en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋博文,男,1985年生。副教授,主要从事古生物学与地层学和青藏高原新生代地质研究。E-mail:bwsong1985@cug.edu.cn。

通讯作者:

宋泰忠,男,1968年生。正高级工程师,主要从事区域地质矿产调查研究。E-mail:songtaizhong2010@126.com。

参考文献
Alivernini M, Akita L G, Ahlborn M, Borner N, Haberzettl T, Kasper T, Plessen B, Peng P, Schwalb A, Wang J, Frenzel P. 2018. Ostracod-based reconstruction of Late Quaternary lake level changes within the Tangra Yumco lake system (southern Tibetan Plateau). Journal of Quaternary Science, 33: 713~720.
参考文献
Chen Andong, Zheng Mianping, Song Gao, Wang Xuefeng, Li Hongpu, Han Guang, Yuan Wenhu. 2020. Evaporite deposits in the Qaidam basin and their response to Quaternary glacial climates since marine oxygen isotope stage 6 (MIS6). Geological Review, 66(3): 611~624 (in Chinese with English abstract).
参考文献
Chen Kezao, Bowler J M. 1986. Late Pleistocene evolution of saltlakes in the Qaidam basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54: 87~104.
参考文献
De Deckker P, Forester R M. 1988. The use of ostracods to reconstruct continental palaeoenvironmental records. In: De Deckker P, Colin J P, Peypouquet J P, eds. Ostracoda in the Earth Sciences. Elsevier, Amsterdam, 175~199.
参考文献
Fan Qishun, Ma Haizhou, Cao Guangchao, Chen Zongyan, Cao Shengkui. 2012. Geomorphicand chronometric evidence for high lake level history in Gahaiand Toson Lake of north-eastern Qaidam basin, north-eastern Qinghai-Tibetan Plateau. Journal of Quaternary Science, 27(8): 819~827.
参考文献
Fan Qishun, Ma Haizhou, Ma Zhibang, Wei Haicheng, Han Fengqing. 2014. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environmental Earth Sciences, 71(3): 1227~1237.
参考文献
Holmes J A. 2001. Ostracoda. In: Smol J P, Last H J B, eds. Tracking Environmental Change Using Lake Sediments, vol. 4: Zoological Indicators. Netherlands: Dordrecht, Kluwer Academic Publishers, 125~151.
参考文献
Holmes J A, Allen M J, Street-Perrott F A, Ivanovich M, Perrott R A, Waller M P. 1999. Late Holocene palaeolimnology of Bal Lake, Northern Nigeria, a multidisciplinary study. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 169~185.
参考文献
Holmes J A, Chivas A R. 2002. The Ostracoda: Applications in Quaternary Research, vol. 131. Washington DC: American Geophysical Union Monograph Series.
参考文献
Hou Juzhi, D'Andrea W J, Liu Zhonghui. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews, 48: 67~79.
参考文献
Hou Youtang, Gou Yunxian, Chen Deqiong. 2002. Fossil Ostracoda of China, Vol. 1, Superfamilies Crypridacea and Darwinulidacea. Beijing: Science Press (in Chinese).
参考文献
Hou Youtang, Gou Yunxian. 2007. Fossils Ostracoda of China, Vol. 2, Cytheracea and Cytherellidacea. Beijing: Science Press (in Chinese).
参考文献
Huang Baoren. 1964. Ostracods from Gansen District, Chaidam Basin. Acta Palaeontologic Sinica, 12(2): 241~270 (in Chinese with English abstract).
参考文献
Huang Baoren, Yang Liufa, Fan Yunqi. 1985. Ostracodes from surface deposits of recent lake in Xizang. Acta Micropalaeontologica Sinica, 2(4): 369~376 (in Chinese with English abstract).
参考文献
Huang Qi, Han Fengqing. 2007. Evolution of Salt Lakes and Palaeoclimatefluctuation in Qaidam Basin. Beijing: Science Press (in Chinese).
参考文献
Huang Xiaozhong, Zhao Y, Chen B, Chen Fahu, Xu Junrong. 2004. Modern pollen analysis of the surface sediments from the Bosten Lake, Xinjiang, China. Journal of Glaciology and Geocryology, 26(5): 602~609 (in Chinese with English abstract).
参考文献
Jiang Gaolei, Wang Naiang, Zhai Dayou, Li Xiangzhong, Mao Xin, Li Meng, Liu Linjing. 2022. Distribution pattern of different phenotypes of Limnocythere inopinata (an ostracod) from lakes in the Badain Jaran Desert, northern China. Ecological Indicators, 139: 108965.
参考文献
Komarek J I, Jankovska V. 2001. Review of the green algal genus Pediastrum: Implication for pollen-analytical research. Bibliotheca Phycological, 108: 1~127.
参考文献
Lai Zhongping, Mischke S, Madsen D. 2014. Paleoenvironmental implicationsof new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Journal of Paleolimnology, 51(2): 197~210.
参考文献
Li Shijie, Qu Rongkang, Zhu Zhaoyu, Li Bingyuan. 1998. A Carbonate content record of Late Quaternary climate and environment changes from lacustrine core TS95 in Tianshuihai Lake basin, Northwestern Qinghai Xizang (Tibet) Plateau. Journal of Lake Sciences, 10(2): 58~65 (in Chinese with English abstract).
参考文献
Li Wei, Qu Haiying, Li Sha, Zhou Shumin, Song Xianteng, Wang Xiaonan. 2022. Water evolution of Nuomuhong Shell Ridge in Qaidam Basin: Evidence from Ostracods. Geoscience, 36(1): 25~26 (in Chinese with English abstract).
参考文献
Li Xiangzhong, Liu Weiguo, Zhang Ling, Sun Zhencheng. 2010. Distribution of recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance. Ecological Indicators, 10: 880~890.
参考文献
Li Xiangzhong, Zhai Ddayou, Wang Qianwei, Wen Ruilin, Ji Ming. 2021. Depth distribution of ostracods in a large fresh-water lake on the Qinghai-Tibet Plateau and its ecological and palaeolimnological significance. Ecological Indicators, 129: 108019.
参考文献
Liu Junying, Wang Hailei, Yuan Heran. 2010. Climatic evolution since the Late Pleistocene in Sekazhi Lake area, Tibet, based on the microfossil record. Acta Geologica Sinica, 84(11): 1968~1977 (in Chinese with English abstract).
参考文献
Mazzini L, Anadon P, Barbieri M, Castorina F, Ferreli L, Gliozzi E, Mola M, Vittori E. 1999. Late Quaternary sea-level changes along the Tyrrhenian coast near Orbetello (Tuscany, central Italy): Palaeoenvironmental reconstruction using ostracods. Marine Micropaleontology, 37(3-4): 289~312.
参考文献
McCormack J, Viehberg F, Akdemir D, Immenhauser A, Kwiecien O. 2019. Ostracods as ecological and isotopic indicators of lake water salinity changes: The Lake Van example. Biogeosciences, 16: 2095~2114.
参考文献
Meisch C. 2000. Freshwater Ostracoda of Western and Central Europe. Heidelberg: Spektrum.
参考文献
Mezquita F, Roca J R, Reed J M, Wansar G. 2005. Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: Examples using Iberian data, Palaeogeography, Palaeoclimatology, Palaeoecology, 225: 93~117.
参考文献
Miao Weiliang, Fan Qishun, Wei Haicheng, Zhang Xiying, Ma Haizhou. 2016. Clay mineralogical and geochemical constraints on Late Pleistocene weathering processes of the Qaidam basin, northern Tibetan Plateau. Journal of Asian Earth, 127: 267~280.
参考文献
Mischke S, Lai Z P, Zhang C J. 2014. Re-assessment of the paleoclimate implications of the shell bar in the Qaidam basin, China. Journal of Paleolimnology, 51: 179~195.
参考文献
Mischke S, Lee M K, Lee Y I. 2020. Climate history of southern mongolia since 17 ka: The ostracod, gastropod and charophyte record from lake Ulaan. Frontiers in Earth Science, 8: 221.
参考文献
Pang Qiqing, Liu Junying, Zheng Mianping, Zhao Xitao. 2007. Quaternary ostracoda in the pass aera of the Kunlun Mountains, northern Qinghai-Tibet Plateau, with a discussion on the environmental change. Acta Geologic Sinica, 81(12): 1672~1691 (in Chinese with English Abstract).
参考文献
Reimer P J, Austin W E N, Bard E, Bayliss A, Blackwell P G, Ramsey C B, Butzin M, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kromer B, Manning S W, Muscheler R, Palmer J G, Pearson C, van der Plicht J, Reimer R W, Richards D A, Scott E M, Southon J R, Turne C S M, Wacker L, Adolphi F, Buntgen U, Capano M, Fahrni S M, Fogtmann-Schulz A, Friedrich R, Kohler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S. 2020. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0~55 cal kBP). Radiocarbon, 62(4): 725~757.
参考文献
Peng Jinglan. 2002. A Preliminary ecological analysis on the late Quaternary ostracodes from the Heqing Basin, Yunnan. Acta Micropalaeontologica Sinica, 19(12): 144~156(in Chinese with English abstract).
参考文献
Shen Zhenshu, Cheng Guo, Le Changshuo, Liu Shuqin, Zhang Fasheng, Wang Qiang, Qi Guozhu, Zhang Jiaer, Ge Tongming, Lei Shitai. 1993. The Division and Sedimentary Environment of Quaternary Salt-bearing Strata in Qaidam Basin. Beijing: Geological Publishing House (in Chinese).
参考文献
Shi Yafeng, Liu Xiaodong, Li Bingyuan, Yao Tandong. 1999. A very strong summer monsoon event during 30~40 ka BP in the Tibetan Plateau and the relation to precessional cycle. Chinese Science Bulletin, 44(14): 1475~1480 (in Chinese with English abstract).
参考文献
Sun Xiangjun, Wu Yushu. 1987. Distribution and quantity of sporopollen and algae in surface sediments of the Dianchi Lake, Yunnan Province. Marine Geology & Quaternary Geology, 7(4): 81~92 (in Chinese with English abstract).
参考文献
Sun Zhencheng, Cao Li, Zhang Haiquan, Zhang Yonghua, Dong Ning, Qiao Zizhen, Sun Laida, Yuan Xiujun, Lu Yanli, Zhang Hongxin. 2003. Evolution of Ostracoda of the great ice age of last glacial stage in Qaidam Basin. Journal of Palaeogeography, 5(3): 365~377 (in Chinese with English abstract).
参考文献
Tang Lingyu, Mao Limi, Lv Xinmiao, Ma Qingfeng, Zhou Zhongfeng, Yang Chunlei, Kong Zhaochen, Batten D J. 2013. Palaeoecological and palaeoenvironmental significance of some important spores and micro-algae in Quaternary deposits. Science Bulletin, 58(20): 1969~1983 (in Chinese with English abstract).
参考文献
Wan Hewen, Tang Lingyu, Zhang Hucai, Li Chunmei, Pang Youzhi. 2008. Pollen recordreflects climate changes in eastern Qaidam basin during 36~18 ka B. P. Quaternary Sciences, 28(1): 112~121 (in Chinese with English abstract).
参考文献
Wang Can, Kuang Xingxing, Wang Hhailei, Guo Ganlin, Song Gao. 2021. Ostracods as a proxy for paleoclimatic change: An essential role of bioculture experiment taking Limnocythere inopinata (Crustacea: Ostracoda) as an example. Ecological Indicators, 121: 107000.
参考文献
Wang Qiang. 1998. Abrupt formation of the Charhan saltlake and the megaevolution of the earth surface system—On thebasis of Ostracoda. Journal of Geomechanics, 4(4): 82~87 (in Chinese with English abstract).
参考文献
Wei Haicheng, Fan Qishun, Zhao Yan, Ma Haizhou, Shan Fashou, An Fuyuan, Yuan Qin. 2015. A 94~10 ka pollen record of vegetation change in Qaidam basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 431: 43~52.
参考文献
Xinjiang Institute of Comprehensive Survey Team, Institute of Geography, Department of Geography of Beijing Normal University. 1978. Xinjiang Geomorphology. Beijing: Science Press (in Chinese).
参考文献
Yang Fan, Sun Zhencheng. 1988. Ecology and palaeoecology of somegenera and species, their significance to environmental indication. In: Exploration and Development Research Institute, Qinghai Petroleum Administration, Nanjing Institute of Geology and Palaeontology, Academia Sinica, eds. Tertiary Ostracode Fauna from Qaidam Basin, NW China. Nanjing: Nanjing University Press, 22~30 (in Chinese).
参考文献
Yang Fan, Qiao Zizhen, Zhang Hhaiquan, Zhang Yonghua, Sun Zhengcheng. 2006. Features of the Cenozoic ostrocod fauna and environmental significance in Qaidambasin. Journal of Palaeogeography, 8(2): 143~156 (in Chinese with English abstract).
参考文献
Yang Fan, Dong Ning, Qiao Zizhen, Sun Zhencheng, Ren Yufen. 2008. Taxonomy and habitat of Quaternary Limnocythere(Ostracoda)from the Qaidam Basinand the Qinghaihu Lake, Qinghai. Acta Micropalaeontologica Sinica, 25(4): 316~332 (in Chinese with English abstract).
参考文献
Yao Tandong, Thompson L G, Shi Yafeng, Qin Dahe, Jiao Keqin, Yang Zhihong, Tian Lide, Mosley-Thompson E. 1997. Climate variation since the last interglaciation recorded in the Guliya ice core. Science China (D): Earth Science, 40: 662~668.
参考文献
Yu Na. 2014. Non-marine Ostracoda from China. Shanghai: Shanghai Education Publishing House, 1~283 (in Chinese).
参考文献
Zhai Dayou, Xiao Jule, Zhou Lang, Wen Ruilin, Chang Zhigang, Pang Qiqing. 2010. Similar distribution pattern of different phenotypes of Limnocythere inopinata (Baird) in a brackish-water lake in Inner Mongolia. Hydrobiologia, 651: 185~197.
参考文献
Zhang Hucai, Fan Hhongfang, Chang Fengqin, Zhang Wenxiang, Lei Guoliang, Yang Mingsheng, Lei Yanbin, Yang Lunqing. 2008. AMS dating on the shell bar section from Qaidam Basin, NE Tibetan Plateau, China. Radiocarbon, 50: 255~265.
参考文献
Zhang Hucai, Wang Qiang, Peng Jinglan, Chen Guangjie. 2008. Ostracod assemblages and their paleoenvironmental significance from Shell Bar section of palaeolake Qarhan Qaidam Basin. Quaternary Sciences, 28(1): 103~111 (in Chinese with English abstract).
参考文献
Zhang Hucai. 2015. A comment on Lai et al. (2014) concerning the originof the Shell Bar section from the Qaidam basin, NE TibetanPlateau: Lake formation versus river channel deposit, and 14C versus OSL dates. Journal of Paleolimnology, 53: 321~334.
参考文献
Zhang Jiawu, He Jin, Chen Shuo, Li Shuang. 2009. Applications of non-marine ostracods in Quaternary paleoenvironment advances and problems in fossil assemblages. Advances in Earth Science, 24(11): 1229~1237 (in Chinese with English abstract).
参考文献
Zhang Ling, Sun Zhengcheng, An Zhisheng, Liu Weiguo, Li Xiangzhong. 2006. A preliminary distribution analysis on ostracoda of different water bodies from Qinghai Lake area, NW China. Acta Micropalaeontologica Sinica, 23(4): 425~436 (in Chinese with English abstract).
参考文献
Zhang Mengwei, Liu Xingqi. 2020. Climate changes in the Qaidam Basin in NW China over the past 40 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109679.
参考文献
Zhang Pengxi, Zhao Baozhen, Lowenstein T K. 1993. Origin of Ancient Potash Evaporites: Examples from the Formation of Ancient Potash of Qarhan Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).
参考文献
Zhang Pengxi. 1987. Saline Lakes in the Qaidam Basin. Beijing: Science Press (in Chinese).
参考文献
Zhao Yan, Herzschuh U. 2009. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Vegetation History and Archaeobotany, 18(3): 245~260.
参考文献
Zheng Mianping, Yuan Heran, Zhao Xitao, Liu Xifang. 2006. The Quaternary Pan-lake (overflow) period and paleoclimate on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 80(2): 169~180 (in Chinese with English abstract).
参考文献
陈安东, 郑绵平, 宋高, 王学锋, 李洪普, 韩光, 袁文虎. 2020. 晚第四纪MIS6 以来柴达木盆地成盐作用对冰期气候的响应. 地质论评, 66(3): 611~624.
参考文献
黄麒, 韩凤清. 2007. 柴达木盆地盐湖演化与古气候波动. 北京: 科学出版社.
参考文献
黄宝仁. 1964. 柴达木盆地甘森区介形类化石. 古生物学报, 12(2): 241~255.
参考文献
黄宝仁, 杨留法, 范云琦. 1985.西藏现代湖泊表层沉积物中的介形类.微体古生物学报, 2(4): 369~376.
参考文献
黄小忠, 赵艳, 程波, 陈发虎, 徐俊荣. 2004. 新疆博斯腾湖表层沉积物的孢粉分析. 冰川冻土, 26(5): 602~609.
参考文献
侯祐堂, 勾韵娴, 陈德琼. 2002.中国介形类化石(第一卷): Cypridacea和 Darwinulidacea. 北京: 科学出版社.
参考文献
侯祐堂, 勾韵娴. 2007. 中国介形类化石(第二卷): Cytheracea 和Cytherellidae. 北京: 科学出版社.
参考文献
李玮, 屈海英, 李莎, 周淑敏, 宋先腾, 王晓楠. 2022. 柴达木盆地诺木洪贝壳堤水体演变的介形类证据. 现代地质, 36(1): 14~24.
参考文献
李世杰, 区荣康, 朱照宇, 李炳元. 1998. 24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化.湖泊科学, 10(2): 58~65.
参考文献
刘俊英, 王海雷, 袁鹤然. 2010. 西藏色卡执湖区更新世晚期以来微体古生物记录的气候演变. 地质学报, 84(11): 1668~1679.
参考文献
彭金兰. 2002. 云南鹤庆晚第四纪介形类生态特征初探. 微体古生物学报, 19(2): 144~456.
参考文献
庞其清, 刘俊英, 郑绵平, 赵希涛. 2007.青藏高原昆仑山垭口地区第四纪介形虫及环境变迁的探讨. 地质学报, 81(12): 1672~1691.
参考文献
施雅风, 刘晓东, 李炳元, 姚檀栋. 1999. 距今40~30 ka青藏高原特强夏季风事件及其与岁差周期关系.科学通报, 44(14): 1475~1480.
参考文献
沈振枢, 程果, 乐昌硕, 刘淑琴, 张发胜, 王强, 祁国柱, 张嘉尔, 葛同明, 雷世太. 1993. 柴达木盆地第四纪含盐地层划分及沉积环境. 北京: 地质出版社.
参考文献
孙湘君, 吴玉书. 1987. 云南滇池表层沉积物中花粉和藻类的分布规律及数量特征. 海洋地质与第四纪地质, 7(4): 81~92.
参考文献
孙镇城, 曹丽, 张海泉, 张永华, 董宁, 乔子真, 孙乃达, 袁秀君, 路艳丽, 张宏欣. 2003. 柴达木盆地全球末次冰期介形类动物群的演变. 古地理学报, 5(3): 365~376.
参考文献
唐领余, 毛礼米, 吕新苗, 马庆峰, 周忠泽, 杨春蕾, 孔昭宸, Batten D J. 2013. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义. 科学通报, 58(20): 1969~1983.
参考文献
王强. 1998. 察尔汗盐湖的突然形成与地表系统巨变——据介形类研究. 地质力学学报, 4(4): 82~87.
参考文献
万和文, 唐领余, 张虎才, 李春梅, 庞有智. 2008. 柴达木盆地东部36~18 ka B. P. 期间的孢粉记录及其气候环境. 第四纪研究, 28(1): 112~121.
参考文献
禹娜. 2014. 中国非海水介形类. 上海: 上海教育出版社.
参考文献
杨藩, 孙镇城. 1988. 常见介形类属种的生态及其环境指示意义. 见: 青海石油管理局勘探开发研究院, 中国科学院南京地质古生物研究所主编. 青海柴达木盆地第三纪介形类动物群.南京: 南京大学出版社, 22~30.
参考文献
杨藩, 乔子真, 张海泉, 张永华, 孙镇城. 2006. 柴达木盆地新生代介形类动物群特征及环境意义. 古地理学报, 8(2): 143~156.
参考文献
杨藩, 董宁, 乔子真, 孙镇城, 任玉芬. 2008. 青海柴达木盆地与青海湖第四纪介形类Limnocythere的分类与生境.微体古生物学报, 25(4): 316~332.
参考文献
张虎才, 王强, 彭金兰, 陈光杰. 2008. 柴达木察尔汗盐湖贝壳堤剖面介形类组合及其环境意义. 第四纪研究, 28(1): 103~111.
参考文献
郑绵平, 袁鹤然, 赵希涛, 刘喜方. 2006. 青藏高原第四纪泛湖期与古气候. 地质学报, 80(2): 169~180.
参考文献
张家武, 何晶, 陈硕, 李双. 2009. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题. 地球科学进展, 24(11): 1229~1237.
参考文献
张玲, 孙镇城, 安芷生, 刘卫国, 李祥忠. 2006. 青海湖地区不同水体介形类分布特征的初步研究. 微体古生物学报, 23(4): 425~436.
参考文献
张彭熹. 1987.柴达木盆地盐湖. 北京: 科学出版社.
参考文献
张彭熹, 张保珍, 洛温斯坦 T K. 1993. 古代异常钾盐蒸发岩的成因——以柴达木盆地察尔汗钾盐的形成为例. 北京: 科学出版社.
参考文献
中国科学院新疆综合考察队, 中国科学院地理研究所, 北京师范大学地理系. 1978. 新疆地貌. 北京: 科学出版社.
目录contents

