en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐净,男,1988年生。博士,副研究员,主要从事矿产普查与勘探研究工作。E-mail:xujing3800@126.com。

通讯作者:

王力圆,男,1985年生。博士,副教授,主要从事矿产普查与勘探研究工作。E-mail:wangliyuan030101@163.com。

参考文献
Alfonso P, Melgarejo J C, Yusta I, Velasco F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus feld, Catalonia, Spain. The Canadian Mineralogist, 41: 103~116.
参考文献
Bai T B, Groos A. 1999. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochimica et Cosmochimica Acta, 63(07): 1117~1131.
参考文献
Bea F, Pereira M D, Stroh A. 1994. Mineral leucosome trace-element partitioning in a peraluminousmigmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4), 291~312.
参考文献
Beus A A, Severon V A, Sitnin A A, Subbotin R D. 1962. Albitized and greisenized granites (apogranites). Moscow: Academy Science Press, 196 (in Russian).
参考文献
Breiter K, Frýda J, Seltmann R. 1997. Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: The Podlesí stock, Krušnéhory, Czech Republic. Journal of Petrology, 38(12): 1723~1739.
参考文献
Breiter K, Ďurišová J, Hrstka T, Ďurišová Z, Vaňková M H, Galiová M V, Kanický V, Rambousek P, Knésl I, Dobeš P, Dosbaba M. 2017. Assessment of magmatic vs metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Lithos, 292~293, 198~217.
参考文献
Breiter K, Hlozkova M, Korbelova Z, Galiova M V. 2019. Diversity of lithium mica compositions in mineralized granite-greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews, 106: 12~27.
参考文献
Černý P, Chapman R, Teertstra D K, Novák M. 2003. Rubidium-and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88(11-12): 1832~1835.
参考文献
Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005~2026.
参考文献
Chen Guo, Liang Guanjie, Liu Meng. 2018. Dressing experiment study on the white mica with rubidium from a rubidium polymetallic ore in Gansu. Mining Research and Development, 38(9): 59~62 (in Chinese with English abstract).
参考文献
Chen Jun. 2019. Metallogenesis and effective utilization of strategic-critical metals. Science & Technology Review, 37(24): 1~5 (in Chinese).
参考文献
Cuney M, Marignac C, Weisbrod A. 1992. The beauvoir topaz-lepidolite albite granite (Massif central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766~1794.
参考文献
Deer W A, Howie R A, Zussman J. 1992. An introduction to the rock-forming minerals. 2 Edition. Harlow: Longman Group: 1~232.
参考文献
Dill G H. 2015. Pegmatites andaplites: Their genetic and applied ore geology. Ore Geology Reviews, 69: 417~561.
参考文献
Dingwell D B, Knoche R, Webb S L. 1993. The effect of P2O5 on the viscosity of haplogranitic liquid. European Journal of Mineralogy, 5(1): 133~140.
参考文献
Duan Zhenpeng, Jiang Shaoyong, Su Huimin, Zhu Xinyou, Zou Tao. 2022. Nb-Ta oxides as recorders of hydrothermal activity in the Shihuiyao Rb-Nb-Ta-(Be-Li) deposit, Inner Mongolia, NE China. Ore Geology Reviews, 150: 105149.
参考文献
Haapala I. 1997. Magmatic andpostmagmatic processes in tin-mineralized granites: Topaz-bearing leucogranite in the Eurajoki Rapakivi granite stock, Finland. Journal of Petrology, 38(12): 1645~1659.
参考文献
Han Jinsheng, Chen Huayong, Hollings P, Wang Jun, Zhang Dexian, Zhang Le, Zeng Ti, Ma Jinlong, Ai Yumin. 2021. Effcient enrichment of Rb during the magmatic-hydrothermal transition in a highly evolved granitic system: Implications from mica chemistry of the Tiantangshan Rb-Sn-W deposit. Chemical Geology, 560: 120020.
参考文献
Huang Xiaolong, WangRucheng, Chen Xiaoming, Hu Huan, Liu Changshi. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40(4): 1047~1068.
参考文献
Hudson T, Arth J G. 1983. Tin granites of Seward Peninsula, Alaska. GSA Bulletin, 94 (6): 768~790.
参考文献
Hulsbosch N, Hertogen J, Dewaele S, Andre L, Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132: 349~374.
参考文献
Hulsbosch N, Boiron M C, Dewaele S, Muchez P. 2016. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole belt (Rwanda). Geochimica et Cosmochimica Acta, 175: 299~318.
参考文献
Jiang Shaoyong, Su Huimin, Xiong Yiqu, Liu Tao, Zhu Kangyu, Zhang Lu. 2020. Spatial-temporal distribution, geological characteristics and ore-formation controlling factors of major types of rare metal mineral deposits in China. Acta Geologica Sinica (English Edition), 94(6): 1757~1773.
参考文献
Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt andaqueousfluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-Hf. Contributions to Mineralogy and Petrology, 109: 139~150.
参考文献
Kontonikas-Charos A, Ciobanu C L, Cook N J, Ehrig K, Kamenetsky V S. 2017. Feldspar evolution in the Roxby Downs granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geology Reviews, 80: 838~859.
参考文献
Kovalenko V I, Tsaryeva G M, Goreglyad A V, Yarmolyuk V V, Troitsky V A, Hervig R L. 1995. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Economic Geology, 90(3): 530~547.
参考文献
Legros H, Marignac C, Mercadier J, Cuney M, Richard A, Wang R C, Charles N, Lespinasse M Y. 2016. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China). Lithos, 264: 108~124.
参考文献
Legros H, Marignac C, Tabary T, Mercadier J, Richard A, Cuney M, Wang Rucheng, Charles N, Lespinasse M Y. 2018. The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. American Mineralogist, 103: 39~54.
参考文献
Li Fuchun, Zhu Jinchu, Jin Zhangdong, Li Xiaofeng. 2022. Formation mechanism of snowball texture in albite granite. Acta Petrologica et Mineralogica, 19(1): 27~35 (in Chinese with English abstract).
参考文献
Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311~4322 (in Chinese with English abstract).
参考文献
Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793~810.
参考文献
Li Jie, Huang Xiaolong, Fu Qi, Li Wuxian. 2021. Tungsten mineralization during evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, 106 (3): 443~460.
参考文献
Li Renze, Zhou Zhengbing, Peng Bo, Chen Jun, Wu Jianbo, Yu Huiqiang, Wan Jianjun, Yang Shuang. 2020. A discussion on geological characteristics and genetic mechanism of Dagang superlarge lithium-bearing porcelain stone deposit in Yifeng County, Jiangxi Province. Mineral Deposits, 39(6): 1015~1029 (in Chinese with English abstract).
参考文献
Li Xiaofeng, Wei Xinglin, Zhu Yiting, Li Zhufu, Deng Xuanchi. 2021. Rare metal deposits in South China: Types, characteristics, distribution and tectonic setting. Acta Petrologica Sinica, 37(12): 3591~3614 (in Chinese with English abstract).
参考文献
Lichtervelde M V, Michel G, Linnen R L, Didier B, Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with ta mineralization in the Tanco Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6): 791~806. Linnen R L, Van L M, Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275~280.
参考文献
Liu Changshi, Chen Xiaoming, Wang Rucheng, Zhang Wenlan, Hu Huan. 2005. Isotopic dating and origin of complexly zoned micas for A-type Nankunshan aluminous granite. Geological Review, 51(2): 193~201 (in Chinese with English abstract).
参考文献
Liu Xianghua, Li Bin, Xu Junwei, He Bin, Liao Jia, Peng Hongwei, Wang Yuhua, Lai Jianqing. 2022. Monazite geochronology and geochemistry constraints on the formation of the giant Zhengchong Li-Rb-Cs deposit in South China. Ore Geology Reviews, 150: 105147.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51, 537~571.
参考文献
London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.
参考文献
London D, Hervig R L, Morgan G B. 1988. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: Experimental results with Macusani glass at 200 Mpa. Contribution to Mineralogy and Petrology, 99: 360~373.
参考文献
London D, Morgan G B, Babb H A, Loomis J L. 1993. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 Mpa (H2O). Contributions to Mineralogy and Petrology, 113(4): 450~465.
参考文献
McPhie J, Kamenetsky V, Sharon A. 2011. The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 39(11): 1003~1006.
参考文献
Michaud A S, Pichavant M. 2020. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: Evidence from Argemela (central Portugal). Geochimica et Cosmochimica Acta. 289: 130~157.
参考文献
Mysen B O, Virgo D, Kushiro I. 1981. The structural role of aluminum in silicate melts; a Raman spectroscopic study at 1 atmosphere. American Mineralogist, 66(7): 678~701.
参考文献
Pekov I V, Kononkova N N, Agakhano A A, Belakovsky D I, Kazantsev S S, Zubkova N V. 2010. Voloshinite, a new rubidium mica from granitic pegmatite of Voron'i Tundras, Kola Peninsula, Russia. Geology of Ore Deposits, 52(7): 591~598.
参考文献
Pesquera A, Ruiz J T, Crespo P P G, Velilla N. 1999. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). American Mineralogist, 84(1-2): 55~69.
参考文献
Plümper O, Putnis A. 2009. The complex hydrothermal history of granitic rocks: Multiple feldspar replacement reactions under subsolidus conditions. Journal of Petrology, 50: 967~987.
参考文献
Potter E G, Taylor R P, Jones P C, Lalonde A E, Pearse G H K, Rowe R. 2009. Sokolovaite and evolved lithian micas from the eastern Moblan granitic pegmatite, Opatica Subprovince, Quebec, Canada. The Canadian Mineralogist, 47(2): 337~349.
参考文献
Qin Cheng. 2018. Preliminary study of mineralization potentiality of Shiziling muscovite granite, Jiangxi Province. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Robert J L, Beny J M, Ventura G, Hardy M. 1993. Fluorine in micas: Crystalchemical control of the OH-F distribution between trioctahedral and dioctahedral sites. European Journal of Mineralogy, 5: 7~18.
参考文献
Roda-Robles E, Keller P, Pesquera A, Fontan F. 2007. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia. Mineralogical Magazine, 71(1): 41~62.
参考文献
Rudnick R L, Gao S. 2003. The composition of the continental crust. In: The Crust, Treatise on Geochemistry vol. 3 (ed. RL Rudnick). Elsevier, 1~64.
参考文献
Schwartz M O. 1992. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids-examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineralium Deposita, 27(2): 101~108.
参考文献
Seifert T, Atanasova P, Gutzmer J, Pfänder J. 2011. Mineralogy, geochemistry and age of greisen mineralization in the Li-Rb-Cs-Sn-W deposit Zinnwald, Erzgebirge, Germany. Goldschmidt Conference Abstracts.
参考文献
Shao Juannian, Tao Weiping. 2010. Manual of requirements for mineral resources industry. Geological Publishing House (Beijing), 249~250.
参考文献
Shu Liangshu, Zhu Wenbin, Xu Zhiqin. 2021. Geological settings and metallogenic conditions of the granite- type lithium ore deposits in South China. Acta Geologica Sinica, 95(10): 3099~3114 (in Chinese with English abstract).
参考文献
Sun Yan. 2013. Research on of typical rubidium deposits and tectonic background in China. Doctor degree thesis of China University of Geosciences(Beijing) (in Chinese with English abstract).
参考文献
Sun Yan, Wang Ruijiang, Qi Feng, Li Jiankang, Mei Yanxiong. 2013. The global status of rubidium resource and suggestions on its development and utilization in China. China Mining Magazine, 22(9): 11~13+57 (in Chinese with English abstract).
参考文献
Sun Yan, Wang Denghong, Wang Chenghui, Li Jiankang, Zhao Zhi, Wang Yan, Guo Weiming. 2019. Metallogenic regularity, new prospecting and guide direction of rubidium deposits in China. Acta Geologica Sinica, 93(6): 1231~1244 (in Chinese with English abstract).
参考文献
Tischendorf G, Gottesmann B, Foerster H J, Trumbull R B 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809~834.
参考文献
Wang Chenghui, Yang Yueqing, Wang Denghong, Sun Yan, Chen Zhengyu, Xie Guogang, Fan Xiujun. 2018. Discovery of amblygonite and Li-Be-Sn-Ta minerals in the Jiuling area, Jiangxi Province. Rock and Mineral Analysis, 37(1): 108~110 (in Chinese with English abstract).
参考文献
Wang Chenghui, Wang Denghong, Chen Chen, Liu Shanbao, Chen Zhenyu, Sun Yan, Zhao Chenhui, Cao Shenghua, Fan Xiujun. 2019. Progress of research on the Shilizing rare meatals mineralization from Jiuling-type rock and its significance for prospecting. Acta Geologica Sinica, 93(6): 1359~1373 (in Chinese with English abstract).
参考文献
Wang Chenghui, Wang Denghong, Qin Jinhua, Li Jiankang, Liu Shanbao, Chen Zhenyu. 2021. Discovery of granitic pegmatite type beryllium ore deposit in middle of Nanling metallogenic belt. Mineral Deposits, 40(2): 398~401 (in Chinese with English abstract).
参考文献
Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743~764 (in Chinese with English abstract).
参考文献
Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi, Wang Jiamin, Yang Lei, Lai Wen, Liu Chen. 2017. A preliminary study of rare metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China Earth Sciences, 60: 1655~1663.
参考文献
Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite-pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69~75 (in Chinese with English abstract).
参考文献
Wang Rucheng, Che Xudong, Wu Bin, Xie Lei. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 119~133 (in Chinese with English abstract).
参考文献
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Scientia Sinica(Terrae), 47(7): 745~765 (in Chinese with English abstract).
参考文献
Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1~36 (in Chinese with English abstract).
参考文献
Wu Mingqian, Samson I M, Zhang Dehui. 2018. Textural features and chemical evolution in Ta-Nb oxides: Implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China. Economic Geology, 113(4): 937~960.
参考文献
Wu Mingqian, Samson I M, Qiu Kunfeng, Zhang Dehui. 2021. Concentration mechanisms of rare earth element-Nb-Zr-Be mineralization in the Baerzhe deposit, northeast China: Insights from textural and chemical features of amphibole and rare metal minerals. Economic Geology, 116 (3): 651~679.
参考文献
Wu Xuemin, Zhou Minjuan, Luo Xicheng, Zhou Jianting. 2016. The metallogenic conditions and prospecting potential of lithium andrare metals in northwestern Jiangxi. East China Geology, 37(4): 275~283 (in Chinese with English abstract).
参考文献
Xie Lei, Wang Zhengjun, Wang Rucheng, Zhu Jinchu, Che Xudong, Gao Jianfeng, Zhao Xu. 2018. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China). Ore Geology Reviews, 95: 695~712.
参考文献
Yin Rong. 2015. Mineralogicalstudy of an extremely evolved granitic pegmatite: A case study of Keketuohai No. 1 pegmatite vein in Altay, Xinjiang. Doctor degree thesis of Nanjing University (in Chinese with English abstract).
参考文献
Yin Rong, Han Li, Huang Xiaolong, Li Jie, Li Wuxian, Chen Linli. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104, 949~965.
参考文献
Yin Rong, Huang Xiaolong, Wang Rucheng, Sun Xiaoming, Tang Yong, Wang Yu, Xu Yigang. 2022. Rare-metal enrichment and Nb-Ta fractionation during magmatic-hydrothermal processes in rare-metal granites: Evidence from zoned micas from the Yashan Pluton, South China. Journal of Petrology, 63(10): 1~28.
参考文献
Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33(2): 106~111 (in Chinese with English abstract).
参考文献
Zhao Zhenhua, Chen Huayong, Han Jinsheng. 2020. Data of rubidium-dominant minerals. Geochimica, 49(6): 690~693 (in Chinese with English abstract).
参考文献
Zhou Jianting, Wang Guobin, He Shufang, Fan Aichun. 2011. Diagenesis and mineralization of Ganfang rock in Yifeng, Jiangxi Province. Journal of East China Institute of Technology (Natural Science), 34(4): 345~358 (in Chinese with English abstract).
参考文献
Zhu Jinchu, Rao Bing, Xiong Xiaolin, Li Fuchun, Zhang Peihua. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks. Geochimica, 31(02): 141~152 (in Chinese with English abstract).
参考文献
Zhu Zeying, Wang Rucheng, Marignac C, Cuney M, Lespinasse M. 2019. Petrogenesis of Nb-(Ta) aplo-pegmatites and fine-grained granites from the Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, Southeast China. Lithos, 346-347, 105150.
参考文献
陈果, 梁冠杰, 刘猛.2018.甘肃某铷多金属矿中含铷白云母的选矿试验研究.矿业研究与开发, 38(9): 59~62.
参考文献
陈骏.2019.关键金属超常富集成矿和高效利用.科技导报, 37(24): 1~5.
参考文献
李福春, 朱金初, 金章东, 李晓峰.2000.钠长石花岗岩中雪球结构形成机理的研究.岩石矿物学杂志, 19(1): 27~35.
参考文献
李洁, 黄小龙.2013.江西雅山花岗岩岩浆演化及其Ta-Nb富集机制.岩石学报, 29(12): 4311~4322.
参考文献
李仁泽, 周正兵, 彭波, 陈骏, 吴建波, 余会强, 万建军, 杨爽.2021.江西宜丰县大港超大型含锂瓷石矿床地质特征及成因机制探讨.矿床地质, 39(6): 1015~1029.
参考文献
李晓峰, 韦星林, 朱艺婷, 李祖福, 邓宣驰.2021.华南稀有金属矿床: 类型、特点、时空分布与背景.岩石学报, 37(12): 3591~3614.
参考文献
刘昌实, 陈小明, 王汝成, 张文兰, 胡欢.2005.广东南昆山A型花岗岩定年和环带云母研究.地质评论.51(2): 193~201.
参考文献
秦程.2018.江西宜丰狮子岭白云母花岗岩成矿潜力研究.中国地质大学(北京)硕士学位论文.
参考文献
邵厥年, 陶维屏.2010.矿产资源工业要求手册.地质出版社(北京), 249~250.
参考文献
舒良树, 朱文斌, 许志琴.2021.华南花岗岩型锂矿地质背景与成矿条件.地质学报, 95(10): 3099~3114.
参考文献
孙艳.2013.我国铷典型矿床及其成矿构造背景研究.中国地质大学(北京)博士学位论文.
参考文献
孙艳, 王瑞江, 亓锋, 李建康, 梅燕雄.2013.世界铷资源现状及我国铷开发利用建议.中国矿业, 22(9): 11~13+57.
参考文献
孙艳, 王登红, 王成辉, 李建康, 赵芝, 王岩, 郭唯明.2019.我国铷矿成矿规律、新进展和找矿方向.地质学报, 93(6): 1231~1244.
参考文献
王成辉, 杨岳清, 王登红, 孙艳, 陈振宇, 谢国刚, 凡秀君.2018.江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物.岩矿测试, 37(1): 108~110.
参考文献
王成辉, 王登红, 陈晨, 刘善宝, 陈振宇, 孙艳, 赵晨辉, 曹圣华, 凡秀君.2019.九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义.地质学报, 93(6): 1359~1373.
参考文献
王成辉, 王登红, 秦锦华, 李建康, 刘善宝, 陈振宇.2021.南岭成矿带中亚带发现花岗伟晶岩型铍矿.矿床地质, 40(2): 398~401.
参考文献
王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏.2022.中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势.地质力学学报, 28(5): 743~764.
参考文献
王汝成, 谢磊, 诸泽颖, 胡欢.2019.云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物.岩石学报, 35(1): 69~75.
参考文献
王汝成, 车旭东, 邬斌, 谢磊.2020.中国铌钽锆铪资源.科学通报, 65(33): 119~133.
参考文献
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷.2017.高分异花岗岩的识别与研究.中国科学: 地球科学, 47(7): 745~765.
参考文献
吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章.2023.南岭高分异花岗岩成岩与成矿.岩石学报, 39(1): 1~36.
参考文献
吴学敏, 周敏娟, 罗喜成, 周建廷.2016.江西西北部锂及稀有金属成矿条件及找矿潜力分析.华东地质, 37(4): 275~283.
参考文献
尹蓉.2015.一个极端演化花岗伟晶岩的矿物学研究: 以新疆阿尔泰可可托海1号伟晶岩脉为例.南京大学博士学位论文.
参考文献
翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷.2019.战略性关键金属矿产资源: 现状与问题.中国科学基金, 33(02), 106~111.
参考文献
赵振华, 陈华勇, 韩金生.2020.关于铷的独立矿物.地球化学, 49(06): 690~693.
参考文献
周建廷, 王国斌, 何淑芳, 范爱春.2011.江西宜丰地区甘坊岩体成岩成矿作用分析.东华理工大学学报(自然科学版), 34(04): 345~351+358.
参考文献
朱金初, 饶冰, 熊小林, 李福春, 张佩华.2002.富锂氟含稀有矿化花岗质岩石的对比和成因思考.地球化学, 31(2): 141~152.
目录contents

