-
在新元古代中晚期罗迪尼亚(Rodinia)超大陆裂解的构造动力学背景下,早先拼合的扬子-华夏大陆(华南板块)在~820 Ma沿南华裂谷带再次裂解,迅速转入陆内伸展裂谷环境,为华南新元古代晚期—早古生代奥陶纪的海陆格局与陆内构造演化奠定了基础(Wang Jian and Li Zhengxiang,2003;Zhang Guowei et al.,2013;Shu Liangshu et al.,2019)。南华裂谷盆地在陆内伸展裂谷期(820~720 Ma)沉积了数千米厚的滨浅海-盆地相,即板溪群—下江群—高涧群—丹洲群(陈建书等,2016,2020;Song Gaoyuan et al.,2017;张嘉玮等,2020)。此外,拉伸纪晚期800~720 Ma在扬子西缘的川滇裂谷盆地沉积形成了澄江组-牛首山组(刘鸿允等,1983;Jiang Xinsheng et al.,2012;崔晓庄等,2013;刘军平等,2019)。在770~714 Ma 扬子克拉通及其北缘地区沉积了一套数百米厚以红色碎屑岩为主体、顶部发育灰绿色碎屑岩、从陆相到海相的莲沱组,以成冰系冰碛岩的出现为标志代表这套拉伸纪晚期地层的结束(高维和张传恒,2009;Lan Zhongwu et al.,2015a,2015b;杜秋定等,2021;宁括步等,2022)。
-
建立拉伸纪晚期扬子各区地层联系,特别是扬子克拉通北缘与东南缘南华裂谷盆地地层联系,是解决南华纪(成冰纪)大冰期前古地理格局和大地构造演化等诸多地质问题的关键。然而,扬子东南缘南华裂谷盆地与扬子克拉通及其北缘地区岩石单元的岩性、岩相、厚度、变质程度等方面差异明显(刘鸿允和李曰俊,1992),使得莲沱组与扬子克拉通东南缘板溪群—下江群—丹洲群之间的联系薄弱,且地层对比关系长期存在争议(刘卫新和张宝成,1989;林树基,1995;黄建中等,1996;刘鸿允等,1999;汪正江等,2015;Lan Zhongwu et al.,2015a;Song Gaoyuan et al.,2017;张嘉玮等,2020)。近年来,莲沱组及同期地层中一系列800~714 Ma锆石U-Pb年龄(马国干等,1984;Yin Chongyu et al.,2003;高维和张传恒,2009;Du Qiuding et al.,2013;汪正江等,2013;Lan Zhongwu et al.,2015a,2015b;崔晓庄等,2016;宋芳等,2016;张雄等,2016;景先庆等,2018;宁括步等,2022),使得莲沱组及同期地层的地层对比格架也愈发清晰(比板溪群—下江群—高涧群—丹洲群晚50~30 Ma)。但是,具体对比方案仍争议较大(刘卫新和张宝成,1989;刘鸿允和李曰俊,1992;张晓阳等,1995;林树基,1995;黄建中等,1996;刘鸿允等,1999;Zhang Shihong et al.,2008;Zhang Qirui et al.,2008;Zhang Yuzhi et al.,2012;Lan Zhongwu et al.,2015a;汪正江等,2015;陈建书等,2016,2020; 崔晓庄等,2016;Song Gaoyuan et al.,2017;张嘉玮等,2020),严重制约了拉伸纪晚期(青白口纪晚期—南华纪早期)扬子克拉通古地理格局演化的恢复。
-
本研究聚焦扬子克拉通拉伸系莲沱组内的关键层位,结合已发表的莲沱组及同期地层年代学数据,基于本研究获得的神农架、长阳、鹤峰、通山、休宁、城口地区莲沱组及同期地层凝灰岩锆石U-Pb年龄,尝试构建扬子克拉通莲沱组与扬子东南缘板溪群—下江群—高涧群—丹洲群之间的联系,探讨扬子克拉通拉伸纪晚期差异演化的控制因素,为新元古代拉伸纪晚期扬子克拉通演化提供年代学框架下的沉积地层视角解读。
-
1 地质背景
-
扬子克拉通西临青藏高原东部,北接秦岭-大别造山带,东连江南造山带,是中国最古老的克拉通之一(图1)(Zhang Guowei et al.,2013;潘桂棠等,2016;耿元生等, 2020)。扬子克拉通上最古老的地层为湖北崆岭一带零星出露的太古宙岩层(Gao Shan et al.,1999,2011)。中元古代地层以西缘东川群—昆阳群(Du Yuansheng et al.,2001;Zhao Guochun and Cawood,2012)、北缘神农架群-打鼓石群的被动大陆边缘碳酸盐岩为代表(李怀坤等,2016;旷红伟等,2018)。新元古代早期(>820 Ma)地层主要发育在扬子克拉通东南缘,以梵净山群、冷家溪群、四堡群、花山群等为代表(潘桂棠等,2016)。新元古代中期(820~720 Ma)在扬子克拉通东南缘、西缘、北缘等地发育低变质的碎屑岩地层,分别为板溪群—下江群—丹洲群、澄江组-牛首山组、莲沱组及相应地层。板溪群—下江群—丹洲群沉积于820~720 Ma,分布在扬子克拉通东南缘湘黔桂地区(陈建书等,2016;张嘉玮等,2020);澄江组-牛首山组沉积于800~720 Ma,主要分布在扬子克拉通西缘滇东地区(刘鸿允等,1983;崔晓庄等,2013;刘军平等,2019)。本研究涉及的莲沱组沉积于780~714 Ma,主要分布在扬子克拉通湖北省及周边地区。休宁组沉积于800~720 Ma,主要分布在下扬子地区的浙皖赣交界地区(邓奇等,2019;王田等,2020)。龙潭河组沉积起止时限不明,大致为拉伸纪晚期—成冰纪早期,主要分布于扬子克拉通北缘的城口断裂北侧(唐将和林源,2002;向忠金等,2016)。
-
扬子古陆核先后经历了2.6 Ga和2.0 Ga以方辉橄榄岩、辉绿岩、石英二长岩为代表的岩浆事件,以及2.1~1.9 Ga麻粒岩相-高角闪岩相高级变质作用(Gao Shan et al.,1999,2011),最终在中元古代罗迪尼亚超大陆聚合中(1.1~0.9 Ga)由多个微陆块体逐步拼合形成稳定的扬子克拉通(Zhang Guowei et al.,2013,2017)。成型后的扬子克拉通在850~820 Ma沿皖南—雪峰东缘—苗岭一线与华夏陆块碰撞拼合形成新元古代中期的江南造山带(Zhang Guowei et al.,2013;舒良树等,2020),最终形成统一的古华南板块(Zhao Guochun and Cawood,2012;Zhang Guowei et al.,2013;Li Sanzhong et al.,2019)。在罗迪尼亚超大陆裂解的构造动力背景下(820~720 Ma),扬子与华夏地块间伸展、裂解,扬子克拉通及周缘迅速进入了强烈伸展裂谷阶段,为晚拉伸纪—成冰纪沉积演化提供了充足的容纳空间。然而,对于裂谷事件的地球动力学机制仍未达成共识,存在地幔柱裂谷、弧后和裂谷模型争议(Li Zhengxiang,2003;Zhao Guochun and Cawood,2012;Zhang Guowei et al.,2013;Li Sanzhong et al.,2019)。在拉伸纪伸展裂谷沉积演化的基础上,扬子克拉通形成和保存了成冰系—下古生界的巨厚沉积层。
-
图1 中国简图及华北、华南和塔里木三大板块(克拉通)(a),华南板块前寒武纪地层展布情况与研究剖面位置(b)和研究区地质简图与各研究剖面的地层柱状示意图(c)
-
Fig.1 Simplified map of China showing the North China block, South China block, Tarim block (a) , sketch geological map showing the distribution of major Precambrian strata in South China block and the location of study sections (b) and geological sketch of study area and schematic stratigraphic column of study sections (c)
-
2 地层序列与采样
-
2014年中国地层表划分方案中莲沱组属新元古界下南华统,位于南华纪大冰期地层之下,与古城组、大塘坡组、南沱组共同组成南华系(全国地层委员会,2014)。莲沱组命名于湖北宜昌市夷陵区乐天溪莲沱,主要分布于湖北省(神农架、黄陵、长阳、鹤峰、通山、大洪山等地)及周边地区(赣北、湘西北石门等地)(图1c)。刘鸿允和沙庆安(1963)将原“南沱粗砂岩”(李四光和赵亚曾于1924命名)改为“莲沱群”(刘鸿允和沙庆安,1963),后湖北省地质局三峡地层研究组将其降级为莲沱组并沿用至今。莲沱组与中新元古代不同的沉积岩-岩浆岩呈不整合接触关系(图2、3),为南华系冰期地层之下的一套初始陆相至晚期海侵发育的富含凝灰质碎屑岩沉积序列,被古城组冰碛岩整合(或被南沱组不整合)覆盖(图4)(高维和张传恒,2009;宋芳等,2016;景先庆等,2018;王玉冲等,2018;宁括步等,2022;Wang Yuchong et al.,2023)。
-
图2 莲沱组岩石地层柱状图
-
Fig.2 Sedimentary sequence of the Liantuo Formation
-
重庆城口岩性柱资料引自唐将和林源(2002);湖北大洪山岩性柱资料引自宁括步等(2022);湖北峡东和长阳岩性柱资料引自刘鸿允(1991);安徽休宁地区岩性柱资料来自刘鸿允等(1999);已发表年龄数据引自:A—景先庆等,2018;B—Lan Zhongwu et al.,2015b;C—高维和张传恒,2009;D—马国干等,1984;E—Lan Zhongwu et al., 2015a; F—Yin Chongyu et al.,2003; G—宁括步等,2022; H—Du Qiuding et al.,2013; I—本研究数据
-
Stratigraphic column in Chengkou of Chongqing modified from Tang Jiang and Lin Yuan (2002) ; stratigraphic column in Dahongshan of Hubei modified from Ning Kuobu et al. (2022); stratigraphic column in Xiadong and Changyang of Hubei modified from Liu Hongyun et al. (1991); stratigraphic column in Xiuning of Anhui modified from Liu Hongyun et al. (1999) ; published age data are from: A—Jing Xianqing et al.,2018; B—Lan Zhongwu et al.,2015b; C—Gao Wei and Zhang Chuanheng, 2009; D—Ma Guogan et al.,1984; E—Lan Zhongwu et al., 2015a; F—Yin Chongyu et al., 2003; G—Ning Kuobu et al.,2022; H—Du Qiuding et al.,2013; I—this study
-
莲沱组主要划分为四类岩相(王玉冲,2020),在区域上各有分布优势:① 冲积扇与滨岸相砾岩:冲积扇相砾岩发育在大洪山和神农架东溪等地的莲沱组底部,滨岸相砾岩发育在湖南石门、湖北神农架、黄陵、鹤峰和通山莲沱组底部。② 河流相砂岩:主要发育在神农架、长阳莲沱组下部和大洪山莲沱组顶部,以迁移叠加的水道砂岩为特征。③ 滨岸(河口)潮坪相砂岩泥岩:主要发育在神农架、长阳、通山和鹤峰-石门莲沱组上部,以具潮汐层理的紫红色砂岩泥岩韵律互层为特征。④ 陆棚浅海沉相砂岩泥岩:主要发育在神农架、长阳和通山、鹤峰-石门莲沱组上部,以灰绿色具水平层理的粉-细砂岩与泥岩互层为主,伴有风暴沉积和液化变形构造,尤其是在神农架铜洞沟剖面记录了正常浅海到冰海的沉积转换。
-
(1)神农架地区。莲沱组主要分布在神农架穹隆西缘的铜洞沟—东溪—高桥河—猴子石—板壁岩—大界岭—下谷坪—两河口沿线,以铜洞沟剖面最为完整和典型。根据岩性组合特征从下至上可将铜洞沟剖面莲沱组分为四个岩性段(Wang Yuchong et al.,2023)。一段为2~10 m不等厚的残余风化壳和块状杂基支撑砾岩(图3c、d);二段厚约80 m,以厚层状灰紫色含硅质砾中—粗粒长石石英砂岩、砾岩为主,偶夹灰紫色粉砂岩、泥岩和灰白色凝灰岩,砾岩多集中于砂岩层底部,具叠瓦构造。砾岩和砂岩构成多个正韵律旋回,底部多发育冲刷侵蚀面,下部以粗粒为主,发育丰富的中—大型槽状交错层理、楔状交错层理和板状交错层理,向上细粒成分增加,具粗-细韵律。莲沱组一段和二段共同代表了近物源端扇到远端河流的沉积体系变迁(王玉冲,2020)。三段为灰紫色中层砂岩与灰紫色—灰绿色纹层状薄层泥岩、凝灰岩互层,砂岩内发育平行层理和槽状楔状交错层理,粉砂岩泥岩发育丰富波状、脉状、透镜状潮汐层理和液化变形构造,以海陆过渡环境的潮坪沉积为主。四段厚约30 m,灰绿色水平层理粉砂岩与灰绿色中薄层砂岩韵律互层,发育系列软沉积变形和纹层扰动,为三角洲前缘-陆棚浅海相沉积。五段以孤石(lonestone)的突然出现为标志,代表着进入冰筏影响的冰海相沉积(图4c),上覆古城组块状冰碛岩(图4b)。
-
图3 莲沱组与下伏地层接触关系
-
Fig.3 Representative field photographs of the boundary between the Liantuo Formation and underlying strata
