en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴磊,男,1983年生。教授,主要从事盆地构造与盆山耦合方面研究。E-mail:leiwu@zju.edu.cn。

参考文献
Bai Yongshan, Ren Erfeng, Fan Guilan, Xu Changqing. 2008. Apatite fission track evidence for the Miocene rapid uplift of the Qimantag Mountains on the northwestern margin of the Qinghai-Tibet Plateau. Geological Bulletin of China, 27(7): 1044~1048 (in Chinese with English abstract)
参考文献
Burov E B. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8): 1402~1443.
参考文献
Cai Huocan, Wang Weitao, Duan Lei, Zhang Boxuan, Liu Kang, Huang Rong, Zhang Peizhen. 2022. Paleomagnetic evidence of Cenozoic tectonic deformation in Lulehe area, Qaidam basin, northeastern margin of Tibet Plateau. Acta Geologica Sinica, 96(10): 3345~3359 (in Chinese with English abstract).
参考文献
Calignano E, Sokoutis D, Willingshofer E, Gueydan F, Cloetingh S. 2015. Strain localization at the margins of strong lithospheric domains: Insights from analog models. Tectonics, 34(3): 396~412.
参考文献
Chang Hong, Li Leyi, Qiang Xiaoke, Garzione C N, Pullen A, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.
参考文献
Chen Hanlin, Lin Xiubin, Cheng Xiaogan, Gong Junfeng, Bian Shuang, Wu Lei, Jia Chengzao, Yang Shufeng, Guo Zhaojie, Jia Dong. 2021. Two-phase intracontinental deformation mode in the context of India-Eurasia collision: Insights from a structural analysis of the West Kunlun-southern Junggar transect along the NW margin of the Tibetan Plateau. Journal of the Geological Society, 179(2): 2021~2029.
参考文献
Chen Siyuan, Zhang Yongshu, Wu Lei, Zhang Junyong, Wang Liqun, Xiao Ancheng, Shen Ya. 2020. Cenozoic structural deformation in the Yuqia-Jiulongshan region, northern Qaidam basin, China. Petroleum Exploration and Development, 47(1): 114~123.
参考文献
Cheng Feng, Jolivet M, Dupont-Nivet G, Wang Lin, Yu Xiangjiang, Guo Zhaojie. 2015. Lateral extrusion along the Altyn Tagh Fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget. Terra Nova, 27(6): 416~425.
参考文献
Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2016. Source to sink relation between the eastern Kunlun Range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128(1-2): 258~283.
参考文献
Cheng Feng, Garzione C N, Jolivet M, Guo Zhaojie, Zhang Daowei, Zhang Changhao, Zhang Qiquan. 2019. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam basin. Tectonics, 38(2): 741~766.
参考文献
Cheng Feng, Jolivet M, Guo Zhaojie, Wang Lin, Zhang Changhao, Li Xiangzhong. 2021. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth-Science Reviews, 220: 103730.
参考文献
Clark M K, Farley K A, Zheng Dewen, Wang Zhicai, Duvall A R. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth and Planetary Science Letters, 296(1-2): 78~88.
参考文献
Delville N, Arnaud N, Moutel J, Roger F, Brunel M, Tapponnier P, Sobel E. 2001. Paleozoic to Cenozoic deformation along the Altyn Tagh fault in the Altun Shan massif area, eastern Qilian Shan, northeastern Tibet, China. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Boulder, Colorado: Geological Society of America Memoir, 194: 269~292.
参考文献
Dong Yunpeng, Ren Jianguo, Zhang Zhifei, Deng Jun, Guo Anlin, Zhang Xingliang, Hu Xiumian, Wang Qiang, Li Jianwei, Qiu Nansheng, Sun Youbin, Zhao Guochun, Zhang Jinjiang, Peng Jianbing, Lin Yangting, Chu Hang, Lu Dawei. 2022. Development strategy of geology in next 5-10 years: Trends and countermeasures. Chinese Science Bulletin, 67(23): 2708~2718 (in Chinese).
参考文献
Duan Lei, Zhang Bohuan, Wang Weitao, Zhang Peizhen, The Tang Dynasty, Chen Gan, Jia Jiabao, Yan Yonggang, Huang Rong, Zheng Wenjun. 2022. Magnetostratigraphy of the Cenozoic Lulehe section in the Qaidam basin: Implications for the tectonic deformation on the northeastern Tibetan Plateau. Chinese Science Bulletin, 67(9): 872~887(in Chinese with English abstract)
参考文献
Fang Xiaomin, Zhang Weilin, Meng Qinquan, Gao Junping, Wang Xiaoming, King John, Song Chunhui, Dai Shuang, Miao Yunfa. 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293~306.
参考文献
Fang Xiaomin, Galy A, Yang Yibo, Zhang Weilin, Ye Chengcheng, Song Chunhui. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47(10): 992~996.
参考文献
Gao Rui, Chen Chen, Wang Haiyan, Lu Zhanwu, Brown L, Dong Shuwen, Feng Shaoying, Li Qiusheng, Li Wenhui, Wen Zhongping, Li Feng. 2016a. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth and Planetary Science Letters, 454: 86~91.
参考文献
Gao Rui, Lu Zhanwu, Klemperer S L, Wang Haiyan, Dong Shuwen, Li Wenhui, Li Hongqiang. 2016b. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7): 555~560.
参考文献
Gao Shibao, Cowgill E, Wu Lei, Lin Xiubin, Cheng Xiaogan, Yang Rong, Soares C, Ketcham R A, An Kaixuan, Gong Junfeng, Song Xingtong, Tang Jianchao, Chen Hanlin, Yang Shufeng. 2022. From left slip to transpression: Cenozoic tectonic evolution of the North Altyn fault, NW margin of the Tibetan Plateau. Tectonics, 41(3): e2021TC006962.
参考文献
Hatem A E, Cooke M L, Toeneboehn K. 2017. Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments. Journal of Structural Geology, 101: 96~108.
参考文献
He Pengju, Song Chunhui, Wang Yadong, Zhao Yuanhao, Tan Yu, Meng Qingquan, Zhang Yihu, Chen Yongfa, Zhang Jing. 2022. Cenozoic two-phase topographic growth of the northeastern Tibetan Plateau derived from two thermochronologic transects across the southern Qilian Shan thrust belt. Tectonophysics, 837: 229432.
参考文献
Hu Xiaoyi, Wu Lei, Zhang Yongshu, Zhang Junyong, Wang Chuanwu, Tang Jianchao, Xiao Ancheng, Chen Hanlin, Yang Shufeng. 2022. Multiscale lithospheric buckling dominates the Cenozoic subsidence and deformation of the Qaidam basin: A new model for the growth of the northern Tibetan Plateau. Earth-Science Reviews, 234: 104201.
参考文献
Huang Kai, Chen Liqi, Xiao Ancheng, Shen Ya, Wu Lei. 2018. Cenozoic deformation characteristics of the Xianshuiquan anticline in the northwestern Qaidam basin and its significance. Geological Journal of China Universities, 24(5): 761~768(in Chinese with English abstract)
参考文献
Huang Kai, Wu Lei, Zhang Junyong, Zhang Yongshu, Xiao Ancheng, Lin Xiubin, Wang Liqun, Chen Hanlin. 2020. Structural coupling between the Qiman Tagh and the Qaidam basin, northern Tibetan Plateau: A perspective from the Yingxiong range by integrating field mapping, seismic imaging, and analogue modeling. Tectonics, 39(12): e2020TC006287.
参考文献
Huang Kai, Wu Lei, Zhao Haifeng, Zhang Junyong, Zhang Yongshu, Xiao Ancheng, Chen Yan, Chen Hanlin. 2021. Development and interplay of two orthogonal fault systems in the NW Qaidam basin, northern Tibetan Plateau. Frontiers in Earth Science, 9: 637056.
参考文献
Ji Junliang, Zhang Kexin, Clift Peter D, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.
参考文献
Ji Youliang, Ma Dade, Xue Jianqin, Wang Peng, Wu Yanxiong, Zeng Li, Jin Li. 2017. Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin, western Qaidam basin. Journal of Palaeogeography, 19(5): 757~772 (in Chinese with English abstract)
参考文献
Jia Chengzao. 2005. Foreland thrust-fold belt features and gas accumulation in Midwest China. Petroleum Exploration and Development, 32(4): 9~15 (in Chinese with English abstract)
参考文献
Jia Chengzao, Yang Shufeng, Wei Guoqi, Wang Liangshu, Liu Shaowen. 2008. Structure characteristics and petroleum bearing prospects of Cenozoic circum Tibet Plateau basin and range system in China. Natural Gas Industry, 28(8): 1~11 (in Chinese with English abstract)
参考文献
Jia Chengzao, Li Benliang, Lei Yongliang, Chen Zhuxin. 2013. The structure of circum-Tibetan Plateau basin-range system and the large gas provinces. Science China Earth Sciences, 56(11): 1853~1863.
参考文献
Jia Chengzao, Lei Yongliang, Chen Zhuxin. 2014. Progress and development features of structural geology and tectonics. Geological Review, 60(4): 709~720 (in Chinese with English abstract)
参考文献
Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Roger F, Leyreloup A, Arnaud N, Wu C. 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun Fault. Tectonics, 22(5): 1052.
参考文献
Karplus M S, Klemperer S L, Zhao W, Kind R, Wu Z, Mechie J, Shi D, Brown L D, Chen C, Su H, Xue G, Sandvol E, Ni J, Tilmann F J, Chen Y J. 2019. Receiver-function imaging of the lithosphere at the Kunlun-Qaidam boundary, Northeast Tibet. Tectonophysics, 759: 30~43.
参考文献
Karplus M S, Zhao W, Klemperer S L, Wu Z, Mechie J, Shi D, Brown L D, Chen C. 2011. Injection of Tibetan crust beneath the southQaidam basin: Evidence from INDEPTH IV wide-angle seismic data. Journal of Geophysical Research-Solid Earth, 116(B7): B07301.
参考文献
Ke Xue, Ji Junliang, Zhang Kexin, Kou Xiaohu, Song Bowen, Wang Chaowen. 2013. Magnetostratigraphy and anisotropy of magnetic susceptibility of the Lulehe Formation in the northeastern Qaidam basin. Acta Geologica Sinica - English Edition, 87(2): 576~587.
参考文献
Le Guerroué E, Cobbold P R. 2006. Influence of erosion and sedimentation on strike-slip fault systems: Insights from analogue models. Journal of Structural Geology, 28(3): 421~430.
参考文献
Le Pape F, Jones A G, Unsworth M J, Vozar J, Wei W, Sheng J, Ye G, Jing J, Dong H, Zhang L, Xie C. 2015. Constraints on the evolution of crustal flow beneath northern Tibet. Geochemistry, Geophysics, Geosystems, 16(12): 4237~4260.
参考文献
Le Pape F, Jones A G, Vozar J, Wenbo W. 2012. Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nature Geoscience, 5(5): 330~335.
参考文献
Li Benliang, Jia Chengzao, Pang Xiongqi, Guan Shuwei, Yang Geng, Shi Xin, Li Chuanxin. 2007. The spatial distribution of the foreland thrust tectonic deformation in the circum-Tibetan Plateaubasin and range system. Acta Geologica Sinica, 81(9): 1200~1207 (in Chinese with English abstract)
参考文献
Li Chaopeng, Zheng Dewen, Zhou Renjie, Yu Jingxing, Wang Yizhou, Pang Jianzhang, Wang Ying, Hao Yuqi, Li Youjuan. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e2020GL091281.
参考文献
Li Chaoyang, Jiang Xiaodian, Gong Wei, Zhou Haiting, Yang Kai. 2021. Differences in east-west thermo-rheological structure and lithospheric deformation in the Qaidam basin, northern Tibetan Plateau, China. International Geology Review, 64(7): 933~952.
参考文献
Li Linlin, Wu Chaodong, Yu Xiangjiang. 2018. Cenozoic evolution of the Altyn Tagh and East Kunlun fault zones inferred from detrital garnet, tourmaline and rutile in southwestern Qaidam basin (northern Tibetan Plateau). Basin Research, 30(1): 35~58.
参考文献
Liu Shaozhuo, Xu Xiwei, Klinger Yann, Jean-Mathieu N, Chen Guihua, Yu Guihua, Sigurjón J. 2019. Lower crustal heterogeneity beneath the Northern Tibetan Plateau constrained by GPS measurements following the 2001 MW7. 8 Kokoxili earthquake. Journal of Geophysical Research: Solid Earth, 124(11): 11992~12022.
参考文献
Lou Qianqian, Xiao Ancheng, Zhong Nanchong, Wu Lei. 2016. A method of prototype restoration of large depressions with terrestrial sediments: A case study from the Cenozoic Qaidam basin. Acta Petrologica Sinica, 32(3): 892~902 (in Chinese with English abstract).
参考文献
Lu Haijian, Xiong Shangfa. 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh fault. Earth and Planetary Science Letters, 288(3-4): 539~550.
参考文献
Mao Liguang, Xiao Ancheng, Zhang Hongwei, Wu Zhankui, Wang Liqun, Shen Ya, Wu Lei. 2016. Structural deformation pattern within the NW Qaidam basin in the Cenozoic era and its tectonic implications. Tectonophysics, 687: 78~93.
参考文献
Meng Qingquan, Song Chunhui, Nie Junsheng, Liu Chuan, He Pengju, Liu Fangbin, Li Lin. 2020. Middle-late Miocene rapid exhumation of the southern Qilian Shan and implications for propagation of the Tibetan Plateau. Tectonophysics, 774: 228279.
参考文献
Meng Qingren, Fang Xiang. 2008. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Geological Society of America Special Papers, 444: 1~24.
参考文献
Nie Junsheng, Ren Xueping, Saylor Joel E, Su Qingda, Horton Brian K, Bush Meredith A, Pfaff Katharina. 2019. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2), 310~320.
参考文献
Orellana-Rovirosa F, Shi Yaolin. 2021. Understanding the recent and future mechanical evolution of the Songpan Ganzi-Qaidam NE Tibet Moho-offset. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022128.
参考文献
Pang Jianzhang, Yu Jingxing, Zheng Dewen, Wang Weitao, Ma Yan, Wang Yizhou, Li Chaopeng, Li Youjuan, Wang Ying. 2019. Neogene Expansion of the Qilian Shan, North Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3): 1018~1032.
参考文献
Shen Xuzhang, Li Yingkang, Gao Rui, Chen Xuanhua, Liu Mian, Yuan Xiaohui, Kind Rainer, Xiong Xiaosong, Zhang Yipeng, Qian Yinping, Li Minjuan, Mei Xiuping. 2020. Lateral growth of NE Tibetan Plateau restricted by the Asian lithosphere: Results from a dense seismic profile. Gondwana Research, 87: 238~247.
参考文献
Shi Danian, Shen Yang, Zhao Wenjin, Li Aibing. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau. Earth and Planetary Science Letters, 288(1): 329~334.
参考文献
Shi Danian, Yu Qinfan, Poupinet G, Herquel G, Wittlinger G, Jiang Mei. 2007. Crustal structures across the Altyn Tagh fault imaged by teleseismic receriver functions and their geodynamic implications. Acta Geologica Sinica, 81(1): 139~148(in Chinese with English abstract)
参考文献
Shi Wenbei, Wang Fei, Yang Liekun, Wu Lin, Zhang Weibin. 2018. Diachronous growth of the Altyn Tagh Mountains: Constraints on propagation of the northern tibetan margin from (U-Th)/He dating. Journal of Geophysical Research: Solid Earth, 123(7): 6000~6018.
参考文献
Song Huaying, Yi Haisheng, Fan Aichun, Ma Xue, Sun Xia. 2010. Petrology and sedimentary environments of lacustrine carbonate rocks in the Xichagou section, western Qaidam basin. Geology in China, 37(1): 117~126(in Chinese with English abstract)
参考文献
Sun Zhiming, Yang Zhenyu, Pei Junling, Ge Xiaohong, Wang Xisheng, Yang Tienshui, Li Weimin, Yuan Sihua. 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth and Planetary Science Letters, 237(3-4): 635~646.
参考文献
Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671~1677.
参考文献
Unsworth M, Wei W, Jones A G, Li S, Bedrosian P, Booker J, Sheng J, Deng M, Tan H. 2004. Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research, 109(B2): B2403.
参考文献
Wang Chengshan, Gao Rui, Yin An, Wang Haiyan, Zhang Yuxiu, Guo Tonglou, Li Qusheng, Li Yalin. 2011. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet. Earth and Planetary Science Letters, 306(3-4): 279~288.
参考文献
Wang Fei, Feng Huile, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhang Zhigang, Zhu Rixiang. 2016. Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 675: 196~208.
参考文献
Wang Fei, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhu Rixiang. 2017. Differential growth of the northern Tibetan margin: Evidence for oblique stepwise rise of the Tibetan Plateau. Scientific Reports, 7(1): 41164.
参考文献
Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.
参考文献
Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby Eric, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateauduring the Neogene. Nature Communications, 8: 15887.
参考文献
Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.
参考文献
Wang Weitao, Zhang Peizhen, Duan Lei, Zhang Bohuan, Liu Kang, Huang Rong, Liu Caicai, Zhang Zhuqi, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Cenozoic stratigraphic chronology and sedimentary-tectonic evolution of theQaidam basin. Chinese Science Bulletin, 67(28-29): 3452~3475(in Chinese)
参考文献
Wang Xiaoming, Qiu Zhuding, Li Qiang, Wang Banyue, Qiu Zhanxiang, Downs W R, Xie Guangpu, Xie Junyi, Deng Tao, Takeuchi G T, Tseng Zhijie J, Chang Meeman, Liu Juan, Wang Yang, Biasatti Dana, Sun Zhencheng, Fang Xiaomin, Meng Qingquan. 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam basin in northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 363~385.
参考文献
Wei Yanyan, Xiao Ancheng, Wu Lei, Mao Liguang, Zhao Haifeng, Shen Ya, Wang Liqun. 2016. Temporal and spatial patterns of Cenozoic deformation across the Qaidam basin, northern Tibetan Plateau. Terra Nova, 28(6): 409~418.
参考文献
Wu Chen, Zuza A V, Chen Xuanhua, Ding Lin, Levy Drew A, Liu Changfeng, Liu Wencan, Jiang Tian, Stockli D F. 2019. Tectonics of the eastern Kunlun Range: Cenozoic reactivation of a Paleozoic-Early Mesozoic orogen. Tectonics, 38(5): 1609~1650.
参考文献
Wu Lei, Xiao Ancheng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012a. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China Earth Sciences, 55(6): 926~939.
参考文献
Wu Lei, Xiao Ancheng, Yang Shufeng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012b. Two-stage evolution of the Altyn Tagh fault during the Cenozoic: New insight from provenance analysis of a geological section in NW Qaidam basin, NW China. Terra Nova, 24(5): 387~395.
参考文献
Wu Lei, Xiao Ancheng, Ma Dade, Li Hongge, Xu Bo, Shen Ya, Mao Liguang. 2014. Cenozoic fault systems in southwest Qaidam basin, northeastern Tibetan Plateau: Geometry, temporal development, and significance for hydrocarbon accumulation. AAPG Bulletin, 98(6): 1213~1234.
参考文献
Wu Lei, Lin Xiubin, Cowgill E, Xiao Ancheng, Cheng Xiaogan, Chen Hanlin, Zhao Haifeng, Shen Ya, Yang Shufeng. 2019. Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau. GSA Bulletin, 131(7-8): 1157~1178.
参考文献
Xu Zhiqin, Yang Jingsui, Li Haibing, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China, 33(2): 221~238(in Chinese with English abstract)
参考文献
Yang Fan, Ma Zhiqiang, Xu Tongchun, Ye Sujuan. 1992. A Tertiary paleomagnetic stratigraphic profile in Qaidam basin. Acta Petrolei Sinica, 13(2): 97~101(in Chinese with English abstract)
参考文献
Ye Yuhui, Wu Lei, Cowgill E, Tian Yuntao, Lin Xiubin, Xiao Ancheng, Chen Hanlin. 2022. Long-lagged (~19 Myr) response of accelerated river incision to rock uplift on the northern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 591: 117608.
参考文献
Ye Zhuo, Gao Rui, Lu Zhanwu, Yang Zhen, Xiong Xiaosong, Li Wenhui, Huang Xingfu, Liang Hongda, Qi Rui, Shi Zhuoxuan, Zhou Hui, Dong Xinyu. 2021. A lithospheric-scale thrust-wedge model for the formation of the northern Tibetan plateau margin: Evidence from high-resolution seismic imaging. Earth and Planetary Science Letters, 574: 117170.
参考文献
Yin An, Dang Yuqi, Zhang Min, McRivette M W, Burgess W P, Chen Xuanhua. 2007. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the eastern Kunlun Range. GSA Bulletin, 433: 369~390.
参考文献
Yin An, Dang Yuqi, Zhang Min, Chen Xuanhua, McRivette M W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. GSA Bulletin, 120(7-8): 847~876.
参考文献
Yu Jingxing, Zheng Dewen, Pang Jianzhang, Wang Yizhou, Fox M, Vermeesch P, Li Chaopeng, Xiao Lin, Hao Yuqi, Wang Ying. 2019. Miocene range growth along the Altyn Tagh fault: Insights from apatite fission track and (U-Th)/He thermochronometry in the western Danghenan Shan, China. Journal of Geophysical Research: Solid Earth, 124(8): 9433~9453.
参考文献
Yu Xiangjiang, Fu Suotang, Guan Shuwei, Huang Baochun, Cheng Feng, Cheng Xiang, Zhang Tuo, Guo Zhaojie. 2014. Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block. Geochemistry Geophysics Geosystems, 15(6): 2109~2127.
参考文献
Yu Xiangjiang, Guo Zhaojie, Jia Chengzao, Fu Suotang. 2017. A comparison of the landscape characters and evolution of the huge basins around the Tibetan Plateau. Geotectonica et Metallogenia, 41(2): 235~247(in Chinese with English abstract)
参考文献
Zhang Min, Yin Chengming, Shou Jianfeng, Chen Zi Hui, Zhang Yuezhong. 2004. Sedimentary facies of carbonate rocks of the Paleogene and Neogene in western Qaidam basin. Journal of Palaeogeography, 6(4): 391~400 (in Chinese with English abstract).
参考文献
Zhao Haifeng, Wei Yanyan, Shen Ya, Xiao Ancheng, Mao Liguang, Wang Liqun, Guan Junya, Wu Lei. 2016. Cenozoic tilting history of the south slope of the Altyn Tagh as revealed by seismic profiling: Implications for the kinematics of the Altyn Tagh fault bounding the northern margin of the Tibetan Plateau. Geosphere, 12(3): 884~899.
参考文献
Zhao Rongtao, Zhan Wenjin, Shi Danian, Liu Zhiwei, Yang Yan. 2020. Seismic evidence for northward subduction of the Hohxil lithosphere beneath the Qaidam basin. Chinese Journal of Geophysics, 63(8): 2940~2953 (in Chinese with English abstract).
参考文献
Zhao Wenjin, Prakash K, James M, Rainer K, Rolf M, Wu Zhenhan, Shi Danian, Su Heping, Xue Guangqi, Marianne K, Frederik T. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 4(12): 870~873.
参考文献
Zhou Jianxun, Xu Fengyin, Wang Tiecheng, Cao Aifeng, Yin Chengming. 2006. Cenozoic deformation history of the Qaidam basin, NW China: Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth and Planetary Science Letters, 243(1): 195~210.
参考文献
Zhu Lupei, Helmberger D V. 1998. Moho offset across the northern margin of the Tibetan Plateau. Science, 281(5380): 1170~1172.
参考文献
Zhu Wen, Wu Chaodong, Wang Jialin, Zhou Tianqi. 2019. Provenance analysis of detrital monazite, zircon and Cr-spinel in the northern Tibetan Plateau: Implications for the Paleozoic tectonothermal history of the Altyn Tagh and Qimen Tagh Ranges. Basin Research, 31(3): 539~561.
参考文献
Zhuang Guangsheng, Johnstone S A, Hourigan J, Ritts B, Robinson A, Sobel E R. 2018. Understanding the geologic evolution of northern Tibetan Plateau with multiple thermochronometers. Gondwana Research, 58: 195~210.
参考文献
Zuza A V, Wu Chen, Reith R C, Yin An, Li Jianhua, Zhang Jinyu, Zhang Yuxiu, Wu Long, Liu Wencan. 2018. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. Geological Society of America Bulletin, 130(5-6): 881~925.
参考文献
拜永山, 任二峰, 范桂兰, 许长青. 2008. 青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据. 地质通报, 27(7): 1044~1048.
参考文献
蔡火灿, 王伟涛, 段磊, 张博譞, 刘康, 黄荣, 张培震. 2022. 青藏高原东北缘柴达木盆地路乐河地区新生代构造变形的古地磁证据. 地质学报, 96(10): 3345~3359.
参考文献
董云鹏, 任建国, 张志飞, 邓军, 郭安林, 张兴亮, 胡修棉, 王强, 李建威, 邱楠生, 孙有斌, 赵国春, 张进江, 彭建兵, 林杨挺, 初航, 吕大炜. 2022. 地质学科未来5~10年发展战略: 趋势与对策. 科学通报, 67(23): 2708~2718.
参考文献
段磊, 张博譞, 王伟涛, 张培震, 唐清, 陈干, 贾佳宝, 闫永刚, 黄荣, 郑文俊. 2022. 柴达木盆地路乐河剖面磁性地层年代及其构造变形. 科学通报, 67(9): 872~887.
参考文献
黄凯, 陈力琦, 肖安成, 沈亚, 吴磊. 2018. 柴达木盆地西北缘咸水泉背斜新生代变形特征及意义. 高校地质学报, 24(5): 761~768.
参考文献
纪友亮, 马达德, 薛建勤, 王鹏, 吴颜雄, 曾力, 金力. 2017. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式. 古地理学报, 19(5): 757~772.
参考文献
贾承造. 2005. 中国中西部前陆冲断带构造特征与天然气富集规律. 石油勘探与开发, 32(4): 9~15.
参考文献
贾承造, 杨树锋, 魏国齐, 王良书, 刘绍文. 2008. 中国环青藏高原新生代巨型盆山体系构造特征与含油气前景. 天然气工业, 28(8): 1~11.
参考文献
贾承造, 雷永良, 陈竹新. 2014. 构造地质学的进展与学科发展特点. 地质论评, 60(4): 709~720.
参考文献
李本亮, 贾承造, 庞雄奇, 管树巍, 杨庚, 石昕, 李传新. 2007. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律. 地质学报, 81(9): 1200~1207.
参考文献
楼谦谦, 肖安成, 钟南翀, 吴磊. 2016. 大型陆相坳陷型沉积盆地原型恢复方法——以新生代柴达木盆地为例. 岩石学报, 32(3): 892-902.
参考文献
史大年, 余钦范, Poupinet G, Herquel G, Wittlinger G, 姜枚. 2007. 阿尔金断裂带附近地壳结构的接收函数成像及其地球动力学意义. 地质学报, 81(1): 139~148.
参考文献
宋华颖, 伊海生, 范爱春, 马雪, 孙瑕. 2010. 柴达木盆地西部西岔沟剖面湖相碳酸盐岩岩石学特征与沉积环境分析. 中国地质, 37(1): 117~126.
参考文献
王伟涛, 张培震, 段磊, 张博譞, 刘康, 黄荣, 刘彩彩, 张竹琪, 郑德文, 郑文俊, 张会平. 2022. 柴达木盆地新生代地层年代框架与沉积-构造演化. 科学通报, 67(28-29): 3452~3475.
参考文献
许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221~238.
参考文献
杨藩, 马志强, 许同春, 叶素娟. 1992. 柴达木盆地第三纪磁性地层柱. 石油学报, 13(2): 97~101.
参考文献
于祥江, 郭召杰, 贾承造, 付锁堂. 2017. 环青藏高原大型盆地构造地貌特征与演化比较. 大地构造与成矿学, 41(2): 235~247.
参考文献
张敏, 尹成明, 寿建峰, 陈子炓, 张跃中. 2004. 柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相. 古地理学报, 6(4): 391~400.
参考文献
赵荣涛, 赵文津, 史大年, 刘志伟, 杨艳. 2020. 可可西里岩石圈向北俯冲到柴达木地幔的地震学证据. 地球物理学报, 63(8): 2940~2953.
目录contents

