en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

贺文,女,1989年生。博士后,主要从事矿床成因研究。E-mail:798927632@qq.com。

通讯作者:

林彬,男,1987年生。副研究员,主要从事青藏高原矿产勘查和综合研究。E-mail:linbincags@126.com。

参考文献
Alva-Jimenez T. 2000. Variation in hydrothermal muscovite and chlorite composition in the highland valley porphyry Cu-Mo district, British Columbia, Canada. Master thesis of Geologist Universidad Nacional de Ingenieria, 1~155.
参考文献
Alva-Jimenez T, Tosdal R M, Dilles J H, Dipple G, Kent A J R, Halley S. 2020. Chemical variations in hydrothermal white mica across the highland valley porphyry Cu-Mo district, British Columbia, Canada. Economic Geology, 115(4): 903~926.
参考文献
Bird D K, Schiffman P, Elders W A, Williams A E, Mcdowell S D. 1984. Calc-silicate mineralization in active geothermal systems. Economic Geology, 79(4): 671~695.
参考文献
Bishop B P, Bird D K. 1987. Variation in sericite compositions from fracture-zones within the Coso hot-springs geothermal system. Geochimica et Cosmochimica Acta, 51(5): 1245~1256.
参考文献
Carrillo-Rosúa J, Morales-Ruano S, Esteban-Arispe I, Hach-Alí P F. 2009. Significance of phyllosilicate mineralogy and mineral chemistry in an epithermal environment: Insights from the Palai-Islica Au-Cu deposit (Almería, Se Spain). Clays and Clay Minerals, 57(1): 1~24.
参考文献
Duan Zhiming, Li Guangming, Zhang Hui, Duan Yaoyao. 2013. The formation and its geologic significance of Late Triassic-Jurassic accretionary complexes and constraints on metallogenic and geological settings in Duolong porphyry copper gold ore concentration area, northern Bangong Co-Nujiang suture zone, Tibet. Geological Bulletin of China, 32(5): 742~750 (in Chinese with English abstract).
参考文献
Einaudi M T, Hedenquist J W, Inan E E. 2003. Sulfdation state of fluids in active and extinct hydrothermal systems. Society of Economic Geologists Special Publication, 10: 285~313.
参考文献
Fang Xiang, Tang Juxing, Li Yanbo, Wang Qin, Ding Shuai, Zhang Zhi, Yang Chao, Li Yubin, Chen Hongqi, Wei Lujie, Ni Ma. 2014. Metallogenic element spatial distribution of the Naruo Copper (gold) deposit in the Duolong ore concentration of Tibet and its geochemical exploration model. Geology in China, 41(3): 936~950 (in Chinese with English abstract).
参考文献
Guo Na, Huang Yiru, Zheng Long, Tang Nan, Fu Yuan, Wang Cheng. 2017. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits. Acta Geoscientica Sinica, 38(5): 767~778 (in Chinese with English abstract).
参考文献
Guo Na, Shi Weixin, Huang Yiru, Zheng Long, Tang Nan, Wang Cheng, Fu Yuan. 2018. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique. Geological Bulletin of China, 37(2-3): 446~457 (in Chinese with English abstract).
参考文献
Halley S, Dilles J H, Tosdal R M. 2015. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Discovery, (100): 1~17.
参考文献
Han Zehua, Wang Rui, Tong Xuesong, Sun Fei, Li Yuyao, Liu Siyu, Xue Qingwen. 2021. Multi-scale exploration of giant Qulong porphyry deposit in a collisional setting. Ore Geology Reviews, 139: 104455.
参考文献
He Wen, Lin Bin, Yang Huanhuan, Fang Xiang, Song Yingxin, Wei Shaogang, Hou Lin. 2017. Fluid inclusion feature and its internal relationship with mineralization and epithermal alteration of the Tiegelongnan Cu-Au deposit. Acta Geoscientica Sinica, 38(5): 638~650 (in Chinese with English abstract).
参考文献
He Wen, Lin Bin, Yang Huanhuan, Song Yingxin. 2018. Studies of metallic and trace minerals of the Tiegelongnan Cu-Au deposit, central Tibet, China. Acta Geologica Sinica (English Edition), 92(3): 1123~1138.
参考文献
He Wen, Lin Bin, Wang Qin, Yang Huanhua, Song Yingxin. 2021. Sulphide geochemistry of the superlarge Tiegelongnan Cu (Au) deposit in Tibet, China: Implication for the mineralization process. Geological Journal, 56(8): 4249~4365.
参考文献
Hedenquist J W, Taran Y A. 2013. Modeling the formation of advanced argillic lithocaps: Volcanic vapor condensation above porphyry intrusions. Economic Geology, 108: 1523~1540.
参考文献
Hemley J J, Jones W R. 1964. Chemical aspects of hydrothermal alteration with emphasis on hydrogen ion metasomatism. Economic Geology, 59: 238~369.
参考文献
Hemley J J. 1959. Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O. American Journal of Science, 257(4): 241~270.
参考文献
Herrmann W, Blake M, Doyle M, Huston D, Kamprad J, Merry N, Pontual S. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfde deposits at Rosebery and western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96: 939~955.
参考文献
Lerchbaumer L, Audétat A. 2012. High Cu concentrations in vapor-type fluid inclusions: An artifact? Geochimica et Cosmochimica Acta, 88: 255~274.
参考文献
Li Dan, Wen Chunqi, Fei Guangchun, He Yangyang, Zhou Yu, Ning Mohuan. 2011. Discussion of sandstone composition and tectonic environment of the Bolong copper deposit, Tibet. Acta Mineralogica Sinica, 31(S1): 358~359 (in Chinese).
参考文献
Li Guangming, Duan Zhiming, Liu Bo, Zhang Hui, Dong Suiliang, Zhang Li. 2011. The discovery of Jurassic accretionary complexes in Duolong area, northern Bangong Co-Nujiang sature zone, Tibet, and its geologic significance. Geological Bulletin of China, 20(8): 1256~1260 (in Chinese with English abstract).
参考文献
Li Guangming, Zhang Xianan, Qin Kezhang, Sun Xingguo, Zhao Junxing, Yin Xianbo, Li Jinxiang, Yuan Huashan. 2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang terrane, central Tibet: Integrated evidence from geology, hydrothermal alteration and sulfide assemblages. Acta Petrologica Sinica, 31(8): 2307~2324 (in Chinese with English abstract).
参考文献
Lin Bin, Chen Yuchuan, Tang Juxing, Wang Qin, Song Yang, Yang Chao, Wang Wenlei, He Wen, Zhang Lejun. 2017a. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang metallogenic belt of Tibet, China: Implication for generation of super-large deposit. Acta Geoligica Sinica (English Edition), 91: 602~616.
参考文献
Lin Bin, Tang Juxing, Chen Yuchuan, Song Yang, Hall G, Wang Qin, Yang Chao, Fang Xiang, Duan Jilin, Yang Huanhuan, Liu Zhibo, Wang Yiyun, Feng Jun. 2017b. Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes. Resource Geology, 67(1): 1~21.
参考文献
Lin Bin, Fang Xiang, Wang Yiyun, Yang Huanhuan, He Wen. 2019. Petrologic genesis of ore-bearing porphyries in Tiegelongnan giant Cu (Au, Ag) deposit, Tibet and its implications for the dynamic of Cretaceous mineralization, Duolong. Acta Petrologica Sinica, 35(3): 642~664 (in Chinese with English abstract).
参考文献
Lin Bin, Tang Juxing, Chen Yuchuan, Baker M, Song Yang, Yang Huanhuan, Wang Qin, He Wen, Liu Zhibo. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet. Gondwana Research, 66: 168~182.
参考文献
Liu Zhibo, Wang Wenlei, Song Yang, Wang Qin. 2017. Geo-information extraction and integration of ore-controlling structure in the Duolong ore concentration area of Tibet. Acta Geoscientica Sinica, 38(5): 803~812 (in Chinese with English abstract).
参考文献
Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Economic Geology, 70(3): 577~583.
参考文献
Parry W T, Ballantyne J M, Jacobs D C. 1984. Geochemistry of hydrothermal sericite from Roosevelt hot spring and the Tintic and Santa-Tiata porphyry copper systems. Economic Geology, 79(1): 72~86.
参考文献
Post J L, Noble P L. 1993. The near-infrared combination band frequencies of dioctohedral smectites, micas and illites. Clays and Clay Minerals, 41: 639~644.
参考文献
Rieder M, Cavazzini G, D'yakonov Y S, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval' P V, Mueller G, Neiva A M, Radoslovich E W, Robert J L. 1998. Nomenclature of the micas. Clays and Clay Minerals, 46: 586~595.
参考文献
Seedorff E, Einaudi M T. 2004. Henderson porphyry molybdenum system, Colorado II. decoupling of introduction and deposition of metals during 705 geochemical evolution of hydrothermal fluids. Economic Geology, 99: 39~72.
参考文献
Sillitoe R H. 1993. Epithermal models: Genetic types, geometrical controls and shallow features. Geological Association of Canada Special Paper, 40: 403~417.
参考文献
Song Yang, Tang Juxing, Qu Xiaoming, Wang Denghong, Xin Hongbo, Yang Chao, Lin Bin. 2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition. Advances in Earth Science, 29(7): 795~809 (in Chinese with English abstract).
参考文献
Song Yang, Yang Huanhuan, Lin Bin, Liu Zhibo, Wang Qin, Gao Ke, Yang Chao, Fang Xiang. 2017. The preservation system of epithermal deposits in South Qiangtang terrane of central Tibetan Plateau and its significance: A case study of the Tiegelongnan superlarge deposit. Acta Geoscientica Sinica, 38(5): 659~669 (in Chinese with English abstract).
