en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李沛东,男,1996年生。硕士研究生,构造地质学专业。E-mail:903456614@qq.com。

通讯作者:

王勤,女,1974年生。教授,从事构造地质学与岩石物理研究。E-mail:qwang@nju.edu.cn。

参考文献
A'balos B. 1997. Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain): Relationships with strain symmetry during high-pressure deformation. Journal of Structural Geology, 19: 621~637.
参考文献
Adamuszek M, Dabrowski M. 2017. Sheath folds as a strain gauge in simple shear. Journal of Structural Geology, 102: 21~36.
参考文献
Agard P, Yamato P, Jolivet L, Burov E. 2009. Exhumation of oceanic blueschists and eclogites insubduction zones: Timing and mechanisms. Earth Science Reviews, 92(1-2): 53~79.
参考文献
Agard P, Yamato P, Soret M, Prigent C, Guillot S, Plunder A, Dubacq B, Chauvet A, Monié P. 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters, 451: 208~220.
参考文献
Agard P, Plunder A, Angiboust S, Bonnet G, Ruh J. 2018. The subduction plate interface: Rock record and mechanical coupling (from long to short time scales). Lithos, 320: 537~566.
参考文献
Alsop G I, Holdsworth R E, McCaffrey K J W. 2007. Scale invariant sheath folds in salt, sediments and shear zones. Journal of Structural Geology, 29(12): 1915~1930.
参考文献
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.
参考文献
Aslin J, Mariani E, Dawson K, Barsoum M W. 2019. Ripplocations provide a new mechanism for the deformation of phyllosilicates in the lithosphere. Nature Communications, 10(1): 686.
参考文献
Ayers J C, Dunkle S, Gao Shan, Miller C E. 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186(3): 315~331.
参考文献
Azcárraga J, Ábalos B, Ibarguchi J I G. 2002. On the relationship between kilometer-scale sheath folds, ductile thrusts and minor structures in the basal high-pressure units of the Cabo Ortegal complex (NW Spain). Journal of Structural Geology, 24(12): 1971~1989.
参考文献
Bascou J, Tommasi A, Mainprice D. 2002. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. Journal of Structural Geology, 24: 1357~1368.
参考文献
Belousova E, Griffin W, O'Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602~622.
参考文献
Berman R G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445~522.
参考文献
Bohlen S R, Montana A, Kerrick D M. 1991. Precise determinations of the equilibria kyanite- reversible-sillimanite and kyanite-reversible-andalusite and a revised triple point for Al2SiO5 polymorphs. American Mineralogist, 76: 677~680.
参考文献
Bonamici C E, Tikoff E, Goodwin L B. 2011. Anatomy of a 10 km scale sheath fold, Mount Hay ridge, Arunta region, central Australia: The structural record of deep crustal flow. Tectonics, 30(6): TC6015.
参考文献
Bundy F P. 1980. The P, T phase and reaction diagram for elemental carbon, 1979. Journal of Geophysical Research, 85(B12): 6930~6936.
参考文献
Cao Yi, Song Shuguang. 2008. Deformation of subduction zone eclogite and its significance for the subduction-exhumation processes. Geological Bulletin of China, 27(10): 1646~1653 (in Chinese with English abstract).
参考文献
Carreras J, Estrada A, White S. 1977. The effects of folding on the c-axis fabrics of a quartz mylonite. Tectonophysics, 39(1-3): 3~24.
参考文献
Carswell D A, Wilson R N, Zhai M. 2000. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos, 52(1-4): 121~155.
参考文献
Chavagnac V, Jahn B M, Villa I M, Whitehouse M J, Liu Dunyi. 2001. Multichronometric evidence for an in situ origin of the ultrahigh-pressure metamorphic terrane of Dabieshan, China. Journal of Geology, 109(5): 633~646.
参考文献
Chen Jing, Jin Zhenmin, Liu Wenlong, Wang Yongfeng, Zhang Junfeng. 2021. Rheology of dry K-feldspar aggregates at high temperature and high pressure: An experimental study. Tectonophysics, 817: 229072.
参考文献
Chen Renxu, Zheng Yongfei, Gong Bing. 2011. Fluid activity in continental subduction zones: Insights from stable isotopes and water contents in minerals from ultrahigh-pressure metamorphic rocks. Acta Petrologica Sinica, 27(2): 451~468 (in Chinese with English abstract).
参考文献
Chen S, Hiraga T, Kohlstedt D L. 2006. Water weakening of clinopyroxene in the dislocation creep regime. Journal of Geophysical Research, 111(B8): 1~14.
参考文献
Chen Yan, Wei Chunjing, Zhang Jingsen, Chu Hang. 2005. Phase equilibria of mica-schists and gneisses in the HP-UHP Belt of Southern Dabie Shan. Acta Petrologica Sinica, 21(6): 1657~1168(in Chinese with English abstract).
参考文献
Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth and Planetary Science Letters, 212(1-2): 1~14.
参考文献
Cong Bolin, Zhai Mingguo, Carswell D A, Wilson R H, Wang Qingchen, Zhao Zhongyan, Windley B F. 1995. Petrogenesis of ultrahigh-pressure rocks and their country rocks in Shuanghe of Dabieshan Mountains, Central China. European Journal of Mineralogy, 7(1): 119~138.
参考文献
Corfu F. 2003. Atlas ofzircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.
参考文献
Dersch O, Zouine A, Rauch F, Ericson J E. 1997. Investigation of water diffusion into quartz using ion beam analysis techniques. Fresenius Journal of Analytical Chemistry, 358(1-2): 217~219.
参考文献
Dong Huogen, Guo Zhenyu. 1996. Deformation of ultrahigh-pressure metamorphic rocks in Shuanghe, Dabie Mountains. Science in China (Series D), 26(S1): 89~96 (in Chinese with English abstract).
参考文献
Doremus R H. 1998. Diffusion of water and oxygen in quartz: Reaction-diffusion model. Earth and Planetary Science Letters, 163(1-4): 43~51.
参考文献
Farver J R. 2010. Oxygen and hydrogen diffusion in minerals. Reviews in Mineralogy and Geochemistry, 72(1): 447~507.
参考文献
Finch M A, Bons P D, Steinbach F, Griera A, Llorens M G, Gomez-Rivas E, Ran H, de Riese T. 2020. The ephemeral development of C' shear bands: A numerical modelling approach. Journal of Structural Geology, 139: 104091.
参考文献
Flinn D. 1965. On the symmetry principal and the deformation ellipsoid. Geological Magazine, 102(1): 36~45.
参考文献
Fu Bin, Zheng Yongfei, Wang Zhengrong, Xiao Yilin, Gong Bing, Li Shuguang. 1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contributions to Mineralogy and Petrology, 134(1): 52~66.
参考文献
Fu Bin, Xiao Yilin, Zheng Yongfei, Touret J L R, Van den Kerkhof A M, Hoefs J. 2000. Fluid inclusions in ultrahigh pressure metamorphic rocks from Shuanghe and Bixiling in Dabie Shan. Acta Petrologica Sinica. 16(1): 119~126 (in Chinese with English abstract).
参考文献
Gao Xiaoying, Zheng Yongfei, Chen Yixiang. 2011. U-Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen: Constraints on P-T-t path. Journal of Metamorphic Geology, 29(7): 721~740.
参考文献
Gao Xiaoying, Zheng Yongfei, Chen Yixiang. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. Journal of Metamorphic Geology, 30: 193~212.
参考文献
Gao Xiaoying, Zheng Yongfei, Chen Yixiang, Tang Haolan, Li Wancai. 2015. Zircon geochemistry records the action of metamorphic fluid on the formation of ultrahigh-pressure jadeite quartzite in the Dabie orogen. Chemical Geology, 419: 158~175.
参考文献
Gao Xiaoying, Wang Ling, ChenYixiang, Zheng Yongfei, Chen Renxu, Huang Fang, Zhang Qiangqiang, Ji Min, Meng Ziyue. 2019. Geochemical evidence from coesite-bearing jadeite quartzites for large-scale flow of metamorphic fluids in a continental subduction channel. Geochimica et Cosmochimica Acta, 265: 354~370.
参考文献
Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3(1): 43~50.
参考文献
Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6): 1056.
参考文献
Gu Xiaotong, Wang Qin. 2020. Microstructure and effective viscosity of ultrahigh-pressure metamorphic rocks from the Dabie Mountains. Geological Journal of China Universities, 26(6): 601~616 (in Chinese with English abstract).
参考文献
Hacker B R, Wang Qingchen. 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 14(4): 994~1006.
参考文献
Hacker B R, Ratschbacher L, Webb L, Ireland T, Walker D, Dong Shuwen. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215~230.
参考文献
Harlov D. 2015. Fluids and geochronometers: Charting and dating mass transfer during metasomatism and metamorphism. Journal of the Indian Institute of Science, 2(95): 109~123.
参考文献
Hermann J, Rubatto D, Korsakov A. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66~82.
参考文献
Hemingway B S, Bohlen S R, Hankins W B, Westrum J R, Kuskov O L. 1998. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. American Mineralogist, 83: 409~418.
参考文献
Hirth G, Teyssier C, Dunlap J W. 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90(1): 77~87.
参考文献
Huang Peng, Song Chuanzhong, Ren Shenglian, Lin Shoufa, Zhang Yan, Li Jiahao, Liu Huan, Wang Wei, Yang Fa, Liu Qineng. 2016. Tectonic property of the Beihuaiyang tectonic belt and its implication for the location of the suture zone between Yangtze Block and North China Block. Acta Geologica Sinia, 90(6): 1112~1129(in Chines with English abstract).
参考文献
Huang Wuuliang, Wyllie P J. 1975. Melting reactions in the system KAlSi3O8-NaAlSi3O8-SiO2-H2O to 35 kilobars, dry and with excess water. Journal of Geology, 83(6): 737~748.
参考文献
Ji Shaocheng, Zhao Pinglao, Xia Bin. 2003. Flow laws of multiphase materials and rocks from end-member flow laws. Tectonophysics, 370(1): 129~145.
参考文献
Ji Wenbin, Lin Wei, Faure M, Shi Yonghong, Wang Qingchen. 2017. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: Implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China. International Journal of Earth Sciences, 106(4): 1311~1340.
参考文献
Jiang Laili, Liu Yican, Su Wen, Wu Weiping. 1996. The deformation features of the ultrahigh-pressure metamorphic rocks in the Dabie Mountains and their geological implication. Geology of Anhui, 6(3): 7~17+86 (in Chinese with English abstract).
参考文献
Jiang Laili, Wu Weiping, Fan Lianghong, Liu Yican, Shi Yonghong, Yu Xiaojian, Shen Huanxi, Chen Jinmiao. 1998. The geological structure features of the Hanchaangchong area, Qianshan, Anhui. Geology of Anhui, 8(1): 1~9 (in Chinese with English abstract).
参考文献
Jiang Laili, Wu Weiping, Liu Yican, Li Huimin. 2003. U-Pb zircon and Ar-Ar hornblende ages of the Susong complex of the southern Dabie orogen and their geological implication. Acta Petrologica Sinica, 19(3): 497~505 (in Chinese with English abstract).
参考文献
Jin Deshi, Xiao Yilin, Tan Dongbo, Wang Yangyang, Li Wancai, Su Wen, Li Xiaoguang. 2023. Supercritical fluid in deep subduction zones as revealed by multiphase fluid inclusions in an ultrahigh-pressure metamorphic vein. PNAS, 120: e2219083120.
参考文献
Johnson E A. 2006. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance. Reviews in Mineralogy and Geochemistry, 62(1): 117~154.
参考文献
Keppler R. 2018. Crystallographic preferred orientations in eclogites—A review. Journal of Structural Geology, 115: 284~296.
参考文献
Kronenberg A K, Kirby S H, Pinkston J. 1990. Basal slip and mechanical anisotropy of biotite. Journal of Geophysical Research, 95(B12): 19257~19278.
参考文献
Li Le, Ji Shaocheng, Lin Wei. 2020. Tourmaline microboudinage: An indicator of its host rheology. Journal of Structural Geology, 138: 104096.
参考文献
Li Shuguang, Jagoutz E, Xiao Yilin, Ge Ningjie, Chen Yizhi. 1996. Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrane: I. Sm-Nd isotope system. Science in China (Series D), 39(6): 597~609.
参考文献
Li Shuguang, Li Huimin, Chen Yizhi, Xiao Yilin, Liu Deliang. 1997. Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrane——II. zircon U-Pb isotope system. Science in China (Series D), 27(3): 200~206 (in Chinese with English abstract).
参考文献
Li Shuguang, Jagoutz E, Chen Yizhi, Li Qiuli. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6): 1077~1093.
参考文献
Li Xuping, Zheng Yongfei, Wu Yuanbao, Chen Fukun, Gong Bing, Li Yiliang. 2004. Low-t eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443~470.
参考文献
Li Zhonghai, Gerya T. 2009. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu UHP terrane in eastern China. Journal of Geophysical Research, 114: B09406.
参考文献
Li Zhonghai, Liu Minqi, Gerya T. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Science China: Earth Sciences, 58: 1251~1268 (in Chinese with English abstract).
参考文献
Lin Wei, Shi Yonghong, Wang Qingchen. 2009. Exhumation tectonics of the HP-UHP orogenic belt in Eastern China: New structural-petrological insights from the Tongcheng massif, Eastern Dabieshan. Lithos, 109(3-4): 285~303.
参考文献
Lin Wei, Ji Wenbin, Shi Yonghong, Chu Yang, Li Qiuli, Chen Zechao, Liu Fei, Wang Qingchen. 2013. Multi-stage exhumation processes of the UHP metamorphic rocks: Implications from the extensional structure of Tongbai-Hong'an-Dabieshan orogenic belt. Chinese Science Bulletin, 58(23): 2259~2265 (in Chinese with English abstract).
参考文献
Lin Wei, Ji Wenbin, Faure M, Wu Lin, Li Qiuli, Shi Yonghong, Scharer U, Wang Fei, Wang Qingchen. 2015. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China. Tectonophysics, 662: 256~270.
参考文献
Liou J G, Zhang R Y, Jahn B M. 1997. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China. Lithos, 41(1-3): 59~78.
参考文献
Liou J G, Zhang R Y, Ernst W G, Rumble D, Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Reviews in Mineralogy, 37: 33~96.
参考文献
Liou J G, Hacker B R, Zhang R Y. 2000. Into the forbidden zone. Science, 287(5456): 1215~1216.
参考文献
Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. Journal of Asian Earth Sciences, 35(3-4): 199~231.
参考文献
Lisle R J. 1977. Estimation of the tectonic strain ratio from the mean shape of deformed elliptical objects. Geologie en Mijnbouw, 56(2): 140~144.
参考文献
Lisle R J. 1979 Strain analysis using deformed pebbles: The influence of initial pebble shape. Tectonophysics, 60(3-4): 263~277.
参考文献
Liu Dunyi, Jian Ping. 2004. 243 Ma UHP and 228 Ma retrograde events of the Shuanghe jadeite quartzite, Eastern Dabie Mountains—SHRIMP dating, mineral inclusions and zircon REE patterns. Acta Geologica Sinica, 78(2): 211~217 (in Chinese with English abstract).
参考文献
Liu Dunyi, Jian Ping, Kroner A, Xu Shutong. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters, 250: 650~666.
参考文献
Liu Fulai, Gerdes A, Liou J G, Xue H M, Liang F H. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24(7): 569~589.
参考文献
Liu Fulai, Gerdes A, Zeng Lingsen, Xue Huaimin. 2008. SHRIMP U–Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochimica Cosmochimica Acta, 72(12): 2973~3000.
参考文献
Liu Fulai, Liou J G. 2011. Zircon as the best mineral for P-T- time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1~39.
参考文献
Liu Penglei, Wu Yao, Liu Qiang, Zhang Junfeng, Zhang Li, Jin Zhenmin. 2014. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, (4): 86~101.
参考文献
Liu Penglei, Wu Yao, Chen Yi, Zhang Junfeng, Jin Zhenmin. 2015. UHP impure marbles from the Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280~297.
参考文献
Liu Qiang. 2003. The deformation of Shuanghe meta-granitoid in the Dabie Mountains and its tectonic significance. Master's thesis of China University of Geosciences (in Chinese with English abstract).
参考文献
Liu Qiang, Hermann J, Zhang Junfeng. 2013. Polyphase inclusions in theShuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91~109.
参考文献
Liu Qiang, Hermann J, Zheng Shu, Zhang Junfeng. 2019. Evidence for UHP anatexis in the Shuanghe UHP paragneiss from inclusions in clinozoisite, garnet and zircon. Journal of Metamorphic Geology, 38(2): 128~155.
参考文献
Liu Yican, Li S G, Gu X F, Xu S T, Chen B G. 2007. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. Journal of Metamorphic Geology, 25(9): 975~989.
参考文献
Liu Yican, Gu Xiaofeng, Rolfo F, Chen Zhenyu. 2011a. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures. Journal of Asian Earth Sciences, 42(4): 607~617.
参考文献
Liu Yican, Gu Xiaofeng, Li Shuguang, Hou Zhenhui, Song Biao. 2011b. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos, 122(1-2): 107~121.
参考文献
Ma Yuan, Sun Siquan, Wu Changxiong, Li Shutao, Chen Mi. 2013. Zircon U-Pb anges and petro-geochemistry of Liemazui granite, Qichuan county, Hubei Province, China. Acta Mieralogica Sinica, 33(4): 698~704 (in Chinese with English abstract).
参考文献
Massonne H J. 1995. Experimental and petrogenetic study of UHPM. In: Coleman R G and Wang X, eds. Ultrahigh Pressure Metamorphism. Cambridge: Cambridge University Press, 33~95.
参考文献
Massonne H J. 2009. Hydration, dehydration, and melting of metamorphosed granitic and dioritic rocks at high- and ultrahigh-pressure conditions. Earth and Planetary Science Letters, 288(1-2): 244~254.
参考文献
Okay A I, Xu Shutong, Sengor A C. 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy, 1(4): 595~598.
参考文献
Philippot P, van Roermund H L M. 1992. Deformation processes in eclogitic rocks: Evidence for the rheological delamination of the oceanic crust in deeper levels of subduction zones. Journal of Structural Geology, 14: 1059~1077.
参考文献
Piepenbreier D, Stöckhert B. 2001. Plastic flow of omphacite in eclogites at temperatures below 500℃—Implications for interplate coupling in subduction zones. International Journal of Earth Sciences, 90(1): 197~210.
参考文献
Raimbourg H, Jolivet L, Leroy Y. 2007. Consequences of progressive eclogitization on crustal exhumation, a mechanical study. Geophysical Journal International, 168: 379~401.
参考文献
Ramsay J R, Huber N I. 1983. The Techniques of Modern Structural Geology. New York: Academic press, 1~307.
参考文献
Rast M, Ruh J B. 2021. Numerical shear experiments of quartz-biotite aggregates: Insights on strain weakening and two-phase flow laws. Journal of Structural Geology, 149: 104375.
参考文献
Ratschbacher L, Hacker B R, Webb L E, McWilliams M, Ireland T, Dong Shuwen, Calvert A, Chateigner D, Wenk H R. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research Atmospheres, 105(B6): 13303~13338.
参考文献
Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1): 123~138.
参考文献
Rybacki E, Dresen G. 2004. Deformation mechanism maps for feldspar rocks. Tectonophysics, 382(3-4): 173~187.
参考文献
Schertl H, Okay A L. 1994. Coesite inclusion in dolomite of Dabie Shan, China: Petrological and the geological significance. European Journal of Mineralogy, 6(6): 995~1000.
参考文献
Schmidt M W, Poli S. 2003. Generation of mobile components during subduction of oceanic crust. Treatise Geochem, 3: 567~591.
参考文献
Schwerdtner W M, Bennett P J, Janes T W. 1977. Application of L-S fabric scheme to structural mapping and paleostrain analysis. Canadian Journal of Earth Sciences, 14(5): 1021~1032.
参考文献
Shea W T, Kronenberg A K. 1992. Rheology and deformation mechanisms of an isotropic mica schist. Journal of Geophysical Research. 97(B11): 15201~15237.
参考文献
Shelton G L, Tullis J. 1981. Experimental flow laws for crustal rocks. Eos Transactions American Geophysical Union, 62: 396.
参考文献
Shi Yonghong, Wang Cisong, Kang Tao, Xu Xufeng, Lin Wei. 2012. Petrological characteristics and zircon U-Pb age for Susong metamorphic complex rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389~3402 (in Chinese with English abstract).
参考文献
Shi Yonghong, Wang Juan, Li Qiuli, Lin Wei. 2013. The analysis of the temperature and pressure structure for metamorphic rocks in Dabie collision orogen. China Science Bulletin, 58(22): 2145~2152 (in Chinese with English abstract).
参考文献
Shi Yonghong, Lin Wei, Ji Wenbin, Wang Qingchen. 2014. The architecture of the HP-UHP Dabie massif: New insights from geothermobarometry of eclogites, and implication for the continental exhumation processes. Journal of Asian Earth Sciences, 86: 38~58.
参考文献
Shinevar W J, Behn M D, Hirth G. 2015. Compositional dependence of lower crustal viscosity. Geophysical Research Letters, 42(20): 4333~8340.
参考文献
Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, melange formation, and prism accretion. Journal of Geophysical Research, 91: 10229~10245.
参考文献
Su Wen, Xu Shutong, Jiang Laili, Liu Yican. 1995. Characteristics of jadeite-quartzite and associatedeclogite in Hanchangchong-Miaozhuyuan area, Qianshan. Geology of Anhui, 5(2): 7~21 (in Chinese with English abstract).
参考文献
Su Wen, You Zhendong, Cong Boling, Ye Kai, Zhong Zhenqiu. 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30(7): 611~614.
参考文献
Thompson P, Parsons I, Graham C M, Jackson B. 1998. The breakdown of potassium feldspar at high water pressures. Contributions to Mineralogy and Petrology, 130(2): 176~186.
参考文献
Tokle L, Hirth G, Benr W M. 2019. Flow laws and fabric transitions in wet quartzite. Earth and Planetary Science Letters, 505: 152~161.
参考文献
Vannucchi P, Sage F, Morgan J P, Remitti F, Collot J Y. 2012. Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochemistry Geophysics Geosystems, 13(2): Q02003.
参考文献
Wang L, Jin Z M, Kusky T, Xu H J, Liu X W. 2010. Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite andeclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology, 28(2): 163~182.
参考文献
Wang Qiang, Wyman D A, Xu Jifeng, Jian Ping, Zhao Zhenhua, Li Chaofeng, Xu Wei, Ma Jinlong, He Bin. 2007. Early Cretaceous adakitic granites in the northern Dabie complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609~2636.
参考文献
Wang Qingchen. 2013. Exhumation of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Orogenic Belt. Acta Petrologica Sinica, 29(5): 1607~1620 (in Chinese with English abstract).
参考文献
Wang Xiaomin, Liou J G, Mao H K. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology, 17(12): 1085~1088.
参考文献
Wang Xiaomin, Liou J G. 1991. Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China: Evidence from country rocks, gneiss, marble, and metapelite. Geology, 19(9): 933~936.
参考文献
Wei Chunjing, Shan Zhengang. 1997. Metamorphism of the Susong Complex from the Southern Dabie Mountains, Anhui Province. Acta Petrologica Sinica, 13(3): 356~368 (in Chinese with English abstract).
参考文献
Whitney D L, Evans B W. 2010. Abbreviations fornames of rock-forming minerals. American Mineralogist, 95(1): 185~187.
参考文献
Wu Kaibin, Deng Xin, Yang Kunguang. 2013. Multistage Cretaceous magmatic event and its relationship with evolution of North Dabie orogen. Earth Science-Journal of China University of Geosciences, 38(S1): 43~52 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Chen Daogong, Xia Qunke, Cheng Hao. 2001. SIMS U-Pb dating of zircons Shuanghe orthogneiss, Dabie area. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 298~301 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei, Zhao Zifu, Gong Bing, Liu Xiaomin, Wu Fuyuan. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14): 3743~3761.
参考文献
Xia Bin, Yuan Yajuan, Zhang Yuquan, Wang Min, Xia Lianze, Li He, Wang Fangyue, Zhang Hong, Wu Weiping. 2012. Zircon U-Pb ages of marble from Shuanghe Qianshan County and their geological significance. Acta Geologica Sinica, 86(4): 619~625 (in Chinese with English abstract).
参考文献
Xia Qiongxia, Zheng Yongfei, Chen Yixiang. 2013. Protolith control on fluid availability for zircon growth during continental subduction-zone metamorphism in the Dabie orogen. Journal of Asian Earth Sciences, 67-68: 93~113.
参考文献
Xia Qiongxia, Wang Haozheng, Zhou Ligang, Gao Xiaoying, Zheng Yongfei, Van Orman J A, Xu Haijun, Hu Zhaochu. 2016. Growth of metamorphic and peritectic garnets in ultrahigh-pressure metagranite during continental subduction and exhumation in the Dabie orogen. Lithos, 266-267: 158~181.
参考文献
Xia Qunke. 2005. Water in the deep subducted continental plate: Message from NAMS. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 1~6.
参考文献
Xiao Yilin, Hoefs J, van den Kerkhof A M, Simon K, Fiebig J, Zheng Yongfei. 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43(8): 1505~1527.
参考文献
Xie Zhi, Gao Tianshan, Chen Jiangfeng. 2004. Multi-stage evolution of gneiss from the North Dabie orogen: Chronological evidence from zircon U-Pb isotope system. Chinese Science Bulletin, 49(16): 1653~1659 (in Chinese with English abstract).
参考文献
Xu Haijin, Ma Changqian, Ye Kai. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology, 240(3-4): 238~259.
参考文献
Xu Shutong, Okay A I, Ji Shouyuan, Sengor A M C, Su Wen, Liu Yican, Jiang Laili. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256(5053): 80~82.
参考文献
Xu Shutong, Liu Yican, Chen Guangbiao, Compagnoni R, Rolfo F, He Mouchun, Liu Huifang. 2003. New finding of micro-diamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Science Bulletin, 48(10): 988~994.
参考文献
Xu Xiang, Wang Qin. 2019. The Hualiangting-Mituo ductile shear zone in the Dabie Mountains: Implicaions for oblique and differential exhumation of ultrahigh-pressure metamorphic slices. Geological Journal of China Universities, 25(2): 182~196 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Zeng Lingsen, Liu Fulai, Yang Jingsui, Zhang Zeming, McWilliams M, Liou J G. 2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geological Society of America Special Papers, 403: 93~113.
参考文献
Xu Zhiqin, Wang Qin, Tang Zhemin, Chen Fangyuan. 2009a. Fabric kinematics of ultrahigh-pressure metamorphic rocks from the main borehole of the Chinese Continental Scientific Drilling Project: Implications for continental subduction and exhumation. Tectonophysics, 475(2): 235~250.
参考文献
Xu Zhiqin, Yang Wencai, Ji Shaocheng, Zhang Zeming, Yang Jingsui, Wang Qin, Tang Zhemin. 2009b. Deep root of a continent-continent collision belt: Evidence from the Chinese Continental Scientific Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure(HP–UHP) metamorphic terrane, China. Tectonophysics, 475(2): 204~219.
参考文献
Xue Huaimin, Ma Fang, Zhao Xun, Wu Weiping. 2011. Characteristics and LA-ICP-MS zircon U-Pb ages of the Tianzhushan granitoid intrusive body, southeastern Dabie orogen. Acta Petrologica et Mineralogica, 30(5): 935~950 (in Chinese with English abstract).
参考文献
Ye Kai, Cong Bolin, Ye Danian. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407(6806): 734~736.
参考文献
Yuan Honglin, Wu Fuyuan, Gao Shan, Liu Xiaoming, Xu Ping, Sun Deyou. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411~2421.
参考文献
Yuan Xuecheng, Klemperer S L, Tang Wenbing, Liu Laixiang, Chetwin E. 2003. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling. Geology, 31(5): 435~438.
参考文献
Zeng Lingsen, Chen Jing, Chen Zhenyu, Chen Fangyuan, Gao Lie. 2009. K-cymrite in the Sulu UHP eclogites. Acta Petrologica Sinica, 25(9): 2141~2148 (in Chinese with English abstract).
参考文献
Zhai Mingguo, Cong Bolin, Zhao Zhongyan, Wang Qingchen, Li Jiaju. 1992. High-pressure jadeite quartzite blocks in the Dabie Mountain eclogite belt and their geological significance. Chinese Science Bulletin, 37(11): 1013~1015 (in Chinese with English abstract).
参考文献
Zhang J F, Green Ⅱ H W. 2007. Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. Journal of Metamorphic Geology, 25(2): 97~115.
参考文献
Zhang J F, Shi F, Xu H J, Wang L, Feng S Y, Liu W L, Wang Y F, GreenⅡ H W. 2013. Petrofabric and strength of SiO2 near the quartz-coesite phase boundary. Journal of Metamorphic Geology, 31(1): 83~92.
参考文献
Zhang Jianxin. 2020. The study of subduction channels: Progress, controversies, and challenges. Science China Earth Sciences, 63(12): 1831~1851.
参考文献
Zhang Junfeng, Jin Zhenmin, Green Ⅱ H W, Jin Shuyan. 2000. Water in the continental deep subduction zone: Evidence from ultrahigh-pressure eclogite in the Dabie Mountains. Chinese Science Bulletin, 45(17): 1889~1894 (in Chinese with English abstract).
参考文献
Zhang Junfeng, Green Ⅱ H W, Bozhilov K N. 2006. Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations. Earth and Planetary Science Letters, 246(3-4): 432~443.
参考文献
Zhang R Y, Liou J G, Zheng Y F, Fu B. 2003. Transition of UHP eclogites to gneissic rocks of low amphibolite facies during exhumation: evidence from the Dabie terrane, central China. Lithos, 70(3-4): 269~291.
参考文献
Zhang Yueqiao, Qiu Erkang, Dong Shuwen, Li Jianhua, Shi Wei. 2022. Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi-plate convergence in NE Asia: An overview and new view. Tectonophysics, 835: 229377.
参考文献
Zhao Xixi, Coe R S. 1987. Palaeomagnetic constraints on the collision and rotation of North and South China. Nature, 327(6118): 141~144.
参考文献
Zhao Zifu, Zheng Yongfei, Wei Chunsheng, Wu Yuanbao. 2004. Zircon U-Pb age, element and oxygen isotope geochemistry of Mesozoic. Acta Petrologica Sinica, 20(5): 1151~1174 (in Chinese with English abstract).
参考文献
Zhao Zifu, Zheng Yongfei, Wei Chunsheng, Wu Yuanbao. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3-4): 248~272.
参考文献
Zheng Jianping, Sun Min, Griffin W L, Zhou Meifu, Zhao Guochun, Robinson P, Tang Huayun, Zhang Zhihai. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chemical Geology, 247(1-2): 282~304.
参考文献
Zheng Yongfei. 2008. Progress in the study of ultrahigh pressure metamorphism and continental collision: an example from the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(18): 2129~2152 (in Chinese with English abstract).
参考文献
Zheng Yongfei, Fu Bin, Li Yiliang, Xiao Yilin, Li Shuguang. 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth and Planetary Science Letters, 155(1-2): 113~129.
参考文献
Zheng Yongfei, Gong Bing, Zhao Zifu, Fu Bin, Li Yiliang. 2003. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos, 70(3): 321~343.
参考文献
Zheng Yongfei, Zhou Jianbo, Wu Yuanbao, Xie Zhi. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47(8): 851~871.
参考文献
Zheng Yongfei, Zhao Zifu, Chen Renxu. 2007. Geodynamics of continental collision and ultrahigh-pressure metamorphism: constraints from Chinese Continental Scientific Drilling project. Acta Petrologica Sinica, 23(12): 3078~3094 (in Chinese with English abstract).
参考文献
Zheng Yongfei, Gao Xiaoying, Chen Renxu, Gao Tianshan. 2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences, 40(2): 427~451.
参考文献
Zheng Yongfei. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5~48.
参考文献
Zheng Yongfei, Zhao Zifu, Chen Yixiang. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chinese Science Bulletin, 58(35): 4371~4377.
参考文献
Zheng Yongfei, Chen Renxu, Xu Zheng, Zhang Shaobing. 2016. The transport of water in subduction zones. Science China Earth Sciences, 59(4): 651~681.
参考文献
Zheng Yongfei, Chen Yixiang, Chen Renxu, Dai Liqun. 2022. Tectonic evolution of convergent plate margins and its geological effects. Science China Earth Sciences, 65(7): 1247~1276.
参考文献
Zhou Taixi, Chen Jiangfeng, Zhang Xun, Li Xueming. 1995. Geochemistry of the North Huaiyang granite-syenite zone and its tectonic implication. Geological Review, 41(2): 144~151 (in Chinese with English abstract).
参考文献
Zhu Guang, Song Chuanzhong, Wang Daoxuan, Liu Guosheng, Xu Jiawei. 2001. Studies on 40Ar/39Ar thermochronology of strike-slip time of the Tan-Lu fault zone and their tectonic implications. Science in China (Series D), 44(11): 1002~1009.
参考文献
Zhu Guang, Liu Guosheng, Niu Manlan, Xie Chenglong, Wang Yongsheng, Xiang Biwei. 2009. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences, 98(1): 135~155.
参考文献
Zhu Guang, Liu Cheng, Gu Chengchuan, Zhang Shuai, Li Yunjian, Su Nan, Xiao Shiye. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu fault zone. Science China Earth Sciences, 61(4): 386~405.
参考文献
曹毅, 宋述光. 2008. 俯冲带榴辉岩的变形作用及其对恢复俯冲-折返过程的意义. 地质通报, 27(10): 1646~1653.
参考文献
陈仁旭, 郑永飞, 龚冰. 2011. 大陆俯冲带流体活动: 超高压变质岩矿物水含量和稳定同位素制约. 岩石学报, 27(2): 451~468.
参考文献
陈燕, 魏春景, 张景森, 初航. 2005. 大别山南部高压一超高压变质地体中云母片岩和片麻岩的相平衡研究. 岩石学报, 21(6): 1657~1668.
参考文献
董火根, 郭震宇. 1996. 大别山双河超高压变质岩变形构造. 中国科学(D辑: 地球科学), 26(S1): 89~96.
参考文献
傅斌, 肖益林, 郑永飞, Touret J L R, Van den Kerkhof A M, Hoefs J. 2000. 大别山双河和碧溪岭超高压变质岩流体包裹体研究. 岩石学报, 16(1): 119~126.
参考文献
顾筱彤, 王勤. 2020. 大别山超高压变质岩的显微构造与有效黏度. 高校地质学报, 26(6): 601~616.
参考文献
黄鹏, 宋传中, 任升莲, Lin Shoufa, 张妍, 李加好, 刘欢, 王微, 杨帆, 刘啟能. 2016. 北淮阳构造带的属性及其对板块缝合线位置的启示. 地质学报, 90(6): 1112~1129.
参考文献
江来利, 刘贻灿, 苏文, 吴维平. 1996. 大别山超高压变质岩的变形特征及其地质意义. 安徽地质, 6(3): 7~17+86.
参考文献
江来利, 吴维平, 范良红, 刘贻灿, 石永红, 余小俭, 沈欢喜, 陈金苗. 1998. 安徽省潜山县韩长冲地区的地质构造特征. 安徽地质, 8(1): 1~9.
参考文献
江来利, 吴维平, 刘贻灿, 李惠民. 2003. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义. 岩石学报, 19(3): 497~505.
参考文献
李曙光, 李惠民, 陈移之, 肖益林, 刘德良. 1997. 大别山-苏鲁地体超高压变质年代学——Ⅱ. 锆石U-Pb同位素体系. 中国科学(D辑), 27(3): 200~206.
参考文献
李忠海, 刘明启, Gerya T. 2015. 俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟. 中国科学: 地球科学, 45(7): 881~899.
参考文献
林伟, 冀文斌, 石永红, 褚杨, 李秋立, 陈泽超, 刘飞, 王清晨. 2013. 高压—超高压变质岩石多期构造折返: 以桐柏-红安-大别造山带为例. 科学通报, 58(23): 2259~2265.
参考文献
刘敦一, 简平. 2004. 大别山双河硬玉石英岩的超高压变质和退变质事件-SHRIMP测年的证据. 地质学报, 78(2): 211~217.
参考文献
刘强. 2003. 大别山双河变质花岗岩变形特征及其大地构造意义. 武汉: 中国地质大学硕士毕业论文: 1~43.
参考文献
马元, 孙四权, 吴昌雄, 李书涛, 陈觅. 2013. 湖北蕲春烈马咀花岗岩锆石U-Pb年龄和岩石地球化学特征. 矿物学报, 33(4): 698~704.
参考文献
石永红, 王次松, 康涛, 徐旭峰, 林伟. 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10): 3389~3402.
参考文献
石永红, 王娟, 聂峰, 曹晟, 康涛. 2016. 宿松变质杂岩中石榴子石-蓝晶石-硬绿泥石片岩形成条件及时限研究. 岩石学报, 32(2): 493~504.
参考文献
石永红, 王娟, 李秋立, 林伟. 2013. 大别造山带变质岩温度压力结构研究. 科学通报, 58(22): 2145~2152.
参考文献
王清晨. 2013. 大别山造山带高压—超高压变质岩的折返过程. 岩石学报, 29(5): 1607~1620.
参考文献
魏春景, 单振刚. 1997. 安徽省大别山南部宿松杂岩变质作用研究. 岩石学报, 13(3): 356~368.
参考文献
吴开彬, 邓新, 杨坤光. 2013. 北大别白垩纪花岗岩多期侵位与造山带演化的关系. 地球科学: 中国地质大学学报, 38(S1): 43~52.
参考文献
吴元保, 陈道公, 夏群科, 程昊. 2001. 大别山双河地区花岗质片麻岩锆石的离子探针定年. 矿物岩石地球化学通报, 20(4): 298~301.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
夏斌, 袁亚娟, 张玉泉, 王敏, 夏连泽, 李贺, 汪方跃, 张红, 吴维平. 2012. 安徽潜山县双河大理岩锆石U-Pb年龄及其地质意义. 地质学报, 86(4): 619~625.
参考文献
夏群科. 2005. 大陆深俯冲过程中的水: “名义上无水矿物(NAMs)”的信息. 矿物岩石地球化学通报, 24(1): 1~6.
参考文献
谢智, 高天山, 陈江峰. 2004. 北大别片麻岩的多阶段演化: 锆石U-Pb年代学证据. 科学通报, 49(16): 1653~1659.
参考文献
徐翔, 王勤. 2019. 大别山花凉亭-弥陀剪切带与超高压变质岩片的斜向差异折返. 高校地质学报, 25(2): 182~196.
参考文献
薛怀民, 马芳, 赵逊, 吴维平. 2011. 大别山造山带东南部天柱山花岗岩类侵入体的特征及其LA-ICP-MS锆石U-Pb年龄. 岩石矿物学杂志, 30(5): 935~950.
参考文献
曾令森, 陈晶, 陈振宇, 陈方远, 高利娥. 2009. 苏鲁超高压榴辉岩中钾长石的超高压相. 岩石学报, 25(9): 2141~2148.
参考文献
翟明国, 从柏林, 赵中岩, 王清晨, 李家驹. 1992. 大别山榴辉岩带的高压硬玉石英岩块体及其地质意义. 科学通报, 37(11): 1013~1015.
参考文献
章军锋, 金振民, Green H W, 金淑燕. 2000. 大陆深俯冲带中的水: 来自大别山超高压榴辉岩的证据. 科学通报, 45(17): 1889~1894.
参考文献
赵子福, 郑永飞, 魏春生, 吴元保. 2004. 大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究. 岩石学报, 20(5): 1151~1174.
参考文献
郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53(18): 2129~2152.
参考文献
郑永飞, 赵子福, 陈仁旭. 2007. 大陆碰撞和超高压变质的化学地球动力学: 来自中国大陆科学钻探的结果. 岩石学报, 23(12): 3078~3094.
参考文献
周泰禧, 陈江峰, 张巽, 李学明. 1995. 北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义. 地质论评, 41(2): 144~151.
目录contents

