en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

申萍,女,1964年生。博士,研究员,从事金属矿床成矿作用研究。E-mail:pshen@mail.iggcas.ac.cn。

参考文献
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123 (3): 323~333.
参考文献
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44 (3): 231~234.
参考文献
Cai Keda, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao, Long Xiaoping. 2012. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance. Chemical Geology, 294-295: 26~41.
参考文献
Černý P, Meintzer R E, Anderson A J. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23 (3): 381~421.
参考文献
Černý P, Lenton P G. 1995. The Buck and Pegli lithium deposits, southeastern Manitoba: The problem of updip fractionation in subhorizontal pegmatite sheets. Economic Geology, 90: 658~675.
参考文献
Che Xudong, Wu Fuyuan, Wang Rucheng, Gerdes A, Ji Weiqiang, Zhao Zhenhua, Yang Jinhui, Zhu Zeying. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979~989.
参考文献
Chen Bin, Jahn B M. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of Northwest China and their tectonic implications. Geological Magazine, 139 (1): 1~13.
参考文献
Chen Jianfeng. 2011. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution. Master's thesis of University of Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Chen Jianping, Chen Yong, Zhu Pengei, Wang Limei, Shang Beichuan, Zhao Jie. 2011. Digital ore deposit model and its application: A case study of the prognosis of the Koktokay No. 3 pegmatite dike concealed rare metal deposit in Altay area of Xinjiang. Geological Bulletin of China, 30 (5): 630~641 (in Chinese with English abstract).
参考文献
Chen Jun. 2019. Supernormal enrichment and mineralization and high efficiency utilization of critical metals. Science & Technology Review, 37 (24): 1 (in Chinese with English abstract).
参考文献
Condie K C. 1991. Another look at REE in shales. Geochimica et Cosmochimica Acta, 5: 2527~2531.
参考文献
Condie K C. 1993. Chemical composition and evolution of the upper continental crust-contrasting results from surface samples and shales. Chemical Geology, 104: 1~37.
参考文献
Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59 (14): 2919~2940.
参考文献
Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766~794.
参考文献
Dingwell D B, Knoche R, Webb S L, Pichavant M. 1992. The effect of B2O3 on the viscosity of haplogranitic liquids. American Mineralogist, 77 (5-6): 457~461.
参考文献
Dingwell D B, Knoche R, Webb S L. 1993. The effect of F on the density of haplogranite melt. American Mineralogist, 78 (3-4): 325~330.
参考文献
Han Jinsheng, Zhao Zhenhua, Hollings Pete, Chen Huayong. 2023. A 50 m. y. melting model for the rare metal-rich Koktokay pegmatite in the Chinese Altai: Implications from a newly identified Jurassic granite. GSA Bulletin, 135(5-6): 1467~1479.
参考文献
Hu Zhongde. 2008. Geological characteristics and deep prospecting direction of No. 3 pegmatite in Hoktuohai rare metal deposit. Xinjiang Nonferrous Metals, (S2): 7~10 (in Chinese).
参考文献
Huang X L, Wang R C, Chen X M, Hu H, Liu C S. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40 (4): 1047~1068.
参考文献
Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer.
参考文献
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of petrology, 38 (3): 371~391.
参考文献
Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29 (12): 4311~4322.
参考文献
Liu Congqiang, Zhang Hui. 2005. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma. Chemical Geology, 214 (1-2): 61~77.
参考文献
Liu Feng, Cao Feng, Zhang Zhi Xin, Li Qiang. 2014a. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang. Acta Petrologica Sinica, 30 (1): 1~15 (in Chinese with English abstract).
参考文献
Liu Feng, Zhang Zhixin, Li Qi, Zhang Chao, Li Chao. 2014b. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209~219.
参考文献
Liu Hong. 2013. Geochemical study on petrogenesis of Aral granite and the Keketuohai No. 3 pegmatite vein, Altay Xinjiang. Master's thesis of Kunming University of Science and Technology (in Chinese with English abstract).
参考文献
London D. 2015. Readingpegmatites: Part 1—What beryl says. rocks & Minerals, 90 (2): 138~153.
参考文献
Long Xiaoping, Sun Min, Yuan Chao, Xiao Wenjiao, Cai Keda. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208 (3-4): 88~100.
参考文献
Lv Zhenghang, Zhang Hui, Tang Yong, Guan Shenjin. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, northwestern China: Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374~391.
参考文献
Lv Zhenghang, Zhang Hui, Tang Yong. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos, 380-381: 105865.
参考文献
Ma Zhanlong, Xu Yusheng, Tangyong, Zhanghui, Lv Zhenghang. 2022. Geochemical characteristics of metamorphic rocks and metallogenic potential of rare metals in the Habahe Group of the Qinghe area in the Altai orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 41 (6): 1224~1240 (in Chinese with English abstract).
参考文献
Maneta V, Baker D R, Minarik W. 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170 (1): 4.
参考文献
Manning D A C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76 (2): 206~215.
参考文献
Mei Houjun, Yang Xuechang, Wang Junda, Yu Xueyuan, Liu Tiegen, Bai Zhenghua. 1993. Trace element geochemistry of late Palaeozoic volcanic rocks on the southern side of the Irtysh River and the evolutional history of tectonic setting. In: Tu Guangzhi, ed. Progress of Solid-Earth Sciences in Northern Xinjiang, China. Beijing: Science Press, 199~216 (in Chinese).
参考文献
Nance W B, Taylor S R. 1976. Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40 (12): 1539~1551.
参考文献
Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong, Zhu Liqun. 2021. The emplacement mechanism, melt-fluid evolution, rare-element metallogenesis and puzzles of the Koktokay No. 3 pegmatite rare elemental deposit, Altai. Acta Geologica Sinica, 95 (10): 3039~3053 (in Chinese with English abstract).
参考文献
Raimbault L, Cuney M, Azencott C, Duthou J L, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90 (3): 548~576.
参考文献
Scaillet B, Holtz F, Pichavant M, Schmidt M. 1996. Viscosity of Himalayan leucogranites: Implications for mechanisms of granitic magma ascent. Journal of Geophysical Research: Solid Earth, 101 (B12): 27691~27699.
参考文献
Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Luo Yaoqing, Ma Huadong, Suo Qingyu, Bai Yingxiong, Wu Yang. 2021. Temporal-spatial distribution, genesis and metallogenic regularity of the rare metal deposits in Altay of China, Kazakhstan and Russia. Journal of Earth Sciences and Environment, 43(3): 487~505 (in Chinese with English abstract).
参考文献
Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, He Lanfang, Bai Yingxiong, Luo Yaoqing, Suo Qingyu, Cao Chong. 2022. Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): Rare-metal fertility and connection with the No. 3 pegmatite. Gondwana Research, 112: 24~51.
参考文献
Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Ma Huadong, Luo Yaoqing. 2023. Lithium deposits in the Central Asian Metallogenic Domain: Metallogenic regularity and model. Acta Petrologica Sinica, 39(11): 3185~3209 (in Chinese with English abstract).
参考文献
Shen Ruifeng, Zhang Hui, Tang Yong, Lv Zhenghang. 2015. Geochemical characteristics of Paleozoic strata and its restriction on depositional environment in Altay orogen, north Xinjiang, China. Geochimica, 44 (1): 43~60 (in Chinese with English abstract).
参考文献
Simmons W B, Falster A U. 2016. Evidence for an anatectic origin of an LCT type pegmatite. Colorado: Mt. Second Eugene E, Foord Pegmatite Symposium, 103.
参考文献
Sun Min, Yuan Chao, Xiao Wenjiao, Long Xiaoping, Xia Xiaoping, Zhao Guochun, Lin Shoufa, Wu Fuyuan, Kröner A. 2008. Zircon U-Pb and hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Paleozoic. Chemical Geology, 247 (3): 352~383.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Tartèse R, Boulvais P. 2010. Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, 114 (3-4): 353~368.
参考文献
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press.
参考文献
Wang Denghong, Chen Yuchuan, Xu Zhigang, Fu Xujie. 2002. Metallogenic Series and Regularities in Altai Metallogenic Province. Beijing: Atomic Energy Press (in Chinese).
参考文献
Wang Rucheng, Hu Huan, Zhang Aicheng, Huang Xiaolong, Ni Pei. 2004. Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China. The Canadian Mineralogist, 42 (3): 883~896.
参考文献
Wang Rucheng, Hu Huan, Zhang Aicheng, Fontan F, Parseval P D, Jiang Shaoyong. 2007. Cs-dominant polylithionite in the Koktokay#3 pegmatite, Altai, NW China: In situ micro-characterization and implication for the storage of radioactive cesium. Contributions to Mineralogy & Petrology, 153 (3): 355~367.
参考文献
Wang Rucheng, Che Xudong, Zhang Wenlan, Zhang Aicheng, Zhang Hui. 2009. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China). European Journal of Mineralogy, 21 (4): 795~809.
参考文献
Wang Rucheng, Wu Bin, Xie Lei, Che Xudong, Xiang Lu, Liu Chen. 2021. Global tempo-spatial distribution of rare-metal mineralization and continental evolution. Acta Geologica Sinica, 95 (1): 182~193 (in Chinese with English abstract).
参考文献
Wang Tao, Hong Dawei, Jahn B M, Tong Ying, Wang Yanbin, Han Baofu, Wang Xiaoxia. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114 (6): 735~751.
参考文献
Wang Tao, Tong Ying, Jahn B M, Zou Tianren, Wang Yanbin, Hong Dawei, Han Baofu. 2007. SHRIMP U-Pb zircon geochronology of the Altai No. 3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32 (1): 325~336.
参考文献
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64 (2): 295~304.
参考文献
Wedepohl K H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59 (7): 1217~1232.
参考文献
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yanglei. 2017. Highly fractionated granites. Recognition and Research. Scientia Sinica (Terrae), 47 (7): 745~765 (in Chinese with English abstract).
参考文献
Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39 (1): 1~36 (in Chinese with English abstract).
参考文献
Whitney D L, Teyssier C, Vanderhaeghe O. 2004. Gneiss domes and crustal flow. Geological Society of America Special Papers, 380: 15~33.
参考文献
Windley B F, Kröner A, Guo Jinghui, Qu Guosheng, Li Yingyi, Zhang Chi. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology, 110 (6): 719~737.
参考文献
Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong, Song Dongfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in central Asia. Earth-Science Reviews, 186: 94~128.
参考文献
Xu Zhiqin, Fu Xiaofang, Mu Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geologica Sinica, 90 (11): 2971~2981 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Wang Rucheng, Zhao Zhongbao, Fu Xiaofang. 2018. On the structural backgrounds of the large-scale “hard-rock type” lithium ore belts in China. Acta Geologica Sinica, 92 (6): 1091~1106 (in Chinese with English abstract).
参考文献
Yang Fuquan, Zhang Zhongli, Wang Rui, Li Qiang, Ding Jiangang, Su Zhenhua, Ma Kun. 2018. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang. Geotectonica et Metallogenia, 42 (6): 1010~1026 (in Chinese with English abstract).
参考文献
Yuan Chao, Sun Min, Long Xiaoping, Xia Xiaoping, Xiao Wenjiao, Li Xianhua, Lin Shoufa, Cai Keda. 2007a. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica, 23 (7): 1635~1644 (in Chinese with English abstract).
参考文献
Yuan Chao, Sun Min, Xiao Wenjiao, Li Xianhua, Chen Hanlin, Lin Shoufa, Xia Xiaoping, Long Xiaoping. 2007b. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242 (1): 22~39.
参考文献
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjian. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Science Foundation of China, 33 (2): 106~111 (in Chinese with English abstract).
参考文献
Zhang Hui, Lv Zhenghang, Tang Yong. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38 (4): 792~814 (in Chinese with English abstract).
参考文献
Zhao Pengda. 2011. 3D Cubic Quantitative Prediction in the Koktokay Rare Metal Deposit in Xinjiang, China. Beijing: Geological Publishing House (in Chinese with English abstract), 1~50.
参考文献
Zhao Zhenghua, Chen Huayong, Han Jinsheng. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang. Acta Scientiarum Naturalium University Sunyatseni, 1: 1~26 (in Chinese with English abstract).
参考文献
Zhou Qifeng. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No. 3 pegmatitic rare-element deposit, Altai, China. Doctoral dissertation University of Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Zhou Qifeng, Qin Kezhang, Tang Dongmei, Tian Ye, Cao Mingjian, Wang Chunlong. 2015. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages. Resource Geology, 65 (3): 210~231.
参考文献
Zhu Yongfeng, Zeng Yishan, Gu Libing. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27 (1): 61~77.
参考文献
Zou Tianren, Zhang Xiangchen, Jia Fuyi, Wang Rucong, Cao Huizhi, Wu Baiqing. 1986. The origin of No. 3 pegmatite in Altayshan, Xinjiang. Mineral Deposits, 5 (4): 34~48 (in Chinese with English abstract).
参考文献
Zou Tianren, Li Qingchang. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
陈骏. 2019. 关键金属超常富集成矿和高效利用. 科技导报, 37(24): 1.
参考文献
陈剑锋. 2011. 阿尔泰3号伟晶岩脉缓倾斜部分岩浆的形成与演化. 中国科学院研究生院硕士学位论文.
参考文献
陈建平, 陈勇, 朱鹏飞, 王丽梅, 尚北川, 赵洁. 2011. 数字矿床模型及其应用——以新疆阿勒泰地区可可托海3号伟晶岩脉稀有金属隐伏矿预测为例. 地质通报, 30(5): 630~641.
参考文献
何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 2023. 伟晶岩型锂矿床地球物理探测及可可托海实例. 地学前缘, 印刷中.
参考文献
胡忠德. 2008. 可可托海稀有金属矿床3号脉地质特征及深部找矿方向. 新疆有色金属, (S2): 7~10.
参考文献
李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311~4322.
参考文献
刘宏. 2013. 新疆阿尔泰阿拉尔花岗岩地球化学特征及其与可可托海3号脉演化关系. 昆明理工大学硕士学位论文.
参考文献
刘锋, 曹峰, 张志欣, 李强. 2014a. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1~15.
参考文献
马占龙, 徐雨生, 唐勇, 张辉, 吕正航. 2022. 阿尔泰造山带青河地区哈巴河群变质岩地球化学特征及稀有金属背景值研究. 矿物岩石地球化学通报, 41(6): 1224~1240.
参考文献
秦克章, 周起凤, 唐冬梅, 王春龙, 朱丽群. 2021. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜. 地质学报, 95(10): 3039~3053.
参考文献
申萍, 潘鸿迪, 李昌昊, 冯浩轩, 罗耀清, 马华东, 索青宇, 白应雄, 武阳. 2021. 中哈俄阿尔泰稀有金属矿床时空分布、成因及成矿规律. 地球科学与环境学报, 43(3): 487~505.
参考文献
申萍, 潘鸿迪, 李昌昊, 冯浩轩, 马华东, 罗耀清. 2023. 中亚成矿域锂矿床成矿规律及成矿模式.岩石学报, 39(11): 3185~3209.
参考文献
沈瑞峰, 张辉, 唐勇, 吕正航. 2015. 阿尔泰造山带古生代地层的地球化学特征及其对沉积环境的制约. 地球化学, 44(1): 43~60.
参考文献
王登红, 陈毓川, 徐志刚, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社.
参考文献
王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.
参考文献
王汝成, 邬斌, 谢磊, 车旭东, 向路, 刘晨. 2021. 稀有金属成矿全球时空分布与大陆演化. 地质学报, 95(1): 182~193.
参考文献
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745~765.
参考文献
吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1~36.
参考文献
许志琴, 付小方, 马绪宣, 戚学祥, 吴婵, 侯立伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90(11): 2971~2981.
参考文献
许志琴, 王汝成, 赵中宝, 付小芳. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景. 地质学报, 92(6): 1091~1106.
参考文献
闫军武, 刘锋, 申颖. 2020. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成. 地球学报, 41: 663~675.
参考文献
杨富全, 张忠利, 王蕊, 李强, 丁建刚, 苏振华, 麻坤. 2018. 新疆阿尔泰稀有金属矿地质特征及成矿作用. 大地构造与成矿学, 42(6): 1010~1026.
参考文献
袁超, 孙敏, 龙晓平, 夏小平, 肖文交, 李献华, 林寿发, 蔡克大. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635~1644.
参考文献
张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792~814.
参考文献
翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106~111.
参考文献
赵鹏大. 2011. 新疆可可托海稀有金属矿床三维立体定量预测研究. 地质出版社, 1~50.
参考文献
赵振华, 陈华勇, 韩金生. 2022. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用. 中山大学学报(自然科学版), 1: 1~26.
参考文献
周起凤. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔-流体演化与成矿作用. 中国科学院大学博士学位论文.
参考文献
邹天人, 张相宸, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34~48.
参考文献
邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社.
参考文献
庄育勋, 陈斌. 1993. 阿尔泰造山带花岗片麻岩穹窿的形成与演化. 岩石矿物学杂志: 12(2): 115~125.
目录contents

