en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

聂潇,男,1988年生。博士,副研究员,主要从事成因矿物学与岩浆-热液成矿作用研究。E-mail:niexiao369@gmail.com。

参考文献
Ayers J C, Watson E B. 1991. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 335(1638): 365~375.
参考文献
Černý P. 1991a. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits; Part II: Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 49~81.
参考文献
Chen Bin, Huang Chao, Zhao Hui. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551: 119769.
参考文献
Chen Jingxi, Wang Shurong, Zhang Xiuying. 1993. Basic Features and Mineralization of Granitic Pegmatites in the Qinling Orogen. Beijing: Geological Publish House, 1-75 (in Chinese with English abstract).
参考文献
Chen Wei, Huang Honghui, Bai Tian, Jiang Shaoyong. 2017. Geochemistry of monazite within carbonatite related REE deposits. Resources, 6(4): 51.
参考文献
Dong Yunpeng, Zhang Guowei, Neubauer F, Liu Xiaoming, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213~237.
参考文献
Dong Yunpeng, Liu Xiaoming, Zhang Guowei, Chen Qing, Zhang Xiaoning, Wei Li, Chen Yang. 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences, 47(1): 123~142.
参考文献
Fei Guangchun, Menuge J F, Li Yunqiang, Yang Jiyi, Deng Yun, Chen Changsheng, Yang Yufan, Yang Zheng, Qin Liye, Zheng Luo. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364: 105555.
参考文献
Jiang Yaohui, Jin Guodong, Liao Shiyong, Zhou Qing, Zhao Peng. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117(1): 183~197.
参考文献
Kempe U, Lehmann B, Wolf D, Rodionov N, Bombach K, Schwengfelder U, Dietrich A. 2008. U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochimica et Cosmochimica Acta, 72(17): 4352~4366.
参考文献
Kynicky J, Smith M P, Xu C. 2012. Diversity of rare earth deposits: The key example of China. Elements, 8(5): 361~367.
参考文献
Li Xiaochun, Zhou Meifu, Williams-Jones A E, Yang Yueheng, Gao Jianfeng. 2019. Timing and genesis of Cu-(Au) mineralization in the Khetri Copper Belt, northwestern India: Constraints from in situ U-Pb ages and Sm-Nd isotopes of monazite-(Ce). Mineralium Deposita, 54(4): 553~568.
参考文献
Li Xinghui, Fan Hongrui, Yang Kuifeng, Hollings P, Liu Xuan, Hu Fangfang, Cai Yachun. 2018. Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China craton: Implication for ore-forming processes. Contributions to Mineralogy and Petrology, 173(9): 73.
参考文献
Liu Junchen, Wang Yitian, Mao Jingwen, Jian Wei, Huang Shikang, Hu Qiaoqing, Wei Ran, Hao Jiaolong. 2021. Precise ages for lode gold mineralization in the Xiaoqinling gold field, southern margin of the North China craton: New constraints from in situ U-Pb dating of hydrothermal monazite and rutile. Economic Geology, 116(3): 773~786.
参考文献
Liu Shuwen, Li Qiugen, Tian Wei, Wang Zongqi, Yang Pengtao, Wang Wei, Bai Xiang, Guo Rongrong. 2011. Petrogenesis of Indosinian granitoids in middle-segment of South Qinling tectonic belt: Constraints from Sr-Nd isotopic systematics. Acta Geologica Sinica (English Edition), 85(3): 610~628.
参考文献
Liu Zhichao, Wu Fuyuan, Yang Yueheng, Yang Jinhui, Wilde S A. 2012. Neodymium isotopic compositions of the standard monazites used in U-Th-Pb geochronology. Chemical Geology, 334: 221~239.
参考文献
London D. 1990. Internal differentiation of rare-element pegmatites: A synthesis of recent research. Geological society of America Bulletin, 246: 35~50.
参考文献
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.
参考文献
Lu Xinxiang, Zhu Chaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. The main geological and metallogenic characteristics of granitic pegmatite in eastern Qinling belt. Geological Review, 56(1): 21~30(in Chinese with English abstract).
参考文献
Lumpkin G R, Gao Y, Gieré R, Williams C, Mariano A, Geisler T. 2014. The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineralogical Magazine, 78(5): 1071~1095.
参考文献
Lü Zhenghang, Zhang Hui, Tang Yong, Liu Yunlong, Zhang Xin. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161~181.
参考文献
Mattauer M, Matte P, Malavieille J, Tapponnier P, Maluski H, Qin X Z, Lun L Y, Qin T Y. 1985. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 317(6037): 496~500.
参考文献
Meng Qingren, Zhang Guowei. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27(2): 123~126.
参考文献
Müller A, Romer R L, Pedersen R-B. 2017. The Sveconorwegian pegmatite province-Thousands of pegmatites without parental granites. The Canadian Mineralogist, 55(2): 283~315.
参考文献
Nie Xiao, Wang Zongqi, Chen Lei, Wang Gang, Li Zengda. 2020. Geochemical contrasts between Late Triassic Rb-rich and barren pegmatites from Ningshan pegmatite district, South Qinling orogen, China: Implications for petrogenesis and rare metal exploration. Minerals, 10(7): 582.
参考文献
Nie Xiao, Wang Zongqi, Chen Lei, Yin Jingwu, Wang Gang. 2021. Monazites reveal timing and genesis of Nb-REE mineralization in trachyte from the Pingli area, North Daba Mountain, China. Geosciences Journal, 25: 605~617.
参考文献
Nie Xiao, Chen Lei, Guo Xianqing, Yu Tao, Wang Zongqi. 2023. Geochemical analysis of apatite and columbite-group minerals of berylcolumbite pegmatites in Ningshan, southern Qinling orogen, China. Earth Science Frontiers, 30(5) : 115~133(in Chinese with English abstract).
参考文献
Peng Hailian, Li Weicheng, Li Wujie, Wang Jiejie, Lü Junli, Du Biao. Geological characteristics and prospecting potential of Rb and other rare metal mineralization in Ningshan
参考文献
County, Shanxi Province. Geological of Shanxi, 34(2): 21~26(in Chinese with English abstract).
参考文献
Qiu Kunfeng, Yu Haocheng, Deng Jun, McIntire D, Gou Zongyang, Geng Jianzhen, Chang Zhaoshan, Zhu Rui, Li Kangning, Goldfarb R. 2020. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic-or metamorphic-hydrothermal origin? Mineralium Deposita, 1~18.
参考文献
Schandl E S, Gorton M P. 2004. A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology, 99(5): 1027~1035.
参考文献
Simmons W, Falster A, Webber K, Roda-Robles E, Boudreaux A P, Grassi L R, Freeman G. 2016. Bulk composition of Mt. Mica pegmatite, Maine, USA: Implications for the origin of an LCT typepegmatite by anatexis. The Canadian Mineralogist, 54(4): 1053~1070.
参考文献
Van Emden B, Thornber M R, Graham J, Lincoln F J. 1997. The incorporation of actinides in monazite and xenotime from placer deposits in western Australia. The Canadian Mineralogist, 35(1): 95~104.
参考文献
Wang He, Gao Hao, Zhang Xiaoyu, Yan Qinghe, Xu Yigang, Zhou Kailin, Dong Rui, Li Pei. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos, 360: 105449.
参考文献
Wang Rucheng, F François, Chen Xiaoming, Hu Huan, Liu Changshi, Xu Shijin, de Parseval P. 2003. Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: A record of magmatic and hydrothermal stages of evolution. The Canadian Mineralogist, 41(3): 727~748.
参考文献
Wang Xiaoxia, Tao Wang, Zhang Chengli. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72(4): 129~151.
参考文献
Williams M L, Jercinovic M J, Hetherington C J. 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35: 137~175.
参考文献
Williams-Jones A E, Wood S A. 1992. A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochimica et Cosmochimica Acta, 56(2): 725~738.
参考文献
Xu Xingwang, Hong Tao, Li Hang, Niu Lei, Ke Qiang, Chen Jianzhong, Liu Shanke, Zhai Mingguo. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh. Acta Petrologica Sinica, 36(12): 3572~3592(in Chinese with English abstract).
参考文献
Yan Zhen, Wang Zongqi, Chen Junlu, Yan Quanren, Wang Tao. 2010. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze block, China: U-Pb geochronology and petrography of sandstones. Journal of Asian Earth Sciences, 37(4): 322~334.
参考文献
Yang Pengtao, Liu Shuwen, Li Qiugen, Wang Zongqi, Wang Ruiting, Wang Wei. 2012. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China: Constraints on petrogenesis and geodynamic processes. Journal of Asian Earth Sciences, 61: 166~186.
参考文献
Zhang Guowei, Zhang Zongqing, Dong Yunpeng. Nature of main tectono-lighostratigraphic units of the Qinling orogen: Implication for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101~114 (in Chinese with English abstract).
参考文献
Zhao Shaorui, Li Jianwei, Lentz David, Bi Shijian, Zhao Xinfu, Tang Kefei. 2019. Discrete mineralization events at the Hongtuling Au-(Mo) vein deposit in the Xiaoqinling district, southern North China craton: Evidence from monazite U-Pb and molybdenite Re-Os dating. Ore Geology Reviews, 109: 413~425.
参考文献
Zhou Haoyang, Sun Xiaoming, Wu Zhongwei, Huang Qian. 2019. Timing of skarn gold deposition in the giant Beiya polymetallic gold deposit, southwest China: Constraints from in situ monazite SIMS U-Th-Pb geochronology. Ore Geology Reviews, 106: 226~237.
参考文献
Zhu Xiangkun, O'Nions R K. 1999. Monazite chemical composition: Some implications for monazite geochronology. Contributions to Mineralogy and Petrology, 137(4): 351~363.
参考文献
Zi Jianwei, Rasmussen B, Muhling J R, Fletcher I R, Thorne A M, Johnson S P, Cutten H N, Dunkley D J, Korhonen F J. 2015. In situ U-Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. Precambrian Research, 260: 91~112.
参考文献
陈西京, 王淑荣, 张秀颖. 1993. 秦岭花岗伟晶岩基本特征与成矿作用. 北京: 地质出版社, 1~75.
参考文献
卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21~30.
参考文献
聂潇, 陈雷, 郭现轻, 于涛, 王宗起. 2023. 南秦岭中段宁陕地区绿柱石铌铁矿型伟晶岩中磷灰石和铌铁矿族矿物的矿物地球化学研究. 地学前缘, 30(5): 115~133.
参考文献
彭海练, 李维成, 李武杰, 王杰杰, 吕军利, 杜彪. 2016. 陕西宁陕县铷等稀有金属成矿地质特征及找矿前景分析. 陕西地质, 34(2): 21~26.
参考文献
徐兴旺, 洪涛, 李杭, 牛磊, 柯强, 陈建中, 刘善科, 翟明国. 2020. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例. 岩石学报, 36(12): 3572~3592.
参考文献
张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101~114.
目录contents