    摘要

    察尔汗盐湖作为柴达木盆地第四纪的沉积中心,沉积了巨厚的第四系湖相沉积,其演化历史研究对于揭示柴达木盆地及青藏高原北部第四纪古气候、古环境演变历史具有重要意义。本文在AMS 14C测年的基础上,以察尔汗盐湖晚更新世钻孔(ZK53630-1)岩芯中介形类微体化石为研究对象,通过系统的采样和室内分析,共识别出7属10种。基于分类学研究,识别出2个介形类组合(自下而上):Ilyocypris biplicata-Limnocythere inopinataIlyocypris bradyi-Ilyocypris sebeiensis。介形类及其伴生化石均显示察尔汗古湖在距今34~28 ka期间的晚更新世晚期(MIS 3a)主体为淡水—微咸水湖泊,气候温暖湿润,与现今极端干旱的盐湖环境截然不同。

    Abstract

    The Qarhan salt lake is the depocentre of the Qaidam basin during the Quaternary, with a very thick sequence of lacustrine sediments. Continuous lacustrine sediments provide excellent archives of detailed paleo-environmental data regarding climatic change in the Qaidam basin and northern Tibetan Plateau. In this study, fossil ostracods from the drill core (ZK53630-1) sediment were analyzed in conjunction with AMS 14C dating. A totalof 10 ostracod species belonging to 7 genera are identified. The ostracod fauna can be subdivided into two assemblages from bottom to top: Ilyocypris biplicata- Limnocythere inopinata and Ilyocypris bradyi- Ilyocypris sebeiensis. The ostracod fauna and associated micro-fossils suggest the existence of a large freshwater to oligohaline lake in the Qarhan area during the Late Pleistocene (MIS 3a, 34~28 ka), coevaled with a warm and humid climate, which was completely different from the present-day hyper-arid salt lake environment.