    摘要

    新疆可可托海是世界著名的伟晶岩型稀有金属矿床,该矿床的成因长期存在争议,资源已枯竭多年,其成矿理论及找矿工作均亟待突破。我们对矿区中—上奥陶统哈巴河群变质岩和三叠纪稀有金属花岗岩进行了地质和地球化学研究,并开展了矿区遥感数据解译和地球物理测量工作。结果表明,哈巴河群变质岩以云母片岩为主,与大陆上地壳微量元素含量相似,若以此作为花岗质岩浆的源岩,很难通过部分熔融直接形成含矿熔体;三叠纪稀有金属花岗岩由白云母钠长花岗岩和少量钠长花岗岩组成,其岩浆源于地下深处,在向上运移过程中,经过结晶和流动分异作用,形成富挥发分的含矿岩浆,异地侵位形成稀有金属花岗岩岩枝,矿区存在花岗岩-伟晶岩成矿系统。遥感数据解译显示,矿区发育多个环形影像,这些影像是深部环形构造在浅部的反映,已知的伟晶岩脉及稀有金属花岗岩均赋存其中,指示矿区含矿岩浆活动可能与深部环形构造有关。大地电磁测深显示,在矿区15 km以下深处发育低电阻率异常体,反映深部可能存在残余的岩浆房或局部熔融带,矿区花岗质岩浆源于此处;音频大地电磁测深显示,在矿区南北环形构造的深部均存在低电阻率异常。基于上述地质-遥感-地球物理的研究结果,我们预测在矿区之南的环形构造深部有断裂构造及含矿岩浆活动,其中可能有隐伏稀有金属矿体的存在。

    Abstract

    The Koktokay in Xinjiang is a famous pegmatitic-type rare metal deposit. The genesis of the pegmatites has been controversial, and the rare-metal resources have been exhausted for many years. Hence, breakthroughs are urgently needed in both theory and prospecting. In this study, we conducted geological and geochemical research on the Middle Ordovician metamorphic rocks of Habahe Group and Triassic rare-metal granites in the mining area, as well as remote sensing data interpretation, geophysical investigation, and hidden ore prediction. The metamorphic rocks of the Habahe Group are mainly composed of mica schist. Their trace element contents are similar to that of the continental crust. It is impossible to directly form mineralizing magma through partial melting of these metamorphic rocks. The Triassic rare-metal granite mainly consists of muscovite albite granite with minor albite granite, which originated from a deep magma chamber. During the upward migration process, the magma underwent crystallization and flow differentiation to form volatile-rich, highly differentiated magmas, and then intruded locally to form rare-metal granite branches. There is a granite-pegmatite system at Koktokay. Various remote sensing data interpretation results show several ring images in the Koktokay area which could indicate the ring structures at depth. The pegmatites and rare-metal granites occurred in these ring structures, indicating that the host magmatic activity at Koktogay is likely associated with the ring structures. The magnetotelluric (MT) shows that there are low-resistivity anomalous bodies below 15 km at depth, which could be a residual magma chamber or melting zone where the granite magma derived. The audio-frequency magnetotelluric (AMT) shows significant low-resistivity anomalous bodies occur at depth. Based on these results of the geological, remote sensing, and geophysical research, we predict that there might be fault-magma channels in depth of ring-shaped structures, where granitic magma and related rare metal orebodies could be developed.

  • 稀有金属(Li、Be、Nb、Ta、Rb、Cs、Zr、Hf等)是战略性关键金属矿产(翟明国等,2019陈骏,2019王汝成等,2021吴福元等,2023),主要赋存在花岗伟晶岩中,形成伟晶岩型稀有金属矿床,例如,澳大利亚Grebushes和加拿大Tanko。稀有金属也赋存在花岗岩中,这种花岗岩被称之为稀有金属/元素花岗岩(rare-metal/element granite),以法国的Beauvoir花岗岩(Cuney et al.,1992; Raimbault et al.,1995)和中国江西宜春雅山花岗岩(Huang et al.,2002李洁和黄小龙,2013)为代表。因此,有关稀有金属伟晶岩和花岗岩的成因研究备受关注。此外,随着全球科技的飞速发展,稀有金属资源需求陡然提升,寻找和探测隐伏矿已成为国家的重大战略需求。遥感和地球物理是稀有金属找矿勘查的重要手段,然而,由于伟晶岩通常是花岗质岩浆高度分异的产物,因此,二者之间的物性特征非常接近,利用遥感和地球物理方法区分稀有金属伟晶岩和周围的无矿花岗岩已成为探测的难题(赵鹏大等,2011王登红等,2022)。

  • 新疆阿尔泰造山带位于中亚造山带西段,发育有10万余条花岗伟晶岩脉(邹天人等,1986邹天人和李庆昌,2006),其中,可可托海3号脉因其具有独特的形态、完整而典型的同心环带状构造、含有齐全的稀有金属矿物种类等,受到广泛的关注,众多学者对其进行了矿床地质、地球化学和年代学等方面的研究(邹天人等,1986王登红等,2002Wang Rucheng et al.,20042007邹天人和李庆昌,2006周起凤,2013刘宏,2013杨富全等,2018张辉等,2019申萍等,20212023秦克章等,2021赵振华等,2022),取得了重要成果。然而,关于伟晶岩的成因一直存在争议,部分学者认为伟晶岩是花岗岩浆结晶分异的产物(邹天人等,1986邹天人和李庆昌,2006),由于矿区一直未发现与伟晶岩同期的三叠纪花岗岩,有些学者提出了变质深熔成因模式(Lv Zhenghang et al.,20122021; 张辉等,2019赵振华等,2022)。最近在采坑中出露的白云母花岗岩研究中,发现了铌钽铁矿和绿柱石等稀有金属矿化,其中的铌钽铁矿U-Pb年龄为三叠纪(224.2±2.7~220.7±4.0 Ma)(Shen Ping et al.,2022)或侏罗纪(184.9±4.3~182.3±1.0 Ma)(Han Jinsheng et al.,2023),与3号伟晶岩脉的形成时代(220±9~178±1 Ma)一致,指示3号脉的形成与花岗岩有关 (Shen Ping et al.,2022; Han Jinsheng et al.,2022),二者之间的成因耦合需进一步研究。此外,阿尔泰地区广泛发育哈巴河群变质岩,前人对其进行了时代、物源、沉积构造背景及稀有金属含量等方面的研究(Chen and Jahn,2002;袁超等,2007Long Xiaoping et al.,2008; 沈瑞峰等,2015马占龙等,2022),然而,对可可托海矿区出露的哈巴河群变质岩中的稀有金属含量及其与成矿的关系涉及较少。

  • 可可托海3号脉经过多年的开采,其中绝大部分探明的可采资源量已被采尽,矿山已于1999年闭坑(邹天人和李庆昌,2006),亟待寻找新的资源。前人已经进行了地球物理(胡忠德,2008)、数字矿床模型(陈建平等,2011)和多元信息综合(赵鹏大等,2011)等方面的研究,指出矿区找矿方向为3号脉的深部(胡忠德,2008陈建平等,2011),找矿有利区域为矿区西部和西北部(赵鹏大等,2011)。最近,可可托海矿区三叠纪稀有金属花岗岩的确立,预示着该矿床的成因可能需要重新认识,相应地,矿区的找矿方向也可能会随之发生变化。

  • 本文对可可托海矿区出露的哈巴河群变质岩进行了岩石学和地球化学的研究,对稀有金属花岗岩进行了补充研究,并开展了矿区多种遥感数据解译和地球物理测量工作,揭示了可可托海伟晶岩成因,建立了稀有金属花岗岩-伟晶岩成矿模式,查明了矿区遥感、地球物理异常,在此基础上,指出找矿方向为矿区的南部地区,并预测了新的隐伏矿。这些工作对可可托海矿区稀有金属成矿作用的研究及矿山的再次开发均有深远的意义。