    摘要

    新生代以来,中国西部的一系列古老造山带和盆地在印-亚板块汇聚作用下重新复活,在青藏高原外围形成了现今全球最大的陆内挤压构造域,被称为环青藏高原盆山体系,其形成过程与机制对深入认识陆-陆碰撞如何影响大陆内部变形有重要意义。柴达木盆地是中国西部重要的新生代沉积盆地,四周均被巨型造山带所围限,共同构成了环青藏高原盆山体系北东段的主体。本文利用最新的石油地震勘探数据、地表地质和已发表的深反射地震数据,将上地壳变形与岩石圈深部变形有机结合,系统刻画了柴达木盆地与周缘三大造山带之间岩石圈尺度的构造耦合关系,在此基础上探讨环青藏高原盆山体系北东段的盆山汇聚过程与机制。柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间在上地壳尺度发育一系列倾向造山带的基底卷入高角度逆断裂体系,自新生代早期就开始活动,以垂直的基底抬升为主,水平缩短量有限;在下地壳和岩石圈地幔深度则发育倾向盆地一侧的深大断裂,使得柴达木盆地与周缘造山带之间发生截然的莫霍面错断。这些变形特征揭示柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间发育岩石圈尺度的构造楔,即盆地的岩石圈楔入至增厚的造山带下地壳,其发育主要受盆地与造山带岩石圈强度的横向不均一性控制。与上述挤压性盆山结构不同,阿尔金断裂作为一条巨型的左旋走滑断裂,直接切穿了柴达木盆地与西北侧阿尔金山的岩石圈,是柴达木盆地挤压成盆与变形的侧向边界。

    Abstract

    A series of old orogenic belts and basins were rejuvenated in the context of Cenozoic India-Asia convergence forming in the periphery of the Tibetan Plateau the largest intracontinental compressional zone, which is named as the circum-Tibetan Plateau basin and orogen system (CTPBOS). The formation process and underlying mechanism of the CTPBOS are of large significance in advancing our knowledge of how continental collision impacts deformation in the interior of a continent. The Qaidam basin is an important Cenozoic sedimentary basin in West China, and bordered by huge orogenic belts. They together form the main body of the northeastern part of the CTPBOS. In this study, we combined the upper-crustal and deep (Moho) deformation through latest exploration seismic data, surface geology and published deep geophysical imaging, portrayed the structural coupling between the Qaidam basin and the three surrounding orogenic belts in the lithospheric scale, and accordingly explored the basin-mountain convergence process and underlying mechanism of the CTPBOS. In upper-crustal scale, a set of basement-involved, high-angle reverse faults developed in the conjunction regions of the Qaidam basin and the Qiman Tagh-East Kunlun Shan to the south and the South Qilian Shan to the northeast. These faults, which generally dip toward the mountains, are dominated by vertical basement rise with limited horizontal shortening, and were initiated in the Early Cenozoic. In the lower crust and lithospheric mantle, deep faults dipping toward the basin developed and offset the Moho of the Qaidam basin and adjacent mountains. These observations imply lithospheric-scale wedge tectonics, which are characterized by the Qaidam lithosphere tapering into the thickened lower crust of the Qiman Tagh-East Kunlun Shan and the South Qilian Shan, and formed in response to the lateral heterogeneity of the lithospheric strength between basins and orogenic belts. Different from the above contraction-dominated basin-orogen systems, the Qaidam basin and the Altyn Shan to the northwest are simply separated by the huge sinistral lithospheric-scale Altyn Tagh fault, which served as the lateral slip boundary during the formation and deformation of the Qaidam basin.

