en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张永双,男,1968年生。教授,博士,博士生导师,主要从事工程地质与地质灾害研究和教学工作。E-mail:zhys100@cugb.edu.cn。

参考文献
Bai Ling, Song Bowen, Li Guohui, Jiang Yong, Dhakal S. 2019. Seismic activity in the Himalayan Orogenic Belt and its related geohazards. Progress in Earth Science, 34(6): 629~639 (in Chinese with English abstract).
参考文献
Chen Jie, Li Tao, Li Wenqiao, Yuan Zhaode. 2011. Late Cenozoic and present tectonic deformation in the Pamir salient, northwestern China. Seismic Geology, 33(2): 241~259 (in Chinese with English abstract).
参考文献
Dortch J M, Owen L A, Haneberg W C, Caffee M W, Dietsch C, Kamp U. 2009. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews, 28(11-12): 1037~1054.
参考文献
Du Guoliang, Zhang Yongshuang, Yang Zhihua, Iqbal J, Tong Bin, Guo Changbao, Yao Xin, Wu Ruian. 2017. Estimation of seismic landslide hazard in the eastern Himalayan syntaxis region of Tibetan Plateau. Acta Geologica Sinica (English Edition), 91(2): 658~668.
参考文献
Dunning S A, Mitchell W A, Rosser N J, Petley D N. 2007. The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Engineering Geology, 93(3-4): 130~144.
参考文献
Fan Xuanmei, Fang Chengyong, Dai Lanxin, Wang Xin, Luo Yonghong, Wei Tao, Wang Yunsheng. 2022. Near real time prediction of spatial distribution probability of earthquake induced landslides—Take the Lushan Earthquake on June 1, 2022 as an example. Journal of Engineering Geology, 30(3): 729~739 (in Chinese with English abstract).
参考文献
Hewitt K. 1999. Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research, 51(3): 220~237.
参考文献
Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record, 1411: 9~17.
参考文献
Jibson R W. 2011. Methods for assessing the stability of slopes during earthquakes—A retrospective. Engineering Geology, 122: 43~50.
参考文献
Jibson R W. 2014. Mapping seismic landslide hazards in Anchorage, Alaska. Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, AK, USA, 21~25.
参考文献
Jibson R W, Harp E L, Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3-4): 271~289.
参考文献
Keefer D K. 1984. Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4): 406~421.
参考文献
Keefer D K. 2002. Investigating landslides caused by earthquakes—A historical review. Surveys in Geophysics, 23(6): 473~510.
参考文献
Li Ning, Zhao Qiang, Sun He. 2018. InSAR observation results of the 2015 Tajikistan MS 7. 4 earthquake and its tectonic significance. Geodesy and Geodynamics, 38(1): 43~47 (in Chinese with English abstract).
参考文献
Li Wenqiao. 2013. Active structures and strong earthquakes in the Tashkurgan valley in the northeast of the Pamir Plateau. Doctoral dissertation of Institute of Geology, China Seismological Bureau (in Chinese with English abstract).
参考文献
Newmark N M. 1965. Effects of earthquakes on dams and embankments. Geotechnique, 15(2): 139~160.
参考文献
Rodríguez-Peces M J, García-Mayordomo J, Azañón J M, Jabaloy A. 2014. GIS application for regional assessment of seismically induced slope failures in the Sierra Nevada Range, South Spain, along the Padul fault. Environmental Earth Sciences, 72(7): 2423~2435.
参考文献
Schuster R L, Alford D. 2004. Usoi landslide dam and Lake Sarez, Pamir Mountains, Tajikistan. Environmental and Engineering Geoscience, 10(2): 151~168.
参考文献
Shi Anwen, Wang Yufeng, Cheng Qiangong, Lin Qiwen, Li Tianhua, Wünnemann B. 2023. The largest rock avalanche in China at Iymek, Eastern Pamir, and its spectacular emplacement landscape. Geomorphology, 421: 108521.
参考文献
Sidorin A Y. 2020. On the 70th anniversary of the 1949 Khait earthquake in Tajikistan. Seismic Instruments, 56: 491~500.
参考文献
Su Zhen, Liu Shiyin, Wang Zhichao. 1989. Modern glaciers of Mount Muztagata and Mount Kongur. Journal of Natural Resources, 4(3): 241~246 (in Chinese with English abstract).
参考文献
Sun Benguo, Mao Weiyi, Feng Yanru, Chang Tao, Zhang Liping, Zhao Ling. 2006. Study on the change of air temperature precipitation and runoff volume in the Yeerqiang River basin. Arid Area Research, 23(2): 203~209 (in Chinese with English abstract).
参考文献
Sun Chongshao, Cai Hongwei. 1997. Developing and distributing characteristics of collapses and landslides during strong historic erthquake in China. Journal of Natural Disasters, 6(1): 25~30 (in Chinese with English abstract).
参考文献
Travasarou T, Bray J D, Abrahamson N A. 2003. Empirical attenuation relationship for Arias intensity. Earthquake Engineering and Structural Dynamics, 32(7): 1133~1155.
参考文献
Wang Tao, Wu Shuren, Shi Jusong, Xin Peng. 2015. Concepts and mechanical assessment method for seismic landslide hazard: A review. Journal of Engineering Geology, 23(1): 93~104 (in Chinese with English abstract).
参考文献
Wang T, Wu S R, Shi J S, Xin P, Wu L Z. 2018. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream. Engineering Geology, 235: 11~19.
参考文献
Wang Xiang, Zhu Changming, Zhang Xin, Wang Weisheng, Fang Hui. 2021. Time series monitoring and analysis of hydrological change process of Sarez Dammed Lake from 1972 to 2019 by multi-source remote sensing. Geographic Research, 40(1): 67~80 (in Chinese with English abstract).
参考文献
Wilson R C, Keefer D K. 1985. Predicting areal limits of earthquake induced landsliding. Geological Survey Professional Paper, 1360: 317~345.
参考文献
Xin Hongbo, Wang Yuqing. 1999. Earthquake-induced landslides of rock and soil slopes and their preliminary judgment criteria. Journal of Geotechnical Engineering, 21(5): 591~594 (in Chinese with English abstract).
参考文献
Yuan Z, Chen J, Owen L A, Hedrick K A, Caffee M W, Li W Q, Schoenbohm L M, Robinson A C. 2013. Nature and timing of large landslides within an active orogen, eastern Pamir, China. Geomorphology, 182: 49~65.
参考文献
Xu Zhiqin, Yang Jingsui, Li Haibing, Ji Shaocheng, Zhang Zeming, Liu Yan. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1~33 (in Chinese with English abstract).
参考文献
Yuan Zhaode. 2012. Nature and timing of large landslides within an active orogeny, NE Pamir, China. Master thesis of Institute of Geology, China Seismological Bureau (in Chinese with English abstract).
参考文献
Zhang Yongshuang. 2018. Characteristics of earthquake induced geological disasters in China and their progress of monitoring, prevention and control. City and Disaster Reduction, (3): 9~18 (in Chinese with English abstract).
参考文献
Zhang Yongshuang, Cheng Yuliang, Yao Xin, Wang Jun, Wu Shuren, Wang Meng. 2013. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain. Geological Bulletin of China, 32(12): 1900~1910 (in Chinese with English abstract).
参考文献
Zhang Yongshuang, Yang Zhihua, Guo Changbao, Wang Tao, Wang Donghui, Du Guoliang. 2017. Predicting landslide scenes under potential earthquake scenarios in the Xianshuihe fault zone, Southwest China. Journal of Mountain Science, 14(7): 1262~1278.
参考文献
Zhang Yongshuang, Wu Ruian, Guo Changbao, Li Xiangquan, Li Xue, Ren Sanshao, Li Jinqiu. 2022. Geological safety evaluation of railway engineering construction in plateau mountainous region: Ideas and methods. Acta Geologica Sinica, 96(5): 1736~1751 (in Chinese with English abstract).
参考文献
Zhou Zhenkai, Yao Xin. 2018. Tectonic deformation study of Nov. 25, 2016 MW6. 6 earthquake in West Kunlun Mountain based on InSAR technology. Journal of Geology, 92(2): 232~243 (in Chinese with English abstract).
参考文献
白玲, 宋博文, 李国辉, 江勇, Dhakal Sanjev. 2019. 喜马拉雅造山带地震活动及其相关地质灾害. 地球科学进展, 34(6): 629~639.
参考文献
陈杰, 李涛, 李文巧, 袁兆德. 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2): 241~259.
参考文献
范宣梅, 方成勇, 戴岚欣, 王欣, 罗永红, 魏涛, 王运生. 2022. 地震诱发滑坡空间分布概率近实时预测研究——以2022年6月1日四川芦山地震为例. 工程地质学报, 30(3): 729~739.
参考文献
李宁, 赵强, 孙赫. 2018. 2015年塔吉克斯坦MS7. 4地震的InSAR观测及其构造意义. 大地测量与地球动力学, 38(1): 43~47.
参考文献
李文巧. 2013. 帕米尔高原东北部塔什库尔干谷地的活动构造与强震. 中国地震局地质研究所博士学位论文.
参考文献
苏珍, 刘时银, 王志超. 1989. 慕士塔格山和公格尔山的现代冰川. 自然资源学报, 4(3): 241~246.
参考文献
孙本国, 毛炜峄, 冯燕茹, 常涛, 张丽萍, 赵玲. 2006. 叶尔羌河流域气温、降水及径流变化特征分析. 干旱区研究, 23(2): 203~209.
参考文献
孙崇绍, 蔡红卫. 1997. 我国历史地震时滑坡崩塌的发育及分布特征. 自然灾害学报, 6(1): 25~30.
参考文献
王涛, 吴树仁, 石菊松, 辛鹏. 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨. 工程地质学报, 23(1): 93~104.
参考文献
王翔, 朱长明, 张新, 王伟胜, 方晖. 2021. 1972~2019年萨雷兹堰塞湖遥感时序监测与水文特征过程分析. 地理研究, 40(1): 67~80.
参考文献
辛鸿博, 王余庆. 1999. 岩土边坡地震崩滑及其初判准则. 岩土工程学报, 21(5): 591~594.
参考文献
许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1~33.
参考文献
袁兆德. 2012. 帕米尔活动造山带东北部大型滑坡体特征与年代. 中国地震局地质研究所硕士学位论文.
参考文献
张永双. 2018. 我国地震地质灾害特点与监测防治进展. 城市与减灾, (3): 9~18.
参考文献
张永双, 成余粮, 姚鑫, 王军, 吴树人, 王猛. 2013. 四川汶川地震-滑坡-泥石流灾害链形成演化过程. 地质通报, 32 (12): 1900~1910.
参考文献
张永双, 吴瑞安, 郭长宝, 李向全, 李雪, 任三绍, 李金秋. 2022. 高原山区铁路工程建设地质安全评价: 思路与方法. 地质学报, 96(5): 1736~1751.
参考文献
周振凯, 姚鑫. 2018. 基于InSAR技术的2016年11月25日西昆仑MW6. 6地震构造变形研究. 地质学报, 92(2): 232~243.
目录contents