    摘要

    俯冲隧道是俯冲板片与上覆板块之间的剪切带,也是高压—超高压变质岩折返和深部流/熔体活动的通道。大别山超高压变质岩分布广泛,变形程度差异很大,是研究大陆俯冲隧道中岩石变质-变形过程的理想地区。本文系统总结了前人对中大别双河地区超高压变质岩的岩石学和年代学研究成果,在双河地区开展了地质填图、应变分析和三维构造重建。通过将超高压变质岩的变形特征与P-T-t轨迹结合,识别出超高压变质岩折返过程中的三期韧性变形。在双河北部发现了一个上盘向NW剪切的千米尺度的榴辉岩相鞘褶皱,枢纽向SE倾伏,倾伏角约20°,与榴辉岩、片岩和长英质片麻岩的拉伸线理平行,表明超高压变质岩初始折返阶段的流体活动使榴辉岩的强度显著降低,榴辉岩与围岩一起发生韧性变形。该期变形被角闪岩相退变质阶段上盘向NW的剪切叠加,此时应变集中于片麻岩、片岩、大理岩等非能干层,强度较高的榴辉岩成为构造透镜体。而绿片岩相变质阶段上盘向SE方向的剪切与早白垩世北大别花岗片麻岩穹隆的形成有关。对双河南部弱变形花岗片麻岩的锆石U-Pb定年揭示了757±14 Ma的原岩年龄和 240~216 Ma的变质年龄,与双河北部含柯石英强变形花岗片麻岩类似,暗示其也经历了三叠纪超高压变质作用及随后的角闪岩相退变质作用。通过计算长英质片麻岩的有效黏度,发现无水碱长花岗片麻岩的有效黏度高于黑云斜长片麻岩,折返阶段的流体活动使超高压变质岩的强度显著降低,当局部的流体活动不足以弱化碱长花岗岩体时,应变集中于黑云斜长片麻岩。因此,大陆俯冲隧道中的应变分布受矿物组成、流体活动和岩体规模的共同影响。

    Abstract

    As the shear zone between the subducting and overlying plates, a subduction channel is the pathway for exhumation of high- and ultrahigh-pressure (UHP) metamorphic rocks and deep fluid/melt activity. Due to the wide exposure and variable deformation degree of UHP metamorphic rocks, the Dabie orogenic belt provides an ideal area to investigate metamorphism and deformation processes in a continental subduction channel. Here we summarized previous petrological and geochronological studies in the Shuanghe area of the central Dabie orogenic belt and carried out field mapping, strain analysis and 3D structural reconstruction in this region. Combining deformation with P-T-t paths of UHP rocks, three ductile deformation phases during exhumation of UHP rocks are identified. A kilometer-scale sheath fold of eclogite facies (D1) in the northern Shuanghe area is characterized by the SE-plunging fold axis with a dipping angle of ~20° and a top-to-the-NW shear sense. This indicates that high fluid activity during the initial exhumation significantly reduced viscosity of eclogite, leading to the simultaneous ductile deformation of eclogites and surrounding rocks. The following deformation phase under amphibolite facies (D2) overprinted the D1 fabrics by the continuous top-to-the-NW shearing. Strain was localized in incompetent rocks such as gneisses, schists and marbles, whereas eclogites appeared as tectonic boudins. The top-to-the-SE detachment (D3) mainly occurred in schists under greenschist facies, which may be related with formation of the granitic gneiss dome in the northern Dabie orogenic belt during the Early Cretaceous. In the southern Shuanghe area, zircon U-Pb dating of weakly deformed granitic gneiss revealed the crystallization age of 757±14 Ma and the metamorphic age of 240~216 Ma, which are consistent with strongly sheared coesite-bearing granitic gneiss in the northern Shuanghe area. Hence the weakly deformed granitic gneiss also experienced the Triassic UHP metamorphism and the amphibolite facies retrograde metamorphism. Calculation of the effective viscosity of felsic gneiss indicates that dry alkali-feldspar granitic gneiss is stronger than biotite-plagioclase gneiss. The presence of water can significantly reduce the effective viscosity of UHP rocks. If localized fluid activity could not weaken the large-scale alkali-feldspar granite gneiss pluton, strain localization occurs in biotite-plagioclase gneiss. Therefore, strain distribution in a continental subduction channel is controlled by mineral assemblage, fluid activity and volume of the rock body.