参考文献
Song Yang, Yang Chao, Wei Shaogang, Yang Huanhuan, Fang Xiang, Lu Hongbo. 2018. Tectonic control, reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu (Au) deposit, central Tibet, China. Minerals, 8(9): 398.
参考文献
Song Yang, Tang Juxing, Liu Zhibo, Li Faqiao, Wang Qin, Xiao Yang, Wang Yanglin. 2019. Mechanism of Tiegelongnan-Duobuza ramp style ore-controlling structure, Tibet: Evidence from geophysical exploration. Mineral Deposits, 38(6): 1263~1277 (in Chinese with English abstract).
参考文献
Sun Jia, Mao Jingwen, Beaudoin G, Duan Xianzhe, Yao Fojun, Ouyang Hegen, Wu Yue, Li Yubin, Meng Xuyang. 2017. Geochronology and geochemistry of porphyritic intrusions in the Duolong porphyry and epithermal Cu-Au district, central Tibet: Implications for the genesis and exploration of porphyry copper deposits. Ore Geology Reviews, 80: 1004~1019.
参考文献
Sun Weidong, Liang Huaying, Ling Mingxing, Zhan Meizhen, Ding Xing, Zhang Hong, Yang Xiaoyong, Li Yiliang, Ireland T R, Wei Qirong, Fan Weiming. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263~275.
参考文献
Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.
参考文献
Tang Juxing, Sun Xingguo, Ding Shuai, Wang Qin, Wang Yiyun, Yang Chao, Chen Hongqi, Li Yanbo, Li Yubin, Wei Lujie, Zhang Zhi, Song Junlong, Yang Huanhuan, Duan Jilin, Gao Ke, Fang Xiang, Tan Jiangyun. 2014a. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area, Tibet. Acta Geoscientica Sinica, 35(1): 6~10 (in Chinese with English abstract).
参考文献
Tang Juxing, Wang Qin, Yang Chao, Ding Shuai, Lang Xinghai, Liu Hongfei, Huang Yong, Zheng Wenbao, Wang Liqiang, Gao Yiming, Feng Jun, Duan Jilin, Song Yang, Wang Yiyun, Lin Bin, Fang Xiang, Zhang Zhi, Yang Huanhuan. 2014b. Two porphyry-epithermal deposit metallogenic subseries in Tibetan Plateau: “practice of absence prospecting” deposit metallogenic series. Mineral Deposits, 33(6): 1151~1170 (in Chinese with English abstract).
参考文献
Tang Juxing, Song Yang, Wang Qin, Lin Bin, Yang Chao, Guo Na, Fang Xiang, Yang Huanhuan, Wang Yiyun, Gao Ke, Ding Shuai, Zhang Zhi, Duan Jilin, Chen Hongqi, Li Dengkui, Feng Jun, Liu Zhibo, Wei Shaogang, He Wen, Song Junlong, Li Yanbo, Wei Lujie. 2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit: The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet. Acta Geosicentica Sinica, 37(6): 663~690 (in Chinese with English abstract).
参考文献
Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bing. 2017. Mineralization, exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571~613.
参考文献
Tang Nan, Lin Bin, Wang Yiyun, Li Jiajun. 2021. Application of short-wavelength infrared spectroscopy in porphyry-epithermal system: A case study of Tiegelongnan super-large copper (gold) deposit, Tibet. Acta Geologica Sinica, 95(8): 2613~2627 (in Chinese with English abstract).
参考文献
Tappert M, Rivard B, Giles D, Tappert R, Mauger A. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53: 26~38.
参考文献
Uribe-Mogollon C, Maher K. 2018. White mica geochemistry of the copper cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113(6): 1269~1295.
参考文献
Wang Rui, Cudahy T, Laukamp C, Walshe J L, Bath A, Mei Yuan, Young C, Roache T J, Jenkins A, Roberts M, Barker A, Laird J. 2017. White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, western Australia. Economic Geology, 112(5): 1153~1176.
参考文献
Wang Yiyun, Tang Juxing, Song Yang, Yang Chao, Lin Bin, Gao Ke. 2008. A study of colusite from Tiegelongnan supperlarge Cu (Au, Ag) deposit and its geological significance. Mineral Deposit, 37(6): 1281~1295 (in Chinese with English abstract).
参考文献
Wang Yurong, Hu Shouxi. 2000. Experimental study on gold activation and migration during potassium metasomatic alteration—a case study of gold deposits in North China Craton. Science China Earth Sciences, 30(5): 499~508 (in Chinese with English abstract).
参考文献
Xue Qingwen, Wang Rui, Liu Siyu, Shi Weixin, Tong Xuesong, Li Yuyao, Sun Fei. 2021. Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, southern Tibet. Ore Geology Reviews, 134: 104156.
参考文献
Yang Chao, Tang Juxing, Wang Yiyun, Yang Huanhuan, Wang Qin, Sun Xingguo, Feng Jun, Yin Xianbo, Ding Shuai, Fang Xiang, Zhang Zhi, Li Yubin. 2014. Fluid and geological characteristics researches of southern Tiegelong epithermal porphyry Cu-Au deposit in Tibet. Mineral Deposits, 33(6): 1287~1305 (in Chinese with English abstract).
参考文献
Yang Chao, Beaudoin Georges, Tang Juxing, Song Yang, Zhang Zhi. 2020a. Hydrothermal fluid evolution at the Tiegelongnan porphyry-epithermal Cu (Au) deposit, Tibet, China: Constraints from H and O stable isotope and in-situ S isotope. Ore Geology Reviews, 125, DOI: https: //doi. org/10. 1016/j. oregeorev. 2020. 103694.
参考文献
Yang Chao, Tang Juxing, Beaudoin Georges, Song Yang, Lin Bin, Wang Qin, Fang Xiang. 2020b. Geology and geochronology of the Tiegelongnan porphyry-epithermal Cu (Au) deposit, Tibet, China: Formation, exhumation and preservation history. Ore Geology Reviews, 123, DOI: 10. 1016/j. oregeorev. 2020. 103575.
参考文献
Yang Huanhuan, Song Yang, Dilles John H, Sousa Francis, Danisik Martin, Yang Chao. 2019. The thermal-tectonic history of the Duolong ore district: Evidence from apatite (U-Th)/He dating. Acta Petrologica Sinica, 35(3): 867~878 (in Chinese with English abstract).
参考文献
Zhang Xianan, Li Guangming, Qin Kezhang, Lehmann Bernd, Li Jinxiang, Zhao Junxing. 2020. Porphyry to epithermal transition at the Rongna Cu-(Au) deposit, Tibet: Insights from H-O isotopes and fluid inclusion analysis. Ore Geology Reviews, DOI: https: //doi. org/10. 1016/j. oregeorev. 2020. 103585.
参考文献
段志明, 李光明, 张晖, 段瑶瑶. 2013. 西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束. 地质通报, 32(5): 742~750.
参考文献
方向, 唐菊兴, 李彦波, 王勤, 丁帅, 张志, 杨超, 李玉彬, 陈红旗, 卫鲁杰, 尼玛. 2014. 西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型. 中国地质, 41(3): 936~950.
参考文献
郭娜, 黄一入, 郑龙, 唐楠, 伏媛, 王成. 2017. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例. 地球学报, 38(5): 767~778.
参考文献
郭娜, 史维鑫, 黄一入, 郑龙, 唐楠, 王成, 伏媛. 2018. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建. 地质通报, 37(Z1): 446~457.
参考文献
贺文, 林彬, 杨欢欢, 方向, 宋英昕, 韦少港, 侯淋. 2017. 西藏铁格隆南Cu-Au矿床成矿流体特征及与矿化蚀变的内在联系. 地球学报, 38(5): 638~650.
参考文献
李丹, 温春齐, 费光春, 何阳阳, 周玉, 宁墨奂. 2011. 西藏波龙铜矿床的砂岩成分与构造环境探讨. 矿物学报, 31(S1): 358~359.
参考文献
李光明, 段志明, 刘波, 张晖, 董随亮, 张丽. 2011. 西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义. 地质通报, 30(8): 1256~1260.
参考文献
李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、热液蚀变及金属矿物组合证据. 岩石学报31(8): 2307~2324.
参考文献
林彬, 方向, 王艺云, 杨欢欢, 贺文. 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示. 岩石学报, 35(3): 642~664.
参考文献
刘治博, 王文磊, 宋扬, 王勤. 2017. 多龙矿集区控矿构造信息提取、识别与融合. 地球学报, 38(5): 803~812.
参考文献
宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 2014. 西藏班公湖-怒江成矿带研究进展及一些新认识. 地球科学进展, 29(7): 795~809.
参考文献
宋扬, 杨欢欢, 林彬, 刘治博, 王勤, 高轲, 杨超, 方向. 2017. 青藏高原羌塘地体南缘浅成低温热液成矿系统的保存机制及其重要意义——以铁格隆南超大型矿床为例. 地球学报, 38(5): 659~669.
参考文献
宋扬, 唐菊兴, 刘治博, 李发桥, 王勤, 肖扬, 王阳玲. 2019. 西藏铁格隆南-多不杂矿床对冲储矿机制——地球物理勘查的证据. 矿床地质, 38(6): 1263~1277.
参考文献
唐菊兴, 孙兴国, 丁帅, 王勤, 王艺云, 杨超, 陈红旗, 李彦波, 李玉彬, 卫鲁杰, 张志, 宋俊龙, 杨欢欢, 段吉琳, 高轲, 方向, 谭江云. 2014a. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床. 地球学报, 35(1): 6~10.
参考文献
唐菊兴, 王勤, 杨超, 丁帅, 郎兴海, 刘鸿飞, 黄勇, 郑文宝, 王立强, 高一鸣, 冯军, 段吉琳, 宋杨, 王艺云, 林彬, 方向, 张志, 杨欢欢. 2014b. 青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其“缺位找矿”之实践. 矿床地质, 33(6): 1151~1170.
参考文献
唐菊兴, 宋扬, 王勤, 林彬, 杨超, 郭娜, 方向, 杨欢欢, 王艺云, 高轲, 丁帅, 张志, 段吉琳, 陈红旗, 粟登逵, 冯军, 刘治博, 韦少港, 贺文, 宋俊龙, 李彦波, 卫鲁杰. 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床. 地球学报, 37(6): 663~690.
参考文献
唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571~613.
参考文献
唐楠, 林彬, 李玉彬, 王艺云, 李佳俊. 2021. 短波红外光谱技术在斑岩-高硫化型浅成低温热液矿床中的应用——以西藏铁格隆南超大型铜(金)矿床为例. 地质学报, 95(8): 2613~2627.
参考文献
王艺云, 唐菊兴, 宋扬, 杨超, 林彬, 高轲. 2008. 西藏多龙矿集区铁格隆南超大型Cu(Au、Ag)矿床硫锡砷铜矿研究及其地质意义. 矿床地质, 37(6): 1281~1295.
参考文献
王玉荣, 胡受奚. 2000. 钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例. 中国科学: D辑, 30(5): 499~508.
参考文献
杨超, 唐菊兴, 王艺云, 杨欢欢, 王勤, 孙兴国, 冯军, 印贤波, 丁帅, 方向, 张志, 李玉彬. 2014. 西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究. 矿床地质, 33(6): 1287~1305.
参考文献
杨欢欢, 宋扬, Dilles John H, Sousa Francis, Danisik Martin, 杨超. 2019. 西藏多龙矿集区热构造演化历史——来自磷灰石(U-Th)/He的证据. 岩石学报, 35(3): 867~878.
目录contents

