basin-mountain coupling and basin-mountain genesis within the continental plate——An example from the Qinghai-Tibet plateau and surrounding basins. Geological Frontiers, 16(3): 110~119(in Chinese with English abstract).

    • Li Jiliang, Xiao Wenjiao, Yan Zhen. 2003. Basin-mountain coupling and sedimentation. Journal of Sedimentology, 21(1): 52~60(in Chinese with English abstract).

    • Li Lin, Garzione C N. 2017. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction. Earth and Planetary Science Letters, 460: 302~314.

    • Li Yong, Wang Chengshan, Zeng Yunfu. 2000. Mountain building and sedimentary response. Mineral Rocks, 20(2): 49~56(in Chinese with English abstract).

    • Li Zhiyang, Aschoff J. 2023. Location, extent, and magnitude of dynamic topography in the Late Cretaceous Cordilleran Foreland Basin, USA: New insights from 3D flexural backstripping. Basin Research, 35(1): 120~140.

    • Licht A, Van Cappelle M, Abels H, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519): 501~506.

    • Lin A T, Watts A B. 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9): ETG~2.

    • Liu Chiyang, Zhao Hongge, Yang Xingke, Wang Feng. 2002. Foreland basins and their identification and study. Petroleum and Natural Gas Geology, 4: 307~313(in Chinese with English abstract).

    • Liu Hefu. 2001. Basin-mountain coupled system and geodynamic mechanism. Earth Science, (6): 581~596(in Chinese with English abstract).

    • Ma Jian, Wu Chaodong, Uveges B T, Ding Weiming, Summons R E, Cui Xingqian. 2022. Biomarkers reveal Eocene marine incursions into the Qaidam basin, north Tibetan Plateau. Organic Geochemistry, 166: 104380.

    • Ma Wanli. Geochemical characteristics and paleoenvironmental and paleoclimatic significance of the mudstones of the Upper Ganchagou Formation on the northwestern margin of the Qaidam basin. 2021. Master's thesis of Lanzhou University(in Chinese with English abstract).

    • Ma Xintao, Ding Jianjian, Abulimiti Yiming, Liu Hailei, Zhao Longmei. 2023. Mechanisms of influence of marine intrusion events on hydrocarbon source rock development in terrestrial lake basins. Frontiers in Marine Geology, 39(2): 28~37(in Chinese with English abstract).

    • McElwain J C. 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology, 32(12): 1017~1020.

    • Meng Qingren, Fang Xiang. 2008. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Geological Society of America Special Paper, 444: 1~24.

    • Miao Yunfa, Fang Xiaomin, Sun Jimin, Xiao Wenjiao, Yang Yongheng, Wang Xuelian, Utescher T. 2022. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau. Science, 378(6624): 1074~1079.

    • Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4): 357~396.

    • Naylor M, Sinclair H D. 2008. Pro-vs. retro-foreland basins. Basin Research, 20(3): 285~303.

    • Nie Junsheng, Ren Xueping, Saylor J E, Su Qingda, Horton B K, Bush M A, Chen Wenhan, Pfaff K. 2019. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2): 310~320.

    • Poblete F, Dupont-Nivet G, Licht A, van Hinsbergen D J J, Roperch P, Mihalynuk M G, Johnston S T, Guillocheau F, Baby G, Fluteau F, Robin C, van der Linden T J M, Ruiz D, Baatsen M L J. 2021. Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma. Earth-Science Reviews, 214: 103508.

    • Quade J, Leary M, Dettinger M P, Orme D, Krupa A, DeCelles P G, Kano A, Kato H, Waldrip R, Huang W, Kapp P. 2020. Resetting southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry. Global and Planetary Change, 191: 103194.

    • Ren Jishun. 1984. The indo-china movement and its significance in the tectonic evolution of the Chinese continent. Journal of the Chinese Academy of Geological Sciences, 9: 31~42(in Chinese with English abstract).

    • Rowley D B, Garzione C N. 2007. Stable isotope-based paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35: 463~508.

    • Royden L H. 1993. The tectonic expression slab pull at continental convergent boundaries. Tectonics, 12(2): 303~325.

    • Sahagian D L, Maus J E. 1994. Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation. Nature, 372(6505): 449~451.