  • 对高压—超高压变质带开展变质、变形和年代学综合研究,建立变质岩的压力-温度-时间-变形(P-T-t-D)轨迹,是理解板块汇聚边界构造演化和物质循环的基础(Liou et al.,19982009; Chopin,2003; Zheng Yongfei et al.,2022)。俯冲隧道(subduction channel)是俯冲板片与上覆板块相互作用的界面,也是具有一定宽度和独立运动学特征的剪切带,提供了岩石俯冲和折返、流/熔体活动和壳幔相互作用的通道(Agard et al.,2009; Vannucchi et al.,2012; Zheng Yongfei et al.,2013; 李忠海等,2015; Agard et al.,2016)。俯冲隧道最初是依据现代大洋俯冲带的地质和地球物理观察提出来的动力学模型,俯冲洋壳的沉积物在浅部被刮削下来,在上盘板块前缘形成增生楔,而俯冲的沉积物则夹在刚性的上覆板块底界与下伏洋壳之间经历剪切作用,形成隧道流(Shreve et al.,1986)。该模型被拓展用于研究大洋和大陆俯冲带深部过程以及高压—超高压变质岩的折返(Gerya et al.,2002; Raimbourg et al.,2007; 李忠海等,2015; Agard et al.,2018)。

  • 如图1所示,俯冲隧道中既包括俯冲板片在不同深度拆离出来的岩石,也包括从上覆板块底部刮削下来的岩石,形成了混杂岩带(Agard et al.,2018)。与大洋俯冲隧道相比,由于陆壳密度小于洋壳而且大陆岩石圈的含水矿物较少,大陆俯冲隧道中矿物脱水反应导致的流体-岩石相互作用和对上覆地幔楔的水化蚀变作用有限,缺少同俯冲岛弧岩浆岩(Zheng Yongfei,2012; Zhang Jianxin,2020; Zheng Yongfei et al.,2022)。在大陆俯冲隧道内的剪切作用下,伴随着岩石的变质反应和脱水熔融,应变局部集中于流变强度比较低的岩石或不同岩性的边界,形成韧性剪切带,高压—超高压变质岩更易于以构造岩片(tectonic slice)的形式折返,形成碰撞造山带的核部(Xu Zhiqin et al.,20062009b; Lin Wei et al.,2009; Li Zhonghai et al.,2009; 林伟等,2013; 王清晨,2013)。

  • 图1 大陆俯冲隧道中超高压变质岩的折返模型(修改自Xu Zhiqin et al.,2009b; Agard et al.,2018

  • Fig.1 Exhumation model of ultrahigh-pressure metamorphic rocks in a continental subduction channel (modified after Xu Zhiqin et al., 2009b; Agard et al., 2018)

  • A型褶皱指褶皱枢纽与矿物拉伸线理(即X方向)平行的褶皱。鞘褶皱无褶轴,有枢纽,且枢纽发生高角度弯曲,是一种特殊的A型褶皱。鞘褶皱是韧性剪切带中由简单剪切作用形成的非圆柱状褶皱,是强应变域的代表性构造,尺度可以从厘米级到千米级,能指示剪切动向(Alsop et al.,2007; Bonamici et al.,2011)。在应变椭球体中,X轴为最大拉伸方向,Y轴为中间应变方向,Z轴为最大缩短方向。鞘褶皱的主要识别特征为:在XZ剖面上为不对称的紧闭褶皱、倒转褶皱或等斜褶皱,上盘剪切方向指向鞘褶皱的转折端,形似剑鞘,矿物拉伸线理平行于褶皱枢纽(图2a),在YZ剖面上多为封闭的同心圆状或眼球状(图2b)(Carreras et al.,1977; Adamuszek et al.,2017)。千米尺度的鞘褶皱为研究造山带深部变形过程提供了重要信息,但由于大尺度鞘褶皱的露头分布常不连续,对其准确识别和重建有一定难度(Azcárraga et al.,2002)。

  • Bonamici et al.(2011)发现鞘褶皱的不同位置具有不同的应变特征,以面理(简称S)为主的组构出现在鞘褶皱边缘,而线理(简称L)主导的组构仅限于鞘褶皱的枢纽,可根据S>L,L≈S,L>S,L>>S的应变分布特征圈定鞘褶皱的几何形状,从而进行鞘褶皱的三维还原。如图2所示,X为鞘褶皱的长轴方向,在S>L的区域,岩石的XZ面可见面理十分发育,但XY面上基本不发育线理;在L≈S的区域,在XZ面可见发育程度一般的面理,XY面可见发育程度一般的线理;在L>S的区域,XZ面可见微弱面理,同时XY面可见发育较好的线理;在L>>S的区域,XY面和XZ面都可见线理发育极好,YZ面矿物截面多呈圆形,面理基本不发育。

  • 大别-苏鲁造山带是世界上规模最大、保存最好的超高压变质带,提供了研究大陆俯冲隧道中岩石变质、变形和流体-岩石相互作用的天然实验室。位于中大别的双河地区出露了榴辉岩、花岗质片麻岩、片岩、硬玉石英岩、大理岩等超高压变质岩,前人已对双河北部开展了详细的岩石学、地球化学和同位素年代学研究(例如Okay et al.,1989; Wang Xiaomin et al.,1989; Xu Shutong et al.,1992; Hacker et al.,1995; Zheng Yongfei et al.,2003; 刘敦一等,2004; 郑永飞,2008; Gao Xiaoying et al.,2011; Liu Fulai et al.,2011; 夏斌等,2012),但对南部大面积出露的弱变形花岗片麻岩的研究很少(吴元保等,2001; Zheng Yongfei et al.,2003)。由于该地区的植被覆盖和乡村建设,露头不连续,构造地质学研究仍比较有限(Cong Bolin et al.,1995; 江来利等,1998; Wang et al.,2010)。

  • 本文对双河地区进行了地质填图,并根据岩石应变的空间分布特征使用Rhino软件进行三维构造重建,证实双河北部的超高压变质岩形成了千米级的鞘褶皱。此外,对双河南部的弱变形花岗片麻岩开展了锆石U-Pb定年,计算折返过程中长英质片麻岩的有效黏度。结合前人的大别山岩石学和年代学研究成果,探讨大别山超高压变质岩折返过程中的变形历史和大陆俯冲隧道中应变的不均一分布。

  • 图2 理想鞘褶皱三维模型及其不同部位的组构特征(修改自Bonamici et al.,2011

  • Fig.2 A 3D model of an ideal sheath fold and the fabric characteristics in different parts (modified after Bonamici et al., 2011)

  • (a)—鞘褶皱的XZ面;(b)—鞘褶皱的三维示意图;右侧方框中的线条指示矿物排列和分层,红色圆点表示拉长矿物在YZ面上的截面;X轴为最大拉伸方向,平行于线理;Y轴为中间应变方向;Z轴为最大缩短方向,垂直于面理

  • (a) —XZ plane; (b) —3D model; the lines in the right boxes indicate the arrangement and layering of minerals, and the red dots show the cross-section of elongated minerals in the YZ plane; the X axis is the maximum stretching direction and parallel to the lineation; the Y axis is the intermediate strain direction; the Z axis is the maximum shortening direction and perpendicular to the foliation

  • 1 地质背景

  • 随着古特提斯洋在晚二叠世的闭合,华南陆块向华北克拉通俯冲,深俯冲的华南陆壳在中三叠世形成了含柯石英和微粒金刚石的超高压变质岩,俯冲深度可达120 km(Zhao Xixi et al.,1987; Okay et al.,1989; Wang Xiaomin et al.,1991; Xu Shutong et al.,19922003; 郑永飞,2008; Liou et al.,2009; Liu Fulai et al.,2011),甚至超过200 km(Liou et al.,2000; Ye Kai et al.,2000)。这些高压—超高压变质岩经过多期折返出露地表,形成大别-苏鲁造山带(Xu Zhiqin et al.,2009b; 林伟等,2013; 王清晨,2013)。晚中生代伊泽纳崎板块向东亚大陆俯冲,俯冲带后撤导致中国东部陆壳伸展变形,早白垩世(143~110 Ma)大量花岗质岩浆侵入大别-苏鲁造山带,形成穹隆构造(图3)(周泰禧等,1995; Hacker et al.,1998; Ratschbacher et al.,2000; 谢智等,2004; 赵子福等,2004; Wang Qiang et al.,2007; Zhao Zifu et al.,2007; Xu Haijin et al.,2007; 薛怀民等,2011; 马元等,2013; 吴开彬等,2013; Lin et al.,2015)。受NNE走向的郯庐走滑断裂的影响,大别造山带和苏鲁地体在中侏罗世—早白垩世(170~135 Ma)被左行错断600~500 km(Zhu Guang et al.,200120092018; Zhang Yueqiao et al.,2022)。

  • 大别造山带被4条近东西走向的断层分隔,由北至南依次为晓天-磨子潭断裂、水吼-五河断裂、花凉亭-弥陀断裂与太湖-马庙断裂,缝合带位于晓天-磨子潭断裂(Yuan Xuecheng et al.,2003; Zheng Yongfei et al.,2005; 王清晨,2013)。根据岩石的峰期变质条件,大别造山带可分为五个构造单元(图3,图4a):① 北淮阳绿片岩相变质带主要由原岩为复理石的板岩、千枚岩、片岩、大理岩和原岩为新元古代双峰式岩浆岩的变质岩组成,代表了华南陆块俯冲时,刮削下来拼贴到华北板块南缘的增生楔(Zheng Yongfei et al.,2005; 黄鹏等,2016);② 北大别高温-超高压变质带的峰期变质温度为800~950℃,压力>3.5~4.0 GPa,经历了角闪岩相至麻粒岩相退变质作用,包括榴辉岩、混合岩、片麻岩、少量镁铁-超镁铁杂岩(Liu Yican et al.,20072011a2011b);③ 中大别中温-超高压变质带的峰期变质温度为650~750℃,压力>3.5 GPa,由榴辉岩、斜长角闪岩、花岗片麻岩、副片麻岩、片岩、大理岩、硬玉石英岩和少量超镁铁岩组成(Zheng Yongfei et al.,2003; Zheng Jianping et al.,2008; Gao Xiaoying et al.,20112015; Liu Penglei et al.,20142015);④ 南大别低温-超高压变质带的峰期变质温度约670℃,压力约3.3 GPa,榴辉岩常退变为绿帘斜长角闪岩(Li Xuping et al.,2004; Zheng Yongfei et al.,2011; Shi Yonghong et al.,2014);⑤ 宿松低温-高压变质带主要由片岩、花岗片麻岩、石榴绿帘斜长角闪岩、角闪岩和白云质大理岩组成,其主体经历了绿帘角闪岩相变质作用,峰期变质温度为460~550℃,压力为1.0~1.4 GPa(魏春景等,1997; 石永红等,20122013),但是北部的石榴子石-蓝晶石-硬绿泥石片岩经历了高压榴辉岩相变质作用(T=551~569℃,P=1.96~2.47 GPa)(石永红等,2016)。

  • 图3 大别造山带地质简图(修改自Liu Yican et al.,2011a

  • Fig.3 Simplified geological map of the Dabie orogenic belt (modified after Liu Yican et al., 2011a)

  • 早白垩世花岗岩的锆石U-Pb年龄参考文献见正文;XMF—晓天-磨子潭断裂;SWF—水吼-五河断裂;HMF—花凉亭-弥陀断裂;TMF—太湖-马庙断裂; HT—高温; MT—中温; LT—低温; HP—高压; UHP—超高压

  • U-Pb zircon ages of Early Cretaceous granites are from previous studies; XMF—Xiaotian-Mozitan fault; SWF—Shuihou-Wuhe fault; HMF—Hualiangting-Mituo fault; TMF—Taihu-Mamiao fault; HT—high temperature; MT—middle temperature; LT—low temperature; HP—high pressure; UHP—ultrahigh-pressure

  • 潜山市双河村位于中大别中温-超高压变质带东部,Cong Bolin et al.(1995) 认为双河村至韩长冲约1 km2的超高压变质岩为NNW走向的构造岩片,被一条NNE走向的左行断层错断约400 m。1998年安徽省地矿局对双河及周边地区共24 km2进行了1∶10000地质填图,描述了岩石组成、变质作用和变形特征(江来利等,1998)。Wang et al.(2010)对该地质图进行了更新,揭示了双河硬玉石英岩和榴辉岩的P-T-t轨迹和韧性变形特征。

  • 图4 大别山高压—超高压变质岩的P-T-t-D轨迹

  • Fig.4 P-T-t-D paths of high-pressure and ultrahigh-pressure metamorphic rocks in the Dabie Mountains

  • (a)—大别山主要构造单元的P-T-t轨迹;(b)—双河地区主要岩性的P-T-t-D轨迹;黑色实线为主要矿物的相变线,包括石英-柯石英(Hemingway et al.,1998),石墨-金刚石(Bundy,1980),Al2SiO5相变(Bohlen et al.,1991),钠长石=硬玉+石英(Berman,1988),黑色虚线为湿花岗岩固相线(Huang Wuuliang et al.,1975);GS—绿片岩相;AM—角闪岩相;GR—麻粒岩相;BS—蓝片岩相;Amp-EG—角闪榴辉岩相;Ep-EG—绿帘石榴辉岩相;Law-EG—硬柱石榴辉岩相;Dry-EG—干榴辉岩相;And—红柱石;Sill—矽线石;Ky—蓝晶石

  • (a) —P-T-t paths of major tectonic units in the Dabie Mountains; (b) —P-T-t-D paths of major lithologies in the Shuanghe area; the phase boundaries of quartz-coesite (Hemingway et al., 1998) , graphite-diamond (Bundy, 1980) , Al2SiO5 (Bohlen et al., 1991) and albite=jadeite+quartz (Berman, 1988) are shown in black solid lines; the black dashed line is the wet granite solidus (Huang Wuuliang et al., 1975) ; GS—greenschist facies; AM—amphibolite facies; GR—granulite facies; BS—blueschist facies; Amp-EG—amphibole eclogite facies; Ep-EG—epidote eclogite facies; Law-EG—lawsonite eclogite facies; Dry-EG—dry eclogite facies; And—andalusite; Sill—sillimanite; Ky—kyanite

  • 双河地区的榴辉岩不仅以构造透镜体的形式出现在黑云斜长片麻岩中,也常与片岩、大理岩、硬玉石英岩以及黑云斜长片麻岩呈互层状产出,其中部分榴辉岩退变成斜长角闪岩。前人在榴辉岩及其围岩中都发现了柯石英或金刚石,表明榴辉岩与围岩共同经历了超高压变质与折返过程(Okay et al.,1989; Xu Shutong et al.,1992; 翟明国等,1992; Schertl et al,1994; Cong Bolin et al.,1995; Wang et al.,2010; Gao Xiaoying et al.,2011)。此外,双河榴辉岩的原岩地球化学特征与MORB型玄武岩存在显著差异,榴辉岩和花岗片麻岩的锆石核部保留岩浆锆石特征,其年龄均为新元古代并且亏损18O,表明榴辉岩和花岗片麻岩的原岩为新元古代侵入扬子克拉通北缘的岩浆岩(Zheng Yongfei et al.,19982003)。

  • 前人研究揭示了双河地区超高压变质岩的进变质、峰期变质和折返阶段的退变质作用(附表1),折返过程可分为超高压榴辉岩相(Ⅰ期)、高压榴辉岩相(Ⅱ期)、角闪岩相(Ⅲ期)和绿片岩相(Ⅳ期)(图4b,图5)。白云质大理岩、榴辉岩和副片麻岩中的锆石生长记录了254~239 Ma扬子陆缘俯冲时经历的高压进变质作用,矿物组合反映了1.8~2.1 GPa和542~693℃的平衡温压(Liu Fulai et al.,2006; Wu Yuanbao et al.,2006; Xia Qiongxia et al.,2013),与榴辉岩中252±3 Ma的榍石U-Pb年龄以及0.5 GPa和550~605℃的变质条件可对比(Gao Xiaoying et al.,2011)。锆石U-Pb年代学与岩相学记录的变质峰期和超高压榴辉岩相初始折返(Ⅰ期)的时间为240~225 Ma(李曙光等,1997; Zheng Yongfei et al.,2003; Liu Dunyi et al.,2006; Liu Fulai et al.,20062011; Wu Yuanbao et al.,2006; Gao Xiaoying et al.,20112019; Xia Qiongxia et al.,2013),与超高压矿物+全岩的Sm-Nd等时线年龄231~226 Ma一致(Li Shuguang et al.,19962000; Chavagnac et al.,2001)。双河地区超高压进变质作用的温压为650~750℃和2.5~3.0 GPa,变质峰期的温度为680~800℃,压力为3.5~4.0 GPa,而超高压榴辉岩相初始折返阶段的温度为750~860℃,压力>2.7 GPa(Liou et al.,1997; Carswell et al.,2000; Zhang et al.,2003; Liu Fulian et al.,2006,2011; Gao Xiaoying et al.,2011; Liu Qiang et al.,20132019)。

  • 图5 双河地区变质岩的年代学结果统计

  • Fig.5 Statistics of geochronological results for metamorphic rocks in the Shuanghe area

  • 双河超高压变质岩在224~219 Ma经历了高压榴辉岩相退变质作用(Ⅱ期)(Gao Xiaoying et al.,20112019),变质温度为650~860℃,压力为1.5~2.5 GPa(Cong Bolin et al.,1995; Zheng Yongfei et al.,1998; Zhang et al.,2003)。大理岩中锆石的最外部变质边记录了218~206 Ma角闪岩相退变质作用(Ⅲ期)(Liu Fulai et al.,2006),与榴辉岩和片麻岩中退变质矿物+全岩的Sm-Nd等时线年龄213~200 Ma(Li Shuguang et al.,2000)以及硬玉石英岩中独居石的U-Pb年龄209±3 Ma(Ayers et al.,2002)一致。多硅白云母40Ar/39Ar年龄188.6±0.6 Ma表明角闪岩相退变质作用至少持续到188 Ma(Hacker et al.,1995)。双河角闪岩相退变质阶段的温度为550~650℃,压力为0.6~1.6 GPa(Liou et al.,1997; Fu Bin et al.,1999; Zhang et al.,2003)。双河超高压榴辉岩和片麻岩的角闪石/黑云母+全岩Rb-Sr等时线年龄为181~169 Ma,该阶段变质温度为300~450℃,对应于绿片岩相退变质作用(Ⅳ期)(Fu Bin et al.,1999; Li Shuguang et al.,2000; Zhang et al.,2003)。

  • 2 双河地区地质填图

  • 双河地区的超高压变质岩包括含柯石英的二长花岗片麻岩、黑云斜长片麻岩、二云母片岩以及榴辉岩、斜长角闪岩、大理岩、硬玉石英岩的条带和构造透镜体。此外,双河南部大面积出露的二长花岗片麻岩与碱长花岗片麻岩的变形较弱,目前尚未在碱长花岗片麻岩中发现柯石英。研究区典型样品的矿物组成如表1所示,矿物缩写参照(Whitney et al.,2010)。二长花岗片麻岩主要由石英、斜长石、钾长石组成(图6a),作为主要岩性分布在填图区边部及其外围。碱长花岗片麻岩在北部发育面理与线理,而在南部无明显变形(图6b)。黑云斜长片麻岩呈灰黑色,根据成分差异和变形特征,本文将黑云二长片麻岩、石英片岩(图6c)也归入该类。二云母片岩呈灰白色,大多风化严重,面理十分发育。榴辉岩大多数已发生退变质,手标本整体呈暗绿色,可见红色石榴子石。薄片下退变榴辉岩的绿辉石大多已成为钠长石+透辉石组成的后成合晶,部分透辉石进一步分解成角闪石+钠长石(图6d)。斜长角闪岩的角闪石定向明显,部分样品中可见少量单斜辉石与石榴子石,表明是榴辉岩的退变产物。大理岩常呈条带状与榴辉岩互层,由方解石、白云石与少量单斜辉石组成(图6e)。硬玉石英岩常呈透镜状或条带状产出于变形的大理岩和黑云斜长片麻岩中,由角闪石和钠长石构成的后成合晶垂直于硬玉边界生长(图6f)。

  • 表1 双河典型超高压岩石样品的矿物组成

  • Table1 Mineral assemblage of typical ultrahigh-pressure metamorphic rock samples in the Shuanghe area

  • 注:Amp—角闪石;Bt—黑云母;Cal—方解石;Chl—绿泥石;Cpx—单斜辉石;Dol—白云石;Ep—绿帘石;Grt—石榴子石;Jd—硬玉;Kfs—钾长石;Ms—白云母;Omp—绿辉石;Pl—斜长石;Qz—石英;Rt—金红石;Sym—后成合晶;Zo—黝帘石。

  • 双河地区二长花岗片麻岩与黑云斜长片麻岩的面理和线理发育,整体面理倾向与线理倾伏向SE,面理倾角与线理倾伏角中等。在白杨岭的黑云斜长片麻岩只发育线理,在白花尖的二长花岗片麻岩强烈变形。榴辉岩可强烈韧性变形并发育面理和线理(图7a,N 30°38′47.00″,E 116°25′8.08″),呈透镜状、块状、似层状、布丁状产出(图7b,N 30°38′49.2″,E 116°24′41.6″),其透镜体可长达数米,层厚数米至数十米不等,也可见榴辉岩形成紧闭褶皱(图7c,N 30°38′11.3″,E 116°24′47.2″)和小型鞘褶皱(图7d,N 30°38′11.4″,E 116°24′47.1″)。斜长角闪岩中的σ型角闪石残斑(图7e,N 30°37′22.7″,E 116°23′52.1″)指示了上盘向NW方向的剪切,而在绿泥石化斜长角闪岩中的S-C组构(图7f,N 30°37′03.2″,E 116°24′25.1″)指示上盘向SE方向的剪切。

  • 近年来天柱山世界地质公园的开发建设在双河地区提供了很多新露头。本文对大别山双河地区(东经116°24′~116°26′,北纬30°37′~30°39′,约12 km2)采用露头圈定和路线穿越相结合的方法,完成1∶3500地质图(图8)与地质剖面图(图9)。该地区榴辉岩的面理变化较大,整体倾向SE,部分面理倾向NE或SW,倾角为14°~86°,在137°∠42°附近集中分布(图10a)。线理倾伏向为SE,倾伏角为5°~33°,在137°∠22°附近集中分布(图10b)。其他超高压变质岩的面理整体倾向SE,少量露头面理倾向NE或SW,倾角为14°~87°,在134°∠36°附近集中分布(图10c)。线理倾伏向为SE,倾伏角为10°~47°,在136°∠23°附近集中分布(图10d)。整体上榴辉岩产状与围岩产状基本一致,在榴辉岩和围岩接触带附近的产状有一定程度的变化。从产状的平面分布可知,双河北部罗家岭、大峰尖、白杨岭附近超高压变质岩的面理产状变化很大,而线理倾伏向均为SE,这不符合构造混杂、韧性剪切带或B型褶皱的面理产状分布特征。

  • 3 双河鞘褶皱的识别与还原

  • 3.1 鞘褶皱的野外识别

  • 本研究通过地质填图发现在双河北部罗家岭、大峰尖、白杨岭附近有一出露约3 km2的区域,岩性主要为呈环带状对称分布的二长花岗片麻岩、二云母片岩、黑云斜长片麻岩和碱长花岗片麻岩,以及呈透镜状或层状产出的榴辉岩、斜长角闪岩、硬玉石英岩及大理岩(图11a)。该地区分布着两组面理,面理的平均产状分别为206°∠39°与91°∠35°,线理的平均产状为135°∠20°(图12)。经空间对比分析,该地区的超高压变质岩发育了向形褶皱,褶皱的枢纽产状大致为145°∠22°。该向形褶皱枢纽的产状与线理产状近平行,区域内榴辉岩形成的小型鞘褶皱(图7d),以及其他超高压变质岩与榴辉岩形成的小褶皱的枢纽产状均与线理产状平行(图12),指示双河地区存在千米级的A型褶皱。

  • 对露头和手标本的观察表明:在该A型褶皱区域内,二长花岗片麻岩与二云母片岩普遍面理发育而线理发育一般(S>L);向中心则由面理和线理均发育(LS),逐渐变为线理比面理更为发育(L>S),岩性主要为黑云斜长片麻岩、榴辉岩、大理岩与硬玉石英岩;在褶皱枢纽部位的狭长区域里,石英片岩和斜长角闪岩的线理十分发育,但基本不发育面理(L>>S)(图11b)。与Bonamici et al.(2011)总结的鞘褶皱应变空间分布规律(图2b)对比,该地区超高压变质岩的组构分布特征暗示存在千米级的鞘褶皱。

  • 图6 双河典型超高压变质岩的显微照片

  • Fig.6 Photomicrographs of typical ultrahigh-pressure metamorphic rocks in the Shuanghe area

  • (a)—二长花岗片麻岩1812-8-3;(b)—碱长花岗片麻岩170401-6;(c)—石英片岩DB18-15-1;(d)—退变榴辉岩160720-6;(e)—大理岩170401-1;(f)—硬玉石英岩160720-7;所有照片为正交偏光;Amp—角闪石;Bt—黑云母;Cal—方解石;Cpx—单斜辉石;Dol—白云石;Ep—绿帘石;Grt—石榴子石;Jd—硬玉;Kfs—钾长石;Ms—白云母;Omp—绿辉石;Pl—斜长石;Qz—石英;Sym—后成合晶

  • (a) —monzogranite gneiss 1812-8-3; (b) —alkali-feldspar granite gneiss 170401-6; (c) —biotite schist DB18-15-1; (d) —retrograded eclogite160720-6; (e) —marble170401-1; (f) —jadeite quartzite160720-7; all pictures are under cross polarized light; Amp—amphibole; Bt—biotite; Cal—calcite; Cpx—clinopyroxene; Dol—dolomite; Ep—epidote; Grt—garnet; Jd—jadeite; Kfs—K-feldspar; Ms—muscovite; Omp—omphacite; Pl—plagioclase; Qz—quartz; Sym—symplectite