  • 新生代以来,印度板块与欧亚板块发生碰撞并持续汇聚,造就了宽阔的世界第三极——青藏高原,并在远离碰撞边界达上千千米的高原外围形成了由一系列盆地(如塔里木盆地、准噶尔盆地、柴达木盆地、酒泉盆地、鄂尔多斯盆地、四川盆地等)和造山带(西昆仑山、天山、东昆仑山、祁连山、龙门山等)组成的盆山体系(图1a~c),是现今全球最大的弥散型陆内挤压构造域,被称为环青藏高原盆山体系(贾承造,2005),其形成过程与机制对认识陆-陆碰撞如何影响陆内变形这一大陆地球动力学问题有重要意义(许志琴等,2006; 李本亮等,2007; 贾承造等,2014; 于祥江等,2017; Chen Hanlin et al.,2021; 董云鹏等,2022)。环青藏高原盆山体系也是我国最大的天然气富集区,蕴含着我国60%以上的天然气资源,新生代构造活动对天然气的运聚成藏有着非常重要的控制作用(贾承造等,2008; Jia Chengzao et al.,2013; 董云鹏等,2022)。

  • 柴达木盆地位于环青藏高原盆山体系北东段,是该地区最大的含油气盆地,四周被三个巨型的古生代—中生代古老造山带(祁曼塔格—东昆仑山、南祁连和阿尔金山造山带)所围限(图1d)。新生代,这些古老造山带重新复活(Delville et al.,2001; Zuza et al.,2018; Wu Chen et al.,2019),隆升至3~5 km(图1b、c);而柴达木盆地基底则相对沉降,幅度可达15 km,其上沉积了巨厚且连续的新生界(Cheng Feng et al.,2021; Hu Xiaoyi et al.,2022)。如此显著的盆山差异受控于什么样的盆山汇聚过程和机制?前人通过多种方法对该问题开展了研究。如Yin An et al.(2007)通过祁曼塔格的野外地质调查和盆地内的少量二维反射地震数据,提出祁曼塔格—东昆仑山以构造楔的形式向北插入至柴达木盆地下地壳中,柴达木盆地为该构造楔上部的背驮盆地;Cheng Feng et al.(2019)通过二维沉降模拟认为祁曼塔格—东昆仑山和南祁连山分别从南、北两个方向逆冲至柴达木盆地之上,形成双前陆盆地;Huang Kai et al.(2020) 基于高精度人工反射地震数据和野外填图,定量分析了柴西南地区的新生代变形特征,提出祁曼塔格与柴西南发育统一的基底卷入逆冲体系,前锋为现今盆地内构造最为活跃的英雄岭地区,滑脱层为中下地壳脆韧性转换带(约20 km);Meng Qingren et al.(2008)Hu Xiaoyi et al.(2022)通过对柴达木盆地的沉积、变形和沉降特征的分析,提出新生代早期柴达木盆地和周缘造山带之间发生统一的挠曲褶皱,后期褶皱破坏形成现今盆山格局。此外,前人通过深部地球物理观测也对柴达木盆地与南侧祁曼塔格—东昆仑山的盆山汇聚方式做了分析。如Zhao Wenjin et al.(2011)通过接收函数成像提出包括柴达木盆地在内的亚洲岩石圈向南俯冲至青藏高原之下;然而高分辨率地震波成像显示柴达木盆地莫霍面较东昆仑浅约10 km,二者之间为截然的错断关系(Zhu Lupei et al.,1998; Shi Danian et al.,2009; Karplus et al.,2019; Orellana-Rovirosa et al.,2021)。

  • 图1 中国西部地形及柴达木盆地与周缘地区地质简图

  • Fig.1 Topography of West China and simplified geological map of the Qaidam basin and adjacent regions

  • (a)—中国西部地区地形图及环青藏高原盆山体系位置图(修改自Huang Kai et al.,2020);(b)—穿过青藏高原与柴达木盆地的北东向地形廊带(宽度10 km)剖面图及相应的莫霍面深度;(c)—穿过阿尔金山、柴达木盆地向东一直到四川盆地的地形剖面图;(d)—柴达木盆地及周缘造山带地形与简要地质图;(b)~(d)位置见(a); TB—塔里木盆地; JB—准噶尔盆地; JQB—酒泉盆地; QB—柴达木盆地; OB—鄂尔多斯盆地; SB—四川盆地

  • (a) —topography of West China and the location of the circum-Tibetan Plateau basin and orogen system (modified from Huang Kai et al., 2020) ; (b) —a NE-striking swath elevation profile (width of~10 km) across the Tibetan Plateau and the Qaidam basin, the associated Moho depth is also indicated; (c) —an ESE-striking elevation profile across the Altyn Shan, Qaidam basin and Sichuan basin to the east; (d) —topography and simplified geological map of the Qaidam basin and adjacent orogenic belts; locations of panels (b) ~ (d) are shown in panel (a) ; TB—Tarim basin; JB—Junggar basin; JQB—Jiuquan basin; QB—Qaidam basin; OB—Ordos basin; SB—Sichuan basin

  • 由上述分析可见,柴达木盆地与周缘造山带之间的构造耦合方式还存在较大争议,已有研究多集中在盆地南侧及相邻的祁曼塔格—东昆仑造山带,且缺乏将上地壳变形与岩石圈深部变形有机结合的相关分析。为此,本文利用最新的石油地震勘探数据,结合地表地质和已发表的深反射地震数据,对柴达木盆地与周缘三大造山带之间岩石圈尺度的构造耦合关系进行了系统分析,并在此基础上探讨环青藏高原盆山体系北东段的盆山汇聚过程与机制。

  • 1 地质背景

  • 柴达木盆地新生界沉积巨厚,可达15 km,岩性基本为湖相、河流相砂岩、泥岩,沉积中心长期位于盆地中心位置(Hu Xiaoyi et al.,2022),在盆地边缘还发育冲积扇相和扇三角洲相的砂砾岩(Wu Lei et al.,2012a2012b; Cheng Feng et al.,2016; Wang Weitao et al.,2022)以及少量的湖相碳酸盐岩(张敏等,2004; 宋华颖等,2010; 纪友亮等,2017)。这些沉积物基本上都来自于周缘的造山带(Wu Lei et al.,2012a2012b; Cheng Feng et al.,2016; Wang Weitao et al.,2017; Zhu Wen et al.,2019),而少有长距离搬运的远源物质,意味着柴达木盆地自新生代早期就成为了一个封闭的内流型盆地。柴达木盆地新生界从老到新可分为路乐河组(LLH)、下干柴沟组(XG)、上干柴沟组(SG)、下油砂山组(XY)、上油砂山组(SY)、狮子沟组(SZG)、七个泉组(QGQ)。目前已有大量磁性地层和生物化石定年等方面的工作对这些地层时代开展研究(杨藩等,1992; Sun Zhiming et al.,2005; Fang Xiaomin et al.,20072019; Wang Xiaoming et al.,2007; Lu Haijian et al.,2009; Chang Hong et al.,2015; Ji Junliang et al.,2017; Wang Weitao et al.,20172022; Nie Junsheng et al.,2019; 段磊等,2022; 蔡火灿等,2022),取得了重要的进展。前人对这些进展也进行了较系统的对比与总结(Wu Lei et al.,2019; Cheng Feng et al.,2021; Hu Xiaoyi et al.,2022; 王伟涛等,2022)。柴达木盆地地层横向相变迅速,不同剖面间的地层年代对比非常困难,且由于缺乏可供放射性同位素绝对定年的火成岩(如火山灰)夹层发育,导致不同年代学研究之间还存在较大的差异。如对新生界最老地层路乐河组的底界年龄,目前存在始新世(~54 Ma)(Ke Xue et al.,2013; Ji Junliang et al.,2017; Fang Xiaomin al.,2019)和渐新世(30~26 Ma)(Nie Junsheng et al.,2019; Wang Weitao et al.,2022)等不同的观点(表1),这给从地层沉积和变形方面获得的地质事件时间序列带来了一定的不确定性。

  • 表1 柴达木盆地新生界及其时代

  • Table1 Cenozoic stratigraphy in the Qaidam basin

  • 注:老年龄模型修改自Wu Lei et al.(2019)的总结,新年龄模型引自Wang Weitao et al.(2022)

  • 柴达木盆地新生代遭受了比较强烈的NE-SW向缩短,在盆地内部形成了众多的褶皱构造(图1d)。前人多通过穿过整个柴达木盆地的区域地质大剖面对其整体变形特征进行了研究。Zhou Jianxun et al.(2006) 通过区域地震剖面解释研究认为,盆地自新生代以来经历了持续的缩短,在下干柴沟组上段和七个泉组沉积时期存在两次快速缩短变形,且后者地壳缩短率达32%。Yin An et al.(2008) 认为柴达木盆地是一个大型复向斜,向斜幅度自西向东从16 km变化到4 km,宽度从160 km变化到50 km;盆地新生代上地壳的缩短变形程度自西向东显著减弱(48%变为1%);东西部地区地壳缩短特征存在差异,其中西部以上地壳变形为主,东部以下地壳变形为主。Wei Yanyan et al.(2016)同样利用地震剖面从时空尺度上研究了柴达木盆地新生代的变形,结果表明柴达木盆地北缘和柴达木盆地西南几乎同时发生缩短变形,挤压应变最强阶段是发生在七个泉组沉积时期;柴达木盆地西南的缩短变形表现为自西向东逐渐减弱,而柴达木盆地北缘没有发现这种规律。由于应变速率计算受地层时代的影响很大,因此上述变形的时间序列存在一定的不确定性,但空间变化规律受影响较小,相对较为可靠。

  • 2 上地壳变形特征

  • 本文基于人工反射地震数据和地表地质特征构建了6条穿过柴达木盆地边缘的地质大剖面,系统揭示柴达木盆地与周缘造山带在上地壳尺度的构造耦合关系(图2~4)。

  • 2.1 柴达木盆地南缘与祁曼塔格—东昆仑山

  • 剖面A和B位于祁曼塔格—东昆仑山前的柴达木盆地南缘(图2)。从A剖面(图2a)可以看出,祁曼塔格山前存在3~4 km厚的新生界,盆-山之间为明显的断层接触。祁曼塔格与柴达木盆地内部的油砂山背斜之间,发育一系列基底卷入高角度逆断层,如昆北断裂、XI号断裂等,倾角一般在50°以上,滑脱层深度>10 km,推测位于中、下地壳脆韧性转换带。不同断块之间以垂直运动为主,相对抬升可达3 km以上,不存在大规模的水平逆掩推覆。在油砂山背斜深部,基底卷入的XI号断裂与浅部的油砂山滑脱断裂构成一个向北东尖灭的构造楔,插入至下干柴沟组的膏泥岩层中(图2a)。

  • 剖面B位于东昆仑山前的格尔木附近,穿过东昆仑山和柴达木盆地南缘(图2b)。该剖面中柴达木盆地内部变形较弱,但也具有与剖面A相似的特征,如盆地南缘存在2~3 km厚的新生界,与东昆仑山之间为明显的断层接触关系,边界断裂可能为东昆仑左旋走滑断裂体系的分支;盆地内部也发育一些基底卷入的逆断裂,断面陡直,倾角大于50°,向下延伸超过16 km深度,可能向南并与东昆仑左旋走滑断裂之上;盆地内断块之间竖直运动明显,而水平缩短量有限(图2b)。

  • 图2 穿过柴达木盆地南缘与祁曼塔格—东昆仑山的地质剖面A和B

  • Fig.2 Geological profiles A and B across the southern Qaidam basin and the Qiman Tagh-East Kunlun Mountain

  • 位置见图1d;剖面上部为石油勘探反射地震数据及地质解释,空白区为无数据采集区;地层符号同表1

  • See Fig.1d for their locations; above each profile is the seismic reflection data for hydrocarbon exploration and associated geological interpretations, with white regions indicating no data collected there; stratigraphic symbols are same as Table 1

  • 图3 穿过柴达木盆地北东缘与南祁连山的地质剖面C和D

  • Fig.3 Geological profiles C and D across the northeastern Qaidam basin and South Qilian Shan area

  • 位置见图1d;剖面上部为石油勘探反射地震数据及地质解释,空白区为无数据采集区; Mz—中生界;其他地层符号同表1

  • See Fig.1d for their locations; above each profile is the seismic reflection data for hydrocarbon exploration and associated geological interpretations, with white regions indicating no data collected there; Mz—Mesozoic; other stratigraphic symbols are same as Table 1

  • 2.2 柴达木盆地东北缘与南祁连山

  • 剖面C和D位于南祁连山前的柴达木盆地东北缘(图3)。剖面C(图3a)自南西向北东依次穿过鄂博梁二号背斜、葫芦山背斜、冷湖五号背斜、驮南背斜、平南背斜和赛什腾山。该剖面最为显著的特征是发育一系列北东倾的叠瓦状逆断裂,如赛南、平南、驮南、北1号、葫南、鄂II北断裂等,其中赛南断裂分隔着赛什腾山与柴达木盆地,是该地区的重要边界断裂;这些断裂的倾角基本大于50°,部分甚至近乎直立(如赛南断裂),向下延伸至16 km以下,使得盆地基底向北东依次台阶式抬升,整体幅度达8 km以上。在这些陡倾的基底卷入断裂控制下,背斜大都比较宽缓,地层褶皱变形相对微弱。在葫芦山背斜和冷湖五号背斜处,发育滑脱于下干柴沟组上段的薄皮逆冲断裂,使得背斜浅层变得相对紧闭。

  • 剖面D(图3b)穿过盐湖背斜、苦水泉背斜、圆丘背斜、绿梁山、大柴旦凹陷和柴达木山,发育一系列北东倾的叠瓦状逆断层,如陵间断裂、圆南断裂、绿南断裂、柴达木山前断裂等,断面陡直,向下延伸至14 km以下。受这些断裂的影响,绿梁山、柴达木山等与邻近凹陷之间均为明显断裂接触关系,位于盆地边缘的苦水泉背斜、圆丘背斜的基底较盆地内部的盐湖背斜高出约4 km以上。

  • 2.3 柴达木盆地西北缘与阿尔金断裂系

  • 剖面E和F穿过阿尔金断裂和柴达木盆地西北缘(图4)。剖面E(图4a)位于鄂博梁一号背斜和东坪背斜之间的向斜区域(图1d),地表平坦,被第四系所覆盖。人工反射地震数据揭示该地区发育近东西走向的陡倾基底卷入逆断裂(Wu Lei et al.,2019b; 图4a)。在牛北断裂上盘,断裂多北倾,向北并与阿尔金断裂;在牛北断裂下盘,发育四条小型的反冲断裂;在这些断裂的共同作用下,柴达木盆地的基底整体向南掀斜,新生界向北逐渐超覆尖灭于阿尔金山前(图4a)。该剖面还揭示出上油砂山组与下伏地层之间存在一个角度不整合面,主要发育于靠近阿尔金断裂的一侧,向盆地内部逐渐变为整合接触。上述近东西走向的基底断裂基本上都没有切穿该不整合面或使其变形(图4a),这表明这些断裂主要活动于上油砂山组沉积之前,与至今仍强烈走滑的阿尔金断裂明显不同。