    摘要

    近年来,在秦岭造山带宁陕伟晶岩区发现了数条Be-Nb稀有金属伟晶岩矿脉。本文通过扫描电镜和电子探针分析了Be-Nb伟晶岩中独居石的矿物学特征和矿物成分。研究结果表明,伟晶岩脉中的独居石可分为两类:Ⅰ类独居石主要分布在石英、长石等造岩矿物内部,在背散射图像中多数Ⅰ类独居石内部均匀,部分可见振荡环带,具有较高的ThO2含量(7.0%~13.9%,平均10.5%);Ⅱ类独居石单矿物在背散射图像下同样显示内部均匀,但亮度明显低于Ⅰ类独居石,且ThO2含量较低(0.9%~4.4%,平均2.2%)。这指示了Ⅰ类独居石的岩浆成因和Ⅱ类独居石的热液成因。岩浆成因独居石具有较高的ThO2含量与独居石中磷钙钍石的类质同象替代密切相关。岩浆成因独居石的U-Pb测年结果为200.8±2.1 Ma,代表伟晶岩的成岩年龄,该年龄结果接近宁陕岩基中的二长花岗岩。岩浆和热液成因独居石的εNd值的范围为-4.6~-3.0,这与二长花岗岩的εNd值范围基本一致,说明区内Be-Nb伟晶岩与上述二长花岗岩的同源性。综上所述,本研究认为宁陕地区Be-Nb伟晶岩的形成是宁陕岩基中二长花岗岩同源岩浆在早阶段结晶分异演化后的残留熔浆结晶所致。

    Abstract

    In recent years, several Be-Nb rare-element pegmatite dikes have been discovered in the Ningshan district of the Qinling orogenic belt through geological exploration. This study used scanning electron microscopy and electron probe microanalysis to investigate the mineralogical characteristics and mineral composition of monazite in Be-Nb pegmatite. The results indicate that monazite can be divided into two types. The first type mainly occurs in the rock-forming minerals such as quartz and feldspar. Most of the first type monazite exhibit internally homogeneous backscattered electron (BSE) images, while a small portion may show oscillatory zoning. The first type monazite has a higher ThO2 content (7.0%~13.9%, averaging 10.5%). In contrast, the second type monazite also exhibits internally homogeneous BSE images, but with noticeably lower brightness compared to the first type. The second type monazite has a lower ThO2 content (0.9%~4.4%, averaging 2.2%). This indicates that the first type of monazite has a magmatic origin, while the second type has a hydrothermal origin. Higher concentrations of ThO2 in the primary magmatic monazite are associated with an increase in the brabantite molecule substitution. The U-Pb dating of the magmatic monazite yielded an age of 200.8±2.1 Ma, representing the age of the pegmatite emplacement, which is close to that of the monzonite granite in the Ningshan batholith. The εNd values of both the magmatic and hydrothermal monazite range from -4.6 to -3.0, which is consistent with the εNd value range of the monzonite granite. This indicates the genetic relationship between the Be-Nb pegmatite and the monzonite granite. Based on various lines of evidence, this study concludes that the formation of Be-Nb rare-element pegmatites in the Ningshan district is the result of the residual magma crystallization of the co-genetic monzonite granite magma differentiation in the early stage in the Ningshan batholith.

  • 独居石是一种富含稀土元素(以轻稀土为主,含少量重稀土)的磷酸盐矿物,其广泛存在于各类岩石中,如过铝质花岗岩、中高级变质泥岩及热液脉等(Zhu et al.,1999)。过去十年,独居石的温度压力计算、地质年代学、地球化学和岩石学相关应用显著增加。主要原因:① 独居石具有复杂多变的化学成分,常常能够反映寄主岩石中如温压、氧逸度和熔体成分等内生条件以及如构造运动、沉积作用和交代作用等外生条件的变化(Williams et al.,2007)。② 独居石中往往含有大量的钍和铀元素,且相对于放射性铅来说,普通铅含量极小,因此在地质学研究中,独居石常作为地质年代计用来进行Th-U-Pb测年(Zi et al.,2015;Li et al.,2018;Zhou et al.,2019;Qiu et al.,2020;Liu et al.,2021)。③ 独居石中Sm和Nd元素浓度较高,可进行矿物原位Sm-Nd同位素组成的测定(Liu et al.,2012),通过分析独居石中的Sm-Nd同位素组成还可获取寄主岩石物质来源方面的信息(Chen et al.,2017;Li et al.,2019)。

  • 宁陕伟晶岩区位于秦岭造山带中段,是秦岭造山带中三大伟晶岩区之一。近年来,在该区手扒岩岩体南缘的外接触带,发现数条稀有金属矿化伟晶岩脉,主要以Rb矿化为主,同时还有部分伟晶岩脉发育Be和Nb-Ta矿化(彭海练等,2016)。初步研究发现,这些伟晶岩属于绿柱石-铌铁矿型伟晶岩,全岩地球化学特征表明伟晶岩与宁陕岩基中的二长花岗岩有着紧密的成因联系(Nie et al.,2020),但该认识仍缺少其他相关证据。

  • 本研究以宁陕地区Be-Nb伟晶岩中的独居石为对象,观察独居石产出特征和背散射图像结构,结合独居石的矿物成分特征,确定独居石不同的成因类型,在此基础上对独居石进行U-Pb测年及Nd同位素组成分析,旨在进一步揭示该区稀有金属伟晶岩成因。