    • Saura E, Garcia-Castellanos D, Casciello E, Parravano V, Urruela A, Vergés J. 2015. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq). Tectonics, 34(3): 377~395.

    • Saylor J E, Jordan J C, Sundell K E, Wang Xiaoming, Wang Shiqi, Deng Tao. 2018. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Research, 30(3): 544~563.

    • Song Bowen. 2013. Early Eocene-Pliocene environmental evolution and biota of the northern margin of the Qaidam basin. Doctoral dissertation of China University of Geosciences(in Chinese with English abstract).

    • Spicer R A, Harris N B, Widdowson M, HermanA B, Guo Shuangxing, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421(6923): 622~624.

    • Tǎrǎpoancǎ M, Garcia-Castellanos D, Bertotti G, Matenco L, Cloetingh S A P L, Dinu C. 2004. Role of the 3-D distributions of load and lithospheric strength in orogenic arcs: Polystage subsidence in the Carpathians foredeep. Earth and Planetary Science Letters, 221(1-4): 163~180.

    • Teson E, Teixell A, Ayarza P, Arboleya M L, Alvarez-Lobato F, Garc1a-Castellanos D, Amrhar M. 2006. Geometry and evolution of the Ouarzazate basin in the foreland of the High Atlas Mountains (Morocco). Geophysical Research Abstracts, 8: 01253.

    • Tikoff B, Siddoway C, Sokoutis D, Willingshofer E. 2022. The lithospheric folding model applied to the Bighorn uplift during the Laramide orogeny. Geological Society of America, 555: 221~239.

    • Turcotte D L, Schubert G. 1982. Applications of continuum physics to geological problems. AGU, 64(11): 106~107.

    • Wang Hongzhen. 1986. On the delineation of the Precambrian geological age and chronost-ratigraphy in China. Earth Science, 5: 447~453(in Chinese with English abstract).

    • Wang Lin, Cheng Feng, Zuza A V, Jolivet M, Liu Yiduo, Guo Zhaojie, Li Xiangzhong, Zhang Chaohao. 2021. Diachronous growth of the northern Tibetan Plateau derived from flexural modeling. Geophysical Research Letters, 48(8): e2020GL092346.

    • Wang Qingchen, Li Zhong. 2003. Basin-mountain coupling and sedimentary basin genesis. Journal of Sedimentology, 21(1): 24~30(in Chinese with English abstract).

    • Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby E, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8: 15887.

    • Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.

    • Watts A, Bodine J, Steckler M. 1980. Observations of flexure and the state of stress in the oceanic lithosphere. Journal of Geophysical Research: Solid Earth, 85(B11): 6369~6376.

    • Willett S D, Schlunegger F, Picotti V. 2006. Messinian climate change and erosional destruction of the central European Alps. Geology, 34(8): 613~616.

    • Wu Fuli, Fang Xiaomin, Yang Yibo, Dupont-Nivet G, Nie Junsheng, Fluteau F, Zhang Tao, Han Wenxia. 2022. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3: 684~700.

    • Wu Qingfu. 1986. Tectonic evolution and hydrocarbon-bearing prospects in the Junggar basin. Xinjiang Geology, 4(3): 1~19(in Chinese with English abstract).

    • Xiong Xiong, Wang Yingjie, Li Yongdong. 2022. A study of the strength of the continental lithosphere. Geodesy and Geodynamics, 42(5): 441~450(in Chinese with English abstract).

    • Xu Xi, Zuza A V, Yin An, Lin Xiubin, Chen Hanlin, Yang Shufeng. 2021. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49(1): 96~100.

    • Yang Wanshu, Xiong Xin, Xi Dangpeng, Wan Xiaoqiao. 2023. The Shell Mountains of Ucha County: A witness to the vicissitudes of the western Tarim basin. Journal of Nature, 45(2): 148~154(in Chinese with English abstract).

    • Yang Xusong, Tian Xiaobao, Windley B F, Zhao Liang, Lu Yifan, Yuan Huaiyu, Xiao Wenjiao. 2022. The role of multiple trapped oceanic basins in continental growth: Seismic evidence from the southern Altaids. Geophysical Research Letters, 49(11): e2022GL098548.

    • Yin An, Dang Yuqi, Zhang Min, Chen Xuanhua, McRivette M W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7-8): 847~876.