    摘要

    铷的成矿与稀有金属花岗岩密切相关。由于稀有金属花岗岩中普遍存在晚阶段热液蚀变,很难厘清岩浆过程与热液过程,稀有金属成矿起主导作用的是岩浆分异作用,还是热液交代作用,目前的认识尚不清晰。江西甘坊岩体是一个重要的稀有金属成矿区,当前在甘坊岩体内发现了一系列花岗岩型和细晶岩脉型锂铷稀有多金属矿床(点),其稀有金属成矿机制仍不明确。本文选择甘坊岩体内的白果、大港、楠木坑花岗岩型铷矿和富华、同安细晶岩型铷矿为研究对象,采用矿物自动扫描系统、电子探针、LA-ICP-MS等方法对多种花岗岩中的长石类和云母类矿物进行精细结构和成分分析。结果表明:云母类矿物是铷的主要载体(Rb= 1683×10-6~12047×10-6),长石类矿物中铷含量低,其中钾长石铷含量为1683×10-6~4051×10-6,而钠长石几乎不含铷(1.82×10-6~89.94×10-6)。富铷锂的云母由白云母经锂多硅白云母和铁锂云母向锂云母转变,其中锂主要通过2Li++IVSi4+VIAl3++ VIAl3++□和Li++Fe2+VIAl3++□,铷主要以Rb+/ Na+/ Cs+↔ K+的方式进入云母。矿物结构和成分特征显示,甘坊岩体中铷、锂等稀有金属的富集与岩浆分异作用有关,结晶分异作用可能是晚阶段熔体中铷、锂等稀有金属富集的关键,而流体交代作用对稀有金属的富集作用不明显。

    Abstract

    The Rb mineralization is associated with rare metal granites. However, widespread hydrothermal alteration in the late evolution of rare metal granites makes it difficult to distinguish the magmatic process from the hydrothermal process. It is still unclear whether the rare metal mineralization is dominated by magmatic differentiation or hydrothermal metasomatism. The Ganfang intrusion in the Jiangxi Province is an important rare metal metallogenic area, where a series of Li-Rb rare metal deposits (mineralization) have been discovered, and the mineralization mechanism of rare metals is not yet clear. This paper takes both granite-type Rb (Baiguo, Dagang, and Nanmukeng) and aplite-type Rb (Fuhua, Tongan) mineralization from the Ganfang intrusion for case studies. The detailed mineralogy texture and composition of feldspars and micas have been analyzed by automatic mineral scanning system, electron probe and LA-ICP-MS. The results show that micas are the main carriers of Rb (1683×10-6~12047×10-6), and the contents of Rb in feldspars are lower. The Rb content of K-feldspar is 1683×10-6~4051×10-6, whereas albite contains almost no Rb concentration (1.82×10-6~89.94×10-6). The Rb-bearing micas transfer from muscovite, though Li-phengite and zinnwaldite, to lepidolite, in which substituted mechanisms for Li are 2Li++IVSi4+VIAl3++ VIAl3++□ and Li++Fe2+VIAl3++□, and for Rb is Rb+/ Na+/Cs+↔ K+. The mineral textures and compositions record both magma crystallization differentiation and fluid metasomatism for Ganfang granites; however, the former was the key enrichment mechanism for Rb as well as Li.

    关键词

    稀有金属花岗岩富集机制甘坊岩体江西

  • 稀有金属(Li、Rb、Nb、Ta等)作为关键矿产资源在新材料、新能源和信息技术等新兴产业领域的不可替代性日益凸显,成为大国博弈的焦点,具有“稀”、“伴”、“细”的特征,对其元素的赋存状态、富集机制、成矿机理和高效清洁利用是当前国际研究的前沿与急需攻克的核心科学问题(陈骏,2019;翟明国等,2019)。稀有金属矿产主要与稀有金属花岗岩密切相关(王汝成等,2020Jiang Shaoyong et al.,2020王登红等,2022),包括碱性花岗岩和Li-F花岗岩(Kovalenko et al.,1995; 朱金初等,2002)。前者如内蒙古巴尔哲超大型Nb-Ta-Zr-REE矿床(Wu Mingqian et al.,2021);后者如江西宜春414超大型Li-Nb-Ta-Rb矿床(李洁和黄小龙,2013Wu Mingqian et al.,2018; Yin Rong et al.,2022)。作为与稀有金属成矿密切相关的花岗类型,近年来, Li-F花岗岩(属高分异花岗岩)的成矿作用备受关注(吴福元等,2017Wang Rucheng et al.,2017)。

  • 铷是一种质地柔软的银白色轻金属,熔点(38.89℃)和沸点(688℃)均相对较低,因此可在空气中自燃,且遇水可激烈燃烧甚至爆炸。由于铷具有特殊的光电性能,被列为发展战略性新兴产业所需的功能和结构材料之一,被美国、欧盟及中国等均列为关键矿产(孙艳等,2019)。尽管铷矿床类型包括花岗岩-伟晶岩型、热液型、盐湖卤水型及油气田水型等,但全球约65%的铷资源主要从花岗岩-伟晶岩中回收(孙艳等,2019)。加拿大、纳米比亚和津巴布韦是铷的主要生产国,而美国、日本、德国和俄罗斯是主要消费国(孙艳等,2013)。在我国,铷的主要矿床类型是花岗岩-伟晶岩型,集中分布在江南隆起东段、武功山—北武夷山、南岭中段、康滇、阿尔泰等稀有金属成矿带(孙艳等,2019)。

  • 铷主要赋存于锂云母-铁锂云母、铯榴石、铯沸石、含钾矿物(如天河石、钾盐和光卤石)及矿泉中(赵振华等,2020),工业矿物主要是锂云母和铯沸石(孙艳等,2019)。相较其他关键金属,铷在地壳中的丰度并不低(84×10-6Rudnick and Gao,2003),但自然界中却罕见铷的独立矿物,目前仅发现三种,包括铷微斜长石(RbAlSi3O8)、铷拉曼石(RbB5O8·4H2O)和沃罗申石(Rb(LiAl1.50.5)[Al0.5Si3.5O10]F2)(赵振华等,2020)。Rb常与Li、Be、Cs、Nb、Ta等其他稀有金属矿种共(伴)生,例如甘肃国宝山Rb(孙艳,2013)、广东天堂山Rb-Sn(Han Jinsheng et al.,2021)、内蒙古石灰窑Rb-Nb-Ta-(Be-Li)(Duan Zhenpeng et al.,2022)、湖南正冲Rb-Li-Cs(Liu Xianghua et al.,2022)以及新疆大红柳滩Li-Rb-Be(孙艳等,2019)等花岗岩-伟晶岩型矿床。由于铷的伴生特性,当前对于铷成矿作用及与其他稀有金属成矿的成因联系研究较为薄弱(Seifert et al.,2011; Han Jinsheng et al.2021; Duan Zhenpeng et al.,2022; Liu Xianghua et al.,2022)。

  • 江西省的铷资源量居全国第一(占比34%)(孙艳等,2019)。江西宜丰县位于南岭成矿带内,是非常重要的稀有多金属成矿区(周建廷等,2011)。近年来,南岭成矿带上的稀有金属矿床,特别是锂矿床逐渐成为研究热点(王成辉等,2021李晓峰等,2021舒良树等,2021吴福元等,2023)。甘坊岩体具有巨大的Li、Rb、Cs等稀有金属成矿潜力,当前发现的矿化类型包括花岗岩型、细晶岩脉型、以及少量的伟晶岩型(周建廷等,2011王成辉等,20182019)。当前对甘坊岩体的成矿研究很少,针对该地区稀有金属花岗岩成矿类型复杂,且当前成矿作用与成矿规律研究相对较为薄弱等问题,本文以甘坊岩体内的白果、大港、楠木坑花岗岩型和富华、同安细晶岩型铷矿床作为研究对象,在查明花岗岩的类型、时空分布特征基础上,聚焦成因矿物学,采用矿物自动扫描系统、电子探针、LA-ICP-MS等原位微区分析手段重点开展矿物学结构与成分研究,揭示甘坊岩体内不同类型铷矿化的赋存形式,探讨岩浆结晶与热液蚀变过程中铷的地球化学行为和富集机制,为区域稀有金属找矿提供理论依据。

  • 1 区域地质概况

  • 江西九岭岩体是我国华南地区一个规模巨大的复式岩基,位于江南造山带中段,处于扬子板块和华夏板块结合带(图1a、b),发育多种矿床类型。甘坊岩体位于九岭花岗闪长岩基中部,出露面积约153 km2,大体呈东西向分布,处于宜丰-景德镇深大断裂带与铜鼓西-奉新上富断裂之间(周建廷等,2011)。