  • 1 地质背景

  • 新疆阿尔泰造山带由多个性质不同的块体组成,包括北阿尔泰、中阿尔泰、琼库尔和南阿尔泰4个地体(Yuan Chao et al.,2007; Sun Ming et al.,2008),许多大型伟晶岩型稀有金属矿床(例如,可可托海、柯鲁木特、卡鲁安等)集中分布在中阿尔泰地体中(图1)。中阿尔泰地体广泛发育奥陶纪—志留纪变质沉积岩(哈巴河群和库鲁木提群),岩浆岩主要为古生代I型花岗岩和部分S 型花岗岩。

  • 1.1 穹隆构造

  • 新疆阿尔泰造山带为古生代长期俯冲-增生过程的产物(Windley et al.,2002Xiao Wenjiao et al.,2018),发育多个花岗片麻岩穹隆,这些穹隆长轴方向为北西向,与区域主构造线方向一致,从东南向西北,依次为青河、可可托海、哈龙达板、巴寨和海流滩-阿维滩穹隆等(庄育勋和陈斌,1993赵鹏大等,2011)。

  • 可可托海穹隆位于卡拉先格尔断裂以东地区,夹持于红山咀断裂和阿巴宫-库尔提断裂之间(图1)。穹隆中发育花岗岩岩基,以泥盆纪片麻状花岗岩为主。穹隆中的断裂构造也很发育,主要为穹隆边缘的向西凸出弧形断裂,也发育其他方向的断裂。此外,穹隆中也发育大量的稀有金属伟晶岩脉,例如,可可托海大型Be-Li-Ta-Nb-Cs-Rb-Hf 矿床、小虎斯特91号脉Li-Be-Ta-Nb 矿床和库吉尔特碧玺矿床等(图2)。

  • 1.2 矿区地质

  • 可可托海矿区出露的地层为中—上奥陶统哈巴河群变质岩(袁超等,2007),侵入岩主要为变辉长岩,侵入于哈巴河群变质岩中(图3)。变辉长岩的锆石U-Pb年龄介于 409±5~408±6 Ma之间(Wang Tao et al.,2006; Cai Keda et al.,2012)。矿区外围的侵入岩主要为片理化黑云母花岗岩和二云母花岗岩等,锆石U-Pb年龄介于410.2±5~395.5±5.2 Ma 之间(Wang Tao et al.,2007; 陈剑锋,2011; 刘峰等,2014a; Zhou Qifeng et al.,2015; Shen Ping et al.,2022)。

  • 图1 中国阿尔泰地质图和主要伟晶岩型稀有金属矿床位置(据Windley et al.,2002; Xiao Wenjiao et al.,2018

  • Fig.1 Geological map of the Chinese Altai showing the location of pegmatite deposits and occurrences (modified from Windley et al., 2002; Xiao Wenjiao et al., 2018)

  • 矿区伟晶岩脉非常发育,以3号脉规模最大,3号脉具有很好的分带,包括外带(Ⅰ文象伟晶岩带、Ⅱ粒状钠长石带、Ⅲ块体微斜长石带、Ⅳ白云母-石英带)和内带(Ⅴ叶钠长石-锂辉石带、Ⅵ石英-锂辉石带、Ⅶ白云母-薄片状钠长石带、Ⅷ锂云母-薄片状钠长石带、Ⅺ石英和微斜长石核)(邹天人等,1986Liu Congqiang and Zhang Hui,2005; 邹天人和李庆昌,2006Wang Rucheng et al.,20072009)。3号脉就位年龄介于220±9~178±1 Ma之间(Zhu Yongfeng et al.,2006; Wang Tao et al.,2007; 陈剑锋,2011; Liu Feng et al.,2014; Zhou Qifeng et al.,2015; Che Xudong et al.,2015; Shen Ping et al.,2022)。

  • 矿区断裂构造发育,断裂走向主要为北西向,倾向南西,与区域断裂构造的走向一致。矿区伟晶岩脉的走向也与区域和矿区断裂走向一致(邹天人等,1986邹天人和李庆昌,2006),说明区域及矿区断裂构造对伟晶岩的形成起控制作用。

  • 2 哈巴河群变质岩特点及其对成矿的贡献

  • 2.1 哈巴河群变质岩特点

  • 对可可托海矿区南部出露的哈巴河群变质岩进行了地质观察和剖面测量,结果表明,哈巴河群变质岩主要为黑云母片岩,有少量含红柱石二云母片岩(图4),片理走向北西,倾向北东,倾角较陡(54°~68°)。岩相学研究表明,岩石具鳞片变晶结构,片状构造,显示片状黑云母与细粒石英定向排列(图4b、c),局部见有黑云母和石英具有塑性流动特征(图4b),并见有粒度较大的红柱石(图4d),呈现斑状变晶结构。黑云母片岩主要矿物组成为石英(50%~60%)、黑云母(25%~30%)和钠长石(5%~10%);含红柱石二云母片岩矿物组成为石英(40%~50%)、白云母(15%~20%)、黑云母(10%~15%)、钠长石(5%~10%)和红柱石(<5%)。

  • 图2 可可托海矿床区域地质简图(底图据富蕴幅1∶20万地质图,1978; 邹天人和李庆昌,2006; 闫军武等,2020修改)

  • Fig.2 Regional geological simplified map of the Koktokay deposit (modified after the1∶200000 geological map of the Fuyun, 1978; Zou Tianren and Li Qingchang, 2006; Yan Junwu et al., 2020)

  • 在可可托海矿区1号伟晶岩脉以南地区(被称之为矿区南部地区),选择远离伟晶岩的哈巴河群样品,进行了全岩主量和微量元素分析,该分析在北京核工业第三研究所实验室完成,测试分析方法详见Shen Ping et al.(2022),分析结果见表1。

  • 二云母片岩的SiO2、Al2O3、K2O、MgO和TFe2O3含量分别为63.15%~66.89%、15.99%~17.04%、2.22%~2.94%、3.17%~3.99%和6.63%~7.71%。与之相比,黑云母片岩具有相对较低的SiO2含量(54.9%~61.0%)以及相对较高的Al2O3(18.54%~20.30%)、K2O(2.74%~4.21%)、MgO(4.40%~4.96%)和TFe2O3(8.23%~9.48%)含量。

  • 矿区所有的片岩均具有较低的稀土元素总量(139×10-6~179×10-6)和负Eu异常(0.67~0.85),接近后太古宙平均澳大利亚页岩(PAAS)(ΣREE=185×10-6,δEu=0.65; Taylor and McLennan 1985)(表1),这些片岩样品也均具有较高的LREE/HREE比值(7.72~11.30),反映整体轻重稀土分馏明显,轻稀土富集;在平均大陆上地壳标准化稀土元素配分图解中(图5a),所有样品均显示出相似的特征,并与PAAS稀土元素配分类似。

  • 在平均大陆上地壳标准化微量元素图解中(图5b),所有样品具有类似的高场强元素(HFSE)和大离子亲石元素(LILE)特点,与PAAS相比,具有亏损的HFSE(如Nb、Ta、Zr、Hf)和LILE(如Rb、Ba、Th、U、Sr、Pb),与平均大陆上地壳相比,这些样品具有明显的不同程度的Nb、Ta、Zr、Hf、Sr元素亏损(图5b)以及Li、Cs等元素的富集特征(表1)。

  • 2.2 哈巴河群变质岩来源及其对成矿的贡献

  • 通常,PAAS被认为是成熟的细粒碎屑沉积物,代表了上大陆地壳的平均组成(Taylor and McLennan,1985),而弧岩石代表未成熟的物质;此外,成熟的细粒碎屑沉积物(如页岩)的La、Th和U丰度高于其未成熟的对应物(如杂砂岩)(Taylor and McLennan,1985; Condie,19911993)。在图6中,哈巴河群片岩样品靠近PAAS,显示不相容元素U、Th和La的丰度略低于PAAS,但高于弧火山岩,表明Th、U和La主要源于成熟大陆物质,少量源于岛弧火山岩。

  • 碎屑岩的化学组成受源区岩石性质和化学风化作用强度的制约,化学蚀变指数(CIA)和成分变异指数(ICV)可用来追溯沉积物源的风化强度及推断源区特征(Cox et al.,1995)。研究区哈巴河群样品的CIA为62.2~77.8(表1),接近于PAAS(CIA =70)(Taylor and McLennan,1985),表明哈巴河群片岩的源区物质经历了弱到中等程度的化学风化作用。此外,研究区哈巴河群样品的ICV为0.98~1.07(表1),均高于PAAS(ICV=0.85),指示源区物质相对不成熟,代表活动大陆边缘的首次沉积的产物。

  • 图3 可可托海矿区地质图(a)和A—A′勘探线剖面图(b)(据邹天人等,1986邹天人和李庆昌,2006资料修改)

  • Fig.3 Geological map of the Koktokay deposit (a) and cross section along the Line A—A′ (b) (modified after Zou Tianren et al., 1986; Zou Tianren and Li Qingchang, 2006)

  • 图4 可可托海矿区南部哈巴河群剖面图(a)和变质岩显微照片(b~d)

  • Fig.4 Stratigraphic section (a) and photomicrographs (b~d) of the metamorphic rocks from the Habahe Group in the southern part of the Koktokay area

  • (a)—哈巴河群剖面图;(b)—黑云母片岩(样品KKP-5),具有塑性流动特征;(c)—黑云母片岩(样品KKP-6),石英-黑云母组成的条带和以石英为主的条带交互出现;(d)—含红柱石二云母片岩(样品KKP-1),见有红柱石变晶; Andal—红柱石; Bt—黑云母; Mus—白云母; Ab—钠长石; Qtz—石英

  • (a) —stratigraphic section of the Habahe Group; (b) —biotite schist (sample KKP-5) , with ductile flow characteristics; (c) —biotite schist (sample KKP-6) , interaction of bands composed of quartz+biotite and quartz-dominated bands; (d) —andalusite-bearing two-mica schists (sample KKP-1) , showing andalusite metacryst; Andal—andalusite; Bt—biotite; Mus—muscovite; Ab—albite; Qtz—quartz

  • 图5 可可托海地区哈巴河群片岩的上地壳标准化稀土配分图(a)和微量元素蛛网图(b)

  • Fig.5 Upper crust-normalized rare earth element (REE) pattern diagram (a) and trace element spider diagram (b) of the Habahe Group schists in the Koktokay area

  • 上地壳数据来自Taylor and McLennan (1985);后太古宙平均页岩PAAS数据来自Nance and Taylor (1976);前人数据来源于Chen and Jahn(2002)以及Long Xiaoping et al.(2008)

  • Upper crust-normalizing data from Taylor and McLennan (1985) , also shown for comparison are post-Archaean average shales (PAAS; Nance and Taylor, 1976) ; previous data collected from Chen and Jahn (2002) and Long Xiaoping et al. (2008)

  • 表1 可可托海地区哈巴河群变质岩全岩主量(%)和微量(×10-6)元素成分

  • Table1 Whole-rock major (%) and trace element (×10-6) compositions of Habahe Group in Koktokay area

  • 注:PAAS—后太古宙平均澳大利亚页岩(Taylor and McLennan,1985); CIA—化学蚀变指数; ICV—成分变异指数。

  • 上述地球化学特征表明可可托海地区哈巴河群的碎屑来自成熟大陆物质和年轻弧火山物质的混合,可能沉积于大陆岛弧环境。

  • 由表1可见,哈巴河群样品的稀有金属含量分别为Li=58×10-6~82×10-6,Be=1.7×10-6~3.1×10-6,Nb=10.9×10-6~14.2×10-6,Ta=0.92×10-6~1.3×10-6,Cs=8.2×10-6~15.5×10-6,与平均大陆上地壳富集的稀有金属含量(Li=22×10-6,Be=3.1×10-6,Nb=26×10-6,Ta=1.5×10-6,Cs=5.8×10-6; Wedepohl,1995)相比,其Li、Cs含量略高,若以此作为花岗伟晶岩岩浆的源岩,其发生部分熔融,很难直接形成含矿伟晶岩岩浆。以Li元素为例进行计算,锂元素的总分配系数D为0.2(Simons et al.,2016),花岗伟晶岩岩浆源岩中Li含量最大为82×10-6,在发生1%部分熔融的情况下,形成的花岗质熔体中Li含量最大的仅为394×10-6,远小于可可托海3号伟晶岩脉中锂辉石结晶所需要的花岗质熔体中的Li含量6968×10-6Maneta et al.,2015),这表明可可托海哈巴河群片岩发生部分熔融,不能直接形成含矿伟晶岩岩浆。此外,哈巴河群中也没有表现出富集Be、Nb、Ta的特征。因此,可可托海地区的哈巴河群对于可可托海稀有金属成矿的直接贡献小。