    • Zhang Mingli, Jin Zhijun, Tang Liangjie, Liu Guolin. 2002. Review and prospects of foreland basin research. Geological Review, 48(2): 214~220(in Chinese with English abstract).

    • Zhang Yuanqing, Qian Xianglin. 2001. Concept and mechanism of basin-mountain coupling. Geology of China, 3: 47(in Chinese with English abstract).

    • Zhu Xiaosan, Wang Tao, Huang He, Zheng Hongwei. 2022. An aeromagnetic study of fault structures underneath the region across the Chinese Altai orogen, Junggar basin, Tianshan orogen, and Tarim basin. Journal of Asian Earth Sciences, 239: 105418.

    • 李德威, 夏义平, 徐礼贵. 2009. 大陆板内盆山耦合及盆山成因——以青藏高原及周边盆地为例. 地学前缘, 16(3): 110~119.

    • 李继亮, 肖文交, 闫臻. 2003. 盆山耦合与沉积作用. 沉积学报, 21(1): 52~60.

    • 李勇, 王成善, 曾允孚. 2000. 造山作用与沉积响应. 矿物岩石, 20(2): 49~56.

    • 刘池洋, 赵红格, 杨兴科, 王锋. 2002. 前陆盆地及其确定和研究. 石油与天然气地质, 4: 307~313.

    • 刘和甫. 2001. 盆地-山岭耦合体系与地球动力学机制. 地球科学, (6): 581~596.

    • 马万里. 2021. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义. 兰州大学硕士学位论文.

    • 马新涛, 丁修建, 阿布力米提·依明, 刘海磊, 赵龙梅. 2023. 陆相湖盆海侵事件对烃源岩发育影响机制. 海洋地质前沿, 39(2): 28~37.

    • 任纪舜. 1984. 印支运动及其在中国大陆构造演化中的意义. 中国地质科学院院报, 9: 31~42.

    • 宋博文. 2013. 柴达木盆地北缘早始新世—上新世环境演变及生物群研究. 中国地质大学博士学位论文.

    • 王鸿祯. 1986. 论中国前寒武纪地质时代及年代地层的划分. 地球科学, 5: 447~453.

    • 王清晨, 李忠. 2003. 盆山耦合与沉积盆地成因. 沉积学报, 21(1): 24~30.

    • 吴庆福. 1986. 准噶尔盆地构造演化及含油气远景. 新疆地质, 4(3): 1~19.

    • 熊熊, 王英杰, 李永东. 2022. 大陆岩石圈强度研究. 大地测量与地球动力学, 42(5): 441~450.

    • 杨婉舒, 熊昕, 席党鹏, 万晓樵. 2023. 乌恰县贝壳山: 塔里木盆地西部沧海桑田的见证者. 自然杂志, 45(2): 148~154.

    • 张明利, 金之钧, 汤良杰, 刘国林. 2002. 前陆盆地研究的回顾与展望. 地质论评, 48(2): 214~220.

    • 张原庆, 钱祥麟. 2001. 盆山耦合概念及机制. 中国地质, 3: 47.

  • 参考文献

    • Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. New York: John Wiley & Sons.

    • Angrand P, Ford M, Watts A B. 2018. Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine basin (SW France). Tectonics, 37(2): 430~449.

    • Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Caves Rugenstein J K. 2019. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 363(6430): 1436.

    • Boutelier D, Gagnon L, Johnston S, Cruden A. 2019. Buckling of orogens: Insights from analogue modelling. Journal of Structural Geology, 125: 213~217.

    • Braitenberg C, Wang Y, Fang J, Hsu H. 2003. Spatial variations of flexure parameters over the Tibet-Quinghai plateau. Earth and Planetary Science Letters, 205(3): 211~224.

    • Brook E J, Brown E T, Kurz M D, Ackert Jr R P, Raisbeck G M, Yiou F. 1995. Constraints on age, erosion, and uplift of Neogene glacial deposits in the transantarctic mountains determined from in situ cosmogenic 10Be and 26Al. Geology, 23(12): 1063~1066.

    • Chang Hong, Li Leyi, Qiang Xiaoke, Garzione C N, Pullen A, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.

    • Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2016. Source to sink relation between the Eastern Kunlun Range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Bulletin, 128(1-2): 258~283.