    摘要

    铁格隆南矿床产出了西藏班公湖-怒江成矿带多龙矿集区最大的斑岩-高硫型铜(金银)成矿系统。由于高硫型矿化与蚀变对斑岩型矿化和蚀变的广泛叠加,导致其成矿系统结构和成矿作用机制变得十分复杂,一定程度阻碍了其精细成矿模型的构建。本文基于铁格隆南矿床现有的勘查和研究成果,从矿物学的角度,以白云母为典型蚀变矿物,通过详细的镜下鉴定、扫描电镜和电子探针分析,详细揭示不同空间位置、不同产状白云母的矿物学特征和成因,探究其对铁格隆南矿床成矿机制的指示意义。结果显示,铁格隆南矿床的热液白云母主要由白云母端元、伊利石端元、绿鳞石端元以及少量钠云母端元组成。矿体中白云母与铜矿物具有成因联系。在深部的早期水岩反应中,白云母主要与黄铜矿伴生,热液蚀变斑岩形成的白云母呈现高Si低Al的特征,而热液蚀变砂岩呈高Al低Si的特征。随着流体向浅部继续运移,白云母共生的金属矿化转换为斑铜矿和铜蓝,多形成高Al低Si的白云母。相对于在侵入岩中产出的白云母,在砂岩中形成的白云母的FeT、Fe3+、Na+含量更高。侵入岩中形成富Fe2+白云母,指示热液还原性较强。此外,在黄铁绢英岩化带较中—浅部产出的白云母常与较多高岭石和铜蓝、斑铜矿伴生,指示了热液中的SO2发生聚集、温度降低、酸性增强并导致水岩反应增强和矿质沉淀的过程。综上,白云母与不同矿物组合及其地球化学特征,对成矿流体环境及勘查评价有良好的指示意义。

    Abstract

    The Tiegelongnan deposit yields the largest porphyry-high sulfidation Cu (Au, Ag) mineralization system in the Bangong-Nujiang metallogenic belt of Tibet. The advanced argillic alteration was widely imposed on the phyllic zone resulting in a complex mineralization process and metallogenic system that impedes the construction of an accurate metallogenic model. Based on the previous exploration and research on the Tiegelongnan deposit, we mainly focus on the typical alteration mineral (muscovite). With the objective of studying the metallogenic mechanism of the Tiegelongnan deposit, we investigate its mineralogical characteristics under scanning electron microscope and electron microscope, and uncover the genesis of muscovite which was produced in different conditions and locations. Finally, the significance of the mineralization mechanism is discussed with all the geochemical analyses. It is proved that the muscovite of the Tiegelongnan deposit is composed of muscovite, illite and celadonite endmembers as well as minor paragonite endmembers. In the ore-body muscovite and copper minerals have a close paragenetic link. In the early-stage water-rock interactions in deep levels, high Si and low Al muscovite-chalcopyrite were produced in porphyries, while high Al and low Si muscovite-chalcopyrite formed in sandstone. With the progression of hydrothermal evolution towards shallower levels, the sulfides graded to bornite and covellite and the muscovite with high Al and low Si content was produced. Besides, muscovites from the altered sandstones are also enriched in FeT, Fe3+, Na+ compared to those present in intrusions. Fe2+-rich muscovite in porphyries indicates a reduced hydrothermal condition. In the medium-shallow level of the phyllic alteration zone of the Tiegelongnan deposit, muscovites frequently occur with a certain amount of kaolinite as well as bornite and covellite, which reflects that the SO2 enrichment, temperature decrease and acid increase resulted in a stronger water-rock interaction and copper precipitation. All in all, different mineral assemblages concerning with muscovite and the distinct muscovite geochemical characteristics have important implications for the hydrothermal conditions and the exploration prospecting.

  • 黄铁绢英岩化蚀变是斑岩成矿系统中最典型的蚀变类型,同时与铜多金属矿化密切相关。黄铁绢英岩化代表性蚀变矿物白云母,常作为中酸性岩浆热液与大气降水或地下水混合形成的中—弱酸性流体与围岩中斜长石、角闪石或黑云母等硅酸盐矿物置换交代的产物。其矿物学结构、地球化学特征以及短波红外波谱特征等,对揭示成矿流体演化、金属元素沉淀以及勘查评价等均具有重要的指示意义。在热液系统中,白云母受等蚀变矿物容易受到热液性质(成分、温度、压力、pH等)、围岩性质、水/岩比例等因素的影响(Bishop and Bird,1987;Alba-Jimenz,2000;Carrillo-Rosúa et al.,2009Han Zehua et al.,2021Xue Qingwen et al.,2021)。现今活跃的地热系统(主要指热泉)形成了与岩浆热液系统相似的白云母(±碳酸盐±石英),其热液温度、压力、pH值具有可直接测量的优势,为研究岩浆热液成矿系统提供了重要的参考价值(Bird et al.,1984;Bishop and Bird,1987)。前人研究了地热系统中的白云母,认为其K、(Mg+Fe)和四面体上的Al含量主要受控于热液温度,并与之呈正相关关系(Bishop and Bird,1987)。然而,岩浆热液成矿系统中的热液成分和性质、围岩性质、水-岩比例等变化更大,白云母成因更加复杂(Halley et al.,2015Wang Rui et al.,2017)。不同的研究成果对岩浆热液成矿系统的白云母有不同解释:有研究指出,富Na和/或富Si的白云母指示早期高温的热液条件(Parry et al.,1984Alva-Jimenez et al.,2020);从热动力学角度,有研究认为热液中Si的含量、饱和度,极大地影响了多硅白云母或富铝白云母的形成(Wang Rui et al.,2017);也有研究测得斑岩成矿系统的白云母成分变化巨大,且无规律(Carrillo-Rosúa et al.,2009)。综上,能够引起白云母成分变化因素很多,然而对于不同成分白云母的具体成因和对矿化的指示意义,还有待进一步讨论。

  • 铁格隆南斑岩-浅成低温热液铜(金银)成矿系统,也是多龙矿集区乃至整个班公湖-怒江成矿带最大的成矿系统。唐菊兴等(2014a2014b)曾基于蚀变和矿化矿物组合揭示其浅部高硫型成矿作用特征。方向等(2014)和Lin Bin et al.(2017a,2017b,2019)则详细揭示了其不同的岩体侵位和成矿作用时限,并揭示深部存在斑岩蚀变与矿化,进而构建一个斑岩-高硫型浅成低温铜金成矿系统格架(李光明等,2015唐菊兴等,2017)。随着研究工作的不断深入,铁格隆南的详细矿物组合(王艺云等,2008郭娜等,20172018He Wen et al.,20182021林彬等,2019)、流体演化特征(杨超等,2014贺文等,2017Yang Chao et al.,2020aZhang Xianan et al.,2020)、同位素组成(Lin Bin et al.,2017a2017bYang Chao et al.,2020b)、成矿作用背景(Sun Jia et al.,2017Song Yang et al.,2018林彬等,2019宋扬等,2019)、控矿构造(刘治博等,2017)和热构造演化历史(杨欢欢等,2019)及勘查评价模型(唐菊兴等,2017)都逐步清晰。然而,作为西藏首个斑岩-高硫型浅成低温热液矿床,铁格隆南矿床深部的斑岩矿化与蚀变特征被浅部的高硫化型矿化和高级泥化蚀变强烈叠加,导致整个成矿系统结构和成矿作用机制变得更加复杂。