  • 3 稀有金属花岗岩特点及其与伟晶岩的成因耦合

  • 3.1 稀有金属花岗岩特点

  • 3 号脉所在的采坑中有多处花岗岩出露(图7a),除了前人厘定的采坑北部有花岗岩(北部露头;刘宏,2013; Han Jinsheng et al.,2023)出露之外,在采坑西部和南部也有花岗岩的出露,其中,西部花岗岩呈岩块或捕掳体散落在伟晶岩脉中(图7c),南部花岗岩在伟晶岩中零星出露(Shen Ping et al.,2022)。

  • 采坑中出露的花岗岩由白云母钠长花岗岩和钠长花岗岩组成,以前者为主。白云母钠长花岗岩矿物颗粒较细(粒径为1~2 mm),主要矿物为钠长石(35%)、石英(25%)、微斜长石(20%)和白云母(15%),含有少量电气石(1%~3%),副矿物以石榴子石、磷灰石和锆石为主(图8a)。与之相比,钠长花岗岩的矿物颗粒更细(粒径为0.2~1 mm),含有更多的钠长石(60%~65%)和更少的石英(15%~20%)、微斜长石(5%~10%)和白云母(5%),副矿物均以石榴子石、磷灰石和锆石为主(图8b)。这些花岗岩均发育有呈浸染状分布的绿柱石、铌钽铁矿(图8c、d)。绿柱石粒度较大(0.5~1 mm),呈半自形柱状,分布于钠长石、白云母等造岩矿物间隙之中(图8c)。铌钽铁矿物颗粒较小(100~200 μm),呈他形粒状与中细粒钠长石共生(图8d)。

  • 前人已经对可可托海采坑北部露头中的白云母钠长花岗岩进行了岩石主量和微量元素及Sr-Nd-Hf-B同位素(刘宏,2013Han Jinsheng et al.,2023),我们对采坑中3个露头的花岗岩均进行了岩石主量和微量元素分析(Shen Ping et al.,2022)。本次工作中,我们对北部和西部露头的花岗岩进行了补充分析(表2),这些分析在北京核工业第三研究所实验室完成,分析方法详见Shen Ping et al.(2022)

  • 图6 哈巴河群沉积岩的La-Th图解(a)和Th-U图解(b)(哈巴河群片岩的前人数据与图5相同)

  • Fig.6 Plots of La vs. Th (a) and Th vs. U (b) , showing chemical compositions of the Habahe Group sedimentary rocks (previous data are consistent with those in Fig.5)

  • 图7 可可托海3号脉采坑(a)和花岗岩露头(b、c)照片

  • Fig.7 Photographs of open pits (a) and granite outcrops (b, c) in the Koktokay No.3

  • MAG—白云母钠长花岗岩; AG—钠长花岗岩

  • MAG—muscovite albite granite; AG—albite granite

  • 图8 可可托海3号脉采坑中稀有金属花岗岩的显微照片(a、b,正交偏光)和BSE图像(c、d)

  • Fig.8 Micrographs (a, b, cross-polarized light) and BSE images (c, d) of rare-metal granite in the open pits of the Koktokay No.3

  • (a、c、d)—白云母钠长花岗岩;(b)—钠长花岗岩; 缩写:Ab—钠长石; Mus—白云母; Qtz—石英; Grt—石榴子石; Tur—电气石; Ap—磷灰石; Brl—绿柱石; Col—铌钽铁矿

  • (a, c, d) —muscovite albite granite; (b) —albite granite; Abbreviation: Ab—albite; Mus—muscovite; Qtz—quartz; Grt—garnet; Tur—tourmaline; Ap—apatite; Brl—beryl; Col—coltan

  • 表2 可可托海矿区稀有金属花岗岩全岩主量(%)和微量(×10-6)元素成分

  • Table2 Whole-rock major (%) and trace element (×10-6) compositions of rare metal granites in the Koktokay mine

  • 续表2

  • 注:锆石饱和温度计算依据Waston and Harrison,1983。

  • 白云母钠长花岗岩的SiO2和Na2O含量分别为70.11%~72.18%和6.92%~7.58%,其A/CNK[Al2O3/(CaO + Na2O + K2O)] 比值为1.21~1.31;与之相比,钠长花岗岩具有较低的SiO2含量(69.60%~70.99%)、更高的Na2O含量(9.27%~10.82%)和稍低的A/CNK值(0.95~1.06),这与钠长花岗岩中发育更多的钠长石和更少的石英的岩相学观察结果是一致。所有花岗岩的REE含量较低(ΣREE=3.79×10-6~12.07 ×10-6),并具有显著的负Eu异常(δEu=0.08~0.16),且球粒陨石标准化模式显示明显的四组分效应(图9a)。在平均大陆上地壳标准化微量元素图解中(图9b),所有样品具有类似的HFSE和LILE特点。与平均大陆上地壳相比,这些样品具有明显的Nb、Ta、Li、Cs、Be(图9b,表2)等元素富集特征。

  • 3.2 稀有金属花岗岩的成因

  • 可可托海花岗岩的全岩微量元素分析结果显示,Zr/Hf、Nb/Ta、Y/Ho、K/Rb比值低(图9c、d;表2),这与高度演化的花岗岩系统一致(Černý et al.,19851995; Bau,1996; Ballouard et al.,2016)。可可托海花岗岩具有明显的Eu负异常和稀土元素四分组模式(图9a),表明其为岩浆流体-熔体相互作用产物(Bau,1996; Ballouard et al.,2016; 赵振华等,2022)。通常花岗岩Be含量约为4×10-6,而绿柱石的结晶要求岩浆的Be含量大约在205×10-6左右(London,2015),因此,铍矿化的出现要求高分异花岗岩的存在,而Nb-Ta矿化对岩浆分异程度的要求更高;可可托海花岗岩中发育绿柱石、铌钽铁矿等稀有金属矿物,指示可可托海花岗岩为高分异的花岗岩。此外,钠长花岗岩是花岗质岩浆超分异作用的产物(吴福元等,2017),可可托海花岗岩中出现钠长花岗岩,结合该花岗岩的高A/CNK值(1.09~1.15)和有石榴子石的出现,表明可可托海花岗岩是高度演化的S型花岗岩,其形成经历了高分异作用和后期的熔-流体作用。

  • 用锆石溶解度模型(Watson and Harrison,1983)估算锆石饱和温度TZr(℃),可可托海矿区的白云母钠长石花岗岩的锆石饱和温度为632~700℃,钠长石花岗岩的温度为602~652℃(表2),这些温度均明显低于一般I型和S型花岗岩锆石饱和温度的平均值(分别为781℃和764℃; King et al.,1997)。富含挥发分的花岗岩浆通常具有较低的温度和黏度(Johannes and Holtz,1996; Scaillet et al.,1996),高分异花岗岩中有1%的B2O3的加入,可使岩浆黏度降低至少1个数量级(Dingwell et al.,1992);F的加入可显著降低岩石的熔点(Manning,1981),从而使其黏度显著降低(Dingwell et al.,1993)。可可托海花岗岩中含有电气石(图8a)和磷灰石(图8d),电子探针分析显示磷灰石均为富F的磷灰石(Shen Ping et al.,2022),因此,花岗岩浆是富含挥发分(B、P、F等)的,这可以使残余熔体的黏度明显降低,致使其上侵能力强,流动性大。

  • 已有的研究表明,同种性质的花岗岩由于侵位深度的不同而显示分异程度的不同(Tartèse and Boulvais,2010),侵位较深的花岗岩主要为黑云母花岗岩,而经历较长搬运距离的浅部就位花岗岩主要为高分异淡色花岗岩,表明上侵是花岗岩浆发生分异作用的重要途径(吴福元等,20172023)。可可托海花岗岩岩枝侵入哈巴河群片岩和泥盆纪变辉长岩中,具有明显的异地侵位特征,我们进行的大地电磁测深测量(详见地球物理部分)表明,花岗岩浆的源区垂直深度约为现今地表之下15 km处。因此,可可托海花岗质岩浆从源区经历15 km以上的较长距离搬运,这为岩浆结晶分异作用提供了有利条件。

  • 图9 可可托海淡色花岗岩地球化学图解

  • Fig.9 Geochemical diagrams of the leucogranites from the Koktokay No.3 deposit

  • (a)—球粒陨石标准化稀土配分图;(b)—上地壳标准化微量元素蛛网图;(c)—Nb/Ta vs. Zr/Hf图解;(d)—Rb/Sr vs. K/Rb图解; 前人数据来源于刘宏(2013),Han Jinsheng et al.(2022),Shen Ping et al.(2022)

  • (a) —chondrite-normalized REE patterns diagram; (b) —upper crust-normalized multi-element diagram; (c) —Nb/Ta vs. Zr/Hf diagram; (d) —Rb/Sr vs. K/Rb diagram; previous data were collected from Liu Hong (2013) , Han Jinsheng et al. (2022) , Shen Ping et al. (2022)

  • 可见,可可托海稀有金属花岗岩的岩浆,从源区向上运移过程中发生了显著的结晶和流动分异作用,形成富挥发分的低黏度的岩浆,这种岩浆浅部异地就位形成花岗岩岩枝。

  • 3.3 花岗岩与伟晶岩的成因耦合

  • 前已述及,可可托海稀有金属花岗岩与3号脉的形成时代一致,均为晚三叠世—早侏罗世。地质观察表明,矿区稀有金属花岗岩岩枝和3号脉均出露在采坑中,二者同空间,根据花岗岩呈捕掳体分散在3号脉中的分布特点,可以确定稀有金属花岗岩形成应稍早于伟晶岩。前人研究表明可可托海3号脉形成经历了岩浆分异结晶作用和流体-熔体相互作用(王登红等,2002Wang Rucheng et al.,20042007周起凤,2013张辉等,2019),本次研究显示可可托海含矿花岗岩的形成也经历了类似的作用。此外,含矿花岗岩与3号脉的外带(包括Ⅰ、Ⅱ、Ⅲ、Ⅳ带)的矿物组成及其元素特征一致,只是稀有元素富集程度不同(Shen Ping et al.,2022)。这些特点指示可可托海含矿花岗岩和伟晶岩可能是同源岩浆经历不同阶段岩浆分异作用的产物,伟晶岩比花岗岩的演化程度更高,形成更晚,这样,矿区可能存在花岗岩-伟晶岩成矿系统。

  • 在花岗岩-伟晶岩系统中,深部花岗岩浆沿断裂上升,形成高分异花岗岩浆,异地侵位形成花岗岩岩枝,稍后伟晶岩岩浆上升就位形成3号脉,构成了采坑中见到的稀有金属花岗岩-伟晶岩组合体。基于此,可以推断,如果在矿区存在另外的断裂构造形成的通道,则源于深部的岩浆沿着该通道上升就位,可以形成另外一个稀有金属花岗岩-伟晶岩组合体,这一地质推断需要其他工作进行验证。因此,我们进行了矿区遥感解译和地球物理测量工作。

  • 4 矿区遥感数据解译及环形构造

  • 本次遥感解译采用了哨兵2号多光谱图像、ASTER多光谱图像和高分2号多光谱图像。哨兵2号的红、绿、蓝、近红外波段的空间分辨率为10 m,短波红外波段为20 m。ASTER图像的红、绿、近红外波段的空间分辨率为15 m,短波红外波段为30 m。高分2号多光谱图像的空间分辨率为4 m。这些影像精细地展示了地表地质体的分布。

  • 本次遥感多光谱图像清晰地显示可可托海地区具有明显的环形构造,该环形构造的人工解译主要寻找由地形和地表地物(不同岩性、植被、水系等)构成的近似圆形和环形的图斑。在解译过程中,为了保证解译结果的可靠性,对原始遥感图像进行了波段组合、直方图拉伸、蚀变信息提取等多种处理。