  • 1 地质概况及伟晶岩特征

  • 秦岭造山带位于灵宝—鲁山断裂以南,勉略—巴山断裂以北,连接了华北板块和扬子板块,是我国中央造山带的重要组成部分(图1a)(Meng et al.,1999;Yan et al.,2010)。秦岭造山带以洛南—栾川断裂、商丹缝合带和勉略缝合带为界,由北到南可依次划分为华北板块南缘、北秦岭、南秦岭和扬子板块北缘(图1a)(Mattauer et al.,1985;Dong et al.,2011)。其中,南秦岭是秦岭造山带中组成与结构比较复杂的构造带,发育大量元古代变质岩系、晚古生代海相沉积岩系和大面积的印支期花岗岩类(张国伟等,1995;Liu et al.,2011;Dong et al.,2012;Wang et al.,2013)。

  • 南秦岭中段的花岗岩体由西到东可划为三个岩体群,分别为迷坝—光头山岩体群、五龙—宁陕岩体群(包括华阳、五龙、西岔河、老城和胭脂坝等岩体)及柞水—东江口岩体群,它们主要沿勉略缝合带分布,形成一条近东西向展布的花岗岩带(图1b)。这些花岗岩体的形成被认为与南秦岭和扬子板块沿着勉略缝合带发生的一系列俯冲、碰撞、后碰撞伸展等造山运动导致的大规模岩浆侵入作用密切相关(Liu et al.,2011;Dong et al.,2012;Wang et al.,2013)。

  • 宁陕岩基是五龙—宁陕岩体群的重要组成部分,主要由老城和胭脂坝两个较大规模的岩体组成(图1b)。其中,老城岩体主要由花岗闪长岩和黑云母二长花岗岩两种岩相组成;胭脂坝岩体则主要由黑云母二长花岗岩和黑云母钾长花岗岩组成,局部可见二云母二长花岗岩出露。年代学研究表明,不同岩相的形成与多期次的岩浆活动有关,石英闪长岩、花岗闪长岩的侵位年龄为222~216 Ma,二长花岗岩和二云母二长花岗岩的侵位年龄约210 Ma左右(Yang et al.,2012)。前人通过地球化学研究表明,在勉略洋闭合过程中,洋壳发生俯冲作用,导致大陆岛弧下的亏损地幔岩浆和元古代玄武岩部分熔融产生的岩浆发生混合,混合岩浆参与了早期的岩浆作用;晚期的岩浆作用主要由大陆地壳物质的部分熔融形成,晚期的岩浆岩主要为二长花岗岩和二云母二长花岗岩,它们的形成通常发生在从挤压到伸展的构造转换时期(Yang et al.,2012)。

  • 宁陕伟晶岩区位于南秦岭宁陕岩基以南,与北秦岭的商南伟晶岩区和宝鸡伟晶岩区并称为秦岭造山带内的三大伟晶岩区(陈京西等,1993;卢欣祥等,2010)。本次研究区位于宁陕伟晶岩区东端,金家山岩体以东、手扒岩岩体以南,距太山庙镇南东方向约5 km处(图1c)。前人曾在该区开展过一定程度的地质勘查工作并指出区内伟晶岩存在Rb(赋存于微斜长石和白云母中)和Be矿化(彭海练等,2016)。本次研究的样品采自新建乡至栗扎坪村乡道旁的伟晶岩脉(GPS坐标: 33°21’1”,108°36’3”)。岩脉宽约1~3 m,长约20 m,走向北西—西,围岩地层主要为中下志留统梅子垭组的绢云母片岩和石英砂岩-粉砂岩,中上泥盆统古道岭组的结晶灰岩及少量硅质岩石。伟晶岩呈中—粗粒结构,块状构造,内部矿物组合分带不明显(图2a),矿物组成以钠长石、白云母和石英为主,正长石和铁铝榴石(锰)其次,副矿物主要有绿柱石、铌铁矿、磷灰石、金绿宝石及独居石等(图2b、c)。

  • 2 测试方法

  • 岩石薄片的电子显微镜观察和自动化矿物分析实验(TIMA)在南京宏创地质勘查技术服务有限公司完成。独居石单矿物分离在北京克拉通岩创科技有限公司完成。

  • 扫描电镜背散射图像(BSE)拍摄和电子探针(EPMA)分析在中国地质科学院矿产资源研究所成矿作用与资源评价重点实验室完成,使用的仪器为日本电子JEOL JXA-iHP200F场发射电子探针。测试条件为加速电压15 kV,束流20 nA,电子束斑直径为2 μm;分析元素特征峰的测定时间为10 s;背景测定时间为5 s。标样如下:P-磷灰石;Si-石英; Th-ThO2;U-晶质铀矿;Y-五磷酸钇;La-五磷酸镧;Ce-五磷酸铈;Nd-五磷酸钕;Sm-五磷酸钐;Ca-磷灰石。所有数据经过ZAF校正。

  • 激光剥蚀电感耦合等离子体质谱分析(LA-ICP-MS)对独居石进行U-Pb定年测试在南京聚谱检测科技有限公司完成。193 nm ArF 准分子激光剥蚀系统型号为 RESOlution LR。四极杆型电感耦合等离子体质谱仪(ICP-MS)型号为Agilent 7700x。准分子激光发生器产生的深紫外光束经匀化光路聚焦于独居石表面,能量密度为4.5 J/cm2。收集20 s氦气本底,以33 μm束斑、6 Hz频率剥蚀40 s,气溶胶由氦气送出剥蚀池,与氩气混合后进入ICP-MS进行检测。各核素积分时间如下:207Pb为20 ms,206Pb与208Pb各15 ms,232Th与238U各10 ms,202Hg、204Pb与其他微量元素积分时间为8 ms。测试过程中以标准矿物独居石44069(425 Ma)为外标,校正仪器质量歧视与元素分馏;以标准矿物独居石Trebilcock(270 Ma)为盲样,检验U-Pb定年数据质量;以NIST SRM 610为外标,标定独居石的微量元素含量。测试过程中以标准矿物氟碳铈矿K-9(118 Ma)为外标,校正仪器质量歧视与元素分馏;以NIST SRM 610为外标,标定氟碳铈矿的微量元素含量。

  • 图1 南秦岭中段构造单元划分和印支期花岗岩类分布简图(a)(据Liu et al.,2011; Dong et al.,2012; Wang et al.,2013); 宁陕伟晶岩区地质简图(b)(据陈西京等,1993);研究区地质图(c)

  • Fig.1 Simplified map showing the tectonic division and distribution ofIndosinian granitoids in the South Qinling Orogen (a) (modified after Liu et al., 2011; Dong et al., 2012; Wang et al., 2013) ; simplified geological map of Ningshan pegmatite district (b) (modified after Chen et al., 1993) ; geological sketch map of the study area (c)

  • 图2 宁陕地区Be-Nb 伟晶岩的野外露头(a)、手标本(b)及正交偏光镜下照片(c);图c相同视域内的 TIMA扫描结果(d);绿柱石和铌铁矿族矿物的BSE照片(e、f)

  • Fig.2 Photographs and photomicrographs showing outcrop (a) , hand specimen (b) and the mineralogy and textural features of representative samples from the Be-Nb pegmatites in the Ningshan district (c) ; TIMA mineral phases map of the same observation area in Fig.2c (d) ; BSE image of beryl and columbite group mineral (e, f)

  • 矿物缩写:Brl—绿柱石;Mus—白云母;Q—石英;Ab—钠长石;CGM—铌铁矿族矿物;Urn—晶质铀矿

  • Mineral abbreviations: Brl—beryl; Mus—muscovite; Q—quartz; Ab—albite; CGM—columbite group mineral; Urn—uraninite

  • 在南京聚谱检测科技有限公司完成对独居石 Nd 同位素的激光剥蚀多接收电感耦合等离子体质谱分析(LA-MC-ICP-MS)。193 nm ArF 准分子激光剥蚀系统型号为 RESOlution LR。多接收器型电感耦合等离子体质谱仪(MC-ICP-MS)型号为Nu Plasma II。准分子激光发生器产生的深紫外光束经匀化光路聚焦于独居石表面,能量密度为4.5 J/cm2。先收集20 s 氦气本底,随后以 23 μm 束斑、5 Hz频率剥蚀40 s,气溶胶由氦气送出剥蚀池,与氩气混合后进入MC-ICP-MS。MC-ICP-MS单次积分时间为0.3 s,40 s内剥蚀时间内约有133组数据。独居石测试过程中每隔10颗样品,交替测试3颗标准矿物独居石(包括标样44069、Trebilcock、Namaqualand-2),以检验Nd同位素比值的数据质量。独居石的Sm/Nd元素分馏校正,基于独居石标物Namaqualand-2 147Sm/144Nd =0.0980±3(ID-TIMS数值;Liu et al.,2012)。