  • 区内主要出露中元古界双桥山群浅变质岩,主要岩性包括变余云母细砂岩、千枚状页岩、板岩等,广泛分布于九岭山,近东西向展布,构成九岭复背斜基底。九岭复背斜的主体是新元古代侵入双桥山群地层中的呈岩基状花岗质复式岩体,其岩性主要为中-粗粒花岗闪长岩、闪长岩、花岗岩。区内断裂构造活动频繁,从燕山期到喜马拉雅期均有构造活动发生。研究区整体位于EW向罗坊-甘坊断裂、NNE向甘坊-兰溪断裂和NE向上富-兰溪三条断裂的夹持部位。此外,区内广泛发育次级断裂构造(图1c)。区内岩浆活动频繁,除了上述提及的新元古代九岭岩基外,以中生代燕山期岩浆岩分布最广。甘坊地区多期次多阶段岩浆活动形成以早侏罗世(200.6 Ma)为主体、叠加中侏罗世(178.6 Ma)和早白垩世岩浆岩(118 Ma)的燕山期复式岩体(周建廷等,2011),其岩性变化的总体趋势是:中粗粒斑状黑云母花岗岩→中粗粒斑状二云母花岗岩→中细粒含斑—斑状二云母花岗岩→中细粒钠长白(锂)云母花岗岩。

  • 甘坊岩体周围已发现一系列锂铷稀有多金属矿床(点)。这些矿床主要可分为花岗岩型和细晶岩型稀有金属矿床,前者包括白果(又名洞上)、白水洞、大港、楠木坑、狮子岭等矿床,后者主要包括富华、鹅颈、同安-党田、牌楼等矿床(周建廷等,2011;秦程,2018;李仁泽等,2021)。此外,局部可见少量伟晶岩脉分布。当前,对甘坊地区的铌、钽、锂等稀有金属成矿作用的报道相对有限。例如吴学敏等(2016)报道了党田和白水洞矿区Li2O资源量达到大型规模,分别为40.467万t和12.1089万t,同时提出甘坊岩体东部的高岭-江家岭一带Li2O资源量约100万t。王成辉等(2019)指出狮子岭矿区中白云母花岗岩(141.3±1.5 Ma,秦程,2018)具有良好的Li、Rb、Cs、Ta等稀有金属元素成矿潜力。

  • 图1 研究区大地构造位置(a)、九岭岩体地质简图(b)和甘坊岩体以及区域内稀有金属花岗岩矿床(点)分布简图 (红色为本文研究矿床)(c)(据江西省地质局物化探大队资料修改)

  • Fig.1 The geological map of tectonic setting (a) , Jiuling intrusion (b) , and Ganfang intrusion and related rare metals mineralization (red represents sampling locations) (c) (modified after Geophysical and Geochemical Exploration Brigade of Jiangxi

  • 2 样品与分析方法

  • 本文系统采集了花岗岩型(白果、大港、楠木坑)和细晶岩型铷矿(富华、同安)的岩石样品(图1c)。不同矿床(点)中,岩石类型各异,其中:① 白果矿区岩石类型较为齐全,是重点研究对象,主要采集了白云母花岗岩、黑云母花岗岩、斑状花岗岩、伟晶岩;② 大港矿区主要采集了白云母花岗岩、黑云母花岗岩、细晶岩;③ 楠木坑矿点主要采集具有灰白色调和浅红色调的白云母花岗岩(和白果矿区岩石类型一致,均归纳为一类);④ 富华矿点主要采集细晶岩和黑云母花岗片麻岩;⑤ 同安矿区主要采集细晶岩、黑云母花岗岩和黑云母花岗片麻岩。

  • 矿物自动扫描分析(TIMA)在广州市拓岩检测技术有限公司利用MIRA3扫描电镜完成。实验加速电压为25 kV,电流为20 nA,工作距离为15 mm,电流和BSE信号强度使用铂法拉第杯自动程序校准,EDS信号使用Mn标样校准。根据样品差异,像素大小为1 μm或3 μm,能谱步长为3 μm或9 μm。

  • 电子探针(EPMA)和激光剥蚀等离子体质谱(LA-ICP-MS)分析均在南京大学内生金属矿床成矿机制研究国家重点实验室完成。EPMA仪器型号为JXA-8230,实验采用的加速电压为15 kV,束流为20 nA,束斑为5 μm(细小绢云母为1 μm)。根据矿物元素性质不同,元素峰值分析时间不同。元素的分析精度高于1%。EPMA扫面分析采用加速电压15 kV,束流20 nA,滞留时间为10 ms。挥发分F由实际测试得出,Li2O*根据经验公式Li2O*=0.782 F+0.013计算获得(Lichtervelde et al.,2008)。H2O*的含量按照(F、Cl、OH)位置全部被阴离子充填的情况计算。

  • LA-ICP-MS分析仪器为ThermoFisher iCAP Qc质谱仪和Reso S155激光剥蚀系统。实验过程中采用He作为剥蚀物质的载气。实验过程中采用29 μm的激光束对分析样品进行斑点式剥蚀,频率为4 Hz,以NIST610为主要标样,以NIST612、BCR-2、GSE-1为副标样。数据处理采用ICPMSDataCal9.9无内标处理,详见Liu Yongsheng et al.(2010)

  • 3 分析结果

  • 3.1 岩石学特征

  • 通过对花岗岩型(白果、大港、楠木坑)和细晶岩型铷矿床(富华、同安)内的花岗岩样品进行整理,总结出甘坊岩体内主要有以下六种岩石类型,即白云母花岗岩、斑状花岗岩、黑云母花岗岩、伟晶岩、细晶岩以及黑云母花岗片麻岩,现分述如下(图2):

  • (1)白云母花岗岩:甘坊岩体内与稀有金属Li、Rb等成矿相关的主要岩浆岩。岩石可见灰白色和浅红色,其中浅红色花岗岩中钾长石含量略高,中粒结构(3~5 mm),块状构造(图2a、b)。TIMA定量扫描结果显示岩石主要由钠长石(36.34%)、石英(31.90%)、白云母(16.72%)、钾长石(11.52%)组成;少量的副矿物主要包括磷灰石(1.21%)、锆石(<0.01%)、黄玉(<0.01%)以及锡石(<0.01%)(图3a)。值得注意的是,锆石蜕晶化现象十分强烈。全岩微量元素分析表明岩体中Rb2O含量(0.26%~0.40%)达到伴生品位;岩体中Li2O(0.43%~0.96%)和F(4360×10-6~8170×10-6)的含量较高。由于锆石的蜕晶化严重,因此锆石U-Pb定年未获得成功,但是岩体中的锡石U-Pb年龄表明其形成于153.6±7.3 Ma(数据未发表)。

  • (2)斑状花岗岩:多发育在矿区岩体浅部,呈灰白色、青灰色,似斑状结构(图2c)。斑晶主要由中粗粒(3 mm~2 cm)钠长石、石英、钾长石和少量黑云母(<3%)组成;基质主要由细粒(<2 mm)石英、钠长石、白云母和钾长石组成。TIMA面扫描结果显示钾长石斑晶呈自形板状,少量围绕钠长石斑晶形成环斑状,包含了大量细粒钠长石和少量石英(图3b),这种结构类似于“雪球状”结构,但其寄主矿物是钾长石而不是石英。钠长石斑晶也较自形,但是局部发育明显的高岭石化(0.59%),亦可见少量绢云母化。TIMA定量分析显示岩石主要由钠长石(26.12%)、石英(29.23%)、钾长石(22.42%)、白云母(16.22%)组成;少量副矿物主要包括磷灰石(0.30%)、锆石(0.005%)、黄玉(<0.01%)、萤石(<0.01%)以及锡石(<0.01%)。全岩微量元素分析显示岩体中Rb2O含量为0.21%~0.38%,达到伴生品位;Li2O含量为0.46%~0.91%,F含量为4350×10-6~6590×10-6。岩石中锆石也显示相对强烈的蜕晶化,但是少量锆石U-Pb年龄显示147.5±5.8 Ma,岩石中锡石和磷灰石U-Pb年龄分别为146.7±3.4 Ma和137.2±3.2 Ma,其中磷灰石的年龄偏小(数据未发表)。

  • (3)黑云母花岗岩:严格意义上为二云母二长花岗岩,本文为突出与白云母花岗岩的差异,统一定名为黑云母花岗岩。岩石多为灰白色调、中粗粒结构(3~8 mm),块状构造(图2d~f)。岩石成分变化略大,主要由黑云母(10%~20%)、白云母(5%~15%)、钾长石(15%~30%)、斜长石(20%~30%)和石英(20%~30%)组成。副矿物主要由锆石、磷灰石、榍石等组成,且多包裹在黑云母中。岩石相对新鲜,未见明显热液蚀变。全岩微量元素分析表明岩体的Rb2O含量较低(0.08%~0.09%),未达到伴生品位;岩体的Li2O(0.13%~0.16%)含量也相对较低。相较前面两种岩性,黑云母花岗岩中锆石蜕晶化较弱,获得了较好的锆石U-Pb年龄为152.0±1.9 Ma。

  • 图2 甘坊花岗岩岩石学特征

  • Fig.2 Photographs of hand specimens showing the petrologic characteristics of Ganfang granites

  • (a)—灰白色调中粒白云母花岗岩(大港);(b)—浅红色调中粒白云母花岗岩(楠木坑),钾长石略多于(a);(c)—斑状花岗岩(白果);(d)—黑云母花岗岩(大港);(e)—黑云母花岗岩(白果),粒度大于(d);(f)—中粗粒黑云母钾长花岗岩(同安);(g)—伟晶岩(白果);(h)—花岗细晶岩与黑云母花岗片麻岩接触带,接触处的细晶岩粒度更细(富华);(i)—细晶岩与黑云母花岗片麻岩接触处的揉皱构造(富华);(j)—黑云母花岗片麻岩被细晶岩捕虏(富华);(k)—含较多钾长石的黑云母花岗片麻岩(同安)。矿物缩写:Ab—钠长石;Bt—黑云母;Pl—斜长石;Qz—石英;Ms—白云母;Kfs—钾长石;Fl—萤石

  • (a) —grayish white medium-grained muscovite granite (Dagang) ; (b) —light red medium-grained muscovite granite (Nanmukeng) , which contains slightly more K-feldspar than that in (a) ; (c) —porphyritic granite (Baiguo) ; (d) —biotite granite (Dagang) ; (e) —biotite granite, and the biotite grain is larger than (d) (Baiguo) ; (f) —medium-coarse grained biotite K-feldspar granite (Tong'an) ; (g) —pegmatite (Baiguo) ; (h) —contact zone between aplite and biotite granitic gneiss. Note the finer grains of aplite in the contact zone (Fuhua) ; (i) —details show the crumpled texture at the contact between the aplite and biotite granitic gneiss (Fuhua) ; (j) —xenolith of biotite granitic gneiss in aplite (Fuhua) ; (k) —biotite granitic gneiss with more K-feldspar (Tong'an) .Abbreviations: Ab—albite; Bt—biotite; Pl—plagioclase; Qz—quartz; Ms—muscovite; Kfs—K-feldspar; Fl—fluorite

  • (4)伟晶岩:目前仅在白果矿区局部钻孔中发现,主要由钾长石、斜长石、石英和白云母组成。其中,钾长石和斜长石呈伟晶粒状(>3 cm)结构,多数云母和石英的颗粒亦大于1 cm(图2g)。镜下显微特征显示钾长石包含有大量的云母、石英和钠长石,显示出“雪球状”结构特征,与斑状花岗岩中钾长石的结构类似。

  • 图3 甘坊花岗岩正交偏光镜下岩相学特征与对应的TIMA扫面分析

  • Fig.3 Photomicrographs of cross-polarized light and corresponding TIMA mapping showing petrographic characteristics of Ganfang granites

  • (a、b)—白云母花岗岩;(c、d)—斑状花岗岩;(e、f)—细晶岩

  • (a, b) —muscovite granite; (c, d) —porphyritic granite; (e, f) —aplite

  • (5)细晶岩:岩石整体呈肉红色,细粒—微粒结构,可见斑状结构,因此准确定名为细晶斑岩或者花岗斑岩,其斑晶为石英、钠长石、云母(图3c)。但本文为了突出该类岩石在手标本尺度的细粒—微粒特征,统一简化为细晶岩。这一类岩石在甘坊岩体中具有代表性,是一类主要呈岩脉状产出、细粒—斑状结构的岩脉。该类细晶岩脉在甘坊岩体内部多个含锂瓷石矿区出现;此次主要采集于富华、同安、大港矿区,其围岩主要为黑云母花岗片麻岩(图2h~j)。细晶岩脉中常常发育大量裂隙,这些裂隙广泛被紫色萤石细脉充填(图2h)。TIMA扫面结果显示岩石主要由白云母(36.35%)、石英(33.50%)、钠长石(20.14%)组成,几乎没有钾长石;副矿物主要包括磷灰石(0.34%)、萤石(0.52%)、锡石(0.12%)、锆石(0.001%);以及少量的高岭石(2.38%)。与白云母花岗岩类似,细晶岩中锆石蜕晶化十分强烈,难以获得准确的锆石U-Pb年龄,但锡石的U-Pb年龄表明其形成于151±10 Ma(未发表数据)。

  • (6)黑云母花岗片麻岩:呈灰黑色、灰绿色调,中粗粒结构(3~7 mm),块状构造。岩石变质变形强烈,可见云母呈片麻状定向排列(图2h~k)。岩石主要由黑云母(13~18%)、白云母(6%~16%)、钾长石(14%~22%)、斜长石(18%~23%)、石英(21%~27%)组成。岩石蚀变较强,黑云母常被绿泥石化。结合区域地质资料及上述几类花岗岩中发现的继承锆石年龄,推测该黑云母花岗片麻岩可能形成于新元古代(约780 Ma)。

  • 3.2 长石类矿物的结构特征

  • 长石的结构特征主要体现在钾长石和斜长石形态、大小和双晶特征上,简述如下:

  • (1)钾长石:钾长石除在细晶岩中未发现,在其余所有岩石中均存在,主要呈半自形—自形结构,其中在伟晶岩中粒度最大(图2)。在伟晶岩中,钾长石颗粒包含大量云母、石英和钠长石,显示出“雪球状”结构特征,与斑状花岗岩中钾长石的结构类似(图3b)。

  • (2)斜长石:斜长石多呈板状的自形结构(图2c、3a),但在斑状花岗岩的基质和细晶岩中呈半自形结构(图3b、c),常发育聚片双晶和简单双晶(图3a、4e)。部分较小颗粒的斜长石被包裹在石英和云母中,未遭受蚀变(图4b),少量斜长石斑晶发育强烈的高岭石化和绢云母化(图3b、4e)。

  • 3.3 云母类矿物的结构特征

  • 花岗岩型(白果、大港、楠木坑)和细晶岩型(富华、同安)铷矿床的岩石样品中均含有云母,基于手标本和岩相学观察的基础上,可以将云母整体上分为3种类型(图4):

  • (1)黑云母:主要产于黑云母花岗岩和黑云母花岗片麻岩中,少量出现在斑状花岗岩内。黑云母与白云母共生,通常包含了大量锆石、磷灰石等微小矿物(图4c)。在斑状花岗岩中,黑云母呈斑晶出现,其集合体通常在2~5 mm之间。在黑云母花岗岩中黑云母较新鲜,斑状花岗岩中黑云母显示一定的白云母化,而黑云母花岗片麻岩中黑云母被大量绿泥石化。