  • 3.2 有限应变分析

  • 为验证双河鞘褶皱的应变分布特征,本文采集了发育不同组构的四块典型样品,对XY面和XZ面的光薄片进行有限应变分析。为避免矿物组成差异对应变分析的影响(Lisle,1979; Ramsay et al.,1983),选取由石英、长石、云母及少量绿帘石组成的黑云斜长片麻岩和石英片岩。由于石英是主要矿物且变形均匀,能代表该采样点的变形特征,本文选取石英作为应变分析矿物。四个样品的XZ面均见到矿物有较强的拉长与定向排列,而XY面可见石英颗粒拉长,定向程度随着线理的减弱与面理的增强而逐渐降低(图13)。

  • 本文对每个样品的XY薄片与XZ薄片,分别测量了50颗石英的长轴与短轴的长度(图14),获得了每个颗粒的长轴和短轴的比值,即椭圆率(Rf)。每个测量面的平均椭圆率(RH)为所有颗粒的调和平均值(Lisle,1977):

  • RH=n1n 1Rf
    (1)
  • RXYRYZ=RXZ
    (2)
  • 其中XY面的RH即为RXY=X/Y,以此类推;n表示统计的颗粒数量,本文n=50。

  • 然后本文计算了每个样品的Flinn参数(k),以根据Flinn图解确定其应变类型(Flinn,1965):

  • k=a-1b-1
    (3)
  • a=1+e11+e2=S1S2=RXY
    (4)
  • 图7 双河超高压变质岩韧性变形的露头及显微照片

  • Fig.7 Ductile deformation at outcrops and in thin sections for ultrahigh-pressure metamorphic rocks in the Shuanghe area

  • 野外照片:(a)—强烈韧性变形的榴辉岩;(b)—退变榴辉岩透镜体;(c)—榴辉岩形成的紧闭褶皱(俯视图);(d)—榴辉岩形成的小型鞘褶皱;正交偏光下的XZ面显微照片:(e)—斜长角闪岩(170404-2)中的σ型角闪石残斑;(f)—绿泥石化斜长角闪岩(170404-1)中的S-C组构;Amp—角闪石;Bt—黑云母;Ep—绿帘石;Qz—石英

  • Outcrop photos: (a) —eclogite with strong ductile deformation; (b) —retrograde eclogite lens; (c) —vertical fold formed by eclogite; (d) —small sheath fold formed by eclogite; microphotographs of XZ plane under cross polarized light: (e) —σ-type porphyroclast of amphibole in amphibolite sample170404-2; (f) —S-C fabric in chloritized amphibolite sample170404-1; Amp—amphibole; Bt—biotite; Ep—epidote; Qz—quartz

  • b=1+e21+e3=S2S3=RYZ
    (5)
  • 此外,样品的平均椭圆率与主要的对数应变(ε1ε2ε3)有关:

  • lnRXY=ln1+ε11+ε2=ln1+ε1-ln1+ε2=ε1-ε2
    (6)
  • Schwerdtner et al.(1977)根据主要的对数应变,使用Lode参数(ν)描述了应变椭球的形状:

  • 图8 中大别双河地区地质图

  • Fig.8 Geological map of the Shuanghe area in the central Dabie Mountains

  • 本文和前人的锆石U-Pb年代学结果分别用绿色和红色表示

  • U-Pb zircon ages from this study and previous studies are shown in green and red, respectively

  • 图9 中大别双河地区地质剖面A—B(a)与C—D(b)

  • Fig.9 Cross sections of A—B (a) and C—D (b) of the Shuanghe area in the central Dabie Mountains

  • 图10 双河超高压变质岩的面理法线和线理的下半球赤平投影图

  • Fig.10 Lower hemisphere projection of pole of the foliation and the lineation for ultrahigh-pressure metamorphic rocks from the Shuanghe area

  • (a)、(b)—榴辉岩;(c)、(d)—其他超高压变质岩

  • (a, b) —eclogite; (c, d) —other ultrahigh-pressure metamorphic rocks

  • 图11 双河北部鞘褶皱区域地质图(a)与组构分布图(b)

  • Fig.11 Geological map (a) and fabric distribution map (b) of the sheath fold area in the northern Shuanghe area

  • 表2 双河鞘褶皱区域代表性样品的平均应变分析

  • Table2 Mean strain analysis of the representative samples from the Shuanghe sheath fold area

  • 图12 双河鞘褶皱区域主要构造产状的下半球赤平投影图

  • Fig.12 Lower-hemisphere projection of main structures in the sheath fold area of the Shuanghe area, n is measurements

  • (a)—面理法线与小褶皱枢纽;(b)—线理

  • (a) —pole of the foliation and the hinge of small folds; (b) —lineation

  • ν=2ε2-ε1-ε3ε1-ε3=ε2-ε3-ε1-ε2ε2-ε3+ε1-ε2=lnRYZ-lnRXYlnRYZ+lnRXY
    (7)
  • 并使用八面体剪应变(εs)量化剪应变的大小:

  • εs=13ε1-ε22+ε2-ε32+ε3-ε12=13lnRXY2+lnRYZ2+ln1RXZ2
    (8)
  • 表2为四个典型样品的应变统计结果,将计算的应变参数投至Flinn图和Hsu-Nadai图中,可区分四种组构类型。Flinn图表明研究区的样品记录了应变椭球从扁平椭球到长椭球的变化(图15a),与野外露头观察的四种组构类型完全对应。而Hsu-Nadai 图量化了总有限应变,其八面体剪应变分布在1.456~1.556之间,表明样品经历的有限剪应变程度相似;Lode参数也记录了样品应变椭球从扁圆至扁长的变化,与Flinn图的结果一致(图15b)。因此,石英有限应变分析验证了野外观察厘定的超高压变质岩应变空间分布特征(图11),表明双河地区存在千米级的鞘褶皱。

  • 图13 研究区发育不同组构的典型样品XY面的显微照片

  • Fig.13 Microphotographs of XY plane for samples with different fabric types

  • 正交偏光,X轴平行照片长边;(a)—石英片岩DB18-15-1;(b)—黑云斜长片麻岩170617-7;(c)—黑云斜长片麻岩170401-2;(d)—二长花岗片麻岩170617-2;Bt—黑云母;Ep—绿帘石;Kfs—钾长石;Ms—白云母;Pl—斜长石;Qz—石英

  • All pictures are undercross polarized light; X axis is parallel to the long side of pictures; (a) —quartz schist DB18-15-1; (b) —biotite-plagioclase gneiss 170617-7; (c) —biotite-plagioclase gneiss 170401-2; (d) —plagioclase gneiss 170617-2; Bt—biotite; Ep—epidote; Kfs—K-feldspar; Ms—muscovite; Pl—plagioclase; Qz—quartz

  • 3.3 鞘褶皱的三维还原

  • 本文使用Rhino软件,根据双河鞘褶皱的两组主要面理产状及枢纽产状(图12),先拟合出地表鞘褶皱的轮廓,再在三维尺度进行延伸以重建该鞘褶皱的形态(图16)。双河鞘褶皱枢纽沿135°∠20°方向,与拉伸线理方向相同,向NW方向开口逐渐变小,指示上盘向NW的剪切指向。鞘褶皱的端部已经被完全剥蚀,现在保留的下半部呈现向形。

  • 4 双河弱变形花岗片麻岩的锆石年龄

  • 双河南部大面积出露的二长花岗片麻岩和碱长花岗片麻岩的年代学数据很有限。吴元保等(2001)对双河村南部一块浅色花岗质片麻岩的锆石进行了离子探针定年,发现原岩的岩浆锆石存在铅丢失现象,变质锆石经历了重结晶作用并记录了230 Ma的峰期变质作用,与双河北部超高压榴辉岩相变质作用的时间一致(图5)。Zheng Yongfei et al.(2003) 对王大屋南侧的两个二长花岗片麻岩样品使用单颗粒锆石稀释法进行定年,获得原岩的结晶年龄为768~724 Ma,与大别-苏鲁造山带的榴辉岩和正片麻岩的新元古代原岩年龄一致,变质年龄为228~226 Ma,对应于双河地区超高压榴辉岩相变质作用的时间(图5)。由于他们的研究中没有对样品的变形进行描述,难以确定是否代表了双河弱变形花岗片麻岩的年龄。考虑到实验方法的误差,为确定双河南部弱变形花岗片麻岩的侵位时间和折返过程,本文采集了南部弱变形的碱长花岗片麻岩样品170401-3和170401-6(图6b,N 30°37′31.9″,E 116°24′08.2″),以及燕窝二长花岗片麻岩样品1812-7-1和1812-8-3(图6a,N 30°36′57.1″,E 116°24′40.0″),使用LA-ICP-MS进行锆石年代学和微量元素研究。

  • 图14 发育不同组构的典型样品中石英颗粒的长短轴(RXZRXY为调和平均值)

  • Fig.14 Long and short axes of quartz grains in samples with different fabric types (RXZ and RXY are harmonic averages)

  • 图15 双河北部超高压变质岩样品的平均应变椭球数据的Flinn图(a)与Hsu-Nadai图(b)

  • Fig.15 Flinn diagram (a) and Hsu-Nadai diagram (b) of mean strain ellipsoid data for ultrahigh-pressure metamorphic rocks from the northern Shuanghe area

  • 图16 双河鞘褶皱重建模型

  • Fig.16 A reconstruction model of the Shuanghe sheath fold

  • (a)—3D图;(b)—XZ面;(c)—YZ面;(d)—XY面;红色区域为图11的鞘褶皱露头区,为展示细节特征,图16a、c中的鞘褶皱模型做了部分延伸与截切,图16b、d中的虚线为截切位置

  • (a) —3D model; (b) —XZ plane; (c) —YZ plane; (d) —XY plane; the red area is the sheath fold outcrop area in Fig.11; in order to show the detailed features; the sheath fold model in Fig.16a, c has been partially extended and truncated, and the dashed lines in Fig.16b, d are the truncated positions

  • 4.1 实验方法

  • 将样品清洗压碎,先用磁选和重液方法粗选锆石,然后在双目镜下将锆石颗粒逐一挑出,用环氧树脂固定、打磨、抛光至锆石中心部位暴露出来,拍摄阴极发光(CL)图像和透反射图像,选择锆石晶形完好、无裂隙、无包裹体、环带清晰的颗粒进行锆石U-Pb年龄测试分析。

  • 锆石U-Pb年龄在南京大学内生金属矿床成矿机制研究国家重点实验室利用Agilent 7500a型等离子质谱仪(加装New Wave Research 213 nm激光剥蚀系统)测定,测点避开锆石的包裹体、裂隙以及核-幔-边交界的位置,以保证年龄结果的准确性。激光束斑直径为24 μm,采用He作为剥蚀物质的载气。进行锆石同位素比值和年龄计算时,采用锆石Mud Tank(735 Ma)作为外标,GEMOC/GJ-1(608 Ma)作为内标;元素含量采用美国国家标准物质局人工合成的硅酸盐玻璃NISTSRM610作为外标。采样方式为单点剥蚀,数据采集选用一个质量峰一个点的跳峰方式(peak jumping),每测试15个分析点重新测试一次标样,以此保证标样和样品的仪器条件一直处于良好的状态。以29Si作为内标元素进行校正,样品的同位素比值和元素含量数据处理采用Glitter软件4.0版(Macquarie University),并采用Andersen程序(Andersen,2002)对测试数据进行普通铅校正,年龄计算及谐和图绘制采用Isoplot软件4.15版完成。实验原理和流程参数与Yuan Honglin et al.(2003)一致。

  • 4.2 锆石U-Pb年龄

  • 碱长花岗片麻岩样品170401-3和170401-6的锆石为次圆状到长柱状,大小约为80~200 μm,长宽比约为3∶1(图17a、b)。锆石表面溶蚀坑非常发育,内部物质结构不均一,多孔隙,表明锆石受流体活动影响发生蜕晶化,在溶解-再沉淀的机制下发生再平衡(Geisler et al.,2007)。蜕晶化是锆石中放射性元素的衰变自辐射的过程,使锆石晶体结构遭到破坏,造成Pb丢失(Harlov,2015)。因此,本文未对发生蜕晶化的锆石颗粒进行U-Pb同位素测年和微量元素分析。

  • 二长花岗片麻岩样品1812-7-1和1812-8-3的锆石晶形较为完好,大小约为80~120 μm,部分颗粒有裂纹和包裹体。在 CL 图像上,大部分锆石具有较为均匀的中等强发光效应(灰色-灰白色),核部发育典型的韵律环带,为岩浆锆石的特征(Belousova et al.,2002),边部发育相对较宽的暗色增生边,少数锆石发育扇形分带(图17c、d)。

  • 锆石U-Pb年龄的数据见附表2。碱长花岗片麻岩样品170401-3获取了27个U-Pb年龄数据,年龄主要分布在240~207 Ma之间,误差较小的23个测量点给出的平均年龄为216±3 Ma(图18a)。碱长花岗片麻岩样品170401-6获取了25个U-Pb年龄数据,主要分布在243~203 Ma之间,平均年龄为223±3 Ma(图18b)。二长花岗片麻岩样品1812-7-1共获取了34个U-Pb年龄数据,主要分布在798~229 Ma之间(图18c),其中核部平均年龄为757±14 Ma,为岩浆结晶年龄;6个测量点给出变质增生边的平均年龄为240±11 Ma。二长花岗片麻岩样品1812-8-3共获取了55个U-Pb年龄数据,主要分布在853~204 Ma之间(图18d),其中核部平均年龄为764±15 Ma,即岩浆结晶年龄;变质增生边的平均年龄集中在237±6 Ma和216±11 Ma,分别记录了变质峰期与高压退变质时间。此外,还有少量年龄落在500~300 Ma之间,Th/U比值约0.37~0.71,由于变质增生边较窄,这些测试点部分位于岩浆核,部分位于增生边,因此这些年龄代表增生边和岩浆核的混合年龄,没有地质意义。

  • 图17 双河南部花岗片麻岩样品的锆石阴极发光(CL)图像

  • Fig.17 Cathodoluminescence (CL) image of zircon from granitic gneiss samples in the southern Shuanghe area

  • 图18 双河南部花岗片麻岩样品的锆石U-Pb谐和年龄图

  • Fig.18 Zircon U-Pb concordia diagrams of granitic gneiss samples in the southern Shuanghe area

  • 二长花岗片麻岩样品1812-7-1与1812-8-3中的锆石核部有着较高的Th/U比值(平均值分别为0.94与1.32),为典型岩浆锆石的特征(Belousova,2002)。而四个样品的锆石增生边有较低的Th/U值,符合变质锆石的特征(Corfu,2003; Liu Fulai et al.,2008),并具有轻稀土元素亏损、HREE富集、Ce 正异常与Eu 负异常特征(图19,附表3)。

  • 5 双河长英质片麻岩的有效黏度计算

  • 长英质片麻岩是大陆俯冲隧道中最主要的岩性,本文以双河碱长花岗片麻岩和黑云斜长片麻岩为例,探讨折返过程中矿物组成和流体活动对长英质片麻岩流变的影响。高温高压变形实验揭示矿物的位错蠕变遵循幂律本构方程:

  • ε=AσnfH2Omexp-QRT
    (9)
  • 式中ε˙为应变速率(单位为s-1),σ为应力(单位为MPa),A为指前因子(单位为MPa-ns-1),n为应力指数,fH2O为水逸度(单位为MPa),m为水逸度指数,Q为活化焓(单位为kJ/mol),R为气体常数,T为绝对温度(单位为K)。石英和长石作为名义上无水矿物,晶格中普遍含有结构水,水可以显著降低石英和长石的流变强度(Rybacki et al.,2004; Johnson,2006; Tokle et al.,2019; Chen Jing et al.,2021)。矿物或岩石的有效黏度η为:

  • η=σε˙
    (10)
  • 图19 双河南部花岗片麻岩中锆石稀土元素球粒陨石标准化图

  • Fig.19 Chondrite-normalized REE pattern of zircon from granitic gneiss samples in the southern Shuanghe area

  • 式中有效黏度η的单位为Pa·s。

  • 双河地区碱长花岗片麻岩的主要组成矿物为石英与钾长石,而黑云斜长片麻岩的主要组成矿物为石英、斜长石与黑云母,其中斜长石的成分为钠长石(An<5)与更长石(An=16~29)(刘强,2003; Zheng Yongfei et al.,2003)。由于缺少更长石的流变律,本文使用钠长石的流变律代表斜长石。前人已通过实验获得这些主要矿物的流变律(表3),除含水石英外,其他矿物的流变律中没有考虑水逸度。

  • 水逸度可由Shinevar et al.(2015)给定的公式计算:

  • fH2O=aH2OA1exp-A2+PinitA3RT
    (11)
  • 其中aH2O为水活度(本文设定为1),常数A1=5521 MPa、A2 =31.28 kJ/mol、A3 =-2.009×10-5 m3/mol,初始压力Pinit可由Rast et al.(2021)给定的公式计算:

  • Pinit =ρgT-Tsurf ΔT
    (12)
  • 表3 长英质片麻岩及其主要组成矿物的流变律

  • Table3 Flow laws for felsic gneisses and major constituent minerals

  • 其中ρ是密度(单位为kg/m3),地壳为2850 kg/m3,上地幔为3300 kg/m3,重力加速度g取9.8 m/s2,表面温度Tsurf为273 K。根据图4b中黑云斜长片麻岩折返阶段的P-T轨迹,地温梯度ΔT在95~40 km为3.1 K/km,在40~20 km为11.3 K/km。

  • Ji Shaocheng et al.(2003)忽略水逸度对矿物流变的影响,提出了使用多晶单相矿物集合体的流变律估算多相岩石流变参数的平均方法。由于缺少含水钾长石的流变律,本文使用该平均方法,使用含水和无水的石英以及无水钾长石的流变律,分别计算含水和无水碱长花岗片麻岩的有效黏度。采用含水石英(Hirth et al.,2001)、含水0.2%的钠长石(Rybacki et al.,2004)和黑云母(Shea et al.,1992)的流变律,估计黑云斜长片麻岩的有效黏度。为保持公式的一致,在计算含水岩石流变律时,表3中含水石英的A值(Hirth et al.,2001)乘以对应的水逸度作为流变学本构方程中的指前因子(Shinevar et al.,2015)。

  • 根据双河地区超高压变质岩的P-T轨迹(图4b),折返过程中在约95 km(2.9 GPa和795℃),柯石英相变为石英。由于柯石英的流变强度大于石英,而且柯石英-石英的转变不会保留原有组构(Zhang et al.,2013),因此本文只对比高压榴辉岩-绿片岩相退变质阶段长英质岩石的流变学差异。在约75 km(2.25 GPa和770℃),硬玉和石英形成钠长石。Massonne(2009)根据对花岗质岩石的相平衡计算指出,在含水量较低(0.8%)的情况下,钾长石可以在<700℃的条件下出现。曾令森等(2009)在苏鲁榴辉岩中发现了钾长石的超高压相——钾质钡铝沸石。在约2.9 GPa 和 800℃的条件下,钾质钡铝沸石分解成钾长石与水,这一相变线与柯石英-石英的相变线相近(Thompson et al.,1998)。黑云母可在约2.8 GPa和800℃的条件下生成多硅白云母(Massonne,1995),但对中大别山绿帘黑云斜长片麻岩的相平衡计算表明:黑云母可以在很大的温压范围内稳定存在,甚至出现在柯石英的稳定域(陈燕等,2005)。

  • 假定俯冲隧道岩石的应变速率为10-14 s-1,根据双河地区黑云斜长片麻岩的P-T轨迹(图4b),本文估算了从95~20 km折返过程中,碱长花岗片麻岩、黑云斜长片麻岩及其主要矿物的有效黏度随深度的变化。如图20所示,在折返早期,无水钾长石的有效黏度低于无水钠长石,在折返至约55 km时,二者的有效黏度发生反转,无水钠长石的有效黏度相对较低。黑云母的有效黏度随深度变化很小,深度>38 km时,无水石英、长石、黑云母的有效黏度依次增加;在25~38 km,黑云母的有效黏度小于钾长石;深度<25 km时,黑云母的有效黏度小于钠长石,这意味着在地壳里,随着深度减小黑云母逐渐从强相矿物转变为弱相矿物,从而导致云母片岩的流变强度低于长英质片麻岩的流变强度。水可以显著降低石英和钠长石的有效黏度。使用含水石英的流变律可有效降低碱长花岗片麻岩的有效黏度,使其与含水黑云斜长片麻岩近似。

  • 图20 双河地区碱长花岗片麻岩与黑云斜长片麻岩折返过程中的有效黏度变化

  • Fig.20 Changes of effective viscosity of the Suanghe alkali-feldspar granite gneiss and biotite-plagioclase gneiss during exhumation

  • 6 讨论

  • 6.1 双河超高压变质岩折返阶段的韧性变形

  • 江来利等(1996)根据野外和镜下观察,提出双河超高压变质岩俯冲过程中,蓝闪石、多硅白云母、绿帘石及石英等矿物包裹体在榴辉岩的石榴子石中定向排列,代表蓝片岩相进变质阶段的韧性变形。虽然后续研究在双河发现了蓝片岩相进变质的年龄记录(Gao Xiaoying et al.,2011),但是并未确认石榴子石中的上述矿物包裹体定向排列,本研究也未发现双河地区岩石进变质阶段的变形记录。根据前人对双河地区的岩石学和年代学研究结果,榴辉岩、大理岩、硬玉石英岩、花岗片麻岩以及黑云斜长片麻岩的峰期变质压力都超过了3 GPa,峰期变质温度为700~850℃,在折返过程中经历了超高压榴辉岩相、高压榴辉岩相、角闪岩相和绿片岩相四期退变质作用(图4和图5)。考虑到俯冲隧道中的构造混杂和不同样品的P-T-t轨迹,可能有的岩石还在峰期,而有的岩石已经开始折返,因此很难精确划分变质峰期和初始折返的界限。而双河超高压变质岩经历的角闪岩相和绿片岩相退变质作用的时间基本一致,暗示韧性剪切带控制了超高压构造岩片在地壳深度的折返过程。

  • 第一期变形发生在榴辉岩相变质阶段(D1),对应于超高压榴辉岩相的初始折返和高压榴辉岩相的折返,该期变形大多被后期变形所覆盖,仅在相对新鲜的榴辉岩保留了D1的韧性变形。该期变形面理倾向与线理倾伏向以SE方向为主(图10a、b),野外可见由榴辉岩构成的紧闭褶皱(图7c)以及小型鞘褶皱(图7d)。变形实验表明:石榴子石的流变强度大于绿辉石,因此榴辉岩的韧性变形主要由绿辉石记录(曹毅等,2008; Keppler,2018)。绿辉石的韧性变形机制主要为位错蠕变,发生韧性变形的最低温度为450~550℃(Philippot et al.,1992; Piepenbreier et al.,2001; Zhang Junfeng et al.,2006; Zhang et al.,2007)。绿辉石的不对称晶格优选定向可以指示榴辉岩在超高压变质条件下的剪切方向(A′balos,1997; Bascou et al.,2002; Xu Zhiqin et al.,2009a)。双河地区榴辉岩相变质作用的最低压力约为1.2 GPa,温度为~700℃(图4b),绿辉石晶格优选定向具有上盘向NW的剪切指向(刘强,2003; Wang et al.,2010; 顾筱彤等,2020),与千米级榴辉岩相鞘褶皱的剪切指向一致(图16),表明该鞘褶皱形成于榴辉岩相折返阶段。