-
(a)—通山四斗朱水库莲沱组石英质细砾岩不整合于大药姑组深灰色板岩之上;(b)—黄陵青林口剖面莲沱组下部灰紫色砂岩与黄陵花岗岩断层接触;(c)—神农架铜洞沟剖面莲沱组灰紫色砾岩角度不整合于神农架群白云岩之上;(d)—神农架高桥河剖面莲沱组灰紫色砾岩角度不整合于神农架群白云岩之上;(e、f)—石门地区杨家坪剖面莲沱组微角度不整合于老山崖组板岩之上
-
(a)—unconformity between the Liantuo Formation and the Dayaogu Formation at Sidouzhu section of Tongshan; (b) —the fault between the Liantuo Formation and the Huangling granite at Qinglinkou section of Huangling; (c) —angular unconformity between the Liantuo Formation and the Shennongjia Group at Tongdonggou section of Shennongjia; (d) —angular unconformity between the Liantuo Formation and the Shennongjia Group at Tongdonggou section of Shennongjia; (e, f) —unconformity between the Liantuo Formation and the Laoshanya Formation at Yangjiaping section of Shimen
-
凝灰岩样品HZLT-1采自猴子石莲沱组不整合面之上的深灰色硅化凝灰岩层(图5a、b,距莲沱组底2 m,110.2084869°E,31.4621407°N),凝灰岩样品TDG-23采自铜洞沟莲沱组三段潮坪相内的灰白色凝灰岩层(图5c、d,距莲沱组底120 m,110.0460577°E,31.5145645°N),凝灰岩样品TDG-31采自铜洞沟莲沱组四段陆棚浅海相内的青白色凝灰岩层(图5e、f,位于古城组块状冰碛岩之下19 m,110.0448614°E,31.5154121°N)。
-
(2)通山地区。通山地区四斗朱水库东西两岸出露连续莲沱组,尤其是水库东岸莲沱组出露连续完整(厚319.5 m)。剖面上莲沱组平行不整合于冷家溪群大药姑组深灰色板岩之上(图3a),上覆古城组冰碛岩(图4d、e)。底部厚22 m,为灰白色—灰紫色厚块状纯净石英质细砾岩、粗粒石英砂岩,向上过渡为46 m厚的灰紫色厚层状凝灰质中粗粒长石石英砂岩段,大型槽状、楔状交错层理和平行层理发育;莲沱组下部为厚约50 m的灰紫色与灰绿色凝灰砂岩、粉砂岩韵律互层,发育丰富的波状、脉状和透镜状潮汐层理,偶有小型槽状和楔状交错层理,属潮坪相。上段以灰黄色—灰绿色富凝灰质砂岩与粉砂质泥岩为主,厚约100 m,砂泥岩韵律互层,水平层理发育,上部泥质层占比增加并伴有液化变形构造。许露露等(2019)将四斗朱剖面莲沱组解释为河流相-三角洲平原沉积环境。王田等(2020)将该剖面莲沱组底部到顶部的沉积序列解释为河流相到浅海相过渡的沉积环境演化。本研究中凝灰岩样品SDZ4-2取自与四斗朱水库西侧剖面(宋芳等,2016)岩石序列基本一致的东岸剖面,采自距莲沱组底90 m处潮坪相砂岩内的凝灰岩夹层(图5i、j,114.4656729°E,29.6554248°N)。
-
(3)长阳地区。长阳地区莲沱组主要出露在古城穹隆的南北两侧,厚度在70~288 m之间(赵小明等,2011),不整合于冷家溪群之上,并被古城组冰碛岩覆盖(图4a)。该地区莲沱组由下至上可分为三段:① 下段以灰紫色—黄灰色厚层含砾长石粗砂岩—细砾岩为主,发育丰富大型楔状交错层理、槽状交错层理、板状交错层理,向上砂岩层间发育灰紫色、中薄层泥岩,偶夹灰白色凝灰岩层。② 中段为紫红色厚—中层状粗砂岩与灰绿色中薄层状粉砂岩泥岩互层,层理相对单一,发育大型楔状交错层理和板状交错层理。③ 上段由灰绿色中—薄层状细砂岩与泥岩、沉凝灰岩韵律互层组成,向上过渡为上覆古城组冰碛岩。赵小明等(2011)将长阳地区莲沱组解释为河流-河口湾相。莲沱组凝灰岩样品191023-2采集自古城剖面莲沱组二段底部灰紫色泥岩与砂岩之间的凝灰岩夹层(图5m、n,111.0613328°E,30.5637603°N)。
-
(4)鹤峰—石门地区。湖北鹤峰走马坪这套地层仍称为莲沱组(刘鸿允和李曰俊,1992),但在湖南石门杨家坪称为渫水河组(Zhang Qirui et al.,2008),属同一复式背斜东西两翼相同地层的不同名称(黄照先,1989)。莲沱组在该地区与老山崖组微角度或假整合接触,并被东山峰组(古城组)覆盖(刘鸿允和李曰俊,1992;Lan Zhongwu et al.,2015a)。莲沱组为紫红色、灰绿色中厚层微变质中细粒石英砂岩、凝灰质长石石英砂岩,底部为厚约1 m的砾岩层,发育平行层理、爬升层理、波状层理等。刘鸿允和李曰俊(1992)将该地区莲沱组解释为网状河-大潮海岸河口湾沉积环境的产物。莲沱组凝灰岩样品BSM-3采自走马坪镇八十亩附近的莲沱组下部灰紫色中层砂岩间的灰白色凝灰岩夹层(图5l,110.4033172°E,29.7768914°N)。
-
(5)黄陵地区。莲沱组主要分布在黄陵南缘,厚50~260 m,呈南厚北薄趋势。黄陵地区南华系整体出露莲沱组和南沱组,缺失两组间的大塘坡组和古城组(图4f、g),只在黄陵背斜最南缘的青林口剖面发育有大塘坡组和古城组(季泽龙和刘晓峰,2023)。根据岩性组合特征将莲沱组从下至上可分为两个岩性旋回段:① 旋回一的底部为5~15 m紫红色砾岩不整合于黄陵花岗岩之上,向上演变为紫红色、黄灰色中粗粒长石石英及长石砂岩,槽状交错层理、楔状交错层理和波痕发育,文献报道发育干裂、雨痕印模(刘鸿允和沙庆安,1963;刘鸿允等,1999),顶部为灰紫色中薄层细砂岩与泥质粉砂岩韵律互层,层间常夹有灰白色薄层凝灰岩。② 旋回二底部为2层灰绿色—灰紫色巨厚块状中砾岩,向上快速过渡为紫红色、灰白色中薄层泥岩粉砂岩与灰紫色、灰黄色中粗粒长石石英砂岩和长石砂岩互层。该地区莲沱组属河流相-河口湾-水下三角洲相(刘鸿允等,1999)。
-
(6)大洪山地区。大洪山地区莲沱组不整合于花山群之上,主要分布在大洪山南部黄草坡-娘娘寨-周关一带,厚约570 m(宁括步等,2022)。根据岩性组合特征由下至上可分为两个岩性段。莲沱组一段主要为紫红色厚层—巨厚层砂质砾岩、粗粒岩屑长石砂岩,分选性和磨圆度较差,砾石成分复杂。莲沱组二段主要为紫红色巨厚层含砾长石岩屑砂岩、粗粒岩屑长石砂岩、粉砂岩、粉砂质泥岩,分选性和磨圆度相对较好,顶部为紫红色与灰绿色互层的粉砂岩夹砾岩。该地区莲沱组主要为冲积扇沉积产物(Du Qiuding et al.,2013)。
-
图4 莲沱组与上覆地层接触关系
-
Fig.4 Representative field photographs of the boundary between the Liantuo Formation and overlying strata
-
(a)—古城地区钻井岩芯莲沱组与古城组界线;(b、c)—神农架铜洞沟剖面莲沱组与古城组界线;(d、e)—通山四斗朱剖面莲沱组与古城组界线;(f、g)—秭归青林口剖面剖面莲沱组与南沱组界线
-
(a) —boundary between the Liantuo Formation and Gucheng Formation in the Gucheng core; (b, c) —boundary between the Liantuo Formation and Gucheng Formation at Tongdonggou section of Shennongjia; (d, e) —boundary between the Liantuo Formation and Gucheng Formation at Sidouzhu section of Tongshan; (f, g) —boundary between the Liantuo Formation and Gucheng Formation at Qinlingkou section of Zigui
-
图5 莲沱组及相应层位凝灰岩样品野外与镜下特征
-
Fig.5 Field photos and photomicrographs of zircons of tuff samples from the Liantuo Formation
-
(a)—HZLT-1样品采自神农架莲沱组底部(110.2084869°E,31.4621407°N);(b)—HZLT-1的显微照片;(c)—TDG-23样品采自神农架莲沱组中部(110.0460577°E,31.5145645°N);(d)—TDG-23的显微照片;(e)—21TDG-2样品采自神农架莲沱组顶部(110.0448614°E,31.5154121°N); (f)—21TDG-2的显微照片;(g)—171123-5样品采自休宁地区休宁组上部(118.1536728°E,29.8786664°N);(h)—171123-5的显微照片;(i)—SDZ4-2样品采自通山莲沱组下部(114.4656729°E,29.6554248°N);(j)—SDZ4-2的显微照片;(k)—YJW-6样品采自城口龙潭河组中部(108.8124494°E,31.8959290°N);(l)—21BSM-3样品采自鹤峰莲沱组下部(110.4033172°E,29.7768914°N);(m)—191023-1样品采自长阳莲沱组中部(111.0613328°E,30.5637603°N);(n)—191023-1的显微照片;[-]—单偏光显微照片;[+]—正交偏光显微照片;采样层位详见图2
-
(a)—sample HZLT-1 was collected from the bottom of the Liantuo Fm at Shennongjia (110.2084869°E,31.4621407°N) ;(b)—photomicrographs of sample HZLT-1; (c) —sample TDG-23 was collected from the middle of the Liantuo Fm at Shennongjia (110.0460577°E,31.5145645°N) ; (d) —photomicrographs of sample TDG-23; (e) —sample21TDG-2 was collected from the top of the Liantuo Fm at Shennongjia (110.0448614°E,31.5154121°N) ; (f) —photomicrographs of sample21TDG-2;(g)—sample171123-5 was collected from the upper of the Xiuning Fm at Xiuning (118.1536728°E,29.8786664°N) ; (h) —photomicrographs of sample171123-5;(i)—sample SDZ4-2 was collected from the lower of the Liantuo Fm at Tongshan (114.4656729°E,29.6554248°N) ; (j) —photomicrographs of sample SDZ4-2; (k) —sample YJW-6 was collected from the middle of the Longtanhe Fm at Chengkou (108.8124494°E,31.8959290°N) ; (l) —sample21BSM-3 was collected from the lower of the Liantuo Fm at Hefeng (110.4033172°E,29.7768914°N) ; (m) —sample191023-1 was collected from the middle of the Liantuo Fm at Chengkou (111.0613328°E,30.5637603°N) ; (n) —photomicrographs of sample191023-1; [-]—plane-polarized light;[+]—cross-polarized light; sample stratigraphic position of each sample is shown in the Fig.2
-
(7)城口地区。城口地区龙潭河组发育在扬子克拉通北缘大巴山城口-房县弧形断裂北侧,是一套灰绿色-灰色富凝灰质、火山碎屑质的碎屑岩建造。龙潭河组未见底,厚度超2368 m(唐将和林源,2002;向忠金等,2016),上覆代安河组冰碛岩。龙潭河组发育中厚层杂砂岩、岩屑凝灰质砂岩、凝灰质砂岩、含火山角砾凝灰质砂岩及岩屑凝灰岩、含火山角砾凝灰岩、凝灰质角砾岩、硅质岩层,伴有水平层理、平行层理、正粒序层理、包卷层理和纹层扰动变形构造。龙潭河组形成于受火山喷发和浊流直接影响的深水沉积环境,可能对应南秦岭地区的武当群、耀岭河群火山岩建造(唐将和林源,2002;向忠金等,2016)。本研究中凝灰岩样品21YJW-6采自城口地区尤家湾后山龙潭河组中上部凝灰质砂岩和硅质岩之间的凝灰岩夹层(图5k,108.8124494°E,31.8959290°N)。