  • 剖面F(图4b)穿过阿尔金断裂中段的茫崖受阻双弯曲和柴达木盆地内部的油砂山背斜,剖面明显分成两段。北西段靠近阿尔金断裂,人工反射地震数据同样揭示出上油砂山组与下伏地层的角度不整合。不整合面以下,地层发生剥蚀,且越靠近阿尔金断裂剥蚀越强;不整合面以上,地层向北西逐渐超覆减薄;向盆地内部,不整合面迅速消失并过渡为整合接触。该段还发育四条北倾的基底卷入逆断裂,其中靠近盆地内部的两条仅使得中生界或下油砂山组以下地层被错断或褶皱变形,反映其也是在不整合面形成之前活动。南东段位于盆地内部并穿过油砂山背斜,揭示出该背斜存在一个由基底卷入断裂和浅层滑脱断裂形成的构造楔,与图2a一致,但由于该剖面是以走向方向穿过该背斜,使得构造楔形态看起来更加尖锐。

  • 3 下地壳和岩石圈地幔变形特征

  • 下地壳和岩石圈地幔由于深度大,温度压力高,一般以韧性变形为主,在深地震数据中基本表现为较为杂乱的反射(Wang Chengshan et al.,2011; Gao Rui et al.,2016a),与上地壳沉积岩层的层状地震反射特征明显不同,因此很难找到合适的标志层来精确刻画下地壳和岩石圈地幔的变形特征。莫霍面是分隔地壳和地幔的物质界面,在全球几乎连续分布,且在深反射地震剖面中能表现出与上地壳类似的清晰层状特征(Gao Rui et al.,2016b; Ye Zhuo et al.,2021),其下部的岩石圈地幔一般是整个岩石圈中强度最大的部分(Burov,2011)。因此,可以用莫霍面作为标志层来分析岩石圈的整体变形特征。为此,本文收集了前人发表的穿过柴达木盆地与周缘造山带的深反射地震剖面(接收函数成像),解释出其莫霍面形态,以此来大致分析二者的下地壳和岩石圈地幔变形特征(图5)。

  • 剖面I呈南北走向穿过东昆仑山、柴达木盆地和南祁连山,并一直向北穿过阿尔金断裂,为P波接受函数成像剖面(图5a)(赵荣涛等,2020)。尽管由于站点较少,在柴达木盆地和南祁连地区信号不够连续,但依然可以从中看出东昆仑山、柴达木盆地、赛什腾山-苏干湖盆地、党河南山和敦煌地体的莫霍面形态各不相同,不同块体之间均出现截然的莫霍面错断,莫霍面起伏与地形之间呈现出明显的负相关(图5a)。具体表现为:① 东昆仑山的莫霍面深度为~60 km,较邻近柴达木盆地南缘的莫霍面要深~10 km,虽然东昆仑山的莫霍面似乎有向柴达木盆地深部俯冲的趋势,但该趋势在邻近的P波接收函数成像(Shi Danian et al.,2009; Karplus et al.,2019)中却没有揭示(剖面II,图5b);② 柴达木盆地中部的莫霍面深度为~55 km,向盆地北缘又逐渐变浅至~50 km,与北侧赛什腾山的莫霍面(~56 km深)之间存在明显错断;③ 赛什腾山-苏干湖盆地的莫霍面向北逐渐变浅至~50 km,与北侧拥有巨厚地壳(~70 km)的党河南山之间界线分明,后者向北以切穿整个岩石圈的阿尔金断裂与敦煌块体(莫霍面深度~50 km)分隔。

  • 剖面II位于剖面I西侧约20 km处,长度较短,仅揭示了东昆仑与柴达木盆地南缘的莫霍面形态。从中可以看出,东昆仑山的莫霍面深度总体向北变浅,并在东昆仑断裂处存在明显的错断。柴达木盆地的莫霍面深度约50 km,较南侧东昆仑山要浅约10 km,二者被一条北倾的深大断裂错断(图5b)。

  • 图4 穿过柴达木盆地北西缘与阿尔金断裂的地质剖面E和F

  • Fig.4 Geological profiles E and F across the northwestern Qaidam basin and the Altyn Tagh fault

  • 修改自Zhao Haifeng et al.,2016; Wu Lei et al.,2019;位置见图1d;剖面上部为石油勘探反射地震数据及地质解释; Mz—中生界;其他地层符号同表1

  • Modified from Zhao Haifeng et al., 2016; Wu Lei et al., 2019; see Fig.1d for their locations; above each profile is the seismic reflection data for hydrocarbon exploration and associated geological interpretations; Mz—Mesozoic; other stratigraphic symbols are same as Table 1

  • 剖面III位于剖面I东侧,呈北北东走向穿过东昆仑山、柴达木盆地东端和南祁连山,从中依然可以看出东昆仑山、南祁连山的莫霍面深度一般约为60~65 km,而柴达木盆地的莫霍面较为平坦,深度仅约为50~55 km,盆地与造山带之间的莫霍面错断明显(图5c)。

  • 图5 穿过东昆仑山、柴达木盆地、南祁连山、阿尔金断裂剖面的接受函数成像结果及其地质解释

  • Fig.5 Results of receiver function imaging and associated geological interpretation for the profile across the East Kunlun, Qaidam basin, southern Qilian and the Altyn Tagh fault

  • 位置见图1d;剖面I和剖面III的左半部分修改自赵荣涛等(2020); 剖面II修改自Karplus et al.(2019); 剖面III右半部分修改自Shen Xuzhang et al.(2020); 剖面IV修改自史大年等(2007)

  • See Fig.1d for location; profile I and the left half of profile III are modified from Zhao Rongtao et al. (2020) ; profile II from Karplus et al. (2019) , right half of profile III from Shen Xuzhang et al. (2020) ; profile IV from Shi Danian et al. (2007)

  • 剖面IV穿过柴达木盆地西北缘、阿尔断裂系和阿尔金山、塔里木盆地,同样为P波接收函数成像剖面(图5d)。从中可以看出:① 柴达木盆地的莫霍面深度约为50 km,而阿尔金山的莫霍面深度则为60~65 km,二者之间被阿尔金左旋走滑断裂错断,与地表断裂发育位置吻合,共同形成近乎直立的、深切整个岩石圈的阿尔金断裂;② 塔里木盆地的莫霍面深度较浅,仅为~45 km,与东侧阿尔金山的莫霍面之间被两条倾向塔里木盆地的深大断裂错断。

  • 4 隆升变形时间

  • 对柴达木盆地与周缘造山带之间的隆升变形时间,本文主要通过两种手段进行刻画。首先是利用地质剖面所揭示的生长地层。从图2~4展示的剖面来看,自路乐河组沉积开始,柴达木盆地边缘的一些基底断裂就开始陆续活动,导致断裂上下两盘的地层厚度发生明显变化,如西南缘的昆北断裂(图2)、东北缘的葫南和平南断裂(图3)、西北缘的牛北断裂(图4)等,这与前人根据地震剖面的研究一致(Wu Lei et al.,20142019; Chen Siyuan et al.,2020; Huang Kai et al.,2021)。在剖面B(图2b)中还可以看出下干柴沟组下段和上段地层向东昆仑山前逐渐增厚,至上干柴沟组时则变为向东昆仑山前逐渐减薄的趋势,并一直持续至今,反映东昆仑山的隆升可能在下干柴沟组上段沉积末期。结合前人的磁性地层研究结果,这些特征表明该地区的起始变形时间约为始新世早期(老的年龄方案)或渐新世晚期(新的年龄方案)(表1)。但此时的构造活动较弱,仅使得不同断块之间发生微弱的相对运动。与柴达木盆地现今强烈褶皱变形相关的生长地层出现较晚,一般在上油砂山组沉积(中新世中晚期)之后(Mao Liguang et al.,2016; Wei Yanyan et al.,2016; 黄凯等,2018; Huang Kai et al.,2020),使得最新的七个泉组都卷入变形(图2~4)。

  • 本文还系统收集了前人在祁曼塔格—东昆仑山、南祁连山和阿尔金山所作的低温热年代学(包括磷灰石和锆石(U-Th)/He、磷灰石裂变径迹)结果,以此来约束这些造山带的新生代起始隆升时间。为了尽可能地保证热年代学结果的准确性,本文只收集了有年龄-高程(或深度)剖面约束的热年代学研究结果,如图6所示。从中可以看出:① 在祁曼塔格—东昆仑地区,反映快速剥露起始时间的年龄-高程曲线拐点约在40~25 Ma间集中出现;② 在南祁连山地区,其东段的快速剥露开始于~20 Ma,而对更靠近阿尔金断裂、活动可能相对更早的西段,多数研究仅揭示出了在中新世中期的快速剥露,而对其起始时间缺少约束;③ 在阿尔金山地区,与北阿尔金断裂活动相关的快速剥露最早出现在~36 Ma,而与阿尔金断裂东段活动相关的快速剥露则出现在中新世早期(~20 Ma)。

  • 图6 柴达木盆地周缘造山带低温年代学统计结果

  • Fig.6 Low-temperature thermochronological results in mountains surrounding the Qaidam basin

  • 仅统计有年龄-高程剖面约束的研究结果;参考文献: 1a~1d—Zhuang Guangsheng et al.(2018); 2a、2b—Yu Jingxing et al.(2019); 3a、3b—Shi Wenbei et al.(2018); 4—Pang Jianzhang et al.(2019); 5—Meng Qingren et al.(2020); 6a、6b—He Pengju et al.(2022); 7a~7c—Wang Fei et al.(2017); 8a、8b—Clark et al.(2010); 9a、9b—Wang Fei et al.(2016); 10—Li Chaopeng et al.(2021); 11—Ye Yuhui et al.(2022); 12—Gao Shibao et al.(2022); 13—拜永山等(2008); 黑底白字(文献4、10和11)标出的研究为年龄-深度关系,其参考面高程设为4000 m

  • Only results with age-elevation (depth) relationships are summarized here. References: 1a~1d—Zhuang Guangsheng et al. (2018) ; 2a, 2b—Yu Jingxing et al. (2019) ; 3a, 3b—Shi Wenbei et al. (2018) ; 4—Pang Jianzhang et al. (2019) ; 5—Meng Qingren et al. (2020) ; 6a, 6b—He Pengju et al. (2022) ; 7a~7c—Wang Fei et al. (2017) ; 8a, 8b—Clark et al. (2010) ; 9a, 9b—Wang Fei et al. (2016) ; 10—Li Chaopeng et al. (2021) ; 11—Ye Yuhui et al. (2022) ; 12—Gao Shibao et al. (2022) ; 13—Bai Yongshan et al. (2008) ; results marked by white texts in black rectangles (references 4, 10 and 11) are age-depth relationships, with elevations of reference surfaces as 4000 m

  • 5 讨论

  • 5.1 盆山结合带岩石圈结构

  • 盆地与造山带的相互作用往往是岩石圈尺度的,建立盆山结合带岩石圈变形结构是认识二者之间汇聚方式的基础。本文结合人工反射地震数据和地表地质所揭示的上地壳变形特征与地震深反射数据所揭示的莫霍面变形特征,建立了盆地与造山带岩石圈尺度的变形结构,结果如图7所示。从中可以看出,深、浅两个层次的变形之间具有很好的吻合性。柴达木盆地与东昆仑、南祁连山之间的莫霍面错断与浅层发育的盆山边界断裂对应很好,但前者主要受倾向盆地一侧的、切穿下地壳和岩石圈地幔的深大断裂(或者超岩石圈断裂)控制,后者则主要受控于倾向造山带一侧的、上地壳尺度的基底卷入断裂,二者之间构成一个岩石圈尺度的构造楔(图7a)。同样的构造楔形态在阿尔金山北缘与塔里木盆地的结合处也清晰可见,但阿尔金山南缘与柴达木盆地之间仅发育切穿整个岩石圈的巨型阿尔金左旋走滑断裂(图7b)。这种深部结构与其整体运动学性质和地表地形有着很好的对应关系:柴达木盆地与祁曼塔格—东昆仑山、南祁连山之间,以及塔里木盆地与阿尔金山之间是以挤压汇聚为主的盆山体系,存在>2 km的地形高差;而柴达木盆地与阿尔金山之间以走滑转换运动为主,地形差仅为500~800 m(图1b、c)。由此,本文认为环青藏高原盆山体系中段普遍发育岩石圈尺度的构造楔,即盆地的岩石圈楔入增厚的造山带下地壳中。这也符合块体的基本流变学特征:盆地的岩石圈强度相对较大,不易变形;而造山带的岩石圈强度较弱,在挤压情况下极易发生增厚,导致中下地壳的部分熔融,从而形成一个局部软弱层,有利于构造楔的发育。深部地球物理观测结构显示,柴达木盆地相对于东昆仑来说具有较强的岩石圈(Liu Shaozhuo et al.,2019; Li Chaoyang et al.,2021),其南侧的东昆仑—可可西里地区存在非常弱的下地壳(Jolivet et al.,2003; Unsworth et al.,2004; Le Pape et al.,2015),部分下地壳物质向北“侵入”至柴达木盆地的莫霍面以下(Le Pape et al.,2012; Karplus et al.,2019),可能与柴达木盆地岩石圈向南楔入有关。

  • 5.2 盆山汇聚机制

  • 环青藏高原盆山体系内的盆地与造山带具有相对独立的基底和演化历史,它们之间的汇聚机制是认识盆山体系形成的关键(Huang Kai et al.,2020; Chen Hanlin et al.,2021; Hu Xiaoyi et al.,2022)。目前对该问题的认识,已有研究归纳起来大致存在以下三种端元模型(图8)。模型一(陆内俯冲或单剪模型,图8a):盆地的下地壳和岩石圈地幔向造山带发生陆内俯冲(Tapponnier et al.,2001),而上地壳由于密度较小,无法俯冲,会在盆地边缘发生强烈挤压变形,形成高陡地形,变形带的水平缩短量与岩石圈地幔的俯冲量相当,同时盆地发生挠曲沉降形成前陆盆地。模型二(纯剪模型,图8b):造山带与盆地之间的边界相对固定(Shen Xuzhang et al.,2020),二者各自发生不同程度的纯剪变形,盆山结合部褶皱冲断带发育较弱,盆地在水平挤压作用下可能会发生一定的挠曲变形。模型三(地壳流模型,图8c):造山带的下地壳“侵入”至盆地岩石圈内,盆地的岩石圈地幔俯冲至造山带之下,上地壳则发育自盆地向造山带逆冲的断裂体系(Yin An et al.,2007; Karplus et al.,2011)。

  • 图7 柴达木盆地与周缘造山带的岩石圈结构模型(上地壳变形修改自图2~4结果,莫霍面变形修改自图5结果)

  • Fig.7 Lithospheric structures across the Qaidam basin and bordering orogenic belts (upper-crustal deformation is modified from Figs.2~4, whereas Moho deformation from Fig.5)

  • 本文的研究结果为上述问题的解答提供了新的证据。柴达木盆地与邻近的祁曼塔格—东昆仑、南祁连造山带之间发育自造山带向盆地逆冲的上地壳脆性断裂体系,断裂表现为基底卷入的厚皮构造特征,滑脱层可能位于~16 km以下的脆韧性转换带,水平缩短有限(图2~4);现今的盆山边界自始新世时就开始逐渐形成(图6),并一直保持至今,并没有向盆地发生迁移;盆地莫霍面形态具有一定的挠曲向斜特征(即盆地中部莫霍面较边缘深~5 km,图5a),新生代沉积和沉降中心都位于其中心而不是边缘位置(Hu Xiaoyi et al.,2022);盆地与造山带之间均出现截然的莫霍面错断,且盆地的莫霍面较周缘造山带普遍要浅5~10 km(图5)。类似的岩石圈变形特征也存在于阿尔金山与塔里木之间。这些观测与上述三种模型(图8a~c)的预测均存在一些矛盾。本文结合上地壳与莫霍面变形建立了岩石圈构造楔模型(图8d),即相对坚硬的盆地岩石圈楔入至增厚的造山带下地壳中。这种模型其实包括两个阶段:① 首先是造山带与盆地发生不同程度的纯剪变形,且造山带由于是在古老俯冲-碰撞-增生构造带基础上演化而来,强度相对较弱,应变更加集中,岩石圈增厚更快(如图8b所示);② 当造山带岩石圈增厚到一定程度后,其下地壳会部分熔融而弱化,进而被变形相对较弱的盆地岩石圈楔入,形成现今岩石圈结构形态(图8d)。东昆仑山及其南侧可可西里地区存在大范围的部分熔融下地壳已得到地质和地球物理观测的证实(Jolivet et al.,2003; Unsworth et al.,2004; Le Pape et al.,2015)。构造物理模拟结果显示,盆山之间岩石圈构造楔的形成与岩石圈强度的横向不均一性有关,需要盆地具有比造山带更强的岩石圈地幔(Calignano et al.,2015),这也得到前人研究的支持(Liu Shaozhuo et al.,2019; Li Chaoyang et al.,2021)。