  • 3 结果

  • 3.1 独居石矿物学特征及EPMA分析结果

  • 宁陕地区Be-Nb伟晶岩薄片中独居石的BSE图像见图3。独居石多呈半自形结构产出于石英内部或长石内部,独居石颗粒内部较为均一,未见环带发育(图3a、b)。部分独居石颗粒与交代矿物共生(如白云石),但独居石内部亮度比较均一,交代结构不明显(图3c、d)。样品LZP04-5-1、LZP 04-5-5和LZP04-12-2中8个独居石颗粒的EPMA分析结果显示具有相似的化学成分(附表1,编号1-7):ThO2含量为10.0%~12.9%,平均含量11.3%;UO2含量为1.0%~4.2%,平均含量2.9%;CaO含量为1.7%~3.2%,平均含量2.7%。LRE2O3含量为43.9%~50.2%,平均为46.7%,其中主要元素含量由高到低分别为,Ce2O3 24.4%~28.2%,平均26.1%;La2O310.0%~12.5%,平均11.3%;Nd2O3 8.5%~10.3%,平均9.2%。基于上述电子探针分析结果,这些独居石可以被归为含钍的铈独居石。

  • 与之不同的是,对分选的独居石单矿物颗粒进行BSE图像观察和EPMA分析发现,独居石单矿物可分为两类:

  • 第一类独居石(Mnz-Ⅰ)颗粒自形程度往往较高,在BSE图像下具有较高的亮度,部分颗粒可见明显的振荡环带(代表性颗粒见图4a)。元素面扫描(mapping)分析结果显示:Ce元素在Mnz-Ⅰ颗粒内部分布均匀(图4b);Th元素在Mnz-Ⅰ内部的分布与振荡环带具有较高的吻合度(图4c)。

  • 对19颗Mnz-Ⅰ 颗粒的19个EPMA分析结果显示(附表1,编号8-26),ThO2含量为7.0%~14.9%,平均含量10.2%;UO2含量为1.9%~4.9%,平均含量3.3%;CaO含量为2.0%~3.6%,平均含量2.6%。LREEs成分上,LRE2O3含量为41.8%~50.9%,平均为46.6%,其中主要元素含量由高到低分别为,Ce2O3 23.6%~28.7%,平均26.2%;La2O3 8.4%~13.1%,平均11.1%;Nd2O3 8.5%~10.4%,平均9.3%。可见,Mnz-Ⅰ 与岩石薄片下的独居石的化学组成基本一致,属于同一类独居石。

  • 第二类独居石(Mnz-Ⅱ)颗粒的自形程度较差,在BSE图像下相对Mnz-Ⅰ较暗(代表性颗粒见图4d),且未见成分分带。元素面扫描分析结果显示:Ce元素在Mnz-Ⅱ 颗粒内部与Mnz-Ⅰ颗粒内部的分布特征相似,呈均匀分布(图4e);Th元素在Mnz-Ⅱ颗粒内部基本呈均匀分布(图4f),仅局部Th元素显示较高强度。2个(k-15和b-2)Mnz-Ⅱ独居石颗粒8个测点的EPMA分析结果显示(附表1,编号27-34),ThO2含量分别0.9%~2.4%,平均1.8%和1.7%~4.4%,平均2.6%,明显低于Mnz-Ⅰ;UO2含量为≤4.2%,平均含量2.8%;CaO含量为0.1%~1.5%,平均0.7%,显著低于Mnz-Ⅰ。LRE2O3含量为54.0%~61.3%,平均为58.0%,明显高于Mnz-Ⅰ,主要元素含量Ce2O3> La2O3> Nd2O3> Sm2O3,与Mnz-Ⅰ类似。

  • 3.2 独居石LA-ICP-MS U-Pb测年结果

  • 对上述19颗Mnz-Ⅰ独居石单矿物颗粒进行LA-ICP-MS测年分析,19个测点的分析结果见表1。在年龄谐和图上,数据点基本位于谐和线附近,得到谐和年龄为200.8±2.1 Ma(MSWD=30)(图5)。

  • 图3 宁陕地区Be-Nb伟晶岩中独居石的BSE照片(各图中的小图为相同独居石颗粒在合适的亮度和对比度值下的BSE照片)

  • Fig.3 BSE images of monazite from Be-Nb pegmatites in the Ningshan district (small BSE images in the corner are corresponding to the same monazite gains with favorable image brightness and contrast values)

  • (a)—独居石分布在石英内部;(b)—独居石分布在正长石和钠长石间隙;(c)—锆石局部被白云石交代,但独居石交代结构不明显;(d)—独居石与交代矿物白云石共生,但未显示被交代迹象;矿物缩写:Mnz—独居石;Q—石英;Dol—白云石;Or—正长石;Ab—钠长石;Zrn—锆石;Urn—晶质铀矿;Ap—磷灰石

  • (a) —monazite is enclosed by quartz; (b) —monazite is intergrowth between orthoclase and albite; (c) —zircon is partly altered by dolomite, while monazite is relatively “fresh”; (d) —monazite coexists with the secondary dolomite, exhibiting no compositional zoning; mineral abbreviations: Mnz—Monazite; Q—quartz; Dol—dolomite; Or—orthoclase; Ab—albite; Zrn—zircon; Urn—uraninite; Ap—apatite

  • 3.3 独居石LA-MC-ICP-MS原位Nd同位素结果

  • 对上述19颗Mnz-Ⅰ独居石矿物颗粒分别进行LA-MC-ICP-MS原位Nd同位素分析,19个测点分析结果表明,独居石的147Sm/144Nd值为0.164346~0.322806(平均值为0.207663),143Nd/144Nd值为0.512419~0.512574(平均值为0.512460)(表2)。基于前期获得的岩浆成因铌铁矿的LA-ICP-MS U-Pb测年结果为206 Ma(聂潇等,2023),得到的εNd值的范围为-4.6~-3.0(平均值为-3.8)(表2)。该εNd值和前期研究获得的原生磷灰石的εNd值(-4.3~-2.5)(聂潇等,2023)具有较高的相似性。

  • 另外,本研究还对1颗Mnz-Ⅱ颗粒(k-15,矿物成分见附表1,编号27-30)进行了LA-MC-ICP-MS原位Nd同位素分析。结果表明,独居石的147Sm/144Nd值为0.196049,143Nd/144Nd值为0.512463。基于前期获得的热液成因晶质铀矿的LA-ICP-MS U-Pb测年结果为199 Ma(聂潇等,2023),得到的εNd值为-3.4(表2),也属于上述Mnz-Ⅰ颗粒εNd值范围内。

  • 4 讨论

  • 4.1 独居石成因及伟晶岩成岩时代

  • 独居石是以纯稀土元素独居石(LREEPO4)、磷钙钍石[CaTh(PO42]和单斜钍石(ThSiO4)及其富含U的等价物(USiO4)为三个主要端员的固溶体系列。Van Emden et al.(1997)和Zhu et al.(1999)曾指出,独居石中矿物成分变化可以由下列元素替代机制解释:

  • 图4 宁陕地区Be-Nb 伟晶岩中两类独居石单矿物颗粒(Mnz-Ⅰ和Mnz-Ⅱ) 的BSE照片及元素(Ce、Th)EPMA面扫描分析图像

  • Fig.4 Backscattered electron (BSE) images and major element (Ce, Th) X-ray mappings of representative two types of monazite grains (Mnz-Ⅰ and Mnz-Ⅱ) from Be-Nb pegmatites in the Ningshan district

  • 表1 宁陕地区Be-Nb 伟晶岩中独居石的LA-ICP-MS U-Pb测年结果

  • Table1 LA-ICP-MS U-Pb ages for monazites from the Be-Nb pegmatites in the Ningshan district

  • (Th, U) 4++Ca2+2LREE3+

  • 表2 宁陕地区Be-Nb 伟晶岩中独居石的LA-ICP-MS Nd同位素分析结果

  • Table2 LA-ICP-MS Nd isotopes of monazites from the Be-Nb pegmatites in the Ningshan district