-
(8)皖南休宁地区。皖南休宁地区休宁组角度不整合于上溪群之上,底部为灰紫色石英质细砾岩与含砾长石石英砂岩,发育楔状、板状交错层理、波状及平行层理;下部为紫红色—灰绿色—灰白色中厚层状长石砂岩与粉砂岩、泥岩韵律互层,发育楔状交错层理和波状、脉状层理,伴有砂球、砂枕、包卷层理等液化变形构造;中—上部为灰绿色为主,伴灰紫色的中薄层状细砂岩、粉砂岩、泥岩、硅质岩及凝灰岩组成的韵律,水平层理发育,伴有微波状层理。休宁组主体属于正常气候条件下的冲积扇和滨浅海(湖)沉积(邓奇等,2019)。在皖南部分地区休宁组顶部与上覆下涯埠组冰碛层整合,是休宁组沉积末期浅海环境在冰期初期的延续(张启锐,1996)。另外一些剖面上休宁组顶部发育锰质地层与雷公坞组整合接触,缺少下涯埠组冰碛岩(凌联海等,2002),意味着休宁组跨越了拉伸系和成冰系界线并包含了下涯埠组和洋安组。凝灰岩样品171123-5采自皖南休宁县蓝田镇培源村村口休宁组上部中薄层粉砂岩间的灰白色凝灰岩层(图5g、h,118.1536728°E,29.8786664°N)。
-
3 分析测试方法
-
锆石单矿物分选工作由首钢地质研究院完成,LA-ICP-MS锆石U-Pb定年测试分析在北京科荟测试技术有限公司完成。锆石定年分析所用仪器为Agilent 7500 ICP-MS及与之配套的RESOlution 193 nm 准分子激光剥蚀系统。激光剥蚀斑束直径为24 μm,频率为10 Hz,能量密度约为10 J/cm2,以He为载气。LA-ICP-MS激光剥蚀采样采用单点剥蚀方式,测试前先用锆石标样GJ-1进行调试仪器,使之达到最优状态。锆石U-Pb定年以标样GJ-1为外标,微量元素含量利用NIST610为外标、Si做内标的方法进行定量计算(Liu Yongsheng et al.,2010)。测试过程中在每测定10个样品点前后重复测定两个锆石标样GJ-1,对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal程序(Liu Yongsheng et al.,2010),测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb含量异常高的分析点可能受包体等普通Pb的影响,对204Pb含量异常高的分析点在计算时剔除,锆石年龄谐和图用IsoplotR程序获得(Vermeesch,2018)。详细实验测试过程可参见侯可军等(2009)。样品分析过程中,Plesovice标样作为未知样品的分析结果为337.2±2.3 Ma(n=40,2σ),对应的年龄推荐值为337.13±0.37 Ma(2σ)(Sláma et al.,2008),两者在误差范围内完全一致。分析过程中,年龄计算与谐和图绘制采用IsoplotR软件进行(Vermeesch,2018),不谐和度大于10%的数据不参加讨论。已有研究表明,研究区凝灰岩中锆石的白亮部分可能受到后期构造热事件的影响,属于重结晶锆石(Lan Zhongwu et al.,2015a),所以在测试中尽量避开锆石的白亮部分。由于凝灰岩(层凝灰岩)中有时混入古老的碎屑锆石,所以在计算年龄时通常采用年龄较小的一组代表其形成时代。
-
4 结果
-
4.1 锆石特征
-
所采锆石颗粒主要为无色透明或淡黄色自形晶体,粒径在50~300 μm之间,长宽比在1∶1~5∶1之间,部分锆石破碎,或熔蚀成港湾状,整体无磨圆(图6)。阴极发光下锆石显环带状震荡环,锆石振荡环或核部为板状或宽大、边部窄密,或环带宽度内外基本一致(图6)。环带变化主要由结晶过程中的铀与锆含量周期性变化引起,较宽的浅灰色条带贫铀,而较窄的深灰色条带富铀(Koschek,1993;Wu Yuanbao and Zheng Yongfei,2004)。其宽度则可能与锆石结晶时不同岩浆温度微量元素扩散快慢有关(Koschek,1993;Wu Yuanbao and Zheng Yongfei,2004)。本研究中由宽向窄的环带变化反映了锆石成型过程岩浆由高温向低温快速冷却的变化。锆石边部未见明亮的变质增生,无暗色斑块,表明未遭受后期热液影响。样品中锆石的Th/U大于0.1,且基本均大于0.4(图7),属典型的岩浆锆石(Hoskin and Schaltegger 2003;Wu Yuanbao and Zheng Yongfei,2004)。
-
图6 莲沱组凝灰岩样品代表性锆石阴极发光图
-
Fig.6 CL images of representative zircon grains from the Liantuo Formation
-
4.2 LA-ICP-MS 锆石U-Pb年龄
-
对神农架莲沱组底部凝灰岩样品HZLT-1的80颗锆石进行了年代学测试,其中77组数据谐和度大于90%,另有15组2.0~1.9 Ga的年龄数值组成小峰值。另有三组锆石数据点散落在1.6 Ga与1.8 Ga,这部分年龄数据较大,具有一定的Pb丢失,致使数据与谐和曲线截切,下交点指向0 Ma附近(图8a),可能受到中-新生代地质运动影响,而这部分锆石具有磨圆再搬运的特征推测为碎屑锆石。59组年龄数据集中在800~730 Ma。由于凝灰岩(层凝灰岩)中有时混入古老的碎屑锆石,所以在计算年龄时通常采用年龄较小的一组代表其形成时代。本研究选取谐和线附近23组较小年龄数据计算得出锆石谐和年龄为763.1±6.2 Ma(MSWD=0.65)(图8b),详细测试数据见附表1。
-
神农架地区莲沱组凝灰岩样品TDG-23测得35组数据(谐和度大于或等于90%),全部分布于800~730 Ma,又以~750 Ma为年龄峰。本研究选取谐和线附近22组较小年龄数据计算获得锆石谐和年龄为752.1±6.5 Ma(MSWD=0.60)(图8c),详细测试数据见附表1。
-
神农架地区莲沱组凝灰岩样品21TDG-2测得45组数据(谐和度均大于或等于90%),6组数据集中在~800 Ma,9组数据集中在760 Ma附近,其余数据主要集中在740~710 Ma附近(图8d)。谐和线附近22组较年轻年龄的数据计算获得锆石谐和年龄为733.1±3.5 Ma(MSWD=0.8),其中4组数据(n=4)锆石谐和年龄为722.4±4.5 Ma(MSWD=3.3),以及一个单锆石年龄为689±11 Ma(图8e),详细测试数据见附表1。
-
图7 莲沱组凝灰岩样品中锆石Th、U含量
-
Fig.7 Plot of Th and U of zircons from the Liantuo Formation
-
皖南休宁地区休宁组上部凝灰岩样品171123-5测得35组谐和度大于90% 的数据,除去一组~2.0 Ga继承锆石后,34组数据主要集中于800~710 Ma。谐和线附近10组较年轻年龄数据计算获得的锆石谐和年龄为729.6±9.2 Ma(MSWD=0.38)(图8f),详细测试数据见附表1。
-
通山地区莲沱组凝灰岩样品SZD4-2测得35组数据(1组数据谐和度小于90%,3组数据投点落在谐和线下方),31组数据基本集中在780~740 Ma,尤以~765 Ma最为集中(图8g),选出谐和线附近13组较小年龄数据计算获得锆石谐和年龄为764.1±3.5 Ma(MSWD=0.38)(图8h),详细测试数据见附表1。
-
城口地区龙潭河组凝灰岩样品YJW-6测得36组数据,剔除3组谐和度小于90%的数据和2组谐和线外的数据点后,31组数据主要分布在850~700 Ma,其中,谐和线附近最年轻5组数据计算获得锆石谐和年龄712.4±6.4 Ma(MSWD=0.18)(图8i),详细测试数据见附表1。
-
鹤峰地区莲沱组凝灰岩样品21BSM-3测得18组数据,其中17组数据谐和度大于90%的年龄。去除一组铅丢失数据后,16组年龄数据全部~760 Ma的峰值集中度(图8j),筛选出谐和线附近4组较年轻年龄数据计算获得锆石谐和年龄761.8±7.1 Ma(MSWD=1.1)(图8k),详细测试数据见附表1。
-
长阳地区莲沱组凝灰岩样品191025-2测得35组数据(谐和度均大于或等于90%),其中3组数据发生铅丢失予以剔除,余下数据全部为850~700 Ma的岩浆锆石(图8l),筛选出谐和线附近的21组较年轻年龄数据计算获得锆石谐和年龄为751.5±6.3 Ma(MSWD=0.22),此外还有1组最年轻691±27 Ma的离群年龄(图8l),造成该点年龄偏离的原因尚不清楚,可能受到后期影响,详细测试数据见附表1。
-
5 讨论:年代学约束下的莲沱组沉积过程
-
5.1 扬子克拉通莲沱组沉积演化过程
-
峡东、长阳、大洪山、通山等地莲沱组内凝灰岩锆石和碎屑锆石U-Pb年龄数据 (图9)(马国干等,1984;Yin Chongyu et al.,2003;高维和张传恒,2009;Du Qiuding et al.,2013;汪正江等,2013;Lan Zhongwu et al.,2015a,2015b;崔晓庄等, 2016; 张雄等,2016;景先庆等,2018;宁括步等,2022)将莲沱组沉积时代大致限定于780~714 Ma,然而各地莲沱组底部的凝灰岩锆石U-Pb年龄数据指示的莲沱组初始沉积时代略有差异。黄陵地区莲沱组底部凝灰岩数据主要为776.6±3.8 Ma(Lan Zhongwu et al.,2015b),763±10 Ma(景先庆等,2018)。大洪山地区不整合于~810 Ma花山群(邓奇等,2022)之上的莲沱组底部凝灰岩的锆石 U-Pb 年龄为 779 ±12 Ma(Du Qiuding et al.,2013)、798±5 Ma(宁括步等,2022)。本研究在神农架地区莲沱组底界的凝灰岩中获得763.1±6.2 Ma,在通山地区莲沱组下部的潮坪相凝灰岩夹层中获得764.1±3.5 Ma,在鹤峰地区莲沱组下部的河流相砂岩凝灰岩夹层中761.8±7.1 Ma,在神农架地区莲沱组中部的潮坪相凝灰岩夹层中获得752.1±6.5 Ma、在长阳地区莲沱组中下部的潮坪相凝灰岩夹层获得751.5±6.3 Ma新数据(图8),共同表明扬子克拉通莲沱组初始沉积时代在779~762 Ma之间,且在~750 Ma之前以陆相-海陆过渡相为主。各地区初始沉积时间差异,但是基本在770 Ma前后,因此770 Ma可以代表莲沱组整体沉积的初始年龄。
-
成冰纪斯图特(Sturtian)冰期地层具有全球等时性特征(~720 Ma,Macdonald et al.,2010;Rooney et al.,2015),斯图特冰期在扬子克拉通对应南华系古城组、长安组和富禄组,初始沉积年龄为~716 Ma(Liu Hao et al.,2019)。高维和张传恒(2009)在黄陵地区田家园子莲沱组顶部获得724±12 Ma的年龄,Lan Zhongwu et al.(2015b)对应发表了732±10 Ma与714±8 Ma的锆石年龄。本研究在神农架地区莲沱组顶部获得722.5±2.1 Ma年龄,在下扬子皖南地区的休宁组上部获得729.6±9.2 Ma的谐和年龄(图8),表明莲沱组顶部沉积年龄小于714 Ma。但是Lan Zhongwu et al.(2015a)在鹤峰—石门地区莲沱组(渫水河组)顶部获得~695 Ma的锆石年龄数据,并结合该组顶部识别出的冰楔、冰碛垄等寒冷气候证据(张启锐等,2008),提出将渫水河组划归为斯图特冰期沉积地层。事实上,鹤峰莲沱组和石门渫水河组同物异名(黄照先,1989),考虑到黄陵地区莲沱组顶部与马林诺(Marinoan)冰期地层-南沱组侵蚀接触并存在剥蚀间断(图1和2),Lan Zhongwu et al.(2015b)在该地区莲沱组顶部最年轻锆石 U-Pb年龄为~714 Ma,以及在南秦岭城口地区代安河组冰碛岩下伏的龙潭河组中部凝灰岩夹层中获得712.4±6.4 Ma的锆石谐和年龄(图8),本研究推测莲沱组跨越拉伸系-成冰系界线(720 Ma),莲沱组顶部延伸入成冰系。神农架地区冰碛岩之下数米的浅海相地层中发育冰筏沉积的孤石也可佐证该推论。
-
图8 莲沱组凝灰岩锆石 U-Pb 年龄谐和图
-
Fig.8 U-Pb Concordia diagram of zircon from tuff samples from the Liantuo Formation
-
本研究一系列凝灰岩年龄数据将莲沱组划分为陆相建造(>750 Ma)与海相建造(<750 Ma)两阶段,从大洪山—三峡—神农架—长阳—通山—石门依次远离古陆,趋向海相沉积。莲沱组沉积初期(>750 Ma),大洪山地区发育冲积扇相的巨厚砾岩(Du Qiuding et al.,2013)。在神农架(官开萍等,2016;王玉冲,2020)—黄陵(刘鸿允等,1999)—长阳(赵小明等,2011)—通山(王田等,2020)地区以河流相-海陆过渡带为主。在750 Ma左右,持续海侵导致大范围的陆海环境转变,随后扬子大部分地区由海陆过渡环境逐渐演变为浅海环境,并持续到全球气候变冷导致雪球沉积开始。
-
通常以古城组冰碛岩出现作为莲沱组的结束,而两组接触关系却有平行不整合与整合的争议(刘鸿允,1991;宋芳等,2016,王玉冲,2020)。本研究团队依据野外地质调查和文献对比认为两组之间不存在构造运动引起的明显沉积间断,而是主要以莲沱组浅海相与古城组水下冰碛重力流沉积相接触(图2、4),其中最有利支撑证据是神农架地区古城组块状冰碛岩之下的“莲沱组”发育直径为20~30 cm的“冰筏”孤石(Lonestone; Wang Yuchong et al.,2023),体现了正常浅海—冰海—冰川沉积的逐步演化。考虑到石门莲沱组顶部最年轻锆石年龄(~695 Ma)(Lan Zhongwu et al.,2015a)、皖南地区休宁组与洋安组的相变关系(图9)、本研究中龙潭河组中部的沉积年龄(712 Ma)(图8)、黄陵地区剥蚀后的莲沱组顶部~714 Ma年龄(Lan Zhongwu et al.,2015b)等地质资料,推断莲沱组连续沉积并且可能延伸入成冰纪。换言之,莲沱组沉积晚期可能便发生了成冰纪“雪球地球”的气候降温过程。
