en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈晓翠,女,1987年生。博士,教授,主要从事花岗岩与Sn成矿作用研究。E-mail:cxchyh@163.com。

通讯作者:

李朋,男,1986年生。博士,副教授,主要从事花岗岩研究。E-mail:lipeng@git.edu.cn。

参考文献
Audétat A. 1999. The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (eastern Australia). Doctoral dissertation of Swiss Federal Institute of Technology Zürich.
参考文献
Audétat A. 2019. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114 (6): 1033~1056.
参考文献
Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101 (11): 2377~2404.
参考文献
Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76 (1): 45~69.
参考文献
Belousova E A, Walters S, Griffin W L, O'Reilly S Y. 2001. Trace element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 48 (4): 603~619.
参考文献
Bhalla P, Holtz F, Linnen R L, Behrens H. 2004. Solubility of cassiterite in evolved granitic melts: Effect of T, fo2, and additional volatiles. Lithos, 80: 387~400.
参考文献
Bi Xianwu, Li Hongli, Shuang Yan, Hu Xiaoyan, Hu Ruizhong, Peng Jiantang. 2008. Geochemical characteristics of fluid inclusions from Qitianling A-type granite, Hunan Province, China. Geological Journal of China Universities, 14 (4): 539~548(in Chinese with English abstract).
参考文献
Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54 (3): 241~252.
参考文献
Brehler B, Fuge R. 1974. Handbook of Geochemistry. Chlorine: 1~162.
参考文献
Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385, 105900.
参考文献
Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55 (8): 1619~1651.
参考文献
Bruand E, Fowler M, Storey C, Darling J. 2017. Apatite trace ele ment and isotope applications to petrogenesis and provenance. American Mineralogist, 102 (1): 75~84.
参考文献
Burnham A D and Berry A J. 2014. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chemical Geology, 366: 52~60.
参考文献
Cao Huawen, Zou Hao, Zhang Yunhui, Zhang Shouting, Zheng Luo, Zhang Linkui, Tang Li, Pei Qiuming. 2016. Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geology Reviews, 78: 196~212.
参考文献
Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62 (1): 63~83.
参考文献
Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173~174.
参考文献
Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Ji Junfeng. 2008. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogengesis. Geological Journal of China Universities, 14 (4): 459~473(in Chinese with English abstract).
参考文献
Chen Xiaocui, Hu Ruizhong, Bi Xianwu, Li Huimin, Lan Jiangbo, Zhao Chenghai, Zhu Jingjing. 2014. Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong Lianghe tin district, NW Yunnan, China. Mineralium Deposita, 49 (7): 843~860.
参考文献
Chen Xiaocui, Hu Ruizhong, Bi Xianwu, Zhong Hong, Lan Jiangbo, Zhao Chenghai, Zhu Jingjing. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes: Lithos, 212-215: 93~110.
参考文献
Chu Meifei, Wang Kuolung, Griffin W L, Chung Sunlin, O'Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatite composition: Tracing petrogenetic processes in Trans-Himalayan granitoids. Journal of Petrology, 50 (10): 1829~1855.
参考文献
Creaser R A, rice R C, Wormald R J. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 1151~1152.
参考文献
Dempster T J, Jolivet M, Tubrett M N, Braithwaite C J R. 2003. Magmatic zoning in apatite: A monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology, 145 (5): 568~577.
参考文献
Ding Teng, Ma Dongsheng, Lu Jianjun, Zhang Rongqing. 2015. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: Implications for petrogenesis and metallogenesis. Ore Geology Reviews, 69: 104~117.
参考文献
Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid (s) -apatite systems at 50MPa and 850~950℃. Chemical Geology, 384: 94~111.
参考文献
Flynn R T, Burnham C W. 1978. An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts. Geochimica et Cosmochimica Acta, 42 (6): 685~701.
参考文献
Gao Xue, Yang Liqiang, Wang Chenguang, He Wenyan, Bao Xinshang, Zhang Shaoying. 2020. Halogens and trace elements of apatite from Late Mesozoic and Cenozoic porphyry Cu-Mo-Au deposits in SE Tibet, China: Constraints on magmatic fertility and granitoid petrogenesis. Journal of Asian Earth Sciences, 203: 104552.
参考文献
Gulley A L, Nassar N T, Xun S. 2018. China, the United States, and competition for resources that enable emerging technologies. PNAS, 115 (16): 4111~4115.
参考文献
Harlov D E. 2015. Apatite: Q fing, erprint for metasomatic processes. Elements, 11 (3): 171~176.
参考文献
Heinrich C A. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Economic Geology, 85: 457~481.
参考文献
Hou Zengqian, Zaw K, Pan Guitang, Mo Xuanxue, Xu Qiang, Hu Yunzhong, Li Xingzhen. 2007. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31: 48~87.
参考文献
Hua Renmin, Li Guanglai, Zhang Wenlan, Hu Dongquan, Chen Peirong, Chen Weifeng, Wang Xudong. 2010. A tentative discussion on differences between large-scale tungsten and tin mineralizations in South China. Mineral Deposits, 29 (1): 9~15 (in Chinese with English abstract).
参考文献
Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63 (3/4): 489~508.
参考文献
Jennings E S, Marschall H R, Hawkesworth C J, Storey C D. 2011. Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. Geology, 39: 863~866.
参考文献
Ji Genyuan, Jiang Sihong, Liu Yifei, Zhang Longsheng. 2023. Petrogenesis of the Alubaogeshan granite in the Maodeng Mo-Bi-Sn-Cu deposit, southern Great Xing'an Range, NE China: Constraints from apatite, plagioclase, magnetite and ilmenite geochemistry. Ore Geology Reviews, 155: 1~18.
参考文献
Jiang Xiaoyan, Li He, Ding Xing, Wu Kai, Guo Jia, Liu Jiqiang, Sun Weidong. 2018. Formation of A-type granites in the Lower Yangtze River belt: A perspective from apatite geochemistry. Lithos, 304-307: 125~134.
参考文献
Kent A J R. 2008. Melt inclusions in basaltic and related volcanic rocks. Reviews in Mineralogy and Geochemistry, 69 (1): 273~331.
参考文献
Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237~240.
参考文献
Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co-variability of S6+, S4+, and S2- in apatite as a function of oxidation state; Implications for a new oxybarometer. Am. Mineral. 102 (3): 548~557.
参考文献
Kwak T A P. 1987. W-Sn skarn deposits and related metamorphic skarns and granitoids. Amsterdam, Elsevier: 1~451.
参考文献
Laurent O, Zeh A, Gerdes A, Villaros A, Gros K, Słaby E. 2017. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Contributions to Mineralogy and Petrology, 172 (9): 80.
参考文献
Lehmann B. 1990. Metallogeny of Tin. Berlin, Heidelberg: Springer.
参考文献
Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402-403: 105756.
参考文献
Li Jiang, Chen Shouyu, Zhao Yuehua. 2022. Trace elements in apatite from Gejiu Sn polymetallic district: Implications for petrogenesis, metallogenesis and exploration. Ore Geology Reviews, 145: 104880.
参考文献
Linnen R L, Pichavant M, Holtz F, Burgess S. 1995. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2 kbar. Geochimica et Cosmochimica Acta, 59 (8): 1579~1588.
参考文献
Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fO2 and melt composition on Sno2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60 (24): 4965~4976.
参考文献
Mao Jingwen, Ouyang Hegen, Song Shiwei, Santosh M, Yuan Shunda, Zhou Zhenhua, Zheng Wei, Liu Huan, Liu Peng, Cheng Yanbo, Chen Maohong. 2020. Geology and metallogeny of tungsten and tin deposits in China. Soceity of Economic Geologists, Special Publications, 22: 411~482.
参考文献
Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?”. Geochimica et Cosmochimica Acta, 183: 267~270.
参考文献
Meng Jianyyin. 2014. The porphyry copper-polymetallic deposit in Zhongdian, West Yunnan: Magmatism and mineralization Doctor degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy forsilicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.
参考文献
O'Reilly S Y, Griffin W L. 2000. Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos, 53 (3-4): 217~232.
参考文献
Pan Lichua, Hu Rruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as Petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254~255: 118~130.
参考文献
Parat F, Holtz F. 2005. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contributions to Mineralogy and Petrology, 150 (6): 643~651.
参考文献
Peng Genyong, Luhr J F, McGee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82 (11-12): 1210~1224.
参考文献
Plimer I R. 1987. Fundamental parameters for the formation of granite-related tin deposits. International Journal of Earth Sciences, 76: 23~40.
参考文献
Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimca Acta, 70 (17): 4513~4527.
参考文献
O'Sullivan G, Chew D, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies. Earth Science Review, 201: 103044.
参考文献
Piccoli P, Candela P. 1994. Apatite in felsic rocks: A model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294 (1): 92~135.
参考文献
Sha L K, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63 (22): 3861~3881.
参考文献
Sadove G, Konecke B A, Fiege A, Simon A C. 2019. Structurally bound S2-, S1-, S4+, S6+ in terrestrial apatite: The redox evolution of hydrothermal fluids at the Phillips mine, New York, USA. Ore Geology Reviews, 107: 1084~1096.
参考文献
Stock M J, Humphreys M C S, Smith V C, Isaia R, Brooker R A, Pyle D M. 2018. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italy. Journal of Petrology, 59 (12): 2463~2492.
参考文献
Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity onmanganese partitioning between apatite and silicate melt. Chemical Geology, 506: 162~174.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.
参考文献
Taylor R G. 1979. Geology of tin deposits. Amsterdam Elsevier Scientific Publishing Company, 1~543.
参考文献
Wang H R, Cai K D, Sun M, Xia X P, Lai C K, Li P F, Wan B, Zhang Z Y. 2022. Apatite as a magma redox indicator and its application in metallogenic research. Lithos, 422-423: 106749.
参考文献
Wang Kun, Ren Zhongyuan, Zhang Le, Ou Quan. 2020. The relationship between the Taihe Fe-Ti oxide ore-bearing layered intrusion and the adjacent peralkaline A-type granitic pluton in SW China: Constraints from compositions of amphiboles and apatite-hosted melt inclusions. Ore Geology Reviews, 120: 1~54.
参考文献
Webster J D, DeVivo B. 2002. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. American Mineralogist, 87: 1046~1061.
参考文献
Webster J D, Piccoli P M. 2015. Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11 (3): 177~182.
参考文献
Xing Kai, Shu Qihai, Lentz D R. 2021. Constraints on the formation of the giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. Journal of Petrology, 62 (4): 1~26.
参考文献
Yang Shuiyuan, Jiang Shaoyong, Mao Qian, Chen Zhenyu, Rao Can, Li Xiaoli, Li Wancai, Yang Wenqiang, He Pengli, Li Xiang. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. Atomic Spectroscopy, 43 (2): 186~200.
参考文献
Yang Wu, Zhang Min, Yan Jun, Chen Xiaocui. 2022. Zircon U-Pb ages and geochemistry of the granite in the Xintianling tungsten deposit, SE China: Implications for geodynamic settings of the regional tungsten mineralization. Minerals, 12: 952.
参考文献
Yu Zhiqiang, Chen Weifeng, Chen Peirong, Wang Kaixing, Fang Qichun, Tang Xiangsheng, Ling Hongfei. 2018. Chemical composition and Sr isotopes of apatite in the Xiangshan A-type volcanic-intrusive complex, southeast China: New insight into petrogenesis. Journal of Asian Earth Sciences, 172: 66~82.
参考文献
Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39 (4): 607~618 (in Chinese wtih English abstract).
参考文献
Zafar T, Leng C B, Zhang X C, Rehman H U. 2019. Geochemical attributes of magmatic apatite in the Kukaazi granite from western Kunlun orogenic belt, NW China: Implications for granite petrogenesis and Pb-Zn (-Cu-W) mineralization. Journal of Geochemical Exploration, 204: 256~269.
参考文献
Zafar T, Rehman H U, Mahar M A, Alam M, Oyebamiji A, Rehman S U, Leng C B. 2020. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in North and East China: New insights from apatite geochemistry. Journal of Geodynamics, 136: 101723.
参考文献
Zajacz Z, Halter W E, Pettke T, Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of coexisting fluid and silicate melt inclusions: Controls on element partitioning. Geochimica et Cosmochimica Acta, 72 (8): 2169~2197.
参考文献
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues. China Science Foundation, 2: 106~111 (in Chinese wtih English abstract).
参考文献
Zhang Jiawei, Santosh M, Zhu Yuhua, Rao Hongjuan, Wang Kun, Ye Taiping, Liu Weipeng. 2023. Constraining the timing of deep magmatic pulses from diamondiferous kimberlite and related rocks in the South China Continent and implications for diamond exploration. Ore Geology Reviews, 154: 105328.
参考文献
Zhang Qiwei, Wang Qingfei, Li Gongjian, Sun Xiang, Shu Qihai, Deng Jun. 2022. Crucial control on magmatic-hydrothermal Sn deposit in the Tengchong block, SW China: Evidence from magma differentiation and zircon geochemistry. Geoscience Frontiers, 13: 1~15.
参考文献
Zhang Shenghui, Wang Zhentao, Li Yongsheng, Mo Xuanxue, Dong Qingji, Chen Conglin, Geng Lin, Wang Li, Zhang Haiqi, Tan Xiumin, Xue Yingxi, Zhou Shangguo, Tian Yuming, Yao Chaomei, Jiao Sen, Chen Zhengguo, Chen Junyuan, Wang Shoucheng, Zhang Haoyu, Fu Shuixing, Wang Chunlian, Wang Yong. 2022. List, application and global pattern of critical minerals of China. Conservation and Utilization of Mineral Resources, 2022: 1~51 (in Chinese with English abstract).
参考文献
Zhang Shilu. 1983. Geological Collections of the Tibet Plateau (Vol. 13). Beijing: Geological Publishing House, 176~184 (in Chinese).
参考文献
Zhang Xiaobing, Guo Feng, Zhang B, Zhao Liang, Wu Yangming, Wang Guoqing, Alemayehu M. 2020. Magmatic evolution and post-crystallization hydrothermal activity in the early Cretaceous Pingtan intrusive complex, SE China: Records from apatite geochemistry. Contributions to Mineralogy and Petrology, 175(4): 35.
参考文献
Zhao Kuidong, Jiang Shaoyong, Yang Shuiyuan, Dai Baozhagn, Lu Jianjun. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22: 310~324.
参考文献
Zhao Kuidong, Jiang Shaoyong, Chen Weifeng, Chen Peirong, Ling Hongfei. 2013. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism. Lithos, 160: 292~306.
参考文献
Zhao Panlao, Chu X, Williams-Jones A E, Mao Jingwen, Yuan Shunda. 2022. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50 (1): 121~125.
参考文献
Zhong Dalai. 1998. Paleotethys Orogenic Belt in Western Yunnan and Sichuan. Beijing: Science Press, 9~215 (in Chinese).
参考文献
Zhu Xiaoqing, Wang Zhonggang, Huang Yan, Wang Ganlu. 2004. REE content and distribution in apatite and its geological tracing significance. Chinese Rare Earths, 25: 41~45 (in Chinese with English abstract).
参考文献
毕献武, 李鸿莉, 双燕, 胡晓燕, 胡瑞忠, 彭建堂. 2008. 骑田岭A型花岗岩流体包裹体地球化学特征—对芙蓉超大型锡矿成矿流体来源的指示. 高校地质学报, 14 (4): 539~548.
参考文献
陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14 (4): 459~473.
参考文献
华仁民, 李光来, 张文兰, 胡东泉, 陈培荣, 陈卫锋, 王旭东. 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29 (1): 9~23.
参考文献
孟健寅. 2014. 滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统.
参考文献
中国地质大学(北京)博士学位论文.
参考文献
袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39 (4): 607~618.
参考文献
翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 2: 106~111.
参考文献
张生辉, 王振涛, 李永胜, 莫宣学, 董庆吉, 陈丛林, 耿林, 王利, 张海啟, 谭秀民, 薛迎喜, 周尚国, 田郁溟, 姚超美, 焦森, 陈正国, 陈军元, 王寿成, 张浩钰, 付水兴, 王春连, 王永. 2022. 中国关键矿产清单、应用与全球格局. 矿产保护与利用, 2022: 1~51.
参考文献
张士鲁. 1983. 青藏高原地质文集(第13集). 北京: 地质出版社, 176~184.
参考文献
钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 9~215.
参考文献
朱笑青, 王中刚, 黄艳, 王甘露. 2004. 磷灰石的稀土组成及其示踪意义. 中国稀土, 25: 41~45.
目录contents