    摘要

    2023年2月23日,在中国新疆边境附近的塔吉克斯坦东南部山区发生MS 7.2级地震,震源深度10 km。按照以往经验研判,地震可能造成山体震损甚至形成较大范围的滑坡灾害(链)。为了快速预估本次地震滑坡灾害情况,本文采用InSAR地表变形观测、遥感解译和模型分析计算等方法,开展了同震滑坡灾害危险性快速评估,揭示了地震滑坡发育分布规律。结果表明:① InSAR地表变形监测显示了本次地震的发震断裂以右旋走滑为主,断裂南侧变形明显,为地震驱动的主动盘;② 同震滑坡的极高和高危险区沿地震断裂呈带状展布,主要分布于雪山的角峰、刃脊两侧的高陡部位以及沟谷的陡峻岸坡;③ 震中附近遥感解译发现,极高和高危险区主要以中小型高位冰岩崩滑为主,具有“点多、面广”的特征。基于以上结果并结合喜马拉雅西构造结地区的地震地质背景,分析了地震地质灾害对中国西部边疆山区的潜在风险,并提出了针对性的巨灾风险防控建议,可为地质活跃区重大工程规划建设地质安全和山区城镇地质灾害防灾减灾提供科学参考。

    Abstract

    On February 23, 2023, a magnitude 7.2 earthquake struck southeastern Tajikistan, close to the border of Xinjiang, China, with a focal depth of 10 km. In general, earthquakes could cause great damages to mountain slopes and even trigger numerous co-seismic landslides. By adopting methods such as InSAR surface deformation monitoring, remote sensing interpretation, and analytical calculation, a rapid risk assessment of co-seismic landslide hazards was conducted, and the development and distribution characteristics of co-seismic landslides was obtained. The results show that: ① InSAR surface deformation monitoring indicated that the seismogenic fault was characterized by right-lateral strike-slip movement. ② More significant deformation was observed on the southern side of the fault, suggesting that it is the active disk of the fault. The highly risk areas for co-seismic landslides were distributed along the fault zone, and primarily in high and steep areas on the sides of the snow mountain and edge ridges, as well as the steep slopes of the valley. ③ Through remote sensing interpretation near the epicenter, it is found that co-seismic geological disasters were mainly comprised of small and medium-scale high-locality glacier-rock avalanches, with characteristics of being scattered and widespread. On this basis, combined with the seismic geological background of the West Himalayan syntaxis, the potential risks of seismic geological disasters to China's border region were assessed, and suggestions for preventing seismic geological disasters in the western border and mountainous areas of China were proposed, which can provide scientific reference for ensuring geological safety of major projects in geologically active areas and for disaster prevention and reduction of geological disasters in mountainous towns.

  • 地震地质灾害也称为同震地质灾害,是地震发生时因地面强烈震动而引起的山体崩塌、滑坡等灾害,其破坏模式、表现形式及致灾特征一直受到国内外学者的广泛关注(范宣梅等,2022)。事实证明,一次强震后,地震扰动区地质灾害的活跃期将会持续十余年之久,而且群发性、链式效应更为突出(张永双等,2013)。北京时间2023年2月23日上午,在中国新疆边境附近的塔吉克斯坦东南部山区发生了MS 7.2(MW 6.8)级地震,强烈地震无疑为山体震裂和大规模地质灾害提供了强大动力。由于本次地震的震源深度为10 km,比以往其他地区震源浅,造成的地表破坏可能更加严重,加之处于喜马拉雅西构造结地区,高山峡谷地貌也为地震滑坡的发生提供了有利条件。该区历史上强震曾诱发大量滑坡灾害并造成惨重的人员伤亡和财产损失。例如,1911年塔吉克斯坦东部MS 7.6级地震诱发的Usoi滑坡堵塞Murgab河,形成了世界上最高的天然堰塞坝(坝高约600 m),造成至少200人死亡,当前水深已逾500 m,库容达21×108 m3,对下游构成严重的生态风险和洪水灾害威胁( Schuster et al.,2004; 王翔等,2021)。1949年7月10日,塔吉克斯坦MS 7.4级地震诱发了50000多个滑坡,其中最大的Khait滑坡将整个Khait乡村瞬间埋入70 m深的地下,总计约有28000人死亡(Sidorin,2020)。2005年巴基斯坦MW7.6级地震诱发了25500个滑坡,其中Hattian Bala滑坡(体积6800×104 m3)就造成约1000人死亡(Dunning et al.,2007)。因此,地震滑坡灾害是制约区域发展和稳定的重要地质风险。

  • 为了快速摸清塔吉克斯坦地震滑坡灾害情况,笔者采用InSAR地表变形观测、遥感解译和模型分析计算等方法,开展了同震滑坡灾害危险性快速评估,在此基础上结合地震地质背景,分析了中国西部边疆山区地震地质灾害的潜在风险,并提出了针对性的巨灾风险防控建议,以期为国家重大工程规划建设、震区地质灾害防范和流域性地质安全风险防控提供科学参考。