  • 图5 宁陕地区Be-Nb 伟晶岩中第一类独居石 (Mnz-Ⅰ)的LA-ICP-MS U-Pb年龄谐和图

  • Fig.5 U-Pb concordia diagrams for Mnz-Ⅰ from Be-Nb pegmatites in the Ningshan district

  • (Th, U) 4++Si4+LREE3++P5+

  • 本研究计算了Mnz-Ⅰ和Mnz-Ⅱ两类独居石的阳离子数(附表1),其中Si+Ca和Th+U基本相等(图6a),证明了上述两个替代机制控制了独居石的成分差异。另外,图6b展示了Mnz-Ⅰ 和Mnz-Ⅱ中Th+U减去Si(单斜钍石组份)后,仍与Ca有很强的相关性,暗示磷钙钍石在独居石成分替代中的重要性。在图6c中,Mnz-Ⅰ 和Mnz-Ⅱ中的Th+U减去Ca(磷钙钍石组份)后,与Si具有一定的相关性,表明独居石成分替代中单斜钍石的重要作用。图6d上,所有Mnz-Ⅰ中Ca原子数显著高于Si原子数,指示了对于Mnz-Ⅰ,磷钙钍石分子相比单斜钍石分子在固溶体中占比更高。一部分Mnz-Ⅱ(b-2颗粒)中同样具有Ca原子数显著高于Si原子数的特征(图6d),说明在b-2颗粒中磷钙钍石分子相比单斜钍石分子在固溶体中占比更高;另外一部分Mnz-Ⅱ(k-15颗粒)中的Si和Ca原子数基本相等(图6d),则证明单斜钍石组分对于k-15颗粒成分替代上起到更重要的作用。

  • 独居石作为花岗岩和伟晶岩中重要的副矿物以及蚀变岩中的重要蚀变矿物,可分为岩浆和热液成因。前人对独居石矿物成分的研究发现,岩浆独居石和热液独居石之间的ThO2含量会有显著差异,岩浆独居石往往具有较高的ThO2含量(3%>5%),而热液独居石中ThO2含量往往较低(多数<1%)(Zhu et al.,1999;Schandl et al.,2004)。目前,根据独居石成分确定独居石成因的方法已被广泛使用(例如,Qiu et al.,2000;Kempe et al.,2008;Li et al.,2019;Zhao et al.,2019;Zhou et al.,2019;Nie et al.,2021)。本研究中Mnz-Ⅰ的ThO2含量为7.0%~13.9%(平均为10.5%,附表1),具有岩浆独居石的特点。Mnz-Ⅰ的矿物产出、共生组合特点及BSE图像中振荡环带结构(图3和图4),也证明了上述观点。相比之下,在本研究中Mnz-Ⅱ独居石并没有在薄片中发现而仅存在于单矿物颗粒中,但是相对岩浆独居石,Mnz-Ⅱ在BSE图像中亮度较暗。结合Mnz-Ⅱ中ThO2含量为0.9%~4.4%(平均为2.2%)(附表1)明显低于岩浆独居石的特点,本研究认为Mnz-Ⅱ属于热液独居石同时,元素面扫描显示Mnz-Ⅱ中Th元素分布整体较均匀,局部Th元素含量较高可能是交代程度不同所致。

  • 图6 宁陕地区Be-Nb 伟晶岩中独居石主要元素替代关系

  • Fig.6 Dominant element substitutions in monazite from Be-Nb rave-element pegmatites in the Ningshan district

  • (a)—(Si+Ca)与(Th+U)的图表呈现明显的线性相关性,表明磷钙钍石和单斜钍石都对元素置换做出了贡献;(b)—Ca与(Th+U)减去Si(单斜钍石组份)后的组成呈现强相关性;(c)—Si与(Th+U)减去(磷钙钍石组份)后的组成呈现强相关性;(d)—样品k-15矿物颗粒中Si和Ca原子数基本相等,b-2颗粒和所有Mnz-Ⅰ 中Ca原子数显著高于Si原子数

  • (a) —plot of (Si+Ca) vs. (Th+U) shows obvious linear correlation indicating that both brabantite and huttonite contribute to the element substitutions; (b) —strong correlation of Ca vs. (Th+U) after subtracting Si (huttonite component) ; (c) —strong correlation of Si vs. (Th+U) after subtracting Ca (brabantite component) ; (d) —in sample k-15 mineral grain, the numbers of Si and Ca atoms are roughly equal, while in b-2 grain and all Mnz-Ⅰ grains, the number of Ca atoms is significantly higher than that of Si atoms

  • 独居石属于抗风化能力极强的矿物,在风化和搬运作用下也常常能够保存下来,常在海滩砂或砂矿中发现。同时,由于独居石在热液交代过程中的表现出较高的稳定性,因此在处理核废料过程中起到重要作用(Lumpkin et al.,2014)。但是,Wang et al.(2003)和Lumpkin et al.(2014)指出,独居石在富F、CO2及Ca的流体中溶解度会显著升高,并可能在流体作用下蚀变为氟碳铈矿、钍石、氟磷灰石等矿物(例如,Ayers and Watson,1991;Williams-Jones and Wood,1992;Kynicky et al.,2012)。本次研究由于缺少热液独居石的产出状态,对独居石的交代过程还需要进一步开展工作。然而,单矿物颗粒中发现的少量热液独居石可能暗示了交代流体具有高F、CO2、Ca组分特征。

  • 本次研究的Be-Nb伟晶岩中存在少量热液成因独居石(Mnz-Ⅱ)颗粒,但是,本研究中用于年代学分析的均为岩浆成因Mnz-Ⅰ独居石,并得到独居石测年结果为200.8±2.1 Ma(MSWD=30)(图5)。该年龄和前期研究获得的岩浆成因铌铁矿定年结果(206.3±1.5 Ma;聂潇等,2023)、锆石定年结果(202.9±4.2 Ma;Nie et al.,2020)在误差范围内基本一致,即该年龄代表了伟晶岩的成岩年龄。

  • 4.2 伟晶岩成因

  • 研究表明稀有金属伟晶岩的成因主要分为两种:① 岩浆结晶分异晚期残余熔浆结晶形成的伟晶岩(London,19902018;Černý,1991;Wang et al.,2020;徐兴旺等,2020);② 由地壳深熔作用直接形成的伟晶岩(Simmons et al.,2016Müller et al.,2017;Lv et al.,2018;Fei et al.,2020;Chen et al.,2020)。本研究中Be-Nb伟晶岩主要分布在宁陕岩基的南缘外接触带,二者具有密切的空间关系,且伟晶岩内岩浆成因的独居石获得U-Pb年龄为200.8±2.1 Ma,与前期的研究中指出锆石U-Pb年龄(202.9±4.2 Ma)(Nie et al.,2020)和铌铁矿U-Pb年龄(206.3±1.5 Ma)(聂潇等,2023)在误差范围内相差不大,这些年代学研究结果均与宁陕岩基中的二长花岗岩成岩年龄基本一致。

  • 前人对秦岭造山带中段晚三叠世多期岩体进行的Nd同位素研究显示,老城岩体和胭脂坝岩体中的二长花岗岩εNd值为-6.6~-2.9(Jiang et al.,2010)(图7)。本研究对伟晶岩中岩浆成因的独居石进行原位Nd同位素分析获得εNdt=206)的范围为-4.6~-3.0(平均值为-3.8)(表2;图7),与上述二长花岗岩的εNd值具有较高相似性(图7),结合前期研究获得的宁陕地区Be-Nb伟晶岩中原生磷灰石的εNd值(-4.3~-2.5;聂潇等,2023),指示宁陕地区Be-Nb伟晶岩与该区二长花岗岩具有同源性。

  • 此外,本研究中热液成因独居石的原位Nd同位素结果显示(εNd值为-3.4),其与岩浆成因的磷灰石、独居石及上述二长花岗岩均具有相似性,这可能与独居石被交代改造的流体主要为岩浆热液,或者即使混入淋滤围岩的流体、大气水,由于其中REE含量远低于岩浆热液,所以独居石Nd同位素组成仍记录其岩浆热液的特征(Chen et al.,2017)。

  • 此外,本研究中的伟晶岩具有较老的T2DM(Nd)年龄(1.36~1.24 Ga,表2),该年龄不仅与磷灰石的T2DM(Nd)年龄(1.34~1.20 Ga,聂潇等,2023)基本一致,还与老城岩体和胭脂坝岩体中二长花岗岩的T2DM(Nd)年龄具有较高的重叠性(1.54~1.23 Ga; Jiang et al.,2010),这表明岩浆可能源自中元古代的变质基底(Jiang et al.,2010)。