    摘要

    锡矿床全球空间分布高度不均,成矿与花岗岩密切相关,对花岗岩Sn成矿作用的研究受到学界高度重视。准确示踪岩浆源区和精细刻画岩浆演化过程对理解花岗岩与对Sn成矿之间的关系十分关键。磷灰石作为花岗岩类岩石中常见的副矿物,其化学组成在示踪花岗岩岩浆源区和成岩过程方面有独特优势。本文对滇西腾冲-梁河锡矿带具有代表性的小龙河锡矿床,对矿区内的花岗岩展开磷灰石原位化学成分分析。研究结果表明,小龙河锡矿区的花岗岩为一套高分异花岗岩,显示A型花岗岩特征,主要源于地壳物质熔融,花岗岩形成于相对还原的环境,富F且含有一定量的Cl元素。上述岩石地球化学特征有利于花岗岩浆演化过程中Sn的富集和迁移,说明磷灰石的成分特征可以很好地指示花岗岩浆的成因、演化及其物理化学条件,能有效评价花岗岩的Sn成矿能力。

    Abstract

    Tin mineralization is extremely uneven distributed in the world, and is closely related to granitic magmatism, which attached considerable attention on the granite tin metallogenic capacity study. It is important to well constrain the magmatic source and accurately trace the magmatic evolution process for understanding the tin metallogenic capacity of granite. Apatite, as a common accessory mineral in granitoids, its chemical composition has a unique advantage in tracing the magmatic sources and diagenetic process of its host granite. In this study, apatite in situ chemical composition analysis of granite from the Xiaolonghe tin deposit in the Tengchong-Lianghe tin belt in western Yunnan Province was carried out. The results show that the granite from the Xiaolonghe tin deposit is of highly differentiated granite, and characteristic of A-type granite. The granite magma is mainly originated from the ancient continental crust. The granite, with rich F and certain Cl content, was formed in a relatively reductive environment. These characteristics of the Xiaolonghe granite indicate that it is conducive to the accumulation and migration of Sn in the granitic magmatic evolution process. Thus, the structure and chemical composition of apatite can well constrain the granite genesis, magmatic evolution, physical and chemical conditions of magma, which can effectively evaluate the tin metallogenic capacity of granite.

  • 锡在航空航天、国防军工、先进制造、生物医药等高新技术产业中具有不可替代的重大用途。因此,许多国家将锡列为战略关键矿产,高度重视锡的成矿作用研究(Gulley et al.,2018翟明国等,2019张生辉等,2022)。与花岗岩有关的锡矿床是全球最主要的锡矿床类型(Taylor,1979Kwak,1987Plimer,1987Heinrich,1990Lehmann,19902021),花岗岩对锡成矿的控制和贡献一直是学界长期关注的热点问题之一。全球锡矿资源空间分布高度不均,主要集中分布在东南亚、中国华南、中安第斯(玻利维亚及秘鲁南部)和英国康沃尔等地区。锡矿高度集中分布的原因复杂,但花岗岩的锡成矿能力是主要因素之一。花岗岩的锡成矿能力主要受花岗岩浆作用过程控制,花岗岩的成因和类型、岩浆分异演化过程及物理化学条件控制着Sn在花岗质岩浆及熔-流体相中的地球化学行为及热液流体中的迁移过程,是理解Sn在岩浆-热液过程中富集成矿机制的关键(Taylor,1979Lehmann,19902021陈骏等,2008华仁民等,2010袁顺达等,2020;Mao et al.,2020;Yang et al.,2022;Zhao et al.,2022)。由于受传统分析方法限制,这些岩浆演化过程在锡成矿过程中所起的具体作用及其重要性仍不明确,甚至存在较大争议。随着现代微区原位观测和元素、同位素分析技术的进步,花岗岩中广泛存在的副矿物原位成分分析成为研究花岗岩浆成因和岩浆物理化学条件的有效手段(Pan et al.,2016;Stock et al.,2018;Xing et al.,2021)。磷灰石是岩浆岩中一种常见的副矿物,其化学组成记录着丰富的地球化学信息,可以有效指示岩浆源区、演化程度、挥发分组成、氧逸度等,是研究岩浆性质、岩浆演化过程和岩石成因等方面的理想载体(Webster and Piccoli,2015;Pan et al.,2016;Bruand et al.,2017Stock et al.,2018;Xing et al.,2021;Ji et al.,2023)。

  • 腾冲-梁河锡矿带位于东南亚巨型锡矿带的北缘,是三江特提斯成矿域最重要的锡多金属成矿区(图1a)。区内已发现2个大型锡矿床(梁河来利山和腾冲小龙河锡矿床)与多个中小型锡矿床。区内发育多期多阶段花岗岩浆及其相关的锡矿床,是研究花岗岩锡成矿作用的理想场所。近年来,大量专家学者围绕区内的锡矿床及相关花岗岩作了大量科研工作,并取得一定进展。明确指出锡成矿与花岗岩具有密切的时空联系,基本查明锡成矿与花岗岩的成因联系,成岩成矿作用大多为燕山晚期和喜马拉雅期的产物,成锡花岗岩具有高分异演化等特点(Hou et al.,2007;Chen et al.,2014,2015;Cao et al.,2016;Zhang et al.,2022)。但对花岗岩锡成矿能力方面的研究还比较薄弱,缺乏精细的综合研究。

  • 本文选取腾冲-梁河锡成矿带典型矿床——小龙河锡矿床的成矿花岗岩为研究对象,利用现代微区原位测试技术,以稳定存在且易保存花岗岩浆原始信息的磷灰石为研究载体,对Sn成矿花岗岩浆体系的物理化学条件和演化过程展开研究,揭示花岗岩浆作用控制锡成矿能力的有利因素。

  • 1 地质概况

  • 1.1 矿床地质特征

  • 腾冲-梁河锡矿带位于青藏高原东南缘的腾冲地块,系特提斯构造域东段的一部分,向南与东南亚巨型锡矿带衔接(图1a)。区内出露三条分别形成于早白垩世、晚白垩世和古近纪的花岗岩带,锡矿化与这些花岗岩在空间上密切相关。腾冲小龙河锡矿床是腾冲-梁河锡矿带目前发现的代表性大型锡矿床。矿区有大量花岗岩体出露,仅在矿区北部和东北角有少量沉积地层呈残盖状覆于花岗岩体之上,为石炭系上统空树河组二、三段,原岩岩性为砂页岩,受到花岗岩侵入而部分蚀变,形成角岩化砂岩、黑云长英角岩、绢云板岩、含砾长石石英砂岩等,与侵入岩接触部位有含锡云英岩脉侵入围岩地层中。矿区内的花岗岩中断裂构造最为发育,主要呈南北向、北北西向和北东东向为主,矿体主要受南北向断裂构造控制。根据矿体地质特征、所处部位及矿区构造等因素,将矿区划分为4个矿段:小龙河矿段、弯旦山矿段、大松坡矿段和黄家山矿段(图1b),其中以小龙河矿段和大松坡矿段为主矿体。矿体主要产在花岗岩体的内部、边部,或与围岩地层接触部位。