  • 1 地震地质背景

  • 2023年2月23日塔吉克斯坦MS 7.2级地震震中位于塔东南部戈尔诺—巴达赫尚自治州穆尔加布地区(38.055°N,73.230°E),震源深度10 km,距中国边境线最近约82 km,震中5 km范围内平均海拔约4655 m。王卫民等(2023)根据地震震源模型反演结果表明,本次地震为高倾角NW向的右旋走滑兼少量正断分量地震,破裂持续时间约15 s,最大滑动140 cm,计算震中区的理论地震烈度约IX度; 根据震中位置和震源机制解,推断本次发震断裂为帕米尔中部的阿克苏-木尔加尔断裂带的分支断裂,其可能为喀喇昆仑断裂的西延(图1)。

  • 本次地震在大地构造上位于印度板块向中亚大陆内部楔入最深的喜马拉雅西构造结(图1),是受板块动力作用最强烈、地震活动最频繁的地区,隶属于世界著名的欧亚地震带。西构造结晚新生代的大规模构造变形以构造结前缘地壳缩短和走滑、构造结内部拉张为特征,形成一系列向北凸出的弧形活动构造带,西缘以左旋走滑-斜冲的达瓦孜-卡拉库里断裂带为界,北缘为近EW向、向北逆冲的主帕米尔逆断裂带和帕米尔前缘褶皱-逆冲断裂带,东部为右旋走滑的喀喇昆仑断裂、喀什-叶城转换带以及介于其间的喀喇喀什断裂(陈杰等,2011; 李文巧,2013)。该区强震活跃,据统计,仅2000年以来的强震就达6次(不含本次地震)。如2005-10-8克什米尔MW 7.6级地震、2008-3-21新疆于田MS 7.3级地震、2008-10-5新疆乌恰MS 6.8级地震、2014-2-12新疆于田 MS 7.3级地震、2015-10-26和2016-4-10阿富汗兴都库什地区MS 7.8和MS 7.1级地震、2015-12-7塔吉克斯坦MS 7.4级地震、2016-6-26吉尔吉斯斯坦MS 6.7级地震和2016-11-25新疆阿克陶MS 6.7级地震等(周振凯等,2018; 白玲等,2019)。

  • 图1 2023-2-23塔吉克斯坦东部地震区域构造背景

  • Fig.1 Tectonic setting of the eastern Tajikistan earthquake on February 23, 2023

  • (a)—区域地质构造格架(据许志琴等,2011);(b)—西构造结地质构造纲要

  • (a) —regional tectonic framework (after Xu Zhiqin et al., 2011) ; (b) —geological structure map of West Himalayan syntaxis

  • 塔吉克斯坦所在的帕米尔高原在强烈构造活动控制下,形成了一系列高达4500~7700 m的弧形山系,其中以公格尔山和慕士塔格山最为显著(袁兆德,2012)。该区主要受西风带的影响,属干旱—半干旱气候,年均气温为3.6℃,冬季寒冷漫长,夏季温和(孙本国等,2006)。该区高大山体阻拦了高空过往水汽,使得高山地带能获得较多的降水补给,加之高山区的低温条件,现代冰川非常发育(苏珍等,1989)。

  • 2 InSAR同震变形监测分析

  • 近几十年来,InSAR技术在地表变形监测分析方面得到了广泛应用(周振凯等,2018; 李宁等,2018),并在地质灾害研究领域取得了较好的效果。本文收集了地震前后的Sentinel-1 SAR数据进行D-InSAR干涉计算,经比选,2023年2月21日至2023年3月5日D5降轨数据的干涉图相干性好、大气误差相对小,据此获得同震变形场(图2)。结果显示,在东经72°45′~73°35′、北纬37°45′~38°30′,对应东西长80 km、南北宽60 km,约4800 km2的区域产生了明显的地表同震变形(位移大于1 cm)。虽然受分辨率和InSAR量程限制,无法测量到地表破裂大位错量,但可宏观地反映区域构造变形场的基本特征和范围。

  • 从图2可以看出,InSAR观测的地表变形图斑类似于走滑四象限的花瓣形状,结合变形量方向呈现“垂直+近东西”的特点,分析认为本次地震以NW向断裂活动为主; 图中粉色区域正值代表地面上升,黄色区域负值代表地表下沉,3个明显升降变形区的组合表明本次地震以右旋走滑为主; 发震断裂南侧变形明显且升降区分显著,表明南侧是发震的主动盘。将InSAR观测的地表变形场与王卫民等(2023)基于地震震源模型反演结果对比表明,两者具有较好的对应关系,皆反映了发震断裂以右旋走滑为主的特征。

  • 图2 D-InSAR观测的MS 7.2级地震地表变形场

  • Fig.2 Surface deformation field of the MS 7.2 earthquake observed by D-InSAR

  • 3 地震滑坡灾害危险性快速评估

  • 3.1 评估方法

  • 地震滑坡灾害危险性评估按时间尺度分为震前预测和震后评估两类,震前的地震滑坡危险性预测具有很强的前瞻性,通常是在确定性或概率性地震危险性分析的基础上,开展地震滑坡危险性预测分析。震后快速评估目前最常用的方法是基于Newmark模型的快速评估。

  • Newmark模型的理论基础是无限斜坡的极限平衡理论,该模型将滑体视为一个刚体,施加于最危险滑动面的地震动加速度超过滑体失稳的临界加速度时,块体即沿破坏面发生滑动(图3a),滑块的永久位移是在地震荷载作用下,滑动块体沿着最危险滑动面发生瞬时失稳后位移不断累积所致,当将地震动加速度与临界加速度的差值部分对时间进行二次积分即可得到永久位移(Newmark,1965; Jibson,1993; 图3b)。

  • 其中,临界加速度(ac)表征了在地震荷载作用下斜坡发生失稳的潜势,可通过地震作用下无限斜坡极限平衡公式(式1)推导得到:

  • ac=Fs-1gsinα
    (1)
  • 式中,α为滑面倾角(°),g为重力加速度(m/s2),Fs为静态安全系数,采用式(2)计算:

  • Fs=c'γtsinα+tanφ'tanα-mγwtanφ'γtanα
    (2)
  • 式中,c′为岩土体有效内聚力(kPa); φ′为有效内摩擦角(°); γ为岩土体重度(kN/m3); γw为地下水重度(kN/m3); t为潜在滑体厚度(m); m为潜在滑体中饱和部分占总滑体厚度的比例。

  • 在实际区域性地震滑坡危险性评估过程中,由于受地震台站数量和强震记录数量的限制,基于加速度积分计算的严格Newmark模型缺乏广泛的适应性,多采用累积位移与地震动参数和临界加速度的非线性经验函数关系来获取(Zhang Yongshuang et al.,2017)。阿里亚斯强度(Ia)综合反映地震地面运动振幅、频率和持时等信息,被广泛用于地震滑坡和地震地面运动的相关性分析中。本文采用Jibson et al.(2000)基于全球15个强震555条水平分量加速度记录拟合得到累积位移Dn与阿里亚斯强度Ia和临界加速度ac的函数关系式(式3)计算地震滑坡的累积位移:

  • lgDn=1.521lgIα-1.993lgαc-1.546
    (3)
  • 为了综合考虑震源和发震断裂的协同影响,阿里亚斯强度Ia采用Wilson et al.(1985)提出的震级和震源距离的衰减方程(式4)及Travasarou et al.(2003)建立的震级、距离、断裂类型和场地类别的经验衰减方程(式5)共同确定,并结合研究区地震地质背景对式(4)计算得到的阿里亚斯强度进行了适当折减(折减系数取0.3)。

  • 图3 Newmark模型原理示意图

  • Fig.3 Principle diagrams of the Newmark model

  • (a)—滑块在静力和地震条件下受力示意图;(b)—Newmark累积位移计算过程示意图

  • (a) —force analysis of sliding block under static and seismic conditions; (b) —calculation process of Newmark cumulative displacement