  • 作为中国最重要的钾盐产区之一,地处青藏高原东北部,柴达木盆地东南部的察尔汗盐湖的演化历史一直是地学界的研究热点(Chen Kezao and Bowler,1986张彭熹,1987沈振枢等,1993郑绵平等,2006黄麒和韩凤清,2007Fan Qishun et al.,2014陈安东等,2020)。前人的研究主要集中在察尔汗盐湖第四纪盐类沉积演化方面,对于古生物资料特别是微体古生物介形类的研究甚少且主要集中在20世纪之前(黄宝仁,1964沈振枢等,1993王强,1998),近期开展的工作也主要集中在知名的贝壳堤剖面(张虎才等,2008Mischke et al.,2014李玮等,2022)。近年来深时生物与环境的协同演化研究越来越受学界重视,在察尔汗盐湖第四纪古环境重建研究中亟需我们加强微体古生物与古环境的协同演化研究。

  • 介形类为具钙质双壳的微体水生甲壳动物,可以生活于各种自然水体中,具有对水环境因子反应敏感和其钙质外壳极易保存的特点,因此其被广泛应用在古湖泊学的研究中,是运用“将今论古”思想重建第四纪古环境的良好指标(De Deckker and Forester,1988Holmes and Chivas,2002庞其清等,2007张家武等,2009Alivernini et al.,2018McCormack et al.,2019; Li Xiangzhong et al.,2021)。因此,我们本次选取察尔汗盐湖钻孔(ZK53630-1)岩芯为研究对象,利用加速器质谱(AMS)14C测年方法建立其年代序列,对其中产出的介形类化石开展详细研究,揭示其蕴含的古生态和古环境信息,为察尔汗古湖晚第四纪古环境重建研究提供宝贵的古生物资料。

  • 1 研究区自然地理概况

  • 察尔汗盐湖位于柴达木盆地东南部(图1a、b),湖区面积达5856 km2,平均海拔为2677 m,是中国最大的盐湖区之一,也是现今柴达木盆地的主要汇水中心(图1c)。该湖区包括察尔汗干盐湖和一系列小型湖泊(达布逊湖、北霍布逊湖、南霍布逊湖和涩聂湖等),格尔木河、那棱格勒河、乌图美仁河、诺木洪河等汇流常年性注入其中(张彭熹,1987)。现今湖区具典型的大陆型干旱荒漠气候,年均气温为4℃左右,年均降水量仅为24~40 mm,而年蒸发量超过3000 mm,蒸发量大于降水量达100倍以上(Chen and Bowler,1986)。察尔汗盐湖区现代植被为草原化荒漠,主要以旱生和盐生植物种属为主,包括猪毛菜(Salsola)、驼绒藜(Ceratoides)、白刺(Nitraria)、麻黄(Ephedra)、芨芨草(Achnatherum)、蒿(Artemisia)和藜(Chenopodiaceae)等(Zhao Yan and Herzschuh,2009)。

  • 图1 柴达木盆地及周边新生代地质简图(a),柴达木盆地及周边数字高程模型(DEM)图(b),察尔汗盐湖区卫星地图(源自http://earth.google.com)及钻孔位置(c)

  • Fig.1 Regional geology of the Qaidam basin and its adjacent areas (a) , the digital elevation model (DEM) map of the Qaidam basin and its adjacent areas (b) , Satellite map of the Qarhan salt lake area (form http://earth.google.com) of the Qarhan salt lake showing the location of the drill core (c)

  • 2 材料与方法

  • 2.1 钻孔岩性及年代序列研究

  • 2.1.1 钻孔岩性

  • ZK53630-1钻孔位于青海察尔汗盐湖区西北侧别勒滩区段,涩聂湖东北侧(图1a、c),GPS点位:94° 25′58″E,37°13′24″N,由青海柴达木综合地质矿产勘查院于2022年施工完成,孔深50 m。按沉积特征自上而下可划分为15层,其岩性组成简述如下:

  • 0~4.50 m灰黄色粉砂质黏土,砂质结构,块状构造。局部可见少量石盐晶粒。

  • 4.50~6.55 m灰黄—灰褐色粉砂质黏土,泥质结构,块状构造。

  • 6.55~8.57 m灰褐色含粉砂黏土,泥质结构,块状构造。

  • 8.57~11.71 m灰绿色夹黄灰色粉砂质黏土,块状构造。局部可见薄层状石膏夹层。

  • 11.71~16.60 m灰黑色—灰白色泥炭和黏土互层,发育韵律层理和水平层理。

  • 16.60~20.50 m黑色—灰黄色泥炭夹含粉砂泥质团块。

  • 20.50~23.60 m黑灰色泥炭,含少量灰黄色粉砂和泥。

  • 23.60~26.50 m黑色泥炭,富炭层与贫炭层构成水平纹层。

  • 26.50~26.60 m褐黄灰色泥炭夹粉砂质泥岩,发育波状层理。

  • 26.60~31.37 m灰黑色泥炭,含少量灰白色黏土,发育水平层理。

  • 31.37~33.07 m黑灰色泥炭,含少量灰黄色黏土和粉砂,发育波状层理。

  • 33.07~36.10 m灰白色黏土,夹黑灰色泥炭纹层,含少量粉砂,发育水平层理。

  • 36.10~37.79 m灰黑色泥炭,含少量黏土,发育水平层理。

  • 37.79~47.00 m黑色泥炭,毫米级富炭层与富泥层互层,发育韵律层理和水平层理。

  • 47.00~50.00 m灰黑色泥炭,夹具微波状层理的浅褐灰色粉砂岩,发育水平层理。

  • 2.1.2 钻孔年代序列研究

  • 本研究定年样品选用ZK53630-1钻孔岩芯中的黑色泥炭层碳质黏土样品,分别位于岩芯剖面的47.5 m和16.5 m处。本研究所有高精度AMS 14C年代测试工作均由美国迈阿密 BETA 实验室负责完成,使用NEC加速器质谱仪和Thermo同位素比值质谱仪(IRMS)进行测试,测年结果如表1所示。

  • 考虑到湖泊水体的“碳库效应”可能会导致湖泊全有机质样品14C定年结果偏老(Hou Juzhi et al.,2012),我们需要对获得的14C测年结果进行碳库校正。Fan Qishun et al.(2014)总结了柴达木盆地现今湖泊包括茶卡盐湖、哈拉湖和苏干湖的碳库效应,显示这些现今湖泊的平均碳库效应值为2370 a。因此本文采用该平均碳库效应值来对察尔汗盐湖ZK53630-1钻孔的14C定年结果进行校正,经碳库效应校正后的年龄值用 Int Cal20 校正曲线转换成日历年龄(Reimer et al.,2020),结果如表1所示。

  • 表1 青海察尔汗盐湖区ZK53630-1钻孔AMS14C 年代测试结果

  • Table1 The results of radiocarbon AMS 14C dating of ZK53630-1 core, Qarhan salt lake, Qinghai

  • 2.1.3 钻孔沉积环境分析

  • 本次研究的ZK53630-1钻孔剖面下部主体为黑灰色泥炭沉积(图2a~d),发育水平层理和韵律层理,夹少量黏土和粉砂,为半深湖—浅湖亚相,其间湖泊水体频繁波动,发育波状层理,局部层位可见大量腹足类化石碎片;钻孔上部沉积物粒度明显变粗,粉砂含量逐渐增多(图2e~g),显示湖泊水位逐渐下降,由先前的半深湖—浅湖亚相转变为滨—浅湖亚相;钻孔顶部泥炭层消失,以灰黄色粉砂质黏土沉积为主,发育块状构造。

  • 2.2 介形类分析

  • 2.2.1 介形类样品的采集与处理

  • 选取钻孔岩芯中的泥岩,以1~2 m的间距自下而上系统采集、处理样品合计41件。室内,每件样品取约50 g(干重)放入烧杯中,用10%的双氧水浸泡2~6 d。样品散开后,用58 μm筛子进行过筛,然后将剩余在筛中的残余物放置烘箱烘干。样品的室内前处理在中国科学院南京地质古生物研究所现代古生物学和地层学国家重点实验室完成。处理后的样品干燥后用OLYMPUS-SZ双目体式显微镜进行挑样、鉴定,最后将挑出的介形类壳体在中国地质大学(武汉)地质过程和矿产资源国家重点实验室进行扫描电镜(SEM)照相。介形类化石的鉴定主要参考侯祐堂等(2002)Meisch(2000)侯祐堂和勾韵娴(2007)禹娜(2014)

  • 2.2.2 结果

  • 在9件样品中可见介形类化石产出,共获得365枚介形类壳体,均为单瓣壳,可分别被归入7属10种(含3个未定种):双折土星介(Ilyocyprisbiplicata)、布氏土星介(Ilyocyprisbradyi)、涩北土星介(Ilyocyprissebeiensis)、意外湖花介(Limnocythereinopinata)、斗星介未定种(Cypridopsis sp.)、史氏达尔文介(Darwinulastevensoni)、达尔文介未定种(Darwinula sp.)、苏氏小玻璃介(Candoniellasuzini)、玻璃介未定种(Candona sp.)和肥胖真星介相似种(Eucypris cf. inflata)。具体的介形类属种及统计结果见表2和图3,典型属种扫描电镜照片见图4和图5。

  • 图2 青海察尔汗盐湖区ZK53630-1钻孔典型沉积层和沉积构造

  • Fig.2 Typical sedimentary layers and structures in the ZK53630-1 drill core, Qarhan salt lake, Qinghai

  • (a)—深47.5 m处具波状层理含黏土的浅褐灰色粉砂;(b)—深40.5 m处具水平层理含少量黏土的灰黒色泥炭层;(c)—深32.5 m处具波状层理含少量黏土和粉砂的灰黒色泥炭层;(d)—深29.0 m处具水平层理含少量黏土的灰黒色泥炭层;(e)—深26.5 m处具波状层理含少量石盐晶粒的褐灰色含粉砂泥岩;(f)—深16.5 m处灰白色黏土层与灰黒色含黏土泥炭层韵律性互层;(g)—深14.5 m处灰黒色含黏土泥炭层与灰白色黏土层韵律性互层;所有白色线段比例尺代表1 cm

  • (a) —light brown-gray clay bearing silt with wavy bedding, 47.5 m of the drill core; (b) —gray-black clay-bearing peat layer with horizontal bedding, 40.5 m of the drill core; (c) —gray-black clay-siltbearing peat layer with wavy bedding, 32.5 m of the drill core; (d) —gray-black clay-bearing peat layer with horizontal bedding, 29.0 m of the drill core; (e) —brownish-gray silty mudstone containing halitegrains and showing wavy bedding, 26.5 m of the drill core; (f) —gray-white clay layer interbedded rhythmically with the gray-black clay-bearing peat layer, 16.5 m of the drill core; (g) —gray-black clay-bearing peat layer interbedded rhythmically with the gray-white clay layer, 14.5 m of the drill core; the scale bars in all figures are 1 cm

  • 表2 青海察尔汗盐湖区ZK53630-1钻孔介形类分布及丰度(枚)统计表

  • Table2 Abundance and distribution of ostracod species in the ZK53630-1 drill core, Qarhan salt lake, Qinghai