  • 图1 腾冲-梁河锡矿带地质矿产简图(a)和小龙河锡矿床地质图(b)(据Hou et al.,2007; Chen et al.,2015)

  • Fig.1 Diagram of geology and mineral resources in the Tengchong-Lianghe tin belt (a) and the Xiaolonghe tin deposits (b) (modified after Hou et al., 2007; Chen et al., 2015)

  • 1.2 花岗岩岩相学特征

  • 小龙河锡矿区岩浆活动强烈,区内花岗岩属于古永晚白垩世花岗岩带的一部分(小龙河岩体)。主要岩性为中粗粒黑云母花岗岩、斑状黑云母二长花岗岩,及中细粒黑云母花岗岩。本研究样品采自小龙河矿段(编号XLHY)和大松坡矿段(编号DSPY),岩石样品存在微弱蚀变,根据岩石矿物组合、结构构造等,将花岗岩分为三类,分述如下:

  • (1)中粗粒黑云母花岗岩(图2:XLHY-2、DSPY-1):采自小龙河矿段和大松坡矿段,岩石呈灰白色,有微弱蚀变,中粗粒结构。主要矿物为:石英(22%~30%)、斜长石(20%~25%)、钾长石(23%~28%),暗色矿物主要为黑云母(6%~10%)。副矿物主要有锆石、磷灰石、独居石及少量钛铁矿、磁铁矿、榍石等。发育黑云母或长石的绿泥石化。

  • (2)中细粒黑云母花岗岩(图2:XLHY-6):采自小龙河矿段,岩石呈浅灰白色,有微弱蚀变,粒度相对较细,中细粒结构。主要矿物为:石英(25%~32%)、斜长石(22%~25%)、钾长石(25%~28%),暗色矿物主要为黑云母(3%~6%)。副矿物主要有锆石、磷灰石、独居石及少量钛铁矿、榍石、锡石等。发育黑云母或长石绿泥石化。

  • (3)似斑状黑云母花岗岩(图2:DSPY-5):采自大松坡矿段,岩石呈浅灰白色,有微弱蚀变,似斑状结构,斑晶主为长石和石英。主要矿物为:石英(23%~31%)、斜长石(23%~26%)、钾长石(23%~28%),暗色矿物主要为黑云母(5%~9%)。副矿物主要有锆石、磷灰石、独居石及少量钛铁矿、磁铁矿、榍石等。

  • 2 分析方法

  • 本研究在研究区内的小龙河矿段和大松坡矿段采集不同结构的花岗岩样品(编号XLHY-2、XLHY-6、DSPY-1、DSPY-5)。将岩石样品分别磨制薄片,并挑选出磷灰石单矿物,开展相关的岩相学、矿物学和地球化学分析。首先将分选出的磷灰石和磷灰石标样制成环氧树脂靶,抛光磷灰石颗粒,至其厚度的一半,使其暴露一半晶面。对磷灰石颗粒进行透射光、反射光显微照相以及阴极发光图像分析,以检查磷灰石的内部结构、帮助选择合适的测试点位,进行磷灰石的主量和微量元素分析。

  • 磷灰石主微量元素测定在北京燕都中实测试技术服务有限公司完成。主量元素分析使用配备有4道波谱仪的JEOL JXA-8230电子探针仪器完成。使用15 kV加速电压、20 nA加速电流和5 μm束斑直径进行定量分析。电子探针分析(EPMA)使用20 nA束流、15 kV加速电压和5 μm直径电子束,详细流程见Yang et al.(2022)。微区原位微量元素含量使用激光剥蚀等离子体质谱仪(LA-ICP-MS)完成,激光剥蚀系统为NWR193 Ar-F 准分子激光器,ICP-MS型号为Analytikjena Plasma Quant MS,详细的仪器参数和分析流程见Zhang et al.(2023)。

  • 3 分析结果

  • 花岗岩样品磷灰石主量和微量元素分析结果见表1和附表1。

  • 3.1 磷灰石结构特征

  • 磷灰石颗粒常呈针状或短柱状存在于黑云母和斜长石等矿物中,粒径约100~300 μm。采自小龙河和大松坡矿段的中粗粒或者似斑状黑云母花岗岩中的磷灰石晶型较为完整,呈板状或者短柱状,具有明显的环带特征(图3:XLHY-2、DSPY-1、DSPY-5)。采自小龙河矿段的中细粒黑云母花岗岩磷灰石颗粒呈他形产出,颗粒内部裂隙较发育,边部因热液交代而呈灰黑色(图3:XLHY-6)。

  • 3.2 磷灰石主量元素成分特征

  • 磷灰石主量元素主要为CaO、P2O5、F、FeO和MnO(表1)。不同结构花岗岩中的磷灰石具有比较相似的CaO、P2O5、F和Cl含量。CaO含量为52.23%~55.34%,P2O5含量为40.20%~42.72%。磷灰石样品具有较高的F含量和F/Cl比值,F含量为2.62%~3.9%,平均值为3.14%。Cl含量介于0.006%~0.76%之间,平均值为0.029%。F/Cl比值介于36~540之间,平均值为152。FeO和MnO含量分别为0.06%~0.62%和0.14%~1.0%,平均值分别为0.34%和0.45%。相比其他颗粒较粗的花岗岩样品,采自小龙河锡矿段的中细粒花岗岩中的磷灰石样品具有较低的FeO和MnO含量,平均值分别为0.13%和0.28%。此外,在发育环带结构的磷灰石样品中,从矿物颗粒的核部到边部,F、FeO和MnO含量有升高的趋势,而Cl的含量则从核部到边部逐渐减少。另外,磷灰石样品中还含有少量Y2O3、SiO2、SO3、NaO。

  • 图2 小龙河锡矿区花岗岩石标本和正交显微镜下图片

  • Fig.2 Rock specimens and microscopic photos (under crossed-nicol) of the granite from the Xiaolonghe tin deposit area

  • (a~c): XLHY-2—小龙河锡矿段中粗粒黑云花岗岩;(d~f): XLHY-6—中细粒黑云母花岗岩;(g~i): DSPY-1—大松坡矿段中粗粒黑云母花岗岩;(j~l): DSPY-5—大松坡矿段似斑状黑云母花岗岩;Q—石英;Kf—钾长石;Pl—斜长石;Bi—黑云母

  • (a~c) : XLHY-2—medium-coarse grained biotite granite from Xiaolonghe tin ore block; (d~f) : XLHY-6—medium-fine grained biotite granite from Xiaolonghe tin ore block; (g~i) : DSPY-1—medium-coarse grained biotite granite from Dasongpo tin ore block; (j~l) : DSPY-5—porphyaceous biotite granite from Dasongp tin ore block; Q—quartz; Kf—K-Feldspar; Pl—plagioclase; Bi—biotite

  • 3.3 磷灰石微量元素成分特征

  • 微量元素除Fe和Mn的含量在不同结构类型的花岗岩中的磷灰石以及磷灰石的核部和边部有显著差异外,其他微量元素均有较为一致的含量变化范围(附表1)。磷灰石样品富集Fe、Mn和REE,其中,Fe和Mn元素含量变化范围介于1320×10-6~6310×10-6和786×10-6~10300×10-6之间,平均值分别为4085×10-6和4736×10-6;∑REE含量分布在7390×10-6~30352×10-6之间,平均为14299×10-6。不同的磷灰石颗粒具有相似的稀土元素配分模式(轻微右倾),总体呈海鸥型分布,具有较为明显和稳定的负Eu异常(图4)。磷灰石样品含有一定量的Sr(介于26.9×10-6~158×10-6之间),平均值为73×10-6。此外,成矿元素Sn的含量较低,介于0.15×10-6~4×10-6之间,平均值为1.01×10-6

  • 表1 小龙河锡矿床花岗岩磷灰石主量元素含量(%)

  • Table1 Major elements composition (%) of apatite from granite of Xiaolonghe tin deposit

  • 注:边代表磷灰石环带或核边结构的边部测试数据,核代表核部测试数据,-代表未检出。

  • 图3 小龙河锡矿区花岗岩磷灰石阴极发光图像

  • Fig.3 Cathodoluminescence (CL) images of apatites from the granite of Xiaolonghe tin deposit area

  • (a)—XLHY-2;(b)—XLHY-6;(c)—DSPY-1;(d)—DSPY-5; 红点代表电子探针测试点,黄色圆圈代表LA-ICP-MS测试点

  • (a) —XLHY-2; (b) —XLHY-6; (c) —DSPY-1; (d) —DSPY-5; the red dots indicate the EPMA spot position and the yellow circles for the LA-ICP-MS spot position

  • 4 讨论

  • 4.1 花岗岩类型

  • 高分异花岗岩比较难区分其成因类型,利用均一化的全岩地球化学特征划分其成因类型,往往存在较大的争议。例如,腾冲-梁河锡矿带成矿花岗岩就存在S型、I型、A型三种争议(Hou et al.,2007;Chen et al.,2015;Cao et al.,2016)。不同成因类型的花岗岩具有不同的岩浆源区,进而造成了花岗岩地球化学成分的差异性(Chappell and White,1974)。磷灰石的化学成分特征主要受寄主岩浆岩的成分控制,其含有丰富的微量元素。结晶于不同类型花岗岩中的磷灰石往往在微量元素的含量、比例或者配分模式上存在明显的差异(Sha and Chappell,1999Belousova et al.,20012002;Chu et al.,2009;Zhang et al.,2020)。因此,某些特定的微量元素如REE、Sr、Y、Mn、Th含量及稀土元素标准化配分模式的系统性差异,可以在一定程度上辨别不同的花岗岩类型(Belousova et al.,2002)。

  • 总结不同类型花岗岩中磷灰石的地球化学数据,发现S型花岗岩磷灰石具有较高的F含量、低的Cl含量和Nd/Nd*值;而I型花岗岩中磷灰石常具有低的F含量和高的S含量,F/Cl比值较S型花岗岩低(Sha and Chappell,1999Blevin,2004)。A型花岗岩中的磷灰石以氟磷灰石为主,富F低Cl,具有较高的F/Cl比值,富Mn和Fe,而贫Mg,稀土元素含量高(Jiang et al.,2018)。相对来讲,S型和A型花岗岩中磷灰石具有高的Mn和相对较低的Sr含量,其Sr/Mn比值较低;而I型花岗岩中磷灰石的Sr/Mn比值接近1。A型和I型花岗岩中磷灰石Th/U比值通常大于1,而S型花岗岩中的Th/U比值明显小于1(Sha and Chappell,1999Belousova et al.,2001;Jiang et al.,2018;Yu et al.,2018)。此外,研究发现,不同类型的花岗岩磷灰石稀土元素含量和配分模式也表现出明显的差异(图4):I型花岗岩中的磷灰石常具有右倾的REE配分模式(Sha and Chappell,1999);S型花岗岩因其过铝质的特点,而独居石是过铝质岩浆中常见的矿物,其结晶会导致熔体中的LREE尤其是Nd含量降低而使共生的磷灰石亏损Nd和轻稀土元素。因此,S型花岗岩中的磷灰石拥有相对平坦且具有Eu和Nd负异常的“M”型REE配分模式(Sha and Chappell,1999;Chu et al.,2009;Zhang et al.,2020);而A型花岗岩具有轻微的右倾型REE分配模式,轻稀土轻度富集,具有明显的负Eu异常(Jiang et al.,2018;Yu et al.,2018;Wang et al.,2020)。