  • lgIa=M-2lgRe-4.1
    (4)
  • 式中,M是矩震级; Re为场地到震源的距离(km)。

  • lnIa=2.8-1.981(M-6)+20.72ln(M/6)-1.703lnR2+8.782+(0.454+0.101(M-6))SC+(0.479+0.334(M-6))SD-0.166FN+0.512FR
    (5)
  • 式中,M是矩震级; R为到破裂面的最近距离(km); FNFR为震源机制项:走滑取值为0,正断取值为1、0,逆断取值为0、1; SCSD为场地类别项:未风化或大多数未风化的基岩场地均取值为0,风化软岩或薄层硬土覆盖场地取值为1、0,厚层全新世或更新世覆盖层取值为0、1。

  • Newmark累积位移不能反映地震滑坡的真实位移,但与滑坡发生概率存在直接关系。地震滑坡发生概率(P)是地震滑坡危险性分区的重要依据,区域地震滑坡概率可以根据滑坡累积位移和发生概率的关系(式6)进行预测(Jibson,2014; 王涛等,2015)。

  • P=0.3351-exp-0.048Dn1.565
    (6)
  • 3.2 主要参数获取

  • 3.2.1 物理力学参数

  • 综合考虑地层时代、岩石类型、软硬程度等因素,将研究区的地层岩性(1∶500000)划分为5个工程地质岩组(图4),并根据已发表的文献数据和反演计算对岩土体物理力学参数进行赋值,各参数取值见表1。地震诱发的崩滑灾害以浅层滑坡、岩质崩塌和碎屑流为主,在Newmark模型中滑体厚度一般取t=3 m(Rodríguez-Peces et al.,2014; Du Guoliang et al.,2017)。本次评价未考虑地下水对滑坡的影响,m值取0。将上述参数带入公式(2)计算静态斜坡安全系数Fs,在计算过程中,对极少数Fs<1的区域进行修正,保证静态安全系数Fs≥1(图5),再根据式(1)计算得到研究区临界加速度图(图6)。

  • 3.2.2 阿里亚斯强度及地形放大效应

  • 阿里亚斯强度是在地表破裂反演结果的基础上,采用式(4)和式(5)综合叠加得到。同时,考虑到地震波在孤立山体、单薄山脊和局部突出地形处具有显著的放大效应,斜坡的地形放大效应是导致斜坡的失稳破坏的重要因素。本文根据放大系数对阿里亚斯强度进行调整(Wang et al.,2018),采用式(7)计算地形放大系数:

  • 表1 塔吉克斯坦地震区域工程地质岩组物理力学性质

  • Table1 Mechanical properties of lithological groups in the Tajikistan earthquake zone

  • 注:物理力学参数取值不考虑地下水的影响。

  • 图4 区域工程地质岩组

  • Fig.4 Regional distribution of lithological groups

  • 1 —冰水堆积; 2—坚硬块状花岗岩、闪长岩、玄武岩岩组; 3—坚硬—较坚硬灰岩、砂岩、板岩岩组; 4—较坚硬—较软弱泥岩、片岩、片麻岩岩组; 5—软质散体结构

  • 1 —glacial fluvial deposits; 2—hard solid group of granite, diorite and basalt; 3—hard-mid hard group of limestone, sandstone and slate; 4—mid hard-mid soft group of mudstone, schist and gneiss; 5—loose deposits

  • λ=1+ξ×α
    (7)
  • 式中,λ为地震影响的地形放大系数; α为地震动参数增大幅度,可根据表2取值; ξ为附加调整系数,与斜坡离突出台地边缘的距离和相对高差有关,这里取值为1(Wang et al.,2018)。基于放大系数调整后的阿里亚斯强度如图7所示。

  • 3.2.3 地震滑坡危险性分区

  • 通过临界加速度与阿里亚斯强度的拟合关系(式3)得到地震滑坡累积位移,并采用式(6)对滑坡的发生概率进行计算。很多学者认为Newmark 累积位移值大于5~10 cm可以产生贯通式滑坡(Keefer,2002; Rodríguez-Peces et al.,2014),小于2 cm则可以产生拉裂式的崩塌和碎屑流(Rodríguez-Peces et al.,2014)。严格意义上讲不适宜用统一的量值作为在地震作用下边坡失稳的判据,需结合研究区实际情况来确定斜坡失稳的临界位移(Jibson,2011)。根据地震滑坡发生概率,本文采取:0%~2%滑坡发生概率为低危险区、2%~10%滑坡发生概率为中等危险区、10%~20%滑坡发生概率为高危险区、>20%滑坡发生概率为极高危险区,对塔吉克斯坦MS 7.2地震滑坡危险性进行分区,获取地震滑坡危险性评估结果(图8)。

  • 图5 区域斜坡静态安全性系数(Fs

  • Fig.5 Regional distribution of static safety factors (Fs)

  • 图6 区域斜坡临界加速度ac

  • Fig.6 Regional distribution of slope critical acceleration (ac)

  • 表2 斜坡地震影响系数的增大幅度经验值

  • Table2 Empirical topographic amplification coefficients of the slopes

  • 图7 区域阿里亚斯强度分布图

  • Fig.7 Regional distribution of Arias intensity

  • 4 评估结果验证与分析

  • 4.1 与USGS评估结果对比

  • 评估结果表明,塔吉克斯坦MS 7.2级地震滑坡呈现沿地震断裂展布的特点,其中极高和高危险区主要位于雪山的角峰、刃脊两侧的高陡部位及沟谷两侧陡峻的岸坡,可能成为高位滑坡的集中发生区; 中危险区主要分布在坡度、起伏度相对较高的坡谷地带; 区内地形相对平缓的地区则基本不发生地震滑坡,为低危险区。通过与美国地调局(USGS)塔吉克斯坦地震滑坡危险性预测结果(https://earthquake.usgs.gov/earthquakes/eventpage/us6000jqxc/map?shakeMapIntensity=false&ground-failure-landslide=true)对比分析(图9),本文预测极高和高危险区面积314.13 km2,USGS预测面积为206.25 km2。USGS预测地震滑坡危险性主要围绕震中展布,本文结果则具有明显的沿地震断裂展布的特征,与研究区地震地质背景及以往同震滑坡发育分布规律较为一致(Zhang Yongshuang et al.,2017),这主要是因为本文在获取地震动参数时,综合考虑了震源(点源)和发震断裂(线源)的影响,当然也可能与栅格精度(本文采用12.5 m,USGS采用250 m)和所用模型的差异有一定关系。由于尚未获取完整同震滑坡数据库,两个模型的准确率有待进一步验证。

  • 图8 塔吉克斯坦MS 7.2级地震滑坡危险性分区图

  • Fig.8 Map showing the co-seismic landslide hazards of the Tajikistan MS 7.2 earthquake

  • 图9 USGS预测的塔吉克斯坦地震滑坡危险性分区

  • Fig.9 The predicted results of co-seismic landslide hazards of the Tajikistan earthquake produced by USGS

  • 4.2 重点区震后遥感解译

  • 采用地震前(2023年2月22日)和地震后(2023年2月27日)部分极高和高危险区遥感影像进行对比发现,地震引发了大面积冰岩崩滑灾害(图10)。受地震动放大效应的影响,冰岩崩滑体大多从山脊的高陡部位滑落,形成高位崩滑灾害,在滑动过程中刮铲积雪和表层松散物质,在斜坡表面留下了明显的滑动痕迹。通过遥感影像还可以看出,震中附近主要以中小型冰岩崩滑为主,发育在山脊两侧,具有“点多、面广”的特征。上述特征与根据Newmark模型评估的极高和高危险区结果比较吻合。

  • 4.3 与历史地震滑坡灾害对比

  • 据有关历史地震灾情研究(李宁等,2018),距离本次地震震中仅40 km的萨列兹湖附近在2015年12月7日发生MS 7.4地震,发震断裂平均滑动量0.75~0.93 m,最大滑移量4.42 m,变形影响范围超过9600 km2。一般认为,地震滑坡发生的最小烈度为V度(同震滑坡极少),主要集中在VII度及以上区域(孙崇绍等,1997; 辛鸿博等,1999),并且同震滑坡的分布范围是不规则的,但地震震级与同震滑坡分布面积显著相关(式8),呈对数-线性函数关系(Keefer,1984):