  • 图3 青海察尔汗盐湖区ZK53630-1钻孔介形类生物地层分布、丰度及分异度示意图(图中AMS为加速器质谱的缩写)

  • Fig.3 The ostracod biostratigraphic distribution, abundance and diversity diagram of the ZK53630-1 core, Qarhan salt lake, Qinghai (the ‘AMS’ in the figure is the abbreviation for ‘accelerator mass spectrometry’)

  • 图4 青海察尔汗盐湖区ZK53630-1钻孔典型介形类

  • Fig.4 Representative ostracods from the ZK53630-1 drill core, Qarhan salt lake, Qinghai

  • 1 —Ilyocyprisbiplicata左壳外视,标本号ZK53630-1-33.5 m-9;2—Ilyocyprisbradyi右壳外视,标本号ZK53630-1-33.5 m-5;3—Ilyocyprissebeiensis右壳外视,标本号ZK53630-1-33.5 m-12;4—Ilyocyprissebeiensis左壳内视,标本号ZK53630-1-33.5 m-7;5—Ilyocyprissebeiensis局部放大(示缘纹),标本号ZK53630-1-33.5 m-7;6—Ilyocyprissebeiensis局部放大(示肌痕),标本号ZK53630-1-33.5 m-7;7—Cypridopsis sp. 右壳外视,标本号ZK53630-1-32.5 m-5;8—Candoniellasuzini左壳外视,标本号ZK53630-1-32.5 m-23;9—Candona sp.右壳外视,标本号ZK53630-1-32.5 m-34;10—Darwinulastevensoni左壳外视,标本号ZK53630-1-32.5 m-22;11—Darwinulastevensoni左壳外视,标本号ZK53630-1-32.5 m-21;12—Darwinula sp.左壳外视,标本号ZK53630-1-32.5 m-25;所有白色线段比例尺代表300 μm

  • 1 —Ilyocyprisbiplicata right valve external view, specimen No.ZK53630-1-33.5 m-9; 2—Ilyocyprisbradyi right valve external view, specimen No.ZK53630-1-33.5 m-5; 3—Ilyocyprissebeiensis right valve external view, specimen No.ZK53630-1-33.5 m-12; 4—Ilyocyprissebeien sisleft valve internal view, specimen No.ZK53630-1-33.5 m-7; 5—Ilyocyprissebeiensis enlargement of specimen showing marginal ripplets, specimen No.ZK53630-1-33.5 m-7; 6—Ilyocyprissebeiensis enlargement of specimen showing muscle scars, specimen No.ZK53630-1-33.5 m-7; 7—Cypridopsis sp. right valve external view, specimen No.ZK53630-1-32.5 m-5; 8—Candoniellasuzini left valveexternal view, specimen No.ZK53630-1-32.5 m-23; 9—Candona sp. right valve external view, specimen No.ZK53630-1-32.5 m-34; 10—Darwinulastevensoni left valve external view, specimen No.ZK53630-1-32.5 m-22; 11—Darwinulastevensoni left valve external view, specimen No.ZK53630-1-32.5 m-21; 12—Darwinula sp. left valve external view, specimen No.ZK53630-1-32.5 m-25; the white scale bars in all figures are 300 μm

  • 3 介形类组合及其生态环境指示

  • 3.1 介形类组合

  • 根据介形类在钻孔剖面中的垂向演替特征,将ZK53630-1钻孔介形类自下而上(从老到新)划分为2个组合。

  • 3.1.1 Ilyocyprisbiplicata-Limnocythereinopinata组合Ⅰ(43.5~32.5 m)

  • 该组合主要分布在钻孔剖面下段,43.5~32.5 m处,主要分子为IlyocyprisbiplicataLimnocythereinopinataDarwinulastevensoni,其次为IlyocyprisbradyiIlyocyprissebeiensisCypridopsis sp.、DarwinulastevensoniDarwinula sp.、CandoniellasuziniCandona sp.和Eucypris cf. inflata。其中Limnocythereinopinata是该组合中的最优势分子(图3,图5),在数量上占绝对优势,含量高达87.6%。同层位Limnocythereinopinata的幼年个体和成年个体的壳体共同产出,指示它们为原地埋藏堆积,未经过流水的搬用筛选(Holmes,2001)。与上述介形类伴生的还有腹足类、轮藻、盘星藻类等化石。

  • 3.1.2 Ilyocyprisbradyi-Ilyocyprissebeiensis组合Ⅱ(19.5~13.5 m)

  • 该组合主要分布在钻孔剖面上段,19.5~13.5 m处,主要分子为IlyocyprisbradyiIlyocyprissebeiensis,其次为IlyocyprisbiplicataLimnocythereinopinata。该组合中无论介形类的丰度和多样性均较组合1显著下降,缺少很多其他伴生类群且Limnocythere属的丰度急剧锐减(图3)。

  • 3.2 介形类生态环境指示

  • 介形类的属种分布与其生活的水体环境之间有密切联系,因此,介形类组合的研究可以为古环境研究和恢复提供重要依据。尽管生活水体的盐度、温度、pH值、水深(水动力条件)等环境因素均对介形类的发育和壳体保存有重要影响和制约,而其中水体盐度是影响陆相介形类分布的首要控制因素(杨藩等,2006)。①Ilyocypris广泛分布于各种类型的淡水水体环境中(淡水湖泊、河流等)(Meisch,2000),其单独出现往往指示流动性淡水体(黄宝仁,1985彭金兰等,2002),其中,IlyocyprisbiplicataI. bradyi现生种在现今柴达木盆地淡水—少盐水(盐度<5‰)环境中产出(杨藩和孙镇城,1988);②Candoniella的现生种主要生活在淡水或少盐水的小型水体中(杨藩和孙镇城,1988);③Candona为喜淡水属,该属的现生种主要分布于各种类型的淡水环境中(杨藩和孙镇城,1988刘俊英等,2010),在现今柴达木盆地淡水—微咸水(盐度<2‰)水域中Candona分布广泛(张虎才等,2008);④Darwinula喜淡水—少盐水,是淡水湖底最常见的介形类之一(杨藩和孙镇城,1988),其中,Darwinulastevensoni一般认为是喜淡水种,其现生种主要生活在淡水—微咸水的永久性湖泊中(水深0~12 m,盐度<1‰)(Mazzini et al.,1999Meisch,2000;Mezquita et al.,2015);⑤CypridopsisEucypris均为广盐性属种,可以生活在各类水体中,其中,Eucypris属往往在多盐水环境中成为优势种(黄宝仁,1985);⑥Limnocythereinopinata在我国内蒙古、青海、新疆和西藏等地的淡水至半咸水水体环境广泛存在(Zhai Dayou et al.,2010Li Xiangzhong et al.,2010禹娜等,2014Jiang Gaolei et al.,2022),喜好安静且少盐水的大型水体(Meisch,2000杨藩等,2006),在盐度范围为3‰~9‰的水体中达到最大丰度(Holmes et al.,1999),最近有学者在现今西藏江错湖研究后发现该种喜好生活在低盐度的水体中(3.5‰~6.5‰)(Wang Can et al.,2021),该种在现今柴达木盆地和青海湖区域也主要产出于低盐环境中(张玲等,2006杨藩等,2008)。

  • 总之,ZK53630-1钻孔介形类组合Ⅰ和组合Ⅱ均以喜淡水—低盐水的介形类占绝对优势(图3~5),指示具一定水体深度的淡水—微咸水湖泊环境。组合带Ⅰ中的介形类可见与腹足类Gyraulus cf.ifraspiralis伴生(图5),而扁蜷螺(Gyraulus)的现生属种主要生活在温暖湿润的淡水水体中(Mischke et al.,2020)。此外,我们在ZK53630-1钻孔剖面下段介形类产出层位也发现了大量盘星藻类(Pediastrum)和花粉香蒲属(Typra)的存在(待发表数据),其中盘星藻类是广温型的淡水绿藻类,其现在种通常生活在天然的淡水—微咸水湖泊环境中(孙湘君和吴玉书,1987Komarek and Jankovska,2001唐领余等,2013),香蒲属现生种为多年生水生挺水植物,主要生活在淡水的湖泊、沼泽等环境中(中国科学院新疆综合考察队等,1978黄小忠等,2004),它们与本次喜淡水—少盐水类介形类化石的伴生也指示了淡水—微咸水湖泊的存在。

  • 图5 青海察尔汗盐湖区ZK53630-1钻孔典型介形类及与其伴生的腹足类

  • Fig.5 Representative ostracods and its associated gastropods from the ZK53630-1 drill core, Qarhan salt lake, Qinghai

  • 1 —Limnocythereinopinata雌性右壳外视,标本号ZK53630-1-32.5 m-49;2—Limnocythereinopinata雌性左壳外视;3—Limnocythereinopinata雌性右壳外视,标本号ZK53630-1-32.5 m-61;4—Limnocythereinopinata雌性右壳外视(具一瘤),标本号ZK53630-1-32.5 m-61;5—Limnocythereinopinata雌性左壳内视,标本号ZK53630-1-32.5 m-19;6—Limnocythereinopinata局部放大(示肌痕),标本号ZK53630-1-32.5 m-19;7—Limnocythereinopinata雄性右壳外视,标本号ZK53630-1-32.5 m-45;8—Limnocythereinopinata雄性左壳外视,标本号ZK53630-1-32.5 m-48;9—Limnocythereinopinata雄性左壳内视,标本号ZK53630-1-32.5 m-7;10—Gyraulus cf. ifraspiralis顶视,标本号ZK53630-1-32.5 m-1(g);11—Gyraulus cf. ifraspiralis顶视,标本号ZK53630-1-32.5 m-2(g);所有白色线段比例尺代表200 μm

  • 1 —Limnocythereinopinatafemale right valve external view, specimen No.ZK53630-1-32.5 m-49; 2—Limnocythereinopinata female left valve external view, specimen No.ZK53630-1-32.5 m-50; 3—Limnocythereinopinata female right valve external view, specimen No.ZK53630-1-32.5 m-61; 4—Limnocythereinopinata female right valve external view (showing one node) , specimen No.ZK53630-1-32.5 m-61; 5—Limnocythereinopinata female left valve internal view, specimen No.ZK53630-1-32.5 m-19; 6—Limnocythereinopinata enlargement of specimen showing muscle scars, specimen No.ZK53630-1-32.5 m-19; 7—Limnocythereinopinata male right valve external view, specimen No.ZK53630-1-32.5m-45; 8—Limnocythereinopinata male left valve external view, specimen No.ZK53630-1-32.5 m-48; 9—Limnocythereinopinata male left valve internal view, specimen No.ZK53630-1-32.5 m-7; 10—Gyraulus cf. ifraspiralis apical view, specimen No.ZK53630-1-32.5 m-1 (g) ; 11—Gyraulus cf. ifraspiralis apical view, specimen No.ZK53630-1-32.5-2 (g) ; the scale bars in all figures are 200 μm