  • 本研究选自腾冲-梁河锡矿带小龙河矿区花岗岩中的磷灰石具有比较一致的主、微量元素特征: F含量较高(2.62%~3.9%,平均值为3.14%)和较低的Cl含量(0.006%~0.76%,平均值为0.029%);F/Cl比值较高(36~540,平均值为152);富Mn(786×10-6~10300×10-6,平均4736×10-6)和Fe(1320×10-6~6310×10-6,平均4085×10-6);Mg(多在17.1×10-6~260×10-6,平均46×10-6)和Sr含量较低(26.9×10-6~158 ×10-6,平均73×10-6),Sr/Mn比值极低;Th/U比值较大(1.5~10,平均值>6);稀土元素总含量(∑REEs)高(7390×10-6~30352×10-6,平均值为14299×10-6)。磷灰石与宿主花岗岩全岩具有一致的稀土元素配分模式(海鸥型轻微右倾),且与A2型花岗岩磷灰石的稀土元素配分模式完全重叠,具有较为明显的负Eu异常(图4)。这些磷灰石主微量元素特征显示出与A型花岗岩磷灰石主微量元素一致的特征。该结论与我们之前所做的岩石地球化学研究结论一致,寄主花岗岩主微量元素特征同样指示其为A2型花岗岩,形成于腾冲地块与保山地块碰撞后伸展构造背景(Chen et al.,2015)。

  • 图4 小龙河锡矿区花岗岩磷灰石球粒陨石标准化REEs 配分图(标准化值据Sun and McDonough,1989;A型、S型、 I型花岗岩磷灰石数据引自Sha and Chappell,1999;Chu et al.,2009;Jiang et al.,2018;Yu et al.,2018;Wang et al.,2020;Zhang et al.,2020)

  • Fig.4 Chondrite-normalized rare earth element patterns of apatites from the Xiaolonghe tin deposit (normalization values after Sun and McDonough,1989;apatite data of A-type, S-type and I-type granite are from Sha and Chappell,1999; Chu et al., 2009;Jiang et al., 2018;Yu et al., 2018; Wang et al., 2020;Zhang et al., 2020)

  • 4.2 花岗岩浆源区特征

  • 采用全岩或易风化的主矿物地球化学特征来限定岩浆物质来源可能会因为成矿岩体普遍蚀变严重,进而增加研究结果的不确定性。相比之下,磷灰石等副矿物性质稳定,在长英质岩浆中具有非常高的饱和温度(甚至超过900℃),表明其可在岩浆演化初期结晶,能有效记录岩浆早期信息,可以最大程度地避免来自其他矿物结晶所导致的同位素分馏的干扰,所以磷灰石等副矿物的微量元素及同位素特征能有效反映初始岩浆组成,是示踪岩浆来源的重要手段(Pan et al.,2016)。但值得注意的是,岩浆磷灰石可以在岩浆演化的各个阶段形成,硅酸盐熔体中各种元素(尤其是挥发性元素)含量在挥发分饱和的条件下会发生显著变化,磷灰石只有在挥发分未饱的熔体中结晶才能记录岩浆的初始化学成分(Audétat,2019)。除此之外,如果磷灰石在蚀变岩石中的也发生蚀变,其化学组成也会发生改变,可能影响研究结果的判断(Zafar et al.,2020)。所以,利用磷灰石地球化学特征示踪岩浆的源区特征要特别小心。

  • 未蚀变磷灰石中Cl/F比值可以很大程度上反映岩浆初始结晶系统中的Cl/F比值特征(Brehler et al.,1974;Piccoli and Candela,1994;Xing et al.,2021)。Cl元素易溶于水,风化作用会导致母岩具有低的 Cl元素含量,而F元素则不易流失,所以地壳物质重熔形成的岩浆岩常具有比较低的Cl/F比值,并反映在岩体中磷灰石的F和Cl组成上(Brehler et al.,1974)。因此,磷灰石富F贫Cl的特征可以指示花岗岩的形成与地壳物质部分熔融有关(Zafar et al.,2020;Xing et al.,2021)。而花岗岩高Cl、低F的特征则指示其形成于俯冲带,高Cl/F比值与俯冲板片脱水以及流体交代有关(孟健寅等,2014Zafar et al.,2020)。此外,磷灰石的稀土元素成分特征、配分模式与其成岩环境密切相关,可指示寄主岩石的成因(朱笑青等,2004)。壳源花岗岩中磷灰石的轻稀土元素(LREEs)和重稀土元素(HREEs)含量相近,负Eu异常明显;壳幔相互作用形成的花岗岩中的磷灰石稀土元素呈右倾分布,Eu呈中度负异常;幔源岩石中的磷灰石富Sr,强烈富集轻稀土元素,稀土元素呈右倾分布,具有不明显或弱正Eu异常(Sha and Chappell,1999O'Reilly and Griffin,2000;Chu et al.,2009;O'Sullivan et al.,2020)。

  • 本研究采集的花岗岩有弱蚀变现象,挑选出来的磷灰石颗粒除了采自小龙河矿段的中细粒黑云母花岗岩磷灰石颗粒边部被热液交代而产生蚀变,其他样品的磷灰石颗粒大部分晶型较为完整,呈板状或者短柱状,部分结晶颗粒具有明显的环带特征,为岩浆磷灰石。本研究选择的实验测试点也避开了裂隙发育或者蚀变的磷灰石颗粒,其化学成分可以反映岩浆的成分信息。本文中的磷灰石颗粒具有比较高的F含量和低的Cl含量,F/Cl比值较高,Sr含量低,稀土元素配分模式呈海鸥型轻微右倾,具有明显的负Eu异常,反映其初始岩浆源于陆壳物质的熔融,与宿主岩石的Sr-Nd以及锆石的Hf-O同位素特征指示一致。锆石Nd和Hf同位素模式年龄指示宿主花岗岩岩浆可能来自古老地壳物质的熔融(Chen et al.,2015)。变质沉积岩被认为是A型花岗岩较为可能的源岩(Creaser et al.,1991)。元古宙形成的腾冲地块的基底高黎贡群是一套中高级变质岩石(钟大赉,1998),岩石遭受到强烈的变质与变形。因此,我们认为高黎贡变质基底岩群很有可能是小龙河锡矿区A型花岗岩的源区。

  • 4.3 花岗岩浆演化

  • 磷灰石的化学成分特征除了主要受寄主岩浆岩的成分控制外,还受岩浆的分离结晶演化过程和热液流体的影响(Sha and Chappell,1999;Chu et al.,2009;Zhang et al.,2020),因此,磷灰石的化学成分特征也可用于指示花岗岩浆的分异演化过程。

  • 研究显示,磷灰石中Sr和Y元素含量主要受控于熔体中的Sr和Y元素含量,在岩浆分异作用过程中,随着全岩SiO2含量的增加,岩浆岩中磷灰石的Sr含量降低,Y含量增加(Jennings et al.,2011)。本研究中花岗岩的磷灰石Sr和Y元素含量变化范围较大,且具有负相关关系(图5a),反映了花岗岩岩浆从高Sr低Y向低Sr高Y含量变化的演化过程。此外,研究发现全岩SiO2含量与磷灰石Mn含量具有正相关的关系,说明磷灰石中的Mn含量可能与岩浆分异程度有关(Belousova et al.,2001;Chu et al.,2009;Cao et al.,2012;O'Sullivan et al.,2020)。本研究磷灰石的寄主花岗岩具有较高的SiO2含量(>74%)(Chen et al.,2015),较高的Mn含量、(平均4736×10-6),暗示花岗岩分异演化程度较高。并且在具有环带或者核边结构的样品中,大部分磷灰石颗粒从核部到边部Mn元素含量增加,表明磷灰石Mn元素含量随着岩浆演化过程增强而逐渐增加。本研究发现,磷灰石中的Fe元素具有和Mn元素相似的地球化学行为。磷灰石样品Fe元素含量也较高(平均值为4085×10-6),在具有环带或者核边结构的样品中,磷灰石颗粒核部到边部Fe元素含量均表现出增加的趋势,Mn和Fe元素含量之间具有非常好的正相关关系(图5c),指示Fe和Mn元素一样,也可以用于指示岩浆的分异演化程度。

  • 图5 小龙河锡矿区花岗岩磷灰石Sr含量与Y含量(a)、Sr含量与(Eu/Eu*N比值(b)、Mn含量与Fe含量(c)、 Mn/Fe比值与La/Sm比值关系图(d)

  • Fig.5 The relationship between Sr and Y contents (a) , Sr contents and (Eu/Eu*) N ratios (b) , Mn and Fe contents (c) , Mn/Fe and La/Sm ratios (d) of apatites from the Xiaolonghe tin deposit

  • Prowatke and Klemme(2006)研究显示,磷灰石中的REEs含量主要受岩浆中SiO2含量的控制。因此,磷灰石中REEs和Y元素含量的变化可反映不同的岩浆演化过程,如磷灰石的∑REE+Y含量从核部到边部逐渐降低或不变,则反映了磷灰石的原位结晶分异演化过程(Bruand et al.,20142017)。如果核部到边部∑REE+Y含量突变,则揭示了岩浆混合或围岩混染等过程(Dempster et al.,2003Bruand et al.,20142017Laurent et al.,2017)。本研究除少数如Fe、Mn、F、Sr等元素具有较为稳定的核部往边部含量的变化外,其他元素变化不大,或者没有稳定一致的变化,反映了岩浆没有经历混合或者混染过程,Fe、Mn、F、Sr等元素含量的变化是岩浆结晶分异过程导致。样品磷灰石的Fe/Mn比值与La/Sm比值之间有比较好的负相关关系(图5d),说明La/Sm和Fe/Mn可指示岩浆演化过程。

  • 此外,在岩浆演化过程中,矿物分离结晶作用也会影响磷灰石的化学组成。比如,斜长石的分离结晶会带走岩浆熔体中的Sr和Eu,使岩浆体系中的Sr和Eu含量显著降低,所以晚于斜长石结晶的磷灰石会具有相对低的Sr和Eu含量(Chu et al.,2009)。本研究中的花岗岩磷灰石Sr元素含量较低(26.9×10-6~158 ×10-6,平均73×10-6),且Sr元素含量与(Eu/Eu*N值大体表现出正相关关系(图5b),反映了斜长石的分离结晶对磷灰石Sr和Eu含量有着重要的影响。稀土配分模式中明显的负Eu异常也指示磷灰石结晶过程伴随着斜长石的分离结晶。

  • 4.4 花岗岩浆氧逸度

  • 磷灰石中Eu、Ce、Mn、S等元素属于变价元素,对氧化还原条件非常敏感,越来越多的被用来指示岩浆的氧化还原状态(Belousova et al.,2002;Cao et al.,2012;Miles et al.,2014Sadove et al.,2019Wang et al.,2022)。然而,在利用这些元素估算岩浆氧化还原状态时,需要考虑熔体成分、物化条件、流体活动和矿物结晶的影响(Belousova et al.,2002;Cao et al.,2012;Marks et al.,2016Bromiley,2021),利用多元素综合分析来估算岩浆氧化还原状态才能得出较为可靠的结果。

  • Eu3+和Ce3+的离子半径与Ca2+更接近,Eu3+和Ce3+相较于Eu2+和Ce4+优先以类质同象替换Ca2+进入磷灰石晶格(Cao et al.,2012)。通常,在还原条件下,岩浆中的Eu2+和Ce3+含量较高,且Ce3+比Eu2+优先进入磷灰石晶格,导致磷灰石的稀土元素球粒陨石标准化配分曲线通常呈现强烈的负Eu异常和正Ce异常。反之,在氧化条件下,熔体的Eu2+/Eu3+和Ce3+/Ce4+比值较低,导致磷灰石中存在中度的负Eu异常和轻微正Ce异常(Sha and Chappell,1999Belousova et al.,2002;Chu et al.,2009)。但磷灰石的负Eu异常不仅与岩浆的氧化还原状态有关,还会受到长石结晶、温度等因素影响(Sha and Chappell,1999Belousova et al.,2002)。对Ce而言,因为Ce4+/Ce3+极小比例(通常<0.01),地球上不同岩浆氧逸度范围内Ce的异常行为均极其微弱,导致天然磷灰石中的Ce异常并不明显(Belousova et al.,2002;Chu et al.,2009;Burnham et al.,2014)。综合Eu和Ce的含量,估算岩浆氧逸度可能具有参考价值(Ding et al.,2015;Pan et al.,2016;Zafar et al.,2019;Gao et al.,2020;Li et al.,2022)。如图4所示,本研究花岗岩磷灰石样品具有非常一致的稀土元素配分模式,具有明显的负Eu异常和轻微正Ce异常。(Eu/Eu*N和(Ce/Ce*N比值总体呈负相关的关系(图6a),与湖南十杭带多个Sn、W、Pb-Zn矿床有关花岗岩的磷灰石(Eu/Eu*N和(Ce/Ce*N相比,本研究样品全部落在低氧逸度的Sn矿床有关花岗岩区域,指示与Sn成矿有关的花岗岩具有低氧逸度的特征(Ding et al.,2015)。