  • 角闪岩相变质阶段发生的韧性变形(D2)十分强烈,基本上覆盖了D1的变形,野外可见M型褶皱、无根钩状褶皱、窗棂构造以及鞘褶皱等现象(董火根等,1996)。该阶段以斜长角闪片麻岩、花岗质片麻岩和片岩的变形为主,发育倾向SE的面理以及向SE倾伏的线理(图10c、d),而有效黏度较大的榴辉岩则作为能干层,形成构造透镜体或布丁构造。双河退变榴辉岩中的角闪石继承了绿辉石的组构,也经历了上盘向NW的剪切(顾筱彤等,2020),与斜长角闪岩中的σ型角闪石残斑(图7e)记录的剪切指向一致。因此,双河地区D1和D2两期变形具有相同的上盘向NW的剪切动向,表明俯冲隧道中的超高压变质岩从榴辉岩相到角闪岩相退变质过程中发生了递进变形。由于双河北部榴辉岩和其他超高压变质岩的产状基本一致(图12),如果仅用榴辉岩的产状,可还原出同样的鞘褶皱,证明D2对鞘褶皱重建的影响不大。

  • 在绿片岩相变质阶段,双河地区的构造以脆-韧性变形为主(D3)。绿泥石化的云母片岩等岩性成为非能干层,韧性变形显著,面理倾向与D2一致(江来利等,1996),而绿泥石化斜长角闪岩中的S-C组构显示了上盘向SE的剪切(图7f)。双河退变榴辉岩、硬玉石英岩中的石英发育了低温底面滑移系,也指示了上盘向SE的剪切(刘强,2003; Wang et al.,2010; 顾筱彤等,2020)。双河地区绿片岩相变质年龄记录较少,仅有退变榴辉岩和片麻岩181~169 Ma的Rb-Sr年龄记录(Li Shuguang et al.,2000)(图5)。Hacker et al.(1995)获得中大别黑云斜长片麻岩的黑云母40Ar/39Ar年龄为127 Ma,与大别山早白垩世花岗岩的锆石U-Pb年龄一致(图3)。前人发现早白垩世北大别花岗片麻岩穹隆导致南大别变质带发育上盘向SE滑脱的韧性剪切(王清晨,2013; Lin Wei et al.,2015; Ji Wenbin et al.,2017; 徐翔等,2019)。因此,本文推断双河超高压变质岩上盘向SE的剪切与早白垩世北大别花岗片麻岩穹隆的形成有关。虽然穹隆构造使超高压变质岩早期形成的倾向NW的面理转变为倾向SE,但是由于岩石在绿片岩相变质阶段的退变质程度不同,D3变形温度低,无法使长石、角闪石、绿辉石等矿物发生位错蠕变,以石英的低温底面滑移系为特征,应变集中在韧性剪切带。因此,超高压变质岩的早期变形得以保留,鞘褶皱的产状发生改变,但是上盘向NW的剪切指向不变。

  • 值得注意的是,苏鲁南部超高压副片麻岩和花岗片麻岩经历了类似的变形历史,石英高温组构保留了在三叠纪榴辉岩相-角闪岩相折返阶段上盘向NW的剪切指向,而早白垩世花岗片麻岩穹隆导致石英在绿片岩相变质条件下发育低温底面滑移系,记录了上盘向SE的滑脱(Xu Zhiqin et al.,2009a)。本文根据野外与镜下观察,在双河地区识别出折返阶段的三期韧性变形,与大别山桐城地区(Lin Wei et al.,2009)和苏鲁地区(Xu Zhiqin et al.,2009a)超高压变质岩折返阶段的多期韧性变形一致,表明大别-苏鲁造山带的变质-变形具有同步性。

  • 6.2 大陆俯冲隧道中的流/熔体活动与锆石生长

  • 对大别山超高压变质岩的研究表明:名义上无水矿物(例如:石榴子石、绿辉石)的晶格缺陷中均有一定量的羟基(Fu Bin et al.,1999; 章军锋等,2000; 夏群科,2005),石榴子石与绿辉石中可保留原生的高压—超高压流体包裹体(傅斌等,2000; Xiao Yilin et al.,2002; Su Wen et al.,2002; Jin Deshi et al.,2023)。陆壳岩石俯冲时,含水矿物(例如:黑云母、角闪石)会发生脱水作用,促进基性岩的榴辉岩化(Liu Dunyi et al.,2006; Wu Yuanbao et al.,2006; Gao Xiaoying et al.,2011),大规模流体活动甚至导致西起岳西县菖蒲,东至潜山市双河、苗竹园的变沉积岩转变为硬玉石英岩带(Gao Xiaoying et al.,2019)。超高压变质岩折返时的减压可导致超高压含水矿物(例如:多硅白云母、硬柱石)分解以及名义上无水矿物中的结构水和分子水出溶,富水流体导致角闪岩相退变质作用,脱水作用还可以使超高压变质岩发生部分熔融,形成小尺度的原位长英质熔体甚至超临界流体(Schmidt et al.,2003; Zhang et al.,2003; 陈仁旭等,2011; Gao Xiaoying et al.,2012; Zheng Yongfei et al.,2016; Jin Deshi et al.,2023)。对双河超高压花岗片麻岩的岩石热力学相平衡模拟表明:在~240 Ma变质峰期(P>3.0 GPa,T=700~800℃)形成了钾长石+多硅白云母+石榴子石+绿辉石+榍石+柯石英的矿物组合,在~220 Ma初始折返阶段(P=2.0~2.5 GPa),脱水作用导致花岗片麻岩发生部分熔融,早期的变质石榴子石分解再结晶,形成了转熔石榴子石:石榴子石(Ⅰ)+多硅白云母+斜长石+石英→石榴子石(Ⅱ)+黑云母+钾长石+熔体(Xia Qiongxia et al.,2016)。

  • 俯冲隧道中的流/熔体活动可导致锆石的多期生长或重结晶,从而记录了大别山超高压变质岩从俯冲到折返的历史(图4,图5)。本文的锆石年代学研究表明:双河南部弱变形花岗片麻岩的原岩形成于764~757 Ma,经历了240~216 Ma的变质作用(图18)。由于迄今为止在南部弱变形花岗片麻岩里没有发现柯石英,其是否经历了超高压变质作用仍值得探讨。值得注意的是,大别山高压—超高压变质带的P-T-t轨迹与苏鲁地体可以对比,每个变质带的峰期变质条件基本一致,符合多板片折返模型(Xu Zhiqin et al.,20062009a2009b林伟等,2013; 徐翔等,2019)。大别山南部宿松低温-高压变质带的二长花岗片麻岩原岩的结晶时间为2018±73 Ma和2010±38 Ma(江来利等,2003),绿帘角闪岩相峰期变质作用的时间为255~248 Ma(石永红等,2012),与双河弱变形花岗片麻岩的锆石记录完全不同。因此,双河弱变形花岗片麻岩不可能来自俯冲隧道中折返的浅部岩片。

  • Liu Fulai et al.(2011)对大别山超高压片麻岩的锆石研究发现:继承的岩浆锆石常具有轻稀土元素亏损与HREE富集,以及Ce正异常与Eu负异常的特征;而变质锆石的HREE相对平坦,Eu负异常并不明显。这是因为石榴子石富集HREE,导致在封闭体系下与石榴子石共生的锆石的HREE相对亏损,被称为“石榴子石效应”;而在开放环境中,与石榴子石共生的锆石可表现出HREE相对富集的特征(Rubatto,2002)。双河弱变形花岗片麻岩样品的部分锆石受流体活动影响发生蜕晶化(图17),表明锆石生长于相对开放的环境中,这解释了锆石富集HREE的原因(图19)。

  • 此外,由于斜长石在超高压变质作用中会发生分解,榴辉岩相变质岩的锆石Eu负异常一般不明显(吴元保等,2004)。但是,变质锆石Eu负异常不仅与锆石形成时斜长石是否存在相关,还与寄主岩石的全岩组成和锆石形成时的氧化-还原条件有关(Rubatto,2002)。例如:Kokchetav地体含柯石英和微粒金刚石的长英质片麻岩中的锆石具有Eu负异常(Eu/Eu*=0.24~0.63)(Hermann et al.,2001)。Xia Qiongxia et al.(2013)对大别山中温-超高压变质带的榴辉岩、副片麻岩和花岗片麻岩中的锆石开展了详细研究,发现俯冲最终阶段的高压含水熔体导致在244±3 Ma生长的深熔锆石具有与原岩锆石类似的HREE富集、高Th/U比和Lu/Hf比,石榴子石效应并不明显;而初始折返阶段的超临界流体成分介于含水熔体和富水流体之间,在225~220 Ma形成的变质锆石和深熔锆石具有高U含量、低Th/U比、低Lu/Hf比、富集或正常的HREE、变化的Eu异常(Eu/Eu*=0.40~1.29),与双河弱变形花岗片麻岩的锆石特征相似(图19)。因此,与双河北部的强变形花岗片麻岩一样(例如:Zheng Yongfei et al.,2003; Xia Qiongxia et al.,2013),双河南部弱变形花岗片麻岩的原岩也是新元古代侵位于扬子克拉通北缘的花岗岩,并在三叠纪经历了深俯冲与快速折返。

  • 6.3 大陆俯冲隧道中岩石应变的不均一性

  • 俯冲隧道内应变会局部集中于流变强度比较低的岩石中(Agard et al.,2018),顾晓彤等(2020)对比了大别山超高压变质岩俯冲和折返过程中主要矿物的有效黏度变化,但忽略了水对矿物流变强度的影响。在双河北部碱长花岗片麻岩、黑云斜长片麻岩、榴辉岩、斜长角闪岩等岩石形成了榴辉岩相鞘褶皱,而在双河南部碱长花岗片麻岩变形较弱,黑云斜长片麻岩发育了明显的面理和线理,暗示二者折返过程中的有效黏度存在差异,矿物组成不是决定超高压变质岩有效黏度的唯一因素。

  • 本文对长英质片麻岩折返过程中的流变强度计算表明:黑云斜长片麻岩的有效黏度始终低于无水碱长花岗片麻岩。值得注意的是,地壳内的韧性剪切带中黑云母常常是弱相,但使用黑云母位错蠕变流变律(Kronenberg et al.,1990; Shea et al.,1992)计算的有效黏度在高于400℃时会出现黑云母比石英更强的情况(Shinevar et al.,2015; Rast et al.,2021)。这意味着天然变形的黑云母还有其他重要的变形机制,从而降低有效黏度。变形实验和理论计算表明:黑云母可通过位错滑移(Kronenberg et al.,1990)或者原子尺度的ripplocations的运动而发生变形(Aslin et al.,2019)。Rast et al.(2021)发现黑云母的有效黏度低于石英通常与应变弱化有关,黑云母很强的力学各向异性(Kronenberg et al.,1990)可能对应变弱化有重要影响(Finch et al.,2020)。表3中黑云母在黑云斜长片麻岩中的体积百分比为10%,如果考虑黑云母的其他变形机制和力学各向异性,俯冲隧道中黑云斜长片麻岩的有效黏度应该更低,更易于发生应变集中。

  • 由于水在石英和长石中的扩散速率受温度控制(Dersch et al.,1997; Doremus,1998; Farver,2010),大陆俯冲隧道中的相对低温使流体活动的影响范围局限在岩性边界(郑永飞等,2007)。双河北部的碱长花岗片麻岩规模小,与黑云斜长片麻岩和榴辉岩交互出现,韧性变形较强,面理与线理一致。榴辉岩相折返阶段中超高压变质岩的脱水作用使岩性边界成为流体通道,流体活动导致碱长花岗片麻岩、黑云斜长片麻岩和榴辉岩的有效黏度显著降低(Chen et al.,2006; 本研究),应变集中,共同发生韧性变形形成鞘褶皱。而双河南部碱长花岗片麻岩的产出规模较大且相对独立,只在岩体边界有微弱的片麻理,表明这些弱变形的碱长花岗片麻岩保留了新元古代与围岩的侵入接触关系。岩体边界的流体活动无法影响整个岩体,无水碱长花岗片麻岩的有效黏度相对更高(图20),因此没有发生应变集中。这表明大陆俯冲隧道内的应变分布不仅与岩性和流体活动有关,还与岩体的规模相关。规模较大、成分均一且有效黏度较大的花岗质岩体可成为大陆俯冲隧道中的弱应变域。

  • 7 结论

  • 本文以中大别双河地区为例,研究大陆俯冲隧道中超高压变质岩的变质-变形历史与应变不均一分布的机制。主要结论如下:

  • (1)将地质填图、应变分析与前人的岩石学和年代学成果结合,厘定了超高压变质岩折返阶段的三期韧性变形:俯冲隧道中榴辉岩相(240~219 Ma)和角闪岩相(218~188 Ma)条件下发育上盘向NW的剪切,早白垩世受北大别花岗片麻岩穹隆的影响在绿片岩相条件下发生上盘向SE的剪切。

  • (2)在双河北部识别出千米级的榴辉岩相鞘褶皱,该地区不同岩性互层出现,榴辉岩相折返阶段的流体活动导致榴辉岩及其围岩的流变强度显著降低,强烈变形。

  • (3)确定双河南部弱变形花岗片麻岩的原岩形成于757±14 Ma,在240~216 Ma经历了超高压榴辉岩相作用及随后的角闪岩相退变质作用。根据有效黏度计算,折返过程中局部的流体活动不足以弱化大型花岗岩体,使其成为大陆俯冲隧道中的弱应变域。因此,大陆俯冲隧道内的应变不均一性受到矿物组成、流体活动和岩体规模的影响。

  • 致谢: 感谢Alex Webb教授和石永红教授的野外讨论、雷瑞同学在野外填图中的大力帮助以及刘俊来教授和两位审稿人的宝贵意见。

  • 附件:本文附件(附表1~3)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202401092?st=article_issue

  • 参考文献

    • A'balos B. 1997. Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain): Relationships with strain symmetry during high-pressure deformation. Journal of Structural Geology, 19: 621~637.

    • Adamuszek M, Dabrowski M. 2017. Sheath folds as a strain gauge in simple shear. Journal of Structural Geology, 102: 21~36.

    • Agard P, Yamato P, Jolivet L, Burov E. 2009. Exhumation of oceanic blueschists and eclogites insubduction zones: Timing and mechanisms. Earth Science Reviews, 92(1-2): 53~79.

    • Agard P, Yamato P, Soret M, Prigent C, Guillot S, Plunder A, Dubacq B, Chauvet A, Monié P. 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters, 451: 208~220.

    • Agard P, Plunder A, Angiboust S, Bonnet G, Ruh J. 2018. The subduction plate interface: Rock record and mechanical coupling (from long to short time scales). Lithos, 320: 537~566.

    • Alsop G I, Holdsworth R E, McCaffrey K J W. 2007. Scale invariant sheath folds in salt, sediments and shear zones. Journal of Structural Geology, 29(12): 1915~1930.

    • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.

    • Aslin J, Mariani E, Dawson K, Barsoum M W. 2019. Ripplocations provide a new mechanism for the deformation of phyllosilicates in the lithosphere. Nature Communications, 10(1): 686.

    • Ayers J C, Dunkle S, Gao Shan, Miller C E. 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186(3): 315~331.

    • Azcárraga J, Ábalos B, Ibarguchi J I G. 2002. On the relationship between kilometer-scale sheath folds, ductile thrusts and minor structures in the basal high-pressure units of the Cabo Ortegal complex (NW Spain). Journal of Structural Geology, 24(12): 1971~1989.

    • Bascou J, Tommasi A, Mainprice D. 2002. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. Journal of Structural Geology, 24: 1357~1368.

    • Belousova E, Griffin W, O'Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602~622.

    • Berman R G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445~522.

    • Bohlen S R, Montana A, Kerrick D M. 1991. Precise determinations of the equilibria kyanite- reversible-sillimanite and kyanite-reversible-andalusite and a revised triple point for Al2SiO5 polymorphs. American Mineralogist, 76: 677~680.

    • Bonamici C E, Tikoff E, Goodwin L B. 2011. Anatomy of a 10 km scale sheath fold, Mount Hay ridge, Arunta region, central Australia: The structural record of deep crustal flow. Tectonics, 30(6): TC6015.

    • Bundy F P. 1980. The P, T phase and reaction diagram for elemental carbon, 1979. Journal of Geophysical Research, 85(B12): 6930~6936.

    • Cao Yi, Song Shuguang. 2008. Deformation of subduction zone eclogite and its significance for the subduction-exhumation processes. Geological Bulletin of China, 27(10): 1646~1653 (in Chinese with English abstract).

    • Carreras J, Estrada A, White S. 1977. The effects of folding on the c-axis fabrics of a quartz mylonite. Tectonophysics, 39(1-3): 3~24.

    • Carswell D A, Wilson R N, Zhai M. 2000. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos, 52(1-4): 121~155.

    • Chavagnac V, Jahn B M, Villa I M, Whitehouse M J, Liu Dunyi. 2001. Multichronometric evidence for an in situ origin of the ultrahigh-pressure metamorphic terrane of Dabieshan, China. Journal of Geology, 109(5): 633~646.

    • Chen Jing, Jin Zhenmin, Liu Wenlong, Wang Yongfeng, Zhang Junfeng. 2021. Rheology of dry K-feldspar aggregates at high temperature and high pressure: An experimental study. Tectonophysics, 817: 229072.

    • Chen Renxu, Zheng Yongfei, Gong Bing. 2011. Fluid activity in continental subduction zones: Insights from stable isotopes and water contents in minerals from ultrahigh-pressure metamorphic rocks. Acta Petrologica Sinica, 27(2): 451~468 (in Chinese with English abstract).

    • Chen S, Hiraga T, Kohlstedt D L. 2006. Water weakening of clinopyroxene in the dislocation creep regime. Journal of Geophysical Research, 111(B8): 1~14.

    • Chen Yan, Wei Chunjing, Zhang Jingsen, Chu Hang. 2005. Phase equilibria of mica-schists and gneisses in the HP-UHP Belt of Southern Dabie Shan. Acta Petrologica Sinica, 21(6): 1657~1168(in Chinese with English abstract).

    • Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth and Planetary Science Letters, 212(1-2): 1~14.

    • Cong Bolin, Zhai Mingguo, Carswell D A, Wilson R H, Wang Qingchen, Zhao Zhongyan, Windley B F. 1995. Petrogenesis of ultrahigh-pressure rocks and their country rocks in Shuanghe of Dabieshan Mountains, Central China. European Journal of Mineralogy, 7(1): 119~138.

    • Corfu F. 2003. Atlas ofzircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Dersch O, Zouine A, Rauch F, Ericson J E. 1997. Investigation of water diffusion into quartz using ion beam analysis techniques. Fresenius Journal of Analytical Chemistry, 358(1-2): 217~219.

    • Dong Huogen, Guo Zhenyu. 1996. Deformation of ultrahigh-pressure metamorphic rocks in Shuanghe, Dabie Mountains. Science in China (Series D), 26(S1): 89~96 (in Chinese with English abstract).

    • Doremus R H. 1998. Diffusion of water and oxygen in quartz: Reaction-diffusion model. Earth and Planetary Science Letters, 163(1-4): 43~51.

    • Farver J R. 2010. Oxygen and hydrogen diffusion in minerals. Reviews in Mineralogy and Geochemistry, 72(1): 447~507.

    • Finch M A, Bons P D, Steinbach F, Griera A, Llorens M G, Gomez-Rivas E, Ran H, de Riese T. 2020. The ephemeral development of C' shear bands: A numerical modelling approach. Journal of Structural Geology, 139: 104091.

    • Flinn D. 1965. On the symmetry principal and the deformation ellipsoid. Geological Magazine, 102(1): 36~45.

    • Fu Bin, Zheng Yongfei, Wang Zhengrong, Xiao Yilin, Gong Bing, Li Shuguang. 1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contributions to Mineralogy and Petrology, 134(1): 52~66.

    • Fu Bin, Xiao Yilin, Zheng Yongfei, Touret J L R, Van den Kerkhof A M, Hoefs J. 2000. Fluid inclusions in ultrahigh pressure metamorphic rocks from Shuanghe and Bixiling in Dabie Shan. Acta Petrologica Sinica. 16(1): 119~126 (in Chinese with English abstract).

    • Gao Xiaoying, Zheng Yongfei, Chen Yixiang. 2011. U-Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen: Constraints on P-T-t path. Journal of Metamorphic Geology, 29(7): 721~740.

    • Gao Xiaoying, Zheng Yongfei, Chen Yixiang. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. Journal of Metamorphic Geology, 30: 193~212.

    • Gao Xiaoying, Zheng Yongfei, Chen Yixiang, Tang Haolan, Li Wancai. 2015. Zircon geochemistry records the action of metamorphic fluid on the formation of ultrahigh-pressure jadeite quartzite in the Dabie orogen. Chemical Geology, 419: 158~175.

    • Gao Xiaoying, Wang Ling, ChenYixiang, Zheng Yongfei, Chen Renxu, Huang Fang, Zhang Qiangqiang, Ji Min, Meng Ziyue. 2019. Geochemical evidence from coesite-bearing jadeite quartzites for large-scale flow of metamorphic fluids in a continental subduction channel. Geochimica et Cosmochimica Acta, 265: 354~370.

    • Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3(1): 43~50.

    • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6): 1056.

    • Gu Xiaotong, Wang Qin. 2020. Microstructure and effective viscosity of ultrahigh-pressure metamorphic rocks from the Dabie Mountains. Geological Journal of China Universities, 26(6): 601~616 (in Chinese with English abstract).

    • Hacker B R, Wang Qingchen. 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 14(4): 994~1006.

    • Hacker B R, Ratschbacher L, Webb L, Ireland T, Walker D, Dong Shuwen. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215~230.

    • Harlov D. 2015. Fluids and geochronometers: Charting and dating mass transfer during metasomatism and metamorphism. Journal of the Indian Institute of Science, 2(95): 109~123.

    • Hermann J, Rubatto D, Korsakov A. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66~82.

    • Hemingway B S, Bohlen S R, Hankins W B, Westrum J R, Kuskov O L. 1998. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. American Mineralogist, 83: 409~418.

    • Hirth G, Teyssier C, Dunlap J W. 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90(1): 77~87.

    • Huang Peng, Song Chuanzhong, Ren Shenglian, Lin Shoufa, Zhang Yan, Li Jiahao, Liu Huan, Wang Wei, Yang Fa, Liu Qineng. 2016. Tectonic property of the Beihuaiyang tectonic belt and its implication for the location of the suture zone between Yangtze Block and North China Block. Acta Geologica Sinia, 90(6): 1112~1129(in Chines with English abstract).

    • Huang Wuuliang, Wyllie P J. 1975. Melting reactions in the system KAlSi3O8-NaAlSi3O8-SiO2-H2O to 35 kilobars, dry and with excess water. Journal of Geology, 83(6): 737~748.

    • Ji Shaocheng, Zhao Pinglao, Xia Bin. 2003. Flow laws of multiphase materials and rocks from end-member flow laws. Tectonophysics, 370(1): 129~145.

    • Ji Wenbin, Lin Wei, Faure M, Shi Yonghong, Wang Qingchen. 2017. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: Implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China. International Journal of Earth Sciences, 106(4): 1311~1340.

    • Jiang Laili, Liu Yican, Su Wen, Wu Weiping. 1996. The deformation features of the ultrahigh-pressure metamorphic rocks in the Dabie Mountains and their geological implication. Geology of Anhui, 6(3): 7~17+86 (in Chinese with English abstract).