  • lgA=Mw-3.46(±0.47)
    (8)
  • 根据Keefer的经验公式(式8),2023年2月23日塔吉克斯坦MS 7.2级地震的同震滑坡影响范围为2188 km2,本文采用Newmark模型评估的同震滑坡主要发生在2400 km2范围内,基本符合世界范围内历史地震滑坡的分布规律。

  • 5 讨论

  • 5.1 地震滑坡灾害危险性快速评估结果的可靠性

  • 由于Newmark累积位移模型物理力学意义明确,与指标体系法相比,无需获取各影响因素的权重,受地质背景条件限制较少,且能反映滑坡在地震作用下的物理力学机制,在震后地震滑坡危险性快速评估和概率地震危险性预测中得到了广泛使用(王涛等,2015; Du Guoliang et al.,2017; Jibson et al.,2020)。但是,其评估精度与输入模型参数的不确定性有关,特别是受岩土体的物理力学参数以及地震动参数的影响。

  • 图10 地震诱发的冰-岩崩滑体遥感解译图(底图来源于中国自然资源航空物探遥感中心)

  • Fig.10 Remote sensing interpretation map of ice-rock avalanches induced by earthquake (images from China Aero Geophysical Survey and Remote Sensing Center for Natural Resources)

  • 在以往地震滑坡快速评估研究中,多数研究者主要采用仪器震中的地震峰值加速度参数,但是高山峡谷区受地形条件影响,地震监测台站往往较少且疏远,不能较好地反映发震断裂及地表破裂对同震滑坡空间展布的影响。笔者曾提出,在地震滑坡快速评估中,要综合考虑震源(点状驱动力)和发震断裂(线状驱动力)的综合影响,这样才能较客观地获取阿里亚斯强度参数,从而使得评估结果更加科学合理并符合实际情况(Zhang Yongshuang et al.,2017)。因此,本文采用InSAR观测的地表变形反演了研究区的发震断裂,并综合确定了阿里亚斯强度参数进行同震滑坡灾害危险性快速评估。

  • 此外,由于地震滑坡运动极其复杂,属非平面滑动,简单无限斜坡的极限平衡理论难以准确、真实地反映斜坡稳定状态,这也是Newmark模型本身的局限性。因此,预测的累积位移Dn不能用于反映实际的滑坡位移,而是与地震滑坡发生的概率有关。鉴于目前缺乏完整的同震滑坡数据,本文评估结果的准确性有待进一步进行验证。

  • 5.2 对中国西部边疆山区灾害风险防控的启示

  • 2023年2月23日塔吉克斯坦MS 7.2级强震是在举世瞩目的2023年2月6日土耳其两次7.8级强震之后发生的,强烈地震不仅为山体震裂和大规模灾害链提供了强大动力,而且人们更加关注其是否预示着喜马拉雅西构造结地区进入了新的活跃期?这无疑也提升了对西构造结孕灾、成灾、链灾机理研究的关注度。

  • 中国新疆西南部和西藏西北部等边疆地区地处青藏高原地壳运动与构造变形最为强烈的西构造结东北缘。除了前文提到的历史地震滑坡灾害(链)之外,在西构造结地区还存在着大量年代不明的历史地震滑坡(Dortch et al.,2009),如塔吉克斯坦亚斯Yashirkul滑坡、巴基斯坦Satpara滑坡(Hewitt et al.,1999)、中国新疆阿克陶县木吉乡滑坡群等(图11)。地震滑坡不仅可以直接造成灾难性事件,而且作为地表侵蚀中最快速的方式之一,可以使地表物质瞬时发生搬运,在地貌演化中发挥着重要作用(Yuan et al.,2013; Shi Anhua et al.,2023)。许多大型—巨型滑坡常造成河流堵塞,堰塞湖一旦溃坝,洪水可夹杂着大量碎屑物对下游河道两岸坡脚刮铲,导致更大的链生灾害。在下切侵蚀强烈的高原峡谷区,由于滑坡物质难以保留,地震滑坡灾害的放大效应及其与地貌演化之间的关系还有待深入研究。

  • 图11 西构造结及邻区地震滑坡堵江事件遗迹

  • Fig.11 The events of earthquake-induced landslide blocking the river in the West Himalayan syntaxis and adjacent areas

  • (a)—Usoi滑坡;(b)—Hattian Bala滑坡;(c)—Satpara滑坡;(d)—木吉乡滑坡群;(e)—艾尔帕·艾格齐滑坡;(f)—依买克滑坡

  • (a) —Usoi landslide; (b) —Hattian Bala landslide; (c) —Satpara landslide; (d) —landslides in Muji village; (e) —Aerpa·Aigezi landslide; (f) —Iymek landslide

  • 虽然2023-2-23塔吉克斯坦MS 7.2级地震尚未有大型滑坡灾害的报道,但是震裂山体肯定存在。国内外以往曾出现过不少因震裂山体在后期的雨季或冰雪消融季节发生大范围滑坡灾害的案例。例如,中国四川龙门山区的茂县新磨村滑坡是在2008年汶川地震9年后发生的特大型滑坡灾害,汶川地震形成的震裂山体在后期降雨作用下产生了快速滑动,造成的人员伤亡和经济损失惨重。鉴于这类震裂山体在降雨、冰雪消融等因素作用下可能引发重大高位滑坡灾害(链),震裂山体的长期演化规律及临界破坏条件值得深入研究。

  • 5.3 地震地质灾害防灾减灾建议

  • 地震地质灾害防灾减灾工作是一项复杂的系统工程,并且具有鲜明的社会属性。中国西部边疆山区是“一带一路”建设的先行区和重点区,中巴经济走廊拟建的铁路和正在建设的公路穿越昆仑山脉、喀喇昆仑山脉、喜马拉雅山脉等地震地质灾害多发区,工程规划建设和安全运营势必受到威胁。近年来,中国加强了西部高山峡谷区地震地质灾害调查、监测预警、防治体系和应急体系的建设,防灾减灾工作取得了明显成效(张永双,2018)。然而,中国西部高山峡谷区地震地质灾害具有复杂性、隐蔽性和突发性的特点,传统的理论和监测预警方法不能满足巨型灾害风险防控的需求,防灾减灾形势依然非常严峻(Zhang Yongshuang et al.,2017)。结合中国西部边境地区复杂的地震地质背景和高山峡谷地貌,建议从以下方面加强地震地质灾害防灾减灾工作。

  • (1)合理避让活动断裂,科学制定城市和重大工程规划。中国西部山区处于多板块相互作用交接地区,发育着众多具有触发破坏性地震能力的活动断裂,其两侧一定范围是地震灾害、链生灾害和复合灾害最为严重的地带。因此,在山区城镇和重大工程规划建设过程中应合理避让活动断裂带(张永双等,2022)。加强高烈度区城市和重大工程附近特大地震灾害基础地质研究,在已有活动断裂调查的基础上,做好活动断裂避让、优化工程布局,防患于未然。

  • (2)加强重要活动断裂带地震地质灾害研究。地震地质灾害常常在事先没有征兆或者意想不到的位置发生。因此,必须加强复杂地质条件下重大地震地质灾害成因机理研究、断裂带不同活动方式的灾害效应研究、地震与特殊气候条件耦合作用下的地质灾害发育规律研究等。加强相关监测预警仪器装备和技术研发,特别是基于地表变形的监测预警技术,实现恶劣环境下地质灾害可视化监测; 开展特大地震地质灾害快速风险评估和管理,加快构建和完善地震地质灾害商业保险体系。