  • 此外,Mn也是变价元素,低价态的Mn2+更易进入磷灰石晶格置换Ca2+。在低氧逸度条件下,熔体中Mn2+含量高,导致磷灰石中的Mn含量增加,岩浆氧逸度与磷灰石中的Mn元素含量通常呈负相关关系,因此提出了利用磷灰石Mn浓度来计算岩浆的氧逸度(Miles et al.,2014)。但是,磷灰石中Mn的含量还受温度、熔体组成以及其他含Mn矿物的影响,比如Stokes et al.(2019)X吸收光谱数据证明岩浆中Mn的分配系数主要受熔体成分控制而不是氧逸度,实验研究也表明磷灰石中的Mn含量与氧逸度之间不完全相关(Bromiley,2021)。因此,利用磷灰石的Mn含量指示岩浆氧逸度要小心。我们的样品显示磷灰石中的Mn元素含量与(Eu/Eu*N比值呈微弱的负相关(图6b),在具有环带或者核边结构的样品中,磷灰石颗粒核部到边部Mn含量均有增加的趋势,表明磷灰石中Mn的高含量和岩浆的低氧逸度有一定的关系,但可能主要和岩浆的演化程度有关。除此之外,磷灰石中SO3受岩浆中的S浓度和氧逸度的控制(Peng et al.,1997;Parat and Holtz,2005Webster and Piccoli,2015Konecke et al.,2017)。磷灰石中SO3含量随着氧逸度的增加而增加,例如,Peng et al.(1997)研究发现磷灰石的SO3含量在还原条件下为0.04%,氧化条件下含量为1%~2.6%。在本研究样品中,磷灰石的SO3含量均比较低(许多测试点结果低于检测限,获得SO3含量平均值为0.02%),指示较低的氧逸度。

  • 图6 小龙河锡矿区花岗岩磷灰石(Eu/Eu*N和(Ce/Ce*N比值(a); 图(b)为图(a)放大图;(c)Mn含量与(Eu/Eu*N 关系图(底图引自Ding et al.,2015)

  • Fig.6 The relationship between (Eu/Eu*) N and (Ce/Ce*) N ratios (a) ; graph (b) is the enlarged drawing of graph (a) ; Mn contents and (Eu/Eu*) N ratios (c) of apatites from the Xiaolonghe tin deposit (base graph quoted from Ding et al., 2015)

  • 4.5 花岗岩浆挥发分

  • 卤族元素(特别是F和Cl)在岩浆以及岩浆热液系统的演化过程中发挥了重要作用,其可以改变岩浆的黏度、液相线温度、离子扩散率等,并增加高场强元素(HFSEs)和稀土元素(REEs)在熔体中的溶解度(Doherty et al.,2014Bachmann and Huber,2016)。对熔体包裹体化学成分的分析可以较为直接的测定初始岩浆的化学组成,但是熔融包裹体并非在岩浆岩中广泛存在,且包裹体太小也难以准确测量(Kent,2008; Zajacz et al.,2008)。磷灰石是少数几种广泛存在于岩浆岩且含卤族元素的矿物之一,其抗蚀变能力较强,F、Cl等挥发组分可以直接进入矿物晶格而稳定存在(Harlov,2015)。磷灰石的结晶不会显著影响花岗岩熔体中F和Cl元素富集或消耗,意味着可以用磷灰石中的卤族元素成分来估算岩浆中的F、Cl等挥发分含量(Piccoli and Candela,2002;Harlov,2015Webster and Piccoli,2015;Pan et al.,2016;Stock et al.,2018;Li et al.,2022)。

  • 本研究中花岗岩磷灰石具有比较高的F含量(平均值为3.14%)和低的Cl含量(平均0.029%),F/Cl比值较高(36~540,平均值为152)。如前所述,未蚀变磷灰石中Cl/F比值可以很大程度上反映岩浆初始结晶系统中的F/Cl比值特征。地壳物质重熔形成的高F/Cl比值岩浆熔体导致磷灰石具有高的F/Cl比值(Zafar et al.,2020;Xing et al.,2021)。本研究花岗岩源自古老地壳物质熔融,较高的F/Cl比值指示其岩浆熔体具有高的F/Cl比值特征。酸性岩浆高的F含量降低了岩浆的固相线温度和黏度,进而延长岩浆演化过程(Irber,1999),这应该也是促使小龙河锡矿区花岗岩浆发生高度结晶分异的原因之一。此外,F、Cl等挥发分元素对于评估岩浆-热液系统的成矿潜力具有重要的意义(后详述)。

  • 4.6 磷灰石对花岗岩Sn成矿能力的指示

  • 全球95%以上的锡矿床均直接或间接地与花岗岩浆热液作用相关(Heinrich,1990Lehmann,19902021),因而花岗岩Sn成矿能力对矿床的形成至关重要。花岗岩锡成矿能力主要受到岩浆作用过程控制,包括源岩部分熔融过程中Sn的活化、岩浆结晶分异过程中Sn的富集、岩浆熔流体分离过程中Sn的迁移等。例如:① 岩浆源区成矿元素的预富集,为花岗岩浆锡成矿提供了重要的物质基础(袁顺达等,2020);② 岩浆发生结晶分异作用可以使锡在熔体/流体相中不断富集,因此,高分异花岗岩有利于成矿(Heinrich,1990Lehmann,19902021);③ 源区的部分熔融条件,比如温度、氧化还原条件等因素对Sn在熔体中的富集和随后岩浆分异演化中的解耦具有控制作用(Zhao et al.,2022);④ 岩浆中的矿化剂,如岩浆中挥发分F、Cl元素保证了成矿元素能在花岗岩岩浆中有效迁移,在岩浆演化和锡成矿过程中起着重要的作用(Webster and Devivo,2002Bhalla et al.,2004);⑤ 氧化还原条件的影响,低氧逸度条件下,岩浆才有利于SnO2 的溶解,使绝大部分Sn主要以Sn2+的形式在残余岩浆中富集并最终析出至流体相而利于成矿(Linnen et al.,19951996)。

  • 磷灰石在花岗岩中广泛分布,作为副矿物,虽然含量很低,但其拥有特殊的晶体化学性质和丰富的主、微量元素,使磷灰石在指示岩浆成因类型、源区、演化程度、挥发分组成、氧逸度等方面具有独特的优势:① 指示花岗岩成因类型。本研究中磷灰石的REE、Sr、Y、Mn等元素含量及稀土元素标准化配分模式揭示小龙河锡矿区花岗岩具有A型花岗岩特征,与本人之前对宿主花岗岩所做的全岩地球化学研究结论一致(Chen et al.,2015)。传统观点认为,世界上大多数原生锡矿化都与高度分异的S型花岗岩相关(Taylor,1979Kwak,1987Plimer,1987Heinrich,1990)。近年来,国内外相继发现了大量与A型花岗岩密切相关的锡矿床(Audétat,1999;Li et al.,2007;毕献武等,2008;Zhao et al.,2012,2013),说明A型花岗岩浆作用同样可以形成锡矿床,并也具有较大的锡成矿潜力。② 指示花岗岩的源区。本研究磷灰石的微量元素特征指示花岗岩源于地壳物质的重熔,结合宿主岩石的Sr-Nd以及锆石的Hf-O同位素特征指示花岗岩浆可能源自元古宙形成的腾冲地块基底(Chen et al.,2015)。研究显示,该变质基底含有丰富的Sn含量,平均值为10×10-6张士鲁,1983),远高于地壳平均值。源区中Sn元素预富集为该区锡矿床的形成提供了重要的物质基础。③ 指示岩浆的演化过程。本研究磷灰石的Sr、Y、Mn、Fe、REE等元素含量及其在磷灰石环带或核边结构的变化显示花岗岩具有高分异演化的特点,利于Sn在岩浆熔体中进一步富集。④ 指示花岗岩的氧逸度。综合磷灰石中Eu、Ce、Mn、S元素的含量特征,指示小龙河矿区花岗岩具有比较低的氧逸度,利于Sn在花岗岩浆中的溶解和富集。⑤ 评估岩浆的挥发分。利用磷灰石的卤族元素成分可以用来估算岩浆中的F、Cl等挥发分含量,本研究磷灰石具有富F特征和一定的Cl含量。花岗岩浆中挥发分F的增加,可增大Sn在熔体中的溶解度,有利于Sn分配进入熔体相并随岩浆结晶分异逐步富集(Bhalla et al.,2004)。而在岩浆热液中Sn主要与Cl形成络合物迁移,进入流体相的Cl的含量是影响Sn分配进入流体相的关键因素(Webster,2002)。

  • 综上所述,磷灰石的微区原位成分特征能较好地约束花岗岩的成因和演化、指示其形成的物理化学条件,是研究岩浆性质和岩浆演化过程对Sn成矿控制方面的理想载体。近年来,一些研究发现,磷灰石地球化学特征可以判别成矿岩体。例如,Li Jiang et al.(2022)对云南个旧地区花岗岩进行磷灰石地球化学研究显示Sn矿化花岗岩和贫Sn花岗岩具有不同的成分特征(图7);利用磷灰石化学成分可对花岗岩浆热液型Sn矿床、斑岩型Mo-W矿床、矽卡岩型Cu矿床、斑岩型Cu-Mo矿床、矽卡岩Pb-Zn矿床、斑岩型W-Mo矿床的成矿岩体进行较好地识别(图6)(Cao et al.,2012;Ding et al.,2015;Li et al.,2022)。通过对比研究,小龙河锡矿区内的花岗岩全部落在Sn成矿花岗岩区域(图6、图7),与世界其他锡矿床成矿花岗岩一样,显示出成锡花岗岩特征。可见,磷灰石的地球化学性质能有效评价花岗岩的Sn成矿能力。

  • 5 结论

  • 对腾冲小龙河锡矿床成矿花岗岩中的磷灰石进行化学成分分析,得出以下主要结论:

  • (1)磷灰石主、微量元素特征指示小龙河锡矿区花岗岩为一套高分异花岗岩,具有A型花岗岩特征,主要源于地壳物质熔融。结论与宿主岩石的全岩及锆石地球化学特征高度吻合,显示磷灰石化学成分可有效指示花岗岩的成因类型、来源和演化过程。

  • (2)磷灰石中Eu、Ce、Mn、S元素和卤族元素特征指示花岗岩形成于相对还原的环境,具有富F特征且含有一定量的Cl,有利于花岗岩浆演化过程中Sn元素的富集和迁移。

  • (3)综合以上结果,我们认为磷灰石是研究岩浆性质和岩浆演化过程对Sn成矿控制方面的理想载体,其地球化学成分信息可以有效评价花岗岩的Sn成矿能力。

  • 致谢:在地质资料调研、野外地质考察及采样过程中,得到了云南省地质调查局、云南省地调院、云南锡业集团梁河矿业有限公司的大力支持。在此一并表示最诚挚的谢枕。

  • 图7 Sn成矿与贫矿花岗岩磷灰石微化学组成图(底图数据引自Li et al.,2022)

  • Fig.7 Discrimination plots of Sn mineralized and barren granite type by apatite composition (base graph quoted from Li et al., 2022)

  • (a)—FeOT(%)和(Eu/Eu*N关系图;(b)—Mn含量与(Eu/Eu*N关系图

  • (a)—FeOT (%) and (Eu/Eu*) N; (b) —Mn contents and (Eu/Eu*) N ratios

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202311094?st=article_issue

  • 参考文献

    • Audétat A. 1999. The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (eastern Australia). Doctoral dissertation of Swiss Federal Institute of Technology Zürich.