  • 可可托海地区的多光谱图像的假彩色合成图像能够清晰展示地表各类岩性和地物的分布。在哨兵2号多光谱图像的假彩色合成图像中(图10a),不含矿的泥盆纪黑云母花岗岩体主要呈粉红色,具有较清晰的边界;泥盆纪变辉长岩体和中晚奥陶世哈巴河群变质岩主要呈褐红色,组成上、中、下三个圆形的图斑。上面的图斑由周围多条直线状或近似直线状的断裂和河谷围成;中间和下面的图斑周边分布着半环形的河谷和水系。与之类似,在ASTER图像(图10b)和高分2号多光谱图像(图10c)的假彩色合成图像中,这三个环形构造也都显示较为明显,只是矿区南部的东西向小河以南地区呈现的环形构造的规模较小。

  • 哨兵2号多光谱图像中包含了丰富的与热液活动密切相关的蚀变矿物信息,如图10d所示,在哨兵2号多光谱图像的蚀变信息假彩色合成图像中(三价铁染和羟基蚀变分别以红、绿通道显示),三个环形构造均显示较明显。环形构造内的变辉长岩体具有较高的铁染蚀变和羟基蚀变,呈黄色。哈巴河群变质岩具有较高的三价铁染蚀变和较低的羟基蚀变,呈红色或偏红的黄色,反之,不含矿的黑云母花岗岩体的三价铁染蚀变和的羟基蚀变均不甚显著,呈暗黄色或绿色。这三种岩性具有较明显的铁染和羟基蚀变差异,较好地显示了三个环形构造的存在,同时,也显示在三个环形构造内有明显的热液蚀变,这与地质观察见到的变辉长岩体中,由于伟晶岩就位引起的热变质及交代变质作用形成的热液蚀变是一致的,也与前人进行的矿区本身发育的1、2、3号伟晶岩脉上部显示的环形和面状高磁异常特征(胡忠德,2008; 图3a)相吻合。

  • 5 矿区地球物理测量及有关的异常

  • 前已述及,在可可托海地区,前人开展的地球物理工作集中在矿区本身出露的1、2、3号伟晶岩脉地区,并圈定了几个磁异常区(图3),而对矿区外围,尤其是1号伟晶岩脉以南的南部地区鲜有地球物理工作。我们对矿区开展了大地电磁测深(MT,频率范围为0.001~300 Hz甚至更低)和音频大地电磁测深(AMT,频率范围为10~10000 Hz)野外数据采集和处理工作,目的是探测深部是否存在与花岗岩-伟晶岩组合有关的地球物理异常。

  • 对可可托海矿区代表性岩石样品(泥盆纪黑云母花岗岩、伟晶岩、哈巴河群片岩、变辉长岩)进行了复电阻率测量,结果表明,它们之间电阻率彼此相差近一个数量级(笔者未发表数据)。在此基础上,选择横穿矿区及其外围的南北向剖面(图3a),进行MT测深(L01),原始数据的分析另文发表,本文仅将反演结果显示在图11中;为了便于对比,我们也将相应的地质剖面显示在图11a中,可见,矿区北部发育泥盆纪黑云母花岗岩,矿区本身及其南部地区发育伟晶岩、变辉长岩和哈巴河群片岩。与之相对应,地球物理显示北部电阻率较高(>5000 Ω·m),南部电阻率整体偏低(<5000 Ω·m),且在地下15 km以下发育有明显的低阻电性体(图11b),可能为相对热的地质体(详细的解释将另文发表),指示该低阻电性体可能为残余的岩浆房或局部熔融带。

  • 在矿区进行了5条AMT探测(图3a),包括两条南北向和三条东西向剖面(何兰芳等,2023),在此,我们仅呈现了不同深度的电阻率测量结果(图12)。可见,可可托海地区的电阻率整体表现为相对低阻带(<1000 Ω·m)及周围的高阻带(>1000 Ω·m),低电阻率体整体形态呈“葫芦”状,与地质图(图3)和遥感图(图10)相比,矿区本身低电阻率异常体与矿区1、2、3号脉及稀有金属花岗岩出露地区以及遥感解译显示的环形构造相对应,可能与断裂和裂隙造成的伟晶岩和花岗岩饱水有关;南部地区的低电阻率异常体位于遥感解译显示的环形构造中,表明其深处也可能有断裂构造的存在,其中也可能有花岗岩-伟晶岩组合体存在。

  • 图10 可可托海地区多光谱图像

  • Fig.10 Multispectral image of the Koktokay area

  • (a)—哨兵2号多光谱图像(短波红外波段12、近红外波段8、蓝波段2的红绿蓝假彩色合成)及其环形构造(黑线);(b)—ASTER多光谱图像(短波红外波段7、近红外波段3、绿波段1的红绿蓝假彩色合成)及其环形构造(黑线);(c)—高分2号多光谱图像(红波段3、近红外波段4、蓝波段1的红绿蓝假彩色合成)及其环形构造(黑线);(d)—哨兵2号多光谱图像的蚀变信息(三价铁染、羟基蚀变的红绿假彩色合成)及其环形构造(黑线)

  • (a) —Sentinel-2 multispectral image (false color composite of bands 12, 8 and 2 in RGB) and the ring structures (black lines) ; (b) —ASTER multispectral image (false color composite of bands 7, 3 and 2 in RGB) and the ring structures (black lines) ; (c) —GF-2 multispectral image (red-green-blue pseudocolor synthesis of red band 3, near infrared band 4, and blue band 1) and its ring structure (black line) ; (d) —alteration information derived from the Sentinel-2 image (false color composite of Fe3+ and OH- alterations in red and green, respectively) and the ring structures (black lines)

  • 图11 可可托海地区南北向地质剖面图(a)和相应的L01线MT深度-电阻率断面图(b,底图据何兰芳等未发表数据)

  • Fig.11 North-south geological section (a) and MT depth-resistivity cross-section of the L01 line (b, based on unpublished data from He Lanfang et al., unpublished data) in the Koktokay area

  • 图12 可可托海矿区地下和500 m(a)200 m(b)等深度电阻率分布图

  • Fig.12 Resistivity distribution at 500 m (a) and 200 m (b) depth below the surface of the Koktokay area

  • 6 成矿模式及隐伏矿预测

  • 6.1 南部地区的花岗岩-伟晶岩组合体

  • 我们对矿区外围进行了地质观察和剖面测量,结果表明,矿区除了1、2、3号伟晶岩脉之外,其他伟晶岩脉集中在南部地区的哈巴河群片岩中。在矿区南部东西向小河的南北两侧均发育多条伟晶岩脉,为了研究方便,将小河以北和以南的脉群分别命名为4号脉和5号脉(图3a)。其中,4号脉长30~130 m,脉宽2~4 m,走向近EW向,倾向北(15°~339°),倾角较陡(45°~71°),一般伟晶岩脉斜切哈巴河群片岩(图13a);5号脉长50~60 m,脉宽1~2 m,走向近EW向,倾向北,倾角较陡(48°~54°)。岩相学研究表明,这些伟晶岩脉中发育铌钽矿和绿柱石(图13b),稀有金属以Nb-Ta-Be为主,与可可托海3号脉的外带以及稀有金属花岗岩的元素组合类似。因此,可可托海的南部地区可能存在两个花岗岩-伟晶岩组合体。

  • 6.2 矿区成矿模式

  • 片麻岩穹隆是构造-岩浆-变质作用高度耦合的特殊地质体(Teyssier and Whitney,2002;许志琴等,20162018)。由于片麻岩穹隆形成经历了从垂直上升的地壳流导致的岩浆上涌的挤压收缩到岩浆体侵位的顶部伸展机制的转化过程(Whitney et al.,2004),因此,片麻岩穹隆的这一过程有利于稀有金属伟晶岩脉的生成(许志琴等,20162018)。可可托海地区发育片麻岩穹隆,该穹隆发育大量的泥盆纪片麻状花岗岩和中西部多个三叠纪伟晶岩型稀有金属矿床,其中,可可托海矿床位于可可托海片麻岩穹隆的西南部,夹持于两个弧形断裂之间(图2),虽然穹隆形成于古生代,但是穹隆构造中发育的断裂通道,则为中生代岩浆运移及就位提供了空间。

  • 地球物理测量可知,矿区地下15 km深部发育残余的岩浆房或局部熔融带,花岗岩岩浆可能源于此处,沿着断裂通道向上运移,在浅部就位形成含矿花岗岩和伟晶岩。具体而言,在矿区本身的环形构造中形成含矿花岗岩和1、2、3号伟晶岩脉;在南部地区的环形构造中发育4号和5号含矿伟晶岩脉,表明含矿岩浆也可在南部地区运移就位。这样,我们建立了矿区花岗岩-伟晶岩成矿模式(图14)。需要说明的是,在矿区本身,尽管含矿花岗岩在采坑中不同部位出露,这些花岗岩具有相同的地质和地球化学特征和一致的侵入时代(Shen Ping et al.,2022),表明其为同源岩浆经历高分异之后,侵位于采坑不同位置,最终形成三处含矿花岗岩露头,这些露头向深部可能组成一个隐伏的花岗岩岩体。

  • 图13 可可托海矿区4号伟晶岩脉和哈巴河群黑云母片岩接触关系剖面图(a)和典型伟晶岩BSE照片(b)

  • Fig.13 Contact relationship between the No.4 pegmatite and biotite schist of the Habahe Group at the Koktokay (a) and BSE micrographs of typical pegmatites (b)

  • 缩写: Ab—钠长石; Brl—绿柱石; Col-Tan—铌钽铁矿; Mus—白云母; Qtz—石英

  • Abbreviation: Ab—albite; Brl—beryl; Col-Tan—columbite-tantalite; Mus—muscovite; Qtz—quartz

  • 图14 可可托海矿区花岗岩-伟晶岩成矿模式图

  • Fig.14 A granite-pegmatite connection model in the Koktokay area

  • 6.3 矿区南部隐伏矿预测

  • 将上述地质-遥感-地球物理研究结果集成于图15中,可见,遥感数据解译显示矿区本身及南部地区有多个环形构造的存在,我们将其分别命名为C1(矿区本身)、C2和C3(矿区南部地区)(图15a);深部地球物理测量显示,矿区本身和南部地区均发育明显的电阻率异常区(图15c、d)。矿区本身电阻率异常位于环形构造(C1)内,与已知的1、2、3号脉空间上重叠,指示该异常可能为矿质异常;在南部地区的环形构造(C2)中发育4号伟晶岩脉,预测在C2中发育明显的电阻率异常区有断裂构造存在,其中可能赋存有隐伏的稀有金属花岗岩和伟晶岩,值得勘探验证。虽然在遥感数据解译显示的C3范围内由于所获得的地球物理数据较少,尚未圈出地球物理异常,但是,C3异常中出露5号伟晶岩脉,因此,C3异常的深部仍是成矿的有利地区,值得重视。可可托海的南部地区隐伏矿的预测虽然还需进行工程验证,但是,这一预测无疑对已经闭坑多年的可可托海矿区稀有金属的再次开发具有深远的意义。

  • 7 结论

  • (1)矿区哈巴河群片岩中Be、Nb、Ta含量低于平均大陆上地壳,Li和Cs含量略高于平均大陆上地壳,若哈巴河群片岩发生部分熔融,不能直接形成含矿岩浆。

  • (2)矿区发育三叠纪稀有金属花岗岩,由白云母钠长花岗岩和钠长花岗岩组成,其岩浆源于地下深处,在上升过程中发生结晶和流动分异作用,形成富含挥发分的低黏度岩浆,异地侵位形成含矿花岗岩岩枝。

  • (3)矿区伟晶岩脉与稀有金属花岗岩的形成时代、矿物组成及元素特征一致,表明二者具有相同的岩浆来源,伟晶岩为岩浆更高程度分异作用的产物,矿区发育花岗岩-伟晶岩成矿系统。

  • (4)多种遥感数据解译显示,矿区本身及其外围的南部地区发育有明显的环形影像,结合地质特征,指示可可托海地区发育多个呈南北向分布的环形构造,这些环形构造可以为岩浆运移提供通道。

  • 图15 可可托海矿区地质(a)、遥感(b)、地球物理(c、d)综合预测透视图(C1为已知区,C2、 C3为预测区)

  • Fig.15 Geology (a) , remote sensing (b) , geophysics (c, d) integrated forecast diagram of the Koktokay area (C1 represents the known ore-forming areas, C2, C3 represent the ore-forming predication areas)

  • (5)地球物理测量结果显示,矿区深部15 km以下存在低电阻率异常体,可能为残余的岩浆房或局部熔融带;矿区本身及南部地区发育低电阻率体,呈“葫芦状”。

  • (6)地质-遥感-地球物理综合研究表明,可可托海的南部地区的深部可能存在断裂构造,其中可能赋存有隐伏的稀有金属矿体,需要勘探验证。

  • 致谢: 感谢南京大学王汝成教授的约稿;感谢两名评审老师的认真评阅论文并提出了宝贵修改意见。感谢新疆有色工业集团稀有金属有限责任公司胡忠德高工、任文斌高工和有关领导、中国科学院地球化学研究所张辉研究员等在野外工作中给予的大力支持和帮助。感谢中国地质调查局中国地质科学院孟贵祥研究员在论文撰写过程中给予的讨论和建议。此外,索青宇、楚翔凯和武阳博士共同参与了野外工作,在此表示衷心感谢。

  • 参考文献

    • Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123 (3): 323~333.

    • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44 (3): 231~234.

    • Cai Keda, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao, Long Xiaoping. 2012. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance. Chemical Geology, 294-295: 26~41.

    • Černý P, Meintzer R E, Anderson A J. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23 (3): 381~421.

    • Černý P, Lenton P G. 1995. The Buck and Pegli lithium deposits, southeastern Manitoba: The problem of updip fractionation in subhorizontal pegmatite sheets. Economic Geology, 90: 658~675.

    • Che Xudong, Wu Fuyuan, Wang Rucheng, Gerdes A, Ji Weiqiang, Zhao Zhenhua, Yang Jinhui, Zhu Zeying. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979~989.

    • Chen Bin, Jahn B M. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of Northwest China and their tectonic implications. Geological Magazine, 139 (1): 1~13.

    • Chen Jianfeng. 2011. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution. Master's thesis of University of Chinese Academy of Sciences (in Chinese with English abstract).

    • Chen Jianping, Chen Yong, Zhu Pengei, Wang Limei, Shang Beichuan, Zhao Jie. 2011. Digital ore deposit model and its application: A case study of the prognosis of the Koktokay No. 3 pegmatite dike concealed rare metal deposit in Altay area of Xinjiang. Geological Bulletin of China, 30 (5): 630~641 (in Chinese with English abstract).

    • Chen Jun. 2019. Supernormal enrichment and mineralization and high efficiency utilization of critical metals. Science & Technology Review, 37 (24): 1 (in Chinese with English abstract).

    • Condie K C. 1991. Another look at REE in shales. Geochimica et Cosmochimica Acta, 5: 2527~2531.

    • Condie K C. 1993. Chemical composition and evolution of the upper continental crust-contrasting results from surface samples and shales. Chemical Geology, 104: 1~37.

    • Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59 (14): 2919~2940.

    • Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766~794.

    • Dingwell D B, Knoche R, Webb S L, Pichavant M. 1992. The effect of B2O3 on the viscosity of haplogranitic liquids. American Mineralogist, 77 (5-6): 457~461.

    • Dingwell D B, Knoche R, Webb S L. 1993. The effect of F on the density of haplogranite melt. American Mineralogist, 78 (3-4): 325~330.

    • Han Jinsheng, Zhao Zhenhua, Hollings Pete, Chen Huayong. 2023. A 50 m. y. melting model for the rare metal-rich Koktokay pegmatite in the Chinese Altai: Implications from a newly identified Jurassic granite. GSA Bulletin, 135(5-6): 1467~1479.

    • Hu Zhongde. 2008. Geological characteristics and deep prospecting direction of No. 3 pegmatite in Hoktuohai rare metal deposit. Xinjiang Nonferrous Metals, (S2): 7~10 (in Chinese).

    • Huang X L, Wang R C, Chen X M, Hu H, Liu C S. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40 (4): 1047~1068.

    • Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer.

    • King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of petrology, 38 (3): 371~391.

    • Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29 (12): 4311~4322.

    • Liu Congqiang, Zhang Hui. 2005. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma. Chemical Geology, 214 (1-2): 61~77.

    • Liu Feng, Cao Feng, Zhang Zhi Xin, Li Qiang. 2014a. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang. Acta Petrologica Sinica, 30 (1): 1~15 (in Chinese with English abstract).

    • Liu Feng, Zhang Zhixin, Li Qi, Zhang Chao, Li Chao. 2014b. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209~219.

    • Liu Hong. 2013. Geochemical study on petrogenesis of Aral granite and the Keketuohai No. 3 pegmatite vein, Altay Xinjiang. Master's thesis of Kunming University of Science and Technology (in Chinese with English abstract).

    • London D. 2015. Readingpegmatites: Part 1—What beryl says. rocks & Minerals, 90 (2): 138~153.

    • Long Xiaoping, Sun Min, Yuan Chao, Xiao Wenjiao, Cai Keda. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208 (3-4): 88~100.

    • Lv Zhenghang, Zhang Hui, Tang Yong, Guan Shenjin. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, northwestern China: Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374~391.

    • Lv Zhenghang, Zhang Hui, Tang Yong. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos, 380-381: 105865.

    • Ma Zhanlong, Xu Yusheng, Tangyong, Zhanghui, Lv Zhenghang. 2022. Geochemical characteristics of metamorphic rocks and metallogenic potential of rare metals in the Habahe Group of the Qinghe area in the Altai orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 41 (6): 1224~1240 (in Chinese with English abstract).

    • Maneta V, Baker D R, Minarik W. 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170 (1): 4.

    • Manning D A C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76 (2): 206~215.

    • Mei Houjun, Yang Xuechang, Wang Junda, Yu Xueyuan, Liu Tiegen, Bai Zhenghua. 1993. Trace element geochemistry of late Palaeozoic volcanic rocks on the southern side of the Irtysh River and the evolutional history of tectonic setting. In: Tu Guangzhi, ed. Progress of Solid-Earth Sciences in Northern Xinjiang, China. Beijing: Science Press, 199~216 (in Chinese).

    • Nance W B, Taylor S R. 1976. Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40 (12): 1539~1551.

    • Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong, Zhu Liqun. 2021. The emplacement mechanism, melt-fluid evolution, rare-element metallogenesis and puzzles of the Koktokay No. 3 pegmatite rare elemental deposit, Altai. Acta Geologica Sinica, 95 (10): 3039~3053 (in Chinese with English abstract).

    • Raimbault L, Cuney M, Azencott C, Duthou J L, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90 (3): 548~576.

    • Scaillet B, Holtz F, Pichavant M, Schmidt M. 1996. Viscosity of Himalayan leucogranites: Implications for mechanisms of granitic magma ascent. Journal of Geophysical Research: Solid Earth, 101 (B12): 27691~27699.

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Luo Yaoqing, Ma Huadong, Suo Qingyu, Bai Yingxiong, Wu Yang. 2021. Temporal-spatial distribution, genesis and metallogenic regularity of the rare metal deposits in Altay of China, Kazakhstan and Russia. Journal of Earth Sciences and Environment, 43(3): 487~505 (in Chinese with English abstract).

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, He Lanfang, Bai Yingxiong, Luo Yaoqing, Suo Qingyu, Cao Chong. 2022. Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): Rare-metal fertility and connection with the No. 3 pegmatite. Gondwana Research, 112: 24~51.

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Ma Huadong, Luo Yaoqing. 2023. Lithium deposits in the Central Asian Metallogenic Domain: Metallogenic regularity and model. Acta Petrologica Sinica, 39(11): 3185~3209 (in Chinese with English abstract).

    • Shen Ruifeng, Zhang Hui, Tang Yong, Lv Zhenghang. 2015. Geochemical characteristics of Paleozoic strata and its restriction on depositional environment in Altay orogen, north Xinjiang, China. Geochimica, 44 (1): 43~60 (in Chinese with English abstract).

    • Simmons W B, Falster A U. 2016. Evidence for an anatectic origin of an LCT type pegmatite. Colorado: Mt. Second Eugene E, Foord Pegmatite Symposium, 103.

    • Sun Min, Yuan Chao, Xiao Wenjiao, Long Xiaoping, Xia Xiaoping, Zhao Guochun, Lin Shoufa, Wu Fuyuan, Kröner A. 2008. Zircon U-Pb and hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Paleozoic. Chemical Geology, 247 (3): 352~383.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tartèse R, Boulvais P. 2010. Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, 114 (3-4): 353~368.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press.

    • Wang Denghong, Chen Yuchuan, Xu Zhigang, Fu Xujie. 2002. Metallogenic Series and Regularities in Altai Metallogenic Province. Beijing: Atomic Energy Press (in Chinese).

    • Wang Rucheng, Hu Huan, Zhang Aicheng, Huang Xiaolong, Ni Pei. 2004. Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China. The Canadian Mineralogist, 42 (3): 883~896.

    • Wang Rucheng, Hu Huan, Zhang Aicheng, Fontan F, Parseval P D, Jiang Shaoyong. 2007. Cs-dominant polylithionite in the Koktokay#3 pegmatite, Altai, NW China: In situ micro-characterization and implication for the storage of radioactive cesium. Contributions to Mineralogy & Petrology, 153 (3): 355~367.

    • Wang Rucheng, Che Xudong, Zhang Wenlan, Zhang Aicheng, Zhang Hui. 2009. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China). European Journal of Mineralogy, 21 (4): 795~809.

    • Wang Rucheng, Wu Bin, Xie Lei, Che Xudong, Xiang Lu, Liu Chen. 2021. Global tempo-spatial distribution of rare-metal mineralization and continental evolution. Acta Geologica Sinica, 95 (1): 182~193 (in Chinese with English abstract).

    • Wang Tao, Hong Dawei, Jahn B M, Tong Ying, Wang Yanbin, Han Baofu, Wang Xiaoxia. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114 (6): 735~751.

    • Wang Tao, Tong Ying, Jahn B M, Zou Tianren, Wang Yanbin, Hong Dawei, Han Baofu. 2007. SHRIMP U-Pb zircon geochronology of the Altai No. 3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32 (1): 325~336.

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64 (2): 295~304.

    • Wedepohl K H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59 (7): 1217~1232.

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yanglei. 2017. Highly fractionated granites. Recognition and Research. Scientia Sinica (Terrae), 47 (7): 745~765 (in Chinese with English abstract).

    • Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39 (1): 1~36 (in Chinese with English abstract).

    • Whitney D L, Teyssier C, Vanderhaeghe O. 2004. Gneiss domes and crustal flow. Geological Society of America Special Papers, 380: 15~33.

    • Windley B F, Kröner A, Guo Jinghui, Qu Guosheng, Li Yingyi, Zhang Chi. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology, 110 (6): 719~737.

    • Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong, Song Dongfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in central Asia. Earth-Science Reviews, 186: 94~128.

    • Xu Zhiqin, Fu Xiaofang, Mu Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geologica Sinica, 90 (11): 2971~2981 (in Chinese with English abstract).

    • Xu Zhiqin, Wang Rucheng, Zhao Zhongbao, Fu Xiaofang. 2018. On the structural backgrounds of the large-scale “hard-rock type” lithium ore belts in China. Acta Geologica Sinica, 92 (6): 1091~1106 (in Chinese with English abstract).

    • Yang Fuquan, Zhang Zhongli, Wang Rui, Li Qiang, Ding Jiangang, Su Zhenhua, Ma Kun. 2018. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang. Geotectonica et Metallogenia, 42 (6): 1010~1026 (in Chinese with English abstract).

    • Yuan Chao, Sun Min, Long Xiaoping, Xia Xiaoping, Xiao Wenjiao, Li Xianhua, Lin Shoufa, Cai Keda. 2007a. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica, 23 (7): 1635~1644 (in Chinese with English abstract).

    • Yuan Chao, Sun Min, Xiao Wenjiao, Li Xianhua, Chen Hanlin, Lin Shoufa, Xia Xiaoping, Long Xiaoping. 2007b. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242 (1): 22~39.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjian. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Science Foundation of China, 33 (2): 106~111 (in Chinese with English abstract).

    • Zhang Hui, Lv Zhenghang, Tang Yong. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38 (4): 792~814 (in Chinese with English abstract).