-
5.2 扬子克拉通莲沱组地层格架与沉积演化
-
莲沱组同位素年代学数据助力了扬子克拉通全域的拉伸纪晚期地层对比,尤其是与扬子克拉通东南缘华南裂谷盆地地层对比。扬子克拉通东南缘的华南裂谷盆地(又称湘黔桂盆地)沉积了厚达数千米的(815~716 Ma)板溪群-下江群-高涧群-丹洲群等岩石群组(陈建书等,2016;Song Gaoyuan et al.,2017;张嘉玮等,2020)。湖南域内沉积分异明显,自北向南划分为湘西北滨岸相泥沙市群(渫水河组和老山崖组,湘西北石门及湘东北临湘一带);雪峰山以西的陆棚-上斜坡相板溪群(芙蓉溪群,俗称红板溪群,沅陵、安化、株洲等地);雪峰山以东的下斜坡-盆地相高涧群(俗称黑板溪群)。在贵州自北向南对应划分出黔东北板溪群、黔中下江群、黔东南丹洲群。最外缘的桂北地区出露典型盆地相地层(丹洲群)。扬子克拉通东南缘由北向南的泥沙市群-板溪群-丹洲群分别对应从滨岸到陆棚再到盆地位置的相展布组合(刘鸿允和李曰俊,1992;汪正江,2008;陈建书等,2016)。但是扬子克拉通东南缘繁杂的地层划分,以及与扬子克拉通及其北缘地区莲沱组在沉积序列、厚度、沉积特征、变质程度上的明显差异,导致莲沱组与扬子东南缘的地层对比曾存在较大分歧(刘卫新和张宝成,1989;林树基,1995;黄建中等,1996;刘鸿允等,1999;Lan Zhongwu et al.,2015a;汪正江等,2015;Song Gaoyuan et al.,2017;张嘉玮等,2020)。先后出现多种扬子克拉通北缘与东南缘地层的对比讨论方案,尽管各处细节略有差异,大致可划分为三大类:① 同期异相关系,即莲沱组与板溪群同时异相,属于南华大冰期前地层(刘鸿允和李曰俊,1992)、或莲沱组与板溪群上亚群对比(Zhang Shihong et al.,2008;Zhang Qirui et al.,2008;汪正江,2008;汪正江等,2013,2015;崔晓庄等,2016;Song Gaoyuan et al.,2017;张嘉玮,2020); ② 其中又有方案将鹤峰-石门地区的渫水河组从莲沱组独立出来与成冰系富禄组相等(Zhang Qirui et al.,2008;Lan Zhongwu et al.,2015b;景先庆等,2018);③ 上下关系,即莲沱组与成冰系长安组-富禄组一起构成了成冰纪早期的海侵体系域(刘卫新和张宝成,1989;张晓阳等,1995;林树基,1995;黄建中等,1996;Zhang Yuzhi et al.,2012;陈建书等,2016)。随着锆石U-Pb同位素定年技术的广泛应用,基于同位素数据的地层对比关系也逐步清晰,扬子东南缘板溪群等沉积形成于820~716 Ma,而莲沱组沉积形成于770~714 Ma(图9及相应引用文献)。因此,将莲沱组与扬子东南缘板溪群-下江群-高涧群-丹洲群上部对应(汪正江等,2015;Song Gaoyuan et al.,2017;张嘉玮等,2020),相当于板溪群的百合垄组-牛牯坪组、下江群的清水江组-平略组-隆里组、高涧群的架枧田组-岩门寨组、丹洲群的三门街组-拱洞组(图9)。
-
在扬子西缘拉伸纪晚期地层是一套紫红色的河流-近滨相为主的碎屑岩建造。以云南澄江、玉溪、东川、金阳、巧家至四川会理一带的澄江组为代表。澄江组底部凝灰岩锆石U-Pb年龄812.1±5.5 Ma、803.1±8.7 Ma、797.8±8.2 Ma、785±12 Ma(Jiang Xinsheng et al.,2012;崔晓庄等,2013;陆俊泽等,2013;刘军平等,2019)和顶部凝灰岩锆石U-Pb年龄725±11 Ma(崔晓庄等,2013)将澄江组大致限定在800~720 Ma。扬子西缘澄江组具有从西向东有逐渐变细的趋势,尤其是在陆良地区澄江组顶部紫红色凝灰质砂岩之上发育牛头山组灰绿色细碎屑岩(熊家镛,1982;刘鸿允等,1983),可与莲沱组上部的灰绿色岩段对应。
-
图9 扬子克拉通拉伸纪晚期地层关系对比图
-
Fig.9 The division and correlation of sedimentary strata during late Tonian in the Yangtze Craton with geochronological zircon U-Pb dating
-
凝灰岩锆石U-Pb年龄及文献来源:A—Du Qiuding et al.,2013;B—宁括步等,2022;C—Lan Zhongwu,et al.,2015b;D—高维和张传恒,2009;E—Zheng Yongfei,2003;F—马国干等,1984;G—景先庆等,2018;H—Lan Zhongwu et al.,2015a;I—Yin Chongyu et al.,2003;J—王田等,2020;K—张嘉玮等,2020;L—汪正江等,2013;M—高林志等,2010;N—Wang Xuance et al.,2012;O—曾雯等,2005;P—高林志等,2012;Q—Zhang Shihong et al.,2012;R—Wang Jian et al.,2003;S—高林志等,2014;T—Zhang Shihong et al.,2008;U—冼汉标, 2020;V—Zhang Shihong et al.,2008;W—汪正江等,2015;X—伍皓等,2015;Y—柏道远等,2015;Z—马慧英等,2013;AA—罗来等,2016;AB—高林志等,2013;AC—Lan Zhongwu et al.,2014;AD—Liu Hao et al.,2019;AE—Zhou Jibin et al.,2007;AF—邓奇等,2019;AG—尹崇玉等,2007;AH—刘军平等,2019;AI—崔晓庄等,2013;AJ—陆俊泽等,2013;AK—Jiang Xinsheng et al.,2012;*—本文数据
-
Published age datas are from: A—Du Qiuding et al.,2013; B—Ning Kuobu et al.,2022; C—Lan Zhongwu,et al.,2015b; D—Gao Wei and Zhang Chuanheng, 2009; E—Zheng Yongfei,2003; F—Ma Guogan et al.,1984; G—Jing Xianqing et al.,2018; H—Lan Zhongwu et al.,2015a; I—Yin Chongyu et al.,2003; J—Wang Tian et al.,2020; K—Zhang Jiawei et al.,2020; L—Wang Zhengjiang et al.,2013; M—Gao Linzhi et al.,2010; N—Wang Xuance et al.,2012; O—Zeng Wen et al.,2005; P—Gao Linzhi et al.,2012; Q—Zhang Shihong et al.,2012; R—Wang Jian et al.,2003; S—Gao Linzhi et al.,2014; T—Zhang Shihong et al.,2008; U—Xian Hanbiao,2020; V—Zhang Shihong et al.,2008; W—Wang Zhengjiang et al.,2015; X—Wu Hao et al.,2015; Y—Bai Daoyuan et al.,2015; Z—Ma Huiying et al.,2013; AA—Luo Lai et al.,2016; AB—Gao Linzhi et al.,2013; AC—Lan Zhongwu et al.,2014; AD—Liu Hao et al.,2019; AE—Zhou Jibin et al.,2007; AF—Deng Qi et al.,2019; AG—Yin Chongyu et al.,2007; AH—Liu Junping et al.,2019; AI—Cui Xiaozhuang et al.,2013; AJ—Lu Junze et al.,2013; AK—Jiang Xinsheng et al.,2012; *—this study
-
下扬子地区拉伸纪晚期沉积地层以皖南休宁组为代表,由灰紫色和灰绿色碎屑岩组成,记录了由滨岸到浅海再到深水硅质的沉积演化序列(刘鸿允等,1999)。在休宁组获得凝灰岩层785±2.5 Ma、780±10 Ma、733.6±5.9 Ma、727.5±7.3 Ma(尹崇玉等,2007;邓奇等,2019; 王田等,2020)和729.6±9.2 Ma(图8)的锆石U-Pb同位素年龄,表明休宁组主体沉积形成于785~720 Ma。地层剖面上多数剖面上的休宁组与马林诺冰期雷公坞组呈直接整合接触,只局部露头识别出斯图特冰期地层(下涯埠组、洋安组),可能由于在斯图特冰期该区远离古陆和冰盖,冰川对该地区无直接影响,导致休宁组跨越斯图特冰期但是无冰碛岩发育。
-
5.3 扬子克拉通莲沱组沉积与构造演化关系
-
年代学数据和沉积盆地分析表明自扬子克拉通莲沱组向南到扬子东南缘是一个相变过程,依次为滨浅海相主导的板溪群上段、陆棚斜坡相主导的下江群上段、盆地相主导的高涧群上段和丹洲群上段(刘鸿允和李曰俊,1992;汪正江,2008;陈建书等,2016)。拉伸纪晚期扬子克拉通莲沱组沉积演化与华南板块在罗迪尼亚超大陆裂解过程中的演化密切相关,扬子伸展裂谷演化的差异性又进一步塑造了拉伸纪晚期两段式演化。
-
扬子与华夏板块于820 Ma左右沿着江南造山带碰撞造山(晋宁运动),导致碰撞前期沉积的冷家溪群-四堡群发生挤压褶皱和变质变形(Zhao Guochun and Cawood 2012;Zhang Guowei et al.,2013;Li Sanzhong et al.,2019)。在罗迪尼亚超大陆裂解大背景下,扬子与华夏拼合而成的华南板块处于深部热地幔柱之上,导致华夏与扬子陆块间的缝合带(江南造山带)于820 Ma拉伸裂解,并进入裂谷发育的第一阶段:受到热地幔柱作用,处于地幔柱上方的扬子东南缘地区发生持续伸展和沉降,演化成南华裂谷盆地,发育了海侵体系域和高位体系域的组合序列。在扬子东南缘板溪群底部横路冲组、丹洲群底部白竹组、下江群底部甲路组的底砾岩不整合沉积在强变质变形的四堡群等岩组之上(Wang Jian et al.,2003;汪正江等,2015),标志着~815 Ma南华裂谷盆地的起始。扬子克拉通主体地区在热地幔柱烘烤下持续抬升剥蚀,这个过程中(815~770 Ma)仅黄陵地区就发生了深成花岗岩(估计侵位深度~8 km)隆升剥蚀至地表的快速转变,为东南缘南华裂谷盆地供给了巨量碎屑物质。随后扬子克拉通东南缘进入裂谷盆地的快速发展期,先后经历了从滨岸-三角洲到深水盆地的演化,期间伴有大量同期火山岩和火山灰沉降(Wang Jian and Li Zhengxiang,2003;Wang Xuance et al.,2012)。黄狮洞组、马底驿组、甲路组上部、白竹组上部的碳酸盐岩层则标志着南华裂谷快速发展过程中的短暂稳定阶段,碳酸盐岩层普遍具有碳同位素负漂特征(张晓阳等,1995;徐世林和杨瑞东,2016),可与国际上~800 Ma的苦泉(Bitter spring)碳同位素负漂事件对应(Swanson-Hysell et al.,2010,2015;George et al.,2018)。800~780 Ma乌叶组、合桐组上段、砖墙湾组普遍发育黑色(碳质)页岩(陈建书等,2016),暗示南华盆地快速沉降且碎屑供给有限,盆地进入的饥饿沉积阶段,代表了扬子东南缘南华裂谷盆地沉降和最大海侵的峰期。
-
随着热地幔柱冷却,~770 Ma扬子构造演化进入第二阶段:中扬子及北缘地区陆壳逐渐冷却并沉降到基准面之下开始接受沉积,发生了广泛海侵,与东南缘华南裂谷协同演化。此时的扬子克拉通及其北缘地区,770 Ma前后的莲沱组底部冲积扇、滨岸砾岩代表了海侵的开始。到750 Ma过渡为广泛的海相环境,物源供给区也完全演变为克拉通局部隆起区和南秦岭弧俯冲带的弧火山。莲沱组北粗南细的岩相组合、由北向南的古流向(王玉冲,2020)和莲沱组锆石年龄与南秦岭地区岩浆岩年龄的耦合,也支持扬子以北的俯冲山系作为剥蚀区的推论。与此同时,扬子东南缘南华裂谷盆地同步进入了清水江组-平略组、拱洞组等富含凝灰质的沉积阶段。莲沱组及同期地层(如清水江组)中保存有丰富火山灰夹层具有南少北多的特征,意味着来自北方(现今方位)南秦岭弧俯冲带频繁的岩浆活动。南秦岭地区武当群-耀岭河群俯冲弧型岩浆岩方面的研究证实南秦岭向扬子克拉通的俯冲持续到710 Ma,俯冲弧活动峰期在~750 Ma(Ling Wenli et al.,2008;Zhao Junhong et al.,2018)。因此,扬子克拉通北缘和南秦岭武当地块间的扬子克拉通北缘俯冲山系可能是770~720 Ma莲沱组的主要剥蚀区,为扬子克拉通提供碎屑物源。
-
6 结论
-