  • 图7 宁陕地区Be-Nb 伟晶岩中独居石的 εNdt=206)值直方图

  • Fig.7 Histogram showing εNd (t=206) values for the monazite from Be-Nb pegmatites in the Ningshan district

  • 图中宁陕地区Be-Nb 伟晶岩中磷灰石εNd值源自参考文献(聂潇等,2023),灰色范围表示宁陕岩基中老城岩体和胭脂坝岩体中二长花岗岩的εNd值(数据源自Jiang et al.,2010)

  • The ranges of εNd values for apatites from Be-Nb pegmatites in the Ningshan district (data from Nie et al., 2023) and monzogranites of Laocheng intrusion and Yanzhiba intrusion in Ningshan granitoid batholith (light gray areas) (data from Jiang et al., 2010) are also shown for comparison

  • 前期研究发现,研究区内的二长花岗岩→贫矿伟晶岩→含矿伟晶岩,全岩地球化学数据中的Zr/Hf值、Rb/Sr值以及Nb/Ta值呈现的变化特征指示了岩浆演化过程中存在分离结晶作用(Nie et al.,2020)。结合上述二长花岗岩和伟晶岩的时空关系及源区的认识,本研究认为研究区Be-Nb伟晶岩是宁陕岩基中二长花岗岩的同源岩浆,经历早期结晶后分异演化的残留熔浆结晶的产物。

  • 5 结论

  • (1)宁陕地区Be-Nb伟晶岩中具有岩浆成因和热液成因两种独居石,岩浆成因独居石成分中以磷钙钍石的类质同象代替为主,热液成因独居石成分中则分为磷钙钍石和单斜钍石两种类质同象代替。

  • (2)宁陕地区Be-Nb伟晶岩中岩浆成因独居石的U-Pb年龄为200.8±2.1 Ma,该年龄代表了伟晶岩的成岩年龄。

  • (3)宁陕地区Be-Nb伟晶岩中岩浆和热液成因独居石的εNd(t)值的范围为-4.6~-3.0,与宁陕岩基中二长花岗岩的εNd值具有较高的相似性,指示了二者的同源性。

  • 致谢: 感谢中国地质科学院矿产资源研究所矿物微区物质组分与结构实验室在电子探针测试过程中的帮助!感谢南京聚谱检测科技有限公司在LA-ICP-MS测试过程中给予的帮助!

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202311093?st=article_issue

  • 参考文献

    • Ayers J C, Watson E B. 1991. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 335(1638): 365~375.

    • Černý P. 1991a. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits; Part II: Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 49~81.

    • Chen Bin, Huang Chao, Zhao Hui. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551: 119769.

    • Chen Jingxi, Wang Shurong, Zhang Xiuying. 1993. Basic Features and Mineralization of Granitic Pegmatites in the Qinling Orogen. Beijing: Geological Publish House, 1-75 (in Chinese with English abstract).

    • Chen Wei, Huang Honghui, Bai Tian, Jiang Shaoyong. 2017. Geochemistry of monazite within carbonatite related REE deposits. Resources, 6(4): 51.

    • Dong Yunpeng, Zhang Guowei, Neubauer F, Liu Xiaoming, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213~237.

    • Dong Yunpeng, Liu Xiaoming, Zhang Guowei, Chen Qing, Zhang Xiaoning, Wei Li, Chen Yang. 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences, 47(1): 123~142.

    • Fei Guangchun, Menuge J F, Li Yunqiang, Yang Jiyi, Deng Yun, Chen Changsheng, Yang Yufan, Yang Zheng, Qin Liye, Zheng Luo. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364: 105555.

    • Jiang Yaohui, Jin Guodong, Liao Shiyong, Zhou Qing, Zhao Peng. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117(1): 183~197.

    • Kempe U, Lehmann B, Wolf D, Rodionov N, Bombach K, Schwengfelder U, Dietrich A. 2008. U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochimica et Cosmochimica Acta, 72(17): 4352~4366.

    • Kynicky J, Smith M P, Xu C. 2012. Diversity of rare earth deposits: The key example of China. Elements, 8(5): 361~367.

    • Li Xiaochun, Zhou Meifu, Williams-Jones A E, Yang Yueheng, Gao Jianfeng. 2019. Timing and genesis of Cu-(Au) mineralization in the Khetri Copper Belt, northwestern India: Constraints from in situ U-Pb ages and Sm-Nd isotopes of monazite-(Ce). Mineralium Deposita, 54(4): 553~568.

    • Li Xinghui, Fan Hongrui, Yang Kuifeng, Hollings P, Liu Xuan, Hu Fangfang, Cai Yachun. 2018. Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China craton: Implication for ore-forming processes. Contributions to Mineralogy and Petrology, 173(9): 73.

    • Liu Junchen, Wang Yitian, Mao Jingwen, Jian Wei, Huang Shikang, Hu Qiaoqing, Wei Ran, Hao Jiaolong. 2021. Precise ages for lode gold mineralization in the Xiaoqinling gold field, southern margin of the North China craton: New constraints from in situ U-Pb dating of hydrothermal monazite and rutile. Economic Geology, 116(3): 773~786.

    • Liu Shuwen, Li Qiugen, Tian Wei, Wang Zongqi, Yang Pengtao, Wang Wei, Bai Xiang, Guo Rongrong. 2011. Petrogenesis of Indosinian granitoids in middle-segment of South Qinling tectonic belt: Constraints from Sr-Nd isotopic systematics. Acta Geologica Sinica (English Edition), 85(3): 610~628.

    • Liu Zhichao, Wu Fuyuan, Yang Yueheng, Yang Jinhui, Wilde S A. 2012. Neodymium isotopic compositions of the standard monazites used in U-Th-Pb geochronology. Chemical Geology, 334: 221~239.

    • London D. 1990. Internal differentiation of rare-element pegmatites: A synthesis of recent research. Geological society of America Bulletin, 246: 35~50.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • Lu Xinxiang, Zhu Chaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. The main geological and metallogenic characteristics of granitic pegmatite in eastern Qinling belt. Geological Review, 56(1): 21~30(in Chinese with English abstract).

    • Lumpkin G R, Gao Y, Gieré R, Williams C, Mariano A, Geisler T. 2014. The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineralogical Magazine, 78(5): 1071~1095.

    • Lü Zhenghang, Zhang Hui, Tang Yong, Liu Yunlong, Zhang Xin. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161~181.

    • Mattauer M, Matte P, Malavieille J, Tapponnier P, Maluski H, Qin X Z, Lun L Y, Qin T Y. 1985. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 317(6037): 496~500.

    • Meng Qingren, Zhang Guowei. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27(2): 123~126.

    • Müller A, Romer R L, Pedersen R-B. 2017. The Sveconorwegian pegmatite province-Thousands of pegmatites without parental granites. The Canadian Mineralogist, 55(2): 283~315.

    • Nie Xiao, Wang Zongqi, Chen Lei, Wang Gang, Li Zengda. 2020. Geochemical contrasts between Late Triassic Rb-rich and barren pegmatites from Ningshan pegmatite district, South Qinling orogen, China: Implications for petrogenesis and rare metal exploration. Minerals, 10(7): 582.

    • Nie Xiao, Wang Zongqi, Chen Lei, Yin Jingwu, Wang Gang. 2021. Monazites reveal timing and genesis of Nb-REE mineralization in trachyte from the Pingli area, North Daba Mountain, China. Geosciences Journal, 25: 605~617.

    • Nie Xiao, Chen Lei, Guo Xianqing, Yu Tao, Wang Zongqi. 2023. Geochemical analysis of apatite and columbite-group minerals of berylcolumbite pegmatites in Ningshan, southern Qinling orogen, China. Earth Science Frontiers, 30(5) : 115~133(in Chinese with English abstract).

    • Peng Hailian, Li Weicheng, Li Wujie, Wang Jiejie, Lü Junli, Du Biao. Geological characteristics and prospecting potential of Rb and other rare metal mineralization in Ningshan

    • County, Shanxi Province. Geological of Shanxi, 34(2): 21~26(in Chinese with English abstract).