  • (2)白云母:几乎出现在每一类花岗岩中,是主要的云母类型,分述如下:黑云母花岗岩和黑云母花岗片麻岩中的白云母具有典型的岩浆云母的自形结构特征,且与黑云母共生(图4c)。白云母花岗岩中白云母呈自形片状、中粗粒结构(>500 μm)。在光学显微镜下,稀有金属元素(如Rb元素)的富集部位显示异常干涉色;与之对应的在背散射图像上显示核部相对暗色(图4b①),边部亮色特征(图4b②);此外,在最边缘以及裂隙中可见少量暗色云母(图4b③),推测是交代作用所致(图4a、b)。这样的交代现象与该类花岗岩中可见由热液作用形成的紫色萤石细脉相对应。斑状花岗岩中白云母在斑晶和基质均有出现,其中斑晶自形程度较好,与钠长石斑晶共生(图4e),而基质中云母多呈半自形—他形细粒结构(100~200 μm)。伟晶岩中白云母的粒度更粗(>1 cm),其特征与白云母花岗岩中的白云母相似,但热液蚀变现象更为强烈,也更广泛。在云母边部可见由于经受交代蚀变作用而产生的孔洞特征。花岗细晶岩中白云母通常呈鳞片状微晶结构(<50 μm),偶见斑晶(100~200 μm)(图3c、4d)。但无论是斑晶还是基质,云母的成分较均一,且几乎未受到后期热液改造。

  • (3)绢云母:主要指由于热液蚀变作用产生的细小白云母,主要出现在斑状花岗岩、黑云母花岗岩及伟晶岩内的钠长石中(图4e)、少量钾长石斑晶中。长石斑晶遭受热液蚀变后产生一系列孔洞、他形磷灰石以及这类细小针状白云母。

  • 图4 甘坊花岗岩中代表性云母的结构特征

  • Fig.4 Photomicrographs showing mineralogical characteristics of representative micas from Gangang granites

  • (a、b)—白云母花岗岩中自形的含铷云母特征,由于铷含量的高低,在光学显微镜下显示干涉色异常(富铷),与背散射图像上的明暗程度相对应,云母边部和云母内部的钠长石均自形;(c)—黑云母花岗岩中共生的自形黑云母和白云母(左侧为单偏光,右侧为正交偏光);(d)—细晶岩中富铷云母斑晶和细小基质;(e)—斑状花岗岩中的白云母斑晶与钠长石斑晶接触,钠长石发育双晶,且被晚阶段绢云母交代;(b)为背散射图像,其余为正交偏光显微照片;矿物缩写:Bt—黑云母;Qz—石英;Ms—白云母;Kfs—钾长石;Ab—钠长石;Ser—绢云母

  • (a, b)—euhedral Rb-bearing mica in muscovite granite; it shows abnormal interference color (Rb-rich parts) from cross-polarized light, which also corresponds to the degree of brightness and darkness on the backscattering image due to the variation of Rb contents; note that the euhedral albites in both the edge of mica and inside mica; (c) —co-existing biotite and muscovite in biotite granite (left is from plane-polarized light and right is from cross-polarized light) ; (d) —Rb-rich mica phenocrysts and fine matrix in aplite; (e) —phenocrysts of muscovite and albite in porphyritic granite; note the albite has twin and is metasomatized by late sericite; (b) is the backscatter image, and the rest is from cross-polarized light; abbreviation: Bt—biotite; Qz—quartz; Ms—muscovite; Kfs—K-feldspar; Ab—albite; Ser—sericite

  • 3.4 电子探针主量元素特征

  • 3.4.1 长石

  • 长石的主量元素数据见附表1。甘坊地区花岗岩中长石几乎均为较纯的正长石(Or)和钠长石(Ab)端元,仅在黑云母花岗岩和黑云母花岗片麻岩中可见歪长石、更长石和中长石(图5)。长石中除了主体的K、Na、Si、Al元素外,还有一定量的Ti、Fe、Mn、P等微量元素,尤其是P2O5含量较高(0.01%~0.71%)。正长石(为方便表述,后续均用钾长石)的P2O5含量为(0.09%~0.40%)低于钠长石(0.01%~0.71%),且在白云母花岗岩和细晶岩中钠长石的P2O5含量最高,其平均值分别为0.22%~0.34%和0.20%~0.34%。长石中的铷含量极低,在钠长石中几乎均低于检测限,而钾长石中Rb2O含量<0.43%。随着岩浆结晶分异程度的增强,花岗岩中钾长石的铷含量显示逐渐增高的趋势。例如,黑云母花岗岩中钾长石几乎不含铷(<0.06%),而在分异程度较高的白云母花岗岩、斑状花岗岩以及伟晶岩中Rb2O含量分别为0.06%~0.36%、0.18%~0.30%以及0.26%~0.43%。

  • 3.4.2 云母

  • 各类花岗岩中的黑云母、白云母和绢云母的电子探针分析结果见附表2,各类云母的成分变化较大,具体如下:

  • (1)黑云母:黑云母类的TiO2含量为0.05%~3.56%,TFeO为6.21%~26.87%,MgO为0.07%~8.49%和MnO为0.36%~0.82%。根据Tischendorf et al.(1997)判别图解,黑云母类整体显示从含铁黑云母到铁叶云母向黑鳞云母类变化,属于三八面体云母(图6a、b)。值得注意的是,斑状花岗岩中黑云母落入黑鳞云母—多硅白云母的交界处,但光学显微特征仍表现出黑云母特征,因此我们依据光学特征把其归为黑云母类。而黑云母花岗片麻岩代表区域上早期的一套围岩,其黑云母成分均一,为典型的含铁黑云母。各类花岗岩中黑云母的Rb2O、Li2O*和F含量总体均偏低,分别为<0.65%(均值0.23%)、0.01%~3.96%(均值1.12%)以及< 5.04%(均值1.42%)。

  • (2)白云母:白云母类的TiO2含量为<4.29%,TFeO为<11.07%,MgO为<2.40%和MnO为<1.29%。根据Tischendorf et al.(1997判别图解,白云母类整体从白云母,经锂多硅白云母和铁锂云母,向锂云母变化,属于二八面体云母(图6a、b)。白云母中的Rb2O、Li2O*和F含量均较高,分别为 <1.48%(均值0.51%)、0.01%~6.55%(均值2.31%)以及<8.36%(均值2.93%)。和钾长石类似,白云母中Rb2O、Li2O*和F的含量亦随花岗岩岩浆的结晶分异程度增加而增高的趋势。以Rb2O为例,黑云母花岗岩中白云母Rb2O含量为0.05%~0.78%(均值0.27%)、斑状花岗岩为0.25%~0.74%(均值0.47%)、白云母花岗岩为0.08%~1.36%(均值0.64%)、伟晶岩为0.73%~0.86%(均值0.80%);而细晶岩最高,Rb2O含量为0.08%~1.48%(均值0.83%)。云母中元素的原子单位分数(apfu)协变图解显示八面体配位的AlVI(apfu)和Li+Fe(apfu)具有良好的负相关性(图6c),八面体配位的AlVI(apfu)和四面体配位的AlIV(apfu)与2Li+Si(apfu)具有一定的负相关性(图6d)。此外,白云母中Rb2O含量与F含量显示较好的正相关关系(图6e)。

  • 图5 甘坊花岗岩钠长石(Ab)-钙长石(An)-正长石(Or) 分类图解(据Deer et al.,1992

  • Fig.5 Ternary classification diagram for feldspars from the Ganfang granites (after Deer et al., 1992)

  • EPMA扫面分析更加直观地展示云母中典型元素的相关性。图7为伟晶岩中钾长石内部的白云母,背散射(BSE)图像较清晰地显示云母从核部到边部明暗程度的变化,核部云母(图7a),边部(图7b)以及最边缘热液交代作用形成的不规则云母(图7c),分别代表早阶段岩浆结晶、经历结晶分异作用及后期热液交代成因的云母特征。结合F、Rb、Fe元素的扫面结果,可见三种元素具有较好的正相关性,也大致反映了三阶段云母从早到晚Rb和F元素含量由核部到边部逐渐增加,再伴随热液交代作用而降低的过程。

  • 图6 甘坊花岗岩云母分类图解(a)(据Tischendoorf et al.,1997)以及相关元素的原子单位分数(apfu)(b~d)和含量(e)协变图解

  • Fig.6 Classification diagram (a) (after Tischendoorf et al., 1997) and binary diagrams of atoms per formula unit (apfu) (b~d) and contents (e) of related elements for micas from Ganfang granites

  • (3)绢云母:绢云母具有较低的TiO2(<0.63%),TFeO(0.52%~5.30%),MgO(<1.86%)及MnO(<0.32%)。根据Tischendorf et al.(1997)判别图解,绢云母为白云母和多硅白云母,属于二八面体云母(图6a)。绢云母中Rb2O、Li2O*和F含量也较低,分别为<0.42%(均值0.16%)、0.01%~2.06%(均值0.33%)以及<2.62%(均值0.40%)。

  • EPMA扫面分析结果和定量分析结果基本一致,显示钠长石斑晶中细针状绢云母的Rb、F、Fe等元素含量均要低于斑晶外围大颗粒的白云母(图8)。

  • 3.5 LA-ICP-MS微量元素特征

  • 3.5.1 长石

  • 长石LA-ICP-MS分析结果见附表3。长石中微量元素种类较少,且含量偏低。其中,钾长石在白云母花岗岩、斑状花岗岩、伟晶岩中铷的含量分别为3135×10-6~4051×10-6(均值3753×10-6)、1683×10-6~2623×10-6(均值2080×10-6)、3775×10-6~4032×10-6(均值3891×10-6);相比之下,钠长石几乎不含铷(1.82×10-6~89.94×10-6),与电子探针分析结果基本一致。相应的,长石可含有一定的铯(高达779×10-6),且分布规律基本和铷一致,即钾长石中铯含量要远远高于钠长石(图9a)。长石中还含有一定的Sr(<58×10-6)、微量的Ga和Tl(<50×10-6),但钾长石中(Ga+Ge+Tl)的含量要高于钠长石(图9c)。此外,两类长石基本不含Li、Be、W、Sn、Ta等元素(图9b)。

  • 图7 钾长石中白云母电子探针扫面图(白果伟晶岩)

  • Fig.7 EPMA mapping of muscovite in K-feldspar from Baiguo pegmatite

  • 矿物缩写:Ms—白云母;Kfs—钾长石

  • Abbreviation: Ms—muscovite; Kfs—K-feldspar

  • 3.5.2 云母

  • 云母的LA-ICP-MS分析结果见附表4。云母的微量元素种类丰富,且含量较高,根据云母的性质、文献中有关云母微量元素置换机制以及本次分析的云母微量元素之间的相关性,可以把微量元素初步分为以下几类,即①Na、Rb、Cs(碱金属),②Li和Nb、Ta、W、Sn(亲石元素),③Zn和Tl、Ga、Ge(稀散元素)。云母的这些微量元素含量显著高于同一花岗岩中长石的含量(图9)。

  • (1)Rb和Cs:白云母中Rb(1683×10-6~12047×10-6)和Cs(92×10-6~11993×10-6)含量高于黑云母中Rb(1629×10-6~7007×10-6)和Cs(155×10-6~8657×10-6)含量,且白云母花岗岩、斑状花岗岩和伟晶岩内白云母的Rb和Cs含量相对比黑云母花岗岩内白云母的Rb和Cs含量高(图9a)。(Na+Rb+Cs)和(Li+Nb+Ta+W+Sn)含量显示良好的正相关性(图10a),与(Ga+Zn+Tl+Ge)具有较好的正相关性(少量黑云母除外)(图10c),以及与K有微弱的负相关性(图10d)。云母中K/Rb比值代表了岩浆的结晶分异程度,K/Rb比值越小,分异程度越高。白云母和黑云母中K/Rb比值分别为7~54(均值23)和11~51(均值28)。以白云母为例,黑云母花岗岩、斑状花岗岩、白云母花岗岩、伟晶岩中的K/Rb比值分别为49~52、13~36、7~22及11~23。图11a显示随着K/Rb比值降低,Na+Rb+Cs逐渐升高的趋势。

  • 图8 白果斑状花岗岩中钠长石斑晶的绢云母电子探针扫面图

  • Fig.8 EPMA mapping of sericite in albite phenocryst from Baiguo porphyritic granite

  • 矿物缩写:Qz—石英;Ms—白云母;Kfs—钾长石;Ab—钠长石;Ser—绢云母

  • Abbreviation: Qz—quartz; Ms—muscovite; Kfs—K-feldspar; Ab—albite; Ser—sericite

  • (2)Li和Nb、Ta、W、Sn:这几种元素之间具有较好的正相关关系。白云母中Li含量(606×10-6~25132×10-6)要高于黑云母的Li含量(4055×10-6~12068×10-6)。(Li+Nb+Ta+W+Sn)与(Ga+Zn+Tl+Ge)具有较好的正相关性(少量黑云母除外)(图10b),与Al2O3具有良好的负相关性(图10e),以及与FeO显示一定的正相关性(图10f)。图11b显示随着K/Rb比值降低,(Li+Nb+Ta+W+Sn)逐渐升高的趋势,与Rb和Cs一致。

  • 图9 甘坊花岗岩中云母和长石微量元素含量图

  • Fig.9 Box diagram of trace elements in mica and feldspar Ganfang granites

  • 矿物缩写:Ab—钠长石;Kfs—钾长石;Ms—白云母;Bt—黑云母

  • Abbreviation: Ab—albite; Kfs—K-feldspar; Ms—muscovite; Bt—biotite

  • (3)Zn和Tl、Ga、Ge:Zn的含量较高,在100n×10-6~1000n×10-6之间变化,以黑云母中的Zn含量最大(786×10-6~1620×10-6),这解释了图10有关元素协变图解中黑云母数据偏离而显示异常的原因。此外,云母中含有一定量的Ga,且主要赋存在白云母中(24×10-6~173×10-6),黑云母的Ga含量较低(63×10-6~77×10-6)。对于云母的Ge和Tl元素,均小于50×10-6。Ga+Zn+Tl+Ge与Al2O3+SiO2显示良好的负相关关系(图10g),而与Mg+FeO显示较好的正相关关系(图10h)。