(1)神农架莲沱组底界获得763.1±6.2 Ma(MSWD=0.65)年龄,通山和鹤峰地区莲沱组下部获得764.1±3.5 Ma(MSWD=0.38)、761.8±7.1 Ma(MSWD=1.1)年龄,长阳、神农架地区莲沱组中部获得751.5±6.3 Ma(MSWD=0.22)、752.1±6.5 Ma(MSWD=0.60)年龄,皖南休宁地区休宁组中上部获得729.6±9.2 Ma(MSWD=0.38)年龄,神农架地区莲沱组顶部获得722.4±4.5 Ma(MSWD=3.3)年龄,城口地区龙潭河组中上部获得712.4±6.4 Ma(MSWD=0.18)年龄。
-
(2)莲沱组凝灰岩锆石数据和地层序列表明,扬子克拉通北缘—中扬子地区820~770 Ma整体抬升剥蚀,770~750 Ma以陆相-海陆过渡相为主,750 Ma后整体过渡到海相沉积环境并持续到成冰纪,而且莲沱组沉积期可能跨越拉伸纪—成冰纪界线并持续到成冰纪早期。
-
(3)莲沱组可以与黔东南地区下江群上部的清水江组-平略组-隆里组、湘西地区板溪群上部的百合垄组-牛牯坪组、湘中地区高涧群上部的架枧田组-岩门寨组、桂北地区丹洲群的三门街组-拱洞组、皖南休宁组、西缘地区澄江组-牛首山组对比。
-
(4)受控于罗迪尼亚超大陆裂解过程中地幔柱诱导的伸展裂谷与岩浆地幔柱冷却,拉伸纪晚期扬子克拉通沉积演化模式以~770 Ma为节点划分为早期的抬升剥蚀与裂谷伸展差异发展阶段和晚期的克拉通稳定沉降阶段。
-
致谢:诚挚感谢夏晓旭、杨振瑞、郑海峰和张懿等参与野外工作,衷心感谢中国地质科学院地质研究所耿元生研究员和两位匿名审稿专家对本文提出的宝贵意见!
-
附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202312091?st=article_issue
-
参考文献
-
Bai Daoyuan, Ma Tieqiu, Zhong Xiang, Li Bin, Xiong Xiong. 2015. Zircon LA-ICP-MS U-Pb dating of the tuff of Yanmenzhai Formation in Dongqiao, Pingxiang, with a discussion on the bottom age of Nanhua system. Acta Petrologica et Mineralogica, 34(5): 637~647 (in Chinese with English abstract).
-
Chen Jianshu, Dai Chuangu, Peng Chenglong, Wang Min, Lu Dingbiao, Wang Xuehua, Luo Shan. 2016. The filling sequence and stratigraphic framework of rift basin during the Neoproterozoic 820-635 Ma in Hunan, Guizhou and Guangxi. Geology in China, 43(3): 899~920 (in Chinese with English abstract).
-
Chen Jianshu, Dai Yaran, Tang Feng, Peng Chenglong, Zhang Jiawei, Zhu Heshu, Chen Xing, Wang Wenming, Gong Guiyuan. 2020. Discussion on the Mesoproterozoic and Neoproterozoic major tectonic events in marginal area of the Yangtze block. Geological Review, 66(3): 533~554 (in Chinese with English abstract).
-
Cui Xiaozhuang, Jiang Xinsheng, Wang Jian, Zhuo Jiewen, Xiong Guoqing, Lu Junze, Deng Qi, Wu Hao, Liu Jianhui. 2013. Zircon U-Pb geochronology for the stratotype section of the Neoproterozoic Chengjiang Formation in central Yunnan and its geological significance. Geoscience, 27(3): 547~556 (in Chinese with English abstract).
-
Cui Xiaozhuang, Jiang Xinsheng, Deng Qi, Wang Jian, Zhuo Jiewen, Ren Guangming, Cai Juanjuan, Wu Hao, Jiang Zhuofei. 2016. Zircon U-Pb geochronological results of the Danzhou Group in northern Guangxi and their implications for the Neoproterozoic rifting stages in South China. Geotectonica et Metallogenia, 40(5): 1049~1063 (in Chinese with English abstract).
-
Deng Qi, Wang Zhengjiang, Yang Fei, Cui Xiaozhuang, Wang Jian, Ren Guangming, Zhou Xiaohua, Xiong Xiaohui, Cai Juanjuan. 2019. Depositional age of the Xiuning Formation in the Jiande area, northwestern Zhejiang Province: Constraints from U-Pb zircon tuff geochronology. Acta Geologica Sinica, 93(2): 414~427 (in Chinese with English abstract).
-
Deng Qi, Cui Xiaozhuang, Wang Zhengjiang, Xiong Guoqing, Ren Guangming, Ning Kuobu. 2022. New understanding of the tectonic evolution of the northern margin of Yangtze block: Constraints from the geochronology and geochemistry of the Huashan Group. Sedimentary Geology and Tethyan Geology, 1~21 (in Chinese with English abstract).
-
Du Qiuding, Wang Zhengjiang, Wang Jian, Qiu Yansheng, Jiang Xinsheng, Deng Qi, Yang Fei. 2013. Geochronology and paleoenvironment of the Pre-Sturtian glacial strata: Evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze block, South China. Precambrian Research, 233: 118~131.
-
Du Qiuding, Wang Jian, Wang Zhengjiang, Deng Qi, Yang Fei. 2021. Depositional differentiation and provenance analysis of Liantuo Formation in Neoproterozoic rift basin, Yangtze block. Earth Science, 46(7): 2529~2543 (in Chinese with English abstract).
-
Du Yuansheng, Zhang Chuanheng, Han Xin, Gu Songzhu, Lin Wenjiao. 2001. Earthquake event deposits in Mesoproterozoic Kunyang Group in central Yunnan Province and its geological implications. Science China Earth Sciences, 44(7): 600~608.
-
Editorial Committee of National Commission on Stratigraphy of China. 2014. Stratigraphic Chart of China (2014). Beijing: Geological Publishing House (in Chinese).
-
Gao Linzhi, Dai Chuangu, Liu Yanxue, Wang Min, Wang Xuehua, Chen Jianshu, Ding Xiaozhong. 2010. Zircon SHRIMP U-Pb dating of the tuffaceous bed of Xiajiang Group in Guizhou Province and its stratigraphic implication. Geology in China, 37(4): 1071~1080 (in Chinese with English abstract).
-
Gao Linzhi, Liu Yanxue, Ding Xiaozhong, Zhang Chuanheng, Wang Ziqiang, Chen Jun, Liu Yaorong. 2012. SHRIMP dating of Cangshuipu Group in the middle part of the Jiangnan orogen and its implications for tectonic evolutions. Geology in China, 39(1): 12~20 (in Chinese with English abstract).
-
Gao Linzhi, Lu Jipu, Ding Xiaozhong, Wang Hanrong, Liu Yanxue, Li Jiang. 2013. Zircon U-Pb dating of Neoproterozoic tuff in south Gaungxi and its implications for stratigraphic correlation. Geology in China, 40(5): 1443~1452 (in Chinese with English abstract).
-
Gao Linzhi, Chen Jianshu, Dai Chuangu, Ding Xiaozhong, Wang Xuehua, Liu Yanxue, Wang Min, Zhang Heng. 2014. SHRIMP zircon U-Pb dating of tuff in Fanjingshan Group and Xiajiang Group from Guizhou and Hunan provinces and its stratigraphic implications. Geological Bulletin of China, 33(7): 949~959 (in Chinese with English abstract).
-
Gao Shan, Ling Wenli, Qiu Yumin, Lian Zhou, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica et Cosmochimica Acta, 63(13-14): 2071~2088.
-
Gao Shan, Yang Jie, Zhou Lian, Li Ming, Hu Zhaochu, Guo Jingliang, Yuan Honglin, Gong Hujun, Xiao Gaoqiang, Wei Junqi. 2011. Age and growth of the Archean Kongling terrain, South China, with emphasis on 3. 3 Ga granitoid gneisses. American Journal of Science, 311(2): 153~182.
-
Gao Wei, Zhang Chuanheng. 2009. Zircon SHRIMP U-Pb ages of the Huangling granite and the tuff beds from Liantuo Formation in the Three Gorges area of Yangtze River, China and its geological significance. Geological Bulletin of China, 28(1): 45~50 (in Chinese with English abstract).