    • Cheng Feng, Jolivet M, Hallot E, Zhang Daowei, Zhang Changhao, Guo Zhaojie. 2017. Tectono-magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Research, 49: 248~263.

    • Cheng Feng, Garzione C N, Jolivet M, Li Xiangzhong, Salzmann U, Schwarz F, Haywood A M. 2019. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam basin. Tectonics, 38(2): 741~766.

    • Cheng Feng, Jolivet M, Guo Zhaojie, Wang Lin, Zhang Changhao, Li Xiangzhong. 2021a. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan Plateau: A review. Earth-Science Reviews, 220: 103730.

    • Cheng Feng, Wang Lin, Guo Zhaojie. 2021b. Flexural modeling reveals along-strike variable rigidity of the Junggar terrane. Central Asian Orogenic Belt (CAOB). AGU Fall Meeting Abstracts, T52B~03.

    • Cheng Feng, Garzione C, Li Xiangzhong, Salzmann U, Schwarz F, Haywood A M, Tindall J, Nie J, Lin Li, Lin Wang, Abbott B W, Elliott B, Liu Weiguo, Upadhyay D, Arnold A, Tripati A. 2022. Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 13(1): 1329.

    • Cloetingh S, Marzo M, Munoz J, Verges A. 2002. Tectonics of sedimentary basins: From crustal structure to basin fill. Tectonophysics, 340: 1~135.

    • Curry M E, vander Beek P, Huismans R S, Wolf S G, Muñoz J A. 2019. Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters, 515: 26~37.

    • Dávila F M, Astini R A, Jordan T E, Gehrels G, Ezpeleta M. 2007. Miocene forebulge development previous to broken foreland partitioning in the southern Central Andes, west-central Argentina. Tectonics: 26(5): TC5016.

    • DeCelles P G. 2011. Foreland basin systems revisited: Variations in response to tectonic settings. In: Tectonics of Sedimentary Basins: Recent Advances. Wiley Online Library, 405~426.

    • DeCelles P G, Giles K. 1996. Foreland basin systems. Basin Research, 8: 105~123.

    • Ding Lin, Xu Qiang, Yue Yahui, Wang Houqi, Cai Fulong, Li Shun. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou basin. Earth and Planetary Science Letters, 392: 250~264.

    • Ding Lin, Kapp P, Cai Fulong, Garzione C N, Xiong Zhongyu, Wang Houqi, Wang Chao. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3(10): 652~667.

    • Doucouré C M, de Wit M J, Mushayandebvu M F. 1996. Effective elastic thickness of the continental lithosphere in South Africa. Journal of Geophysical Research: Solid Earth, 101(B5): 11291~11303.

    • Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining basin. Geology, 36(12): 987~990.

    • Ehlers T A, Poulsen C J. 2009. Influence of Andean uplift on climate and paleoaltimetry estimates. Earth and Planetary Science Letters, 281(3-4): 238~248.

    • Fang Xiaomin, Galy A, Yang Yibo, Zhang Weilin, Ye Chengcheng, Song Chunhui. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47(10): 992~996.

    • Flemings P B, Jordan T E. 1989. A synthetic stratigraphic model of foreland basin development. Journal of Geophysical Research: Solid Earth, 94(B4): 3851~3866.

    • Garcia-Castellanos D, Fernandez M, Torné M. 2002. Modeling the evolution of the Guadalquivir foreland basin (southern Spain). Tectonics, 21(3): 1~9.

    • Garzione C N, Hoke G D, Libarkin J C, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A. 2008. Rise of the Andes. Science, 320(5881): 1304~1307.

    • Guo Zhaojie, Yin An, Robinson A, Jia Chengzao. 2005. Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin. Journal of Asian Earth Sciences, 25(1): 45~56.

    • Hu Xiaoyi, Wu Lei, Zhang Yongshu, Zhang Junyong, Wang Chuanwu, Tang Jianchao, Xiao Ancheng, Chen Hanlin, Yang Shufeng. 2022. Multiscale lithospheric buckling dominates the Cenozoic subsidence and deformation of the Qaidam basin: A new model for the growth of the northern Tibetan Plateau. Earth-Science Reviews, 234: 104201.