  • 4 讨论

  • 4.1 甘坊岩体中铷的赋存状态

  • 甘坊地区主要发育花岗岩型和细晶岩脉型两类稀有金属矿床(周建廷等,2011)。本文系统对以白果、大港、楠木坑为代表的花岗岩型铷矿床和以富华、同安为代表的细晶岩型铷矿床进行了长石和云母的主微量元素分析。结合少量全岩数据,表明:①细晶岩型的铷矿化更强,白云母中Rb2O含量更高(0.08%~1.48%,均值为0.83%),尤其是富华(1.12%~1.48%,均值为1.28%)和同安(0.51%~1.02%,均值为0.85%)两个典型的细晶岩脉中(附表2)。TIMA结果显示白云母在细晶岩中占比36.35%,因此粗略折算细晶岩中Rb2O含量为0.30%,达到铷矿的边界品位指标(0.1%~0.2%)(图3c)。② 花岗岩型铷矿床中由于发育多种同期的岩浆岩,如黑云母花岗岩、白云母花岗岩、斑状花岗岩、伟晶岩、黑云母花岗片麻岩等,但在不同岩性中Rb2O含量差异较大。其中,白云母花岗岩(0.26%~0.40%)、斑状花岗岩(0.21%~0.38%)是主要的工业型矿体,而黑云母花岗岩(0.13%~0.16%)在当前技术条件下不能利用(未发表全岩数据)。伟晶岩的铷含量很高,其白云母的Rb2O含量在0.73%~0.86%,但由于仅在局部少量出现,故不是主要的矿体类型(附表2)。尽管细晶岩中白云母的Rb2O含量更高,但是由于其呈微细片状、鳞片状产于岩体类,颗粒太细,暂难回收,目前仅作高档瓷石矿开发利用(周建廷等,2011吴学敏等,2016)。

  • 研究表明长石类矿物是稀有金属,尤其是铷的一种重要载体矿物。稀有金属花岗岩中的钾长石可富铷,甚至形成绿色的天河石(富铷钾长石)(London,19932018)。此外,意大利发现的铷微斜长石(Rubicline,RbAlSi3O8),其中Rb含量为17.47%(赵振华等,2020)。甘坊岩体中钾长石富集一定量的铷(1683×10-6~4051×10-6),但钠长石中几乎不含铷(1.82×10-6~89.94×10-6)(附表3),暗示表明铷相对倾向于替代长石中的钾而非钠(London,1993)。尽管如此,钾长石内的铷在当前技术条件下难以回收利用,例如甘肃国宝山铷矿床中,微斜长石富铷(分布率高达71.13%),高于锂云母的分布率28.09%(孙艳等,2019);再如,如新疆张宝山铷矿床中铷在钾长石中的分布率为69.53%(平均品位0.35%)高于铷在白云母中的分布率30.47%(平均品位为0.71%)(陈果等,2018),但是由于提炼过程复杂,成本高而难以有效利用(邵厥年和陶维屏,2010)。

  • 图10 甘坊花岗岩云母主微量元素协变图

  • Fig.10 Binary diagram of related elements for micas from Ganfang granites

  • 云母类矿物是稀有金属铷、锂等主要载体(Černýet al.,2003;王汝成等,2019),也是当前技术可以利用的矿物。在很多稀有金属矿床中均有铷矿化的报道,但是系统研究却相对较少。例如,宜春钠长花岗岩中锂云母Rb2O含量高达5.18%(Li Jie et al.,2015)、可可托海伟晶岩中的锂云母(Rb2O含量为0.61%,尹蓉,2015)、加拿大东Moblan伟晶岩中锂云母(Rb2O含量为8.72%,Potter et al.,2009)等。俄罗斯科拉半岛发现的沃罗申石(voloshinite,Rb(LiAl1.50.5)[Al0.5Si3.5O10]F2)是目前唯一一个以铷为主的云母类独立矿物,其Rb2O含量为12.18%(Pekov et al.,2010赵振华等,2020)。甘坊岩体内云母含量较高,且云母的铷含量也较高,是铷的主要载体矿物。尽管识别出了黑云母、白云母和绢云母三种类型的云母,但是结合电子探针和LA-ICP-MS的分析结果,白云母是主要载铷矿物(附表2、附表4)。因此,通过对比不同矿化类型、岩石类型、云母类型中铷含量的差异,可以得出甘坊岩体中铷主要赋存在白云母花岗岩和斑状花岗岩的白云母中,且以白云母花岗岩在各个矿区分布最为广泛,是铷矿的主要载体。

  • 4.2 云母中稀有金属铷和锂的置换机制

  • 云母类矿物的化学通式为XY2~3[Z4O10](OH)2,其中X代表层间阳离子,主要是K+,以及少量微量元素Na+、Rb+、Cs+、Ba2+、Ca2+等;Y为八面体配位的阳离子数,主要含Fe2+(或Fe3+)、Mn2+(或Mn3+)、Mg2+Al3+、Zn2+、V、Ti、Cr以及稀有金属Li+、Nb5+、Ta5+、Sn4+等;Z代表Si4+Al3+等,少数情况下有Fe3+、Cr3+、B3+存在以及稀有金属Be2+;OH-可被F-、Cl-替代(Robert et al.,1993; Pesquera et al.,1999; Černý et al.,2003; 王汝成等,2019)。

  • 甘坊岩体中的云母,尤其是白云母中含有较多的Li、Nb、Ta、Sn、W等稀有金属元素。对于稀有金属锂如何进入云母,前人的研究提出了多种置换机制,包括①VILi++IVSi4+VIFe2++IVAl3+;②Li++VIAl3+ ↔ Fe2++Mg2+;③2Li++IVSi4+VIAl3++VIAl3++□以及④Li++Fe2+VIAl3++□等(Pesquera et al.,1999; Černý et al.,2003; Legros et al.,2016; Breiter et al.,2019)。通过云母AlVI(apfu)和Li(apfu)二元图解可知(图6b),随着Li+含量增加,AlVI具有一定降低趋势,基本否定了机制①。由于机制②中Li+ VIAl3+ 双置换Fe2+和Mg2+,Li+VIAl3+应该显示一定正相关关系,但是电子探针数据(图6b)以及LA-ICP-MS数据(图10e)均显示二者及相关元素为负相关关系,因此排除机制②。对于机制③和④,电子探针数据显示2Li++Si4+VIAl3++VIAl3+以及Li++Fe2+VIAl3+有良好的负相关性(图6c-d),暗示Li+进入云母的主要机制可能为③和④。LA-ICP-MS微量元素分析结果表明,与Li相似的Nb、Ta、Sn、W等稀有金属极有可能在白云母中与Fe一起置换云母内的Al,而在黑云母中与Al一起置换云母中的Fe(图10e、f),其置换作用均发生在八面体位置。

  • 前人研究表明云母中Rb、Cs主要替换层间阳离子K或Na(Robert et al.,1993)。LA-ICP-MS微量元素分析结果显示甘坊岩体的云母中Na、Rb、Cs与K有一定的负相关关系(图10d),暗示了这种替代机制的可能性(Rb+ / Na+ / Cs+↔ K+)。值得关注的是,位于层间阳离子位置的Na、Rb、Cs等碱金属元素与八面体位置的Li、Nb、Ta、Sn、W和Zn、Ga、Ge、Tl都具有良好的正相关关系(图10a~c),暗示这些元素可能存在某种配对置换机理,协同进入云母。对于上述稀散元素,其进入云母中的方式可能是与Fe和Mg一起替换Si和Al,且未显黑云母和白云母的差异(图10g、h)。

  • 4.3 岩浆结晶分异与流体交代过程对铷、锂等稀有金属富集的指示

  • 稀有金属成矿常与高度演化(或分异)的花岗质岩浆系统具有紧密的成因联系(Černý et al.,2005; Linnen et al.,2012; London,2018; 吴福元等,2023)。稀有金属花岗岩中普遍存在晚阶段热液蚀变特征,导致很难将岩浆过程与热液过程厘清(Michaud and Pichavant,2020)。对于稀有金属花岗岩的成矿机制目前具有两种争议: ① “变花岗岩”(apogranite)成因模型强调岩浆期后热液交代作用对稀有金属的富集作用(Beus et al.,1962); ② 岩浆结晶分异成因模型强调结晶分异作用导致出现钠长石、黄玉、锂云母等特征矿物及其分带,且在晚阶段金属逐步富集(Cuney et al.,1992; Breiter et al.,1997)。这两种成因模式均肯定了稀有金属是在岩浆作用晚阶段富集,其差异在于岩浆期后热液对稀有金属成矿的贡献,即本质上需要厘清熔体与流体分异过程中稀有金属的配分关系。

  • 图11 甘坊花岗岩云母的K/Rb比值与Na+Rb+Cs(a)和 Li+Nb+Ta+W+Sn(b)微量元素协变图

  • Fig.11 K/Rb versus Na+Rb+Cs (a) and Li+Nb+ Ta+W+Sn (b) plots for micas from Ganfang granites

  • 从花岗岩自身来看,挥发分(F、B、Cl等)的富集不仅可以降低岩浆体系的粘度和固相线温度,从而使岩浆能够更充分演化(London et al.,1993; Dingwell et al.,1993),而且会通过增加熔体中非桥氧数量,导致稀有金属溶解度加大并进一步富集(Mysen et al.,1981; McPhie et al.,2011)。因此,该类花岗岩最典型的特征是随着岩浆结晶分异演化显示不同程度的分带性。例如,我国江西宜春414典型超大型Li-Nb-Ta-Rb矿床中出现由二云母花岗岩带、白云母花岗岩或浅色花岗岩带,向黄玉-锂云母(或铁锂云母)-钠长石花岗岩带、云英岩带、钾长石伟晶岩壳和石英壳演化特征(朱金初等,2002李洁和黄小龙,2013; Yin Rong et al.,2022)。此外,该类花岗岩还常常与花岗细晶岩或伟晶岩伴生(Dill,2015),以及晚阶段残余熔浆体侵入形成独立花岗质小岩脉(Breiter et al.,1997)。值得注意的是,吴福元等(2023)指出云英岩可能代表了岩浆结晶分异的最高程度,认为传统认为的热液交代成因的云英岩极有可能是岩浆成因,这无疑为今后研究和勘查提出了新的挑战。甘坊岩体内发育多种花岗岩,包括黑云母花岗岩、斑状花岗岩(F=4350×10-6~6590×10-6)、白云母花岗岩(F=4360×10-6~8170×10-6)、伟晶岩、细晶岩(出现大量萤石脉,图2h);这些花岗岩年龄相似,均形成于150 Ma左右,且整体富氟,表现出同时同源演化的特征(数据未发表)。若把甘坊岩体当作一个巨大的岩浆房或几个岩浆房来看,甘坊岩体具有上述经典文献中提及的高度分异的花岗质岩浆系统特征(图1c)。

  • 长石作为花岗岩中主要的造岩矿物,其矿物特征对岩浆演化也具有一定的指示意义。随着岩浆演化,钾长石多为微斜长石,甚至出现天河石(富铷钾长石);斜长石逐渐减少,并向富钠方向演化;而钠长花岗岩的出现基本上代表了花岗质岩浆发生了超分异作用(吴福元等,2017)。在稀有金属花岗岩中,钠长石的岩浆成因与热液成因亦是争执不断(朱金初等,2002)。尽管钾长石化、钠长石化在热液矿床中具有重要的岩石成因与金属矿化指示意义(Plümper and Putnis,2009; Kontonikas-Charos et al.,2017),但在高演化花岗岩中,钠长石化常常被“放大”,而忽略了可能是由于出溶作用和少量重结晶作用形成细粒钠长石包裹粗粒条纹长石而造成的“蚀变假象”(Haapala,1997)。通常,稀有金属花岗岩中发育低熔长石结构、雪球结构等是岩浆成因的典型特征(李福春等,2000;2003;朱金初等,2002);而交代溶蚀结构及其产生的微粒磷灰石包体、细粒萤石和钠长石等才是判断蚀变作用的有力证据(Schwartz,1992; Huang Xiaolong et al.,2002; Plümper and Putnis,2009)。本文所研究的甘坊花岗岩中,钠长石无论是作为斑晶还是次一级颗粒,其形态自形、边缘规则(图2c),仅在斑晶中发现了热液蚀变绢云母和后期风化高岭土现象(图3b、图8),钠长石本身代表了典型的岩浆成因。此外,长石中P元素含量对岩浆演化也有一定的指示意义(Alfonso et al.,2003),随着岩浆分异演化,长石中P元素含量逐渐增加。甘坊花岗岩从黑云母花岗岩到斑状花岗岩,最后在细晶岩,钠长石的含量逐渐升高,尤其是细晶岩中,几乎由钠长石组成。钠长石中的P2O5含量由0.01%~0.03%(黑云母花岗岩)到0.01%~0.03%(斑状花岗岩),到0.03%~0.71%(白云母花岗岩),变为0.09%~0.37%(细晶岩),显示一定程度的增加(附表1)。

  • 云母作为稀有金属重要的载体矿物,对其研究有助于理解稀有金属成矿过程(王汝成等,2019)。在稀有金属花岗岩演化过程中,Li、Rb、Cs等碱土元素属于中等不相容元素(DLiMs/melt =~0.8,Bea et al.,1994),随着花岗质岩浆不断进行结晶分异,碱土金属将倾向于在残余熔体中富集(Hudson and Arth,1983; Bai and Groos,1999),云母类型及其微量元素含量会随着岩浆演化程度的升高而发生规律性变化,即云母组分会逐渐向铁锂云母、锂云母方向演化,F、Li、Rb、Cs含量升高,K/Rb、K/Cs、Ba/Rb比值降低。大量的实例研究也揭示了这一现象,如法国Beauvoir花岗岩(Cuney et al.,1992)、江西宜春雅山岩体(李洁和黄小龙,2013Li Jie et al.,2015)、黄山岩体(Zhu Zeying et al.,2019)、大湖塘花岗岩(Yin Rong et al.,2019)、Zinnwald岩体等(Breiter et al.,2019)以及西华山岩体(Li Jie et al.,2021)。云母中氟的含量甚至高达9.6%(Legros et al.,20162018)。甘坊花岗岩中云母的氟含量最高达8.36%,Rb2O含量高达1.48%,且而二者显示明显的正相关性(图6e)。随着岩浆演化,云母的K/Rb比值降低,稀有金属Li、Rb、Cs、Sn等逐渐增加的趋势均非常明显(图11);尽管当前本文没有同位素的证据约束这些花岗岩的来源,但根据前人研究,图11中不同类型花岗岩的线性趋势,暗示了这些花岗岩之间具有同源成因联系(Hulsbosch et al.,2014; Han Jinsheng et al.,2021)。因此,甘坊花岗岩中云母的微量元素进一步表明了该地区同时同源花岗岩显著的结晶分异特征。

  • 岩浆结晶作用形成的云母多呈片状产出,边界平直,有锯齿状、裂片等特征,常包裹早期结晶的磷灰石、独居石、锆石等副矿物,有时可见明显的结晶环带(刘昌实等,2005Roda-Robles et al.,2007)。热液交代成因的云母呈细粒、不规则状,交代结构发育,多沿原生云母解理面、边缘或裂隙生长,伴生绿泥石等(Legros et al.,20162018; Breiter et al.,2017; Yin Rong et al.,2019)。甘坊花岗岩中主要的富铷云母(白云母)多呈自形结构,背散射图像发现多数云母具有环带结构,且亮色区域较暗色区域富铷(图4b);而最边缘交代部分的云母呈细粒,不规则状(图4b),以及少量钠长石斑晶中的细针状绢云母(图8),但这些热液次生云母均贫铷(附表2、附表4)。类似的现象也出现在其他稀有金属花岗岩中,例如,Breiter et al.(2019)研究表明热液云母相较岩浆云母富集Si、Mn、Ga,亏损Rb、F、Sn、W、Nb、Fe等。Xie Lei et al.(2018)研究赖子岭花岗岩发现,原生锂云母(RbO2=1.19%~1.36%)蚀变为白云母(RbO2=0.35%~0.42%)过程中稀有金属Li、Rb等含量降低。进一步结合稀有金属在熔体-流体间配分行为实验也表明,Li、Rb不同于Sn、W,前者流/熔配分系数一般<1,说明Li、Rb更容易在岩浆熔体中富集(London et a1.,1988; Keppler and Wyllie,1991; Hulsbosch et al.,20142016)。

  • 5 结论

  • (1)甘坊岩体内主要发育花岗岩型和细晶岩脉型铷矿化,且发育多种岩浆岩,但具有工业价值的铷主要赋存在白云母花岗岩和斑状花岗岩中。

  • (2)尽管花岗岩中长石的含量要高于云母,但云母中铷的含量要远高于钾长石,尤其是钠长石几乎不含铷,因此岩体中云母类矿物是主要的铷载体矿物。

  • (3)富铷、锂的云母由白云母向锂多硅白云母、铁锂云母和锂云母转变,其中锂主要和硅、铁双置换云母中的铝;而铷主要与钠、铯等共同替换层间钾离子。

  • (4)矿物学研究显示花岗岩中铷、锂的富集与岩浆分异作用有关,岩浆结晶分异作用导致晚阶段熔体中富铷、锂等稀有金属,而流体交代作用不是甘坊花岗岩中铷、锂的主要富集机制。

  • 致谢:感谢江西省地质矿产勘查开发局物化探大队在野外工作中提供的帮助;衷心感谢南京大学内生金属矿床成矿机制研究国家重点实验室电子探针和LA-ICP-MS分析过程中张文兰、胡欢老师及其研究生提供的技术指导。两位审稿专家宝贵的意见对本文的提高具有重要作用,在此表示衷心的感谢。

  • 附件:本文附件(附表1~4)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202311097?st=article_issue

  • 注释

  • ❶ 自江西省地质局物化探大队.2022. 江西省奉新县白果矿区含锂铷高岭土、瓷石矿详查区域地质图.