    • Qiu Kunfeng, Yu Haocheng, Deng Jun, McIntire D, Gou Zongyang, Geng Jianzhen, Chang Zhaoshan, Zhu Rui, Li Kangning, Goldfarb R. 2020. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic-or metamorphic-hydrothermal origin? Mineralium Deposita, 1~18.

    • Schandl E S, Gorton M P. 2004. A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology, 99(5): 1027~1035.

    • Simmons W, Falster A, Webber K, Roda-Robles E, Boudreaux A P, Grassi L R, Freeman G. 2016. Bulk composition of Mt. Mica pegmatite, Maine, USA: Implications for the origin of an LCT typepegmatite by anatexis. The Canadian Mineralogist, 54(4): 1053~1070.

    • Van Emden B, Thornber M R, Graham J, Lincoln F J. 1997. The incorporation of actinides in monazite and xenotime from placer deposits in western Australia. The Canadian Mineralogist, 35(1): 95~104.

    • Wang He, Gao Hao, Zhang Xiaoyu, Yan Qinghe, Xu Yigang, Zhou Kailin, Dong Rui, Li Pei. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos, 360: 105449.

    • Wang Rucheng, F François, Chen Xiaoming, Hu Huan, Liu Changshi, Xu Shijin, de Parseval P. 2003. Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: A record of magmatic and hydrothermal stages of evolution. The Canadian Mineralogist, 41(3): 727~748.

    • Wang Xiaoxia, Tao Wang, Zhang Chengli. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72(4): 129~151.

    • Williams M L, Jercinovic M J, Hetherington C J. 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35: 137~175.

    • Williams-Jones A E, Wood S A. 1992. A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochimica et Cosmochimica Acta, 56(2): 725~738.

    • Xu Xingwang, Hong Tao, Li Hang, Niu Lei, Ke Qiang, Chen Jianzhong, Liu Shanke, Zhai Mingguo. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh. Acta Petrologica Sinica, 36(12): 3572~3592(in Chinese with English abstract).

    • Yan Zhen, Wang Zongqi, Chen Junlu, Yan Quanren, Wang Tao. 2010. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze block, China: U-Pb geochronology and petrography of sandstones. Journal of Asian Earth Sciences, 37(4): 322~334.

    • Yang Pengtao, Liu Shuwen, Li Qiugen, Wang Zongqi, Wang Ruiting, Wang Wei. 2012. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China: Constraints on petrogenesis and geodynamic processes. Journal of Asian Earth Sciences, 61: 166~186.

    • Zhang Guowei, Zhang Zongqing, Dong Yunpeng. Nature of main tectono-lighostratigraphic units of the Qinling orogen: Implication for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101~114 (in Chinese with English abstract).

    • Zhao Shaorui, Li Jianwei, Lentz David, Bi Shijian, Zhao Xinfu, Tang Kefei. 2019. Discrete mineralization events at the Hongtuling Au-(Mo) vein deposit in the Xiaoqinling district, southern North China craton: Evidence from monazite U-Pb and molybdenite Re-Os dating. Ore Geology Reviews, 109: 413~425.

    • Zhou Haoyang, Sun Xiaoming, Wu Zhongwei, Huang Qian. 2019. Timing of skarn gold deposition in the giant Beiya polymetallic gold deposit, southwest China: Constraints from in situ monazite SIMS U-Th-Pb geochronology. Ore Geology Reviews, 106: 226~237.

    • Zhu Xiangkun, O'Nions R K. 1999. Monazite chemical composition: Some implications for monazite geochronology. Contributions to Mineralogy and Petrology, 137(4): 351~363.

    • Zi Jianwei, Rasmussen B, Muhling J R, Fletcher I R, Thorne A M, Johnson S P, Cutten H N, Dunkley D J, Korhonen F J. 2015. In situ U-Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. Precambrian Research, 260: 91~112.

    • 陈西京, 王淑荣, 张秀颖. 1993. 秦岭花岗伟晶岩基本特征与成矿作用. 北京: 地质出版社, 1~75.

    • 卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21~30.

    • 聂潇, 陈雷, 郭现轻, 于涛, 王宗起. 2023. 南秦岭中段宁陕地区绿柱石铌铁矿型伟晶岩中磷灰石和铌铁矿族矿物的矿物地球化学研究. 地学前缘, 30(5): 115~133.

    • 彭海练, 李维成, 李武杰, 王杰杰, 吕军利, 杜彪. 2016. 陕西宁陕县铷等稀有金属成矿地质特征及找矿前景分析. 陕西地质, 34(2): 21~26.

    • 徐兴旺, 洪涛, 李杭, 牛磊, 柯强, 陈建中, 刘善科, 翟明国. 2020. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例. 岩石学报, 36(12): 3572~3592.

    • 张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101~114.

  • 参考文献

    • Ayers J C, Watson E B. 1991. Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 335(1638): 365~375.

    • Černý P. 1991a. Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits; Part II: Regional to global environments and petrogenesis. Geoscience Canada, 18(2): 49~81.

    • Chen Bin, Huang Chao, Zhao Hui. 2020. Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chemical Geology, 551: 119769.

    • Chen Jingxi, Wang Shurong, Zhang Xiuying. 1993. Basic Features and Mineralization of Granitic Pegmatites in the Qinling Orogen. Beijing: Geological Publish House, 1-75 (in Chinese with English abstract).

    • Chen Wei, Huang Honghui, Bai Tian, Jiang Shaoyong. 2017. Geochemistry of monazite within carbonatite related REE deposits. Resources, 6(4): 51.

    • Dong Yunpeng, Zhang Guowei, Neubauer F, Liu Xiaoming, Genser J, Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213~237.

    • Dong Yunpeng, Liu Xiaoming, Zhang Guowei, Chen Qing, Zhang Xiaoning, Wei Li, Chen Yang. 2012. Triassic diorites and granitoids in the Foping area: Constraints on the conversion from subduction to collision in the Qinling orogen, China. Journal of Asian Earth Sciences, 47(1): 123~142.

    • Fei Guangchun, Menuge J F, Li Yunqiang, Yang Jiyi, Deng Yun, Chen Changsheng, Yang Yufan, Yang Zheng, Qin Liye, Zheng Luo. 2020. Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze fold belt, West Sichuan, China: Evidence from geochemistry, zircon, cassiterite and coltan U-Pb geochronology and Hf isotopic compositions. Lithos, 364: 105555.

    • Jiang Yaohui, Jin Guodong, Liao Shiyong, Zhou Qing, Zhao Peng. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117(1): 183~197.

    • Kempe U, Lehmann B, Wolf D, Rodionov N, Bombach K, Schwengfelder U, Dietrich A. 2008. U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochimica et Cosmochimica Acta, 72(17): 4352~4366.

    • Kynicky J, Smith M P, Xu C. 2012. Diversity of rare earth deposits: The key example of China. Elements, 8(5): 361~367.

    • Li Xiaochun, Zhou Meifu, Williams-Jones A E, Yang Yueheng, Gao Jianfeng. 2019. Timing and genesis of Cu-(Au) mineralization in the Khetri Copper Belt, northwestern India: Constraints from in situ U-Pb ages and Sm-Nd isotopes of monazite-(Ce). Mineralium Deposita, 54(4): 553~568.

    • Li Xinghui, Fan Hongrui, Yang Kuifeng, Hollings P, Liu Xuan, Hu Fangfang, Cai Yachun. 2018. Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China craton: Implication for ore-forming processes. Contributions to Mineralogy and Petrology, 173(9): 73.

    • Liu Junchen, Wang Yitian, Mao Jingwen, Jian Wei, Huang Shikang, Hu Qiaoqing, Wei Ran, Hao Jiaolong. 2021. Precise ages for lode gold mineralization in the Xiaoqinling gold field, southern margin of the North China craton: New constraints from in situ U-Pb dating of hydrothermal monazite and rutile. Economic Geology, 116(3): 773~786.

    • Liu Shuwen, Li Qiugen, Tian Wei, Wang Zongqi, Yang Pengtao, Wang Wei, Bai Xiang, Guo Rongrong. 2011. Petrogenesis of Indosinian granitoids in middle-segment of South Qinling tectonic belt: Constraints from Sr-Nd isotopic systematics. Acta Geologica Sinica (English Edition), 85(3): 610~628.

    • Liu Zhichao, Wu Fuyuan, Yang Yueheng, Yang Jinhui, Wilde S A. 2012. Neodymium isotopic compositions of the standard monazites used in U-Th-Pb geochronology. Chemical Geology, 334: 221~239.