  • 4 晚更新世晚期察尔汗古湖高湖面的发育与萎缩

  • 综上可知,察尔汗地区在距今34~28 ka期间的晚更新世晚期,主体仍为水域面积广阔的淡水—微咸水湖泊(察尔汗古湖),气候温暖湿润,雨量充沛,水生生物繁盛,与现今极端干旱的盐湖环境截然不同。西昆仑山古里雅冰芯氧同位素记录(Yao Tandong et al.,1997)和甜水海盆地湖相钻孔碳酸盐含量记录(李世杰等,1998)均显示青藏高原在深海氧同位素3阶段晚期(MIS 3a,40~30 ka)总体处于温暖偏湿的环境,年均温高出现代达2~4℃(施雅风等,1999)。该时期在柴达木盆地东部湖泊区也表现为明显的泛湖期(郑绵平等,2006),存在大型的淡水—微咸水湖泊发育(Chen Kezao and Bowler,1986),察尔汗盐湖钻孔中原生石盐流体包裹体氢氧同位素测定结果也显示该地区当时的年均温高出现代达2℃(张彭熹等,1993)。前人对柴达木盆地诺木洪贝壳堤剖面开展的年代学和古生物学研究也显示察尔汗古湖在MIS 3a时期存在高湖面(Zhang Hucai et al.,2008张虎才等,2008),尽管其后学者们对贝壳堤剖面的沉积时代和沉积环境依然存在不同的认识(Lai Zhongping et al.,2013; Mischke et al.,2014Zhang Hucai,2015)。柴达木盆地东部尕海和托素湖湖岸砂堤沉积学和光释光年代学研究显示它们在31 ka同样存在高湖面发育(Fan Qishun et al.,2012)。此外,察尔汗盐湖ISL1A钻孔黏土矿物和孢粉记录均表明察尔汗古湖在MIS 3a期间表现为相对湿润气候背景下的化学风化作用增强,入湖径流量增加,湖泊扩张(Wei Haicheng et al.,2015Miao Weiliang et al.,2016),该时期的湿润气候背景同样体现在察尔汗盐湖DBX-2007钻孔盐类矿物组分垂向变化记录中(Zhang Mengwei and Liu Xingqi,2020)。

  • 需要指出的是,在察尔汗古湖总体高湖面发育时期(34~28 ka),依然存在湖平面的大幅度波动。ZK53630-1钻孔介形类组合Ⅱ相比组合Ⅰ属种的多样性和丰度均下降明显,且喜好安静且少盐水大型水体的Limnocythere属的丰度急剧锐减(图3)。Limnocythere属丰度的锐减与该钻孔岩性组成垂向上的变化(向上沉积物粒度明显变粗)是一致的,均指示察尔汗古湖湖平面经历了显著下降,湖泊水体发生了明显萎缩。

  • ~28 ka之后,ZK53630-1钻孔中先前繁盛的介形类和先前广布的黑色泥炭层消失,石膏、石盐等盐类矿物开始大量出现(图3),显示察尔汗古湖发生显著咸化。这与孢粉学记录的区域气候的变化趋势相一致,表现为察尔汗湖区同时期植被中荒漠成分显著增加,周围山地森林明显萎缩(万和文等,2008)。前人的研究也显示进入MIS 2之后柴达木盆地开始显著干旱化,几乎所有盆地中西部的盐湖均发育有石盐沉积,柴西盐湖通常发育有芒硝沉积(陈安东等,2020)。察尔汗盐湖在~25 ka湖面迅速下降,湖水高度浓缩,湖底开始发育石盐层(Chen Kezao and Bowler,1986孙镇城等,2003),在晚更新世末期形成巨大的干盐滩,结束了湖泊演化历史(张彭熹,1987沈振枢等,1993黄麒和韩凤清,2007)。

  • 5 结论

  • (1)通过对察尔汗盐湖ZK53630-1钻孔岩芯开展系统的介形类分类学研究和AMS 14C测年分析,构建了研究钻孔剖面的年代地层序列,并依据获取的7属10种介形类化石,自下而上识别出2个生物组合带,即:Ilyocyprisbiplicata-Limnocythereinopinata组合带和Ilyocyprisbradyi-Ilyocyprissebeiensis组合带。

  • (2)介形类及其伴生微体古生物化石均显示:距今34~28 ka期间的晚更新世晚期(MIS 3a),察尔汗古湖主体仍为淡水—微咸水湖泊,水生生物繁盛,气候温暖湿润,与现今极端干旱的盐湖环境截然不同;~28 ka之后,察尔汗古湖气候格局发生突变,开始显著咸化并开始萎缩。

  • 致谢:本次研究中的介形类扫描电镜工作得到了杨琴博士的大力协助,硕士研究生任康乐、张旭参加了介形类扫描电镜照相和图版制作工作,匿名评审专家审阅并提出了宝贵修改建议,在此一并致以衷心的谢意。

  • 参考文献

    • Alivernini M, Akita L G, Ahlborn M, Borner N, Haberzettl T, Kasper T, Plessen B, Peng P, Schwalb A, Wang J, Frenzel P. 2018. Ostracod-based reconstruction of Late Quaternary lake level changes within the Tangra Yumco lake system (southern Tibetan Plateau). Journal of Quaternary Science, 33: 713~720.

    • Chen Andong, Zheng Mianping, Song Gao, Wang Xuefeng, Li Hongpu, Han Guang, Yuan Wenhu. 2020. Evaporite deposits in the Qaidam basin and their response to Quaternary glacial climates since marine oxygen isotope stage 6 (MIS6). Geological Review, 66(3): 611~624 (in Chinese with English abstract).

    • Chen Kezao, Bowler J M. 1986. Late Pleistocene evolution of saltlakes in the Qaidam basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54: 87~104.

    • De Deckker P, Forester R M. 1988. The use of ostracods to reconstruct continental palaeoenvironmental records. In: De Deckker P, Colin J P, Peypouquet J P, eds. Ostracoda in the Earth Sciences. Elsevier, Amsterdam, 175~199.

    • Fan Qishun, Ma Haizhou, Cao Guangchao, Chen Zongyan, Cao Shengkui. 2012. Geomorphicand chronometric evidence for high lake level history in Gahaiand Toson Lake of north-eastern Qaidam basin, north-eastern Qinghai-Tibetan Plateau. Journal of Quaternary Science, 27(8): 819~827.

    • Fan Qishun, Ma Haizhou, Ma Zhibang, Wei Haicheng, Han Fengqing. 2014. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environmental Earth Sciences, 71(3): 1227~1237.

    • Holmes J A. 2001. Ostracoda. In: Smol J P, Last H J B, eds. Tracking Environmental Change Using Lake Sediments, vol. 4: Zoological Indicators. Netherlands: Dordrecht, Kluwer Academic Publishers, 125~151.

    • Holmes J A, Allen M J, Street-Perrott F A, Ivanovich M, Perrott R A, Waller M P. 1999. Late Holocene palaeolimnology of Bal Lake, Northern Nigeria, a multidisciplinary study. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 169~185.

    • Holmes J A, Chivas A R. 2002. The Ostracoda: Applications in Quaternary Research, vol. 131. Washington DC: American Geophysical Union Monograph Series.

    • Hou Juzhi, D'Andrea W J, Liu Zhonghui. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews, 48: 67~79.

    • Hou Youtang, Gou Yunxian, Chen Deqiong. 2002. Fossil Ostracoda of China, Vol. 1, Superfamilies Crypridacea and Darwinulidacea. Beijing: Science Press (in Chinese).

    • Hou Youtang, Gou Yunxian. 2007. Fossils Ostracoda of China, Vol. 2, Cytheracea and Cytherellidacea. Beijing: Science Press (in Chinese).

    • Huang Baoren. 1964. Ostracods from Gansen District, Chaidam Basin. Acta Palaeontologic Sinica, 12(2): 241~270 (in Chinese with English abstract).

    • Huang Baoren, Yang Liufa, Fan Yunqi. 1985. Ostracodes from surface deposits of recent lake in Xizang. Acta Micropalaeontologica Sinica, 2(4): 369~376 (in Chinese with English abstract).

    • Huang Qi, Han Fengqing. 2007. Evolution of Salt Lakes and Palaeoclimatefluctuation in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Huang Xiaozhong, Zhao Y, Chen B, Chen Fahu, Xu Junrong. 2004. Modern pollen analysis of the surface sediments from the Bosten Lake, Xinjiang, China. Journal of Glaciology and Geocryology, 26(5): 602~609 (in Chinese with English abstract).

    • Jiang Gaolei, Wang Naiang, Zhai Dayou, Li Xiangzhong, Mao Xin, Li Meng, Liu Linjing. 2022. Distribution pattern of different phenotypes of Limnocythere inopinata (an ostracod) from lakes in the Badain Jaran Desert, northern China. Ecological Indicators, 139: 108965.

    • Komarek J I, Jankovska V. 2001. Review of the green algal genus Pediastrum: Implication for pollen-analytical research. Bibliotheca Phycological, 108: 1~127.

    • Lai Zhongping, Mischke S, Madsen D. 2014. Paleoenvironmental implicationsof new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Journal of Paleolimnology, 51(2): 197~210.

    • Li Shijie, Qu Rongkang, Zhu Zhaoyu, Li Bingyuan. 1998. A Carbonate content record of Late Quaternary climate and environment changes from lacustrine core TS95 in Tianshuihai Lake basin, Northwestern Qinghai Xizang (Tibet) Plateau. Journal of Lake Sciences, 10(2): 58~65 (in Chinese with English abstract).

    • Li Wei, Qu Haiying, Li Sha, Zhou Shumin, Song Xianteng, Wang Xiaonan. 2022. Water evolution of Nuomuhong Shell Ridge in Qaidam Basin: Evidence from Ostracods. Geoscience, 36(1): 25~26 (in Chinese with English abstract).

    • Li Xiangzhong, Liu Weiguo, Zhang Ling, Sun Zhencheng. 2010. Distribution of recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance. Ecological Indicators, 10: 880~890.

    • Li Xiangzhong, Zhai Ddayou, Wang Qianwei, Wen Ruilin, Ji Ming. 2021. Depth distribution of ostracods in a large fresh-water lake on the Qinghai-Tibet Plateau and its ecological and palaeolimnological significance. Ecological Indicators, 129: 108019.

    • Liu Junying, Wang Hailei, Yuan Heran. 2010. Climatic evolution since the Late Pleistocene in Sekazhi Lake area, Tibet, based on the microfossil record. Acta Geologica Sinica, 84(11): 1968~1977 (in Chinese with English abstract).

    • Mazzini L, Anadon P, Barbieri M, Castorina F, Ferreli L, Gliozzi E, Mola M, Vittori E. 1999. Late Quaternary sea-level changes along the Tyrrhenian coast near Orbetello (Tuscany, central Italy): Palaeoenvironmental reconstruction using ostracods. Marine Micropaleontology, 37(3-4): 289~312.

    • McCormack J, Viehberg F, Akdemir D, Immenhauser A, Kwiecien O. 2019. Ostracods as ecological and isotopic indicators of lake water salinity changes: The Lake Van example. Biogeosciences, 16: 2095~2114.

    • Meisch C. 2000. Freshwater Ostracoda of Western and Central Europe. Heidelberg: Spektrum.

    • Mezquita F, Roca J R, Reed J M, Wansar G. 2005. Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: Examples using Iberian data, Palaeogeography, Palaeoclimatology, Palaeoecology, 225: 93~117.

    • Miao Weiliang, Fan Qishun, Wei Haicheng, Zhang Xiying, Ma Haizhou. 2016. Clay mineralogical and geochemical constraints on Late Pleistocene weathering processes of the Qaidam basin, northern Tibetan Plateau. Journal of Asian Earth, 127: 267~280.

    • Mischke S, Lai Z P, Zhang C J. 2014. Re-assessment of the paleoclimate implications of the shell bar in the Qaidam basin, China. Journal of Paleolimnology, 51: 179~195.

    • Mischke S, Lee M K, Lee Y I. 2020. Climate history of southern mongolia since 17 ka: The ostracod, gastropod and charophyte record from lake Ulaan. Frontiers in Earth Science, 8: 221.

    • Pang Qiqing, Liu Junying, Zheng Mianping, Zhao Xitao. 2007. Quaternary ostracoda in the pass aera of the Kunlun Mountains, northern Qinghai-Tibet Plateau, with a discussion on the environmental change. Acta Geologic Sinica, 81(12): 1672~1691 (in Chinese with English Abstract).