  • 参考文献

    • Alfonso P, Melgarejo J C, Yusta I, Velasco F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus feld, Catalonia, Spain. The Canadian Mineralogist, 41: 103~116.

    • Bai T B, Groos A. 1999. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochimica et Cosmochimica Acta, 63(07): 1117~1131.

    • Bea F, Pereira M D, Stroh A. 1994. Mineral leucosome trace-element partitioning in a peraluminousmigmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4), 291~312.

    • Beus A A, Severon V A, Sitnin A A, Subbotin R D. 1962. Albitized and greisenized granites (apogranites). Moscow: Academy Science Press, 196 (in Russian).

    • Breiter K, Frýda J, Seltmann R. 1997. Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: The Podlesí stock, Krušnéhory, Czech Republic. Journal of Petrology, 38(12): 1723~1739.

    • Breiter K, Ďurišová J, Hrstka T, Ďurišová Z, Vaňková M H, Galiová M V, Kanický V, Rambousek P, Knésl I, Dobeš P, Dosbaba M. 2017. Assessment of magmatic vs metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Lithos, 292~293, 198~217.

    • Breiter K, Hlozkova M, Korbelova Z, Galiova M V. 2019. Diversity of lithium mica compositions in mineralized granite-greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews, 106: 12~27.

    • Černý P, Chapman R, Teertstra D K, Novák M. 2003. Rubidium-and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88(11-12): 1832~1835.

    • Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005~2026.

    • Chen Guo, Liang Guanjie, Liu Meng. 2018. Dressing experiment study on the white mica with rubidium from a rubidium polymetallic ore in Gansu. Mining Research and Development, 38(9): 59~62 (in Chinese with English abstract).

    • Chen Jun. 2019. Metallogenesis and effective utilization of strategic-critical metals. Science & Technology Review, 37(24): 1~5 (in Chinese).

    • Cuney M, Marignac C, Weisbrod A. 1992. The beauvoir topaz-lepidolite albite granite (Massif central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766~1794.

    • Deer W A, Howie R A, Zussman J. 1992. An introduction to the rock-forming minerals. 2 Edition. Harlow: Longman Group: 1~232.

    • Dill G H. 2015. Pegmatites andaplites: Their genetic and applied ore geology. Ore Geology Reviews, 69: 417~561.

    • Dingwell D B, Knoche R, Webb S L. 1993. The effect of P2O5 on the viscosity of haplogranitic liquid. European Journal of Mineralogy, 5(1): 133~140.

    • Duan Zhenpeng, Jiang Shaoyong, Su Huimin, Zhu Xinyou, Zou Tao. 2022. Nb-Ta oxides as recorders of hydrothermal activity in the Shihuiyao Rb-Nb-Ta-(Be-Li) deposit, Inner Mongolia, NE China. Ore Geology Reviews, 150: 105149.

    • Haapala I. 1997. Magmatic andpostmagmatic processes in tin-mineralized granites: Topaz-bearing leucogranite in the Eurajoki Rapakivi granite stock, Finland. Journal of Petrology, 38(12): 1645~1659.

    • Han Jinsheng, Chen Huayong, Hollings P, Wang Jun, Zhang Dexian, Zhang Le, Zeng Ti, Ma Jinlong, Ai Yumin. 2021. Effcient enrichment of Rb during the magmatic-hydrothermal transition in a highly evolved granitic system: Implications from mica chemistry of the Tiantangshan Rb-Sn-W deposit. Chemical Geology, 560: 120020.

    • Huang Xiaolong, WangRucheng, Chen Xiaoming, Hu Huan, Liu Changshi. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40(4): 1047~1068.

    • Hudson T, Arth J G. 1983. Tin granites of Seward Peninsula, Alaska. GSA Bulletin, 94 (6): 768~790.

    • Hulsbosch N, Hertogen J, Dewaele S, Andre L, Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132: 349~374.

    • Hulsbosch N, Boiron M C, Dewaele S, Muchez P. 2016. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole belt (Rwanda). Geochimica et Cosmochimica Acta, 175: 299~318.

    • Jiang Shaoyong, Su Huimin, Xiong Yiqu, Liu Tao, Zhu Kangyu, Zhang Lu. 2020. Spatial-temporal distribution, geological characteristics and ore-formation controlling factors of major types of rare metal mineral deposits in China. Acta Geologica Sinica (English Edition), 94(6): 1757~1773.

    • Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt andaqueousfluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-Hf. Contributions to Mineralogy and Petrology, 109: 139~150.

    • Kontonikas-Charos A, Ciobanu C L, Cook N J, Ehrig K, Kamenetsky V S. 2017. Feldspar evolution in the Roxby Downs granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geology Reviews, 80: 838~859.

    • Kovalenko V I, Tsaryeva G M, Goreglyad A V, Yarmolyuk V V, Troitsky V A, Hervig R L. 1995. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Economic Geology, 90(3): 530~547.

    • Legros H, Marignac C, Mercadier J, Cuney M, Richard A, Wang R C, Charles N, Lespinasse M Y. 2016. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China). Lithos, 264: 108~124.

    • Legros H, Marignac C, Tabary T, Mercadier J, Richard A, Cuney M, Wang Rucheng, Charles N, Lespinasse M Y. 2018. The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. American Mineralogist, 103: 39~54.

    • Li Fuchun, Zhu Jinchu, Jin Zhangdong, Li Xiaofeng. 2022. Formation mechanism of snowball texture in albite granite. Acta Petrologica et Mineralogica, 19(1): 27~35 (in Chinese with English abstract).

    • Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311~4322 (in Chinese with English abstract).

    • Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793~810.

    • Li Jie, Huang Xiaolong, Fu Qi, Li Wuxian. 2021. Tungsten mineralization during evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, 106 (3): 443~460.

    • Li Renze, Zhou Zhengbing, Peng Bo, Chen Jun, Wu Jianbo, Yu Huiqiang, Wan Jianjun, Yang Shuang. 2020. A discussion on geological characteristics and genetic mechanism of Dagang superlarge lithium-bearing porcelain stone deposit in Yifeng County, Jiangxi Province. Mineral Deposits, 39(6): 1015~1029 (in Chinese with English abstract).

    • Li Xiaofeng, Wei Xinglin, Zhu Yiting, Li Zhufu, Deng Xuanchi. 2021. Rare metal deposits in South China: Types, characteristics, distribution and tectonic setting. Acta Petrologica Sinica, 37(12): 3591~3614 (in Chinese with English abstract).

    • Lichtervelde M V, Michel G, Linnen R L, Didier B, Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with ta mineralization in the Tanco Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6): 791~806. Linnen R L, Van L M, Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275~280.

    • Liu Changshi, Chen Xiaoming, Wang Rucheng, Zhang Wenlan, Hu Huan. 2005. Isotopic dating and origin of complexly zoned micas for A-type Nankunshan aluminous granite. Geological Review, 51(2): 193~201 (in Chinese with English abstract).

    • Liu Xianghua, Li Bin, Xu Junwei, He Bin, Liao Jia, Peng Hongwei, Wang Yuhua, Lai Jianqing. 2022. Monazite geochronology and geochemistry constraints on the formation of the giant Zhengchong Li-Rb-Cs deposit in South China. Ore Geology Reviews, 150: 105147.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51, 537~571.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • London D, Hervig R L, Morgan G B. 1988. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: Experimental results with Macusani glass at 200 Mpa. Contribution to Mineralogy and Petrology, 99: 360~373.

    • London D, Morgan G B, Babb H A, Loomis J L. 1993. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 Mpa (H2O). Contributions to Mineralogy and Petrology, 113(4): 450~465.

    • McPhie J, Kamenetsky V, Sharon A. 2011. The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 39(11): 1003~1006.

    • Michaud A S, Pichavant M. 2020. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: Evidence from Argemela (central Portugal). Geochimica et Cosmochimica Acta. 289: 130~157.

    • Mysen B O, Virgo D, Kushiro I. 1981. The structural role of aluminum in silicate melts; a Raman spectroscopic study at 1 atmosphere. American Mineralogist, 66(7): 678~701.

    • Pekov I V, Kononkova N N, Agakhano A A, Belakovsky D I, Kazantsev S S, Zubkova N V. 2010. Voloshinite, a new rubidium mica from granitic pegmatite of Voron'i Tundras, Kola Peninsula, Russia. Geology of Ore Deposits, 52(7): 591~598.

    • Pesquera A, Ruiz J T, Crespo P P G, Velilla N. 1999. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). American Mineralogist, 84(1-2): 55~69.

    • Plümper O, Putnis A. 2009. The complex hydrothermal history of granitic rocks: Multiple feldspar replacement reactions under subsolidus conditions. Journal of Petrology, 50: 967~987.

    • Potter E G, Taylor R P, Jones P C, Lalonde A E, Pearse G H K, Rowe R. 2009. Sokolovaite and evolved lithian micas from the eastern Moblan granitic pegmatite, Opatica Subprovince, Quebec, Canada. The Canadian Mineralogist, 47(2): 337~349.

    • Qin Cheng. 2018. Preliminary study of mineralization potentiality of Shiziling muscovite granite, Jiangxi Province. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Robert J L, Beny J M, Ventura G, Hardy M. 1993. Fluorine in micas: Crystalchemical control of the OH-F distribution between trioctahedral and dioctahedral sites. European Journal of Mineralogy, 5: 7~18.

    • Roda-Robles E, Keller P, Pesquera A, Fontan F. 2007. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia. Mineralogical Magazine, 71(1): 41~62.

    • Rudnick R L, Gao S. 2003. The composition of the continental crust. In: The Crust, Treatise on Geochemistry vol. 3 (ed. RL Rudnick). Elsevier, 1~64.

    • Schwartz M O. 1992. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids-examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineralium Deposita, 27(2): 101~108.

    • Seifert T, Atanasova P, Gutzmer J, Pfänder J. 2011. Mineralogy, geochemistry and age of greisen mineralization in the Li-Rb-Cs-Sn-W deposit Zinnwald, Erzgebirge, Germany. Goldschmidt Conference Abstracts.

    • Shao Juannian, Tao Weiping. 2010. Manual of requirements for mineral resources industry. Geological Publishing House (Beijing), 249~250.

    • Shu Liangshu, Zhu Wenbin, Xu Zhiqin. 2021. Geological settings and metallogenic conditions of the granite- type lithium ore deposits in South China. Acta Geologica Sinica, 95(10): 3099~3114 (in Chinese with English abstract).

    • Sun Yan. 2013. Research on of typical rubidium deposits and tectonic background in China. Doctor degree thesis of China University of Geosciences(Beijing) (in Chinese with English abstract).

    • Sun Yan, Wang Ruijiang, Qi Feng, Li Jiankang, Mei Yanxiong. 2013. The global status of rubidium resource and suggestions on its development and utilization in China. China Mining Magazine, 22(9): 11~13+57 (in Chinese with English abstract).

    • Sun Yan, Wang Denghong, Wang Chenghui, Li Jiankang, Zhao Zhi, Wang Yan, Guo Weiming. 2019. Metallogenic regularity, new prospecting and guide direction of rubidium deposits in China. Acta Geologica Sinica, 93(6): 1231~1244 (in Chinese with English abstract).

    • Tischendorf G, Gottesmann B, Foerster H J, Trumbull R B 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809~834.

    • Wang Chenghui, Yang Yueqing, Wang Denghong, Sun Yan, Chen Zhengyu, Xie Guogang, Fan Xiujun. 2018. Discovery of amblygonite and Li-Be-Sn-Ta minerals in the Jiuling area, Jiangxi Province. Rock and Mineral Analysis, 37(1): 108~110 (in Chinese with English abstract).

    • Wang Chenghui, Wang Denghong, Chen Chen, Liu Shanbao, Chen Zhenyu, Sun Yan, Zhao Chenhui, Cao Shenghua, Fan Xiujun. 2019. Progress of research on the Shilizing rare meatals mineralization from Jiuling-type rock and its significance for prospecting. Acta Geologica Sinica, 93(6): 1359~1373 (in Chinese with English abstract).

    • Wang Chenghui, Wang Denghong, Qin Jinhua, Li Jiankang, Liu Shanbao, Chen Zhenyu. 2021. Discovery of granitic pegmatite type beryllium ore deposit in middle of Nanling metallogenic belt. Mineral Deposits, 40(2): 398~401 (in Chinese with English abstract).

    • Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743~764 (in Chinese with English abstract).

    • Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi, Wang Jiamin, Yang Lei, Lai Wen, Liu Chen. 2017. A preliminary study of rare metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China Earth Sciences, 60: 1655~1663.

    • Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite-pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69~75 (in Chinese with English abstract).

    • Wang Rucheng, Che Xudong, Wu Bin, Xie Lei. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 119~133 (in Chinese with English abstract).

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Scientia Sinica(Terrae), 47(7): 745~765 (in Chinese with English abstract).

    • Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1~36 (in Chinese with English abstract).

    • Wu Mingqian, Samson I M, Zhang Dehui. 2018. Textural features and chemical evolution in Ta-Nb oxides: Implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China. Economic Geology, 113(4): 937~960.

    • Wu Mingqian, Samson I M, Qiu Kunfeng, Zhang Dehui. 2021. Concentration mechanisms of rare earth element-Nb-Zr-Be mineralization in the Baerzhe deposit, northeast China: Insights from textural and chemical features of amphibole and rare metal minerals. Economic Geology, 116 (3): 651~679.

    • Wu Xuemin, Zhou Minjuan, Luo Xicheng, Zhou Jianting. 2016. The metallogenic conditions and prospecting potential of lithium andrare metals in northwestern Jiangxi. East China Geology, 37(4): 275~283 (in Chinese with English abstract).

    • Xie Lei, Wang Zhengjun, Wang Rucheng, Zhu Jinchu, Che Xudong, Gao Jianfeng, Zhao Xu. 2018. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China). Ore Geology Reviews, 95: 695~712.

    • Yin Rong. 2015. Mineralogicalstudy of an extremely evolved granitic pegmatite: A case study of Keketuohai No. 1 pegmatite vein in Altay, Xinjiang. Doctor degree thesis of Nanjing University (in Chinese with English abstract).

    • Yin Rong, Han Li, Huang Xiaolong, Li Jie, Li Wuxian, Chen Linli. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104, 949~965.

    • Yin Rong, Huang Xiaolong, Wang Rucheng, Sun Xiaoming, Tang Yong, Wang Yu, Xu Yigang. 2022. Rare-metal enrichment and Nb-Ta fractionation during magmatic-hydrothermal processes in rare-metal granites: Evidence from zoned micas from the Yashan Pluton, South China. Journal of Petrology, 63(10): 1~28.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33(2): 106~111 (in Chinese with English abstract).

    • Zhao Zhenhua, Chen Huayong, Han Jinsheng. 2020. Data of rubidium-dominant minerals. Geochimica, 49(6): 690~693 (in Chinese with English abstract).

    • Zhou Jianting, Wang Guobin, He Shufang, Fan Aichun. 2011. Diagenesis and mineralization of Ganfang rock in Yifeng, Jiangxi Province. Journal of East China Institute of Technology (Natural Science), 34(4): 345~358 (in Chinese with English abstract).

    • Zhu Jinchu, Rao Bing, Xiong Xiaolin, Li Fuchun, Zhang Peihua. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks. Geochimica, 31(02): 141~152 (in Chinese with English abstract).

    • Zhu Zeying, Wang Rucheng, Marignac C, Cuney M, Lespinasse M. 2019. Petrogenesis of Nb-(Ta) aplo-pegmatites and fine-grained granites from the Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, Southeast China. Lithos, 346-347, 105150.

    • 陈果, 梁冠杰, 刘猛.2018.甘肃某铷多金属矿中含铷白云母的选矿试验研究.矿业研究与开发, 38(9): 59~62.

    • 陈骏.2019.关键金属超常富集成矿和高效利用.科技导报, 37(24): 1~5.

    • 李福春, 朱金初, 金章东, 李晓峰.2000.钠长石花岗岩中雪球结构形成机理的研究.岩石矿物学杂志, 19(1): 27~35.

    • 李洁, 黄小龙.2013.江西雅山花岗岩岩浆演化及其Ta-Nb富集机制.岩石学报, 29(12): 4311~4322.

    • 李仁泽, 周正兵, 彭波, 陈骏, 吴建波, 余会强, 万建军, 杨爽.2021.江西宜丰县大港超大型含锂瓷石矿床地质特征及成因机制探讨.矿床地质, 39(6): 1015~1029.

    • 李晓峰, 韦星林, 朱艺婷, 李祖福, 邓宣驰.2021.华南稀有金属矿床: 类型、特点、时空分布与背景.岩石学报, 37(12): 3591~3614.

    • 刘昌实, 陈小明, 王汝成, 张文兰, 胡欢.2005.广东南昆山A型花岗岩定年和环带云母研究.地质评论.51(2): 193~201.

    • 秦程.2018.江西宜丰狮子岭白云母花岗岩成矿潜力研究.中国地质大学(北京)硕士学位论文.

    • 邵厥年, 陶维屏.2010.矿产资源工业要求手册.地质出版社(北京), 249~250.

    • 舒良树, 朱文斌, 许志琴.2021.华南花岗岩型锂矿地质背景与成矿条件.地质学报, 95(10): 3099~3114.

    • 孙艳.2013.我国铷典型矿床及其成矿构造背景研究.中国地质大学(北京)博士学位论文.

    • 孙艳, 王瑞江, 亓锋, 李建康, 梅燕雄.2013.世界铷资源现状及我国铷开发利用建议.中国矿业, 22(9): 11~13+57.

    • 孙艳, 王登红, 王成辉, 李建康, 赵芝, 王岩, 郭唯明.2019.我国铷矿成矿规律、新进展和找矿方向.地质学报, 93(6): 1231~1244.

    • 王成辉, 杨岳清, 王登红, 孙艳, 陈振宇, 谢国刚, 凡秀君.2018.江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物.岩矿测试, 37(1): 108~110.

    • 王成辉, 王登红, 陈晨, 刘善宝, 陈振宇, 孙艳, 赵晨辉, 曹圣华, 凡秀君.2019.九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义.地质学报, 93(6): 1359~1373.

    • 王成辉, 王登红, 秦锦华, 李建康, 刘善宝, 陈振宇.2021.南岭成矿带中亚带发现花岗伟晶岩型铍矿.矿床地质, 40(2): 398~401.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏.2022.中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势.地质力学学报, 28(5): 743~764.

    • 王汝成, 谢磊, 诸泽颖, 胡欢.2019.云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物.岩石学报, 35(1): 69~75.

    • 王汝成, 车旭东, 邬斌, 谢磊.2020.中国铌钽锆铪资源.科学通报, 65(33): 119~133.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷.2017.高分异花岗岩的识别与研究.中国科学: 地球科学, 47(7): 745~765.

    • 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章.2023.南岭高分异花岗岩成岩与成矿.岩石学报, 39(1): 1~36.

    • 吴学敏, 周敏娟, 罗喜成, 周建廷.2016.江西西北部锂及稀有金属成矿条件及找矿潜力分析.华东地质, 37(4): 275~283.

    • 尹蓉.2015.一个极端演化花岗伟晶岩的矿物学研究: 以新疆阿尔泰可可托海1号伟晶岩脉为例.南京大学博士学位论文.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷.2019.战略性关键金属矿产资源: 现状与问题.中国科学基金, 33(02), 106~111.

    • 赵振华, 陈华勇, 韩金生.2020.关于铷的独立矿物.地球化学, 49(06): 690~693.

    • 周建廷, 王国斌, 何淑芳, 范爱春.2011.江西宜丰地区甘坊岩体成岩成矿作用分析.东华理工大学学报(自然科学版), 34(04): 345~351+358.

    • 朱金初, 饶冰, 熊小林, 李福春, 张佩华.2002.富锂氟含稀有矿化花岗质岩石的对比和成因思考.地球化学, 31(2): 141~152.

  • 参考文献

    • Alfonso P, Melgarejo J C, Yusta I, Velasco F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus feld, Catalonia, Spain. The Canadian Mineralogist, 41: 103~116.

    • Bai T B, Groos A. 1999. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids. Geochimica et Cosmochimica Acta, 63(07): 1117~1131.

    • Bea F, Pereira M D, Stroh A. 1994. Mineral leucosome trace-element partitioning in a peraluminousmigmatite (a laser ablation-ICP-MS study). Chemical Geology, 117(1-4), 291~312.

    • Beus A A, Severon V A, Sitnin A A, Subbotin R D. 1962. Albitized and greisenized granites (apogranites). Moscow: Academy Science Press, 196 (in Russian).

    • Breiter K, Frýda J, Seltmann R. 1997. Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P-rich rare-metal granite: The Podlesí stock, Krušnéhory, Czech Republic. Journal of Petrology, 38(12): 1723~1739.

    • Breiter K, Ďurišová J, Hrstka T, Ďurišová Z, Vaňková M H, Galiová M V, Kanický V, Rambousek P, Knésl I, Dobeš P, Dosbaba M. 2017. Assessment of magmatic vs metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Lithos, 292~293, 198~217.

    • Breiter K, Hlozkova M, Korbelova Z, Galiova M V. 2019. Diversity of lithium mica compositions in mineralized granite-greisen system: Cínovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews, 106: 12~27.

    • Černý P, Chapman R, Teertstra D K, Novák M. 2003. Rubidium-and cesium-dominant micas in granitic pegmatites. American Mineralogist, 88(11-12): 1832~1835.

    • Černý P, Ercit T S. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005~2026.

    • Chen Guo, Liang Guanjie, Liu Meng. 2018. Dressing experiment study on the white mica with rubidium from a rubidium polymetallic ore in Gansu. Mining Research and Development, 38(9): 59~62 (in Chinese with English abstract).

    • Chen Jun. 2019. Metallogenesis and effective utilization of strategic-critical metals. Science & Technology Review, 37(24): 1~5 (in Chinese).

    • Cuney M, Marignac C, Weisbrod A. 1992. The beauvoir topaz-lepidolite albite granite (Massif central, France); the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87(7): 1766~1794.

    • Deer W A, Howie R A, Zussman J. 1992. An introduction to the rock-forming minerals. 2 Edition. Harlow: Longman Group: 1~232.

    • Dill G H. 2015. Pegmatites andaplites: Their genetic and applied ore geology. Ore Geology Reviews, 69: 417~561.

    • Dingwell D B, Knoche R, Webb S L. 1993. The effect of P2O5 on the viscosity of haplogranitic liquid. European Journal of Mineralogy, 5(1): 133~140.

    • Duan Zhenpeng, Jiang Shaoyong, Su Huimin, Zhu Xinyou, Zou Tao. 2022. Nb-Ta oxides as recorders of hydrothermal activity in the Shihuiyao Rb-Nb-Ta-(Be-Li) deposit, Inner Mongolia, NE China. Ore Geology Reviews, 150: 105149.

    • Haapala I. 1997. Magmatic andpostmagmatic processes in tin-mineralized granites: Topaz-bearing leucogranite in the Eurajoki Rapakivi granite stock, Finland. Journal of Petrology, 38(12): 1645~1659.

    • Han Jinsheng, Chen Huayong, Hollings P, Wang Jun, Zhang Dexian, Zhang Le, Zeng Ti, Ma Jinlong, Ai Yumin. 2021. Effcient enrichment of Rb during the magmatic-hydrothermal transition in a highly evolved granitic system: Implications from mica chemistry of the Tiantangshan Rb-Sn-W deposit. Chemical Geology, 560: 120020.

    • Huang Xiaolong, WangRucheng, Chen Xiaoming, Hu Huan, Liu Changshi. 2002. Vertical variations in the mineralogy of the Yichun topaz-lepidolite granite, Jiangxi Province, southern China. The Canadian Mineralogist, 40(4): 1047~1068.

    • Hudson T, Arth J G. 1983. Tin granites of Seward Peninsula, Alaska. GSA Bulletin, 94 (6): 768~790.

    • Hulsbosch N, Hertogen J, Dewaele S, Andre L, Muchez P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta, 132: 349~374.

    • Hulsbosch N, Boiron M C, Dewaele S, Muchez P. 2016. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole belt (Rwanda). Geochimica et Cosmochimica Acta, 175: 299~318.

    • Jiang Shaoyong, Su Huimin, Xiong Yiqu, Liu Tao, Zhu Kangyu, Zhang Lu. 2020. Spatial-temporal distribution, geological characteristics and ore-formation controlling factors of major types of rare metal mineral deposits in China. Acta Geologica Sinica (English Edition), 94(6): 1757~1773.

    • Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt andaqueousfluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-Hf. Contributions to Mineralogy and Petrology, 109: 139~150.

    • Kontonikas-Charos A, Ciobanu C L, Cook N J, Ehrig K, Kamenetsky V S. 2017. Feldspar evolution in the Roxby Downs granite, host to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia. Ore Geology Reviews, 80: 838~859.

    • Kovalenko V I, Tsaryeva G M, Goreglyad A V, Yarmolyuk V V, Troitsky V A, Hervig R L. 1995. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Economic Geology, 90(3): 530~547.

    • Legros H, Marignac C, Mercadier J, Cuney M, Richard A, Wang R C, Charles N, Lespinasse M Y. 2016. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China). Lithos, 264: 108~124.

    • Legros H, Marignac C, Tabary T, Mercadier J, Richard A, Cuney M, Wang Rucheng, Charles N, Lespinasse M Y. 2018. The ore-forming magmatic-hydrothermal system of the Piaotang W-Sn deposit (Jiangxi, China) as seen from Li-mica geochemistry. American Mineralogist, 103: 39~54.

    • Li Fuchun, Zhu Jinchu, Jin Zhangdong, Li Xiaofeng. 2022. Formation mechanism of snowball texture in albite granite. Acta Petrologica et Mineralogica, 19(1): 27~35 (in Chinese with English abstract).

    • Li Jie, Huang Xiaolong. 2013. Mechanism of Ta-Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China. Acta Petrologica Sinica, 29(12): 4311~4322 (in Chinese with English abstract).

    • Li Jie, Huang Xiaolong, He Pengli, Li Wuxian, Yu Yang, Chen Linli. 2015. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta-Nb bearing granites. Ore Geology Reviews, 65: 793~810.

    • Li Jie, Huang Xiaolong, Fu Qi, Li Wuxian. 2021. Tungsten mineralization during evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, 106 (3): 443~460.

    • Li Renze, Zhou Zhengbing, Peng Bo, Chen Jun, Wu Jianbo, Yu Huiqiang, Wan Jianjun, Yang Shuang. 2020. A discussion on geological characteristics and genetic mechanism of Dagang superlarge lithium-bearing porcelain stone deposit in Yifeng County, Jiangxi Province. Mineral Deposits, 39(6): 1015~1029 (in Chinese with English abstract).

    • Li Xiaofeng, Wei Xinglin, Zhu Yiting, Li Zhufu, Deng Xuanchi. 2021. Rare metal deposits in South China: Types, characteristics, distribution and tectonic setting. Acta Petrologica Sinica, 37(12): 3591~3614 (in Chinese with English abstract).

    • Lichtervelde M V, Michel G, Linnen R L, Didier B, Salvi S. 2008. Trace element geochemistry by laser ablation ICP-MS of micas associated with ta mineralization in the Tanco Manitoba, Canada. Contributions to Mineralogy and Petrology, 155(6): 791~806. Linnen R L, Van L M, Černý P. 2012. Granitic pegmatites as sources of strategic metals. Elements, 8(4): 275~280.

    • Liu Changshi, Chen Xiaoming, Wang Rucheng, Zhang Wenlan, Hu Huan. 2005. Isotopic dating and origin of complexly zoned micas for A-type Nankunshan aluminous granite. Geological Review, 51(2): 193~201 (in Chinese with English abstract).