    • Audétat A. 2019. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114 (6): 1033~1056.

    • Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101 (11): 2377~2404.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76 (1): 45~69.

    • Belousova E A, Walters S, Griffin W L, O'Reilly S Y. 2001. Trace element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 48 (4): 603~619.

    • Bhalla P, Holtz F, Linnen R L, Behrens H. 2004. Solubility of cassiterite in evolved granitic melts: Effect of T, fo2, and additional volatiles. Lithos, 80: 387~400.

    • Bi Xianwu, Li Hongli, Shuang Yan, Hu Xiaoyan, Hu Ruizhong, Peng Jiantang. 2008. Geochemical characteristics of fluid inclusions from Qitianling A-type granite, Hunan Province, China. Geological Journal of China Universities, 14 (4): 539~548(in Chinese with English abstract).

    • Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54 (3): 241~252.

    • Brehler B, Fuge R. 1974. Handbook of Geochemistry. Chlorine: 1~162.

    • Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385, 105900.

    • Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55 (8): 1619~1651.

    • Bruand E, Fowler M, Storey C, Darling J. 2017. Apatite trace ele ment and isotope applications to petrogenesis and provenance. American Mineralogist, 102 (1): 75~84.

    • Burnham A D and Berry A J. 2014. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chemical Geology, 366: 52~60.

    • Cao Huawen, Zou Hao, Zhang Yunhui, Zhang Shouting, Zheng Luo, Zhang Linkui, Tang Li, Pei Qiuming. 2016. Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geology Reviews, 78: 196~212.

    • Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62 (1): 63~83.

    • Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173~174.

    • Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Ji Junfeng. 2008. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogengesis. Geological Journal of China Universities, 14 (4): 459~473(in Chinese with English abstract).

    • Chen Xiaocui, Hu Ruizhong, Bi Xianwu, Li Huimin, Lan Jiangbo, Zhao Chenghai, Zhu Jingjing. 2014. Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong Lianghe tin district, NW Yunnan, China. Mineralium Deposita, 49 (7): 843~860.

    • Chen Xiaocui, Hu Ruizhong, Bi Xianwu, Zhong Hong, Lan Jiangbo, Zhao Chenghai, Zhu Jingjing. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes: Lithos, 212-215: 93~110.

    • Chu Meifei, Wang Kuolung, Griffin W L, Chung Sunlin, O'Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatite composition: Tracing petrogenetic processes in Trans-Himalayan granitoids. Journal of Petrology, 50 (10): 1829~1855.

    • Creaser R A, rice R C, Wormald R J. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 1151~1152.

    • Dempster T J, Jolivet M, Tubrett M N, Braithwaite C J R. 2003. Magmatic zoning in apatite: A monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology, 145 (5): 568~577.

    • Ding Teng, Ma Dongsheng, Lu Jianjun, Zhang Rongqing. 2015. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: Implications for petrogenesis and metallogenesis. Ore Geology Reviews, 69: 104~117.

    • Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid (s) -apatite systems at 50MPa and 850~950℃. Chemical Geology, 384: 94~111.

    • Flynn R T, Burnham C W. 1978. An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts. Geochimica et Cosmochimica Acta, 42 (6): 685~701.

    • Gao Xue, Yang Liqiang, Wang Chenguang, He Wenyan, Bao Xinshang, Zhang Shaoying. 2020. Halogens and trace elements of apatite from Late Mesozoic and Cenozoic porphyry Cu-Mo-Au deposits in SE Tibet, China: Constraints on magmatic fertility and granitoid petrogenesis. Journal of Asian Earth Sciences, 203: 104552.

    • Gulley A L, Nassar N T, Xun S. 2018. China, the United States, and competition for resources that enable emerging technologies. PNAS, 115 (16): 4111~4115.

    • Harlov D E. 2015. Apatite: Q fing, erprint for metasomatic processes. Elements, 11 (3): 171~176.

    • Heinrich C A. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Economic Geology, 85: 457~481.

    • Hou Zengqian, Zaw K, Pan Guitang, Mo Xuanxue, Xu Qiang, Hu Yunzhong, Li Xingzhen. 2007. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31: 48~87.

    • Hua Renmin, Li Guanglai, Zhang Wenlan, Hu Dongquan, Chen Peirong, Chen Weifeng, Wang Xudong. 2010. A tentative discussion on differences between large-scale tungsten and tin mineralizations in South China. Mineral Deposits, 29 (1): 9~15 (in Chinese with English abstract).

    • Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63 (3/4): 489~508.

    • Jennings E S, Marschall H R, Hawkesworth C J, Storey C D. 2011. Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. Geology, 39: 863~866.

    • Ji Genyuan, Jiang Sihong, Liu Yifei, Zhang Longsheng. 2023. Petrogenesis of the Alubaogeshan granite in the Maodeng Mo-Bi-Sn-Cu deposit, southern Great Xing'an Range, NE China: Constraints from apatite, plagioclase, magnetite and ilmenite geochemistry. Ore Geology Reviews, 155: 1~18.

    • Jiang Xiaoyan, Li He, Ding Xing, Wu Kai, Guo Jia, Liu Jiqiang, Sun Weidong. 2018. Formation of A-type granites in the Lower Yangtze River belt: A perspective from apatite geochemistry. Lithos, 304-307: 125~134.

    • Kent A J R. 2008. Melt inclusions in basaltic and related volcanic rocks. Reviews in Mineralogy and Geochemistry, 69 (1): 273~331.

    • Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237~240.

    • Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co-variability of S6+, S4+, and S2- in apatite as a function of oxidation state; Implications for a new oxybarometer. Am. Mineral. 102 (3): 548~557.

    • Kwak T A P. 1987. W-Sn skarn deposits and related metamorphic skarns and granitoids. Amsterdam, Elsevier: 1~451.

    • Laurent O, Zeh A, Gerdes A, Villaros A, Gros K, Słaby E. 2017. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Contributions to Mineralogy and Petrology, 172 (9): 80.

    • Lehmann B. 1990. Metallogeny of Tin. Berlin, Heidelberg: Springer.

    • Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402-403: 105756.

    • Li Jiang, Chen Shouyu, Zhao Yuehua. 2022. Trace elements in apatite from Gejiu Sn polymetallic district: Implications for petrogenesis, metallogenesis and exploration. Ore Geology Reviews, 145: 104880.

    • Linnen R L, Pichavant M, Holtz F, Burgess S. 1995. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2 kbar. Geochimica et Cosmochimica Acta, 59 (8): 1579~1588.

    • Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fO2 and melt composition on Sno2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60 (24): 4965~4976.

    • Mao Jingwen, Ouyang Hegen, Song Shiwei, Santosh M, Yuan Shunda, Zhou Zhenhua, Zheng Wei, Liu Huan, Liu Peng, Cheng Yanbo, Chen Maohong. 2020. Geology and metallogeny of tungsten and tin deposits in China. Soceity of Economic Geologists, Special Publications, 22: 411~482.

    • Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?”. Geochimica et Cosmochimica Acta, 183: 267~270.

    • Meng Jianyyin. 2014. The porphyry copper-polymetallic deposit in Zhongdian, West Yunnan: Magmatism and mineralization Doctor degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy forsilicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.

    • O'Reilly S Y, Griffin W L. 2000. Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos, 53 (3-4): 217~232.

    • Pan Lichua, Hu Rruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as Petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254~255: 118~130.

    • Parat F, Holtz F. 2005. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contributions to Mineralogy and Petrology, 150 (6): 643~651.

    • Peng Genyong, Luhr J F, McGee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82 (11-12): 1210~1224.

    • Plimer I R. 1987. Fundamental parameters for the formation of granite-related tin deposits. International Journal of Earth Sciences, 76: 23~40.

    • Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimca Acta, 70 (17): 4513~4527.

    • O'Sullivan G, Chew D, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies. Earth Science Review, 201: 103044.

    • Piccoli P, Candela P. 1994. Apatite in felsic rocks: A model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294 (1): 92~135.

    • Sha L K, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63 (22): 3861~3881.

    • Sadove G, Konecke B A, Fiege A, Simon A C. 2019. Structurally bound S2-, S1-, S4+, S6+ in terrestrial apatite: The redox evolution of hydrothermal fluids at the Phillips mine, New York, USA. Ore Geology Reviews, 107: 1084~1096.

    • Stock M J, Humphreys M C S, Smith V C, Isaia R, Brooker R A, Pyle D M. 2018. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italy. Journal of Petrology, 59 (12): 2463~2492.

    • Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity onmanganese partitioning between apatite and silicate melt. Chemical Geology, 506: 162~174.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.

    • Taylor R G. 1979. Geology of tin deposits. Amsterdam Elsevier Scientific Publishing Company, 1~543.

    • Wang H R, Cai K D, Sun M, Xia X P, Lai C K, Li P F, Wan B, Zhang Z Y. 2022. Apatite as a magma redox indicator and its application in metallogenic research. Lithos, 422-423: 106749.

    • Wang Kun, Ren Zhongyuan, Zhang Le, Ou Quan. 2020. The relationship between the Taihe Fe-Ti oxide ore-bearing layered intrusion and the adjacent peralkaline A-type granitic pluton in SW China: Constraints from compositions of amphiboles and apatite-hosted melt inclusions. Ore Geology Reviews, 120: 1~54.

    • Webster J D, DeVivo B. 2002. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. American Mineralogist, 87: 1046~1061.

    • Webster J D, Piccoli P M. 2015. Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11 (3): 177~182.

    • Xing Kai, Shu Qihai, Lentz D R. 2021. Constraints on the formation of the giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. Journal of Petrology, 62 (4): 1~26.

    • Yang Shuiyuan, Jiang Shaoyong, Mao Qian, Chen Zhenyu, Rao Can, Li Xiaoli, Li Wancai, Yang Wenqiang, He Pengli, Li Xiang. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. Atomic Spectroscopy, 43 (2): 186~200.

    • Yang Wu, Zhang Min, Yan Jun, Chen Xiaocui. 2022. Zircon U-Pb ages and geochemistry of the granite in the Xintianling tungsten deposit, SE China: Implications for geodynamic settings of the regional tungsten mineralization. Minerals, 12: 952.

    • Yu Zhiqiang, Chen Weifeng, Chen Peirong, Wang Kaixing, Fang Qichun, Tang Xiangsheng, Ling Hongfei. 2018. Chemical composition and Sr isotopes of apatite in the Xiangshan A-type volcanic-intrusive complex, southeast China: New insight into petrogenesis. Journal of Asian Earth Sciences, 172: 66~82.

    • Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39 (4): 607~618 (in Chinese wtih English abstract).

    • Zafar T, Leng C B, Zhang X C, Rehman H U. 2019. Geochemical attributes of magmatic apatite in the Kukaazi granite from western Kunlun orogenic belt, NW China: Implications for granite petrogenesis and Pb-Zn (-Cu-W) mineralization. Journal of Geochemical Exploration, 204: 256~269.

    • Zafar T, Rehman H U, Mahar M A, Alam M, Oyebamiji A, Rehman S U, Leng C B. 2020. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in North and East China: New insights from apatite geochemistry. Journal of Geodynamics, 136: 101723.