  • 5.3 大型走滑断裂对柴达木盆地成盆与变形的影响

  • 柴达木盆地周边发育阿尔金断裂和东昆仑断裂这两条巨型的左旋走滑断裂,分别构成了盆地的西北边界和南部边界(图1d),本节简要讨论这两条走滑断裂对柴达木盆地成盆与变形的影响。

  • 青藏高原地区的GPS速度场结果揭示了高原东南侧绕着东喜马拉雅山顺时针旋转,青藏高原西北部和帕米尔高原附近则沿逆时针旋转(Wang Min et al.,2020)。而在柴达木盆地及周缘地区,GPS速度方向几乎稳定(Wang Min et al.,2020),表明该地区块体旋转量较小,可能以挤压为主。古地磁研究表明,自始新世以来柴达木盆地没有整体旋转(Yu Xiangjiang et al.,2014),这也支持走滑运动对其构造变形的影响有限。柴达木盆地在新生代发生NE-SW向的地壳缩短,形成了广泛分布的NW—NWN向褶皱带,与阿尔金断裂近乎垂直(图1d)。这些褶皱带从阿尔金断裂附近延伸到柴达木盆地东部,最远距离阿尔金断裂达400 km以上,显然受其影响很小。虽然阿尔金断裂靠近盆地西北缘,但是与阿尔金左旋走滑断裂系相关的断裂变形主要集中盆地边缘的狭窄(<60 km)范围内(Zhao Haifeng et al.,2016; Wu Lei et al.,2019; 图4),说明走滑断裂导致的变形并没有进一步传递到柴达木盆地内部。此外,最新研究表明构成柴达木盆地西北边界的阿尔金断裂中段直到中中新世才开始形成(Li Linlin et al.,2018; Wu Lei et al.,2019),远晚于柴达木盆地的开始形成时间,这也说明阿尔金断裂系对柴达木盆地的发育起到改造而非控制作用。此外,新生代各时期等厚图和沉积相图显示,柴达木盆地内沉积凹陷的轴向与祁连山和东昆仑—祁曼塔格近乎平行,但与阿尔金断裂近似垂直,新生代沉积相从盆地内部的湖相沉积过渡到阿尔金断裂附近的冲积扇相(楼谦谦等,2016Hu Xiaoyi et al.,2022)。Zhao Haifeng et al.(2016) 定量恢复了新生代沉积过程受阿尔金断裂影响的范围,发现其距离断裂带通常<50 km。基于上述证据,本文认为虽然阿尔金断裂系自新生代早期开始成为分隔柴达木盆地与塔里木盆地的边界,但其主要为一个侧向的滑移边界,对柴达木盆地沉降、变形和沉积的影响有限。

  • 图8 盆山汇聚可能的机制模型

  • Fig.8 Possible mechanisms for the basin-mountain convergence

  • 1、2、3分别代表盆地的上地壳、下地壳和岩石圈地幔;4、5、6分别代表造山带的上地壳、下地壳和岩石圈地幔

  • 1, 2, and 3 represent the upper crust, lower crust and lithospheric mantle of basins; whereas 4, 5 and 6 represent the upper crust, lower crust and lithospheric mantle of orogenic belts

  • 同样,本文基于以下两方面原因认为东昆仑断裂的走滑活动对柴达木盆地的成盆与变形影响较小。第一,物理模拟显示受走滑断裂控制的远场(off-fault)次级构造变形走向与主走滑断裂大都斜交,且随着走滑量的增大很快集中于主走滑断裂附近很窄的范围内(Le Guerroué et al.,2006; Hatem et al.,2017)。目前一般认为东昆仑断裂至少开始活动于约26 Ma前(Clark et al.,2010; Li Chaopeng et al.,2021),是一条较为成熟的走滑断裂。其整体走向与柴达木盆地内的构造走向近乎平行,距离柴达木盆地南部边界达60 km(图2b),可见其走滑作用对柴达木盆地的变形影响已经非常微弱。第二,整个东昆仑断裂带除了有走滑变形外,还具有很强的垂向抬升分量和水平缩短分量,在剖面上形成明显的正花状构造(图2b),使得东昆仑山发生强烈隆升变形与地壳增厚,也正是这种南北向的挤压分量导致了柴达木盆地的挤压成盆与褶皱变形(图7)。本文所论述的构造楔模型(图8d)主要是在南北方向、受东昆仑山向北的挤压影响。在三维变形中,南北方向的挤压缩短变形本身也会导致东西方向发生伸长变形(Cheng Feng et al.,2015),且由于不同块体具有不同的应变量,在边界处也往往形成大型的走滑断裂。

  • 6 结论

  • 本文利用最新的石油地震勘探数据,结合野外地质调查、钻井数据和已发表的深反射地震数据,对柴达木盆地与周缘三大造山带之间岩石圈尺度的构造耦合关系和机制进行了系统分析,取得以下结论:

  • (1)柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山、北西侧阿尔金山之间发育一系列倾向造山带的基底卷入逆冲断裂,以垂直的基底抬升为主,水平缩短量有限;生长地层揭示这些盆地边缘断裂自新生界底部路乐河组沉积时就开始陆续活动,但强度较弱;低温热年代学统计揭示现今造山带边缘自始新世就开始隆升并持续至今。这些观测数据表明,现今盆山格局自新生代早期就已经开始发育,后期改造较弱。

  • (2)柴达木盆地的莫霍面深度较周缘造山带要浅~10 km,二者之间存在截然的莫霍面错断,受倾向盆地一侧的深大断裂控制。将上地壳与莫霍面的变形特征结合,本文提出柴达木盆地与南侧祁曼塔格—东昆仑山、北东侧南祁连山之间发育岩石圈尺度的构造楔,即盆地的岩石圈楔入至增厚的造山带下地壳,造山带的上地壳向盆地逆冲,其莫霍面和岩石圈地幔则下插至盆地岩石圈之下。这种岩石圈尺度构造楔的发育主要受盆地与造山带岩石圈强度的横向不均一性影响。阿尔金断裂作为一条岩石圈尺度的深大断裂,直接分隔着柴达木盆地与阿尔金山。

  • 致谢:感谢三位匿名审稿人对本文提出的中肯意见和建议。

  • 参考文献

    • Bai Yongshan, Ren Erfeng, Fan Guilan, Xu Changqing. 2008. Apatite fission track evidence for the Miocene rapid uplift of the Qimantag Mountains on the northwestern margin of the Qinghai-Tibet Plateau. Geological Bulletin of China, 27(7): 1044~1048 (in Chinese with English abstract)

    • Burov E B. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8): 1402~1443.

    • Cai Huocan, Wang Weitao, Duan Lei, Zhang Boxuan, Liu Kang, Huang Rong, Zhang Peizhen. 2022. Paleomagnetic evidence of Cenozoic tectonic deformation in Lulehe area, Qaidam basin, northeastern margin of Tibet Plateau. Acta Geologica Sinica, 96(10): 3345~3359 (in Chinese with English abstract).

    • Calignano E, Sokoutis D, Willingshofer E, Gueydan F, Cloetingh S. 2015. Strain localization at the margins of strong lithospheric domains: Insights from analog models. Tectonics, 34(3): 396~412.

    • Chang Hong, Li Leyi, Qiang Xiaoke, Garzione C N, Pullen A, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.

    • Chen Hanlin, Lin Xiubin, Cheng Xiaogan, Gong Junfeng, Bian Shuang, Wu Lei, Jia Chengzao, Yang Shufeng, Guo Zhaojie, Jia Dong. 2021. Two-phase intracontinental deformation mode in the context of India-Eurasia collision: Insights from a structural analysis of the West Kunlun-southern Junggar transect along the NW margin of the Tibetan Plateau. Journal of the Geological Society, 179(2): 2021~2029.

    • Chen Siyuan, Zhang Yongshu, Wu Lei, Zhang Junyong, Wang Liqun, Xiao Ancheng, Shen Ya. 2020. Cenozoic structural deformation in the Yuqia-Jiulongshan region, northern Qaidam basin, China. Petroleum Exploration and Development, 47(1): 114~123.

    • Cheng Feng, Jolivet M, Dupont-Nivet G, Wang Lin, Yu Xiangjiang, Guo Zhaojie. 2015. Lateral extrusion along the Altyn Tagh Fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget. Terra Nova, 27(6): 416~425.

    • Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2016. Source to sink relation between the eastern Kunlun Range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128(1-2): 258~283.

    • Cheng Feng, Garzione C N, Jolivet M, Guo Zhaojie, Zhang Daowei, Zhang Changhao, Zhang Qiquan. 2019. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam basin. Tectonics, 38(2): 741~766.

    • Cheng Feng, Jolivet M, Guo Zhaojie, Wang Lin, Zhang Changhao, Li Xiangzhong. 2021. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth-Science Reviews, 220: 103730.

    • Clark M K, Farley K A, Zheng Dewen, Wang Zhicai, Duvall A R. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth and Planetary Science Letters, 296(1-2): 78~88.

    • Delville N, Arnaud N, Moutel J, Roger F, Brunel M, Tapponnier P, Sobel E. 2001. Paleozoic to Cenozoic deformation along the Altyn Tagh fault in the Altun Shan massif area, eastern Qilian Shan, northeastern Tibet, China. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Boulder, Colorado: Geological Society of America Memoir, 194: 269~292.

    • Dong Yunpeng, Ren Jianguo, Zhang Zhifei, Deng Jun, Guo Anlin, Zhang Xingliang, Hu Xiumian, Wang Qiang, Li Jianwei, Qiu Nansheng, Sun Youbin, Zhao Guochun, Zhang Jinjiang, Peng Jianbing, Lin Yangting, Chu Hang, Lu Dawei. 2022. Development strategy of geology in next 5-10 years: Trends and countermeasures. Chinese Science Bulletin, 67(23): 2708~2718 (in Chinese).

    • Duan Lei, Zhang Bohuan, Wang Weitao, Zhang Peizhen, The Tang Dynasty, Chen Gan, Jia Jiabao, Yan Yonggang, Huang Rong, Zheng Wenjun. 2022. Magnetostratigraphy of the Cenozoic Lulehe section in the Qaidam basin: Implications for the tectonic deformation on the northeastern Tibetan Plateau. Chinese Science Bulletin, 67(9): 872~887(in Chinese with English abstract)

    • Fang Xiaomin, Zhang Weilin, Meng Qinquan, Gao Junping, Wang Xiaoming, King John, Song Chunhui, Dai Shuang, Miao Yunfa. 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293~306.

    • Fang Xiaomin, Galy A, Yang Yibo, Zhang Weilin, Ye Chengcheng, Song Chunhui. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47(10): 992~996.

    • Gao Rui, Chen Chen, Wang Haiyan, Lu Zhanwu, Brown L, Dong Shuwen, Feng Shaoying, Li Qiusheng, Li Wenhui, Wen Zhongping, Li Feng. 2016a. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth and Planetary Science Letters, 454: 86~91.

    • Gao Rui, Lu Zhanwu, Klemperer S L, Wang Haiyan, Dong Shuwen, Li Wenhui, Li Hongqiang. 2016b. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7): 555~560.

    • Gao Shibao, Cowgill E, Wu Lei, Lin Xiubin, Cheng Xiaogan, Yang Rong, Soares C, Ketcham R A, An Kaixuan, Gong Junfeng, Song Xingtong, Tang Jianchao, Chen Hanlin, Yang Shufeng. 2022. From left slip to transpression: Cenozoic tectonic evolution of the North Altyn fault, NW margin of the Tibetan Plateau. Tectonics, 41(3): e2021TC006962.

    • Hatem A E, Cooke M L, Toeneboehn K. 2017. Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments. Journal of Structural Geology, 101: 96~108.

    • He Pengju, Song Chunhui, Wang Yadong, Zhao Yuanhao, Tan Yu, Meng Qingquan, Zhang Yihu, Chen Yongfa, Zhang Jing. 2022. Cenozoic two-phase topographic growth of the northeastern Tibetan Plateau derived from two thermochronologic transects across the southern Qilian Shan thrust belt. Tectonophysics, 837: 229432.

    • Hu Xiaoyi, Wu Lei, Zhang Yongshu, Zhang Junyong, Wang Chuanwu, Tang Jianchao, Xiao Ancheng, Chen Hanlin, Yang Shufeng. 2022. Multiscale lithospheric buckling dominates the Cenozoic subsidence and deformation of the Qaidam basin: A new model for the growth of the northern Tibetan Plateau. Earth-Science Reviews, 234: 104201.

    • Huang Kai, Chen Liqi, Xiao Ancheng, Shen Ya, Wu Lei. 2018. Cenozoic deformation characteristics of the Xianshuiquan anticline in the northwestern Qaidam basin and its significance. Geological Journal of China Universities, 24(5): 761~768(in Chinese with English abstract)

    • Huang Kai, Wu Lei, Zhang Junyong, Zhang Yongshu, Xiao Ancheng, Lin Xiubin, Wang Liqun, Chen Hanlin. 2020. Structural coupling between the Qiman Tagh and the Qaidam basin, northern Tibetan Plateau: A perspective from the Yingxiong range by integrating field mapping, seismic imaging, and analogue modeling. Tectonics, 39(12): e2020TC006287.

    • Huang Kai, Wu Lei, Zhao Haifeng, Zhang Junyong, Zhang Yongshu, Xiao Ancheng, Chen Yan, Chen Hanlin. 2021. Development and interplay of two orthogonal fault systems in the NW Qaidam basin, northern Tibetan Plateau. Frontiers in Earth Science, 9: 637056.

    • Ji Junliang, Zhang Kexin, Clift Peter D, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.

    • Ji Youliang, Ma Dade, Xue Jianqin, Wang Peng, Wu Yanxiong, Zeng Li, Jin Li. 2017. Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin, western Qaidam basin. Journal of Palaeogeography, 19(5): 757~772 (in Chinese with English abstract)

    • Jia Chengzao. 2005. Foreland thrust-fold belt features and gas accumulation in Midwest China. Petroleum Exploration and Development, 32(4): 9~15 (in Chinese with English abstract)

    • Jia Chengzao, Yang Shufeng, Wei Guoqi, Wang Liangshu, Liu Shaowen. 2008. Structure characteristics and petroleum bearing prospects of Cenozoic circum Tibet Plateau basin and range system in China. Natural Gas Industry, 28(8): 1~11 (in Chinese with English abstract)

    • Jia Chengzao, Li Benliang, Lei Yongliang, Chen Zhuxin. 2013. The structure of circum-Tibetan Plateau basin-range system and the large gas provinces. Science China Earth Sciences, 56(11): 1853~1863.

    • Jia Chengzao, Lei Yongliang, Chen Zhuxin. 2014. Progress and development features of structural geology and tectonics. Geological Review, 60(4): 709~720 (in Chinese with English abstract)

    • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Roger F, Leyreloup A, Arnaud N, Wu C. 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun Fault. Tectonics, 22(5): 1052.

    • Karplus M S, Klemperer S L, Zhao W, Kind R, Wu Z, Mechie J, Shi D, Brown L D, Chen C, Su H, Xue G, Sandvol E, Ni J, Tilmann F J, Chen Y J. 2019. Receiver-function imaging of the lithosphere at the Kunlun-Qaidam boundary, Northeast Tibet. Tectonophysics, 759: 30~43.