    • Zhao Pengda. 2011. 3D Cubic Quantitative Prediction in the Koktokay Rare Metal Deposit in Xinjiang, China. Beijing: Geological Publishing House (in Chinese with English abstract), 1~50.

    • Zhao Zhenghua, Chen Huayong, Han Jinsheng. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang. Acta Scientiarum Naturalium University Sunyatseni, 1: 1~26 (in Chinese with English abstract).

    • Zhou Qifeng. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No. 3 pegmatitic rare-element deposit, Altai, China. Doctoral dissertation University of Chinese Academy of Sciences (in Chinese with English abstract).

    • Zhou Qifeng, Qin Kezhang, Tang Dongmei, Tian Ye, Cao Mingjian, Wang Chunlong. 2015. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages. Resource Geology, 65 (3): 210~231.

    • Zhu Yongfeng, Zeng Yishan, Gu Libing. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27 (1): 61~77.

    • Zou Tianren, Zhang Xiangchen, Jia Fuyi, Wang Rucong, Cao Huizhi, Wu Baiqing. 1986. The origin of No. 3 pegmatite in Altayshan, Xinjiang. Mineral Deposits, 5 (4): 34~48 (in Chinese with English abstract).

    • Zou Tianren, Li Qingchang. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House (in Chinese with English abstract).

    • 陈骏. 2019. 关键金属超常富集成矿和高效利用. 科技导报, 37(24): 1.

    • 陈剑锋. 2011. 阿尔泰3号伟晶岩脉缓倾斜部分岩浆的形成与演化. 中国科学院研究生院硕士学位论文.

    • 陈建平, 陈勇, 朱鹏飞, 王丽梅, 尚北川, 赵洁. 2011. 数字矿床模型及其应用——以新疆阿勒泰地区可可托海3号伟晶岩脉稀有金属隐伏矿预测为例. 地质通报, 30(5): 630~641.

    • 何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 2023. 伟晶岩型锂矿床地球物理探测及可可托海实例. 地学前缘, 印刷中.

    • 胡忠德. 2008. 可可托海稀有金属矿床3号脉地质特征及深部找矿方向. 新疆有色金属, (S2): 7~10.

    • 李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311~4322.

    • 刘宏. 2013. 新疆阿尔泰阿拉尔花岗岩地球化学特征及其与可可托海3号脉演化关系. 昆明理工大学硕士学位论文.

    • 刘锋, 曹峰, 张志欣, 李强. 2014a. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1~15.

    • 马占龙, 徐雨生, 唐勇, 张辉, 吕正航. 2022. 阿尔泰造山带青河地区哈巴河群变质岩地球化学特征及稀有金属背景值研究. 矿物岩石地球化学通报, 41(6): 1224~1240.

    • 秦克章, 周起凤, 唐冬梅, 王春龙, 朱丽群. 2021. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜. 地质学报, 95(10): 3039~3053.

    • 申萍, 潘鸿迪, 李昌昊, 冯浩轩, 罗耀清, 马华东, 索青宇, 白应雄, 武阳. 2021. 中哈俄阿尔泰稀有金属矿床时空分布、成因及成矿规律. 地球科学与环境学报, 43(3): 487~505.

    • 申萍, 潘鸿迪, 李昌昊, 冯浩轩, 马华东, 罗耀清. 2023. 中亚成矿域锂矿床成矿规律及成矿模式.岩石学报, 39(11): 3185~3209.

    • 沈瑞峰, 张辉, 唐勇, 吕正航. 2015. 阿尔泰造山带古生代地层的地球化学特征及其对沉积环境的制约. 地球化学, 44(1): 43~60.

    • 王登红, 陈毓川, 徐志刚, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.

    • 王汝成, 邬斌, 谢磊, 车旭东, 向路, 刘晨. 2021. 稀有金属成矿全球时空分布与大陆演化. 地质学报, 95(1): 182~193.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745~765.

    • 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1~36.

    • 许志琴, 付小方, 马绪宣, 戚学祥, 吴婵, 侯立伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90(11): 2971~2981.

    • 许志琴, 王汝成, 赵中宝, 付小芳. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景. 地质学报, 92(6): 1091~1106.

    • 闫军武, 刘锋, 申颖. 2020. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成. 地球学报, 41: 663~675.

    • 杨富全, 张忠利, 王蕊, 李强, 丁建刚, 苏振华, 麻坤. 2018. 新疆阿尔泰稀有金属矿地质特征及成矿作用. 大地构造与成矿学, 42(6): 1010~1026.

    • 袁超, 孙敏, 龙晓平, 夏小平, 肖文交, 李献华, 林寿发, 蔡克大. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635~1644.

    • 张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792~814.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106~111.

    • 赵鹏大. 2011. 新疆可可托海稀有金属矿床三维立体定量预测研究. 地质出版社, 1~50.

    • 赵振华, 陈华勇, 韩金生. 2022. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用. 中山大学学报(自然科学版), 1: 1~26.

    • 周起凤. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔-流体演化与成矿作用. 中国科学院大学博士学位论文.

    • 邹天人, 张相宸, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34~48.

    • 邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社.

    • 庄育勋, 陈斌. 1993. 阿尔泰造山带花岗片麻岩穹窿的形成与演化. 岩石矿物学杂志: 12(2): 115~125.

  • 参考文献

    • Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123 (3): 323~333.

    • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology, 44 (3): 231~234.

    • Cai Keda, Sun Min, Yuan Chao, Zhao Guochun, Xiao Wenjiao, Long Xiaoping. 2012. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance. Chemical Geology, 294-295: 26~41.

    • Černý P, Meintzer R E, Anderson A J. 1985. Extreme fractionation in rare-element granitic pegmatites: Selected examples of data and mechanisms. The Canadian Mineralogist, 23 (3): 381~421.

    • Černý P, Lenton P G. 1995. The Buck and Pegli lithium deposits, southeastern Manitoba: The problem of updip fractionation in subhorizontal pegmatite sheets. Economic Geology, 90: 658~675.

    • Che Xudong, Wu Fuyuan, Wang Rucheng, Gerdes A, Ji Weiqiang, Zhao Zhenhua, Yang Jinhui, Zhu Zeying. 2015. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews, 65: 979~989.

    • Chen Bin, Jahn B M. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of Northwest China and their tectonic implications. Geological Magazine, 139 (1): 1~13.

    • Chen Jianfeng. 2011. Geochemistry of the plate part in Altai No. 3 pegmatite and its formation and evolution. Master's thesis of University of Chinese Academy of Sciences (in Chinese with English abstract).

    • Chen Jianping, Chen Yong, Zhu Pengei, Wang Limei, Shang Beichuan, Zhao Jie. 2011. Digital ore deposit model and its application: A case study of the prognosis of the Koktokay No. 3 pegmatite dike concealed rare metal deposit in Altay area of Xinjiang. Geological Bulletin of China, 30 (5): 630~641 (in Chinese with English abstract).

    • Chen Jun. 2019. Supernormal enrichment and mineralization and high efficiency utilization of critical metals. Science & Technology Review, 37 (24): 1 (in Chinese with English abstract).

    • Condie K C. 1991. Another look at REE in shales. Geochimica et Cosmochimica Acta, 5: 2527~2531.

    • Condie K C. 1993. Chemical composition and evolution of the upper continental crust-contrasting results from surface samples and shales. Chemical Geology, 104: 1~37.

    • Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59 (14): 2919~2940.

    • Cuney M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz-lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766~794.

    • Dingwell D B, Knoche R, Webb S L, Pichavant M. 1992. The effect of B2O3 on the viscosity of haplogranitic liquids. American Mineralogist, 77 (5-6): 457~461.

    • Dingwell D B, Knoche R, Webb S L. 1993. The effect of F on the density of haplogranite melt. American Mineralogist, 78 (3-4): 325~330.

    • Han Jinsheng, Zhao Zhenhua, Hollings Pete, Chen Huayong. 2023. A 50 m. y. melting model for the rare metal-rich Koktokay pegmatite in the Chinese Altai: Implications from a newly identified Jurassic granite. GSA Bulletin, 135(5-6): 1467~1479.

    • Hu Zhongde. 2008. Geological characteristics and deep prospecting direction of No. 3 pegmatite in Hoktuohai rare metal deposit. Xinjiang Nonferrous Metals, (S2): 7~10 (in Chinese).

    • Huang X L, Wang R C, Chen X M, Hu H, Liu C S. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40 (4): 1047~1068.

    • Johannes W, Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer.

    • King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of petrology, 38 (3): 371~391.

    • Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29 (12): 4311~4322.

    • Liu Congqiang, Zhang Hui. 2005. The lanthanide tetrad effect in apatite from the Altay No. 3 pegmatite, Xingjiang, China: An intrinsic feature of the pegmatite magma. Chemical Geology, 214 (1-2): 61~77.

    • Liu Feng, Cao Feng, Zhang Zhi Xin, Li Qiang. 2014a. Chronology and geochemistry of the granite near the Keketuohai No. 3 pegmatite in Xinjiang. Acta Petrologica Sinica, 30 (1): 1~15 (in Chinese with English abstract).

    • Liu Feng, Zhang Zhixin, Li Qi, Zhang Chao, Li Chao. 2014b. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209~219.

    • Liu Hong. 2013. Geochemical study on petrogenesis of Aral granite and the Keketuohai No. 3 pegmatite vein, Altay Xinjiang. Master's thesis of Kunming University of Science and Technology (in Chinese with English abstract).

    • London D. 2015. Readingpegmatites: Part 1—What beryl says. rocks & Minerals, 90 (2): 138~153.

    • Long Xiaoping, Sun Min, Yuan Chao, Xiao Wenjiao, Cai Keda. 2008. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 208 (3-4): 88~100.

    • Lv Zhenghang, Zhang Hui, Tang Yong, Guan Shenjin. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, northwestern China: Evidence from zircon U-Pb and Hf isotopes. Lithos, 154: 374~391.

    • Lv Zhenghang, Zhang Hui, Tang Yong. 2021. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos, 380-381: 105865.

    • Ma Zhanlong, Xu Yusheng, Tangyong, Zhanghui, Lv Zhenghang. 2022. Geochemical characteristics of metamorphic rocks and metallogenic potential of rare metals in the Habahe Group of the Qinghe area in the Altai orogenic belt. Bulletin of Mineralogy, Petrology and Geochemistry, 41 (6): 1224~1240 (in Chinese with English abstract).

    • Maneta V, Baker D R, Minarik W. 2015. Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contributions to Mineralogy and Petrology, 170 (1): 4.

    • Manning D A C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1kb. Contributions to Mineralogy and Petrology, 76 (2): 206~215.

    • Mei Houjun, Yang Xuechang, Wang Junda, Yu Xueyuan, Liu Tiegen, Bai Zhenghua. 1993. Trace element geochemistry of late Palaeozoic volcanic rocks on the southern side of the Irtysh River and the evolutional history of tectonic setting. In: Tu Guangzhi, ed. Progress of Solid-Earth Sciences in Northern Xinjiang, China. Beijing: Science Press, 199~216 (in Chinese).

    • Nance W B, Taylor S R. 1976. Rare earth element patterns and crustal evolution—I. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40 (12): 1539~1551.

    • Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong, Zhu Liqun. 2021. The emplacement mechanism, melt-fluid evolution, rare-element metallogenesis and puzzles of the Koktokay No. 3 pegmatite rare elemental deposit, Altai. Acta Geologica Sinica, 95 (10): 3039~3053 (in Chinese with English abstract).

    • Raimbault L, Cuney M, Azencott C, Duthou J L, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Economic Geology, 90 (3): 548~576.

    • Scaillet B, Holtz F, Pichavant M, Schmidt M. 1996. Viscosity of Himalayan leucogranites: Implications for mechanisms of granitic magma ascent. Journal of Geophysical Research: Solid Earth, 101 (B12): 27691~27699.

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Luo Yaoqing, Ma Huadong, Suo Qingyu, Bai Yingxiong, Wu Yang. 2021. Temporal-spatial distribution, genesis and metallogenic regularity of the rare metal deposits in Altay of China, Kazakhstan and Russia. Journal of Earth Sciences and Environment, 43(3): 487~505 (in Chinese with English abstract).

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, He Lanfang, Bai Yingxiong, Luo Yaoqing, Suo Qingyu, Cao Chong. 2022. Newly-recognized Triassic highly fractionated leucogranite in the Koktokay deposit (Altai, China): Rare-metal fertility and connection with the No. 3 pegmatite. Gondwana Research, 112: 24~51.