-
Geng Yuansheng, Kuang Hongwei, Du Lilin, Liu Yongqing. 2020. The characteristics of Meso-Neoproterozoic magmatic rocks in North China, South China and Tarim blocks and their significance of geological correlation. Acta Petrologica Sinica, 36(8): 2276~2312 (in Chinese with English abstract).
-
George B G, Ray J S, Shukla A D, Chatterjee A, Awasthi N, Laskar A H. 2018. Stratigraphy and geochemistry of the Balwan limestone, Vindhyan Supergroup, India: Evidence for the Bitter Springs delta δC13 anomaly. Precambrian Research, 313: 18~30.
-
Guan Kaiping, Tian Li, An Zhihui, Ye Qin, Hu Jun, Tong Jinnan. 2016. Stratigraphic succession of the Nanhuan period in the Shennongjia area in western Hubei and its regional correlation. Earth Science Frontiers, 23(6): 236~245 (in Chinese with English abstract).
-
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27~62.
-
Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481~492 (in Chinese with English abstract).
-
Huang Jianzhong, Tang Xiaoshan, Zhang Xiaoyang, Guo Lequn. 1996. On the correlation between the Liantuo Formation of the Yangtze Gorge and the Banxi Group of Hunan. Journal of Stratigraphy, (3): 232~236 (in Chinese with English abstract).
-
Huang Zhaoxian. 1989. On the problem about the lower limit of the Sinian system at the Dongshanfeng anticline in the border area on Hubei and Hunan. Proceedings of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (14): 139~144 (in Chinese with English abstract).
-
Ji Zelong, Liu Xiaofeng. 2023. New insights about the Cryogenian Nantuo Formationin in the East Yangtze Gorges area. Acta Geologica Sinica, 97(6): 1753~1765 (in Chinese with English abstract).
-
Jiang Xinsheng, Wang Jian, Cui Xiaozhuang, Zhuo Jiewen, Xiong Guoqing, Lu Junze, Liu Jianhui. 2012. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province(SW China) and its geological significance. Science China Earth Sciences, 55(10): 1815~1826.
-
Jing Xianqing, Yang Zhenyu, Tong Yabo, Wang Heng, Xu Yingchao. 2018. A SHRIMP U-Pbzircon geochronology of a tuff bed from the bottom of Liantuo Formation in the Three Gorges area and its geological implications. Journal of Jilin University (Earth Science Edition), 48(1): 165~180 (in Chinese with English abstract).
-
Koschek G. 1993. Origin andsignificance of the SEM cathodoluminescence from zircon. Journal of Microscopy, 171 (3): 223~232.
-
Kuang Hongwei, Liu Yongqing, Fan Zhengxiu, Peng Nan, Geng Yuansheng, Zhu Zhicai, Xu Huan, An Wei, Wang Nengsheng, Xia Xiaoxu, Wang Yuchong. 2018. Sedimentary characteristics of the Mesoproterozoic Shennongjia Group in northern margin of Yangtze craton. Journal of Palaeogeography(Chinese Edition), 20(4): 523~544 (in Chinese with English abstract).
-
Lan Zhongwu, Li Xianhua, Zhu Maoyan, Chen Zhongqiang, Zhang Qirui, Li Qiuli, Lu Dingbiao, Liu Yu, Tang Guoqiang. 2014. Arapid and synchronous initiation of the wide spread Cryogenian glaciations. Precambrian Research, 255: 401~411.
-
Lan Zhongwu, Li Xianhua, Zhang Qirui, Li Qiuli. 2015a. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China. Precambrian Research, 267: 28~38.
-
Lan Zhongwu, Li Xianhua, Zhu Maoyan, Zhang Qirui, Li Qiuli. 2015b. Revisiting the Liantuo Formation in Yangtze block, South China: SIMS U-Pb zircon age constraints and regional and global significance. Precambrian Research, 263: 123~141.
-
Li Huaikun, Tian Hui, Zhou Hongying, Zhang Jian, Liu Huan, Geng Jianzhen, Ye Lijuan, Xiang Zhenqun, Qu Lesheng. 2016. Correlation between the Dagushi Group in the Dahongshan area and the Shennongjia Group in the Shennongjia area on the northern margin of the Yangtze craton: Constraints from zircon U-Pb ages and Lu-Hf isotopic systematics. Earth Science Frontiers, 23(6): 186~201 (in Chinese with English abstract).
-
Li Sanzhong, Suo Yanhui, Li Xiyao, Zhou Jie, Santosh M, Wang Pengcheng, Wang Guangzeng, Guo Lingli, Yu Shengyao, Lan Haoyuan, Dai Liming, Zhou Zaizhen, Cao Xianzhi, Zhu Junjiang, Liu Bo, Jiang Suhua, Wang Gang, Zhang Guowei. 2019. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91~137.
-
Li Zhengxiang. 2003. Geochronology of Neoproterozoicsyn-rift magmatism in the Yangtze craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85~109.
-
Lin Shuji. 1995. Correlation for Liantuo Formation to Banxi Group andboundary between the Presinian and the Sinian in eastern Guizhou. Guizhou geology, 23~29 (in Chinese with English abstract).
-
Ling Lianhai, Lou Fasheng, Deng Guohui, Luo Xiaohong. 2002. The division and correlation of Nanhua stratigraphy in neighbor area of Anhui, Zhejiang and Jiangxi. Volcanology & Mineral Resources, (2): 113~121 (in Chinese with English abstract).
-
Ling Wenli, Ren Bangfang, Duan Ruichun, Liu Xiaoming, Mao Xinwu, Peng Lianhong, Liu Zaoxue, Cheng Jianping, Yang Hongmei. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Science Bulletin, 53 (14): 2192~2199.
-
Liu Hao, Wang Zhengjiang, Deng Qi, Du Qiuding, Yang Fei. 2019. Constraints on the onset age of the Sturtian glaciation from the southeast Yangtze block, South China. International Geology Review, 61 (15): 1876~1886.
-
Liu Hongyun. 1991. The Sinian System in China. Beijing: Science Press (in Chinese).
-
Liu Hongyun, Sha Qingan. 1963. New sight on the Sinian in eastern Yangtze Gorges area. Chinese Journal of Geology(Scientia Geologica Sinica), 177~187 (in Chinese with English abstract).
-
Liu Hongyun, Xiong Jiayong, Cai Zongbai, Dong Rongsheng, Li Jianlin, Qi Zhonglin. 1983. Repeated discussion about the succession of lower Sinian series in eastern Yunnan——Decided establishment of steatigraphical sequence of the lower Sinian series in Niutoushan area. Chinese Journal of Geology, (2): 103-115+205-206 (in Chinese with English abstract).
-
Liu Hongyun, Li Yuejun. 1992. On the age and regional correlation of Banxi Group. Chinese Journal of Geology, 1~16 (in Chinese with English abstract).
-
Liu Hongyun, Hao Jie, Li Yuejun. 1999. Late Precambrian Stratigraphy and Geological Evolution in Central and Eastern China. Beijing: Science Press (in Chinese).
-
Liu Junping, Xia Caixiang, Sun Baidong, Hu Shaobin, Wang Xiaofeng, Wang Wei, Guan Xueqing, Song Donghu, Lü Boye. 2019. Tuffs from the Neoproterozoic Chengjiang Formation in the Yimen region, central Yunnan: Zircon U-Pb dating and its geological implications. Sedimentary Geology and Tethyan Geology, 39 (1): 14~21 (in Chinese with English abstract).
-
Liu Weixin, Zhang Baocheng. 1989. About the comparison of Wuqiangxi Formation in Hunan and Liantuo Formation in Xiadong district. Hunan Geology, (1): 66~70 (in Chinese with English abstract).
-
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Science Bulletin, 55 (15): 1535~1546.
-
Lu Junze, Jiang Xinsheng, Wang Jian, Zhuo Jiewen, Xiong Guoqing, Cui Xiaozhuang. 2013. Shrimp zircon U-Pb age and its geological significance of Neoproterozoic Chengjiang Formation in Qiaojia area, northeast Yunnan. Journal of Mineralogy and Petrology, 33: 65~71 (in Chinese with English abstract).
-
Luo Lai, He Liang, Sun Haiqing, Huang Jianzhong. 2016. Zircon SHRIMP U-Pb age of Gaojian Group in the southeastern margin of Yangtze craton. Geology and Mineral Resources of South China, 32(1): 15~20 (in Chinese with English abstract).
-
Ma Guogan, Li Huaqin, Zhang Zichao. 1984. An investigation of the age limits of the Sinian system in South China. Proceedings of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, (8): 6~34 (in Chinese with English abstract).
-
Ma Huiying, Sun Haiqing, Huang Jianzhong, Ma Tieqiu. 2013. U-Pb dating of zircon from the Gaojian Group tuff in central Hunan Province and its geological implication. Mineral Exploration, 4(1): 69~74 (in Chinese with English abstract).
-
Macdonald F A, Schmitz M D, Crowley J L, Roots C F, Jones D S, Maloof A C, Strauss J V, Cohen P A, Johnston D T, Schrag D P. 2010. Calibrating the Cryogenian. Science, 327 (5970): 1241~1243.
-
Ning Kuobu, Deng Qi, Cui Xiaozhuang, Wang Zhengjiang, Ren Guangming, Yang Qingxiong. 2022. Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze block. Geological Bulletin of China, 1~16 (in Chinese with English abstract).
-
Pan Guitang, Lu Songnian, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Hao Guojie, Luo Mansheng, Ren Fei, Yuan Sihua. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 1~23 (in Chinese with English abstract).
-
Rooney A D, Strauss J V, Brandon A D, Macdonald F A. 2015. A Cryogenian chronology: Two long-lasting synchronous Neoproterozoic glaciations. Geology, 43 (5): 459~462.
-
Shu Liangshu, Wang Jingqiang, Yao Jinlong. 2019. Tectonic evolution of the eastern Jiangnan Region, South China: New findings and implications on the assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42~65.
-
Shu Liangshu, Chen Xiangyun, Lou Fasheng. 2020. Pre-Jurassic tectonics of the South China. Acta Geologica Sinica, 94(2): 333~360 (in Chinese with English abstract).
-
Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249 (1): 1~35.
-
Song Fang, Niu Zhijun, Liu Hao, He Yaoyan, Yang Wenqiang. 2016. Stratigraphic sequence and contact relationship of the Nanhua system in south-eastern Hubei Province: A key to the stratigraphic correlation between the inner Yangtze region and the south-eastern basin. Journal of Stratigraphy, 40(3): 251~260 (in Chinese with English abstract).
-
Song Gaoyuan, Wang Xinqiang, Shi Xiaoying, Jiang Ganqing. 2017. New U-Pb age constraints on the upper Banxi Group and synchrony of the Sturtian glaciation in South China. Geoscience Frontiers, 8 (5): 1161~1173.
-
Swanson-Hysell N L, Rose C V, Calmet C C, Halverson G P, Hurtgen M T, Maloof A C. 2010. Cryogenian glaciation and the onset of carbon-isotope decoupling. Science, 328 (5978): 608~611.
-
Swanson-Hysell N L, Maloof A C, Condon D J, Jenkin G R T, Alene M, Tremblay M M, Tesema T, Rooney A D, Haileab B. 2015. Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology, 43 (4): 323~326.
-
Tang Jiang, Lin Yuan. 2002. The lower Sinian and pre-Sinian of the Daba Mountain area in the South Qinling region. Chinese Geology, (2): 143~146 (in Chinese with English abstract).
-
Vermeesch P. 2018. IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers, 9 (5): 1479~1493.
-
Wang Jian, Li Xianhua, Duan T Z, Liu Dunyi, Song Biao, Li Zhongxiong, Gao Yonghua. 2003. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Science Bulletin, 48 (16): 1726~1731.
-
Wang Jian, Li Zhengxiang. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Research, 122 (1): 141~158.
-
Wang Tian, Wang Zhengjiang, Xiao Yuanfu, Yang Fei, Du Qiuding. 2020. Study on the regional subsidence and its sedimentary response before the first Neoproterozoic glaciation in Yangtze block. Geological Review, 66 (4): 1060~1080 (in Chinese with English abstract)
-
Wang Xuance, Li Xianhua, Li Zhengxiang, Li Qiuli, Tang Guoqiang, Gao Yuya, Zhang Qirui, Liu Yu. 2012. Episodic Precambrian crust growth: Evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua basin, central South China. Precambrian Research, 222~223: 386~403.