    • Zajacz Z, Halter W E, Pettke T, Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of coexisting fluid and silicate melt inclusions: Controls on element partitioning. Geochimica et Cosmochimica Acta, 72 (8): 2169~2197.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues. China Science Foundation, 2: 106~111 (in Chinese wtih English abstract).

    • Zhang Jiawei, Santosh M, Zhu Yuhua, Rao Hongjuan, Wang Kun, Ye Taiping, Liu Weipeng. 2023. Constraining the timing of deep magmatic pulses from diamondiferous kimberlite and related rocks in the South China Continent and implications for diamond exploration. Ore Geology Reviews, 154: 105328.

    • Zhang Qiwei, Wang Qingfei, Li Gongjian, Sun Xiang, Shu Qihai, Deng Jun. 2022. Crucial control on magmatic-hydrothermal Sn deposit in the Tengchong block, SW China: Evidence from magma differentiation and zircon geochemistry. Geoscience Frontiers, 13: 1~15.

    • Zhang Shenghui, Wang Zhentao, Li Yongsheng, Mo Xuanxue, Dong Qingji, Chen Conglin, Geng Lin, Wang Li, Zhang Haiqi, Tan Xiumin, Xue Yingxi, Zhou Shangguo, Tian Yuming, Yao Chaomei, Jiao Sen, Chen Zhengguo, Chen Junyuan, Wang Shoucheng, Zhang Haoyu, Fu Shuixing, Wang Chunlian, Wang Yong. 2022. List, application and global pattern of critical minerals of China. Conservation and Utilization of Mineral Resources, 2022: 1~51 (in Chinese with English abstract).

    • Zhang Shilu. 1983. Geological Collections of the Tibet Plateau (Vol. 13). Beijing: Geological Publishing House, 176~184 (in Chinese).

    • Zhang Xiaobing, Guo Feng, Zhang B, Zhao Liang, Wu Yangming, Wang Guoqing, Alemayehu M. 2020. Magmatic evolution and post-crystallization hydrothermal activity in the early Cretaceous Pingtan intrusive complex, SE China: Records from apatite geochemistry. Contributions to Mineralogy and Petrology, 175(4): 35.

    • Zhao Kuidong, Jiang Shaoyong, Yang Shuiyuan, Dai Baozhagn, Lu Jianjun. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22: 310~324.

    • Zhao Kuidong, Jiang Shaoyong, Chen Weifeng, Chen Peirong, Ling Hongfei. 2013. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism. Lithos, 160: 292~306.

    • Zhao Panlao, Chu X, Williams-Jones A E, Mao Jingwen, Yuan Shunda. 2022. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50 (1): 121~125.

    • Zhong Dalai. 1998. Paleotethys Orogenic Belt in Western Yunnan and Sichuan. Beijing: Science Press, 9~215 (in Chinese).

    • Zhu Xiaoqing, Wang Zhonggang, Huang Yan, Wang Ganlu. 2004. REE content and distribution in apatite and its geological tracing significance. Chinese Rare Earths, 25: 41~45 (in Chinese with English abstract).

    • 毕献武, 李鸿莉, 双燕, 胡晓燕, 胡瑞忠, 彭建堂. 2008. 骑田岭A型花岗岩流体包裹体地球化学特征—对芙蓉超大型锡矿成矿流体来源的指示. 高校地质学报, 14 (4): 539~548.

    • 陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14 (4): 459~473.

    • 华仁民, 李光来, 张文兰, 胡东泉, 陈培荣, 陈卫锋, 王旭东. 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29 (1): 9~23.

    • 孟健寅. 2014. 滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统.

    • 中国地质大学(北京)博士学位论文.

    • 袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39 (4): 607~618.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 2: 106~111.

    • 张生辉, 王振涛, 李永胜, 莫宣学, 董庆吉, 陈丛林, 耿林, 王利, 张海啟, 谭秀民, 薛迎喜, 周尚国, 田郁溟, 姚超美, 焦森, 陈正国, 陈军元, 王寿成, 张浩钰, 付水兴, 王春连, 王永. 2022. 中国关键矿产清单、应用与全球格局. 矿产保护与利用, 2022: 1~51.

    • 张士鲁. 1983. 青藏高原地质文集(第13集). 北京: 地质出版社, 176~184.

    • 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 9~215.

    • 朱笑青, 王中刚, 黄艳, 王甘露. 2004. 磷灰石的稀土组成及其示踪意义. 中国稀土, 25: 41~45.

  • 参考文献

    • Audétat A. 1999. The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (eastern Australia). Doctoral dissertation of Swiss Federal Institute of Technology Zürich.

    • Audétat A. 2019. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114 (6): 1033~1056.

    • Bachmann O, Huber C. 2016. Silicic magma reservoirs in the Earth's crust. American Mineralogist, 101 (11): 2377~2404.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76 (1): 45~69.

    • Belousova E A, Walters S, Griffin W L, O'Reilly S Y. 2001. Trace element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Australian Journal of Earth Sciences, 48 (4): 603~619.

    • Bhalla P, Holtz F, Linnen R L, Behrens H. 2004. Solubility of cassiterite in evolved granitic melts: Effect of T, fo2, and additional volatiles. Lithos, 80: 387~400.

    • Bi Xianwu, Li Hongli, Shuang Yan, Hu Xiaoyan, Hu Ruizhong, Peng Jiantang. 2008. Geochemical characteristics of fluid inclusions from Qitianling A-type granite, Hunan Province, China. Geological Journal of China Universities, 14 (4): 539~548(in Chinese with English abstract).

    • Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems. Resource Geology, 54 (3): 241~252.

    • Brehler B, Fuge R. 1974. Handbook of Geochemistry. Chlorine: 1~162.

    • Bromiley G D. 2021. Do concentrations of Mn, Eu and Ce in apatite reliably record oxygen fugacity in magmas? Lithos, 384-385, 105900.

    • Bruand E, Storey C, Fowler M. 2014. Accessory mineral chemistry of high Ba-Sr granites from northern Scotland: Constraints on petrogenesis and records of whole-rock signature. Journal of Petrology, 55 (8): 1619~1651.

    • Bruand E, Fowler M, Storey C, Darling J. 2017. Apatite trace ele ment and isotope applications to petrogenesis and provenance. American Mineralogist, 102 (1): 75~84.

    • Burnham A D and Berry A J. 2014. The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts. Chemical Geology, 366: 52~60.

    • Cao Huawen, Zou Hao, Zhang Yunhui, Zhang Shouting, Zheng Luo, Zhang Linkui, Tang Li, Pei Qiuming. 2016. Late Cretaceous magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geology Reviews, 78: 196~212.

    • Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62 (1): 63~83.

    • Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173~174.

    • Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Ji Junfeng. 2008. W-Sn-Nb-Ta-bearing granites in the Nanling Range and their relationship to metallogengesis. Geological Journal of China Universities, 14 (4): 459~473(in Chinese with English abstract).

    • Chen Xiaocui, Hu Ruizhong, Bi Xianwu, Li Huimin, Lan Jiangbo, Zhao Chenghai, Zhu Jingjing. 2014. Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong Lianghe tin district, NW Yunnan, China. Mineralium Deposita, 49 (7): 843~860.

    • Chen Xiaocui, Hu Ruizhong, Bi Xianwu, Zhong Hong, Lan Jiangbo, Zhao Chenghai, Zhu Jingjing. 2015. Petrogenesis of metaluminous A-type granitoids in the Tengchong-Lianghe tin belt of southwestern China: Evidences from zircon U-Pb ages and Hf-O isotopes, and whole-rock Sr-Nd isotopes: Lithos, 212-215: 93~110.

    • Chu Meifei, Wang Kuolung, Griffin W L, Chung Sunlin, O'Reilly S Y, Pearson N J, Iizuka Y. 2009. Apatite composition: Tracing petrogenetic processes in Trans-Himalayan granitoids. Journal of Petrology, 50 (10): 1829~1855.

    • Creaser R A, rice R C, Wormald R J. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19: 1151~1152.

    • Dempster T J, Jolivet M, Tubrett M N, Braithwaite C J R. 2003. Magmatic zoning in apatite: A monitor of porosity and permeability change in granites. Contributions to Mineralogy and Petrology, 145 (5): 568~577.

    • Ding Teng, Ma Dongsheng, Lu Jianjun, Zhang Rongqing. 2015. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: Implications for petrogenesis and metallogenesis. Ore Geology Reviews, 69: 104~117.

    • Doherty A L, Webster J D, Goldoff B A, Piccoli P M. 2014. Partitioning behavior of chlorine and fluorine in felsic melt-fluid (s) -apatite systems at 50MPa and 850~950℃. Chemical Geology, 384: 94~111.

    • Flynn R T, Burnham C W. 1978. An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts. Geochimica et Cosmochimica Acta, 42 (6): 685~701.

    • Gao Xue, Yang Liqiang, Wang Chenguang, He Wenyan, Bao Xinshang, Zhang Shaoying. 2020. Halogens and trace elements of apatite from Late Mesozoic and Cenozoic porphyry Cu-Mo-Au deposits in SE Tibet, China: Constraints on magmatic fertility and granitoid petrogenesis. Journal of Asian Earth Sciences, 203: 104552.

    • Gulley A L, Nassar N T, Xun S. 2018. China, the United States, and competition for resources that enable emerging technologies. PNAS, 115 (16): 4111~4115.

    • Harlov D E. 2015. Apatite: Q fing, erprint for metasomatic processes. Elements, 11 (3): 171~176.

    • Heinrich C A. 1990. The chemistry of hydrothermal tin(-tungsten) ore deposition. Economic Geology, 85: 457~481.

    • Hou Zengqian, Zaw K, Pan Guitang, Mo Xuanxue, Xu Qiang, Hu Yunzhong, Li Xingzhen. 2007. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31: 48~87.

    • Hua Renmin, Li Guanglai, Zhang Wenlan, Hu Dongquan, Chen Peirong, Chen Weifeng, Wang Xudong. 2010. A tentative discussion on differences between large-scale tungsten and tin mineralizations in South China. Mineral Deposits, 29 (1): 9~15 (in Chinese with English abstract).

    • Irber W. 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Acta, 63 (3/4): 489~508.

    • Jennings E S, Marschall H R, Hawkesworth C J, Storey C D. 2011. Characterization of magma from inclusions in zircon: Apatite and biotite work well, feldspar less so. Geology, 39: 863~866.

    • Ji Genyuan, Jiang Sihong, Liu Yifei, Zhang Longsheng. 2023. Petrogenesis of the Alubaogeshan granite in the Maodeng Mo-Bi-Sn-Cu deposit, southern Great Xing'an Range, NE China: Constraints from apatite, plagioclase, magnetite and ilmenite geochemistry. Ore Geology Reviews, 155: 1~18.

    • Jiang Xiaoyan, Li He, Ding Xing, Wu Kai, Guo Jia, Liu Jiqiang, Sun Weidong. 2018. Formation of A-type granites in the Lower Yangtze River belt: A perspective from apatite geochemistry. Lithos, 304-307: 125~134.

    • Kent A J R. 2008. Melt inclusions in basaltic and related volcanic rocks. Reviews in Mineralogy and Geochemistry, 69 (1): 273~331.

    • Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380: 237~240.

    • Konecke B A, Fiege A, Simon A C, Parat F, Stechern A. 2017. Co-variability of S6+, S4+, and S2- in apatite as a function of oxidation state; Implications for a new oxybarometer. Am. Mineral. 102 (3): 548~557.

    • Kwak T A P. 1987. W-Sn skarn deposits and related metamorphic skarns and granitoids. Amsterdam, Elsevier: 1~451.

    • Laurent O, Zeh A, Gerdes A, Villaros A, Gros K, Słaby E. 2017. How do granitoid magmas mix with each other? Insights from textures, trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton (South Africa). Contributions to Mineralogy and Petrology, 172 (9): 80.