  • 为进一步详细揭示铁格隆南超大型铜金矿床的成矿作用机制,本文在前人研究成果的基础上,选择矿区内最广泛分布的蚀变矿物白云母,通过详细的镜下鉴定、扫描电镜和电子探针分析,揭示不同空间位置不同产状的白云母的矿物学特征,并结合其地球化学分析,探究其对成矿作用机制的指示意义,进而丰富和完善铁格隆南斑岩-浅成低温热液矿床成矿作用理论,为多龙矿集区及班公湖-怒江类似矿床的勘查评价提供科学依据。

  • 1 成矿地质背景

  • 班公湖-怒江成矿带(以下简称班-怒带)位于拉萨地块和羌塘地块之间,整体上呈东西向展布,延伸数千千米。班-怒带发育强烈的中生代火山-岩浆活动,与斑岩型铜金矿床有关的侵入岩主要分布于该成矿带西段,成岩年龄主要为120~105 Ma、90~85 Ma左右(宋扬等,20142017)。多龙矿集区的成矿活动主要与120~105 Ma的岩浆活动有关。岩体主要受NE向断裂控制。矿集区出露中石炭统展金组(C2z)和曲地组(C2q)、下二叠统龙格组(P1lg)、上三叠统日干配错组(T3r)、下侏罗统曲色组(J1q)和中—下侏罗统色哇组(J1-2s)、下白垩统美日切错组(K1m)和上白垩统阿布山组(K2a)、新近系的康托组(N3k)。其中,大面积出露的下侏罗统曲色组(J1q)和中—下侏罗统色哇组(J1-2s)主要由砂岩、粉砂岩、泥岩,以及夹持于地层间的硅质岩、玄武岩组成,为一套有序的深海—半深海复理石碎屑建造。此外,地层中还不均匀分布了玄武岩、硅质岩、超基性岩、砂岩等块体,与有序的曲色组、色哇组地层共同形成了一套总体无序、局部有序的增生杂岩(李光明等,2011段志明等,2013)。局部产出的110 Ma美日切错组安山岩,对铁格隆南矿床的保存起到了重要作用(宋扬等,2017杨欢欢等,2019)。

  • 铁格隆南地层出露简单,主要为色哇组(J1-2s)、美日切错组(K1m)、阿布山组(K2a)、康托组(N3k),与成矿相关的花岗闪长斑岩在矿区内未出露地表,在16号勘探线以东的钻孔中有不同程度的揭露(图1a、b)。系统的岩芯编录、显微镜鉴定和短波红外蚀变填图结果展示了整个矿床的蚀变-矿化分带特征(图1b、c;Lin Bin et al.,2017a2017b郭娜等,2018)。

  • (1)不同岩性中发育的蚀变-矿化有所不同。花岗闪长斑岩中的斑晶占总体积的40%,石英约15%,长石约23%,黑云母和角闪石约2%(以黑云母为主),基质为长英质,主要发育黄铁绢英岩化,斜长石、黑云母、角闪石斑晶部分或完全被蚀变为白云母、高岭石、绿泥石等,主要产出黄铜矿、斑铜矿、铜蓝。沉积围岩的蚀变-矿化更为多变,在不同部位发育高级泥化、黄铁绢英岩化,不同蚀变随空间变化产出不同的铜矿物。

  • (2)不同的蚀变-矿化组合呈现了较好的空间分布规律,不同的蚀变带产出了具有代表性的蚀变矿物。高级泥化主要发育于整个矿床西侧的浅部—中部,黄铁绢英岩化主要形成于矿床东侧,少量钾化发育于矿床深部。高级泥化带广泛发育明矾石、高岭石,且在其中—浅部产出磷钙铝矾,在其中—深部产出叶腊石,其中明矾石、磷钙铝矾和叶腊石是高级泥化带具有代表性的蚀变矿物。该蚀变带主要产出砷黝铜矿、硫砷铜矿、斑铜矿、铜蓝、辉铜矿等。黄铁绢英岩化带的中—深部,以发育白云母、碳酸盐和少量绿泥石为特征,常见强烈的黄铜矿化。黄铜矿呈半自形中—粗粒,与高级泥化带中的黄铜矿明显不同,不同之处在于高级泥化带的黄铜矿以被交代的形式产出,呈他形,并且在铜矿物组合中的占比极少。该蚀变带还产出了大量斑铜矿,主要与白云母伴生。此外,在黄铁绢英岩化带的边部带,常见大量铜蓝,主要与白云母、高岭石、绿泥石等伴生。整体来看,矿体主要形成于高级泥化带和黄铁绢英岩化带之中,斑铜矿常与白云母、叶腊石、明矾石、高岭石、磷钙铝矾等伴生,铜蓝常与白云母、高岭石、明矾石等伴生,这两种铜矿物在两个蚀变带均有大量产出,而大量黄铜矿只形成于黄铁绢英岩化带,砷黝铜矿、硫砷铜矿只大量形成于高级泥化带,明矾石、磷钙铝矾是高级泥化带具有代表性的蚀变矿物,而碳酸盐只见于黄铁绢英岩化带,绿泥石主要见于黄铁绢英岩化带边部(主要产于蚀变带深部和其外带),高岭石在不同蚀变带均有不同程度的分布。

  • 图1 西藏铁格隆南矿床地质简图(a)及蚀变剖面图(b,c)(据Lin Bin et al.,2017a2017b修改)

  • Fig.1 Simplified geologic map (a) and cross sections (b, c) of the Tiegelongnan deposit in Tibet (modified after Lin Bin et al., 2017a, 2017b)

  • (3)不同蚀变带在空间上紧密套合,局部可见蚀变叠加的现象,这些叠加关系展示了不同蚀变带的形成次序。矿床局部(钻孔约800 m处)见明矾石-高岭石-硫砷铜矿-斑铜矿-铜蓝将粗粒黄铜矿蚀变为港湾状,表明高级泥化带刺穿了黄铁绢英岩化带(He Wen et al.,2021),指示高级泥化带的形成时间滞后于深部的黄铁绢英岩化带。此外,铁格隆南矿床还形成了大范围的致密青磐岩化带,黄铁绢英岩化带边部的白云母-碳酸盐-斑铜矿-铜蓝-硫砷铜矿组合或呈火焰状、或沿青磐岩化带裂隙,切入青磐岩化带之中,指示前者的形成时间晚于后者。除此之外,两个蚀变带的接触部位也可见平缓的接触界线。综上,铁格隆南矿床最为发育的三个蚀变带的形成次序为:青磐岩化带→黄铁绢英岩化带→高级泥化带。

  • 此次主要对巨厚的黄铁绢英岩化带展开研究,在该蚀变带中,白云母与铜矿化关系密切,是本次研究关注的重点。

  • 2 样品采集和实验方法

  • 2.1 样品采集

  • AB剖面(东西向)和CD剖面(南北向)是矿床的典型剖面,两条剖面穿过了矿床中心,也切穿了矿床的高级泥化带、黄铁绢英岩化带。野外工作主要对这两个剖面上的岩芯进行了编录和采样。本次研究共采集了200件岩芯样品,全部磨制成光薄片并进行镜下鉴定,再从中选择了12件具有代表性的样品进行实验分析(表1)。所有实验分析样品均来自黄铁绢英岩化带,具有典型的浸染状构造。如图2所示,实验样品的白云母伴随了浸染状的黄铜矿(图2a~c)、斑铜矿(图2d~f)和铜蓝(图2g~i)。像这样稳定的白云母-铜矿物组合可在矿体中延伸几十米甚至上百米。从显微镜下观察,白云母-铜矿物常沿着砂岩层理、裂隙等薄弱带产出,构成定向延伸的蚀变-矿化矿物组合,形成类似于平直或弯曲的“脉状”形态(图2b、e)。这种蚀变-矿化“脉”的宽度变化大,一般变化于几微米至几厘米之间。铜矿物也可呈星点状,较为均匀地分布在蚀变围岩的空隙、微裂隙中,如白云母-(高岭石)-铜蓝(图2g~i)。通过系统的镜下鉴定和分析,进一步发现了白云母-黄铜矿、白云母-斑铜矿常伴生少量的碳酸盐、高岭石(图2c、f),未见白云母-铜蓝伴生碳酸盐,但这一组较前两种组合与更多高岭石伴生(图2i)。从上述典型样品中可以看出,白云母-铜矿物常被含矿石英脉叠加,是巨量含矿热液交代围岩的产物,是除了含矿石英脉之外,构成矿床主体的极其重要的一部分。

  • 图2 铁格隆南矿床典型浸染状矿化手标本照片及镜下照片

  • Fig.2 Photos of the typical disseminated ores and the related photomicrographs in the Tiegelongnan deposit