    • Jiang Laili, Wu Weiping, Fan Lianghong, Liu Yican, Shi Yonghong, Yu Xiaojian, Shen Huanxi, Chen Jinmiao. 1998. The geological structure features of the Hanchaangchong area, Qianshan, Anhui. Geology of Anhui, 8(1): 1~9 (in Chinese with English abstract).

    • Jiang Laili, Wu Weiping, Liu Yican, Li Huimin. 2003. U-Pb zircon and Ar-Ar hornblende ages of the Susong complex of the southern Dabie orogen and their geological implication. Acta Petrologica Sinica, 19(3): 497~505 (in Chinese with English abstract).

    • Jin Deshi, Xiao Yilin, Tan Dongbo, Wang Yangyang, Li Wancai, Su Wen, Li Xiaoguang. 2023. Supercritical fluid in deep subduction zones as revealed by multiphase fluid inclusions in an ultrahigh-pressure metamorphic vein. PNAS, 120: e2219083120.

    • Johnson E A. 2006. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance. Reviews in Mineralogy and Geochemistry, 62(1): 117~154.

    • Keppler R. 2018. Crystallographic preferred orientations in eclogites—A review. Journal of Structural Geology, 115: 284~296.

    • Kronenberg A K, Kirby S H, Pinkston J. 1990. Basal slip and mechanical anisotropy of biotite. Journal of Geophysical Research, 95(B12): 19257~19278.

    • Li Le, Ji Shaocheng, Lin Wei. 2020. Tourmaline microboudinage: An indicator of its host rheology. Journal of Structural Geology, 138: 104096.

    • Li Shuguang, Jagoutz E, Xiao Yilin, Ge Ningjie, Chen Yizhi. 1996. Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrane: I. Sm-Nd isotope system. Science in China (Series D), 39(6): 597~609.

    • Li Shuguang, Li Huimin, Chen Yizhi, Xiao Yilin, Liu Deliang. 1997. Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrane——II. zircon U-Pb isotope system. Science in China (Series D), 27(3): 200~206 (in Chinese with English abstract).

    • Li Shuguang, Jagoutz E, Chen Yizhi, Li Qiuli. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6): 1077~1093.

    • Li Xuping, Zheng Yongfei, Wu Yuanbao, Chen Fukun, Gong Bing, Li Yiliang. 2004. Low-t eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443~470.

    • Li Zhonghai, Gerya T. 2009. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu UHP terrane in eastern China. Journal of Geophysical Research, 114: B09406.

    • Li Zhonghai, Liu Minqi, Gerya T. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Science China: Earth Sciences, 58: 1251~1268 (in Chinese with English abstract).

    • Lin Wei, Shi Yonghong, Wang Qingchen. 2009. Exhumation tectonics of the HP-UHP orogenic belt in Eastern China: New structural-petrological insights from the Tongcheng massif, Eastern Dabieshan. Lithos, 109(3-4): 285~303.

    • Lin Wei, Ji Wenbin, Shi Yonghong, Chu Yang, Li Qiuli, Chen Zechao, Liu Fei, Wang Qingchen. 2013. Multi-stage exhumation processes of the UHP metamorphic rocks: Implications from the extensional structure of Tongbai-Hong'an-Dabieshan orogenic belt. Chinese Science Bulletin, 58(23): 2259~2265 (in Chinese with English abstract).

    • Lin Wei, Ji Wenbin, Faure M, Wu Lin, Li Qiuli, Shi Yonghong, Scharer U, Wang Fei, Wang Qingchen. 2015. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China. Tectonophysics, 662: 256~270.

    • Liou J G, Zhang R Y, Jahn B M. 1997. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China. Lithos, 41(1-3): 59~78.

    • Liou J G, Zhang R Y, Ernst W G, Rumble D, Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Reviews in Mineralogy, 37: 33~96.

    • Liou J G, Hacker B R, Zhang R Y. 2000. Into the forbidden zone. Science, 287(5456): 1215~1216.

    • Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. Journal of Asian Earth Sciences, 35(3-4): 199~231.

    • Lisle R J. 1977. Estimation of the tectonic strain ratio from the mean shape of deformed elliptical objects. Geologie en Mijnbouw, 56(2): 140~144.

    • Lisle R J. 1979 Strain analysis using deformed pebbles: The influence of initial pebble shape. Tectonophysics, 60(3-4): 263~277.

    • Liu Dunyi, Jian Ping. 2004. 243 Ma UHP and 228 Ma retrograde events of the Shuanghe jadeite quartzite, Eastern Dabie Mountains—SHRIMP dating, mineral inclusions and zircon REE patterns. Acta Geologica Sinica, 78(2): 211~217 (in Chinese with English abstract).

    • Liu Dunyi, Jian Ping, Kroner A, Xu Shutong. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters, 250: 650~666.

    • Liu Fulai, Gerdes A, Liou J G, Xue H M, Liang F H. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24(7): 569~589.

    • Liu Fulai, Gerdes A, Zeng Lingsen, Xue Huaimin. 2008. SHRIMP U–Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochimica Cosmochimica Acta, 72(12): 2973~3000.

    • Liu Fulai, Liou J G. 2011. Zircon as the best mineral for P-T- time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1~39.

    • Liu Penglei, Wu Yao, Liu Qiang, Zhang Junfeng, Zhang Li, Jin Zhenmin. 2014. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, (4): 86~101.

    • Liu Penglei, Wu Yao, Chen Yi, Zhang Junfeng, Jin Zhenmin. 2015. UHP impure marbles from the Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280~297.

    • Liu Qiang. 2003. The deformation of Shuanghe meta-granitoid in the Dabie Mountains and its tectonic significance. Master's thesis of China University of Geosciences (in Chinese with English abstract).

    • Liu Qiang, Hermann J, Zhang Junfeng. 2013. Polyphase inclusions in theShuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91~109.

    • Liu Qiang, Hermann J, Zheng Shu, Zhang Junfeng. 2019. Evidence for UHP anatexis in the Shuanghe UHP paragneiss from inclusions in clinozoisite, garnet and zircon. Journal of Metamorphic Geology, 38(2): 128~155.

    • Liu Yican, Li S G, Gu X F, Xu S T, Chen B G. 2007. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. Journal of Metamorphic Geology, 25(9): 975~989.

    • Liu Yican, Gu Xiaofeng, Rolfo F, Chen Zhenyu. 2011a. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures. Journal of Asian Earth Sciences, 42(4): 607~617.

    • Liu Yican, Gu Xiaofeng, Li Shuguang, Hou Zhenhui, Song Biao. 2011b. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos, 122(1-2): 107~121.

    • Ma Yuan, Sun Siquan, Wu Changxiong, Li Shutao, Chen Mi. 2013. Zircon U-Pb anges and petro-geochemistry of Liemazui granite, Qichuan county, Hubei Province, China. Acta Mieralogica Sinica, 33(4): 698~704 (in Chinese with English abstract).

    • Massonne H J. 1995. Experimental and petrogenetic study of UHPM. In: Coleman R G and Wang X, eds. Ultrahigh Pressure Metamorphism. Cambridge: Cambridge University Press, 33~95.

    • Massonne H J. 2009. Hydration, dehydration, and melting of metamorphosed granitic and dioritic rocks at high- and ultrahigh-pressure conditions. Earth and Planetary Science Letters, 288(1-2): 244~254.

    • Okay A I, Xu Shutong, Sengor A C. 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy, 1(4): 595~598.

    • Philippot P, van Roermund H L M. 1992. Deformation processes in eclogitic rocks: Evidence for the rheological delamination of the oceanic crust in deeper levels of subduction zones. Journal of Structural Geology, 14: 1059~1077.

    • Piepenbreier D, Stöckhert B. 2001. Plastic flow of omphacite in eclogites at temperatures below 500℃—Implications for interplate coupling in subduction zones. International Journal of Earth Sciences, 90(1): 197~210.

    • Raimbourg H, Jolivet L, Leroy Y. 2007. Consequences of progressive eclogitization on crustal exhumation, a mechanical study. Geophysical Journal International, 168: 379~401.

    • Ramsay J R, Huber N I. 1983. The Techniques of Modern Structural Geology. New York: Academic press, 1~307.

    • Rast M, Ruh J B. 2021. Numerical shear experiments of quartz-biotite aggregates: Insights on strain weakening and two-phase flow laws. Journal of Structural Geology, 149: 104375.

    • Ratschbacher L, Hacker B R, Webb L E, McWilliams M, Ireland T, Dong Shuwen, Calvert A, Chateigner D, Wenk H R. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research Atmospheres, 105(B6): 13303~13338.

    • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1): 123~138.

    • Rybacki E, Dresen G. 2004. Deformation mechanism maps for feldspar rocks. Tectonophysics, 382(3-4): 173~187.

    • Schertl H, Okay A L. 1994. Coesite inclusion in dolomite of Dabie Shan, China: Petrological and the geological significance. European Journal of Mineralogy, 6(6): 995~1000.

    • Schmidt M W, Poli S. 2003. Generation of mobile components during subduction of oceanic crust. Treatise Geochem, 3: 567~591.

    • Schwerdtner W M, Bennett P J, Janes T W. 1977. Application of L-S fabric scheme to structural mapping and paleostrain analysis. Canadian Journal of Earth Sciences, 14(5): 1021~1032.

    • Shea W T, Kronenberg A K. 1992. Rheology and deformation mechanisms of an isotropic mica schist. Journal of Geophysical Research. 97(B11): 15201~15237.

    • Shelton G L, Tullis J. 1981. Experimental flow laws for crustal rocks. Eos Transactions American Geophysical Union, 62: 396.

    • Shi Yonghong, Wang Cisong, Kang Tao, Xu Xufeng, Lin Wei. 2012. Petrological characteristics and zircon U-Pb age for Susong metamorphic complex rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389~3402 (in Chinese with English abstract).

    • Shi Yonghong, Wang Juan, Li Qiuli, Lin Wei. 2013. The analysis of the temperature and pressure structure for metamorphic rocks in Dabie collision orogen. China Science Bulletin, 58(22): 2145~2152 (in Chinese with English abstract).

    • Shi Yonghong, Lin Wei, Ji Wenbin, Wang Qingchen. 2014. The architecture of the HP-UHP Dabie massif: New insights from geothermobarometry of eclogites, and implication for the continental exhumation processes. Journal of Asian Earth Sciences, 86: 38~58.

    • Shinevar W J, Behn M D, Hirth G. 2015. Compositional dependence of lower crustal viscosity. Geophysical Research Letters, 42(20): 4333~8340.

    • Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, melange formation, and prism accretion. Journal of Geophysical Research, 91: 10229~10245.

    • Su Wen, Xu Shutong, Jiang Laili, Liu Yican. 1995. Characteristics of jadeite-quartzite and associatedeclogite in Hanchangchong-Miaozhuyuan area, Qianshan. Geology of Anhui, 5(2): 7~21 (in Chinese with English abstract).

    • Su Wen, You Zhendong, Cong Boling, Ye Kai, Zhong Zhenqiu. 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30(7): 611~614.

    • Thompson P, Parsons I, Graham C M, Jackson B. 1998. The breakdown of potassium feldspar at high water pressures. Contributions to Mineralogy and Petrology, 130(2): 176~186.

    • Tokle L, Hirth G, Benr W M. 2019. Flow laws and fabric transitions in wet quartzite. Earth and Planetary Science Letters, 505: 152~161.

    • Vannucchi P, Sage F, Morgan J P, Remitti F, Collot J Y. 2012. Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochemistry Geophysics Geosystems, 13(2): Q02003.

    • Wang L, Jin Z M, Kusky T, Xu H J, Liu X W. 2010. Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite andeclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology, 28(2): 163~182.

    • Wang Qiang, Wyman D A, Xu Jifeng, Jian Ping, Zhao Zhenhua, Li Chaofeng, Xu Wei, Ma Jinlong, He Bin. 2007. Early Cretaceous adakitic granites in the northern Dabie complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609~2636.

    • Wang Qingchen. 2013. Exhumation of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Orogenic Belt. Acta Petrologica Sinica, 29(5): 1607~1620 (in Chinese with English abstract).

    • Wang Xiaomin, Liou J G, Mao H K. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology, 17(12): 1085~1088.

    • Wang Xiaomin, Liou J G. 1991. Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China: Evidence from country rocks, gneiss, marble, and metapelite. Geology, 19(9): 933~936.

    • Wei Chunjing, Shan Zhengang. 1997. Metamorphism of the Susong Complex from the Southern Dabie Mountains, Anhui Province. Acta Petrologica Sinica, 13(3): 356~368 (in Chinese with English abstract).

    • Whitney D L, Evans B W. 2010. Abbreviations fornames of rock-forming minerals. American Mineralogist, 95(1): 185~187.

    • Wu Kaibin, Deng Xin, Yang Kunguang. 2013. Multistage Cretaceous magmatic event and its relationship with evolution of North Dabie orogen. Earth Science-Journal of China University of Geosciences, 38(S1): 43~52 (in Chinese with English abstract).

    • Wu Yuanbao, Chen Daogong, Xia Qunke, Cheng Hao. 2001. SIMS U-Pb dating of zircons Shuanghe orthogneiss, Dabie area. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 298~301 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei, Zhao Zifu, Gong Bing, Liu Xiaomin, Wu Fuyuan. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14): 3743~3761.

    • Xia Bin, Yuan Yajuan, Zhang Yuquan, Wang Min, Xia Lianze, Li He, Wang Fangyue, Zhang Hong, Wu Weiping. 2012. Zircon U-Pb ages of marble from Shuanghe Qianshan County and their geological significance. Acta Geologica Sinica, 86(4): 619~625 (in Chinese with English abstract).

    • Xia Qiongxia, Zheng Yongfei, Chen Yixiang. 2013. Protolith control on fluid availability for zircon growth during continental subduction-zone metamorphism in the Dabie orogen. Journal of Asian Earth Sciences, 67-68: 93~113.

    • Xia Qiongxia, Wang Haozheng, Zhou Ligang, Gao Xiaoying, Zheng Yongfei, Van Orman J A, Xu Haijun, Hu Zhaochu. 2016. Growth of metamorphic and peritectic garnets in ultrahigh-pressure metagranite during continental subduction and exhumation in the Dabie orogen. Lithos, 266-267: 158~181.

    • Xia Qunke. 2005. Water in the deep subducted continental plate: Message from NAMS. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 1~6.

    • Xiao Yilin, Hoefs J, van den Kerkhof A M, Simon K, Fiebig J, Zheng Yongfei. 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43(8): 1505~1527.

    • Xie Zhi, Gao Tianshan, Chen Jiangfeng. 2004. Multi-stage evolution of gneiss from the North Dabie orogen: Chronological evidence from zircon U-Pb isotope system. Chinese Science Bulletin, 49(16): 1653~1659 (in Chinese with English abstract).

    • Xu Haijin, Ma Changqian, Ye Kai. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology, 240(3-4): 238~259.

    • Xu Shutong, Okay A I, Ji Shouyuan, Sengor A M C, Su Wen, Liu Yican, Jiang Laili. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256(5053): 80~82.

    • Xu Shutong, Liu Yican, Chen Guangbiao, Compagnoni R, Rolfo F, He Mouchun, Liu Huifang. 2003. New finding of micro-diamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Science Bulletin, 48(10): 988~994.

    • Xu Xiang, Wang Qin. 2019. The Hualiangting-Mituo ductile shear zone in the Dabie Mountains: Implicaions for oblique and differential exhumation of ultrahigh-pressure metamorphic slices. Geological Journal of China Universities, 25(2): 182~196 (in Chinese with English abstract).

    • Xu Zhiqin, Zeng Lingsen, Liu Fulai, Yang Jingsui, Zhang Zeming, McWilliams M, Liou J G. 2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geological Society of America Special Papers, 403: 93~113.

    • Xu Zhiqin, Wang Qin, Tang Zhemin, Chen Fangyuan. 2009a. Fabric kinematics of ultrahigh-pressure metamorphic rocks from the main borehole of the Chinese Continental Scientific Drilling Project: Implications for continental subduction and exhumation. Tectonophysics, 475(2): 235~250.

    • Xu Zhiqin, Yang Wencai, Ji Shaocheng, Zhang Zeming, Yang Jingsui, Wang Qin, Tang Zhemin. 2009b. Deep root of a continent-continent collision belt: Evidence from the Chinese Continental Scientific Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure(HP–UHP) metamorphic terrane, China. Tectonophysics, 475(2): 204~219.

    • Xue Huaimin, Ma Fang, Zhao Xun, Wu Weiping. 2011. Characteristics and LA-ICP-MS zircon U-Pb ages of the Tianzhushan granitoid intrusive body, southeastern Dabie orogen. Acta Petrologica et Mineralogica, 30(5): 935~950 (in Chinese with English abstract).

    • Ye Kai, Cong Bolin, Ye Danian. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407(6806): 734~736.

    • Yuan Honglin, Wu Fuyuan, Gao Shan, Liu Xiaoming, Xu Ping, Sun Deyou. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411~2421.

    • Yuan Xuecheng, Klemperer S L, Tang Wenbing, Liu Laixiang, Chetwin E. 2003. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling. Geology, 31(5): 435~438.

    • Zeng Lingsen, Chen Jing, Chen Zhenyu, Chen Fangyuan, Gao Lie. 2009. K-cymrite in the Sulu UHP eclogites. Acta Petrologica Sinica, 25(9): 2141~2148 (in Chinese with English abstract).

    • Zhai Mingguo, Cong Bolin, Zhao Zhongyan, Wang Qingchen, Li Jiaju. 1992. High-pressure jadeite quartzite blocks in the Dabie Mountain eclogite belt and their geological significance. Chinese Science Bulletin, 37(11): 1013~1015 (in Chinese with English abstract).

    • Zhang J F, Green Ⅱ H W. 2007. Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. Journal of Metamorphic Geology, 25(2): 97~115.

    • Zhang J F, Shi F, Xu H J, Wang L, Feng S Y, Liu W L, Wang Y F, GreenⅡ H W. 2013. Petrofabric and strength of SiO2 near the quartz-coesite phase boundary. Journal of Metamorphic Geology, 31(1): 83~92.

    • Zhang Jianxin. 2020. The study of subduction channels: Progress, controversies, and challenges. Science China Earth Sciences, 63(12): 1831~1851.

    • Zhang Junfeng, Jin Zhenmin, Green Ⅱ H W, Jin Shuyan. 2000. Water in the continental deep subduction zone: Evidence from ultrahigh-pressure eclogite in the Dabie Mountains. Chinese Science Bulletin, 45(17): 1889~1894 (in Chinese with English abstract).

    • Zhang Junfeng, Green Ⅱ H W, Bozhilov K N. 2006. Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations. Earth and Planetary Science Letters, 246(3-4): 432~443.

    • Zhang R Y, Liou J G, Zheng Y F, Fu B. 2003. Transition of UHP eclogites to gneissic rocks of low amphibolite facies during exhumation: evidence from the Dabie terrane, central China. Lithos, 70(3-4): 269~291.

    • Zhang Yueqiao, Qiu Erkang, Dong Shuwen, Li Jianhua, Shi Wei. 2022. Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi-plate convergence in NE Asia: An overview and new view. Tectonophysics, 835: 229377.

    • Zhao Xixi, Coe R S. 1987. Palaeomagnetic constraints on the collision and rotation of North and South China. Nature, 327(6118): 141~144.

    • Zhao Zifu, Zheng Yongfei, Wei Chunsheng, Wu Yuanbao. 2004. Zircon U-Pb age, element and oxygen isotope geochemistry of Mesozoic. Acta Petrologica Sinica, 20(5): 1151~1174 (in Chinese with English abstract).

    • Zhao Zifu, Zheng Yongfei, Wei Chunsheng, Wu Yuanbao. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3-4): 248~272.

    • Zheng Jianping, Sun Min, Griffin W L, Zhou Meifu, Zhao Guochun, Robinson P, Tang Huayun, Zhang Zhihai. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chemical Geology, 247(1-2): 282~304.

    • Zheng Yongfei. 2008. Progress in the study of ultrahigh pressure metamorphism and continental collision: an example from the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(18): 2129~2152 (in Chinese with English abstract).

    • Zheng Yongfei, Fu Bin, Li Yiliang, Xiao Yilin, Li Shuguang. 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth and Planetary Science Letters, 155(1-2): 113~129.

    • Zheng Yongfei, Gong Bing, Zhao Zifu, Fu Bin, Li Yiliang. 2003. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos, 70(3): 321~343.

    • Zheng Yongfei, Zhou Jianbo, Wu Yuanbao, Xie Zhi. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47(8): 851~871.

    • Zheng Yongfei, Zhao Zifu, Chen Renxu. 2007. Geodynamics of continental collision and ultrahigh-pressure metamorphism: constraints from Chinese Continental Scientific Drilling project. Acta Petrologica Sinica, 23(12): 3078~3094 (in Chinese with English abstract).

    • Zheng Yongfei, Gao Xiaoying, Chen Renxu, Gao Tianshan. 2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences, 40(2): 427~451.

    • Zheng Yongfei. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5~48.

    • Zheng Yongfei, Zhao Zifu, Chen Yixiang. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chinese Science Bulletin, 58(35): 4371~4377.

    • Zheng Yongfei, Chen Renxu, Xu Zheng, Zhang Shaobing. 2016. The transport of water in subduction zones. Science China Earth Sciences, 59(4): 651~681.

    • Zheng Yongfei, Chen Yixiang, Chen Renxu, Dai Liqun. 2022. Tectonic evolution of convergent plate margins and its geological effects. Science China Earth Sciences, 65(7): 1247~1276.

    • Zhou Taixi, Chen Jiangfeng, Zhang Xun, Li Xueming. 1995. Geochemistry of the North Huaiyang granite-syenite zone and its tectonic implication. Geological Review, 41(2): 144~151 (in Chinese with English abstract).

    • Zhu Guang, Song Chuanzhong, Wang Daoxuan, Liu Guosheng, Xu Jiawei. 2001. Studies on 40Ar/39Ar thermochronology of strike-slip time of the Tan-Lu fault zone and their tectonic implications. Science in China (Series D), 44(11): 1002~1009.

    • Zhu Guang, Liu Guosheng, Niu Manlan, Xie Chenglong, Wang Yongsheng, Xiang Biwei. 2009. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences, 98(1): 135~155.

    • Zhu Guang, Liu Cheng, Gu Chengchuan, Zhang Shuai, Li Yunjian, Su Nan, Xiao Shiye. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu fault zone. Science China Earth Sciences, 61(4): 386~405.

    • 曹毅, 宋述光. 2008. 俯冲带榴辉岩的变形作用及其对恢复俯冲-折返过程的意义. 地质通报, 27(10): 1646~1653.

    • 陈仁旭, 郑永飞, 龚冰. 2011. 大陆俯冲带流体活动: 超高压变质岩矿物水含量和稳定同位素制约. 岩石学报, 27(2): 451~468.

    • 陈燕, 魏春景, 张景森, 初航. 2005. 大别山南部高压一超高压变质地体中云母片岩和片麻岩的相平衡研究. 岩石学报, 21(6): 1657~1668.

    • 董火根, 郭震宇. 1996. 大别山双河超高压变质岩变形构造. 中国科学(D辑: 地球科学), 26(S1): 89~96.