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Ma Huadong, Luo Yaoqing. 2023. Lithium deposits in the Central Asian Metallogenic Domain: Metallogenic regularity and model. Acta Petrologica Sinica, 39(11): 3185~3209 (in Chinese with English abstract).

    • Shen Ruifeng, Zhang Hui, Tang Yong, Lv Zhenghang. 2015. Geochemical characteristics of Paleozoic strata and its restriction on depositional environment in Altay orogen, north Xinjiang, China. Geochimica, 44 (1): 43~60 (in Chinese with English abstract).

    • Simmons W B, Falster A U. 2016. Evidence for an anatectic origin of an LCT type pegmatite. Colorado: Mt. Second Eugene E, Foord Pegmatite Symposium, 103.

    • Sun Min, Yuan Chao, Xiao Wenjiao, Long Xiaoping, Xia Xiaoping, Zhao Guochun, Lin Shoufa, Wu Fuyuan, Kröner A. 2008. Zircon U-Pb and hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Paleozoic. Chemical Geology, 247 (3): 352~383.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tartèse R, Boulvais P. 2010. Differentiation of peraluminous leucogranites “en route” to the surface. Lithos, 114 (3-4): 353~368.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press.

    • Wang Denghong, Chen Yuchuan, Xu Zhigang, Fu Xujie. 2002. Metallogenic Series and Regularities in Altai Metallogenic Province. Beijing: Atomic Energy Press (in Chinese).

    • Wang Rucheng, Hu Huan, Zhang Aicheng, Huang Xiaolong, Ni Pei. 2004. Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz-lepidolite granite, southern China. The Canadian Mineralogist, 42 (3): 883~896.

    • Wang Rucheng, Hu Huan, Zhang Aicheng, Fontan F, Parseval P D, Jiang Shaoyong. 2007. Cs-dominant polylithionite in the Koktokay#3 pegmatite, Altai, NW China: In situ micro-characterization and implication for the storage of radioactive cesium. Contributions to Mineralogy & Petrology, 153 (3): 355~367.

    • Wang Rucheng, Che Xudong, Zhang Wenlan, Zhang Aicheng, Zhang Hui. 2009. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay# 3 pegmatite (Altai, NW China). European Journal of Mineralogy, 21 (4): 795~809.

    • Wang Rucheng, Wu Bin, Xie Lei, Che Xudong, Xiang Lu, Liu Chen. 2021. Global tempo-spatial distribution of rare-metal mineralization and continental evolution. Acta Geologica Sinica, 95 (1): 182~193 (in Chinese with English abstract).

    • Wang Tao, Hong Dawei, Jahn B M, Tong Ying, Wang Yanbin, Han Baofu, Wang Xiaoxia. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai mountains, northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114 (6): 735~751.

    • Wang Tao, Tong Ying, Jahn B M, Zou Tianren, Wang Yanbin, Hong Dawei, Han Baofu. 2007. SHRIMP U-Pb zircon geochronology of the Altai No. 3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32 (1): 325~336.

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64 (2): 295~304.

    • Wedepohl K H. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59 (7): 1217~1232.

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yanglei. 2017. Highly fractionated granites. Recognition and Research. Scientia Sinica (Terrae), 47 (7): 745~765 (in Chinese with English abstract).

    • Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39 (1): 1~36 (in Chinese with English abstract).

    • Whitney D L, Teyssier C, Vanderhaeghe O. 2004. Gneiss domes and crustal flow. Geological Society of America Special Papers, 380: 15~33.

    • Windley B F, Kröner A, Guo Jinghui, Qu Guosheng, Li Yingyi, Zhang Chi. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. The Journal of Geology, 110 (6): 719~737.

    • Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong, Song Dongfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in central Asia. Earth-Science Reviews, 186: 94~128.

    • Xu Zhiqin, Fu Xiaofang, Mu Xuxuan, Qi Xuexiang, Wu Chan, Hou Liwei, Zhao Zhongbao. 2016. The gneiss domes in Tibetan Plateau and their potential for prospecting. Acta Geologica Sinica, 90 (11): 2971~2981 (in Chinese with English abstract).

    • Xu Zhiqin, Wang Rucheng, Zhao Zhongbao, Fu Xiaofang. 2018. On the structural backgrounds of the large-scale “hard-rock type” lithium ore belts in China. Acta Geologica Sinica, 92 (6): 1091~1106 (in Chinese with English abstract).

    • Yang Fuquan, Zhang Zhongli, Wang Rui, Li Qiang, Ding Jiangang, Su Zhenhua, Ma Kun. 2018. Geological characteristics and metallogenesis of rare metal deposits in Altay, Xinjiang. Geotectonica et Metallogenia, 42 (6): 1010~1026 (in Chinese with English abstract).

    • Yuan Chao, Sun Min, Long Xiaoping, Xia Xiaoping, Xiao Wenjiao, Li Xianhua, Lin Shoufa, Cai Keda. 2007a. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica, 23 (7): 1635~1644 (in Chinese with English abstract).

    • Yuan Chao, Sun Min, Xiao Wenjiao, Li Xianhua, Chen Hanlin, Lin Shoufa, Xia Xiaoping, Long Xiaoping. 2007b. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242 (1): 22~39.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjian. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Science Foundation of China, 33 (2): 106~111 (in Chinese with English abstract).

    • Zhang Hui, Lv Zhenghang, Tang Yong. 2019. Metallogeny and prospecting model as well as prospecting direction of pegmatite-type rare metal ore deposits in Altay orogenic belt, Xinjiang. Mineral Deposits, 38 (4): 792~814 (in Chinese with English abstract).

    • Zhao Pengda. 2011. 3D Cubic Quantitative Prediction in the Koktokay Rare Metal Deposit in Xinjiang, China. Beijing: Geological Publishing House (in Chinese with English abstract), 1~50.

    • Zhao Zhenghua, Chen Huayong, Han Jinsheng. 2022. Rare metal mineralization of the Mesozoic pegmatite in Altay orogeny, northern Xinjiang. Acta Scientiarum Naturalium University Sunyatseni, 1: 1~26 (in Chinese with English abstract).

    • Zhou Qifeng. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No. 3 pegmatitic rare-element deposit, Altai, China. Doctoral dissertation University of Chinese Academy of Sciences (in Chinese with English abstract).

    • Zhou Qifeng, Qin Kezhang, Tang Dongmei, Tian Ye, Cao Mingjian, Wang Chunlong. 2015. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: Evidence from U-Pb zircon and 40Ar-39Ar muscovite ages. Resource Geology, 65 (3): 210~231.

    • Zhu Yongfeng, Zeng Yishan, Gu Libing. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences, 27 (1): 61~77.

    • Zou Tianren, Zhang Xiangchen, Jia Fuyi, Wang Rucong, Cao Huizhi, Wu Baiqing. 1986. The origin of No. 3 pegmatite in Altayshan, Xinjiang. Mineral Deposits, 5 (4): 34~48 (in Chinese with English abstract).

    • Zou Tianren, Li Qingchang. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House (in Chinese with English abstract).

    • 陈骏. 2019. 关键金属超常富集成矿和高效利用. 科技导报, 37(24): 1.

    • 陈剑锋. 2011. 阿尔泰3号伟晶岩脉缓倾斜部分岩浆的形成与演化. 中国科学院研究生院硕士学位论文.

    • 陈建平, 陈勇, 朱鹏飞, 王丽梅, 尚北川, 赵洁. 2011. 数字矿床模型及其应用——以新疆阿勒泰地区可可托海3号伟晶岩脉稀有金属隐伏矿预测为例. 地质通报, 30(5): 630~641.

    • 何兰芳, 李亮, 申萍, 王斯昊, 李志远, 周楠楠, 陈儒军, 秦克章. 2023. 伟晶岩型锂矿床地球物理探测及可可托海实例. 地学前缘, 印刷中.

    • 胡忠德. 2008. 可可托海稀有金属矿床3号脉地质特征及深部找矿方向. 新疆有色金属, (S2): 7~10.

    • 李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta-Nb富集机制. 岩石学报, 29(12): 4311~4322.

    • 刘宏. 2013. 新疆阿尔泰阿拉尔花岗岩地球化学特征及其与可可托海3号脉演化关系. 昆明理工大学硕士学位论文.

    • 刘锋, 曹峰, 张志欣, 李强. 2014a. 新疆可可托海近3号脉花岗岩成岩时代及地球化学特征研究. 岩石学报, 30(1): 1~15.

    • 马占龙, 徐雨生, 唐勇, 张辉, 吕正航. 2022. 阿尔泰造山带青河地区哈巴河群变质岩地球化学特征及稀有金属背景值研究. 矿物岩石地球化学通报, 41(6): 1224~1240.

    • 秦克章, 周起凤, 唐冬梅, 王春龙, 朱丽群. 2021. 阿尔泰可可托海3号脉花岗伟晶岩侵位机制、熔-流体演化、稀有金属富集机理及待解之谜. 地质学报, 95(10): 3039~3053.

    • 申萍, 潘鸿迪, 李昌昊, 冯浩轩, 罗耀清, 马华东, 索青宇, 白应雄, 武阳. 2021. 中哈俄阿尔泰稀有金属矿床时空分布、成因及成矿规律. 地球科学与环境学报, 43(3): 487~505.

    • 申萍, 潘鸿迪, 李昌昊, 冯浩轩, 马华东, 罗耀清. 2023. 中亚成矿域锂矿床成矿规律及成矿模式.岩石学报, 39(11): 3185~3209.

    • 沈瑞峰, 张辉, 唐勇, 吕正航. 2015. 阿尔泰造山带古生代地层的地球化学特征及其对沉积环境的制约. 地球化学, 44(1): 43~60.

    • 王登红, 陈毓川, 徐志刚, 傅旭杰. 2002. 阿尔泰成矿省的成矿系列及成矿规律. 北京: 原子能出版社.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势. 地质力学学报, 28(5): 743~764.

    • 王汝成, 邬斌, 谢磊, 车旭东, 向路, 刘晨. 2021. 稀有金属成矿全球时空分布与大陆演化. 地质学报, 95(1): 182~193.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745~765.

    • 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章. 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1~36.

    • 许志琴, 付小方, 马绪宣, 戚学祥, 吴婵, 侯立伟, 赵中宝. 2016. 青藏高原片麻岩穹窿与找矿前景. 地质学报, 90(11): 2971~2981.

    • 许志琴, 王汝成, 赵中宝, 付小芳. 2018. 试论中国大陆“硬岩型”大型锂矿带的构造背景. 地质学报, 92(6): 1091~1106.

    • 闫军武, 刘锋, 申颖. 2020. 新疆可可托海伟晶岩田岩浆活动时限与伟晶岩形成. 地球学报, 41: 663~675.

    • 杨富全, 张忠利, 王蕊, 李强, 丁建刚, 苏振华, 麻坤. 2018. 新疆阿尔泰稀有金属矿地质特征及成矿作用. 大地构造与成矿学, 42(6): 1010~1026.

    • 袁超, 孙敏, 龙晓平, 夏小平, 肖文交, 李献华, 林寿发, 蔡克大. 2007. 阿尔泰哈巴河群的沉积时代及其构造背景. 岩石学报, 23(7): 1635~1644.

    • 张辉, 吕正航, 唐勇. 2019. 新疆阿尔泰造山带中伟晶岩型稀有金属矿床成矿规律、找矿模型及其找矿方向. 矿床地质, 38(4): 792~814.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106~111.

    • 赵鹏大. 2011. 新疆可可托海稀有金属矿床三维立体定量预测研究. 地质出版社, 1~50.

    • 赵振华, 陈华勇, 韩金生. 2022. 新疆阿尔泰造山带中生代伟晶岩的稀有金属成矿作用. 中山大学学报(自然科学版), 1: 1~26.

    • 周起凤. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔-流体演化与成矿作用. 中国科学院大学博士学位论文.

    • 邹天人, 张相宸, 贾富义, 王汝聪, 曹惠志, 吴柏青. 1986. 论阿尔泰3号伟晶岩脉的成因. 矿床地质, 5(4): 34~48.

    • 邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社.

    • 庄育勋, 陈斌. 1993. 阿尔泰造山带花岗片麻岩穹窿的形成与演化. 岩石矿物学杂志: 12(2): 115~125.