  • (3)合理制定地震地质灾害应急对策,完善紧急救援体系。各级政府管理部门应围绕新时代对地震地质灾害防治的新形势新要求,在地震地质灾害风险综合防控方面制定目标、分级管理; 在工作推动过程中积极为防灾减灾合作搭建平台,促进人才队伍建设,构建以风险为导向的综合防灾减灾体系,逐步升级“防、避、治”等措施,保持防灾减灾信息通畅化和防灾管理常态化,不断提升地震地质灾害风险防控的科学水平。

  • (4)重视强震地质灾害后效应研究和防范。地震发生后形成的大量不稳定斜坡、震裂山体及松散堆积体,在余震、降雨等作用下可能发生再次变形破坏,如震裂山体转化成崩塌或滑坡,崩滑体汇聚于沟道后转化成泥石流等。需要根据以往地震扰动区地质灾害的发育特征和演进规律,研判未来不同外动力作用下的成灾演化模式,科学划定地震扰动区地质灾害影响区范围与致灾方式,并采取针对性的防范措施。

  • 6 结论

  • 本文在2023年2月23日塔吉克斯坦MS 7.2级地震地质背景分析的基础上,采用Newmark模型开展了同震滑坡灾害危险性快速评估,获取了地震滑坡发育分布规律,指出了类似地震地质灾害对中国西部边疆山区的潜在风险,并提出了针对性的防灾减灾建议。取得如下主要认识:

  • (1)采用D-InSAR技术对地震扰动区进行了地表变形分析,震区存在3个显著的升降变形区,其组合关系显示本次地震断裂以右旋走滑为主,断裂南侧变形明显且升降区分显著,表明南侧是发震的主动盘。

  • (2)基于Newmark模型的地震滑坡灾害危险性评估结果表明,地震滑坡极高和高危险区主要沿地震断裂呈带状展布,主要分布于雪山的角峰、刃脊两侧的高陡部位以及沟谷的陡峻岸坡,同震滑坡评估结果与地表形变场具有较好的对应关系。

  • (3)震中附近遥感影像解译表明,地震滑坡灾害极高和高危险区主要以中小型高位冰岩崩滑体为主,具有“点多、面广”的特征。

  • (4)地震地质灾害具有复杂性、隐蔽性、突发性和群发性的特点,中国西部边疆山区应从活动断裂和地震地质灾害机理研究、地震地质灾害后效应研究和防范、地震地质灾害应急救援等方面加强防灾减灾工作。

  • 致谢:本文研究过程中,得到了中国科学院青藏高原研究所丁林院士、长安大学彭建兵院士的指导,中国自然资源航空物探遥感中心刘筱怡博士协助开展了遥感数据处理,一并深表谢意!

  • 注释

  • ❶ 王卫民,何建坤,丁林,郝金来,姚振兴.2023.2023年2月23日塔吉克斯坦M 6.8级地震震源破裂过程反演初步结果. 北京:中国科学院青藏高原研究所.

  • 参考文献

    • Bai Ling, Song Bowen, Li Guohui, Jiang Yong, Dhakal S. 2019. Seismic activity in the Himalayan Orogenic Belt and its related geohazards. Progress in Earth Science, 34(6): 629~639 (in Chinese with English abstract).

    • Chen Jie, Li Tao, Li Wenqiao, Yuan Zhaode. 2011. Late Cenozoic and present tectonic deformation in the Pamir salient, northwestern China. Seismic Geology, 33(2): 241~259 (in Chinese with English abstract).

    • Dortch J M, Owen L A, Haneberg W C, Caffee M W, Dietsch C, Kamp U. 2009. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews, 28(11-12): 1037~1054.

    • Du Guoliang, Zhang Yongshuang, Yang Zhihua, Iqbal J, Tong Bin, Guo Changbao, Yao Xin, Wu Ruian. 2017. Estimation of seismic landslide hazard in the eastern Himalayan syntaxis region of Tibetan Plateau. Acta Geologica Sinica (English Edition), 91(2): 658~668.

    • Dunning S A, Mitchell W A, Rosser N J, Petley D N. 2007. The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Engineering Geology, 93(3-4): 130~144.

    • Fan Xuanmei, Fang Chengyong, Dai Lanxin, Wang Xin, Luo Yonghong, Wei Tao, Wang Yunsheng. 2022. Near real time prediction of spatial distribution probability of earthquake induced landslides—Take the Lushan Earthquake on June 1, 2022 as an example. Journal of Engineering Geology, 30(3): 729~739 (in Chinese with English abstract).

    • Hewitt K. 1999. Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research, 51(3): 220~237.

    • Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record, 1411: 9~17.

    • Jibson R W. 2011. Methods for assessing the stability of slopes during earthquakes—A retrospective. Engineering Geology, 122: 43~50.

    • Jibson R W. 2014. Mapping seismic landslide hazards in Anchorage, Alaska. Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, AK, USA, 21~25.

    • Jibson R W, Harp E L, Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3-4): 271~289.

    • Keefer D K. 1984. Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4): 406~421.

    • Keefer D K. 2002. Investigating landslides caused by earthquakes—A historical review. Surveys in Geophysics, 23(6): 473~510.

    • Li Ning, Zhao Qiang, Sun He. 2018. InSAR observation results of the 2015 Tajikistan MS 7. 4 earthquake and its tectonic significance. Geodesy and Geodynamics, 38(1): 43~47 (in Chinese with English abstract).

    • Li Wenqiao. 2013. Active structures and strong earthquakes in the Tashkurgan valley in the northeast of the Pamir Plateau. Doctoral dissertation of Institute of Geology, China Seismological Bureau (in Chinese with English abstract).

    • Newmark N M. 1965. Effects of earthquakes on dams and embankments. Geotechnique, 15(2): 139~160.

    • Rodríguez-Peces M J, García-Mayordomo J, Azañón J M, Jabaloy A. 2014. GIS application for regional assessment of seismically induced slope failures in the Sierra Nevada Range, South Spain, along the Padul fault. Environmental Earth Sciences, 72(7): 2423~2435.

    • Schuster R L, Alford D. 2004. Usoi landslide dam and Lake Sarez, Pamir Mountains, Tajikistan. Environmental and Engineering Geoscience, 10(2): 151~168.

    • Shi Anwen, Wang Yufeng, Cheng Qiangong, Lin Qiwen, Li Tianhua, Wünnemann B. 2023. The largest rock avalanche in China at Iymek, Eastern Pamir, and its spectacular emplacement landscape. Geomorphology, 421: 108521.

    • Sidorin A Y. 2020. On the 70th anniversary of the 1949 Khait earthquake in Tajikistan. Seismic Instruments, 56: 491~500.

    • Su Zhen, Liu Shiyin, Wang Zhichao. 1989. Modern glaciers of Mount Muztagata and Mount Kongur. Journal of Natural Resources, 4(3): 241~246 (in Chinese with English abstract).

    • Sun Benguo, Mao Weiyi, Feng Yanru, Chang Tao, Zhang Liping, Zhao Ling. 2006. Study on the change of air temperature precipitation and runoff volume in the Yeerqiang River basin. Arid Area Research, 23(2): 203~209 (in Chinese with English abstract).

    • Sun Chongshao, Cai Hongwei. 1997. Developing and distributing characteristics of collapses and landslides during strong historic erthquake in China. Journal of Natural Disasters, 6(1): 25~30 (in Chinese with English abstract).

    • Travasarou T, Bray J D, Abrahamson N A. 2003. Empirical attenuation relationship for Arias intensity. Earthquake Engineering and Structural Dynamics, 32(7): 1133~1155.

    • Wang Tao, Wu Shuren, Shi Jusong, Xin Peng. 2015. Concepts and mechanical assessment method for seismic landslide hazard: A review. Journal of Engineering Geology, 23(1): 93~104 (in Chinese with English abstract).

    • Wang T, Wu S R, Shi J S, Xin P, Wu L Z. 2018. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream. Engineering Geology, 235: 11~19.

    • Wang Xiang, Zhu Changming, Zhang Xin, Wang Weisheng, Fang Hui. 2021. Time series monitoring and analysis of hydrological change process of Sarez Dammed Lake from 1972 to 2019 by multi-source remote sensing. Geographic Research, 40(1): 67~80 (in Chinese with English abstract).