  • (a)~(c)—同个样品中Mus+Kao+Cbn与Cpy沿砂层理/裂隙分布;(d)~(f)—同个样品中Mus+Cbn与Bn等沿砂岩层理/裂隙分布;(g)~(i)—同个样品中Mus+Kao与Cv等呈弥散状形成于岩石空隙中;(b)、(c)、(e)、(f)、(i)为正交偏光照片,(h)为反射光照片;Bn—斑铜矿;Cbn—碳酸盐;Cpy—黄铜矿;Cv—铜蓝;Kao—高岭石;Mus—白云母;Py—黄铁矿;Qz—石英

  • (a) ~ (c) —photos of Mus+Kao+Cbn with chalcopyrite mineralization presenting along the sandstone beddings as well as the fractures from the same sample; (d) ~ (f) —photos of Mus+Cbn with bornite mineralization presenting along the sandstone beddings as well as the fractures from the same sample; (g) ~ (i) —photos of Mus+Kao with covellite mineralization disseminated distributed in the cavities of the sandstone from the same sample; (b) , (c) , (e) , (f) and (i) were taken in corss-polarized light, (h) was taken in reflected light; Bn—bornite; Cbn—carbonate; Cpy—chalcopyrite; Cv—covellite; Kao—kaolinite; Mus—muscovite; Py—pyrite; Qz—quartz

  • 本次实验针对白云母及其伴生矿物进行了电镜扫描-能谱分析和电子探针分析。实验样品的具体信息,包括样品编号及其分组情况、原岩岩性、主要的蚀变矿物、主要的铜矿物、测点所在的矿物组合类型、白云母分类等详见表1。在该表中,样号“2412-463-1”中的“2412”为钻孔编号,“463”表示取样深度为463 m,“1”为实验时的测点序号。表中简称“P-D:Mus-(Kao)-Cpy”综合了原岩岩性、矿石构造、蚀变-矿化的矿物组合信息:P(porphyry)代表原岩为斑岩,SDS(sandstone)代表原岩岩性为砂岩,B(biotite)代表热液蚀变前为黑云母;D(disseminated)代表浸染状构造;“Mus-(Kao)-Cpy”代表“主要脉石矿物-(次要脉石矿物)-主要铜矿物”。本次选择了以下3种产状的白云母:P-B代表热液交代斑岩中黑云母的过程,用Mus(B)代表由黑云石蚀变形成的白云母;P-D代表热液充填斑岩裂隙、空隙的过程,用Mus(P)代表该过程产出的白云母;SDS-D代表热液沿砂岩层理、裂隙、空隙进行交代的过程,用Mus(S)代表该过程产出的白云母。

  • 表1 西藏铁格隆南矿床白云母采样表及样品描述

  • Table1 Analyzed samples and the corresponding sample descriptions of the Tiegelongnan deposit in Tibet

  • 注:蚀变矿物代号:Cpy—黄铜矿,Bn—斑铜矿,Cv—铜蓝,Cbn—碳酸盐,Kao—高岭石,En—硫砷铜矿,Rt—金红石,Mus—白云母;岩性-产状:SDS(砂岩)-D(浸染状)代表形成于砂岩中浸染状的蚀变矿化,P(斑岩)-D(浸染状/弥散状)代表形成于斑岩裂隙或空隙中的蚀变矿化,P(斑岩)-B(黑云母)代表热液蚀变黑云母形成的蚀变矿化。

  • 2.2 实验方法

  • 扫面电镜-能谱分析:白云母及相邻矿物的微区背散射图像(BSE)及X射线能谱分析在中国地质科学院成矿作用与资源评价重点实验室完成,仪器为Zeiss Ultra Plus扫描电镜(SEM)配备了Oxford Inca305能谱分析仪(EDS)。SEM分辨率为1 nm,加速电压30 kV,最大放大倍数为30万倍;EDS加速电压为15 kV,束斑直径为1 μm,元素质量分析精度为0.1%~0.3%。

  • 电子探针:白云母的化学分析在中国地质科学院矿产资源研究所电子探针实验室完成,仪器型号为JXA-8800R,加速电压20 kV,电流20 nA,束斑大小1~5 μm。使用标样情况:Na、Al、Si元素的标样为硬玉,检测限分别为71×10-6~97×10-6、77×10-6~81×10-6、83×10-6~96×10-6;Mg为镁橄榄石,检测限为65×10-6~74×10-6;K为钾长石,检测限为48×10-6~53×10-6;Ca为硅灰石,检测限为64×10-6~77×10-6;Fe为赤铁矿,检测限为87×10-6~99×10-6;Ti为金红石,检测限为237×10-6~244×10-6;Mn为MnO,检测限为104×10-6~113×10-6;Ni为NiO,检测限为136×10-6~154×10-6;Cr为Cr2O3,检测限为112×10-6~137×10-6。实验结果见表2。

  • 3 实验结果

  • 3.1 扫面电镜结果

  • 在扫描电镜的背散射电子图像(BSE)中,由于不同矿物中的原子序数不同,在通常情况下,金属矿物亮度大,非金属矿物亮度较低。BSE图像配备能谱分析仪,能够鉴别不同矿物组合,并展现其共生特征(图3)。研究指出,白云母与铜矿物呈交生结构,结晶程度相当,自形程度相当(Carrillo-Rosúa et al.,2009Alva-Jimenez et al.,2020),是与黄铁矿绢英岩化带同时形成的产物(Seedorff and Einaudi,2004)。在铁格隆南黄铁绢英岩化带中,白云母与铜矿物频繁呈现了交生结构。

  • 黄铁绢英岩化带深部—中深部主要形成白云母-(高岭石)-黄铜矿。暗色矿物黑云母最早受热液蚀变影响,形成白云母-黄铜矿,即Mus(B)-Cpy组合,此时铜矿化较弱,同时伴生细粒金红石(黄铁矿)(图3a)。水岩反应保留了黑云母的片状结构,白云母和黄铜矿沿黑云母解理延伸。在侵入岩空隙或矿物裂隙、孔洞中,见非定向生长的细小白云母集合体Mus(P),这种Mus(P)破坏了Mus(B),是较晚形成的产物(图3a)。在砂岩中,还可见白云母从自形—半自形的黄铜矿边缘延伸至其内部,或完全嵌入黄铜矿颗粒之中,形成紧密共生的Mus(S)-Cpy组合(图3b),并伴生少量高岭石、石英等(图3c),白云母中可见微米级空隙(图3d)。此外,高岭石在发育黄铜矿的深部区域呈现了两种产状,一种为细鳞片状的集合体,而另外一种晶体更大,并与白云母互层(图3e)。

  • 黄铁绢英岩化带中深—中浅部发育白云母(高岭石)-斑铜矿。在蚀变砂岩中,粗粒白云母延伸至斑铜矿内部或包裹于斑铜矿之中,形成紧密共生的Mus(S)-Bn组合,偶见少量黄铜矿(图3f)。这种蚀变-矿化组合在黄铁绢英岩化带边缘与青磐岩化带的接触部位发生了改变。在该蚀变带边缘,蚀变以绢云母化为主,伴生了具有一定规模的自形—半自形碳酸盐矿物,金属矿物以斑铜矿为主,并与一定量的铜蓝和少量的硫砷铜矿形成矿物集合体,三种金属矿物相对均匀的分布于砂岩空隙中(图3g、h)。在青磐岩化的一侧,绿泥石占据了砂岩空隙,不见白云母和金属矿物。在斑铜矿化阶段,也可见白云母与高岭石互层,并形成Mus(S)-Kao-Bn和Kao-Mus(S)-Bn组合,同时在该微区还可见斑铜矿边缘形成了Cu-Fe-Al-O的混合物环边(图3i、i'),可能是斑铜矿氧化分解的次生产物。

  • 黄铁绢英岩化带中深—中浅部或边部带常见白云母-(高岭石)-铜蓝。在该蚀变带中深部,可见Mus(S)-Cv组合(图3j)。更普遍的是含量相当的白云母和高岭石在空间上共存,与铜蓝共同形成于砂岩空隙,构成Mus-Kao-Cv或Kao-Mus-Cv组合(图3k、l)。此外,在高级泥化带常见Kao-Cv组合,几乎无白云母产出(He Wen et al.,2021),表明铜蓝在中性或中酸性环境都能发生沉淀。

  • 3.2 电子探针结果

  • 3.2.1 数据分组

  • 按照从深部到浅部、从早期到晚期的粗略排序,划分了5组具有代表性的蚀变-矿化组合,并记为①②③④⑤组数据。由于白云母在水-岩反应过程中,受原岩性质、流体的成分及其物理化学性质等因素的影响,因此,本次实验首先将产于不同原岩性质的白云母分成Mus(B)、Mus(P)、Mus(S)型3类,然后再根据白云母与不同铜矿物形成的蚀变-矿化组合进行细分。这5组数据分别代表了以下成矿过程:① 在侵入体中,黑云母受早期热液交代形成的白云母、黄铜矿等矿物组合简写为Mus(B)-Rt-Cpy-(Py);② 较晚形成于侵入岩裂隙中热液白云母、黄铜矿等矿物组合简写为Mus(P)-(Kao)-Cpy;③ 形成于深部砂岩中的白云母、黄铜矿等矿物组合简写为Mus(S)-(Kao)-Cpy;④ 形成于砂岩中的白云母、斑铜矿等矿物组合简写为Mus(S)-Kao-Bn和Kao-Mus(S)-Bn(前者以Mus为主,后者以Kao为主);⑤ 形成于砂岩中的白云母、铜蓝等矿物组合的简写为Mus(S)-Kao-Cv和Kao-Mus(S)-Cv。①②组数据代表岩浆热液在侵入体内部引起的蚀变-矿化;③④⑤组矿物代表岩浆热液在砂岩中引起的蚀变矿化。有研究指出从黄铜矿→斑铜矿→铜蓝呈现了依次叠加交代的现象,是成矿过程中热液逐渐演化的结果(杨超等,2014李光明等,2015He Wen et al.,2021)。本次实验表明,随着不同铜硫化物沉淀,与其伴生的白云母成分也随演化发生了改变,并且即使在同一种铜矿物沉淀过程中,与其伴生的白云母成分也会随热液迁移、围岩性质的不同而发生变化,尤其是与黄铜矿伴生的白云母(即①②③组)的成分变化最为显著。