    • Reimer P J, Austin W E N, Bard E, Bayliss A, Blackwell P G, Ramsey C B, Butzin M, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kromer B, Manning S W, Muscheler R, Palmer J G, Pearson C, van der Plicht J, Reimer R W, Richards D A, Scott E M, Southon J R, Turne C S M, Wacker L, Adolphi F, Buntgen U, Capano M, Fahrni S M, Fogtmann-Schulz A, Friedrich R, Kohler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S. 2020. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0~55 cal kBP). Radiocarbon, 62(4): 725~757.

    • Peng Jinglan. 2002. A Preliminary ecological analysis on the late Quaternary ostracodes from the Heqing Basin, Yunnan. Acta Micropalaeontologica Sinica, 19(12): 144~156(in Chinese with English abstract).

    • Shen Zhenshu, Cheng Guo, Le Changshuo, Liu Shuqin, Zhang Fasheng, Wang Qiang, Qi Guozhu, Zhang Jiaer, Ge Tongming, Lei Shitai. 1993. The Division and Sedimentary Environment of Quaternary Salt-bearing Strata in Qaidam Basin. Beijing: Geological Publishing House (in Chinese).

    • Shi Yafeng, Liu Xiaodong, Li Bingyuan, Yao Tandong. 1999. A very strong summer monsoon event during 30~40 ka BP in the Tibetan Plateau and the relation to precessional cycle. Chinese Science Bulletin, 44(14): 1475~1480 (in Chinese with English abstract).

    • Sun Xiangjun, Wu Yushu. 1987. Distribution and quantity of sporopollen and algae in surface sediments of the Dianchi Lake, Yunnan Province. Marine Geology & Quaternary Geology, 7(4): 81~92 (in Chinese with English abstract).

    • Sun Zhencheng, Cao Li, Zhang Haiquan, Zhang Yonghua, Dong Ning, Qiao Zizhen, Sun Laida, Yuan Xiujun, Lu Yanli, Zhang Hongxin. 2003. Evolution of Ostracoda of the great ice age of last glacial stage in Qaidam Basin. Journal of Palaeogeography, 5(3): 365~377 (in Chinese with English abstract).

    • Tang Lingyu, Mao Limi, Lv Xinmiao, Ma Qingfeng, Zhou Zhongfeng, Yang Chunlei, Kong Zhaochen, Batten D J. 2013. Palaeoecological and palaeoenvironmental significance of some important spores and micro-algae in Quaternary deposits. Science Bulletin, 58(20): 1969~1983 (in Chinese with English abstract).

    • Wan Hewen, Tang Lingyu, Zhang Hucai, Li Chunmei, Pang Youzhi. 2008. Pollen recordreflects climate changes in eastern Qaidam basin during 36~18 ka B. P. Quaternary Sciences, 28(1): 112~121 (in Chinese with English abstract).

    • Wang Can, Kuang Xingxing, Wang Hhailei, Guo Ganlin, Song Gao. 2021. Ostracods as a proxy for paleoclimatic change: An essential role of bioculture experiment taking Limnocythere inopinata (Crustacea: Ostracoda) as an example. Ecological Indicators, 121: 107000.

    • Wang Qiang. 1998. Abrupt formation of the Charhan saltlake and the megaevolution of the earth surface system—On thebasis of Ostracoda. Journal of Geomechanics, 4(4): 82~87 (in Chinese with English abstract).

    • Wei Haicheng, Fan Qishun, Zhao Yan, Ma Haizhou, Shan Fashou, An Fuyuan, Yuan Qin. 2015. A 94~10 ka pollen record of vegetation change in Qaidam basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 431: 43~52.

    • Xinjiang Institute of Comprehensive Survey Team, Institute of Geography, Department of Geography of Beijing Normal University. 1978. Xinjiang Geomorphology. Beijing: Science Press (in Chinese).

    • Yang Fan, Sun Zhencheng. 1988. Ecology and palaeoecology of somegenera and species, their significance to environmental indication. In: Exploration and Development Research Institute, Qinghai Petroleum Administration, Nanjing Institute of Geology and Palaeontology, Academia Sinica, eds. Tertiary Ostracode Fauna from Qaidam Basin, NW China. Nanjing: Nanjing University Press, 22~30 (in Chinese).

    • Yang Fan, Qiao Zizhen, Zhang Hhaiquan, Zhang Yonghua, Sun Zhengcheng. 2006. Features of the Cenozoic ostrocod fauna and environmental significance in Qaidambasin. Journal of Palaeogeography, 8(2): 143~156 (in Chinese with English abstract).

    • Yang Fan, Dong Ning, Qiao Zizhen, Sun Zhencheng, Ren Yufen. 2008. Taxonomy and habitat of Quaternary Limnocythere(Ostracoda)from the Qaidam Basinand the Qinghaihu Lake, Qinghai. Acta Micropalaeontologica Sinica, 25(4): 316~332 (in Chinese with English abstract).

    • Yao Tandong, Thompson L G, Shi Yafeng, Qin Dahe, Jiao Keqin, Yang Zhihong, Tian Lide, Mosley-Thompson E. 1997. Climate variation since the last interglaciation recorded in the Guliya ice core. Science China (D): Earth Science, 40: 662~668.

    • Yu Na. 2014. Non-marine Ostracoda from China. Shanghai: Shanghai Education Publishing House, 1~283 (in Chinese).

    • Zhai Dayou, Xiao Jule, Zhou Lang, Wen Ruilin, Chang Zhigang, Pang Qiqing. 2010. Similar distribution pattern of different phenotypes of Limnocythere inopinata (Baird) in a brackish-water lake in Inner Mongolia. Hydrobiologia, 651: 185~197.

    • Zhang Hucai, Fan Hhongfang, Chang Fengqin, Zhang Wenxiang, Lei Guoliang, Yang Mingsheng, Lei Yanbin, Yang Lunqing. 2008. AMS dating on the shell bar section from Qaidam Basin, NE Tibetan Plateau, China. Radiocarbon, 50: 255~265.

    • Zhang Hucai, Wang Qiang, Peng Jinglan, Chen Guangjie. 2008. Ostracod assemblages and their paleoenvironmental significance from Shell Bar section of palaeolake Qarhan Qaidam Basin. Quaternary Sciences, 28(1): 103~111 (in Chinese with English abstract).

    • Zhang Hucai. 2015. A comment on Lai et al. (2014) concerning the originof the Shell Bar section from the Qaidam basin, NE TibetanPlateau: Lake formation versus river channel deposit, and 14C versus OSL dates. Journal of Paleolimnology, 53: 321~334.

    • Zhang Jiawu, He Jin, Chen Shuo, Li Shuang. 2009. Applications of non-marine ostracods in Quaternary paleoenvironment advances and problems in fossil assemblages. Advances in Earth Science, 24(11): 1229~1237 (in Chinese with English abstract).

    • Zhang Ling, Sun Zhengcheng, An Zhisheng, Liu Weiguo, Li Xiangzhong. 2006. A preliminary distribution analysis on ostracoda of different water bodies from Qinghai Lake area, NW China. Acta Micropalaeontologica Sinica, 23(4): 425~436 (in Chinese with English abstract).

    • Zhang Mengwei, Liu Xingqi. 2020. Climate changes in the Qaidam Basin in NW China over the past 40 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109679.

    • Zhang Pengxi, Zhao Baozhen, Lowenstein T K. 1993. Origin of Ancient Potash Evaporites: Examples from the Formation of Ancient Potash of Qarhan Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhang Pengxi. 1987. Saline Lakes in the Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhao Yan, Herzschuh U. 2009. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Vegetation History and Archaeobotany, 18(3): 245~260.

    • Zheng Mianping, Yuan Heran, Zhao Xitao, Liu Xifang. 2006. The Quaternary Pan-lake (overflow) period and paleoclimate on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 80(2): 169~180 (in Chinese with English abstract).

    • 陈安东, 郑绵平, 宋高, 王学锋, 李洪普, 韩光, 袁文虎. 2020. 晚第四纪MIS6 以来柴达木盆地成盐作用对冰期气候的响应. 地质论评, 66(3): 611~624.

    • 黄麒, 韩凤清. 2007. 柴达木盆地盐湖演化与古气候波动. 北京: 科学出版社.

    • 黄宝仁. 1964. 柴达木盆地甘森区介形类化石. 古生物学报, 12(2): 241~255.

    • 黄宝仁, 杨留法, 范云琦. 1985.西藏现代湖泊表层沉积物中的介形类.微体古生物学报, 2(4): 369~376.

    • 黄小忠, 赵艳, 程波, 陈发虎, 徐俊荣. 2004. 新疆博斯腾湖表层沉积物的孢粉分析. 冰川冻土, 26(5): 602~609.

    • 侯祐堂, 勾韵娴, 陈德琼. 2002.中国介形类化石(第一卷): Cypridacea和 Darwinulidacea. 北京: 科学出版社.

    • 侯祐堂, 勾韵娴. 2007. 中国介形类化石(第二卷): Cytheracea 和Cytherellidae. 北京: 科学出版社.

    • 李玮, 屈海英, 李莎, 周淑敏, 宋先腾, 王晓楠. 2022. 柴达木盆地诺木洪贝壳堤水体演变的介形类证据. 现代地质, 36(1): 14~24.

    • 李世杰, 区荣康, 朱照宇, 李炳元. 1998. 24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化.湖泊科学, 10(2): 58~65.

    • 刘俊英, 王海雷, 袁鹤然. 2010. 西藏色卡执湖区更新世晚期以来微体古生物记录的气候演变. 地质学报, 84(11): 1668~1679.

    • 彭金兰. 2002. 云南鹤庆晚第四纪介形类生态特征初探. 微体古生物学报, 19(2): 144~456.

    • 庞其清, 刘俊英, 郑绵平, 赵希涛. 2007.青藏高原昆仑山垭口地区第四纪介形虫及环境变迁的探讨. 地质学报, 81(12): 1672~1691.

    • 施雅风, 刘晓东, 李炳元, 姚檀栋. 1999. 距今40~30 ka青藏高原特强夏季风事件及其与岁差周期关系.科学通报, 44(14): 1475~1480.

    • 沈振枢, 程果, 乐昌硕, 刘淑琴, 张发胜, 王强, 祁国柱, 张嘉尔, 葛同明, 雷世太. 1993. 柴达木盆地第四纪含盐地层划分及沉积环境. 北京: 地质出版社.

    • 孙湘君, 吴玉书. 1987. 云南滇池表层沉积物中花粉和藻类的分布规律及数量特征. 海洋地质与第四纪地质, 7(4): 81~92.

    • 孙镇城, 曹丽, 张海泉, 张永华, 董宁, 乔子真, 孙乃达, 袁秀君, 路艳丽, 张宏欣. 2003. 柴达木盆地全球末次冰期介形类动物群的演变. 古地理学报, 5(3): 365~376.

    • 唐领余, 毛礼米, 吕新苗, 马庆峰, 周忠泽, 杨春蕾, 孔昭宸, Batten D J. 2013. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义. 科学通报, 58(20): 1969~1983.

    • 王强. 1998. 察尔汗盐湖的突然形成与地表系统巨变——据介形类研究. 地质力学学报, 4(4): 82~87.

    • 万和文, 唐领余, 张虎才, 李春梅, 庞有智. 2008. 柴达木盆地东部36~18 ka B. P. 期间的孢粉记录及其气候环境. 第四纪研究, 28(1): 112~121.

    • 禹娜. 2014. 中国非海水介形类. 上海: 上海教育出版社.

    • 杨藩, 孙镇城. 1988. 常见介形类属种的生态及其环境指示意义. 见: 青海石油管理局勘探开发研究院, 中国科学院南京地质古生物研究所主编. 青海柴达木盆地第三纪介形类动物群.南京: 南京大学出版社, 22~30.