    • 傅斌, 肖益林, 郑永飞, Touret J L R, Van den Kerkhof A M, Hoefs J. 2000. 大别山双河和碧溪岭超高压变质岩流体包裹体研究. 岩石学报, 16(1): 119~126.

    • 顾筱彤, 王勤. 2020. 大别山超高压变质岩的显微构造与有效黏度. 高校地质学报, 26(6): 601~616.

    • 黄鹏, 宋传中, 任升莲, Lin Shoufa, 张妍, 李加好, 刘欢, 王微, 杨帆, 刘啟能. 2016. 北淮阳构造带的属性及其对板块缝合线位置的启示. 地质学报, 90(6): 1112~1129.

    • 江来利, 刘贻灿, 苏文, 吴维平. 1996. 大别山超高压变质岩的变形特征及其地质意义. 安徽地质, 6(3): 7~17+86.

    • 江来利, 吴维平, 范良红, 刘贻灿, 石永红, 余小俭, 沈欢喜, 陈金苗. 1998. 安徽省潜山县韩长冲地区的地质构造特征. 安徽地质, 8(1): 1~9.

    • 江来利, 吴维平, 刘贻灿, 李惠民. 2003. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义. 岩石学报, 19(3): 497~505.

    • 李曙光, 李惠民, 陈移之, 肖益林, 刘德良. 1997. 大别山-苏鲁地体超高压变质年代学——Ⅱ. 锆石U-Pb同位素体系. 中国科学(D辑), 27(3): 200~206.

    • 李忠海, 刘明启, Gerya T. 2015. 俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟. 中国科学: 地球科学, 45(7): 881~899.

    • 林伟, 冀文斌, 石永红, 褚杨, 李秋立, 陈泽超, 刘飞, 王清晨. 2013. 高压—超高压变质岩石多期构造折返: 以桐柏-红安-大别造山带为例. 科学通报, 58(23): 2259~2265.

    • 刘敦一, 简平. 2004. 大别山双河硬玉石英岩的超高压变质和退变质事件-SHRIMP测年的证据. 地质学报, 78(2): 211~217.

    • 刘强. 2003. 大别山双河变质花岗岩变形特征及其大地构造意义. 武汉: 中国地质大学硕士毕业论文: 1~43.

    • 马元, 孙四权, 吴昌雄, 李书涛, 陈觅. 2013. 湖北蕲春烈马咀花岗岩锆石U-Pb年龄和岩石地球化学特征. 矿物学报, 33(4): 698~704.

    • 石永红, 王次松, 康涛, 徐旭峰, 林伟. 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10): 3389~3402.

    • 石永红, 王娟, 聂峰, 曹晟, 康涛. 2016. 宿松变质杂岩中石榴子石-蓝晶石-硬绿泥石片岩形成条件及时限研究. 岩石学报, 32(2): 493~504.

    • 石永红, 王娟, 李秋立, 林伟. 2013. 大别造山带变质岩温度压力结构研究. 科学通报, 58(22): 2145~2152.

    • 王清晨. 2013. 大别山造山带高压—超高压变质岩的折返过程. 岩石学报, 29(5): 1607~1620.

    • 魏春景, 单振刚. 1997. 安徽省大别山南部宿松杂岩变质作用研究. 岩石学报, 13(3): 356~368.

    • 吴开彬, 邓新, 杨坤光. 2013. 北大别白垩纪花岗岩多期侵位与造山带演化的关系. 地球科学: 中国地质大学学报, 38(S1): 43~52.

    • 吴元保, 陈道公, 夏群科, 程昊. 2001. 大别山双河地区花岗质片麻岩锆石的离子探针定年. 矿物岩石地球化学通报, 20(4): 298~301.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 夏斌, 袁亚娟, 张玉泉, 王敏, 夏连泽, 李贺, 汪方跃, 张红, 吴维平. 2012. 安徽潜山县双河大理岩锆石U-Pb年龄及其地质意义. 地质学报, 86(4): 619~625.

    • 夏群科. 2005. 大陆深俯冲过程中的水: “名义上无水矿物(NAMs)”的信息. 矿物岩石地球化学通报, 24(1): 1~6.

    • 谢智, 高天山, 陈江峰. 2004. 北大别片麻岩的多阶段演化: 锆石U-Pb年代学证据. 科学通报, 49(16): 1653~1659.

    • 徐翔, 王勤. 2019. 大别山花凉亭-弥陀剪切带与超高压变质岩片的斜向差异折返. 高校地质学报, 25(2): 182~196.

    • 薛怀民, 马芳, 赵逊, 吴维平. 2011. 大别山造山带东南部天柱山花岗岩类侵入体的特征及其LA-ICP-MS锆石U-Pb年龄. 岩石矿物学杂志, 30(5): 935~950.

    • 曾令森, 陈晶, 陈振宇, 陈方远, 高利娥. 2009. 苏鲁超高压榴辉岩中钾长石的超高压相. 岩石学报, 25(9): 2141~2148.

    • 翟明国, 从柏林, 赵中岩, 王清晨, 李家驹. 1992. 大别山榴辉岩带的高压硬玉石英岩块体及其地质意义. 科学通报, 37(11): 1013~1015.

    • 章军锋, 金振民, Green H W, 金淑燕. 2000. 大陆深俯冲带中的水: 来自大别山超高压榴辉岩的证据. 科学通报, 45(17): 1889~1894.

    • 赵子福, 郑永飞, 魏春生, 吴元保. 2004. 大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究. 岩石学报, 20(5): 1151~1174.

    • 郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53(18): 2129~2152.

    • 郑永飞, 赵子福, 陈仁旭. 2007. 大陆碰撞和超高压变质的化学地球动力学: 来自中国大陆科学钻探的结果. 岩石学报, 23(12): 3078~3094.

    • 周泰禧, 陈江峰, 张巽, 李学明. 1995. 北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义. 地质论评, 41(2): 144~151.

  • 参考文献

    • A'balos B. 1997. Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain): Relationships with strain symmetry during high-pressure deformation. Journal of Structural Geology, 19: 621~637.

    • Adamuszek M, Dabrowski M. 2017. Sheath folds as a strain gauge in simple shear. Journal of Structural Geology, 102: 21~36.

    • Agard P, Yamato P, Jolivet L, Burov E. 2009. Exhumation of oceanic blueschists and eclogites insubduction zones: Timing and mechanisms. Earth Science Reviews, 92(1-2): 53~79.

    • Agard P, Yamato P, Soret M, Prigent C, Guillot S, Plunder A, Dubacq B, Chauvet A, Monié P. 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters, 451: 208~220.

    • Agard P, Plunder A, Angiboust S, Bonnet G, Ruh J. 2018. The subduction plate interface: Rock record and mechanical coupling (from long to short time scales). Lithos, 320: 537~566.

    • Alsop G I, Holdsworth R E, McCaffrey K J W. 2007. Scale invariant sheath folds in salt, sediments and shear zones. Journal of Structural Geology, 29(12): 1915~1930.

    • Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59~79.

    • Aslin J, Mariani E, Dawson K, Barsoum M W. 2019. Ripplocations provide a new mechanism for the deformation of phyllosilicates in the lithosphere. Nature Communications, 10(1): 686.

    • Ayers J C, Dunkle S, Gao Shan, Miller C E. 2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology, 186(3): 315~331.

    • Azcárraga J, Ábalos B, Ibarguchi J I G. 2002. On the relationship between kilometer-scale sheath folds, ductile thrusts and minor structures in the basal high-pressure units of the Cabo Ortegal complex (NW Spain). Journal of Structural Geology, 24(12): 1971~1989.

    • Bascou J, Tommasi A, Mainprice D. 2002. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. Journal of Structural Geology, 24: 1357~1368.

    • Belousova E, Griffin W, O'Reilly S Y, Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602~622.

    • Berman R G. 1988. Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445~522.

    • Bohlen S R, Montana A, Kerrick D M. 1991. Precise determinations of the equilibria kyanite- reversible-sillimanite and kyanite-reversible-andalusite and a revised triple point for Al2SiO5 polymorphs. American Mineralogist, 76: 677~680.

    • Bonamici C E, Tikoff E, Goodwin L B. 2011. Anatomy of a 10 km scale sheath fold, Mount Hay ridge, Arunta region, central Australia: The structural record of deep crustal flow. Tectonics, 30(6): TC6015.

    • Bundy F P. 1980. The P, T phase and reaction diagram for elemental carbon, 1979. Journal of Geophysical Research, 85(B12): 6930~6936.

    • Cao Yi, Song Shuguang. 2008. Deformation of subduction zone eclogite and its significance for the subduction-exhumation processes. Geological Bulletin of China, 27(10): 1646~1653 (in Chinese with English abstract).

    • Carreras J, Estrada A, White S. 1977. The effects of folding on the c-axis fabrics of a quartz mylonite. Tectonophysics, 39(1-3): 3~24.

    • Carswell D A, Wilson R N, Zhai M. 2000. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos, 52(1-4): 121~155.

    • Chavagnac V, Jahn B M, Villa I M, Whitehouse M J, Liu Dunyi. 2001. Multichronometric evidence for an in situ origin of the ultrahigh-pressure metamorphic terrane of Dabieshan, China. Journal of Geology, 109(5): 633~646.

    • Chen Jing, Jin Zhenmin, Liu Wenlong, Wang Yongfeng, Zhang Junfeng. 2021. Rheology of dry K-feldspar aggregates at high temperature and high pressure: An experimental study. Tectonophysics, 817: 229072.

    • Chen Renxu, Zheng Yongfei, Gong Bing. 2011. Fluid activity in continental subduction zones: Insights from stable isotopes and water contents in minerals from ultrahigh-pressure metamorphic rocks. Acta Petrologica Sinica, 27(2): 451~468 (in Chinese with English abstract).

    • Chen S, Hiraga T, Kohlstedt D L. 2006. Water weakening of clinopyroxene in the dislocation creep regime. Journal of Geophysical Research, 111(B8): 1~14.

    • Chen Yan, Wei Chunjing, Zhang Jingsen, Chu Hang. 2005. Phase equilibria of mica-schists and gneisses in the HP-UHP Belt of Southern Dabie Shan. Acta Petrologica Sinica, 21(6): 1657~1168(in Chinese with English abstract).

    • Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth and Planetary Science Letters, 212(1-2): 1~14.

    • Cong Bolin, Zhai Mingguo, Carswell D A, Wilson R H, Wang Qingchen, Zhao Zhongyan, Windley B F. 1995. Petrogenesis of ultrahigh-pressure rocks and their country rocks in Shuanghe of Dabieshan Mountains, Central China. European Journal of Mineralogy, 7(1): 119~138.

    • Corfu F. 2003. Atlas ofzircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Dersch O, Zouine A, Rauch F, Ericson J E. 1997. Investigation of water diffusion into quartz using ion beam analysis techniques. Fresenius Journal of Analytical Chemistry, 358(1-2): 217~219.

    • Dong Huogen, Guo Zhenyu. 1996. Deformation of ultrahigh-pressure metamorphic rocks in Shuanghe, Dabie Mountains. Science in China (Series D), 26(S1): 89~96 (in Chinese with English abstract).

    • Doremus R H. 1998. Diffusion of water and oxygen in quartz: Reaction-diffusion model. Earth and Planetary Science Letters, 163(1-4): 43~51.

    • Farver J R. 2010. Oxygen and hydrogen diffusion in minerals. Reviews in Mineralogy and Geochemistry, 72(1): 447~507.

    • Finch M A, Bons P D, Steinbach F, Griera A, Llorens M G, Gomez-Rivas E, Ran H, de Riese T. 2020. The ephemeral development of C' shear bands: A numerical modelling approach. Journal of Structural Geology, 139: 104091.

    • Flinn D. 1965. On the symmetry principal and the deformation ellipsoid. Geological Magazine, 102(1): 36~45.

    • Fu Bin, Zheng Yongfei, Wang Zhengrong, Xiao Yilin, Gong Bing, Li Shuguang. 1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contributions to Mineralogy and Petrology, 134(1): 52~66.

    • Fu Bin, Xiao Yilin, Zheng Yongfei, Touret J L R, Van den Kerkhof A M, Hoefs J. 2000. Fluid inclusions in ultrahigh pressure metamorphic rocks from Shuanghe and Bixiling in Dabie Shan. Acta Petrologica Sinica. 16(1): 119~126 (in Chinese with English abstract).

    • Gao Xiaoying, Zheng Yongfei, Chen Yixiang. 2011. U-Pb ages and trace elements in metamorphic zircon and titanite from UHP eclogite in the Dabie orogen: Constraints on P-T-t path. Journal of Metamorphic Geology, 29(7): 721~740.

    • Gao Xiaoying, Zheng Yongfei, Chen Yixiang. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. Journal of Metamorphic Geology, 30: 193~212.

    • Gao Xiaoying, Zheng Yongfei, Chen Yixiang, Tang Haolan, Li Wancai. 2015. Zircon geochemistry records the action of metamorphic fluid on the formation of ultrahigh-pressure jadeite quartzite in the Dabie orogen. Chemical Geology, 419: 158~175.

    • Gao Xiaoying, Wang Ling, ChenYixiang, Zheng Yongfei, Chen Renxu, Huang Fang, Zhang Qiangqiang, Ji Min, Meng Ziyue. 2019. Geochemical evidence from coesite-bearing jadeite quartzites for large-scale flow of metamorphic fluids in a continental subduction channel. Geochimica et Cosmochimica Acta, 265: 354~370.

    • Geisler T, Schaltegger U, Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3(1): 43~50.

    • Gerya T V, Stöckhert B, Perchuk A L. 2002. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics, 21(6): 1056.

    • Gu Xiaotong, Wang Qin. 2020. Microstructure and effective viscosity of ultrahigh-pressure metamorphic rocks from the Dabie Mountains. Geological Journal of China Universities, 26(6): 601~616 (in Chinese with English abstract).

    • Hacker B R, Wang Qingchen. 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 14(4): 994~1006.

    • Hacker B R, Ratschbacher L, Webb L, Ireland T, Walker D, Dong Shuwen. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1-4): 215~230.

    • Harlov D. 2015. Fluids and geochronometers: Charting and dating mass transfer during metasomatism and metamorphism. Journal of the Indian Institute of Science, 2(95): 109~123.

    • Hermann J, Rubatto D, Korsakov A. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141(1): 66~82.

    • Hemingway B S, Bohlen S R, Hankins W B, Westrum J R, Kuskov O L. 1998. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary. American Mineralogist, 83: 409~418.

    • Hirth G, Teyssier C, Dunlap J W. 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences, 90(1): 77~87.

    • Huang Peng, Song Chuanzhong, Ren Shenglian, Lin Shoufa, Zhang Yan, Li Jiahao, Liu Huan, Wang Wei, Yang Fa, Liu Qineng. 2016. Tectonic property of the Beihuaiyang tectonic belt and its implication for the location of the suture zone between Yangtze Block and North China Block. Acta Geologica Sinia, 90(6): 1112~1129(in Chines with English abstract).

    • Huang Wuuliang, Wyllie P J. 1975. Melting reactions in the system KAlSi3O8-NaAlSi3O8-SiO2-H2O to 35 kilobars, dry and with excess water. Journal of Geology, 83(6): 737~748.

    • Ji Shaocheng, Zhao Pinglao, Xia Bin. 2003. Flow laws of multiphase materials and rocks from end-member flow laws. Tectonophysics, 370(1): 129~145.

    • Ji Wenbin, Lin Wei, Faure M, Shi Yonghong, Wang Qingchen. 2017. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: Implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China. International Journal of Earth Sciences, 106(4): 1311~1340.

    • Jiang Laili, Liu Yican, Su Wen, Wu Weiping. 1996. The deformation features of the ultrahigh-pressure metamorphic rocks in the Dabie Mountains and their geological implication. Geology of Anhui, 6(3): 7~17+86 (in Chinese with English abstract).

    • Jiang Laili, Wu Weiping, Fan Lianghong, Liu Yican, Shi Yonghong, Yu Xiaojian, Shen Huanxi, Chen Jinmiao. 1998. The geological structure features of the Hanchaangchong area, Qianshan, Anhui. Geology of Anhui, 8(1): 1~9 (in Chinese with English abstract).

    • Jiang Laili, Wu Weiping, Liu Yican, Li Huimin. 2003. U-Pb zircon and Ar-Ar hornblende ages of the Susong complex of the southern Dabie orogen and their geological implication. Acta Petrologica Sinica, 19(3): 497~505 (in Chinese with English abstract).

    • Jin Deshi, Xiao Yilin, Tan Dongbo, Wang Yangyang, Li Wancai, Su Wen, Li Xiaoguang. 2023. Supercritical fluid in deep subduction zones as revealed by multiphase fluid inclusions in an ultrahigh-pressure metamorphic vein. PNAS, 120: e2219083120.

    • Johnson E A. 2006. Water in nominally anhydrous crustal minerals: Speciation, concentration, and geologic significance. Reviews in Mineralogy and Geochemistry, 62(1): 117~154.

    • Keppler R. 2018. Crystallographic preferred orientations in eclogites—A review. Journal of Structural Geology, 115: 284~296.

    • Kronenberg A K, Kirby S H, Pinkston J. 1990. Basal slip and mechanical anisotropy of biotite. Journal of Geophysical Research, 95(B12): 19257~19278.

    • Li Le, Ji Shaocheng, Lin Wei. 2020. Tourmaline microboudinage: An indicator of its host rheology. Journal of Structural Geology, 138: 104096.

    • Li Shuguang, Jagoutz E, Xiao Yilin, Ge Ningjie, Chen Yizhi. 1996. Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrane: I. Sm-Nd isotope system. Science in China (Series D), 39(6): 597~609.

    • Li Shuguang, Li Huimin, Chen Yizhi, Xiao Yilin, Liu Deliang. 1997. Chronology of ultrahigh-pressure metamorphism in the Dabie Mountains and Su-Lu terrane——II. zircon U-Pb isotope system. Science in China (Series D), 27(3): 200~206 (in Chinese with English abstract).

    • Li Shuguang, Jagoutz E, Chen Yizhi, Li Qiuli. 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6): 1077~1093.

    • Li Xuping, Zheng Yongfei, Wu Yuanbao, Chen Fukun, Gong Bing, Li Yiliang. 2004. Low-t eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148(4): 443~470.

    • Li Zhonghai, Gerya T. 2009. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu UHP terrane in eastern China. Journal of Geophysical Research, 114: B09406.

    • Li Zhonghai, Liu Minqi, Gerya T. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Science China: Earth Sciences, 58: 1251~1268 (in Chinese with English abstract).

    • Lin Wei, Shi Yonghong, Wang Qingchen. 2009. Exhumation tectonics of the HP-UHP orogenic belt in Eastern China: New structural-petrological insights from the Tongcheng massif, Eastern Dabieshan. Lithos, 109(3-4): 285~303.

    • Lin Wei, Ji Wenbin, Shi Yonghong, Chu Yang, Li Qiuli, Chen Zechao, Liu Fei, Wang Qingchen. 2013. Multi-stage exhumation processes of the UHP metamorphic rocks: Implications from the extensional structure of Tongbai-Hong'an-Dabieshan orogenic belt. Chinese Science Bulletin, 58(23): 2259~2265 (in Chinese with English abstract).

    • Lin Wei, Ji Wenbin, Faure M, Wu Lin, Li Qiuli, Shi Yonghong, Scharer U, Wang Fei, Wang Qingchen. 2015. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China. Tectonophysics, 662: 256~270.

    • Liou J G, Zhang R Y, Jahn B M. 1997. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie Mountains, East-central China. Lithos, 41(1-3): 59~78.

    • Liou J G, Zhang R Y, Ernst W G, Rumble D, Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Reviews in Mineralogy, 37: 33~96.

    • Liou J G, Hacker B R, Zhang R Y. 2000. Into the forbidden zone. Science, 287(5456): 1215~1216.

    • Liou J G, Ernst W G, Zhang R Y, Tsujimori T, Jahn B M. 2009. Ultrahigh-pressure minerals and metamorphic terranes—The view from China. Journal of Asian Earth Sciences, 35(3-4): 199~231.

    • Lisle R J. 1977. Estimation of the tectonic strain ratio from the mean shape of deformed elliptical objects. Geologie en Mijnbouw, 56(2): 140~144.

    • Lisle R J. 1979 Strain analysis using deformed pebbles: The influence of initial pebble shape. Tectonophysics, 60(3-4): 263~277.

    • Liu Dunyi, Jian Ping. 2004. 243 Ma UHP and 228 Ma retrograde events of the Shuanghe jadeite quartzite, Eastern Dabie Mountains—SHRIMP dating, mineral inclusions and zircon REE patterns. Acta Geologica Sinica, 78(2): 211~217 (in Chinese with English abstract).

    • Liu Dunyi, Jian Ping, Kroner A, Xu Shutong. 2006. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters, 250: 650~666.

    • Liu Fulai, Gerdes A, Liou J G, Xue H M, Liang F H. 2006. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: Constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24(7): 569~589.

    • Liu Fulai, Gerdes A, Zeng Lingsen, Xue Huaimin. 2008. SHRIMP U–Pb dating, trace elements and the Lu-Hf isotope system of coesite-bearing zircon from amphibolite in the SW Sulu UHP terrane, eastern China. Geochimica Cosmochimica Acta, 72(12): 2973~3000.

    • Liu Fulai, Liou J G. 2011. Zircon as the best mineral for P-T- time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1~39.

    • Liu Penglei, Wu Yao, Liu Qiang, Zhang Junfeng, Zhang Li, Jin Zhenmin. 2014. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, (4): 86~101.

    • Liu Penglei, Wu Yao, Chen Yi, Zhang Junfeng, Jin Zhenmin. 2015. UHP impure marbles from the Dabie Mountains: Metamorphic evolution and carbon cycling in continental subduction zones. Lithos, 212-215: 280~297.

    • Liu Qiang. 2003. The deformation of Shuanghe meta-granitoid in the Dabie Mountains and its tectonic significance. Master's thesis of China University of Geosciences (in Chinese with English abstract).

    • Liu Qiang, Hermann J, Zhang Junfeng. 2013. Polyphase inclusions in theShuanghe UHP eclogites formed by subsolidus transformation and incipient melting during exhumation of deeply subducted crust. Lithos, 177: 91~109.

    • Liu Qiang, Hermann J, Zheng Shu, Zhang Junfeng. 2019. Evidence for UHP anatexis in the Shuanghe UHP paragneiss from inclusions in clinozoisite, garnet and zircon. Journal of Metamorphic Geology, 38(2): 128~155.

    • Liu Yican, Li S G, Gu X F, Xu S T, Chen B G. 2007. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. Journal of Metamorphic Geology, 25(9): 975~989.

    • Liu Yican, Gu Xiaofeng, Rolfo F, Chen Zhenyu. 2011a. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures. Journal of Asian Earth Sciences, 42(4): 607~617.

    • Liu Yican, Gu Xiaofeng, Li Shuguang, Hou Zhenhui, Song Biao. 2011b. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China: Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos, 122(1-2): 107~121.

    • Ma Yuan, Sun Siquan, Wu Changxiong, Li Shutao, Chen Mi. 2013. Zircon U-Pb anges and petro-geochemistry of Liemazui granite, Qichuan county, Hubei Province, China. Acta Mieralogica Sinica, 33(4): 698~704 (in Chinese with English abstract).

    • Massonne H J. 1995. Experimental and petrogenetic study of UHPM. In: Coleman R G and Wang X, eds. Ultrahigh Pressure Metamorphism. Cambridge: Cambridge University Press, 33~95.