    • Jha S, Harry D L, Schutt D L. 2017. Toolbox for analysis of flexural isostasy (TAFI)—A MATLAB toolbox for modeling flexural deformation of the lithosphere. Geosphere, 13(5): 1555~1565.

    • Ji Junliang, Zhang Kexin, Clift P D, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.

    • Jordan T E. 1981. Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bulletin, 65(12): 2506~2520.

    • Kaya M Y, Dupont-Nivet G, Proust J N, Roperch P, Bougeois L, Meijer N, Guo Zhaojie. 2019. Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma. Basin Research, 31(3): 461~486.

    • Li Dewei, Xia Yiping, Xu Ligui. 2009. Basin-mountain coupling and basin-mountain genesis within the continental plate——An example from the Qinghai-Tibet plateau and surrounding basins. Geological Frontiers, 16(3): 110~119(in Chinese with English abstract).

    • Li Jiliang, Xiao Wenjiao, Yan Zhen. 2003. Basin-mountain coupling and sedimentation. Journal of Sedimentology, 21(1): 52~60(in Chinese with English abstract).

    • Li Lin, Garzione C N. 2017. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction. Earth and Planetary Science Letters, 460: 302~314.

    • Li Yong, Wang Chengshan, Zeng Yunfu. 2000. Mountain building and sedimentary response. Mineral Rocks, 20(2): 49~56(in Chinese with English abstract).

    • Li Zhiyang, Aschoff J. 2023. Location, extent, and magnitude of dynamic topography in the Late Cretaceous Cordilleran Foreland Basin, USA: New insights from 3D flexural backstripping. Basin Research, 35(1): 120~140.

    • Licht A, Van Cappelle M, Abels H, Ladant J B, Trabucho-Alexandre J, France-Lanord C, Donnadieu Y, Vandenberghe J, Rigaudier T, Lécuyer C. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513(7519): 501~506.

    • Lin A T, Watts A B. 2002. Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9): ETG~2.

    • Liu Chiyang, Zhao Hongge, Yang Xingke, Wang Feng. 2002. Foreland basins and their identification and study. Petroleum and Natural Gas Geology, 4: 307~313(in Chinese with English abstract).

    • Liu Hefu. 2001. Basin-mountain coupled system and geodynamic mechanism. Earth Science, (6): 581~596(in Chinese with English abstract).

    • Ma Jian, Wu Chaodong, Uveges B T, Ding Weiming, Summons R E, Cui Xingqian. 2022. Biomarkers reveal Eocene marine incursions into the Qaidam basin, north Tibetan Plateau. Organic Geochemistry, 166: 104380.

    • Ma Wanli. Geochemical characteristics and paleoenvironmental and paleoclimatic significance of the mudstones of the Upper Ganchagou Formation on the northwestern margin of the Qaidam basin. 2021. Master's thesis of Lanzhou University(in Chinese with English abstract).

    • Ma Xintao, Ding Jianjian, Abulimiti Yiming, Liu Hailei, Zhao Longmei. 2023. Mechanisms of influence of marine intrusion events on hydrocarbon source rock development in terrestrial lake basins. Frontiers in Marine Geology, 39(2): 28~37(in Chinese with English abstract).

    • McElwain J C. 2004. Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure. Geology, 32(12): 1017~1020.

    • Meng Qingren, Fang Xiang. 2008. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Geological Society of America Special Paper, 444: 1~24.

    • Miao Yunfa, Fang Xiaomin, Sun Jimin, Xiao Wenjiao, Yang Yongheng, Wang Xuelian, Utescher T. 2022. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau. Science, 378(6624): 1074~1079.

    • Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4): 357~396.

    • Naylor M, Sinclair H D. 2008. Pro-vs. retro-foreland basins. Basin Research, 20(3): 285~303.

    • Nie Junsheng, Ren Xueping, Saylor J E, Su Qingda, Horton B K, Bush M A, Chen Wenhan, Pfaff K. 2019. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2): 310~320.

    • Poblete F, Dupont-Nivet G, Licht A, van Hinsbergen D J J, Roperch P, Mihalynuk M G, Johnston S T, Guillocheau F, Baby G, Fluteau F, Robin C, van der Linden T J M, Ruiz D, Baatsen M L J. 2021. Towards interactive global paleogeographic maps, new reconstructions at 60, 40 and 20 Ma. Earth-Science Reviews, 214: 103508.