-
Wang Yuchong. 2020. Sedimentology of Liantuo Formation in Shennongjia area, the northern Yangtze Craton. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English summary).
-
Wang Yuchong, Kuang Hongwei, Peng Nan, Liu Yongqing, Fan Zhengxiu, Xia Xiaoxu, Chen Xiaoshuai, Zheng Hanghai, Sun Yuxiang. 2018. Freezing and thawing structures: An evidence of cold climate in the Neoproterozoic Liantuo Formation in Shennongjia of northern margin of Yangtze craton. Journal of Palaeogeography (Chinese Edition), 20(4): 579~594 (in Chinese with English abstract).
-
Wang Yuchong, Kuang Hongwei, Liu Yongqing, Zhao Fenghua, Peng Nan, Chen Xiaoshuai, Qi Kening, Liu Hai, Wang Zhixian, Zhong Quan, Chen Jinxin. 2023. Sedimentary evolution from greenhouse to icehouse of Neoproterozoic and age constraints in the northern Yangtze craton. Global and Planetary Change, 227: 104179.
-
Wang Zhengjiang. 2008. Aproposal to establish the Banxi system and discussion on its foundations——Based mainly on studies in eastern Guizhou area. Geological Review, (3): 296~306 (in Chinese with English abstract).
-
Wang Zhengjiang, Xu Xiaosong, Du Qiuding, Yang Fei, Deng Qi, Wu Hao, Zhou Xiaolin. 2013. Discussion on the bottom of Nanhua system: Evidences from sedimentology and isotopic geochronology. Advances in Earth Science, 28(4): 477~489 (in Chinese with English abstract).
-
Wang Zhengjiang, Wang Jian, Jiang Xinsheng, Sun Haiqing, Gao Tianshan, Chen Jianshu, Qiu Yansheng, Du Qiuding, Deng Qi, Yang Fei. 2015. New progress for the stratigraphic division and correlation of Neoproterozoic in Yangtze block, South China. Geological Review, 61(1): 1~22 (in Chinese with English abstract).
-
Wu Hao, Jiang Xinsheng, Wang Jian, Wang Zhengjiang, Du Qiuding, Deng Qi, Cui Xiaozhuang, Yang Fei. 2015. A sedimentological and stratigraphical study of the Nanhua system in the Tuokou area, western Hunan and their geological significance. Journal of Stratigraphy, 39 (3): 300~309 (in Chinese with English abstract).
-
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49 (16): 1554~1569 (in Chinese).
-
Xian Hanbiao. 2020. Paleomagnetic results from Neoproterozoic Madiyi Formation and middle Devonian Yuntaiguan Formation in South China and their tectonic implications. Doctoral dissertation of China University of Geosciences (Beijing) (in Chinese with English summary).
-
Xiang Zhongjin, Yan Quanren, Xia Lei, Song Bo, Wang Zongqi. 2016. Provenance characteristic of the Neoproterozoic Longtanhe Formation in the north Daba Moutain, Central China: Constrains from detrital framework and zircon geochronology. Acta Geologica Sinica, 90(8): 1886~1899 (in Chinese with English abstract).
-
Xiong Jiayong. 1982. About Niutoushan Formation. Journal of Stratigraphy, (2): 152~155 (in Chinese with English abstract).
-
Xu Lulu, Gong Zhiyu, Xu Cong, Zhao Xiongsong, Weng Maozhi, Luo Hong. 2019. Lithological characteristics and lithofacies palaeogeography of the Liantuo-Nantuo Formation of the South China system in the southeastern part of Hubei Province. Resources Environment Engineering, 33(2): 159~163+201 (in Chinese with English abstract).
-
Xu Shilin, Yang Ruidong. 2016. Carbon and oxygen isotopic composition and its significance of Jialu Formation marble, Neoproterozoic Xiajiang Group in southeast Guizhou, China. Guizhou Geology, 33(2): 91~95+107 (in Chinese with English abstract).
-
Yin Chongyu, Liu Dunyi, Gao Linzhi, Wang Ziqiang, Xing Yusheng, Jian Ping, Shi Ruoyu. 2003. Lower boundary age of the Nanhua system and the Gucheng glacial stage: Evidence from SHRIMP II dating. Chinese Science Bulletin, 48(16): 1657~1662.
-
Yin Chongyu, Liu Yongqing, Gao Linzhi. 2007. Phosphatized Biota in Early Sinian (Ediacaran): Weng'an Biota and Its Environment. Beijing: Geological Publishing House (in Chinese).
-
Zeng Wen, Zhou Hanwen, Zhong Zengqiu, Zeng Zhaoguang, Li Huimin. 2005. Single zircon U-Pb ages and their tectonic implications of Neoproterozoic magmatic rocks in southeastern Guizhou, China. Geochimica, (6): 10~18 (in Chinese with English abstract).
-
Zhang Guowei, Guo Anlin, Wang Yuejun, Li Sanzhong, Dong Yunpeng, Liu Shaofeng, He Dengfa, Cheng Shunyou, Lu Rukui, Yao Anping. 2013. Tectonics of South China continent and its implications. Science China Earth Sciences, 56 (11): 1804~1828.
-
Zhang Jiawei, Chen Jianshu, Wu Tao, Ye Taiping, Chen Minghua, Dai Yaran, Deng Xiaojie, Mou Jun. 2020. Comparison of the geochronological frameworks and preliminary study on key geological events during the Neoproterozoic Late Tonian period in the Hunan-Guizhou-Guangxi area. Earth Science Frontiers, 27(4): 1~16 (in Chinese with English abstract).
-
Zhang Qirui. 1996. Sedimentary structures of Sinian glaciation in southern Anhui, eastern China. Chinese Journal of Geology, (2): 147~153+209 (in Chinese with English abstract).
-
Zhang Qirui, Chu Xuelei, Feng Lianjun. 2008. A correlation of the “Xieshuihe Formation”, Nanhuan system, with a discussion to its glacial sedimentary stractures. Journal of Stratigraphy, (3): 246~252 (in Chinese with English abstract).
-
Zhang Qirui, Li Xianhua, Feng Lianjun, Huang Jing, Song Biao. 2008. A new age constraint on the onset of the Neoproterozoic glaciations in the Yangtze platform, South China. The Journal of Geology, 116 (4): 423~429.
-
Zhang Shihong, Jiang Ganqing, Dong Jin, Han Yigui, Wu Huaichun. 2008. New SHRIMP U-Pb age from the Wuqiangxi Formation of Banxi Group: Implications for rifting and stratigraphic erosion associated with the early Cryogenian (Sturtian) glaciation in South China. Science China Earth Sciences, 51 (11): 1537~1544.
-
Zhang Xiaoyang, Huang Jianzhong, Tang Xiaoshan. 1995. Strata sequence and stratigraphic framework of Banxi period in Hunan. Hunan Geology, 14 (1): 27~30 (in Chinese with English abstract).
-
Zhang Xiong, Zeng Zuoxun, Pan Lili, Zeng Zhihui, Peng Lianhong, Xu Daliang, Wei Yunxu, Liu Hao, Deng Xin. 2016. Recognition of the sedimentation age of a series of purple-red colored glutenite sedimentary rocks in Dahong Mountain area, northern Hubei Province: Detrital zircon U-Pb geochronology and its geological significance. Geological Bulletin of China, 35(7): 1069~1080 (in Chinese with English abstract).
-
Zhang Yuzhi, Wang Yuejun, Fan Weiming, Zhang Aimei, Ma Liyan. 2012. Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (~825 Ma) high-Mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan Domain and their tectonic implications. Precambrian Research, 220-221: 139~157.
-
Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13~54.
-
Zhao Junhong, Li Qiwei, Liu Hang, Wang Wei. 2018. Neoproterozoic magmatism in the western and northern margins of the Yangtze block (South China) controlled by slab subduction and subduction-transform-edge-propagator. Earth-Science Reviews, 187: 1~18.
-
Zhao Xiaoming, Liu Shengde, Zhang Quanxu, Wu Jianhui, Zeng Bofu, Liao Zongming, Yang Gangzhong, Li Fanghui. 2011. Geochemical characters of the Nanhua system in Changyang, western Hubei Province and its implication for climate and sequence correlation. Acta Geologica Sinica, 85(4): 576~585 (in Chinese with English abstract).
-
Zheng Yongfei. 2003. Neoproterozoic magmatic activity and global change. Science Bulletin, 48(16): 1639~1656.
-
Zhou Jibin, Li Xianhua, Ge Wenchun, Li Zhengxiang. 2007. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze block and relevance to the break-up of Rodinia. Gondwana Research, 12(1): 184~197.
-
柏道远, 马铁球, 钟响, 李彬, 熊雄. 2015. 萍乡东桥岩门寨组凝灰岩LA-ICP-MS锆石U-Pb年龄及南华冰期底界年代探讨. 岩石矿物学杂志, 34(5): 637~647.
-
陈建书, 戴传固, 彭成龙, 王敏, 卢定彪, 王雪华, 骆珊. 2016. 湘黔桂相邻区新元古代820~635 Ma时期裂谷盆地充填序列与地层格架. 中国地质, 43(3): 899~920.
-
陈建书, 代雅然, 唐烽, 彭成龙, 张嘉玮, 朱和书, 陈兴, 王文明, 龚桂源. 2020. 扬子地块周缘中元古代末—新元古代主要构造运动梳理与探讨. 地质论评, 66(3): 533~554.
-
崔晓庄, 江新胜, 王剑, 卓皆文, 熊国庆, 陆俊泽, 邓奇, 伍皓, 刘建辉. 2013. 滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义. 现代地质, 27(3): 547~556.
-
崔晓庄, 江新胜, 邓奇, 王剑, 卓皆文, 任光明, 蔡娟娟, 伍皓, 江卓斐. 2016. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示. 大地构造与成矿学, 40(5): 1049~1063.
-
邓奇, 汪正江, 杨菲, 崔晓庄, 王剑, 任光明, 周效华, 熊小辉, 蔡娟娟. 2019. 浙西北建德地区休宁组沉积时限的厘定: 来自凝灰岩锆石U-Pb年代学的制约. 地质学报, 93(2): 414~427.
-
邓奇, 崔晓庄, 汪正江, 熊国庆, 任光明, 宁括步. 2022. 扬子陆块北缘构造演化新认识: 来自原花山群年代学和地球化学的制约. 沉积与特提斯地质, 1~21.
-
杜秋定, 王剑, 汪正江, 邓奇, 杨菲. 2021. 扬子地块新元古代裂谷盆地莲沱组沉积分异及其物源分析. 地球科学, 46(7): 2529~2543.
-
高林志, 戴传固, 刘燕学, 王敏, 王雪华, 陈建书, 丁孝忠. 2010. 黔东地区下江群凝灰岩锆石SHRIMP U-Pb年龄及其地层意义. 中国地质, 37(4): 1071~1080.
-
高林志, 刘燕学, 丁孝忠, 张传恒, 王自强, 陈俊, 刘耀荣. 2012. 江南古陆中段沧水铺群锆石U-Pb年龄和构造演化意义. 中国地质, 39(1): 12~20.
-
高林志, 陆济璞, 丁孝忠, 王汉荣, 刘燕学, 李江. 2013. 桂北地区新元古代地层凝灰岩锆石U-Pb年龄及地质意义. 中国地质, 40(5): 1443~1452.
-
高林志, 陈建书, 戴传固, 丁孝忠, 王雪华, 刘燕学, 王敏, 张恒. 2014. 黔东地区梵净山群与下江群凝灰岩SHRIMP锆石U-Pb年龄. 地质通报, 33(7): 949~959.
-
高维, 张传恒. 2009. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义. 地质通报, 28(1): 45~50.
-
耿元生, 旷红伟, 杜利林, 柳永清. 2020. 华北、华南、塔里木三大陆块中-新元古代岩浆岩的特征及其地质对比意义. 岩石学报, 36(8): 2276~2312.
-
官开萍, 田力, 安志辉, 叶琴, 胡军, 童金南. 2016. 湖北神农架西部南华纪地层序列及其区域对比. 地学前缘 23(6): 236~245.
-
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481~492.
-
黄建中, 唐晓珊, 张晓阳, 郭乐群. 1996. 对峡东莲沱组与湖南板溪群对比问题的一点浅见. 地层学杂志, (3): 232~236.
-
黄照先, 1989. 湘鄂边境东山峰背斜震旦系的下界问题. 中国地质科学院宜昌地质矿产研究所文集, (14): 139~144.