    • 杨藩, 乔子真, 张海泉, 张永华, 孙镇城. 2006. 柴达木盆地新生代介形类动物群特征及环境意义. 古地理学报, 8(2): 143~156.

    • 杨藩, 董宁, 乔子真, 孙镇城, 任玉芬. 2008. 青海柴达木盆地与青海湖第四纪介形类Limnocythere的分类与生境.微体古生物学报, 25(4): 316~332.

    • 张虎才, 王强, 彭金兰, 陈光杰. 2008. 柴达木察尔汗盐湖贝壳堤剖面介形类组合及其环境意义. 第四纪研究, 28(1): 103~111.

    • 郑绵平, 袁鹤然, 赵希涛, 刘喜方. 2006. 青藏高原第四纪泛湖期与古气候. 地质学报, 80(2): 169~180.

    • 张家武, 何晶, 陈硕, 李双. 2009. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题. 地球科学进展, 24(11): 1229~1237.

    • 张玲, 孙镇城, 安芷生, 刘卫国, 李祥忠. 2006. 青海湖地区不同水体介形类分布特征的初步研究. 微体古生物学报, 23(4): 425~436.

    • 张彭熹. 1987.柴达木盆地盐湖. 北京: 科学出版社.

    • 张彭熹, 张保珍, 洛温斯坦 T K. 1993. 古代异常钾盐蒸发岩的成因——以柴达木盆地察尔汗钾盐的形成为例. 北京: 科学出版社.

    • 中国科学院新疆综合考察队, 中国科学院地理研究所, 北京师范大学地理系. 1978. 新疆地貌. 北京: 科学出版社.

  • 参考文献

    • Alivernini M, Akita L G, Ahlborn M, Borner N, Haberzettl T, Kasper T, Plessen B, Peng P, Schwalb A, Wang J, Frenzel P. 2018. Ostracod-based reconstruction of Late Quaternary lake level changes within the Tangra Yumco lake system (southern Tibetan Plateau). Journal of Quaternary Science, 33: 713~720.

    • Chen Andong, Zheng Mianping, Song Gao, Wang Xuefeng, Li Hongpu, Han Guang, Yuan Wenhu. 2020. Evaporite deposits in the Qaidam basin and their response to Quaternary glacial climates since marine oxygen isotope stage 6 (MIS6). Geological Review, 66(3): 611~624 (in Chinese with English abstract).

    • Chen Kezao, Bowler J M. 1986. Late Pleistocene evolution of saltlakes in the Qaidam basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54: 87~104.

    • De Deckker P, Forester R M. 1988. The use of ostracods to reconstruct continental palaeoenvironmental records. In: De Deckker P, Colin J P, Peypouquet J P, eds. Ostracoda in the Earth Sciences. Elsevier, Amsterdam, 175~199.

    • Fan Qishun, Ma Haizhou, Cao Guangchao, Chen Zongyan, Cao Shengkui. 2012. Geomorphicand chronometric evidence for high lake level history in Gahaiand Toson Lake of north-eastern Qaidam basin, north-eastern Qinghai-Tibetan Plateau. Journal of Quaternary Science, 27(8): 819~827.

    • Fan Qishun, Ma Haizhou, Ma Zhibang, Wei Haicheng, Han Fengqing. 2014. An assessment and comparison of 230Th and AMS 14C ages for lacustrine sediments from Qarhan Salt Lake area in arid western China. Environmental Earth Sciences, 71(3): 1227~1237.

    • Holmes J A. 2001. Ostracoda. In: Smol J P, Last H J B, eds. Tracking Environmental Change Using Lake Sediments, vol. 4: Zoological Indicators. Netherlands: Dordrecht, Kluwer Academic Publishers, 125~151.

    • Holmes J A, Allen M J, Street-Perrott F A, Ivanovich M, Perrott R A, Waller M P. 1999. Late Holocene palaeolimnology of Bal Lake, Northern Nigeria, a multidisciplinary study. Palaeogeography, Palaeoclimatology, Palaeoecology, 148: 169~185.

    • Holmes J A, Chivas A R. 2002. The Ostracoda: Applications in Quaternary Research, vol. 131. Washington DC: American Geophysical Union Monograph Series.

    • Hou Juzhi, D'Andrea W J, Liu Zhonghui. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews, 48: 67~79.

    • Hou Youtang, Gou Yunxian, Chen Deqiong. 2002. Fossil Ostracoda of China, Vol. 1, Superfamilies Crypridacea and Darwinulidacea. Beijing: Science Press (in Chinese).

    • Hou Youtang, Gou Yunxian. 2007. Fossils Ostracoda of China, Vol. 2, Cytheracea and Cytherellidacea. Beijing: Science Press (in Chinese).

    • Huang Baoren. 1964. Ostracods from Gansen District, Chaidam Basin. Acta Palaeontologic Sinica, 12(2): 241~270 (in Chinese with English abstract).

    • Huang Baoren, Yang Liufa, Fan Yunqi. 1985. Ostracodes from surface deposits of recent lake in Xizang. Acta Micropalaeontologica Sinica, 2(4): 369~376 (in Chinese with English abstract).

    • Huang Qi, Han Fengqing. 2007. Evolution of Salt Lakes and Palaeoclimatefluctuation in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Huang Xiaozhong, Zhao Y, Chen B, Chen Fahu, Xu Junrong. 2004. Modern pollen analysis of the surface sediments from the Bosten Lake, Xinjiang, China. Journal of Glaciology and Geocryology, 26(5): 602~609 (in Chinese with English abstract).

    • Jiang Gaolei, Wang Naiang, Zhai Dayou, Li Xiangzhong, Mao Xin, Li Meng, Liu Linjing. 2022. Distribution pattern of different phenotypes of Limnocythere inopinata (an ostracod) from lakes in the Badain Jaran Desert, northern China. Ecological Indicators, 139: 108965.

    • Komarek J I, Jankovska V. 2001. Review of the green algal genus Pediastrum: Implication for pollen-analytical research. Bibliotheca Phycological, 108: 1~127.

    • Lai Zhongping, Mischke S, Madsen D. 2014. Paleoenvironmental implicationsof new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Journal of Paleolimnology, 51(2): 197~210.

    • Li Shijie, Qu Rongkang, Zhu Zhaoyu, Li Bingyuan. 1998. A Carbonate content record of Late Quaternary climate and environment changes from lacustrine core TS95 in Tianshuihai Lake basin, Northwestern Qinghai Xizang (Tibet) Plateau. Journal of Lake Sciences, 10(2): 58~65 (in Chinese with English abstract).

    • Li Wei, Qu Haiying, Li Sha, Zhou Shumin, Song Xianteng, Wang Xiaonan. 2022. Water evolution of Nuomuhong Shell Ridge in Qaidam Basin: Evidence from Ostracods. Geoscience, 36(1): 25~26 (in Chinese with English abstract).

    • Li Xiangzhong, Liu Weiguo, Zhang Ling, Sun Zhencheng. 2010. Distribution of recent ostracod species in the Lake Qinghai area in northwestern China and its ecological significance. Ecological Indicators, 10: 880~890.

    • Li Xiangzhong, Zhai Ddayou, Wang Qianwei, Wen Ruilin, Ji Ming. 2021. Depth distribution of ostracods in a large fresh-water lake on the Qinghai-Tibet Plateau and its ecological and palaeolimnological significance. Ecological Indicators, 129: 108019.

    • Liu Junying, Wang Hailei, Yuan Heran. 2010. Climatic evolution since the Late Pleistocene in Sekazhi Lake area, Tibet, based on the microfossil record. Acta Geologica Sinica, 84(11): 1968~1977 (in Chinese with English abstract).

    • Mazzini L, Anadon P, Barbieri M, Castorina F, Ferreli L, Gliozzi E, Mola M, Vittori E. 1999. Late Quaternary sea-level changes along the Tyrrhenian coast near Orbetello (Tuscany, central Italy): Palaeoenvironmental reconstruction using ostracods. Marine Micropaleontology, 37(3-4): 289~312.

    • McCormack J, Viehberg F, Akdemir D, Immenhauser A, Kwiecien O. 2019. Ostracods as ecological and isotopic indicators of lake water salinity changes: The Lake Van example. Biogeosciences, 16: 2095~2114.

    • Meisch C. 2000. Freshwater Ostracoda of Western and Central Europe. Heidelberg: Spektrum.

    • Mezquita F, Roca J R, Reed J M, Wansar G. 2005. Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: Examples using Iberian data, Palaeogeography, Palaeoclimatology, Palaeoecology, 225: 93~117.

    • Miao Weiliang, Fan Qishun, Wei Haicheng, Zhang Xiying, Ma Haizhou. 2016. Clay mineralogical and geochemical constraints on Late Pleistocene weathering processes of the Qaidam basin, northern Tibetan Plateau. Journal of Asian Earth, 127: 267~280.

    • Mischke S, Lai Z P, Zhang C J. 2014. Re-assessment of the paleoclimate implications of the shell bar in the Qaidam basin, China. Journal of Paleolimnology, 51: 179~195.

    • Mischke S, Lee M K, Lee Y I. 2020. Climate history of southern mongolia since 17 ka: The ostracod, gastropod and charophyte record from lake Ulaan. Frontiers in Earth Science, 8: 221.

    • Pang Qiqing, Liu Junying, Zheng Mianping, Zhao Xitao. 2007. Quaternary ostracoda in the pass aera of the Kunlun Mountains, northern Qinghai-Tibet Plateau, with a discussion on the environmental change. Acta Geologic Sinica, 81(12): 1672~1691 (in Chinese with English Abstract).

    • Reimer P J, Austin W E N, Bard E, Bayliss A, Blackwell P G, Ramsey C B, Butzin M, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kromer B, Manning S W, Muscheler R, Palmer J G, Pearson C, van der Plicht J, Reimer R W, Richards D A, Scott E M, Southon J R, Turne C S M, Wacker L, Adolphi F, Buntgen U, Capano M, Fahrni S M, Fogtmann-Schulz A, Friedrich R, Kohler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S. 2020. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0~55 cal kBP). Radiocarbon, 62(4): 725~757.

    • Peng Jinglan. 2002. A Preliminary ecological analysis on the late Quaternary ostracodes from the Heqing Basin, Yunnan. Acta Micropalaeontologica Sinica, 19(12): 144~156(in Chinese with English abstract).

    • Shen Zhenshu, Cheng Guo, Le Changshuo, Liu Shuqin, Zhang Fasheng, Wang Qiang, Qi Guozhu, Zhang Jiaer, Ge Tongming, Lei Shitai. 1993. The Division and Sedimentary Environment of Quaternary Salt-bearing Strata in Qaidam Basin. Beijing: Geological Publishing House (in Chinese).

    • Shi Yafeng, Liu Xiaodong, Li Bingyuan, Yao Tandong. 1999. A very strong summer monsoon event during 30~40 ka BP in the Tibetan Plateau and the relation to precessional cycle. Chinese Science Bulletin, 44(14): 1475~1480 (in Chinese with English abstract).

    • Sun Xiangjun, Wu Yushu. 1987. Distribution and quantity of sporopollen and algae in surface sediments of the Dianchi Lake, Yunnan Province. Marine Geology & Quaternary Geology, 7(4): 81~92 (in Chinese with English abstract).

    • Sun Zhencheng, Cao Li, Zhang Haiquan, Zhang Yonghua, Dong Ning, Qiao Zizhen, Sun Laida, Yuan Xiujun, Lu Yanli, Zhang Hongxin. 2003. Evolution of Ostracoda of the great ice age of last glacial stage in Qaidam Basin. Journal of Palaeogeography, 5(3): 365~377 (in Chinese with English abstract).