  • 表2 西藏铁格隆南矿床白云母电子探针分析和成分计算结果表

  • Table2 EPMA analyses and the calculated cations of muscovite in the Tiegelongnan deposit in Tibet

  • 续表2

  • 注:基于云母11个O原子进行化学式计算; IVAl表示白云母分子中四面体上Al的个数;VIAl表示白云母八面体上Al的个数;AlT,表示白云母中所有Al个数;“岩性-产状:矿物组合”一列中的英文符号含义与表1一致。

  • 图3 铁格隆南矿床白云母(高岭石)与各种铜矿物的BSE图像

  • Fig.3 Back scattered electron images of muscovite (kaolinite) with different copper minerals in the Tiegelongnan deposit in Tibet

  • (a)—黑云母被蚀变为Mus(B)-Cpy,且Mus(P)晚于Mus(B)形成;(b)—砂岩中形成Mus(S)-Cpy组合;(c)—砂岩中形成Mus(S)-(Kao)-Cpy;(d)—白云母集合体中的微米级空隙;(e)—斑岩中一种呈细鳞片状高岭石,另一种高岭石晶体粒度较大并与白云母互层;(f)—砂岩中Mus(S)-Bn组合;(g)、(h)—砂岩中含矿(Bn-Cv-En)的白云母-碳酸盐化与不含矿绿泥石化的分界线;(i)—Mus-Kao-Bn组合中见斑铜矿边缘见Cu-Fe-Al-O···蚀变边;(j)—砂岩中Mus-Cv组合;(k)—砂岩中Mus-Kao-Cv组合;(l)—砂岩中Kao-Mus-Cv组合; Bio—黑云母;Bn—斑铜矿;Cav—空隙;Cbn—碳酸盐;Chl—绿泥石;Cpy—黄铜矿;Cv—铜蓝;En—硫砷铜矿;Kao—高岭石;Qz—石英;Rt—金红石;Mus—白云母;Cu-Fe-Al-O···—混合物

  • (a) —biotited altered to Mus (B) -Cpy and Mus (P) formed later than Mus (B) ; (b) —Mus (S) -Cpy association in sandstone; (c) —Mus (S) - (Kao) -Cpy in sandstone; (d) —the micron scale cavities in muscovite assemblages; (e) —one small grain sized kaolinite and one large sized kaolinite interbedding with muscovite developed in porphyry; (f) —Mus (S) -Bn in sandstone; (g) , (h) —the boundary between the Bn-Cv-En mineralization with muscovite and carbonate assemblage and the non-mineralization alteration with chlorite in sandstone; (i) —the Cu-Fe-Al-O··· formed in fringe of the bornite in the Mus-Kao-Bn assemblage; (j) —Mus-Cv association in sandstone; (k) —Mus-Kao-Cv assemblage in sandstone; (l) —Kao-Mus-Cv assemblage in sandstone; Bio—biotite; Bn—bornite; Cav—cavity; Cbn—carbonate; Chl—chlorite; Cpy—chalcopyrite; Cv—covellite; En—enargite; Kao—kaolinte; Qz—quartz; Rt—rutile; Mus—muscovite; Cu-Fe-Al-O···—Cu-Fe-Al-O···compounds

  • 3.2.2 白云母的端元组成

  • 铁格隆南的白云母包含了能够形成固溶体的几种云母端元。根据所测元素含量,云母的主要端元为白云母,并不同程度混入了钠云母、绿鳞石(属云母类)端元,以及伊利石亚族(主要为水白云母)、高岭石亚族(高岭石)等(图4)。白云母的每个单元层由两个四面体和一个八面体组成,八面体由VIAl组成,四面体由1个IVAl和3个IVSi组成,每个单元层之间通常是K+,标准化学式为K[VIAl2][ IVAlIVSi3]O10[OH]2Rieder et al.,1998)。在该分子结构中,Na+、Ca2+、Ba2+等可与K+进行类质同象,通常是Na+与K+之间更容易发生替代;Fe2+、Fe3+、Mg2+、Mn2+等可取代八面体上的Al3+(即VIAl),其中八面体上常存在VIFe2+替代VIAl3+,该替代过程将引起分子式内部的电荷失衡,为了达到电荷平衡,四面体上的Si将发生增加,整个过程可表示为VIFe2++IVSi4+IVAl3++VIAl3+,即所谓的Tschermak替代;此外,八面体上VIFe3+替代VIAl3+,则不会引起电荷不平衡和其他元素含量的增减。不同离子类质同象置换的结果可形成钠云母(富Na)、珍珠云母(富Ca)、多硅白云母(富Si)、绿鳞石(富Fe和/或Mg)、锂云母(富Li)等(Alva-Jimenez et al.,2020)。

  • 铁格隆南白云母的电子探针及分子化学式的计算结果见表2。所测白云母的层间阳离子K在0.74~0.97之间,Na为0.01~0.06,Ca<0.01和Mn<0.01,Ca、Mn含量极低,可忽略;八面体上的VIAl为1.64~1.96,Fe为0.01~0.24,Mg为0.03~0.35;四面体上的IVSi为3.02~3.44,IVAl为0.56~0.98。

  • 所有白云母的层间阳离子范围在0.76<K+Na+Ca<1.01。白云母K/(K+Na+Ca)介于0.94~0.99之间,表明分子层间主要是K(pfu:0.74~0.97),其次为Na(pfu:0.01~0.06)。在所有数据中,Mus(P)-(Kao)-Cpy(②组)和Mus(S)-(Kao)-Cpy(③组)的白云母Na含量最高,平均值均为0.4,在图4a中投点靠近下方的钠云母,其他几组Na均≤0.2,在图4a中更靠近上侧的白云母端元,表明大量沉淀黄铜矿时(②③组),形成的白云母具有高Na的特征。图4b主要呈现了2个特征:其一,砂岩中与黄铜矿有关的白云母(③组),其K+Na+Ca(pfu)最靠近白云母端元,与其他的投点形成了两个区域,这是由于③组的K平均值为0.95,明显高于其他几组(K平均值为0.80~0.85),且该组Na平均值为0.4,也高于其他组0.1~0.3;其二,与砂岩有关的③④⑤组数据,比与侵入岩有关的①②组数据,明显向右底角的伊利石端元漂移,表明其Al含量较高。总之,①②④⑤组数据的K+Na+Ca较③组数据低,产于侵入岩的①②组数据的Al含量较③④⑤组数据低。④⑤组数据Al含量高可能是由于混入了水白云母和高岭石所致,这两种蚀变矿物比白云母更富Al。这种混合现象,在其他斑岩型铜矿床中也有所展现,如美国的Copper Cliff 斑岩型铜矿床(Alva-Jimenez,2000)。①②组的白云母相对③④⑤组更加富Si,且Fe以+2价为主(图5e),符合绿鳞石中以Fe2+为主且富Si的特征,指示①②组更富绿鳞石端元。这两组数据Fe3+较少,因此Fe3+与Al3+替代较少。综上,所测云母都以白云母端元为主,其中③组白云母相对富钠云母端元,绿鳞石端元少,Fe主要呈Fe3+与Al3+进行替代;①②组的白云母绿鳞石端元相对较多,Fe3+相对Fe2+少;④⑤组白云母绿鳞石端元也非常少,Fe主要以Fe3+与Al3+进行替代,富Al的特征指示有水白云母和高岭石混合。

  • 图4 西藏铁格隆南矿床的白云母端元组成(a和b,底图据Uribe-Mogollon and Maher,2018修改)

  • Fig.4 Endmembers of muscovite in the Tiegelongnan deposit in Tibet (a and b, modified after Uribe-Mogollon and Maher, 2018)

  • 3.2.3 白云母的主量元素变化

  • 所测白云母AlT与Si+Fe+Mg的原子数量(pfu)有以下变化规律。由于受到Tschermak类质同象过程中的电价平衡制约,分子式中的AlT与Si+Fe+Mg为互补关系,因而表现为负相关关系。根据AlT与Si+Fe+Mg投点位置的不同,图5a区分了低AlT高Si+Fe+Mg(即①②组)和高AlT低Si+Fe+Mg(即③④⑤组)两个区域。前者代表形成于侵入岩的Mus(B)和Mus(P),与黄铜矿伴生;后者代表了形成于砂岩中的Mus(S),在深部与黄铜矿伴生,在较浅部与斑铜矿、铜蓝伴生。图5a指示了白云母AlT和Si+Fe+Mg的变化与相伴生的铜矿物种类无关,而主要与围岩的岩性有关,即高Al白云母更容易形成于砂岩中,而高Si+Fe+Mg更容易形成于侵入岩中。进一步看白云母的Fe、Mg、Si原子数量(pfu)又存在以下关系。