    • London D. 1990. Internal differentiation of rare-element pegmatites: A synthesis of recent research. Geological society of America Bulletin, 246: 35~50.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • Lu Xinxiang, Zhu Chaohui, Gu Demin, Zhang Huamian, Wu Mei, Wu Yan. The main geological and metallogenic characteristics of granitic pegmatite in eastern Qinling belt. Geological Review, 56(1): 21~30(in Chinese with English abstract).

    • Lumpkin G R, Gao Y, Gieré R, Williams C, Mariano A, Geisler T. 2014. The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineralogical Magazine, 78(5): 1071~1095.

    • Lü Zhenghang, Zhang Hui, Tang Yong, Liu Yunlong, Zhang Xin. 2018. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geology Reviews, 95: 161~181.

    • Mattauer M, Matte P, Malavieille J, Tapponnier P, Maluski H, Qin X Z, Lun L Y, Qin T Y. 1985. Tectonics of the Qinling belt: Build-up and evolution of eastern Asia. Nature, 317(6037): 496~500.

    • Meng Qingren, Zhang Guowei. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology, 27(2): 123~126.

    • Müller A, Romer R L, Pedersen R-B. 2017. The Sveconorwegian pegmatite province-Thousands of pegmatites without parental granites. The Canadian Mineralogist, 55(2): 283~315.

    • Nie Xiao, Wang Zongqi, Chen Lei, Wang Gang, Li Zengda. 2020. Geochemical contrasts between Late Triassic Rb-rich and barren pegmatites from Ningshan pegmatite district, South Qinling orogen, China: Implications for petrogenesis and rare metal exploration. Minerals, 10(7): 582.

    • Nie Xiao, Wang Zongqi, Chen Lei, Yin Jingwu, Wang Gang. 2021. Monazites reveal timing and genesis of Nb-REE mineralization in trachyte from the Pingli area, North Daba Mountain, China. Geosciences Journal, 25: 605~617.

    • Nie Xiao, Chen Lei, Guo Xianqing, Yu Tao, Wang Zongqi. 2023. Geochemical analysis of apatite and columbite-group minerals of berylcolumbite pegmatites in Ningshan, southern Qinling orogen, China. Earth Science Frontiers, 30(5) : 115~133(in Chinese with English abstract).

    • Peng Hailian, Li Weicheng, Li Wujie, Wang Jiejie, Lü Junli, Du Biao. Geological characteristics and prospecting potential of Rb and other rare metal mineralization in Ningshan

    • County, Shanxi Province. Geological of Shanxi, 34(2): 21~26(in Chinese with English abstract).

    • Qiu Kunfeng, Yu Haocheng, Deng Jun, McIntire D, Gou Zongyang, Geng Jianzhen, Chang Zhaoshan, Zhu Rui, Li Kangning, Goldfarb R. 2020. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic-or metamorphic-hydrothermal origin? Mineralium Deposita, 1~18.

    • Schandl E S, Gorton M P. 2004. A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Economic Geology, 99(5): 1027~1035.

    • Simmons W, Falster A, Webber K, Roda-Robles E, Boudreaux A P, Grassi L R, Freeman G. 2016. Bulk composition of Mt. Mica pegmatite, Maine, USA: Implications for the origin of an LCT typepegmatite by anatexis. The Canadian Mineralogist, 54(4): 1053~1070.

    • Van Emden B, Thornber M R, Graham J, Lincoln F J. 1997. The incorporation of actinides in monazite and xenotime from placer deposits in western Australia. The Canadian Mineralogist, 35(1): 95~104.

    • Wang He, Gao Hao, Zhang Xiaoyu, Yan Qinghe, Xu Yigang, Zhou Kailin, Dong Rui, Li Pei. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun orogenic belt, NW China. Lithos, 360: 105449.

    • Wang Rucheng, F François, Chen Xiaoming, Hu Huan, Liu Changshi, Xu Shijin, de Parseval P. 2003. Accessory minerals in the Xihuashan Y-enriched granitic complex, southern China: A record of magmatic and hydrothermal stages of evolution. The Canadian Mineralogist, 41(3): 727~748.

    • Wang Xiaoxia, Tao Wang, Zhang Chengli. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72(4): 129~151.

    • Williams M L, Jercinovic M J, Hetherington C J. 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35: 137~175.

    • Williams-Jones A E, Wood S A. 1992. A preliminary petrogenetic grid for REE fluorocarbonates and associated minerals. Geochimica et Cosmochimica Acta, 56(2): 725~738.

    • Xu Xingwang, Hong Tao, Li Hang, Niu Lei, Ke Qiang, Chen Jianzhong, Liu Shanke, Zhai Mingguo. Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh. Acta Petrologica Sinica, 36(12): 3572~3592(in Chinese with English abstract).

    • Yan Zhen, Wang Zongqi, Chen Junlu, Yan Quanren, Wang Tao. 2010. Detrital record of Neoproterozoic arc-magmatism along the NW margin of the Yangtze block, China: U-Pb geochronology and petrography of sandstones. Journal of Asian Earth Sciences, 37(4): 322~334.

    • Yang Pengtao, Liu Shuwen, Li Qiugen, Wang Zongqi, Wang Ruiting, Wang Wei. 2012. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Ningshan granitoid batholith, middle segment of the south Qinling belt, Central China: Constraints on petrogenesis and geodynamic processes. Journal of Asian Earth Sciences, 61: 166~186.

    • Zhang Guowei, Zhang Zongqing, Dong Yunpeng. Nature of main tectono-lighostratigraphic units of the Qinling orogen: Implication for the tectonic evolution. Acta Petrologica Sinica, 11(2): 101~114 (in Chinese with English abstract).

    • Zhao Shaorui, Li Jianwei, Lentz David, Bi Shijian, Zhao Xinfu, Tang Kefei. 2019. Discrete mineralization events at the Hongtuling Au-(Mo) vein deposit in the Xiaoqinling district, southern North China craton: Evidence from monazite U-Pb and molybdenite Re-Os dating. Ore Geology Reviews, 109: 413~425.

    • Zhou Haoyang, Sun Xiaoming, Wu Zhongwei, Huang Qian. 2019. Timing of skarn gold deposition in the giant Beiya polymetallic gold deposit, southwest China: Constraints from in situ monazite SIMS U-Th-Pb geochronology. Ore Geology Reviews, 106: 226~237.

    • Zhu Xiangkun, O'Nions R K. 1999. Monazite chemical composition: Some implications for monazite geochronology. Contributions to Mineralogy and Petrology, 137(4): 351~363.

    • Zi Jianwei, Rasmussen B, Muhling J R, Fletcher I R, Thorne A M, Johnson S P, Cutten H N, Dunkley D J, Korhonen F J. 2015. In situ U-Pb geochronology of xenotime and monazite from the Abra polymetallic deposit in the Capricorn orogen, Australia: Dating hydrothermal mineralization and fluid flow in a long-lived crustal structure. Precambrian Research, 260: 91~112.

    • 陈西京, 王淑荣, 张秀颖. 1993. 秦岭花岗伟晶岩基本特征与成矿作用. 北京: 地质出版社, 1~75.

    • 卢欣祥, 祝朝辉, 谷德敏, 张画眠, 吴梅, 吴艳. 2010. 东秦岭花岗伟晶岩的基本地质矿化特征. 地质论评, 56(1): 21~30.

    • 聂潇, 陈雷, 郭现轻, 于涛, 王宗起. 2023. 南秦岭中段宁陕地区绿柱石铌铁矿型伟晶岩中磷灰石和铌铁矿族矿物的矿物地球化学研究. 地学前缘, 30(5): 115~133.

    • 彭海练, 李维成, 李武杰, 王杰杰, 吕军利, 杜彪. 2016. 陕西宁陕县铷等稀有金属成矿地质特征及找矿前景分析. 陕西地质, 34(2): 21~26.

    • 徐兴旺, 洪涛, 李杭, 牛磊, 柯强, 陈建中, 刘善科, 翟明国. 2020. 初论高温花岗岩-伟晶岩锂铍成矿系统: 以阿尔金中段地区为例. 岩石学报, 36(12): 3572~3592.

    • 张国伟, 张宗清, 董云鹏. 1995. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 11(2): 101~114.