    • Liu Xianghua, Li Bin, Xu Junwei, He Bin, Liao Jia, Peng Hongwei, Wang Yuhua, Lai Jianqing. 2022. Monazite geochronology and geochemistry constraints on the formation of the giant Zhengchong Li-Rb-Cs deposit in South China. Ore Geology Reviews, 150: 105147.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51, 537~571.

    • London D. 2018. Ore-forming processes within granitic pegmatites. Ore Geology Reviews, 101: 349~383.

    • London D, Hervig R L, Morgan G B. 1988. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: Experimental results with Macusani glass at 200 Mpa. Contribution to Mineralogy and Petrology, 99: 360~373.

    • London D, Morgan G B, Babb H A, Loomis J L. 1993. Behavior and effects of phosphorus in the system Na2O-K2O-Al2O3-SiO2-P2O5-H2O at 200 Mpa (H2O). Contributions to Mineralogy and Petrology, 113(4): 450~465.

    • McPhie J, Kamenetsky V, Sharon A. 2011. The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology, 39(11): 1003~1006.

    • Michaud A S, Pichavant M. 2020. Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: Evidence from Argemela (central Portugal). Geochimica et Cosmochimica Acta. 289: 130~157.

    • Mysen B O, Virgo D, Kushiro I. 1981. The structural role of aluminum in silicate melts; a Raman spectroscopic study at 1 atmosphere. American Mineralogist, 66(7): 678~701.

    • Pekov I V, Kononkova N N, Agakhano A A, Belakovsky D I, Kazantsev S S, Zubkova N V. 2010. Voloshinite, a new rubidium mica from granitic pegmatite of Voron'i Tundras, Kola Peninsula, Russia. Geology of Ore Deposits, 52(7): 591~598.

    • Pesquera A, Ruiz J T, Crespo P P G, Velilla N. 1999. Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). American Mineralogist, 84(1-2): 55~69.

    • Plümper O, Putnis A. 2009. The complex hydrothermal history of granitic rocks: Multiple feldspar replacement reactions under subsolidus conditions. Journal of Petrology, 50: 967~987.

    • Potter E G, Taylor R P, Jones P C, Lalonde A E, Pearse G H K, Rowe R. 2009. Sokolovaite and evolved lithian micas from the eastern Moblan granitic pegmatite, Opatica Subprovince, Quebec, Canada. The Canadian Mineralogist, 47(2): 337~349.

    • Qin Cheng. 2018. Preliminary study of mineralization potentiality of Shiziling muscovite granite, Jiangxi Province. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Robert J L, Beny J M, Ventura G, Hardy M. 1993. Fluorine in micas: Crystalchemical control of the OH-F distribution between trioctahedral and dioctahedral sites. European Journal of Mineralogy, 5: 7~18.

    • Roda-Robles E, Keller P, Pesquera A, Fontan F. 2007. Micas of the muscovite-lepidolite series from Karibib pegmatites, Namibia. Mineralogical Magazine, 71(1): 41~62.

    • Rudnick R L, Gao S. 2003. The composition of the continental crust. In: The Crust, Treatise on Geochemistry vol. 3 (ed. RL Rudnick). Elsevier, 1~64.

    • Schwartz M O. 1992. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids-examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineralium Deposita, 27(2): 101~108.

    • Seifert T, Atanasova P, Gutzmer J, Pfänder J. 2011. Mineralogy, geochemistry and age of greisen mineralization in the Li-Rb-Cs-Sn-W deposit Zinnwald, Erzgebirge, Germany. Goldschmidt Conference Abstracts.

    • Shao Juannian, Tao Weiping. 2010. Manual of requirements for mineral resources industry. Geological Publishing House (Beijing), 249~250.

    • Shu Liangshu, Zhu Wenbin, Xu Zhiqin. 2021. Geological settings and metallogenic conditions of the granite- type lithium ore deposits in South China. Acta Geologica Sinica, 95(10): 3099~3114 (in Chinese with English abstract).

    • Sun Yan. 2013. Research on of typical rubidium deposits and tectonic background in China. Doctor degree thesis of China University of Geosciences(Beijing) (in Chinese with English abstract).

    • Sun Yan, Wang Ruijiang, Qi Feng, Li Jiankang, Mei Yanxiong. 2013. The global status of rubidium resource and suggestions on its development and utilization in China. China Mining Magazine, 22(9): 11~13+57 (in Chinese with English abstract).

    • Sun Yan, Wang Denghong, Wang Chenghui, Li Jiankang, Zhao Zhi, Wang Yan, Guo Weiming. 2019. Metallogenic regularity, new prospecting and guide direction of rubidium deposits in China. Acta Geologica Sinica, 93(6): 1231~1244 (in Chinese with English abstract).

    • Tischendorf G, Gottesmann B, Foerster H J, Trumbull R B 1997. On Li-bearing micas: Estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(6): 809~834.

    • Wang Chenghui, Yang Yueqing, Wang Denghong, Sun Yan, Chen Zhengyu, Xie Guogang, Fan Xiujun. 2018. Discovery of amblygonite and Li-Be-Sn-Ta minerals in the Jiuling area, Jiangxi Province. Rock and Mineral Analysis, 37(1): 108~110 (in Chinese with English abstract).

    • Wang Chenghui, Wang Denghong, Chen Chen, Liu Shanbao, Chen Zhenyu, Sun Yan, Zhao Chenhui, Cao Shenghua, Fan Xiujun. 2019. Progress of research on the Shilizing rare meatals mineralization from Jiuling-type rock and its significance for prospecting. Acta Geologica Sinica, 93(6): 1359~1373 (in Chinese with English abstract).

    • Wang Chenghui, Wang Denghong, Qin Jinhua, Li Jiankang, Liu Shanbao, Chen Zhenyu. 2021. Discovery of granitic pegmatite type beryllium ore deposit in middle of Nanling metallogenic belt. Mineral Deposits, 40(2): 398~401 (in Chinese with English abstract).

    • Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade. Journal of Geomechanics, 28(5): 743~764 (in Chinese with English abstract).

    • Wang Rucheng, Wu Fuyuan, Xie Lei, Liu Xiaochi, Wang Jiamin, Yang Lei, Lai Wen, Liu Chen. 2017. A preliminary study of rare metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China Earth Sciences, 60: 1655~1663.

    • Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite-pegmatite-related rare-metal mineralization. Acta Petrologica Sinica, 35(1): 69~75 (in Chinese with English abstract).

    • Wang Rucheng, Che Xudong, Wu Bin, Xie Lei. 2020. Critical mineral resources of Nb, Ta, Zr, and Hf in China. Chinese Science Bulletin, 65(33): 119~133 (in Chinese with English abstract).

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Scientia Sinica(Terrae), 47(7): 745~765 (in Chinese with English abstract).

    • Wu Fuyuan, Guo Chunli, Hu Fangyang, Liu Xiaochi, Zhao Junxing, Li Xiaofeng, Qin Kezhang. 2023. Petrogenesis of the highly fractionated granites and their mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1~36 (in Chinese with English abstract).

    • Wu Mingqian, Samson I M, Zhang Dehui. 2018. Textural features and chemical evolution in Ta-Nb oxides: Implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China. Economic Geology, 113(4): 937~960.

    • Wu Mingqian, Samson I M, Qiu Kunfeng, Zhang Dehui. 2021. Concentration mechanisms of rare earth element-Nb-Zr-Be mineralization in the Baerzhe deposit, northeast China: Insights from textural and chemical features of amphibole and rare metal minerals. Economic Geology, 116 (3): 651~679.

    • Wu Xuemin, Zhou Minjuan, Luo Xicheng, Zhou Jianting. 2016. The metallogenic conditions and prospecting potential of lithium andrare metals in northwestern Jiangxi. East China Geology, 37(4): 275~283 (in Chinese with English abstract).

    • Xie Lei, Wang Zhengjun, Wang Rucheng, Zhu Jinchu, Che Xudong, Gao Jianfeng, Zhao Xu. 2018. Mineralogical constraints on the genesis of W-Nb-Ta mineralization in the Laiziling granite (Xianghualing district, South China). Ore Geology Reviews, 95: 695~712.

    • Yin Rong. 2015. Mineralogicalstudy of an extremely evolved granitic pegmatite: A case study of Keketuohai No. 1 pegmatite vein in Altay, Xinjiang. Doctor degree thesis of Nanjing University (in Chinese with English abstract).

    • Yin Rong, Han Li, Huang Xiaolong, Li Jie, Li Wuxian, Chen Linli. 2019. Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China. American Mineralogist, 104, 949~965.

    • Yin Rong, Huang Xiaolong, Wang Rucheng, Sun Xiaoming, Tang Yong, Wang Yu, Xu Yigang. 2022. Rare-metal enrichment and Nb-Ta fractionation during magmatic-hydrothermal processes in rare-metal granites: Evidence from zoned micas from the Yashan Pluton, South China. Journal of Petrology, 63(10): 1~28.

    • Zhai Mingguo, Wu Fuyuan, Hu Ruizhong, Jiang Shaoyong, Li Wenchang, Wang Rucheng, Wang Denghong, Qi Tao, Qin Kezhang, Wen Hanjie. 2019. Critical metal mineral resources: Current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33(2): 106~111 (in Chinese with English abstract).

    • Zhao Zhenhua, Chen Huayong, Han Jinsheng. 2020. Data of rubidium-dominant minerals. Geochimica, 49(6): 690~693 (in Chinese with English abstract).

    • Zhou Jianting, Wang Guobin, He Shufang, Fan Aichun. 2011. Diagenesis and mineralization of Ganfang rock in Yifeng, Jiangxi Province. Journal of East China Institute of Technology (Natural Science), 34(4): 345~358 (in Chinese with English abstract).

    • Zhu Jinchu, Rao Bing, Xiong Xiaolin, Li Fuchun, Zhang Peihua. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks. Geochimica, 31(02): 141~152 (in Chinese with English abstract).

    • Zhu Zeying, Wang Rucheng, Marignac C, Cuney M, Lespinasse M. 2019. Petrogenesis of Nb-(Ta) aplo-pegmatites and fine-grained granites from the Early Cretaceous Huangshan rare-metal granite suite, northeast Jiangxi Province, Southeast China. Lithos, 346-347, 105150.

    • 陈果, 梁冠杰, 刘猛.2018.甘肃某铷多金属矿中含铷白云母的选矿试验研究.矿业研究与开发, 38(9): 59~62.

    • 陈骏.2019.关键金属超常富集成矿和高效利用.科技导报, 37(24): 1~5.

    • 李福春, 朱金初, 金章东, 李晓峰.2000.钠长石花岗岩中雪球结构形成机理的研究.岩石矿物学杂志, 19(1): 27~35.

    • 李洁, 黄小龙.2013.江西雅山花岗岩岩浆演化及其Ta-Nb富集机制.岩石学报, 29(12): 4311~4322.

    • 李仁泽, 周正兵, 彭波, 陈骏, 吴建波, 余会强, 万建军, 杨爽.2021.江西宜丰县大港超大型含锂瓷石矿床地质特征及成因机制探讨.矿床地质, 39(6): 1015~1029.

    • 李晓峰, 韦星林, 朱艺婷, 李祖福, 邓宣驰.2021.华南稀有金属矿床: 类型、特点、时空分布与背景.岩石学报, 37(12): 3591~3614.

    • 刘昌实, 陈小明, 王汝成, 张文兰, 胡欢.2005.广东南昆山A型花岗岩定年和环带云母研究.地质评论.51(2): 193~201.

    • 秦程.2018.江西宜丰狮子岭白云母花岗岩成矿潜力研究.中国地质大学(北京)硕士学位论文.

    • 邵厥年, 陶维屏.2010.矿产资源工业要求手册.地质出版社(北京), 249~250.

    • 舒良树, 朱文斌, 许志琴.2021.华南花岗岩型锂矿地质背景与成矿条件.地质学报, 95(10): 3099~3114.

    • 孙艳.2013.我国铷典型矿床及其成矿构造背景研究.中国地质大学(北京)博士学位论文.

    • 孙艳, 王瑞江, 亓锋, 李建康, 梅燕雄.2013.世界铷资源现状及我国铷开发利用建议.中国矿业, 22(9): 11~13+57.

    • 孙艳, 王登红, 王成辉, 李建康, 赵芝, 王岩, 郭唯明.2019.我国铷矿成矿规律、新进展和找矿方向.地质学报, 93(6): 1231~1244.

    • 王成辉, 杨岳清, 王登红, 孙艳, 陈振宇, 谢国刚, 凡秀君.2018.江西九岭地区三稀调查发现磷锂铝石等锂铍锡钽矿物.岩矿测试, 37(1): 108~110.

    • 王成辉, 王登红, 陈晨, 刘善宝, 陈振宇, 孙艳, 赵晨辉, 曹圣华, 凡秀君.2019.九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义.地质学报, 93(6): 1359~1373.

    • 王成辉, 王登红, 秦锦华, 李建康, 刘善宝, 陈振宇.2021.南岭成矿带中亚带发现花岗伟晶岩型铍矿.矿床地质, 40(2): 398~401.

    • 王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏.2022.中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势.地质力学学报, 28(5): 743~764.

    • 王汝成, 谢磊, 诸泽颖, 胡欢.2019.云母: 花岗岩-伟晶岩稀有金属成矿作用的重要标志矿物.岩石学报, 35(1): 69~75.

    • 王汝成, 车旭东, 邬斌, 谢磊.2020.中国铌钽锆铪资源.科学通报, 65(33): 119~133.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷.2017.高分异花岗岩的识别与研究.中国科学: 地球科学, 47(7): 745~765.

    • 吴福元, 郭春丽, 胡方泱, 刘小驰, 赵俊兴, 李晓峰, 秦克章.2023.南岭高分异花岗岩成岩与成矿.岩石学报, 39(1): 1~36.

    • 吴学敏, 周敏娟, 罗喜成, 周建廷.2016.江西西北部锂及稀有金属成矿条件及找矿潜力分析.华东地质, 37(4): 275~283.

    • 尹蓉.2015.一个极端演化花岗伟晶岩的矿物学研究: 以新疆阿尔泰可可托海1号伟晶岩脉为例.南京大学博士学位论文.

    • 翟明国, 吴福元, 胡瑞忠, 蒋少涌, 李文昌, 王汝成, 王登红, 齐涛, 秦克章, 温汉捷.2019.战略性关键金属矿产资源: 现状与问题.中国科学基金, 33(02), 106~111.

    • 赵振华, 陈华勇, 韩金生.2020.关于铷的独立矿物.地球化学, 49(06): 690~693.

    • 周建廷, 王国斌, 何淑芳, 范爱春.2011.江西宜丰地区甘坊岩体成岩成矿作用分析.东华理工大学学报(自然科学版), 34(04): 345~351+358.

    • 朱金初, 饶冰, 熊小林, 李福春, 张佩华.2002.富锂氟含稀有矿化花岗质岩石的对比和成因思考.地球化学, 31(2): 141~152.