  • 在黄铜矿化阶段(①②③组),从Mus(B)→Mus(P)→Mus(S)型白云母的Si、Mg、Fe变化规律为:Si呈现了依次减小的趋势(图5b),其中大多数Mus(B)测点的Si≥3.2,为多硅白云母(Tappert et al.,2013指出3.1<Si<3.5为多硅白云母);Mg平均值依次为0.15、0.15、0.25,几乎不随Si的增减发生明显的变化(图5b);Fe平均值依次为0.05、0.06、0.17,砂岩中的白云母Fe最高Si最低,侵入岩中白云母Fe低Si高,整体上从Mus(B)→Mus(P)→Mus(S)型白云母的Fe/Si明显升高(图5c);砂岩中Mus(S)型白云母的Fe/Mg高(1~2),侵入岩中产出的Mus(B)和Mus(P)较低(0~0.5),指示白云母的Fe相对于Mg在砂岩中富集,而在侵入岩中变化不明显(图5d)。同样的,砂岩中与斑铜矿、铜蓝相关的Mus(S)型白云母(④⑤组),其Mg几乎不随Si增减发生变化(图5b),Fe随Si降低而升高,都与黄铜矿化阶段的白云母成分变化一致(图5c)。④⑤两组白云母0<Fe/Mg<1.5,变化范围介于与黄铜矿伴生的Mus(B)、Mus(P)和Mus(S)型白云母之间(图5d)。

  • 白云母的Fe3+、Fe2+原子数量(pfu)变化如下。图5e中下侧的虚线为Tschermak类质同象线,斜率为0.5,指示白云母中的Fe全部为+2价,即Fe3+/(FeT+Mg+Mn)=0;图5e上侧的虚线斜率为1,代表与八面体上Al3+进行类质同象的全部是+3价态的Fe,即Fe3+/(FeT+Mg+Mn)=1(Uribe-mogllon et al.,2018)。若投点斜率小于0.5,表明白云母中无Fe3+存在;若介于两者之间则表明既有Fe3+也有Fe2+;投点靠近斜率为1的直线,表明Fe3+更多(Uribe-mogllon et al.,2018)。图5e指示了在黄铜矿化阶段(①②③组)从Mus(B)→Mus(P)→Mus(S),Fe3+有升高趋势,指示侵入岩中的Mus(B)和Mus(P)型白云母的Fe3+较低,而砂岩中Mus(S)型白云母Fe3+最高,该结果与砂岩中存在较多绿鳞石端元互为印证关系;砂岩中与斑铜矿和铜蓝有关的Mus(S)型白云母(④⑤组),大部分测点靠近斜率为1的虚线,表明Fe3+比Fe2+更高。整体上看,无论处于哪一种铜矿物的沉淀阶段,从侵入岩到砂岩,热液白云母的Fe3+都为逐渐升高的趋势(图5e)。

  • 白云母的Na与Si原子数量(pfu)变化如下。在与黄铜矿相关的①②③组白云母数据中,Mus(B)→Mus(P)→Mus(S)的Na平均值分别为0.1、0.4、0.4,与斑铜矿和铜蓝伴生的白云母Na平均值均为0.2。在所有测点中,与黄铜矿伴生的Mus(B)型白云母Na含量最低,Si含量最高,其Na/Si最低。相比之下,与黄铜矿伴生的Mus(P)、Mus(S)以及与斑铜矿、铜蓝伴生的Mus(S),其Na/Si均为升高的趋势(图5f)。

  • 4 讨论

  • 4.1 铁格隆南矿床白云母地球化学特征及变化规律

  • 浸染状的蚀变-矿化组合比含矿脉体的水/岩比值更低(Carrillo-Rosúa et al.,2009),后者以热液的贡献为主,而对于前者,围岩性质和热液本身的成分组成、物化条件等都会对蚀变矿物(白云母、绿泥石等)造成重要的影响(Hemley,1959Hemley and Jones,1964;Bishop and Bird.,1987)。从本次分析结果来看,不同围岩性质对白云母的Si、Al变化影响较大。产于侵入岩、砂岩中的白云母分为低AlT-高(Si+Fe+Mg)和高AlT-低(Si+Fe+Mg)两个部分(图5a),这种分区特征不依靠于成矿阶段,而主要与围岩性质有关。表现最为明显的是Mus-Cpy阶段,产于侵入岩中的Mus(B)、Mus(P)占据了高(Si+Fe+Mg)-低AlT的区域,而产于砂岩中的Mus(S)占据了高AlT-低(Si+Fe+Mg)的区域。换言之,即使在同一个矿化阶段,白云母的Si、Al仍然会随围岩性质发生明显变化。根据铁格隆南花岗闪长斑岩和曲色组变质砂岩的岩石地球化学分析结果,两者的化学成分含量基本一致,全岩Al2O3平均值分别为15.7%和16.7%,SiO2平均值相差4%,MgO、FeOT、K2O相差在1%~2%(林彬等,2019李丹等,2011)。不同的是,砂岩中存在大量富Al的黏土矿物,而侵入岩中的黑云母相对富Si。由于Al是不活动元素(Sillitoe,1993),因此在黄铁绢英岩化带中—深部,热液温度较高,不利于电离H+,热液呈弱酸性,Al3+较难进入热液;在黄铁绢英岩化带中—浅部,温度降低,酸性进一步增强,导致Al3+能够发生一定程度的富集(Hedenquist and Taran,2013)。因此,在中—浅部产出的Mus(S)相对于深部的Mus(S)更加富Al。此外,白云母的Si、Al含量也会影响其短波红外光谱的吸收波峰(Post and Noble,1993Herrmann et al.,2001)。郭娜等(20172018)通过短波红外光谱测试测得在侵入岩及其周围,尤其是出现黑云母的局部,白云母的短波红外光谱表现为高Si、低Al的特征,与本次电子探针测得侵入岩中产出富Si低Al的白云母特征一致。短波红外光谱常作为矿产勘查中快速分辨蚀变矿物的重要手段,本次研究有利于更加精准地解译该区域内白云母短波红外光谱的变化规律。

  • 图5 西藏铁格隆南矿床白云母的主量元素变化(据Alva-Jimenez et al.,2020修改)

  • Fig.5 Major elements variations of muscovite in the Tiegelongnan deposit in Tibet (modified after Alva-Jimenez et al.,2020)

  • 除此之外,热液的氧化还原性也影响了白云母中Fe的价态。王玉荣和胡受奚(2000)指出,在恒温恒压条件下进行水岩反应实验时,含K+质的酸性热液与黑云母发生反应,溶液中Fe2+、Mg2+等元素增加,同时黑云母褪色并形成白云母。该过程很好模拟了含钾热液对黑云母的交代反应,对铁格隆南的Mus(B)-Cpy蚀变矿化具有一定的指导意义。同样的,在热液蚀变侵入岩时,黑云母中的Fe2+进入热液,将在一定程度上增加热液还原性(Einaudi et al.,2003Hedenquist and Taran,2013)。对于斑岩型矿床,含矿热液常被认为是一种具有氧化性的流体,能够赋存大量矿质并进行迁移(Sun Weidong et al.,20132015),而还原剂Fe2+的加入,将中和热液的氧化性,导致金属硫化物沉淀,最终形成Mus(B)-Cpy。黑云母中的Fe2+不断进入热液,同时也形成了富Fe2+的Mus(B)型白云母(图5e)。同时,在斑岩裂隙/空隙中形成的Mus(P),也具有较高的Fe2+。流体在深部侧向迁移进入砂岩,形成了Mus(S)-Cpy。流体向浅部迁移,形成了Mus(S)/Kao-Bn和Mus(S)/Kao-Cv。由于在中—浅部聚集了更多SO2,流体氧化性增加,因此形成的Mus(S)比Mus(B)、Mus(P)具有更高的Fe3+

  • 4.2 白云母对矿化过程的指示意义

  • 在热液矿床中,广泛分布的白云母与铜矿化关系非常紧密(Hemely and Jones,1964;Montoya and Hemley,1975Alva-Jimenez,2000)。在铁格隆南矿床典型的浸染状样品中,白云母与铜矿物也具有紧密的成因联系。具体表现在,白云母包裹了铜矿物,铜矿物颗粒中也零散分布了片状白云母,两者呈相互包裹的结构特征且其结晶程度相当,表明白云母-铜硫化物是黄铁绢英岩化带同期形成的产物。随着热液演化,白云母与不同的铜矿物形成了一定的空间分布规律(图6)。首先,岩浆侵位诱导了高温热液的同期迁移,岩浆在不同深度侵位形成了多个岩枝、多个高温热液中心,以及岩枝中的早期蚀变-矿化,表现在热液蚀变黑云母形成高Si低Al的白云母-黄铜矿组合,即Mus(B)-Cpy。随后,活跃的热液沿侵入岩的裂隙或孔洞进行迁移、交代、充填,形成了Mus(P)-(Cbn)-Cpy。热液继而在深部向着远离侵入岩的砂岩迁移,形成了Mus(S)-(Kao)-(Cbn)-Cpy,其中白云母具有高Al低Si的特征。早期蚀变常产出少量的碳酸盐矿物,指示热液含CO2,CO2容易水解形成弱酸性,能够促进水岩交代反应。热液向浅部迁移,形成了 Mus(S)-Kao-Bn/Cv、Kao-Mus(S)-Bn/Cv。在该过程中,水岩反应主要形成了高Al低Si和相对富伊利石端元的白云母。由于伊利石及富伊利石端元的白云母常指示偏酸性环境(Halley et al.,2015),加之普遍伴生了高岭石,表明相对于深部,浅部含矿热液的酸性已经发生了更明显的升高。在斑岩系统中,流体向浅部迁移且酸性增强,可能是SO2向浅部发生聚集并发生歧化反应造成的(Halley et al.,2015)。综上,上述一系列蚀变-矿化过程最终形成了侵入体中大量的高Si低Al白云母,而在砂岩中形成了大量的高Al低Si白云母(图6),表明白云母Al、Si含量主要受岩性控制。此外,白云母常与高岭石伴生,不同部位的Mus-Kao指示了不同的蚀变-矿化过程。