    • Karplus M S, Zhao W, Klemperer S L, Wu Z, Mechie J, Shi D, Brown L D, Chen C. 2011. Injection of Tibetan crust beneath the southQaidam basin: Evidence from INDEPTH IV wide-angle seismic data. Journal of Geophysical Research-Solid Earth, 116(B7): B07301.

    • Ke Xue, Ji Junliang, Zhang Kexin, Kou Xiaohu, Song Bowen, Wang Chaowen. 2013. Magnetostratigraphy and anisotropy of magnetic susceptibility of the Lulehe Formation in the northeastern Qaidam basin. Acta Geologica Sinica - English Edition, 87(2): 576~587.

    • Le Guerroué E, Cobbold P R. 2006. Influence of erosion and sedimentation on strike-slip fault systems: Insights from analogue models. Journal of Structural Geology, 28(3): 421~430.

    • Le Pape F, Jones A G, Unsworth M J, Vozar J, Wei W, Sheng J, Ye G, Jing J, Dong H, Zhang L, Xie C. 2015. Constraints on the evolution of crustal flow beneath northern Tibet. Geochemistry, Geophysics, Geosystems, 16(12): 4237~4260.

    • Le Pape F, Jones A G, Vozar J, Wenbo W. 2012. Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nature Geoscience, 5(5): 330~335.

    • Li Benliang, Jia Chengzao, Pang Xiongqi, Guan Shuwei, Yang Geng, Shi Xin, Li Chuanxin. 2007. The spatial distribution of the foreland thrust tectonic deformation in the circum-Tibetan Plateaubasin and range system. Acta Geologica Sinica, 81(9): 1200~1207 (in Chinese with English abstract)

    • Li Chaopeng, Zheng Dewen, Zhou Renjie, Yu Jingxing, Wang Yizhou, Pang Jianzhang, Wang Ying, Hao Yuqi, Li Youjuan. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e2020GL091281.

    • Li Chaoyang, Jiang Xiaodian, Gong Wei, Zhou Haiting, Yang Kai. 2021. Differences in east-west thermo-rheological structure and lithospheric deformation in the Qaidam basin, northern Tibetan Plateau, China. International Geology Review, 64(7): 933~952.

    • Li Linlin, Wu Chaodong, Yu Xiangjiang. 2018. Cenozoic evolution of the Altyn Tagh and East Kunlun fault zones inferred from detrital garnet, tourmaline and rutile in southwestern Qaidam basin (northern Tibetan Plateau). Basin Research, 30(1): 35~58.

    • Liu Shaozhuo, Xu Xiwei, Klinger Yann, Jean-Mathieu N, Chen Guihua, Yu Guihua, Sigurjón J. 2019. Lower crustal heterogeneity beneath the Northern Tibetan Plateau constrained by GPS measurements following the 2001 MW7. 8 Kokoxili earthquake. Journal of Geophysical Research: Solid Earth, 124(11): 11992~12022.

    • Lou Qianqian, Xiao Ancheng, Zhong Nanchong, Wu Lei. 2016. A method of prototype restoration of large depressions with terrestrial sediments: A case study from the Cenozoic Qaidam basin. Acta Petrologica Sinica, 32(3): 892~902 (in Chinese with English abstract).

    • Lu Haijian, Xiong Shangfa. 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh fault. Earth and Planetary Science Letters, 288(3-4): 539~550.

    • Mao Liguang, Xiao Ancheng, Zhang Hongwei, Wu Zhankui, Wang Liqun, Shen Ya, Wu Lei. 2016. Structural deformation pattern within the NW Qaidam basin in the Cenozoic era and its tectonic implications. Tectonophysics, 687: 78~93.

    • Meng Qingquan, Song Chunhui, Nie Junsheng, Liu Chuan, He Pengju, Liu Fangbin, Li Lin. 2020. Middle-late Miocene rapid exhumation of the southern Qilian Shan and implications for propagation of the Tibetan Plateau. Tectonophysics, 774: 228279.

    • Meng Qingren, Fang Xiang. 2008. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Geological Society of America Special Papers, 444: 1~24.

    • Nie Junsheng, Ren Xueping, Saylor Joel E, Su Qingda, Horton Brian K, Bush Meredith A, Pfaff Katharina. 2019. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2), 310~320.

    • Orellana-Rovirosa F, Shi Yaolin. 2021. Understanding the recent and future mechanical evolution of the Songpan Ganzi-Qaidam NE Tibet Moho-offset. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022128.

    • Pang Jianzhang, Yu Jingxing, Zheng Dewen, Wang Weitao, Ma Yan, Wang Yizhou, Li Chaopeng, Li Youjuan, Wang Ying. 2019. Neogene Expansion of the Qilian Shan, North Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3): 1018~1032.

    • Shen Xuzhang, Li Yingkang, Gao Rui, Chen Xuanhua, Liu Mian, Yuan Xiaohui, Kind Rainer, Xiong Xiaosong, Zhang Yipeng, Qian Yinping, Li Minjuan, Mei Xiuping. 2020. Lateral growth of NE Tibetan Plateau restricted by the Asian lithosphere: Results from a dense seismic profile. Gondwana Research, 87: 238~247.

    • Shi Danian, Shen Yang, Zhao Wenjin, Li Aibing. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau. Earth and Planetary Science Letters, 288(1): 329~334.

    • Shi Danian, Yu Qinfan, Poupinet G, Herquel G, Wittlinger G, Jiang Mei. 2007. Crustal structures across the Altyn Tagh fault imaged by teleseismic receriver functions and their geodynamic implications. Acta Geologica Sinica, 81(1): 139~148(in Chinese with English abstract)

    • Shi Wenbei, Wang Fei, Yang Liekun, Wu Lin, Zhang Weibin. 2018. Diachronous growth of the Altyn Tagh Mountains: Constraints on propagation of the northern tibetan margin from (U-Th)/He dating. Journal of Geophysical Research: Solid Earth, 123(7): 6000~6018.

    • Song Huaying, Yi Haisheng, Fan Aichun, Ma Xue, Sun Xia. 2010. Petrology and sedimentary environments of lacustrine carbonate rocks in the Xichagou section, western Qaidam basin. Geology in China, 37(1): 117~126(in Chinese with English abstract)

    • Sun Zhiming, Yang Zhenyu, Pei Junling, Ge Xiaohong, Wang Xisheng, Yang Tienshui, Li Weimin, Yuan Sihua. 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth and Planetary Science Letters, 237(3-4): 635~646.

    • Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671~1677.

    • Unsworth M, Wei W, Jones A G, Li S, Bedrosian P, Booker J, Sheng J, Deng M, Tan H. 2004. Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research, 109(B2): B2403.

    • Wang Chengshan, Gao Rui, Yin An, Wang Haiyan, Zhang Yuxiu, Guo Tonglou, Li Qusheng, Li Yalin. 2011. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet. Earth and Planetary Science Letters, 306(3-4): 279~288.

    • Wang Fei, Feng Huile, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhang Zhigang, Zhu Rixiang. 2016. Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 675: 196~208.

    • Wang Fei, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhu Rixiang. 2017. Differential growth of the northern Tibetan margin: Evidence for oblique stepwise rise of the Tibetan Plateau. Scientific Reports, 7(1): 41164.

    • Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.

    • Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby Eric, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateauduring the Neogene. Nature Communications, 8: 15887.

    • Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.

    • Wang Weitao, Zhang Peizhen, Duan Lei, Zhang Bohuan, Liu Kang, Huang Rong, Liu Caicai, Zhang Zhuqi, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Cenozoic stratigraphic chronology and sedimentary-tectonic evolution of theQaidam basin. Chinese Science Bulletin, 67(28-29): 3452~3475(in Chinese)

    • Wang Xiaoming, Qiu Zhuding, Li Qiang, Wang Banyue, Qiu Zhanxiang, Downs W R, Xie Guangpu, Xie Junyi, Deng Tao, Takeuchi G T, Tseng Zhijie J, Chang Meeman, Liu Juan, Wang Yang, Biasatti Dana, Sun Zhencheng, Fang Xiaomin, Meng Qingquan. 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam basin in northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 363~385.

    • Wei Yanyan, Xiao Ancheng, Wu Lei, Mao Liguang, Zhao Haifeng, Shen Ya, Wang Liqun. 2016. Temporal and spatial patterns of Cenozoic deformation across the Qaidam basin, northern Tibetan Plateau. Terra Nova, 28(6): 409~418.

    • Wu Chen, Zuza A V, Chen Xuanhua, Ding Lin, Levy Drew A, Liu Changfeng, Liu Wencan, Jiang Tian, Stockli D F. 2019. Tectonics of the eastern Kunlun Range: Cenozoic reactivation of a Paleozoic-Early Mesozoic orogen. Tectonics, 38(5): 1609~1650.

    • Wu Lei, Xiao Ancheng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012a. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China Earth Sciences, 55(6): 926~939.

    • Wu Lei, Xiao Ancheng, Yang Shufeng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012b. Two-stage evolution of the Altyn Tagh fault during the Cenozoic: New insight from provenance analysis of a geological section in NW Qaidam basin, NW China. Terra Nova, 24(5): 387~395.

    • Wu Lei, Xiao Ancheng, Ma Dade, Li Hongge, Xu Bo, Shen Ya, Mao Liguang. 2014. Cenozoic fault systems in southwest Qaidam basin, northeastern Tibetan Plateau: Geometry, temporal development, and significance for hydrocarbon accumulation. AAPG Bulletin, 98(6): 1213~1234.

    • Wu Lei, Lin Xiubin, Cowgill E, Xiao Ancheng, Cheng Xiaogan, Chen Hanlin, Zhao Haifeng, Shen Ya, Yang Shufeng. 2019. Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau. GSA Bulletin, 131(7-8): 1157~1178.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China, 33(2): 221~238(in Chinese with English abstract)

    • Yang Fan, Ma Zhiqiang, Xu Tongchun, Ye Sujuan. 1992. A Tertiary paleomagnetic stratigraphic profile in Qaidam basin. Acta Petrolei Sinica, 13(2): 97~101(in Chinese with English abstract)

    • Ye Yuhui, Wu Lei, Cowgill E, Tian Yuntao, Lin Xiubin, Xiao Ancheng, Chen Hanlin. 2022. Long-lagged (~19 Myr) response of accelerated river incision to rock uplift on the northern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 591: 117608.

    • Ye Zhuo, Gao Rui, Lu Zhanwu, Yang Zhen, Xiong Xiaosong, Li Wenhui, Huang Xingfu, Liang Hongda, Qi Rui, Shi Zhuoxuan, Zhou Hui, Dong Xinyu. 2021. A lithospheric-scale thrust-wedge model for the formation of the northern Tibetan plateau margin: Evidence from high-resolution seismic imaging. Earth and Planetary Science Letters, 574: 117170.

    • Yin An, Dang Yuqi, Zhang Min, McRivette M W, Burgess W P, Chen Xuanhua. 2007. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the eastern Kunlun Range. GSA Bulletin, 433: 369~390.

    • Yin An, Dang Yuqi, Zhang Min, Chen Xuanhua, McRivette M W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. GSA Bulletin, 120(7-8): 847~876.

    • Yu Jingxing, Zheng Dewen, Pang Jianzhang, Wang Yizhou, Fox M, Vermeesch P, Li Chaopeng, Xiao Lin, Hao Yuqi, Wang Ying. 2019. Miocene range growth along the Altyn Tagh fault: Insights from apatite fission track and (U-Th)/He thermochronometry in the western Danghenan Shan, China. Journal of Geophysical Research: Solid Earth, 124(8): 9433~9453.

    • Yu Xiangjiang, Fu Suotang, Guan Shuwei, Huang Baochun, Cheng Feng, Cheng Xiang, Zhang Tuo, Guo Zhaojie. 2014. Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block. Geochemistry Geophysics Geosystems, 15(6): 2109~2127.

    • Yu Xiangjiang, Guo Zhaojie, Jia Chengzao, Fu Suotang. 2017. A comparison of the landscape characters and evolution of the huge basins around the Tibetan Plateau. Geotectonica et Metallogenia, 41(2): 235~247(in Chinese with English abstract)

    • Zhang Min, Yin Chengming, Shou Jianfeng, Chen Zi Hui, Zhang Yuezhong. 2004. Sedimentary facies of carbonate rocks of the Paleogene and Neogene in western Qaidam basin. Journal of Palaeogeography, 6(4): 391~400 (in Chinese with English abstract).

    • Zhao Haifeng, Wei Yanyan, Shen Ya, Xiao Ancheng, Mao Liguang, Wang Liqun, Guan Junya, Wu Lei. 2016. Cenozoic tilting history of the south slope of the Altyn Tagh as revealed by seismic profiling: Implications for the kinematics of the Altyn Tagh fault bounding the northern margin of the Tibetan Plateau. Geosphere, 12(3): 884~899.

    • Zhao Rongtao, Zhan Wenjin, Shi Danian, Liu Zhiwei, Yang Yan. 2020. Seismic evidence for northward subduction of the Hohxil lithosphere beneath the Qaidam basin. Chinese Journal of Geophysics, 63(8): 2940~2953 (in Chinese with English abstract).

    • Zhao Wenjin, Prakash K, James M, Rainer K, Rolf M, Wu Zhenhan, Shi Danian, Su Heping, Xue Guangqi, Marianne K, Frederik T. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 4(12): 870~873.

    • Zhou Jianxun, Xu Fengyin, Wang Tiecheng, Cao Aifeng, Yin Chengming. 2006. Cenozoic deformation history of the Qaidam basin, NW China: Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth and Planetary Science Letters, 243(1): 195~210.

    • Zhu Lupei, Helmberger D V. 1998. Moho offset across the northern margin of the Tibetan Plateau. Science, 281(5380): 1170~1172.

    • Zhu Wen, Wu Chaodong, Wang Jialin, Zhou Tianqi. 2019. Provenance analysis of detrital monazite, zircon and Cr-spinel in the northern Tibetan Plateau: Implications for the Paleozoic tectonothermal history of the Altyn Tagh and Qimen Tagh Ranges. Basin Research, 31(3): 539~561.

    • Zhuang Guangsheng, Johnstone S A, Hourigan J, Ritts B, Robinson A, Sobel E R. 2018. Understanding the geologic evolution of northern Tibetan Plateau with multiple thermochronometers. Gondwana Research, 58: 195~210.

    • Zuza A V, Wu Chen, Reith R C, Yin An, Li Jianhua, Zhang Jinyu, Zhang Yuxiu, Wu Long, Liu Wencan. 2018. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. Geological Society of America Bulletin, 130(5-6): 881~925.

    • 拜永山, 任二峰, 范桂兰, 许长青. 2008. 青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据. 地质通报, 27(7): 1044~1048.

    • 蔡火灿, 王伟涛, 段磊, 张博譞, 刘康, 黄荣, 张培震. 2022. 青藏高原东北缘柴达木盆地路乐河地区新生代构造变形的古地磁证据. 地质学报, 96(10): 3345~3359.

    • 董云鹏, 任建国, 张志飞, 邓军, 郭安林, 张兴亮, 胡修棉, 王强, 李建威, 邱楠生, 孙有斌, 赵国春, 张进江, 彭建兵, 林杨挺, 初航, 吕大炜. 2022. 地质学科未来5~10年发展战略: 趋势与对策. 科学通报, 67(23): 2708~2718.

    • 段磊, 张博譞, 王伟涛, 张培震, 唐清, 陈干, 贾佳宝, 闫永刚, 黄荣, 郑文俊. 2022. 柴达木盆地路乐河剖面磁性地层年代及其构造变形. 科学通报, 67(9): 872~887.