    • Lehmann B. 1990. Metallogeny of Tin. Berlin, Heidelberg: Springer.

    • Lehmann B. 2021. Formation of tin ore deposits: A reassessment. Lithos, 402-403: 105756.

    • Li Jiang, Chen Shouyu, Zhao Yuehua. 2022. Trace elements in apatite from Gejiu Sn polymetallic district: Implications for petrogenesis, metallogenesis and exploration. Ore Geology Reviews, 145: 104880.

    • Linnen R L, Pichavant M, Holtz F, Burgess S. 1995. The effect of fO2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2 kbar. Geochimica et Cosmochimica Acta, 59 (8): 1579~1588.

    • Linnen R L, Pichavant M, Holtz F. 1996. The combined effects of fO2 and melt composition on Sno2 solubility and tin diffusivity in haplogranitic melts. Geochimica et Cosmochimica Acta, 60 (24): 4965~4976.

    • Mao Jingwen, Ouyang Hegen, Song Shiwei, Santosh M, Yuan Shunda, Zhou Zhenhua, Zheng Wei, Liu Huan, Liu Peng, Cheng Yanbo, Chen Maohong. 2020. Geology and metallogeny of tungsten and tin deposits in China. Soceity of Economic Geologists, Special Publications, 22: 411~482.

    • Marks M A W, Scharrer M, Ladenburger S, Markl G. 2016. Comment on “Apatite: A new redox proxy for silicic magmas?”. Geochimica et Cosmochimica Acta, 183: 267~270.

    • Meng Jianyyin. 2014. The porphyry copper-polymetallic deposit in Zhongdian, West Yunnan: Magmatism and mineralization Doctor degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy forsilicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.

    • O'Reilly S Y, Griffin W L. 2000. Apatite in the mantle: Implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos, 53 (3-4): 217~232.

    • Pan Lichua, Hu Rruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as Petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254~255: 118~130.

    • Parat F, Holtz F. 2005. Sulfur partition coefficient between apatite and rhyolite: The role of bulk S content. Contributions to Mineralogy and Petrology, 150 (6): 643~651.

    • Peng Genyong, Luhr J F, McGee J J. 1997. Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82 (11-12): 1210~1224.

    • Plimer I R. 1987. Fundamental parameters for the formation of granite-related tin deposits. International Journal of Earth Sciences, 76: 23~40.

    • Prowatke S, Klemme S. 2006. Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimca Acta, 70 (17): 4513~4527.

    • O'Sullivan G, Chew D, Kenny G, Henrichs I, Mulligan D. 2020. The trace element composition of apatite and its application to detrital provenance studies. Earth Science Review, 201: 103044.

    • Piccoli P, Candela P. 1994. Apatite in felsic rocks: A model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada Batholith) magmas. American Journal of Science, 294 (1): 92~135.

    • Sha L K, Chappell B W. 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63 (22): 3861~3881.

    • Sadove G, Konecke B A, Fiege A, Simon A C. 2019. Structurally bound S2-, S1-, S4+, S6+ in terrestrial apatite: The redox evolution of hydrothermal fluids at the Phillips mine, New York, USA. Ore Geology Reviews, 107: 1084~1096.

    • Stock M J, Humphreys M C S, Smith V C, Isaia R, Brooker R A, Pyle D M. 2018. Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: Insights into pre-eruptive processes at Campi Flegrei, Italy. Journal of Petrology, 59 (12): 2463~2492.

    • Stokes T N, Bromiley G D, Potts N J, Saunders K E, Miles A J. 2019. The effect of melt composition and oxygen fugacity onmanganese partitioning between apatite and silicate melt. Chemical Geology, 506: 162~174.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.

    • Taylor R G. 1979. Geology of tin deposits. Amsterdam Elsevier Scientific Publishing Company, 1~543.

    • Wang H R, Cai K D, Sun M, Xia X P, Lai C K, Li P F, Wan B, Zhang Z Y. 2022. Apatite as a magma redox indicator and its application in metallogenic research. Lithos, 422-423: 106749.

    • Wang Kun, Ren Zhongyuan, Zhang Le, Ou Quan. 2020. The relationship between the Taihe Fe-Ti oxide ore-bearing layered intrusion and the adjacent peralkaline A-type granitic pluton in SW China: Constraints from compositions of amphiboles and apatite-hosted melt inclusions. Ore Geology Reviews, 120: 1~54.

    • Webster J D, DeVivo B. 2002. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. American Mineralogist, 87: 1046~1061.

    • Webster J D, Piccoli P M. 2015. Magmatic apatite: A powerful, yet deceptive, mineral. Elements, 11 (3): 177~182.

    • Xing Kai, Shu Qihai, Lentz D R. 2021. Constraints on the formation of the giant Daheishan porphyry Mo deposit (NE China) from whole-rock and accessory mineral geochemistry. Journal of Petrology, 62 (4): 1~26.

    • Yang Shuiyuan, Jiang Shaoyong, Mao Qian, Chen Zhenyu, Rao Can, Li Xiaoli, Li Wancai, Yang Wenqiang, He Pengli, Li Xiang. 2022. Electron probe microanalysis in geosciences: Analytical procedures and recent advances. Atomic Spectroscopy, 43 (2): 186~200.

    • Yang Wu, Zhang Min, Yan Jun, Chen Xiaocui. 2022. Zircon U-Pb ages and geochemistry of the granite in the Xintianling tungsten deposit, SE China: Implications for geodynamic settings of the regional tungsten mineralization. Minerals, 12: 952.

    • Yu Zhiqiang, Chen Weifeng, Chen Peirong, Wang Kaixing, Fang Qichun, Tang Xiangsheng, Ling Hongfei. 2018. Chemical composition and Sr isotopes of apatite in the Xiangshan A-type volcanic-intrusive complex, southeast China: New insight into petrogenesis. Journal of Asian Earth Sciences, 172: 66~82.

    • Yuan Shunda, Zhao Panlao, Liu Min. 2020. Some problems involving in petrogenesis and metallogenesis of granite-related tin deposits. Mineral Deposits, 39 (4): 607~618 (in Chinese wtih English abstract).

    • Zafar T, Leng C B, Zhang X C, Rehman H U. 2019. Geochemical attributes of magmatic apatite in the Kukaazi granite from western Kunlun orogenic belt, NW China: Implications for granite petrogenesis and Pb-Zn (-Cu-W) mineralization. Journal of Geochemical Exploration, 204: 256~269.

    • Zafar T, Rehman H U, Mahar M A, Alam M, Oyebamiji A, Rehman S U, Leng C B. 2020. A critical review on petrogenetic, metallogenic and geodynamic implications of granitic rocks exposed in North and East China: New insights from apatite geochemistry. Journal of Geodynamics, 136: 101723.

    • Zajacz Z, Halter W E, Pettke T, Guillong M. 2008. Determination of fluid/melt partition coefficients by LA-ICPMS analysis of coexisting fluid and silicate melt inclusions: Controls on element partitioning. Geochimica et Cosmochimica Acta, 72 (8): 2169~2197.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues. China Science Foundation, 2: 106~111 (in Chinese wtih English abstract).

    • Zhang Jiawei, Santosh M, Zhu Yuhua, Rao Hongjuan, Wang Kun, Ye Taiping, Liu Weipeng. 2023. Constraining the timing of deep magmatic pulses from diamondiferous kimberlite and related rocks in the South China Continent and implications for diamond exploration. Ore Geology Reviews, 154: 105328.

    • Zhang Qiwei, Wang Qingfei, Li Gongjian, Sun Xiang, Shu Qihai, Deng Jun. 2022. Crucial control on magmatic-hydrothermal Sn deposit in the Tengchong block, SW China: Evidence from magma differentiation and zircon geochemistry. Geoscience Frontiers, 13: 1~15.

    • Zhang Shenghui, Wang Zhentao, Li Yongsheng, Mo Xuanxue, Dong Qingji, Chen Conglin, Geng Lin, Wang Li, Zhang Haiqi, Tan Xiumin, Xue Yingxi, Zhou Shangguo, Tian Yuming, Yao Chaomei, Jiao Sen, Chen Zhengguo, Chen Junyuan, Wang Shoucheng, Zhang Haoyu, Fu Shuixing, Wang Chunlian, Wang Yong. 2022. List, application and global pattern of critical minerals of China. Conservation and Utilization of Mineral Resources, 2022: 1~51 (in Chinese with English abstract).

    • Zhang Shilu. 1983. Geological Collections of the Tibet Plateau (Vol. 13). Beijing: Geological Publishing House, 176~184 (in Chinese).

    • Zhang Xiaobing, Guo Feng, Zhang B, Zhao Liang, Wu Yangming, Wang Guoqing, Alemayehu M. 2020. Magmatic evolution and post-crystallization hydrothermal activity in the early Cretaceous Pingtan intrusive complex, SE China: Records from apatite geochemistry. Contributions to Mineralogy and Petrology, 175(4): 35.

    • Zhao Kuidong, Jiang Shaoyong, Yang Shuiyuan, Dai Baozhagn, Lu Jianjun. 2012. Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China. Gondwana Research, 22: 310~324.

    • Zhao Kuidong, Jiang Shaoyong, Chen Weifeng, Chen Peirong, Ling Hongfei. 2013. Zircon U-Pb chronology and elemental and Sr-Nd-Hf isotope geochemistry of two Triassic A-type granites in South China: Implication for petrogenesis and Indosinian transtensional tectonism. Lithos, 160: 292~306.

    • Zhao Panlao, Chu X, Williams-Jones A E, Mao Jingwen, Yuan Shunda. 2022. The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology, 50 (1): 121~125.

    • Zhong Dalai. 1998. Paleotethys Orogenic Belt in Western Yunnan and Sichuan. Beijing: Science Press, 9~215 (in Chinese).

    • Zhu Xiaoqing, Wang Zhonggang, Huang Yan, Wang Ganlu. 2004. REE content and distribution in apatite and its geological tracing significance. Chinese Rare Earths, 25: 41~45 (in Chinese with English abstract).

    • 毕献武, 李鸿莉, 双燕, 胡晓燕, 胡瑞忠, 彭建堂. 2008. 骑田岭A型花岗岩流体包裹体地球化学特征—对芙蓉超大型锡矿成矿流体来源的指示. 高校地质学报, 14 (4): 539~548.

    • 陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14 (4): 459~473.

    • 华仁民, 李光来, 张文兰, 胡东泉, 陈培荣, 陈卫锋, 王旭东. 2010. 华南钨和锡大规模成矿作用的差异及其原因初探. 矿床地质, 29 (1): 9~23.

    • 孟健寅. 2014. 滇西中甸矿集区晚白垩世斑岩铜多金属成矿系统.

    • 中国地质大学(北京)博士学位论文.

    • 袁顺达, 赵盼捞, 刘敏. 2020. 与花岗岩有关锡矿成岩成矿作用研究若干问题讨论. 矿床地质, 39 (4): 607~618.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 2: 106~111.

    • 张生辉, 王振涛, 李永胜, 莫宣学, 董庆吉, 陈丛林, 耿林, 王利, 张海啟, 谭秀民, 薛迎喜, 周尚国, 田郁溟, 姚超美, 焦森, 陈正国, 陈军元, 王寿成, 张浩钰, 付水兴, 王春连, 王永. 2022. 中国关键矿产清单、应用与全球格局. 矿产保护与利用, 2022: 1~51.

    • 张士鲁. 1983. 青藏高原地质文集(第13集). 北京: 地质出版社, 176~184.

    • 钟大赉. 1998. 滇川西部古特提斯造山带. 北京: 科学出版社, 9~215.

    • 朱笑青, 王中刚, 黄艳, 王甘露. 2004. 磷灰石的稀土组成及其示踪意义. 中国稀土, 25: 41~45.