    • Quade J, Leary M, Dettinger M P, Orme D, Krupa A, DeCelles P G, Kano A, Kato H, Waldrip R, Huang W, Kapp P. 2020. Resetting southern Tibet: The serious challenge of obtaining primary records of Paleoaltimetry. Global and Planetary Change, 191: 103194.

    • Ren Jishun. 1984. The indo-china movement and its significance in the tectonic evolution of the Chinese continent. Journal of the Chinese Academy of Geological Sciences, 9: 31~42(in Chinese with English abstract).

    • Rowley D B, Garzione C N. 2007. Stable isotope-based paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35: 463~508.

    • Royden L H. 1993. The tectonic expression slab pull at continental convergent boundaries. Tectonics, 12(2): 303~325.

    • Sahagian D L, Maus J E. 1994. Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation. Nature, 372(6505): 449~451.

    • Saura E, Garcia-Castellanos D, Casciello E, Parravano V, Urruela A, Vergés J. 2015. Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq). Tectonics, 34(3): 377~395.

    • Saylor J E, Jordan J C, Sundell K E, Wang Xiaoming, Wang Shiqi, Deng Tao. 2018. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Research, 30(3): 544~563.

    • Song Bowen. 2013. Early Eocene-Pliocene environmental evolution and biota of the northern margin of the Qaidam basin. Doctoral dissertation of China University of Geosciences(in Chinese with English abstract).

    • Spicer R A, Harris N B, Widdowson M, HermanA B, Guo Shuangxing, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421(6923): 622~624.

    • Tǎrǎpoancǎ M, Garcia-Castellanos D, Bertotti G, Matenco L, Cloetingh S A P L, Dinu C. 2004. Role of the 3-D distributions of load and lithospheric strength in orogenic arcs: Polystage subsidence in the Carpathians foredeep. Earth and Planetary Science Letters, 221(1-4): 163~180.

    • Teson E, Teixell A, Ayarza P, Arboleya M L, Alvarez-Lobato F, Garc1a-Castellanos D, Amrhar M. 2006. Geometry and evolution of the Ouarzazate basin in the foreland of the High Atlas Mountains (Morocco). Geophysical Research Abstracts, 8: 01253.

    • Tikoff B, Siddoway C, Sokoutis D, Willingshofer E. 2022. The lithospheric folding model applied to the Bighorn uplift during the Laramide orogeny. Geological Society of America, 555: 221~239.

    • Turcotte D L, Schubert G. 1982. Applications of continuum physics to geological problems. AGU, 64(11): 106~107.

    • Wang Hongzhen. 1986. On the delineation of the Precambrian geological age and chronost-ratigraphy in China. Earth Science, 5: 447~453(in Chinese with English abstract).

    • Wang Lin, Cheng Feng, Zuza A V, Jolivet M, Liu Yiduo, Guo Zhaojie, Li Xiangzhong, Zhang Chaohao. 2021. Diachronous growth of the northern Tibetan Plateau derived from flexural modeling. Geophysical Research Letters, 48(8): e2020GL092346.

    • Wang Qingchen, Li Zhong. 2003. Basin-mountain coupling and sedimentary basin genesis. Journal of Sedimentology, 21(1): 24~30(in Chinese with English abstract).

    • Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby E, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8: 15887.

    • Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.

    • Watts A, Bodine J, Steckler M. 1980. Observations of flexure and the state of stress in the oceanic lithosphere. Journal of Geophysical Research: Solid Earth, 85(B11): 6369~6376.

    • Willett S D, Schlunegger F, Picotti V. 2006. Messinian climate change and erosional destruction of the central European Alps. Geology, 34(8): 613~616.

    • Wu Fuli, Fang Xiaomin, Yang Yibo, Dupont-Nivet G, Nie Junsheng, Fluteau F, Zhang Tao, Han Wenxia. 2022. Reorganization of Asian climate in relation to Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3: 684~700.

    • Wu Qingfu. 1986. Tectonic evolution and hydrocarbon-bearing prospects in the Junggar basin. Xinjiang Geology, 4(3): 1~19(in Chinese with English abstract).