    • 黄凯, 陈力琦, 肖安成, 沈亚, 吴磊. 2018. 柴达木盆地西北缘咸水泉背斜新生代变形特征及意义. 高校地质学报, 24(5): 761~768.

    • 纪友亮, 马达德, 薛建勤, 王鹏, 吴颜雄, 曾力, 金力. 2017. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式. 古地理学报, 19(5): 757~772.

    • 贾承造. 2005. 中国中西部前陆冲断带构造特征与天然气富集规律. 石油勘探与开发, 32(4): 9~15.

    • 贾承造, 杨树锋, 魏国齐, 王良书, 刘绍文. 2008. 中国环青藏高原新生代巨型盆山体系构造特征与含油气前景. 天然气工业, 28(8): 1~11.

    • 贾承造, 雷永良, 陈竹新. 2014. 构造地质学的进展与学科发展特点. 地质论评, 60(4): 709~720.

    • 李本亮, 贾承造, 庞雄奇, 管树巍, 杨庚, 石昕, 李传新. 2007. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律. 地质学报, 81(9): 1200~1207.

    • 楼谦谦, 肖安成, 钟南翀, 吴磊. 2016. 大型陆相坳陷型沉积盆地原型恢复方法——以新生代柴达木盆地为例. 岩石学报, 32(3): 892-902.

    • 史大年, 余钦范, Poupinet G, Herquel G, Wittlinger G, 姜枚. 2007. 阿尔金断裂带附近地壳结构的接收函数成像及其地球动力学意义. 地质学报, 81(1): 139~148.

    • 宋华颖, 伊海生, 范爱春, 马雪, 孙瑕. 2010. 柴达木盆地西部西岔沟剖面湖相碳酸盐岩岩石学特征与沉积环境分析. 中国地质, 37(1): 117~126.

    • 王伟涛, 张培震, 段磊, 张博譞, 刘康, 黄荣, 刘彩彩, 张竹琪, 郑德文, 郑文俊, 张会平. 2022. 柴达木盆地新生代地层年代框架与沉积-构造演化. 科学通报, 67(28-29): 3452~3475.

    • 许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221~238.

    • 杨藩, 马志强, 许同春, 叶素娟. 1992. 柴达木盆地第三纪磁性地层柱. 石油学报, 13(2): 97~101.

    • 于祥江, 郭召杰, 贾承造, 付锁堂. 2017. 环青藏高原大型盆地构造地貌特征与演化比较. 大地构造与成矿学, 41(2): 235~247.

    • 张敏, 尹成明, 寿建峰, 陈子炓, 张跃中. 2004. 柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相. 古地理学报, 6(4): 391~400.

    • 赵荣涛, 赵文津, 史大年, 刘志伟, 杨艳. 2020. 可可西里岩石圈向北俯冲到柴达木地幔的地震学证据. 地球物理学报, 63(8): 2940~2953.

  • 参考文献

    • Bai Yongshan, Ren Erfeng, Fan Guilan, Xu Changqing. 2008. Apatite fission track evidence for the Miocene rapid uplift of the Qimantag Mountains on the northwestern margin of the Qinghai-Tibet Plateau. Geological Bulletin of China, 27(7): 1044~1048 (in Chinese with English abstract)

    • Burov E B. 2011. Rheology and strength of the lithosphere. Marine and Petroleum Geology, 28(8): 1402~1443.

    • Cai Huocan, Wang Weitao, Duan Lei, Zhang Boxuan, Liu Kang, Huang Rong, Zhang Peizhen. 2022. Paleomagnetic evidence of Cenozoic tectonic deformation in Lulehe area, Qaidam basin, northeastern margin of Tibet Plateau. Acta Geologica Sinica, 96(10): 3345~3359 (in Chinese with English abstract).

    • Calignano E, Sokoutis D, Willingshofer E, Gueydan F, Cloetingh S. 2015. Strain localization at the margins of strong lithospheric domains: Insights from analog models. Tectonics, 34(3): 396~412.

    • Chang Hong, Li Leyi, Qiang Xiaoke, Garzione C N, Pullen A, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.

    • Chen Hanlin, Lin Xiubin, Cheng Xiaogan, Gong Junfeng, Bian Shuang, Wu Lei, Jia Chengzao, Yang Shufeng, Guo Zhaojie, Jia Dong. 2021. Two-phase intracontinental deformation mode in the context of India-Eurasia collision: Insights from a structural analysis of the West Kunlun-southern Junggar transect along the NW margin of the Tibetan Plateau. Journal of the Geological Society, 179(2): 2021~2029.

    • Chen Siyuan, Zhang Yongshu, Wu Lei, Zhang Junyong, Wang Liqun, Xiao Ancheng, Shen Ya. 2020. Cenozoic structural deformation in the Yuqia-Jiulongshan region, northern Qaidam basin, China. Petroleum Exploration and Development, 47(1): 114~123.

    • Cheng Feng, Jolivet M, Dupont-Nivet G, Wang Lin, Yu Xiangjiang, Guo Zhaojie. 2015. Lateral extrusion along the Altyn Tagh Fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget. Terra Nova, 27(6): 416~425.

    • Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2016. Source to sink relation between the eastern Kunlun Range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128(1-2): 258~283.

    • Cheng Feng, Garzione C N, Jolivet M, Guo Zhaojie, Zhang Daowei, Zhang Changhao, Zhang Qiquan. 2019. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam basin. Tectonics, 38(2): 741~766.

    • Cheng Feng, Jolivet M, Guo Zhaojie, Wang Lin, Zhang Changhao, Li Xiangzhong. 2021. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth-Science Reviews, 220: 103730.

    • Clark M K, Farley K A, Zheng Dewen, Wang Zhicai, Duvall A R. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth and Planetary Science Letters, 296(1-2): 78~88.

    • Delville N, Arnaud N, Moutel J, Roger F, Brunel M, Tapponnier P, Sobel E. 2001. Paleozoic to Cenozoic deformation along the Altyn Tagh fault in the Altun Shan massif area, eastern Qilian Shan, northeastern Tibet, China. In: Hendrix M S, Davis G A, eds. Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation. Boulder, Colorado: Geological Society of America Memoir, 194: 269~292.

    • Dong Yunpeng, Ren Jianguo, Zhang Zhifei, Deng Jun, Guo Anlin, Zhang Xingliang, Hu Xiumian, Wang Qiang, Li Jianwei, Qiu Nansheng, Sun Youbin, Zhao Guochun, Zhang Jinjiang, Peng Jianbing, Lin Yangting, Chu Hang, Lu Dawei. 2022. Development strategy of geology in next 5-10 years: Trends and countermeasures. Chinese Science Bulletin, 67(23): 2708~2718 (in Chinese).

    • Duan Lei, Zhang Bohuan, Wang Weitao, Zhang Peizhen, The Tang Dynasty, Chen Gan, Jia Jiabao, Yan Yonggang, Huang Rong, Zheng Wenjun. 2022. Magnetostratigraphy of the Cenozoic Lulehe section in the Qaidam basin: Implications for the tectonic deformation on the northeastern Tibetan Plateau. Chinese Science Bulletin, 67(9): 872~887(in Chinese with English abstract)

    • Fang Xiaomin, Zhang Weilin, Meng Qinquan, Gao Junping, Wang Xiaoming, King John, Song Chunhui, Dai Shuang, Miao Yunfa. 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 258(1-2): 293~306.

    • Fang Xiaomin, Galy A, Yang Yibo, Zhang Weilin, Ye Chengcheng, Song Chunhui. 2019. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau. Geology, 47(10): 992~996.

    • Gao Rui, Chen Chen, Wang Haiyan, Lu Zhanwu, Brown L, Dong Shuwen, Feng Shaoying, Li Qiusheng, Li Wenhui, Wen Zhongping, Li Feng. 2016a. SINOPROBE deep reflection profile reveals a Neo-Proterozoic subduction zone beneath Sichuan Basin. Earth and Planetary Science Letters, 454: 86~91.

    • Gao Rui, Lu Zhanwu, Klemperer S L, Wang Haiyan, Dong Shuwen, Li Wenhui, Li Hongqiang. 2016b. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nature Geoscience, 9(7): 555~560.

    • Gao Shibao, Cowgill E, Wu Lei, Lin Xiubin, Cheng Xiaogan, Yang Rong, Soares C, Ketcham R A, An Kaixuan, Gong Junfeng, Song Xingtong, Tang Jianchao, Chen Hanlin, Yang Shufeng. 2022. From left slip to transpression: Cenozoic tectonic evolution of the North Altyn fault, NW margin of the Tibetan Plateau. Tectonics, 41(3): e2021TC006962.

    • Hatem A E, Cooke M L, Toeneboehn K. 2017. Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments. Journal of Structural Geology, 101: 96~108.

    • He Pengju, Song Chunhui, Wang Yadong, Zhao Yuanhao, Tan Yu, Meng Qingquan, Zhang Yihu, Chen Yongfa, Zhang Jing. 2022. Cenozoic two-phase topographic growth of the northeastern Tibetan Plateau derived from two thermochronologic transects across the southern Qilian Shan thrust belt. Tectonophysics, 837: 229432.

    • Hu Xiaoyi, Wu Lei, Zhang Yongshu, Zhang Junyong, Wang Chuanwu, Tang Jianchao, Xiao Ancheng, Chen Hanlin, Yang Shufeng. 2022. Multiscale lithospheric buckling dominates the Cenozoic subsidence and deformation of the Qaidam basin: A new model for the growth of the northern Tibetan Plateau. Earth-Science Reviews, 234: 104201.

    • Huang Kai, Chen Liqi, Xiao Ancheng, Shen Ya, Wu Lei. 2018. Cenozoic deformation characteristics of the Xianshuiquan anticline in the northwestern Qaidam basin and its significance. Geological Journal of China Universities, 24(5): 761~768(in Chinese with English abstract)

    • Huang Kai, Wu Lei, Zhang Junyong, Zhang Yongshu, Xiao Ancheng, Lin Xiubin, Wang Liqun, Chen Hanlin. 2020. Structural coupling between the Qiman Tagh and the Qaidam basin, northern Tibetan Plateau: A perspective from the Yingxiong range by integrating field mapping, seismic imaging, and analogue modeling. Tectonics, 39(12): e2020TC006287.

    • Huang Kai, Wu Lei, Zhao Haifeng, Zhang Junyong, Zhang Yongshu, Xiao Ancheng, Chen Yan, Chen Hanlin. 2021. Development and interplay of two orthogonal fault systems in the NW Qaidam basin, northern Tibetan Plateau. Frontiers in Earth Science, 9: 637056.

    • Ji Junliang, Zhang Kexin, Clift Peter D, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.

    • Ji Youliang, Ma Dade, Xue Jianqin, Wang Peng, Wu Yanxiong, Zeng Li, Jin Li. 2017. Sedimentary environments and sedimentary model of carbonate rocks in the Cenozoic lacustrine basin, western Qaidam basin. Journal of Palaeogeography, 19(5): 757~772 (in Chinese with English abstract)

    • Jia Chengzao. 2005. Foreland thrust-fold belt features and gas accumulation in Midwest China. Petroleum Exploration and Development, 32(4): 9~15 (in Chinese with English abstract)

    • Jia Chengzao, Yang Shufeng, Wei Guoqi, Wang Liangshu, Liu Shaowen. 2008. Structure characteristics and petroleum bearing prospects of Cenozoic circum Tibet Plateau basin and range system in China. Natural Gas Industry, 28(8): 1~11 (in Chinese with English abstract)

    • Jia Chengzao, Li Benliang, Lei Yongliang, Chen Zhuxin. 2013. The structure of circum-Tibetan Plateau basin-range system and the large gas provinces. Science China Earth Sciences, 56(11): 1853~1863.

    • Jia Chengzao, Lei Yongliang, Chen Zhuxin. 2014. Progress and development features of structural geology and tectonics. Geological Review, 60(4): 709~720 (in Chinese with English abstract)

    • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Roger F, Leyreloup A, Arnaud N, Wu C. 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun Fault. Tectonics, 22(5): 1052.

    • Karplus M S, Klemperer S L, Zhao W, Kind R, Wu Z, Mechie J, Shi D, Brown L D, Chen C, Su H, Xue G, Sandvol E, Ni J, Tilmann F J, Chen Y J. 2019. Receiver-function imaging of the lithosphere at the Kunlun-Qaidam boundary, Northeast Tibet. Tectonophysics, 759: 30~43.

    • Karplus M S, Zhao W, Klemperer S L, Wu Z, Mechie J, Shi D, Brown L D, Chen C. 2011. Injection of Tibetan crust beneath the southQaidam basin: Evidence from INDEPTH IV wide-angle seismic data. Journal of Geophysical Research-Solid Earth, 116(B7): B07301.

    • Ke Xue, Ji Junliang, Zhang Kexin, Kou Xiaohu, Song Bowen, Wang Chaowen. 2013. Magnetostratigraphy and anisotropy of magnetic susceptibility of the Lulehe Formation in the northeastern Qaidam basin. Acta Geologica Sinica - English Edition, 87(2): 576~587.

    • Le Guerroué E, Cobbold P R. 2006. Influence of erosion and sedimentation on strike-slip fault systems: Insights from analogue models. Journal of Structural Geology, 28(3): 421~430.

    • Le Pape F, Jones A G, Unsworth M J, Vozar J, Wei W, Sheng J, Ye G, Jing J, Dong H, Zhang L, Xie C. 2015. Constraints on the evolution of crustal flow beneath northern Tibet. Geochemistry, Geophysics, Geosystems, 16(12): 4237~4260.

    • Le Pape F, Jones A G, Vozar J, Wenbo W. 2012. Penetration of crustal melt beyond the Kunlun Fault into northern Tibet. Nature Geoscience, 5(5): 330~335.

    • Li Benliang, Jia Chengzao, Pang Xiongqi, Guan Shuwei, Yang Geng, Shi Xin, Li Chuanxin. 2007. The spatial distribution of the foreland thrust tectonic deformation in the circum-Tibetan Plateaubasin and range system. Acta Geologica Sinica, 81(9): 1200~1207 (in Chinese with English abstract)

    • Li Chaopeng, Zheng Dewen, Zhou Renjie, Yu Jingxing, Wang Yizhou, Pang Jianzhang, Wang Ying, Hao Yuqi, Li Youjuan. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e2020GL091281.

    • Li Chaoyang, Jiang Xiaodian, Gong Wei, Zhou Haiting, Yang Kai. 2021. Differences in east-west thermo-rheological structure and lithospheric deformation in the Qaidam basin, northern Tibetan Plateau, China. International Geology Review, 64(7): 933~952.

    • Li Linlin, Wu Chaodong, Yu Xiangjiang. 2018. Cenozoic evolution of the Altyn Tagh and East Kunlun fault zones inferred from detrital garnet, tourmaline and rutile in southwestern Qaidam basin (northern Tibetan Plateau). Basin Research, 30(1): 35~58.

    • Liu Shaozhuo, Xu Xiwei, Klinger Yann, Jean-Mathieu N, Chen Guihua, Yu Guihua, Sigurjón J. 2019. Lower crustal heterogeneity beneath the Northern Tibetan Plateau constrained by GPS measurements following the 2001 MW7. 8 Kokoxili earthquake. Journal of Geophysical Research: Solid Earth, 124(11): 11992~12022.

    • Lou Qianqian, Xiao Ancheng, Zhong Nanchong, Wu Lei. 2016. A method of prototype restoration of large depressions with terrestrial sediments: A case study from the Cenozoic Qaidam basin. Acta Petrologica Sinica, 32(3): 892~902 (in Chinese with English abstract).

    • Lu Haijian, Xiong Shangfa. 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh fault. Earth and Planetary Science Letters, 288(3-4): 539~550.

    • Mao Liguang, Xiao Ancheng, Zhang Hongwei, Wu Zhankui, Wang Liqun, Shen Ya, Wu Lei. 2016. Structural deformation pattern within the NW Qaidam basin in the Cenozoic era and its tectonic implications. Tectonophysics, 687: 78~93.