    • Massonne H J. 2009. Hydration, dehydration, and melting of metamorphosed granitic and dioritic rocks at high- and ultrahigh-pressure conditions. Earth and Planetary Science Letters, 288(1-2): 244~254.

    • Okay A I, Xu Shutong, Sengor A C. 1989. Coesite from the Dabie Shan eclogites, central China. European Journal of Mineralogy, 1(4): 595~598.

    • Philippot P, van Roermund H L M. 1992. Deformation processes in eclogitic rocks: Evidence for the rheological delamination of the oceanic crust in deeper levels of subduction zones. Journal of Structural Geology, 14: 1059~1077.

    • Piepenbreier D, Stöckhert B. 2001. Plastic flow of omphacite in eclogites at temperatures below 500℃—Implications for interplate coupling in subduction zones. International Journal of Earth Sciences, 90(1): 197~210.

    • Raimbourg H, Jolivet L, Leroy Y. 2007. Consequences of progressive eclogitization on crustal exhumation, a mechanical study. Geophysical Journal International, 168: 379~401.

    • Ramsay J R, Huber N I. 1983. The Techniques of Modern Structural Geology. New York: Academic press, 1~307.

    • Rast M, Ruh J B. 2021. Numerical shear experiments of quartz-biotite aggregates: Insights on strain weakening and two-phase flow laws. Journal of Structural Geology, 149: 104375.

    • Ratschbacher L, Hacker B R, Webb L E, McWilliams M, Ireland T, Dong Shuwen, Calvert A, Chateigner D, Wenk H R. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research Atmospheres, 105(B6): 13303~13338.

    • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1): 123~138.

    • Rybacki E, Dresen G. 2004. Deformation mechanism maps for feldspar rocks. Tectonophysics, 382(3-4): 173~187.

    • Schertl H, Okay A L. 1994. Coesite inclusion in dolomite of Dabie Shan, China: Petrological and the geological significance. European Journal of Mineralogy, 6(6): 995~1000.

    • Schmidt M W, Poli S. 2003. Generation of mobile components during subduction of oceanic crust. Treatise Geochem, 3: 567~591.

    • Schwerdtner W M, Bennett P J, Janes T W. 1977. Application of L-S fabric scheme to structural mapping and paleostrain analysis. Canadian Journal of Earth Sciences, 14(5): 1021~1032.

    • Shea W T, Kronenberg A K. 1992. Rheology and deformation mechanisms of an isotropic mica schist. Journal of Geophysical Research. 97(B11): 15201~15237.

    • Shelton G L, Tullis J. 1981. Experimental flow laws for crustal rocks. Eos Transactions American Geophysical Union, 62: 396.

    • Shi Yonghong, Wang Cisong, Kang Tao, Xu Xufeng, Lin Wei. 2012. Petrological characteristics and zircon U-Pb age for Susong metamorphic complex rocks in Anhui Province. Acta Petrologica Sinica, 28(10): 3389~3402 (in Chinese with English abstract).

    • Shi Yonghong, Wang Juan, Li Qiuli, Lin Wei. 2013. The analysis of the temperature and pressure structure for metamorphic rocks in Dabie collision orogen. China Science Bulletin, 58(22): 2145~2152 (in Chinese with English abstract).

    • Shi Yonghong, Lin Wei, Ji Wenbin, Wang Qingchen. 2014. The architecture of the HP-UHP Dabie massif: New insights from geothermobarometry of eclogites, and implication for the continental exhumation processes. Journal of Asian Earth Sciences, 86: 38~58.

    • Shinevar W J, Behn M D, Hirth G. 2015. Compositional dependence of lower crustal viscosity. Geophysical Research Letters, 42(20): 4333~8340.

    • Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, melange formation, and prism accretion. Journal of Geophysical Research, 91: 10229~10245.

    • Su Wen, Xu Shutong, Jiang Laili, Liu Yican. 1995. Characteristics of jadeite-quartzite and associatedeclogite in Hanchangchong-Miaozhuyuan area, Qianshan. Geology of Anhui, 5(2): 7~21 (in Chinese with English abstract).

    • Su Wen, You Zhendong, Cong Boling, Ye Kai, Zhong Zhenqiu. 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 30(7): 611~614.

    • Thompson P, Parsons I, Graham C M, Jackson B. 1998. The breakdown of potassium feldspar at high water pressures. Contributions to Mineralogy and Petrology, 130(2): 176~186.

    • Tokle L, Hirth G, Benr W M. 2019. Flow laws and fabric transitions in wet quartzite. Earth and Planetary Science Letters, 505: 152~161.

    • Vannucchi P, Sage F, Morgan J P, Remitti F, Collot J Y. 2012. Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochemistry Geophysics Geosystems, 13(2): Q02003.

    • Wang L, Jin Z M, Kusky T, Xu H J, Liu X W. 2010. Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite andeclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology, 28(2): 163~182.

    • Wang Qiang, Wyman D A, Xu Jifeng, Jian Ping, Zhao Zhenhua, Li Chaofeng, Xu Wei, Ma Jinlong, He Bin. 2007. Early Cretaceous adakitic granites in the northern Dabie complex, central China: Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta, 71(10): 2609~2636.

    • Wang Qingchen. 2013. Exhumation of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Orogenic Belt. Acta Petrologica Sinica, 29(5): 1607~1620 (in Chinese with English abstract).

    • Wang Xiaomin, Liou J G, Mao H K. 1989. Coesite-bearing eclogite from the Dabie Mountains in central China. Geology, 17(12): 1085~1088.

    • Wang Xiaomin, Liou J G. 1991. Regional ultrahigh-pressure coesite-bearing eclogitic terrane in central China: Evidence from country rocks, gneiss, marble, and metapelite. Geology, 19(9): 933~936.

    • Wei Chunjing, Shan Zhengang. 1997. Metamorphism of the Susong Complex from the Southern Dabie Mountains, Anhui Province. Acta Petrologica Sinica, 13(3): 356~368 (in Chinese with English abstract).

    • Whitney D L, Evans B W. 2010. Abbreviations fornames of rock-forming minerals. American Mineralogist, 95(1): 185~187.

    • Wu Kaibin, Deng Xin, Yang Kunguang. 2013. Multistage Cretaceous magmatic event and its relationship with evolution of North Dabie orogen. Earth Science-Journal of China University of Geosciences, 38(S1): 43~52 (in Chinese with English abstract).

    • Wu Yuanbao, Chen Daogong, Xia Qunke, Cheng Hao. 2001. SIMS U-Pb dating of zircons Shuanghe orthogneiss, Dabie area. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 298~301 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei, Zhao Zifu, Gong Bing, Liu Xiaomin, Wu Fuyuan. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14): 3743~3761.

    • Xia Bin, Yuan Yajuan, Zhang Yuquan, Wang Min, Xia Lianze, Li He, Wang Fangyue, Zhang Hong, Wu Weiping. 2012. Zircon U-Pb ages of marble from Shuanghe Qianshan County and their geological significance. Acta Geologica Sinica, 86(4): 619~625 (in Chinese with English abstract).

    • Xia Qiongxia, Zheng Yongfei, Chen Yixiang. 2013. Protolith control on fluid availability for zircon growth during continental subduction-zone metamorphism in the Dabie orogen. Journal of Asian Earth Sciences, 67-68: 93~113.

    • Xia Qiongxia, Wang Haozheng, Zhou Ligang, Gao Xiaoying, Zheng Yongfei, Van Orman J A, Xu Haijun, Hu Zhaochu. 2016. Growth of metamorphic and peritectic garnets in ultrahigh-pressure metagranite during continental subduction and exhumation in the Dabie orogen. Lithos, 266-267: 158~181.

    • Xia Qunke. 2005. Water in the deep subducted continental plate: Message from NAMS. Bulletin of Mineralogy, Petrology and Geochemistry, 24(1): 1~6.

    • Xiao Yilin, Hoefs J, van den Kerkhof A M, Simon K, Fiebig J, Zheng Yongfei. 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43(8): 1505~1527.

    • Xie Zhi, Gao Tianshan, Chen Jiangfeng. 2004. Multi-stage evolution of gneiss from the North Dabie orogen: Chronological evidence from zircon U-Pb isotope system. Chinese Science Bulletin, 49(16): 1653~1659 (in Chinese with English abstract).

    • Xu Haijin, Ma Changqian, Ye Kai. 2007. Early Cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China: SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology, 240(3-4): 238~259.

    • Xu Shutong, Okay A I, Ji Shouyuan, Sengor A M C, Su Wen, Liu Yican, Jiang Laili. 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256(5053): 80~82.

    • Xu Shutong, Liu Yican, Chen Guangbiao, Compagnoni R, Rolfo F, He Mouchun, Liu Huifang. 2003. New finding of micro-diamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Science Bulletin, 48(10): 988~994.

    • Xu Xiang, Wang Qin. 2019. The Hualiangting-Mituo ductile shear zone in the Dabie Mountains: Implicaions for oblique and differential exhumation of ultrahigh-pressure metamorphic slices. Geological Journal of China Universities, 25(2): 182~196 (in Chinese with English abstract).

    • Xu Zhiqin, Zeng Lingsen, Liu Fulai, Yang Jingsui, Zhang Zeming, McWilliams M, Liou J G. 2006. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. Geological Society of America Special Papers, 403: 93~113.

    • Xu Zhiqin, Wang Qin, Tang Zhemin, Chen Fangyuan. 2009a. Fabric kinematics of ultrahigh-pressure metamorphic rocks from the main borehole of the Chinese Continental Scientific Drilling Project: Implications for continental subduction and exhumation. Tectonophysics, 475(2): 235~250.

    • Xu Zhiqin, Yang Wencai, Ji Shaocheng, Zhang Zeming, Yang Jingsui, Wang Qin, Tang Zhemin. 2009b. Deep root of a continent-continent collision belt: Evidence from the Chinese Continental Scientific Drilling (CCSD) deep borehole in the Sulu ultrahigh-pressure(HP–UHP) metamorphic terrane, China. Tectonophysics, 475(2): 204~219.

    • Xue Huaimin, Ma Fang, Zhao Xun, Wu Weiping. 2011. Characteristics and LA-ICP-MS zircon U-Pb ages of the Tianzhushan granitoid intrusive body, southeastern Dabie orogen. Acta Petrologica et Mineralogica, 30(5): 935~950 (in Chinese with English abstract).

    • Ye Kai, Cong Bolin, Ye Danian. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407(6806): 734~736.

    • Yuan Honglin, Wu Fuyuan, Gao Shan, Liu Xiaoming, Xu Ping, Sun Deyou. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411~2421.

    • Yuan Xuecheng, Klemperer S L, Tang Wenbing, Liu Laixiang, Chetwin E. 2003. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling. Geology, 31(5): 435~438.

    • Zeng Lingsen, Chen Jing, Chen Zhenyu, Chen Fangyuan, Gao Lie. 2009. K-cymrite in the Sulu UHP eclogites. Acta Petrologica Sinica, 25(9): 2141~2148 (in Chinese with English abstract).

    • Zhai Mingguo, Cong Bolin, Zhao Zhongyan, Wang Qingchen, Li Jiaju. 1992. High-pressure jadeite quartzite blocks in the Dabie Mountain eclogite belt and their geological significance. Chinese Science Bulletin, 37(11): 1013~1015 (in Chinese with English abstract).

    • Zhang J F, Green Ⅱ H W. 2007. Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. Journal of Metamorphic Geology, 25(2): 97~115.

    • Zhang J F, Shi F, Xu H J, Wang L, Feng S Y, Liu W L, Wang Y F, GreenⅡ H W. 2013. Petrofabric and strength of SiO2 near the quartz-coesite phase boundary. Journal of Metamorphic Geology, 31(1): 83~92.

    • Zhang Jianxin. 2020. The study of subduction channels: Progress, controversies, and challenges. Science China Earth Sciences, 63(12): 1831~1851.

    • Zhang Junfeng, Jin Zhenmin, Green Ⅱ H W, Jin Shuyan. 2000. Water in the continental deep subduction zone: Evidence from ultrahigh-pressure eclogite in the Dabie Mountains. Chinese Science Bulletin, 45(17): 1889~1894 (in Chinese with English abstract).

    • Zhang Junfeng, Green Ⅱ H W, Bozhilov K N. 2006. Rheology of omphacite at high temperature and pressure and significance of its lattice preferred orientations. Earth and Planetary Science Letters, 246(3-4): 432~443.

    • Zhang R Y, Liou J G, Zheng Y F, Fu B. 2003. Transition of UHP eclogites to gneissic rocks of low amphibolite facies during exhumation: evidence from the Dabie terrane, central China. Lithos, 70(3-4): 269~291.

    • Zhang Yueqiao, Qiu Erkang, Dong Shuwen, Li Jianhua, Shi Wei. 2022. Late Mesozoic intracontinental deformation and magmatism in North and NE China in response to multi-plate convergence in NE Asia: An overview and new view. Tectonophysics, 835: 229377.

    • Zhao Xixi, Coe R S. 1987. Palaeomagnetic constraints on the collision and rotation of North and South China. Nature, 327(6118): 141~144.

    • Zhao Zifu, Zheng Yongfei, Wei Chunsheng, Wu Yuanbao. 2004. Zircon U-Pb age, element and oxygen isotope geochemistry of Mesozoic. Acta Petrologica Sinica, 20(5): 1151~1174 (in Chinese with English abstract).

    • Zhao Zifu, Zheng Yongfei, Wei Chunsheng, Wu Yuanbao. 2007. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos, 93(3-4): 248~272.

    • Zheng Jianping, Sun Min, Griffin W L, Zhou Meifu, Zhao Guochun, Robinson P, Tang Huayun, Zhang Zhihai. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chemical Geology, 247(1-2): 282~304.

    • Zheng Yongfei. 2008. Progress in the study of ultrahigh pressure metamorphism and continental collision: an example from the Dabie-Sulu orogenic belt. Chinese Science Bulletin, 53(18): 2129~2152 (in Chinese with English abstract).

    • Zheng Yongfei, Fu Bin, Li Yiliang, Xiao Yilin, Li Shuguang. 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth and Planetary Science Letters, 155(1-2): 113~129.

    • Zheng Yongfei, Gong Bing, Zhao Zifu, Fu Bin, Li Yiliang. 2003. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane: carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos, 70(3): 321~343.

    • Zheng Yongfei, Zhou Jianbo, Wu Yuanbao, Xie Zhi. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47(8): 851~871.

    • Zheng Yongfei, Zhao Zifu, Chen Renxu. 2007. Geodynamics of continental collision and ultrahigh-pressure metamorphism: constraints from Chinese Continental Scientific Drilling project. Acta Petrologica Sinica, 23(12): 3078~3094 (in Chinese with English abstract).

    • Zheng Yongfei, Gao Xiaoying, Chen Renxu, Gao Tianshan. 2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen: Constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences, 40(2): 427~451.

    • Zheng Yongfei. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology, 328: 5~48.

    • Zheng Yongfei, Zhao Zifu, Chen Yixiang. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chinese Science Bulletin, 58(35): 4371~4377.

    • Zheng Yongfei, Chen Renxu, Xu Zheng, Zhang Shaobing. 2016. The transport of water in subduction zones. Science China Earth Sciences, 59(4): 651~681.

    • Zheng Yongfei, Chen Yixiang, Chen Renxu, Dai Liqun. 2022. Tectonic evolution of convergent plate margins and its geological effects. Science China Earth Sciences, 65(7): 1247~1276.

    • Zhou Taixi, Chen Jiangfeng, Zhang Xun, Li Xueming. 1995. Geochemistry of the North Huaiyang granite-syenite zone and its tectonic implication. Geological Review, 41(2): 144~151 (in Chinese with English abstract).

    • Zhu Guang, Song Chuanzhong, Wang Daoxuan, Liu Guosheng, Xu Jiawei. 2001. Studies on 40Ar/39Ar thermochronology of strike-slip time of the Tan-Lu fault zone and their tectonic implications. Science in China (Series D), 44(11): 1002~1009.

    • Zhu Guang, Liu Guosheng, Niu Manlan, Xie Chenglong, Wang Yongsheng, Xiang Biwei. 2009. Syn-collisional transform faulting of the Tan-Lu fault zone, East China. International Journal of Earth Sciences, 98(1): 135~155.

    • Zhu Guang, Liu Cheng, Gu Chengchuan, Zhang Shuai, Li Yunjian, Su Nan, Xiao Shiye. 2018. Oceanic plate subduction history in the western Pacific Ocean: Constraint from late Mesozoic evolution of the Tan-Lu fault zone. Science China Earth Sciences, 61(4): 386~405.

    • 曹毅, 宋述光. 2008. 俯冲带榴辉岩的变形作用及其对恢复俯冲-折返过程的意义. 地质通报, 27(10): 1646~1653.

    • 陈仁旭, 郑永飞, 龚冰. 2011. 大陆俯冲带流体活动: 超高压变质岩矿物水含量和稳定同位素制约. 岩石学报, 27(2): 451~468.

    • 陈燕, 魏春景, 张景森, 初航. 2005. 大别山南部高压一超高压变质地体中云母片岩和片麻岩的相平衡研究. 岩石学报, 21(6): 1657~1668.

    • 董火根, 郭震宇. 1996. 大别山双河超高压变质岩变形构造. 中国科学(D辑: 地球科学), 26(S1): 89~96.

    • 傅斌, 肖益林, 郑永飞, Touret J L R, Van den Kerkhof A M, Hoefs J. 2000. 大别山双河和碧溪岭超高压变质岩流体包裹体研究. 岩石学报, 16(1): 119~126.

    • 顾筱彤, 王勤. 2020. 大别山超高压变质岩的显微构造与有效黏度. 高校地质学报, 26(6): 601~616.

    • 黄鹏, 宋传中, 任升莲, Lin Shoufa, 张妍, 李加好, 刘欢, 王微, 杨帆, 刘啟能. 2016. 北淮阳构造带的属性及其对板块缝合线位置的启示. 地质学报, 90(6): 1112~1129.

    • 江来利, 刘贻灿, 苏文, 吴维平. 1996. 大别山超高压变质岩的变形特征及其地质意义. 安徽地质, 6(3): 7~17+86.

    • 江来利, 吴维平, 范良红, 刘贻灿, 石永红, 余小俭, 沈欢喜, 陈金苗. 1998. 安徽省潜山县韩长冲地区的地质构造特征. 安徽地质, 8(1): 1~9.

    • 江来利, 吴维平, 刘贻灿, 李惠民. 2003. 大别山南部宿松杂岩的U-Pb锆石和Ar-Ar角闪石年龄及其地质意义. 岩石学报, 19(3): 497~505.

    • 李曙光, 李惠民, 陈移之, 肖益林, 刘德良. 1997. 大别山-苏鲁地体超高压变质年代学——Ⅱ. 锆石U-Pb同位素体系. 中国科学(D辑), 27(3): 200~206.

    • 李忠海, 刘明启, Gerya T. 2015. 俯冲隧道中物质运移和流体-熔体活动的动力学数值模拟. 中国科学: 地球科学, 45(7): 881~899.

    • 林伟, 冀文斌, 石永红, 褚杨, 李秋立, 陈泽超, 刘飞, 王清晨. 2013. 高压—超高压变质岩石多期构造折返: 以桐柏-红安-大别造山带为例. 科学通报, 58(23): 2259~2265.

    • 刘敦一, 简平. 2004. 大别山双河硬玉石英岩的超高压变质和退变质事件-SHRIMP测年的证据. 地质学报, 78(2): 211~217.

    • 刘强. 2003. 大别山双河变质花岗岩变形特征及其大地构造意义. 武汉: 中国地质大学硕士毕业论文: 1~43.

    • 马元, 孙四权, 吴昌雄, 李书涛, 陈觅. 2013. 湖北蕲春烈马咀花岗岩锆石U-Pb年龄和岩石地球化学特征. 矿物学报, 33(4): 698~704.

    • 石永红, 王次松, 康涛, 徐旭峰, 林伟. 2012. 安徽省宿松变质杂岩岩石学特征和锆石U-Pb年龄研究. 岩石学报, 28(10): 3389~3402.

    • 石永红, 王娟, 聂峰, 曹晟, 康涛. 2016. 宿松变质杂岩中石榴子石-蓝晶石-硬绿泥石片岩形成条件及时限研究. 岩石学报, 32(2): 493~504.

    • 石永红, 王娟, 李秋立, 林伟. 2013. 大别造山带变质岩温度压力结构研究. 科学通报, 58(22): 2145~2152.

    • 王清晨. 2013. 大别山造山带高压—超高压变质岩的折返过程. 岩石学报, 29(5): 1607~1620.

    • 魏春景, 单振刚. 1997. 安徽省大别山南部宿松杂岩变质作用研究. 岩石学报, 13(3): 356~368.

    • 吴开彬, 邓新, 杨坤光. 2013. 北大别白垩纪花岗岩多期侵位与造山带演化的关系. 地球科学: 中国地质大学学报, 38(S1): 43~52.

    • 吴元保, 陈道公, 夏群科, 程昊. 2001. 大别山双河地区花岗质片麻岩锆石的离子探针定年. 矿物岩石地球化学通报, 20(4): 298~301.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 夏斌, 袁亚娟, 张玉泉, 王敏, 夏连泽, 李贺, 汪方跃, 张红, 吴维平. 2012. 安徽潜山县双河大理岩锆石U-Pb年龄及其地质意义. 地质学报, 86(4): 619~625.

    • 夏群科. 2005. 大陆深俯冲过程中的水: “名义上无水矿物(NAMs)”的信息. 矿物岩石地球化学通报, 24(1): 1~6.

    • 谢智, 高天山, 陈江峰. 2004. 北大别片麻岩的多阶段演化: 锆石U-Pb年代学证据. 科学通报, 49(16): 1653~1659.

    • 徐翔, 王勤. 2019. 大别山花凉亭-弥陀剪切带与超高压变质岩片的斜向差异折返. 高校地质学报, 25(2): 182~196.

    • 薛怀民, 马芳, 赵逊, 吴维平. 2011. 大别山造山带东南部天柱山花岗岩类侵入体的特征及其LA-ICP-MS锆石U-Pb年龄. 岩石矿物学杂志, 30(5): 935~950.

    • 曾令森, 陈晶, 陈振宇, 陈方远, 高利娥. 2009. 苏鲁超高压榴辉岩中钾长石的超高压相. 岩石学报, 25(9): 2141~2148.

    • 翟明国, 从柏林, 赵中岩, 王清晨, 李家驹. 1992. 大别山榴辉岩带的高压硬玉石英岩块体及其地质意义. 科学通报, 37(11): 1013~1015.

    • 章军锋, 金振民, Green H W, 金淑燕. 2000. 大陆深俯冲带中的水: 来自大别山超高压榴辉岩的证据. 科学通报, 45(17): 1889~1894.

    • 赵子福, 郑永飞, 魏春生, 吴元保. 2004. 大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究. 岩石学报, 20(5): 1151~1174.

    • 郑永飞. 2008. 超高压变质与大陆碰撞研究进展: 以大别-苏鲁造山带为例. 科学通报, 53(18): 2129~2152.

    • 郑永飞, 赵子福, 陈仁旭. 2007. 大陆碰撞和超高压变质的化学地球动力学: 来自中国大陆科学钻探的结果. 岩石学报, 23(12): 3078~3094.

    • 周泰禧, 陈江峰, 张巽, 李学明. 1995. 北淮阳花岗岩-正长岩带地球化学特征及其大地构造意义. 地质论评, 41(2): 144~151.