-
季泽龙, 刘晓峰. 2023. 峡东地区成冰系南沱组新认识. 地质学报, 97 (6): 1753~1765.
-
景先庆, 杨振宇, 仝亚博, 王恒, 徐颖超. 2018. 三峡地区新元古代莲沱组底部凝灰岩锆石SHRIMP U-Pb年代学及其地质意义. 吉林大学学报(地球科学版), 48(1): 165~180.
-
旷红伟, 柳永清, 范正秀, 彭楠, 耿元生, 朱志才, 许欢, 安伟, 王能盛, 夏晓旭, 王玉冲. 2018. 扬子克拉通北缘中元古界神农架群沉积特征. 古地理学报, 20(4): 523~544.
-
李怀坤, 田辉, 周红英, 张健, 刘欢, 耿建珍, 叶丽娟, 相振群, 瞿乐生. 2016. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比: 锆石SHRIMP U-Pb年龄及Hf同位素证据. 地学前缘, 23(6): 186~201.
-
林树基. 1995. 板溪群和莲沱组对比问题与震旦/前震旦界限. 贵州地质, 23~29.
-
凌联海, 楼法生, 邓国辉, 罗小洪. 2002. 皖浙赣交境地区南华纪地层划分与对比. 资源调查与环境, (2): 113~121.
-
刘鸿允. 1991. 中国震旦系. 北京: 科学出版社.
-
刘鸿允, 沙庆安. 1963. 长江峡东区震旦系新见. 地质科学, 177~187.
-
刘鸿允, 熊家镛, 蔡宗柏, 董榕生, 李建林, 戚中林. 1983. 云南东部下震旦统地层复议——牛头山区下震旦统层序的确立. 地质科学, (2): 103~115+205~206.
-
刘鸿允, 李曰俊. 1992. 论板溪群的时代归属和层位对比. 地质科学, (S1): 1~16.
-
刘鸿允, 郝杰, 李日俊. 1999. 中国中东部晚前寒武纪地层与地质演化. 北京: 科学出版社.
-
刘军平, 夏彩香, 孙柏东, 胡绍斌, 王晓峰, 王伟, 关学卿, 宋冬虎, 吕勃烨. 2019. 滇中易门地区新元古代澄江组凝灰岩锆石U-Pb年龄及其地质意义. 沉积与特提斯地质, 39(1): 14~21.
-
刘卫新, 张宝成. 1989. 对峡东莲沱组与湖南五强溪组对比问题的认识. 湖南地质, (1): 66~70.
-
陆俊泽, 江新胜, 王剑, 卓皆文, 熊国庆, 崔晓庄. 2013. 滇东北巧家地区新元古界澄江组SHRIMP锆石U-Pb年龄及其地质意义. 矿物岩石, 30(2): 65~71.
-
罗来, 贺良, 孙海清, 黄建中. 2016. 扬子东南缘高涧群底部锆石SHRIMP U-Pb年龄. 华南地质与矿产, 32(1): 15~20.
-
马国干, 李华芹, 张自超. 1984. 华南地区震旦纪时限范围的研究. 中国地质科学院宜昌地质矿产研究所文集, (8): 6~34.
-
马慧英, 孙海清, 黄建中, 马铁球. 2013. 湘中地区高涧群凝灰岩LA-ICP-MS锆石U-Pb年龄及其地质意义. 矿产勘查, 4(1): 69~74.
-
宁括步, 邓奇, 崔晓庄, 汪正江, 任光明, 杨青雄. 2022. 扬子陆块北缘大洪山地区莲沱组底部凝灰岩锆石U-Pb定年及其地层学意义. 地质通报, 1~16.
-
潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰, 骆满生, 任飞, 袁四化. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6): 1~23.
-
全国地层委员会. 2014. 中国地层表(2014)说明书. 北京: 地质出版社.
-
舒良树, 陈祥云, 楼法生. 2020. 华南前侏罗纪构造. 地质学报, 94(2): 333~360.
-
宋芳, 牛志军, 刘浩, 何垚砚, 杨文强. 2016. 鄂东南地区南华系沉积特征与接触关系: 扬子陆块内部与东南缘盆地对比的良好借鉴. 地层学杂志, 40(3): 251~260.
-
唐将, 林源. 2002. 南秦岭大巴山地区的下震旦统及前震旦系. 中国地质, (2): 143~146.
-
王田, 汪正江, 肖渊甫, 杨菲, 杜秋定, 2020. 扬子陆块新元古代首次冰期前的区域沉降及其沉积响应研究. 地质论评, 66 (4): 1060~1080.
-
王玉冲. 2020. 神农架地区莲沱组沉积特征与环境分析. 中国地质大学(北京)硕士学位论文.
-
王玉冲, 旷红伟, 彭楠, 柳永清, 范正秀, 夏晓旭, 陈骁帅, 郑行海, 孙宇翔. 2018. 扬子克拉通北缘神农架南华系莲沱组寒冷气候的沉积学证据: 冻融构造. 古地理学报, 20(4): 579~594.
-
汪正江. 2008. 关于建立“板溪系”的建议及其基础的讨论——以黔东地区为例. 地质论评, (3): 296~306.
-
汪正江, 许效松, 杜秋定, 杨菲, 邓奇, 伍皓, 周小琳. 2013. 南华冰期的底界讨论: 来自沉积学与同位素年代学证据. 地球科学进展, 28(4): 477~489.
-
汪正江, 王剑, 江新胜, 孙海清, 高天山, 陈建书, 邱艳生, 杜秋定, 邓奇, 杨菲. 2015. 华南扬子地区新元古代地层划分对比研究新进展. 地质论评, 61(1): 1~22.
-
伍皓, 江新胜, 王剑, 汪正江, 杜秋定, 邓奇, 崔晓庄, 杨菲. 2015. 湘西托口地区南华系沉积地层学研究及其地质意义. 地层学杂志, 39 (3): 300~309.
-
冼汉标. 2020. 华南新元古代马底驿组和中泥盆世云台观组古地磁结果及其大地构造意义. 中国地质大学(北京)博士学位论文.
-
向忠金, 闫全人, 夏磊, 宋博, 王宗起. 2016. 北大巴山新元古代龙潭河组的源区特征: 来自碎屑组成和锆石年代学的证据. 地质学报, 90(8): 1886~1899.
-
熊家镛. 1982. 关于牛头山组. 地层学杂志, (2): 152~155.
-
许露露, 龚志愚, 徐聪, 赵雪松, 翁茂芝, 罗红, 2019. 下扬子鄂东南南华系莲沱组—南沱组岩性特征及岩相古地理. 资源环境与工程, 33(2): 159~163+201.
-
徐世林, 杨瑞东. 2016. 黔东南新元古代下江群甲路组大理岩的碳氧同位素组成及其意义. 贵州地质, 33(2): 91~95+107.
-
尹崇玉, 柳永清, 高林志. 2007. 震旦(伊迪卡拉)纪早期磷酸盐化生物群: 瓮安生物群特征及其环境演化. 北京: 地质出版社.
-
曾雯, 周汉文, 钟增球, 曾昭光, 李惠民. 2005. 黔东南新元古代岩浆岩单颗粒锆石U-Pb年龄及其构造意义. 地球化学, (6): 10~18.
-
张嘉玮, 陈建书, 吴滔, 叶太平, 陈明华, 代雅然, 邓小杰, 牟军. 2020. 湘黔桂新元古代拉伸纪晚期地层年代格架对比及关键地质事件初探. 地学前缘, 27(4): 1~16.
-
张启锐. 1996. 皖南震旦系冰期地层沉积特征. 地质科学, (2): 147~153+209.
-
张启锐, 储雪蕾, 冯连君. 2008. 南华系“渫水河组”的对比及其冰川沉积特征的探讨. 地层学杂志, (3): 246~252.
-
张晓阳, 黄建中, 唐晓珊. 1995. 湖南板溪期地层层序分析及格架探讨. 湖南地质, 14 (1): 27~30.
-
张雄, 曾佐勋, 潘黎黎, 曾智辉, 彭练红, 徐大良, 魏运许, 刘浩, 邓新. 2016. 对湖北大洪山地区一套紫红色砂-砾岩系沉积年代的再认识——碎屑锆石U-Pb年龄及其地质意义. 地质通报, 35(7): 1069~1080.
-
赵小明, 刘圣德, 张权绪, 吴健辉, 曾波夫, 廖宗明, 杨刚忠, 李方会, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576~585.
-
摘要
扬子克拉通保存的独特拉伸纪晚期碎屑岩建造为研究新元古代中期演化提供了绝佳素材,内部丰富的凝灰岩夹层和同位素年龄也为扬子克拉通新元古代中期演化提供有效的年代学约束。然而扬子克拉通拉伸系莲沱组内部演化缺少年代学约束,制约了拉伸纪晚期扬子克拉通的沉积演化研究。本研究通过野外地质调查,采用LA-ICP-MS技术获取莲沱组底界(神农架)凝灰岩锆石U-Pb谐和年龄为763.1±6.2 Ma,莲沱组下部陆相地层中获得(鹤峰)的凝灰岩锆石U-Pb谐和年龄761.8±7.1 Ma,莲沱组中下部海陆过渡段获得通山(764.1±3.5 Ma)、长阳(751.5±6.3 Ma)、神农架(752.1±6.5 Ma)三组凝灰岩锆石U-Pb谐和年龄。莲沱组顶部海相地层获得729.6±9.2 Ma(皖南休宁组)、722.4±4.5 Ma(神农架)凝灰岩锆石U-Pb谐和年龄,以及城口龙潭河组凝灰岩锆石U-Pb谐和年龄(712.4±6.4 Ma)。这些凝灰岩锆石年龄数据和地层序列表明:820~770 Ma扬子克拉通普遍处于暴露剥蚀环境,770~750 Ma开始沉积陆相-海陆过渡相莲沱组,750 Ma之后扬子克拉通过渡到海相沉积环境并持续到成冰纪。建立的莲沱组与邻区地层对比格架表明扬子克拉通拉伸纪晚期演化受控于罗迪尼亚超大陆裂解过程,与深部地幔柱诱导的伸展裂谷、岩浆地幔柱冷却密切关联。本研究为扬子克拉通拉伸纪晚期地层提供有效年代学约束,揭示了扬子克拉通新元古代中期沉积演化与构造背景演化的协同关系,为扬子克拉通在罗迪尼亚裂解过程中的演化提供有效数据支撑。
Abstract
The unique clastic formation preserved in the Yangtze Craton provides excellent material for studying the mid-Neoproterozoic evolution, and the abundantzircon U-Pb ages of tuff interlayers within also provide effective geochronological constraints for the mid-Neoproterozoic evolution of the Yangtze Craton. However, the evolution of the Liantuo Formation in the Yangtze Craton still lacks geochronological constraints, which restricts study of sedimentary evolution of the Yangtze Craton in the late Tonian. In this study, field geological investigation and LA-ICP-MS technology were used to obtain 763.1±6.2 Ma (Shennongjia) tuff zircon U-Pb concordant age at the bottom boundary of the Liantuo Formation, 761.8±7.1 Ma (Hefeng) tuff zircon U-Pb concordant age in lower part of the Liantuo Formation, 764.1±3.5 Ma (Tongshan), 751.5±6.3 Ma (Changyang), 752.1±6.5 Ma (Shennongjia) of tuff zircon U-Pb concordant ages in marine-terrestrial strata of middle and lower part of the Liantuo Formation, 729.6±9.2 Ma (Xiuning Formation), 722.4±4.5 Ma (Shennongjia) tuff zircon U-Pb concordant ages in marine strata of upper part of Liantuo Formation, and 712.4±6.4 Ma tuff zircon U-Pb concordant age in middle part of the Longtanhe Formation. These data and stratigraphic sequence show that: 820~770 Ma Yangtze Craton was exposed to erosional environment, terrestrial deposit began ~770 Ma, after 750 Ma Yangtze Craton completely transitioned to marine deposit that continued until Cryogenian. The strata framework during the late Tonian shows that the evolution of Yangtze was controlled by Rodinia supercontinent breakup process, and may be closely related to deep mantle plume induced extensional rift, magmatic mantle plume cooling. This study provides effective geochronological constraints for the late Tonian strata in the Yangtze Craton, reveals synergistic relationship between sedimentary evolution and tectonic background of Yangtze Craton during the mid-Neoproterozoic, provides effective data support for evolution of Yangtze Craton during Rodinia breakup.