    • Meng Qingquan, Song Chunhui, Nie Junsheng, Liu Chuan, He Pengju, Liu Fangbin, Li Lin. 2020. Middle-late Miocene rapid exhumation of the southern Qilian Shan and implications for propagation of the Tibetan Plateau. Tectonophysics, 774: 228279.

    • Meng Qingren, Fang Xiang. 2008. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. Geological Society of America Special Papers, 444: 1~24.

    • Nie Junsheng, Ren Xueping, Saylor Joel E, Su Qingda, Horton Brian K, Bush Meredith A, Pfaff Katharina. 2019. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2), 310~320.

    • Orellana-Rovirosa F, Shi Yaolin. 2021. Understanding the recent and future mechanical evolution of the Songpan Ganzi-Qaidam NE Tibet Moho-offset. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022128.

    • Pang Jianzhang, Yu Jingxing, Zheng Dewen, Wang Weitao, Ma Yan, Wang Yizhou, Li Chaopeng, Li Youjuan, Wang Ying. 2019. Neogene Expansion of the Qilian Shan, North Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3): 1018~1032.

    • Shen Xuzhang, Li Yingkang, Gao Rui, Chen Xuanhua, Liu Mian, Yuan Xiaohui, Kind Rainer, Xiong Xiaosong, Zhang Yipeng, Qian Yinping, Li Minjuan, Mei Xiuping. 2020. Lateral growth of NE Tibetan Plateau restricted by the Asian lithosphere: Results from a dense seismic profile. Gondwana Research, 87: 238~247.

    • Shi Danian, Shen Yang, Zhao Wenjin, Li Aibing. 2009. Seismic evidence for a Moho offset and south-directed thrust at the easternmost Qaidam-Kunlun boundary in the Northeast Tibetan plateau. Earth and Planetary Science Letters, 288(1): 329~334.

    • Shi Danian, Yu Qinfan, Poupinet G, Herquel G, Wittlinger G, Jiang Mei. 2007. Crustal structures across the Altyn Tagh fault imaged by teleseismic receriver functions and their geodynamic implications. Acta Geologica Sinica, 81(1): 139~148(in Chinese with English abstract)

    • Shi Wenbei, Wang Fei, Yang Liekun, Wu Lin, Zhang Weibin. 2018. Diachronous growth of the Altyn Tagh Mountains: Constraints on propagation of the northern tibetan margin from (U-Th)/He dating. Journal of Geophysical Research: Solid Earth, 123(7): 6000~6018.

    • Song Huaying, Yi Haisheng, Fan Aichun, Ma Xue, Sun Xia. 2010. Petrology and sedimentary environments of lacustrine carbonate rocks in the Xichagou section, western Qaidam basin. Geology in China, 37(1): 117~126(in Chinese with English abstract)

    • Sun Zhiming, Yang Zhenyu, Pei Junling, Ge Xiaohong, Wang Xisheng, Yang Tienshui, Li Weimin, Yuan Sihua. 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth and Planetary Science Letters, 237(3-4): 635~646.

    • Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671~1677.

    • Unsworth M, Wei W, Jones A G, Li S, Bedrosian P, Booker J, Sheng J, Deng M, Tan H. 2004. Crustal and upper mantle structure of northern Tibet imaged with magnetotelluric data. Journal of Geophysical Research, 109(B2): B2403.

    • Wang Chengshan, Gao Rui, Yin An, Wang Haiyan, Zhang Yuxiu, Guo Tonglou, Li Qusheng, Li Yalin. 2011. A mid-crustal strain-transfer model for continental deformation: A new perspective from high-resolution deep seismic-reflection profiling across NE Tibet. Earth and Planetary Science Letters, 306(3-4): 279~288.

    • Wang Fei, Feng Huile, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhang Zhigang, Zhu Rixiang. 2016. Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 675: 196~208.

    • Wang Fei, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhu Rixiang. 2017. Differential growth of the northern Tibetan margin: Evidence for oblique stepwise rise of the Tibetan Plateau. Scientific Reports, 7(1): 41164.

    • Wang Min, Shen Zhengkang. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.

    • Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby Eric, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateauduring the Neogene. Nature Communications, 8: 15887.

    • Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.

    • Wang Weitao, Zhang Peizhen, Duan Lei, Zhang Bohuan, Liu Kang, Huang Rong, Liu Caicai, Zhang Zhuqi, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Cenozoic stratigraphic chronology and sedimentary-tectonic evolution of theQaidam basin. Chinese Science Bulletin, 67(28-29): 3452~3475(in Chinese)

    • Wang Xiaoming, Qiu Zhuding, Li Qiang, Wang Banyue, Qiu Zhanxiang, Downs W R, Xie Guangpu, Xie Junyi, Deng Tao, Takeuchi G T, Tseng Zhijie J, Chang Meeman, Liu Juan, Wang Yang, Biasatti Dana, Sun Zhencheng, Fang Xiaomin, Meng Qingquan. 2007. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam basin in northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(3-4): 363~385.

    • Wei Yanyan, Xiao Ancheng, Wu Lei, Mao Liguang, Zhao Haifeng, Shen Ya, Wang Liqun. 2016. Temporal and spatial patterns of Cenozoic deformation across the Qaidam basin, northern Tibetan Plateau. Terra Nova, 28(6): 409~418.

    • Wu Chen, Zuza A V, Chen Xuanhua, Ding Lin, Levy Drew A, Liu Changfeng, Liu Wencan, Jiang Tian, Stockli D F. 2019. Tectonics of the eastern Kunlun Range: Cenozoic reactivation of a Paleozoic-Early Mesozoic orogen. Tectonics, 38(5): 1609~1650.

    • Wu Lei, Xiao Ancheng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012a. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China Earth Sciences, 55(6): 926~939.

    • Wu Lei, Xiao Ancheng, Yang Shufeng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012b. Two-stage evolution of the Altyn Tagh fault during the Cenozoic: New insight from provenance analysis of a geological section in NW Qaidam basin, NW China. Terra Nova, 24(5): 387~395.

    • Wu Lei, Xiao Ancheng, Ma Dade, Li Hongge, Xu Bo, Shen Ya, Mao Liguang. 2014. Cenozoic fault systems in southwest Qaidam basin, northeastern Tibetan Plateau: Geometry, temporal development, and significance for hydrocarbon accumulation. AAPG Bulletin, 98(6): 1213~1234.

    • Wu Lei, Lin Xiubin, Cowgill E, Xiao Ancheng, Cheng Xiaogan, Chen Hanlin, Zhao Haifeng, Shen Ya, Yang Shufeng. 2019. Middle Miocene reorganization of the Altyn Tagh fault system, northern Tibetan Plateau. GSA Bulletin, 131(7-8): 1157~1178.

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. Geology in China, 33(2): 221~238(in Chinese with English abstract)

    • Yang Fan, Ma Zhiqiang, Xu Tongchun, Ye Sujuan. 1992. A Tertiary paleomagnetic stratigraphic profile in Qaidam basin. Acta Petrolei Sinica, 13(2): 97~101(in Chinese with English abstract)

    • Ye Yuhui, Wu Lei, Cowgill E, Tian Yuntao, Lin Xiubin, Xiao Ancheng, Chen Hanlin. 2022. Long-lagged (~19 Myr) response of accelerated river incision to rock uplift on the northern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 591: 117608.

    • Ye Zhuo, Gao Rui, Lu Zhanwu, Yang Zhen, Xiong Xiaosong, Li Wenhui, Huang Xingfu, Liang Hongda, Qi Rui, Shi Zhuoxuan, Zhou Hui, Dong Xinyu. 2021. A lithospheric-scale thrust-wedge model for the formation of the northern Tibetan plateau margin: Evidence from high-resolution seismic imaging. Earth and Planetary Science Letters, 574: 117170.

    • Yin An, Dang Yuqi, Zhang Min, McRivette M W, Burgess W P, Chen Xuanhua. 2007. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the eastern Kunlun Range. GSA Bulletin, 433: 369~390.

    • Yin An, Dang Yuqi, Zhang Min, Chen Xuanhua, McRivette M W. 2008. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. GSA Bulletin, 120(7-8): 847~876.

    • Yu Jingxing, Zheng Dewen, Pang Jianzhang, Wang Yizhou, Fox M, Vermeesch P, Li Chaopeng, Xiao Lin, Hao Yuqi, Wang Ying. 2019. Miocene range growth along the Altyn Tagh fault: Insights from apatite fission track and (U-Th)/He thermochronometry in the western Danghenan Shan, China. Journal of Geophysical Research: Solid Earth, 124(8): 9433~9453.

    • Yu Xiangjiang, Fu Suotang, Guan Shuwei, Huang Baochun, Cheng Feng, Cheng Xiang, Zhang Tuo, Guo Zhaojie. 2014. Paleomagnetism of Eocene and Miocene sediments from the Qaidam basin: Implication for no integral rotation since the Eocene and a rigid Qaidam block. Geochemistry Geophysics Geosystems, 15(6): 2109~2127.

    • Yu Xiangjiang, Guo Zhaojie, Jia Chengzao, Fu Suotang. 2017. A comparison of the landscape characters and evolution of the huge basins around the Tibetan Plateau. Geotectonica et Metallogenia, 41(2): 235~247(in Chinese with English abstract)

    • Zhang Min, Yin Chengming, Shou Jianfeng, Chen Zi Hui, Zhang Yuezhong. 2004. Sedimentary facies of carbonate rocks of the Paleogene and Neogene in western Qaidam basin. Journal of Palaeogeography, 6(4): 391~400 (in Chinese with English abstract).

    • Zhao Haifeng, Wei Yanyan, Shen Ya, Xiao Ancheng, Mao Liguang, Wang Liqun, Guan Junya, Wu Lei. 2016. Cenozoic tilting history of the south slope of the Altyn Tagh as revealed by seismic profiling: Implications for the kinematics of the Altyn Tagh fault bounding the northern margin of the Tibetan Plateau. Geosphere, 12(3): 884~899.

    • Zhao Rongtao, Zhan Wenjin, Shi Danian, Liu Zhiwei, Yang Yan. 2020. Seismic evidence for northward subduction of the Hohxil lithosphere beneath the Qaidam basin. Chinese Journal of Geophysics, 63(8): 2940~2953 (in Chinese with English abstract).

    • Zhao Wenjin, Prakash K, James M, Rainer K, Rolf M, Wu Zhenhan, Shi Danian, Su Heping, Xue Guangqi, Marianne K, Frederik T. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nature Geoscience, 4(12): 870~873.

    • Zhou Jianxun, Xu Fengyin, Wang Tiecheng, Cao Aifeng, Yin Chengming. 2006. Cenozoic deformation history of the Qaidam basin, NW China: Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth and Planetary Science Letters, 243(1): 195~210.

    • Zhu Lupei, Helmberger D V. 1998. Moho offset across the northern margin of the Tibetan Plateau. Science, 281(5380): 1170~1172.

    • Zhu Wen, Wu Chaodong, Wang Jialin, Zhou Tianqi. 2019. Provenance analysis of detrital monazite, zircon and Cr-spinel in the northern Tibetan Plateau: Implications for the Paleozoic tectonothermal history of the Altyn Tagh and Qimen Tagh Ranges. Basin Research, 31(3): 539~561.

    • Zhuang Guangsheng, Johnstone S A, Hourigan J, Ritts B, Robinson A, Sobel E R. 2018. Understanding the geologic evolution of northern Tibetan Plateau with multiple thermochronometers. Gondwana Research, 58: 195~210.

    • Zuza A V, Wu Chen, Reith R C, Yin An, Li Jianhua, Zhang Jinyu, Zhang Yuxiu, Wu Long, Liu Wencan. 2018. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. Geological Society of America Bulletin, 130(5-6): 881~925.

    • 拜永山, 任二峰, 范桂兰, 许长青. 2008. 青藏高原西北缘祁漫塔格山中新世快速抬升的磷灰石裂变径迹证据. 地质通报, 27(7): 1044~1048.

    • 蔡火灿, 王伟涛, 段磊, 张博譞, 刘康, 黄荣, 张培震. 2022. 青藏高原东北缘柴达木盆地路乐河地区新生代构造变形的古地磁证据. 地质学报, 96(10): 3345~3359.

    • 董云鹏, 任建国, 张志飞, 邓军, 郭安林, 张兴亮, 胡修棉, 王强, 李建威, 邱楠生, 孙有斌, 赵国春, 张进江, 彭建兵, 林杨挺, 初航, 吕大炜. 2022. 地质学科未来5~10年发展战略: 趋势与对策. 科学通报, 67(23): 2708~2718.

    • 段磊, 张博譞, 王伟涛, 张培震, 唐清, 陈干, 贾佳宝, 闫永刚, 黄荣, 郑文俊. 2022. 柴达木盆地路乐河剖面磁性地层年代及其构造变形. 科学通报, 67(9): 872~887.

    • 黄凯, 陈力琦, 肖安成, 沈亚, 吴磊. 2018. 柴达木盆地西北缘咸水泉背斜新生代变形特征及意义. 高校地质学报, 24(5): 761~768.

    • 纪友亮, 马达德, 薛建勤, 王鹏, 吴颜雄, 曾力, 金力. 2017. 柴达木盆地西部新生界陆相湖盆碳酸盐岩沉积环境与沉积模式. 古地理学报, 19(5): 757~772.

    • 贾承造. 2005. 中国中西部前陆冲断带构造特征与天然气富集规律. 石油勘探与开发, 32(4): 9~15.

    • 贾承造, 杨树锋, 魏国齐, 王良书, 刘绍文. 2008. 中国环青藏高原新生代巨型盆山体系构造特征与含油气前景. 天然气工业, 28(8): 1~11.

    • 贾承造, 雷永良, 陈竹新. 2014. 构造地质学的进展与学科发展特点. 地质论评, 60(4): 709~720.

    • 李本亮, 贾承造, 庞雄奇, 管树巍, 杨庚, 石昕, 李传新. 2007. 环青藏高原盆山体系内前陆冲断构造变形的空间变化规律. 地质学报, 81(9): 1200~1207.

    • 楼谦谦, 肖安成, 钟南翀, 吴磊. 2016. 大型陆相坳陷型沉积盆地原型恢复方法——以新生代柴达木盆地为例. 岩石学报, 32(3): 892-902.

    • 史大年, 余钦范, Poupinet G, Herquel G, Wittlinger G, 姜枚. 2007. 阿尔金断裂带附近地壳结构的接收函数成像及其地球动力学意义. 地质学报, 81(1): 139~148.

    • 宋华颖, 伊海生, 范爱春, 马雪, 孙瑕. 2010. 柴达木盆地西部西岔沟剖面湖相碳酸盐岩岩石学特征与沉积环境分析. 中国地质, 37(1): 117~126.

    • 王伟涛, 张培震, 段磊, 张博譞, 刘康, 黄荣, 刘彩彩, 张竹琪, 郑德文, 郑文俊, 张会平. 2022. 柴达木盆地新生代地层年代框架与沉积-构造演化. 科学通报, 67(28-29): 3452~3475.

    • 许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221~238.

    • 杨藩, 马志强, 许同春, 叶素娟. 1992. 柴达木盆地第三纪磁性地层柱. 石油学报, 13(2): 97~101.

    • 于祥江, 郭召杰, 贾承造, 付锁堂. 2017. 环青藏高原大型盆地构造地貌特征与演化比较. 大地构造与成矿学, 41(2): 235~247.

    • 张敏, 尹成明, 寿建峰, 陈子炓, 张跃中. 2004. 柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相. 古地理学报, 6(4): 391~400.

    • 赵荣涛, 赵文津, 史大年, 刘志伟, 杨艳. 2020. 可可西里岩石圈向北俯冲到柴达木地幔的地震学证据. 地球物理学报, 63(8): 2940~2953.