    • Xiong Xiong, Wang Yingjie, Li Yongdong. 2022. A study of the strength of the continental lithosphere. Geodesy and Geodynamics, 42(5): 441~450(in Chinese with English abstract).

    • Xu Xi, Zuza A V, Yin An, Lin Xiubin, Chen Hanlin, Yang Shufeng. 2021. Permian plume-strengthened Tarim lithosphere controls the Cenozoic deformation pattern of the Himalayan-Tibetan orogen. Geology, 49(1): 96~100.

    • Yang Wanshu, Xiong Xin, Xi Dangpeng, Wan Xiaoqiao. 2023. The Shell Mountains of Ucha County: A witness to the vicissitudes of the western Tarim basin. Journal of Nature, 45(2): 148~154(in Chinese with English abstract).

    • Yang Xusong, Tian Xiaobao, Windley B F, Zhao Liang, Lu Yifan, Yuan Huaiyu, Xiao Wenjiao. 2022. The role of multiple trapped oceanic basins in continental growth: Seismic evidence from the southern Altaids. Geophysical Research Letters, 49(11): e2022GL098548.

    • Yin An, Dang Yuqi, Zhang Min, Chen Xuanhua, McRivette M W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7-8): 847~876.

    • Zhang Mingli, Jin Zhijun, Tang Liangjie, Liu Guolin. 2002. Review and prospects of foreland basin research. Geological Review, 48(2): 214~220(in Chinese with English abstract).

    • Zhang Yuanqing, Qian Xianglin. 2001. Concept and mechanism of basin-mountain coupling. Geology of China, 3: 47(in Chinese with English abstract).

    • Zhu Xiaosan, Wang Tao, Huang He, Zheng Hongwei. 2022. An aeromagnetic study of fault structures underneath the region across the Chinese Altai orogen, Junggar basin, Tianshan orogen, and Tarim basin. Journal of Asian Earth Sciences, 239: 105418.

    • 李德威, 夏义平, 徐礼贵. 2009. 大陆板内盆山耦合及盆山成因——以青藏高原及周边盆地为例. 地学前缘, 16(3): 110~119.

    • 李继亮, 肖文交, 闫臻. 2003. 盆山耦合与沉积作用. 沉积学报, 21(1): 52~60.

    • 李勇, 王成善, 曾允孚. 2000. 造山作用与沉积响应. 矿物岩石, 20(2): 49~56.

    • 刘池洋, 赵红格, 杨兴科, 王锋. 2002. 前陆盆地及其确定和研究. 石油与天然气地质, 4: 307~313.

    • 刘和甫. 2001. 盆地-山岭耦合体系与地球动力学机制. 地球科学, (6): 581~596.

    • 马万里. 2021. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义. 兰州大学硕士学位论文.

    • 马新涛, 丁修建, 阿布力米提·依明, 刘海磊, 赵龙梅. 2023. 陆相湖盆海侵事件对烃源岩发育影响机制. 海洋地质前沿, 39(2): 28~37.

    • 任纪舜. 1984. 印支运动及其在中国大陆构造演化中的意义. 中国地质科学院院报, 9: 31~42.

    • 宋博文. 2013. 柴达木盆地北缘早始新世—上新世环境演变及生物群研究. 中国地质大学博士学位论文.

    • 王鸿祯. 1986. 论中国前寒武纪地质时代及年代地层的划分. 地球科学, 5: 447~453.

    • 王清晨, 李忠. 2003. 盆山耦合与沉积盆地成因. 沉积学报, 21(1): 24~30.

    • 吴庆福. 1986. 准噶尔盆地构造演化及含油气远景. 新疆地质, 4(3): 1~19.

    • 熊熊, 王英杰, 李永东. 2022. 大陆岩石圈强度研究. 大地测量与地球动力学, 42(5): 441~450.

    • 杨婉舒, 熊昕, 席党鹏, 万晓樵. 2023. 乌恰县贝壳山: 塔里木盆地西部沧海桑田的见证者. 自然杂志, 45(2): 148~154.

    • 张明利, 金之钧, 汤良杰, 刘国林. 2002. 前陆盆地研究的回顾与展望. 地质论评, 48(2): 214~220.

    • 张原庆, 钱祥麟. 2001. 盆山耦合概念及机制. 中国地质, 3: 47.