    • Tang Lingyu, Mao Limi, Lv Xinmiao, Ma Qingfeng, Zhou Zhongfeng, Yang Chunlei, Kong Zhaochen, Batten D J. 2013. Palaeoecological and palaeoenvironmental significance of some important spores and micro-algae in Quaternary deposits. Science Bulletin, 58(20): 1969~1983 (in Chinese with English abstract).

    • Wan Hewen, Tang Lingyu, Zhang Hucai, Li Chunmei, Pang Youzhi. 2008. Pollen recordreflects climate changes in eastern Qaidam basin during 36~18 ka B. P. Quaternary Sciences, 28(1): 112~121 (in Chinese with English abstract).

    • Wang Can, Kuang Xingxing, Wang Hhailei, Guo Ganlin, Song Gao. 2021. Ostracods as a proxy for paleoclimatic change: An essential role of bioculture experiment taking Limnocythere inopinata (Crustacea: Ostracoda) as an example. Ecological Indicators, 121: 107000.

    • Wang Qiang. 1998. Abrupt formation of the Charhan saltlake and the megaevolution of the earth surface system—On thebasis of Ostracoda. Journal of Geomechanics, 4(4): 82~87 (in Chinese with English abstract).

    • Wei Haicheng, Fan Qishun, Zhao Yan, Ma Haizhou, Shan Fashou, An Fuyuan, Yuan Qin. 2015. A 94~10 ka pollen record of vegetation change in Qaidam basin, northeastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 431: 43~52.

    • Xinjiang Institute of Comprehensive Survey Team, Institute of Geography, Department of Geography of Beijing Normal University. 1978. Xinjiang Geomorphology. Beijing: Science Press (in Chinese).

    • Yang Fan, Sun Zhencheng. 1988. Ecology and palaeoecology of somegenera and species, their significance to environmental indication. In: Exploration and Development Research Institute, Qinghai Petroleum Administration, Nanjing Institute of Geology and Palaeontology, Academia Sinica, eds. Tertiary Ostracode Fauna from Qaidam Basin, NW China. Nanjing: Nanjing University Press, 22~30 (in Chinese).

    • Yang Fan, Qiao Zizhen, Zhang Hhaiquan, Zhang Yonghua, Sun Zhengcheng. 2006. Features of the Cenozoic ostrocod fauna and environmental significance in Qaidambasin. Journal of Palaeogeography, 8(2): 143~156 (in Chinese with English abstract).

    • Yang Fan, Dong Ning, Qiao Zizhen, Sun Zhencheng, Ren Yufen. 2008. Taxonomy and habitat of Quaternary Limnocythere(Ostracoda)from the Qaidam Basinand the Qinghaihu Lake, Qinghai. Acta Micropalaeontologica Sinica, 25(4): 316~332 (in Chinese with English abstract).

    • Yao Tandong, Thompson L G, Shi Yafeng, Qin Dahe, Jiao Keqin, Yang Zhihong, Tian Lide, Mosley-Thompson E. 1997. Climate variation since the last interglaciation recorded in the Guliya ice core. Science China (D): Earth Science, 40: 662~668.

    • Yu Na. 2014. Non-marine Ostracoda from China. Shanghai: Shanghai Education Publishing House, 1~283 (in Chinese).

    • Zhai Dayou, Xiao Jule, Zhou Lang, Wen Ruilin, Chang Zhigang, Pang Qiqing. 2010. Similar distribution pattern of different phenotypes of Limnocythere inopinata (Baird) in a brackish-water lake in Inner Mongolia. Hydrobiologia, 651: 185~197.

    • Zhang Hucai, Fan Hhongfang, Chang Fengqin, Zhang Wenxiang, Lei Guoliang, Yang Mingsheng, Lei Yanbin, Yang Lunqing. 2008. AMS dating on the shell bar section from Qaidam Basin, NE Tibetan Plateau, China. Radiocarbon, 50: 255~265.

    • Zhang Hucai, Wang Qiang, Peng Jinglan, Chen Guangjie. 2008. Ostracod assemblages and their paleoenvironmental significance from Shell Bar section of palaeolake Qarhan Qaidam Basin. Quaternary Sciences, 28(1): 103~111 (in Chinese with English abstract).

    • Zhang Hucai. 2015. A comment on Lai et al. (2014) concerning the originof the Shell Bar section from the Qaidam basin, NE TibetanPlateau: Lake formation versus river channel deposit, and 14C versus OSL dates. Journal of Paleolimnology, 53: 321~334.

    • Zhang Jiawu, He Jin, Chen Shuo, Li Shuang. 2009. Applications of non-marine ostracods in Quaternary paleoenvironment advances and problems in fossil assemblages. Advances in Earth Science, 24(11): 1229~1237 (in Chinese with English abstract).

    • Zhang Ling, Sun Zhengcheng, An Zhisheng, Liu Weiguo, Li Xiangzhong. 2006. A preliminary distribution analysis on ostracoda of different water bodies from Qinghai Lake area, NW China. Acta Micropalaeontologica Sinica, 23(4): 425~436 (in Chinese with English abstract).

    • Zhang Mengwei, Liu Xingqi. 2020. Climate changes in the Qaidam Basin in NW China over the past 40 kyr. Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109679.

    • Zhang Pengxi, Zhao Baozhen, Lowenstein T K. 1993. Origin of Ancient Potash Evaporites: Examples from the Formation of Ancient Potash of Qarhan Salt Lake in Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhang Pengxi. 1987. Saline Lakes in the Qaidam Basin. Beijing: Science Press (in Chinese).

    • Zhao Yan, Herzschuh U. 2009. Modern pollen representation of source vegetation in the Qaidam Basin and surrounding mountains, north-eastern Tibetan Plateau. Vegetation History and Archaeobotany, 18(3): 245~260.

    • Zheng Mianping, Yuan Heran, Zhao Xitao, Liu Xifang. 2006. The Quaternary Pan-lake (overflow) period and paleoclimate on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 80(2): 169~180 (in Chinese with English abstract).

    • 陈安东, 郑绵平, 宋高, 王学锋, 李洪普, 韩光, 袁文虎. 2020. 晚第四纪MIS6 以来柴达木盆地成盐作用对冰期气候的响应. 地质论评, 66(3): 611~624.

    • 黄麒, 韩凤清. 2007. 柴达木盆地盐湖演化与古气候波动. 北京: 科学出版社.

    • 黄宝仁. 1964. 柴达木盆地甘森区介形类化石. 古生物学报, 12(2): 241~255.

    • 黄宝仁, 杨留法, 范云琦. 1985.西藏现代湖泊表层沉积物中的介形类.微体古生物学报, 2(4): 369~376.

    • 黄小忠, 赵艳, 程波, 陈发虎, 徐俊荣. 2004. 新疆博斯腾湖表层沉积物的孢粉分析. 冰川冻土, 26(5): 602~609.

    • 侯祐堂, 勾韵娴, 陈德琼. 2002.中国介形类化石(第一卷): Cypridacea和 Darwinulidacea. 北京: 科学出版社.

    • 侯祐堂, 勾韵娴. 2007. 中国介形类化石(第二卷): Cytheracea 和Cytherellidae. 北京: 科学出版社.

    • 李玮, 屈海英, 李莎, 周淑敏, 宋先腾, 王晓楠. 2022. 柴达木盆地诺木洪贝壳堤水体演变的介形类证据. 现代地质, 36(1): 14~24.

    • 李世杰, 区荣康, 朱照宇, 李炳元. 1998. 24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化.湖泊科学, 10(2): 58~65.

    • 刘俊英, 王海雷, 袁鹤然. 2010. 西藏色卡执湖区更新世晚期以来微体古生物记录的气候演变. 地质学报, 84(11): 1668~1679.

    • 彭金兰. 2002. 云南鹤庆晚第四纪介形类生态特征初探. 微体古生物学报, 19(2): 144~456.

    • 庞其清, 刘俊英, 郑绵平, 赵希涛. 2007.青藏高原昆仑山垭口地区第四纪介形虫及环境变迁的探讨. 地质学报, 81(12): 1672~1691.

    • 施雅风, 刘晓东, 李炳元, 姚檀栋. 1999. 距今40~30 ka青藏高原特强夏季风事件及其与岁差周期关系.科学通报, 44(14): 1475~1480.

    • 沈振枢, 程果, 乐昌硕, 刘淑琴, 张发胜, 王强, 祁国柱, 张嘉尔, 葛同明, 雷世太. 1993. 柴达木盆地第四纪含盐地层划分及沉积环境. 北京: 地质出版社.

    • 孙湘君, 吴玉书. 1987. 云南滇池表层沉积物中花粉和藻类的分布规律及数量特征. 海洋地质与第四纪地质, 7(4): 81~92.

    • 孙镇城, 曹丽, 张海泉, 张永华, 董宁, 乔子真, 孙乃达, 袁秀君, 路艳丽, 张宏欣. 2003. 柴达木盆地全球末次冰期介形类动物群的演变. 古地理学报, 5(3): 365~376.

    • 唐领余, 毛礼米, 吕新苗, 马庆峰, 周忠泽, 杨春蕾, 孔昭宸, Batten D J. 2013. 第四纪沉积物中重要蕨类孢子和微体藻类的古生态环境指示意义. 科学通报, 58(20): 1969~1983.

    • 王强. 1998. 察尔汗盐湖的突然形成与地表系统巨变——据介形类研究. 地质力学学报, 4(4): 82~87.

    • 万和文, 唐领余, 张虎才, 李春梅, 庞有智. 2008. 柴达木盆地东部36~18 ka B. P. 期间的孢粉记录及其气候环境. 第四纪研究, 28(1): 112~121.

    • 禹娜. 2014. 中国非海水介形类. 上海: 上海教育出版社.

    • 杨藩, 孙镇城. 1988. 常见介形类属种的生态及其环境指示意义. 见: 青海石油管理局勘探开发研究院, 中国科学院南京地质古生物研究所主编. 青海柴达木盆地第三纪介形类动物群.南京: 南京大学出版社, 22~30.

    • 杨藩, 乔子真, 张海泉, 张永华, 孙镇城. 2006. 柴达木盆地新生代介形类动物群特征及环境意义. 古地理学报, 8(2): 143~156.

    • 杨藩, 董宁, 乔子真, 孙镇城, 任玉芬. 2008. 青海柴达木盆地与青海湖第四纪介形类Limnocythere的分类与生境.微体古生物学报, 25(4): 316~332.

    • 张虎才, 王强, 彭金兰, 陈光杰. 2008. 柴达木察尔汗盐湖贝壳堤剖面介形类组合及其环境意义. 第四纪研究, 28(1): 103~111.

    • 郑绵平, 袁鹤然, 赵希涛, 刘喜方. 2006. 青藏高原第四纪泛湖期与古气候. 地质学报, 80(2): 169~180.

    • 张家武, 何晶, 陈硕, 李双. 2009. 第四纪湖相介形类壳体化石在古环境中的应用——种属组合研究进展与问题. 地球科学进展, 24(11): 1229~1237.

    • 张玲, 孙镇城, 安芷生, 刘卫国, 李祥忠. 2006. 青海湖地区不同水体介形类分布特征的初步研究. 微体古生物学报, 23(4): 425~436.

    • 张彭熹. 1987.柴达木盆地盐湖. 北京: 科学出版社.

    • 张彭熹, 张保珍, 洛温斯坦 T K. 1993. 古代异常钾盐蒸发岩的成因——以柴达木盆地察尔汗钾盐的形成为例. 北京: 科学出版社.

    • 中国科学院新疆综合考察队, 中国科学院地理研究所, 北京师范大学地理系. 1978. 新疆地貌. 北京: 科学出版社.