    • Wilson R C, Keefer D K. 1985. Predicting areal limits of earthquake induced landsliding. Geological Survey Professional Paper, 1360: 317~345.

    • Xin Hongbo, Wang Yuqing. 1999. Earthquake-induced landslides of rock and soil slopes and their preliminary judgment criteria. Journal of Geotechnical Engineering, 21(5): 591~594 (in Chinese with English abstract).

    • Yuan Z, Chen J, Owen L A, Hedrick K A, Caffee M W, Li W Q, Schoenbohm L M, Robinson A C. 2013. Nature and timing of large landslides within an active orogen, eastern Pamir, China. Geomorphology, 182: 49~65.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Ji Shaocheng, Zhang Zeming, Liu Yan. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1~33 (in Chinese with English abstract).

    • Yuan Zhaode. 2012. Nature and timing of large landslides within an active orogeny, NE Pamir, China. Master thesis of Institute of Geology, China Seismological Bureau (in Chinese with English abstract).

    • Zhang Yongshuang. 2018. Characteristics of earthquake induced geological disasters in China and their progress of monitoring, prevention and control. City and Disaster Reduction, (3): 9~18 (in Chinese with English abstract).

    • Zhang Yongshuang, Cheng Yuliang, Yao Xin, Wang Jun, Wu Shuren, Wang Meng. 2013. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain. Geological Bulletin of China, 32(12): 1900~1910 (in Chinese with English abstract).

    • Zhang Yongshuang, Yang Zhihua, Guo Changbao, Wang Tao, Wang Donghui, Du Guoliang. 2017. Predicting landslide scenes under potential earthquake scenarios in the Xianshuihe fault zone, Southwest China. Journal of Mountain Science, 14(7): 1262~1278.

    • Zhang Yongshuang, Wu Ruian, Guo Changbao, Li Xiangquan, Li Xue, Ren Sanshao, Li Jinqiu. 2022. Geological safety evaluation of railway engineering construction in plateau mountainous region: Ideas and methods. Acta Geologica Sinica, 96(5): 1736~1751 (in Chinese with English abstract).

    • Zhou Zhenkai, Yao Xin. 2018. Tectonic deformation study of Nov. 25, 2016 MW6. 6 earthquake in West Kunlun Mountain based on InSAR technology. Journal of Geology, 92(2): 232~243 (in Chinese with English abstract).

    • 白玲, 宋博文, 李国辉, 江勇, Dhakal Sanjev. 2019. 喜马拉雅造山带地震活动及其相关地质灾害. 地球科学进展, 34(6): 629~639.

    • 陈杰, 李涛, 李文巧, 袁兆德. 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2): 241~259.

    • 范宣梅, 方成勇, 戴岚欣, 王欣, 罗永红, 魏涛, 王运生. 2022. 地震诱发滑坡空间分布概率近实时预测研究——以2022年6月1日四川芦山地震为例. 工程地质学报, 30(3): 729~739.

    • 李宁, 赵强, 孙赫. 2018. 2015年塔吉克斯坦MS7. 4地震的InSAR观测及其构造意义. 大地测量与地球动力学, 38(1): 43~47.

    • 李文巧. 2013. 帕米尔高原东北部塔什库尔干谷地的活动构造与强震. 中国地震局地质研究所博士学位论文.

    • 苏珍, 刘时银, 王志超. 1989. 慕士塔格山和公格尔山的现代冰川. 自然资源学报, 4(3): 241~246.

    • 孙本国, 毛炜峄, 冯燕茹, 常涛, 张丽萍, 赵玲. 2006. 叶尔羌河流域气温、降水及径流变化特征分析. 干旱区研究, 23(2): 203~209.

    • 孙崇绍, 蔡红卫. 1997. 我国历史地震时滑坡崩塌的发育及分布特征. 自然灾害学报, 6(1): 25~30.

    • 王涛, 吴树仁, 石菊松, 辛鹏. 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨. 工程地质学报, 23(1): 93~104.

    • 王翔, 朱长明, 张新, 王伟胜, 方晖. 2021. 1972~2019年萨雷兹堰塞湖遥感时序监测与水文特征过程分析. 地理研究, 40(1): 67~80.

    • 辛鸿博, 王余庆. 1999. 岩土边坡地震崩滑及其初判准则. 岩土工程学报, 21(5): 591~594.

    • 许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1~33.

    • 袁兆德. 2012. 帕米尔活动造山带东北部大型滑坡体特征与年代. 中国地震局地质研究所硕士学位论文.

    • 张永双. 2018. 我国地震地质灾害特点与监测防治进展. 城市与减灾, (3): 9~18.

    • 张永双, 成余粮, 姚鑫, 王军, 吴树人, 王猛. 2013. 四川汶川地震-滑坡-泥石流灾害链形成演化过程. 地质通报, 32 (12): 1900~1910.

    • 张永双, 吴瑞安, 郭长宝, 李向全, 李雪, 任三绍, 李金秋. 2022. 高原山区铁路工程建设地质安全评价: 思路与方法. 地质学报, 96(5): 1736~1751.

    • 周振凯, 姚鑫. 2018. 基于InSAR技术的2016年11月25日西昆仑MW6. 6地震构造变形研究. 地质学报, 92(2): 232~243.

  • 参考文献

    • Bai Ling, Song Bowen, Li Guohui, Jiang Yong, Dhakal S. 2019. Seismic activity in the Himalayan Orogenic Belt and its related geohazards. Progress in Earth Science, 34(6): 629~639 (in Chinese with English abstract).

    • Chen Jie, Li Tao, Li Wenqiao, Yuan Zhaode. 2011. Late Cenozoic and present tectonic deformation in the Pamir salient, northwestern China. Seismic Geology, 33(2): 241~259 (in Chinese with English abstract).

    • Dortch J M, Owen L A, Haneberg W C, Caffee M W, Dietsch C, Kamp U. 2009. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews, 28(11-12): 1037~1054.

    • Du Guoliang, Zhang Yongshuang, Yang Zhihua, Iqbal J, Tong Bin, Guo Changbao, Yao Xin, Wu Ruian. 2017. Estimation of seismic landslide hazard in the eastern Himalayan syntaxis region of Tibetan Plateau. Acta Geologica Sinica (English Edition), 91(2): 658~668.

    • Dunning S A, Mitchell W A, Rosser N J, Petley D N. 2007. The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Engineering Geology, 93(3-4): 130~144.

    • Fan Xuanmei, Fang Chengyong, Dai Lanxin, Wang Xin, Luo Yonghong, Wei Tao, Wang Yunsheng. 2022. Near real time prediction of spatial distribution probability of earthquake induced landslides—Take the Lushan Earthquake on June 1, 2022 as an example. Journal of Engineering Geology, 30(3): 729~739 (in Chinese with English abstract).

    • Hewitt K. 1999. Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research, 51(3): 220~237.

    • Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record, 1411: 9~17.

    • Jibson R W. 2011. Methods for assessing the stability of slopes during earthquakes—A retrospective. Engineering Geology, 122: 43~50.

    • Jibson R W. 2014. Mapping seismic landslide hazards in Anchorage, Alaska. Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, AK, USA, 21~25.

    • Jibson R W, Harp E L, Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology, 58(3-4): 271~289.

    • Keefer D K. 1984. Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4): 406~421.

    • Keefer D K. 2002. Investigating landslides caused by earthquakes—A historical review. Surveys in Geophysics, 23(6): 473~510.

    • Li Ning, Zhao Qiang, Sun He. 2018. InSAR observation results of the 2015 Tajikistan MS 7. 4 earthquake and its tectonic significance. Geodesy and Geodynamics, 38(1): 43~47 (in Chinese with English abstract).

    • Li Wenqiao. 2013. Active structures and strong earthquakes in the Tashkurgan valley in the northeast of the Pamir Plateau. Doctoral dissertation of Institute of Geology, China Seismological Bureau (in Chinese with English abstract).

    • Newmark N M. 1965. Effects of earthquakes on dams and embankments. Geotechnique, 15(2): 139~160.

    • Rodríguez-Peces M J, García-Mayordomo J, Azañón J M, Jabaloy A. 2014. GIS application for regional assessment of seismically induced slope failures in the Sierra Nevada Range, South Spain, along the Padul fault. Environmental Earth Sciences, 72(7): 2423~2435.

    • Schuster R L, Alford D. 2004. Usoi landslide dam and Lake Sarez, Pamir Mountains, Tajikistan. Environmental and Engineering Geoscience, 10(2): 151~168.

    • Shi Anwen, Wang Yufeng, Cheng Qiangong, Lin Qiwen, Li Tianhua, Wünnemann B. 2023. The largest rock avalanche in China at Iymek, Eastern Pamir, and its spectacular emplacement landscape. Geomorphology, 421: 108521.

    • Sidorin A Y. 2020. On the 70th anniversary of the 1949 Khait earthquake in Tajikistan. Seismic Instruments, 56: 491~500.

    • Su Zhen, Liu Shiyin, Wang Zhichao. 1989. Modern glaciers of Mount Muztagata and Mount Kongur. Journal of Natural Resources, 4(3): 241~246 (in Chinese with English abstract).

    • Sun Benguo, Mao Weiyi, Feng Yanru, Chang Tao, Zhang Liping, Zhao Ling. 2006. Study on the change of air temperature precipitation and runoff volume in the Yeerqiang River basin. Arid Area Research, 23(2): 203~209 (in Chinese with English abstract).

    • Sun Chongshao, Cai Hongwei. 1997. Developing and distributing characteristics of collapses and landslides during strong historic erthquake in China. Journal of Natural Disasters, 6(1): 25~30 (in Chinese with English abstract).

    • Travasarou T, Bray J D, Abrahamson N A. 2003. Empirical attenuation relationship for Arias intensity. Earthquake Engineering and Structural Dynamics, 32(7): 1133~1155.

    • Wang Tao, Wu Shuren, Shi Jusong, Xin Peng. 2015. Concepts and mechanical assessment method for seismic landslide hazard: A review. Journal of Engineering Geology, 23(1): 93~104 (in Chinese with English abstract).

    • Wang T, Wu S R, Shi J S, Xin P, Wu L Z. 2018. Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the Wei River midstream. Engineering Geology, 235: 11~19.

    • Wang Xiang, Zhu Changming, Zhang Xin, Wang Weisheng, Fang Hui. 2021. Time series monitoring and analysis of hydrological change process of Sarez Dammed Lake from 1972 to 2019 by multi-source remote sensing. Geographic Research, 40(1): 67~80 (in Chinese with English abstract).

    • Wilson R C, Keefer D K. 1985. Predicting areal limits of earthquake induced landsliding. Geological Survey Professional Paper, 1360: 317~345.

    • Xin Hongbo, Wang Yuqing. 1999. Earthquake-induced landslides of rock and soil slopes and their preliminary judgment criteria. Journal of Geotechnical Engineering, 21(5): 591~594 (in Chinese with English abstract).

    • Yuan Z, Chen J, Owen L A, Hedrick K A, Caffee M W, Li W Q, Schoenbohm L M, Robinson A C. 2013. Nature and timing of large landslides within an active orogen, eastern Pamir, China. Geomorphology, 182: 49~65.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Ji Shaocheng, Zhang Zeming, Liu Yan. 2011. On the tectonics of the India-Asia collision. Acta Geologica Sinica, 85(1): 1~33 (in Chinese with English abstract).

    • Yuan Zhaode. 2012. Nature and timing of large landslides within an active orogeny, NE Pamir, China. Master thesis of Institute of Geology, China Seismological Bureau (in Chinese with English abstract).

    • Zhang Yongshuang. 2018. Characteristics of earthquake induced geological disasters in China and their progress of monitoring, prevention and control. City and Disaster Reduction, (3): 9~18 (in Chinese with English abstract).

    • Zhang Yongshuang, Cheng Yuliang, Yao Xin, Wang Jun, Wu Shuren, Wang Meng. 2013. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain. Geological Bulletin of China, 32(12): 1900~1910 (in Chinese with English abstract).

    • Zhang Yongshuang, Yang Zhihua, Guo Changbao, Wang Tao, Wang Donghui, Du Guoliang. 2017. Predicting landslide scenes under potential earthquake scenarios in the Xianshuihe fault zone, Southwest China. Journal of Mountain Science, 14(7): 1262~1278.

    • Zhang Yongshuang, Wu Ruian, Guo Changbao, Li Xiangquan, Li Xue, Ren Sanshao, Li Jinqiu. 2022. Geological safety evaluation of railway engineering construction in plateau mountainous region: Ideas and methods. Acta Geologica Sinica, 96(5): 1736~1751 (in Chinese with English abstract).

    • Zhou Zhenkai, Yao Xin. 2018. Tectonic deformation study of Nov. 25, 2016 MW6. 6 earthquake in West Kunlun Mountain based on InSAR technology. Journal of Geology, 92(2): 232~243 (in Chinese with English abstract).

    • 白玲, 宋博文, 李国辉, 江勇, Dhakal Sanjev. 2019. 喜马拉雅造山带地震活动及其相关地质灾害. 地球科学进展, 34(6): 629~639.

    • 陈杰, 李涛, 李文巧, 袁兆德. 2011. 帕米尔构造结及邻区的晚新生代构造与现今变形. 地震地质, 33(2): 241~259.

    • 范宣梅, 方成勇, 戴岚欣, 王欣, 罗永红, 魏涛, 王运生. 2022. 地震诱发滑坡空间分布概率近实时预测研究——以2022年6月1日四川芦山地震为例. 工程地质学报, 30(3): 729~739.

    • 李宁, 赵强, 孙赫. 2018. 2015年塔吉克斯坦MS7. 4地震的InSAR观测及其构造意义. 大地测量与地球动力学, 38(1): 43~47.

    • 李文巧. 2013. 帕米尔高原东北部塔什库尔干谷地的活动构造与强震. 中国地震局地质研究所博士学位论文.

    • 苏珍, 刘时银, 王志超. 1989. 慕士塔格山和公格尔山的现代冰川. 自然资源学报, 4(3): 241~246.

    • 孙本国, 毛炜峄, 冯燕茹, 常涛, 张丽萍, 赵玲. 2006. 叶尔羌河流域气温、降水及径流变化特征分析. 干旱区研究, 23(2): 203~209.

    • 孙崇绍, 蔡红卫. 1997. 我国历史地震时滑坡崩塌的发育及分布特征. 自然灾害学报, 6(1): 25~30.

    • 王涛, 吴树仁, 石菊松, 辛鹏. 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨. 工程地质学报, 23(1): 93~104.

    • 王翔, 朱长明, 张新, 王伟胜, 方晖. 2021. 1972~2019年萨雷兹堰塞湖遥感时序监测与水文特征过程分析. 地理研究, 40(1): 67~80.

    • 辛鸿博, 王余庆. 1999. 岩土边坡地震崩滑及其初判准则. 岩土工程学报, 21(5): 591~594.

    • 许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1~33.

    • 袁兆德. 2012. 帕米尔活动造山带东北部大型滑坡体特征与年代. 中国地震局地质研究所硕士学位论文.

    • 张永双. 2018. 我国地震地质灾害特点与监测防治进展. 城市与减灾, (3): 9~18.

    • 张永双, 成余粮, 姚鑫, 王军, 吴树人, 王猛. 2013. 四川汶川地震-滑坡-泥石流灾害链形成演化过程. 地质通报, 32 (12): 1900~1910.

    • 张永双, 吴瑞安, 郭长宝, 李向全, 李雪, 任三绍, 李金秋. 2022. 高原山区铁路工程建设地质安全评价: 思路与方法. 地质学报, 96(5): 1736~1751.

    • 周振凯, 姚鑫. 2018. 基于InSAR技术的2016年11月25日西昆仑MW6. 6地震构造变形研究. 地质学报, 92(2): 232~243.