  • 图6 西藏铁格隆南矿床高Si和高Al白云母及伴生铜矿物分布模型图

  • Fig.6 Modle for the distribution of the high Si and Al content muscovite and the related copper minerals of the Tiegelongnan deposit in Tibet

  • 白云母水解可形成高岭石。白云母的水解反应方程为KAl2AlSi3O10(OH)2+H++3/2H2O=3/2Al2Si2O5(OH)4+K+。在一定温度、压力条件下,实验使用了定量的HCl、KCl溶剂来模拟热液中的H+和K+,固相反应物主要为人工合成云母和天然云母(Hemley,1959)。实验最终获得了3条云母-高岭石的平衡曲线(图7)。在含K2O-SiO2-Al2O3-H2O硅酸盐和KCl、HCl溶剂的体系中,高温环境下白云母水解需要高含量的HCl(即在图7中,途径①、②的起始点需要向左平移才能发生云母水解)。若该体系在较高温度范围内降温,而HCl含量不够高,则白云母不能发生水解反应。图7中①号演化线表示外界向体系提供更多H+,导致热液酸性增强。当热液的酸性增加到足够高时,白云母开始水解为高岭石。由于水解为放热的、自发的反应,该反应将在降温过程中自发的维持下去,并进一步导致溶液中K+逐渐增多。类似的,铁格隆南矿床的深部产出明矾石-高岭石-硫砷铜矿-斑铜矿-铜蓝交代粗粒黄铜矿(He Wen et al.,2018),也是浅部酸性流体通过裂隙渗透至黄铁绢英岩化带深部,并对白云母进行完全水解的产物。该过程用在图6和图7中用演化途径①表示,代表高级泥化带的酸性流体向深部渗透,并对黄铁绢英岩化带局部进行叠加的过程。

  • 而对于在中浅部形成的Mus-Kao-Bn/Cv可能是另外一种热液演化的结果。从蚀变-矿化空间分布可知,SO2在高级泥化带发生了大量聚集,并形成了强酸的环境,大量S与Al结合形成了明矾石;而要形成黄铁绢英岩化带,热液则需为弱酸环境,因此 H2S、CO2等在热液中占有主导优势,H2S在水岩反应中将被不断消耗,并形成金属硫化物。造成这种SO2和H2S分布特征的根本原因之一,可能是H2S溶液能与铜离子发生有效的沉淀,而SO2溶液不能与铜离子有效沉淀(Lerchbaumer and Audétat,2012)。因此随着演化进行,H2S将不断被消耗,而SO2则会发生富集。那么,随着热液向浅部运移,极有可能在黄铁绢英岩化带中—浅部,富集了一定量的SO2Hedenquist and Taran(2013)通过计算机模拟水岩反应指出,在w/r(水岩比值)较低,挥发分SO2占优势,且温度较低的条件下,水岩反应能够形成Mus-Kao组合,白云母的产出量通常多于高岭石。在高温的酸性热液中,高岭石不能稳定存在(Hemley,1959Hedenquist and Taran,2013),因此黄铁绢英岩化带中浅部普遍的产出高岭石,也表明了热液温度发生了明显的下降。综上,黄铁绢英岩化带中浅部普遍产出的Mus-Kao-Bn/Cv,是挥发分SO2聚集、温度下降、pH值降低的条件下,水岩反应的产物。

  • 图7 水岩反应实验中云母-高岭石的平衡曲线及铁格隆南矿床的两种蚀变路径(据Hemley,1959修改)

  • Fig.7 The experimental equilibrium curves of muscovite and kaolinite and two metasomatic alteration ways of the Tiegelongnan deposit (modified after Hemley, 1959)

  • 此外,在黄铁绢英岩化带深部的Mus-(Kao)-(Cbn)-Cpy组合中,也形成了少量高岭石。在Hedenquist and Taran(2013)的模拟实验中,当热液的挥发分以H2S为主,w/r<5时,白云母沉淀的同时也能伴随少量高岭石化,高岭石的摩尔数是白云母的几十分之一。当温度更高时,形成的高岭石更少。因此,深部白云母伴生少量高岭石,是水岩反应即将结束、温度发生降低的信号。水岩反应结束后,热液pH值通常会升高(王玉荣和胡受奚,2000)。综上,Mus-Kao-Bn/Cv和Mus-(Kao)-(Cbn)-Cpy都可以形成于热液自然演化的过程中,在图6和图7中用演化途径②表示。

  • 5 结论

  • (1)铁格隆南矿床的云母主要由白云母端元、伊利石端元、绿鳞石端元,以及极少量的钠云母端元组成。砂岩中与黄铜矿有关的白云母主要由白云母、绿鳞石端元组成,其他测点主要由白云母、伊利石端元组成。由侵入岩至砂岩,白云母的Fe(pfu)、Al(pfu)、Na(pfu)含量升高,Si(pfu)含量降低。AlT-(Si+Fe+Mg)图解很好的区分了形成于侵入岩和砂岩的两种白云母特征,在侵入岩中形成富Si白云母,而在砂岩中形成了富Al白云母,指示了白云母中Si、Al主要受岩性影响。白云母Fe的价态对热液的氧化还原有一定的指示意义:早期热液交代黑云母形成了富Fe2+的白云母,指示热液具有一定还原性。

  • (2)黄铁绢英岩化带中大量沉淀的铜矿物与白云母有成因联系。产于侵入岩的高Si低Al白云母主要与黄铜矿有关,砂岩中产出的高Al低Si白云母与黄铜矿、斑铜矿、铜蓝均有关。早期热液交代黑云母引发Fe2+进入氧化性的流体,促进了黄铜矿沉淀。此外,在较浅部产出的白云母-斑铜矿/铜蓝常伴生高岭石,表明流体迁移至较浅部,聚集了更多SO2,温度降低时形成了更高的H+浓度,并最终在黄铁绢英岩化带和高级泥化带之间形成了Mus-Kao-Bn/Cv。

  • 致谢:野外工作中得到西藏金龙矿业股份有限公司和西藏地勘局地质五队的支持。感谢审稿人提出的宝贵意见和建议。

  • 参考文献

    • Alva-Jimenez T. 2000. Variation in hydrothermal muscovite and chlorite composition in the highland valley porphyry Cu-Mo district, British Columbia, Canada. Master thesis of Geologist Universidad Nacional de Ingenieria, 1~155.

    • Alva-Jimenez T, Tosdal R M, Dilles J H, Dipple G, Kent A J R, Halley S. 2020. Chemical variations in hydrothermal white mica across the highland valley porphyry Cu-Mo district, British Columbia, Canada. Economic Geology, 115(4): 903~926.

    • Bird D K, Schiffman P, Elders W A, Williams A E, Mcdowell S D. 1984. Calc-silicate mineralization in active geothermal systems. Economic Geology, 79(4): 671~695.

    • Bishop B P, Bird D K. 1987. Variation in sericite compositions from fracture-zones within the Coso hot-springs geothermal system. Geochimica et Cosmochimica Acta, 51(5): 1245~1256.

    • Carrillo-Rosúa J, Morales-Ruano S, Esteban-Arispe I, Hach-Alí P F. 2009. Significance of phyllosilicate mineralogy and mineral chemistry in an epithermal environment: Insights from the Palai-Islica Au-Cu deposit (Almería, Se Spain). Clays and Clay Minerals, 57(1): 1~24.

    • Duan Zhiming, Li Guangming, Zhang Hui, Duan Yaoyao. 2013. The formation and its geologic significance of Late Triassic-Jurassic accretionary complexes and constraints on metallogenic and geological settings in Duolong porphyry copper gold ore concentration area, northern Bangong Co-Nujiang suture zone, Tibet. Geological Bulletin of China, 32(5): 742~750 (in Chinese with English abstract).

    • Einaudi M T, Hedenquist J W, Inan E E. 2003. Sulfdation state of fluids in active and extinct hydrothermal systems. Society of Economic Geologists Special Publication, 10: 285~313.

    • Fang Xiang, Tang Juxing, Li Yanbo, Wang Qin, Ding Shuai, Zhang Zhi, Yang Chao, Li Yubin, Chen Hongqi, Wei Lujie, Ni Ma. 2014. Metallogenic element spatial distribution of the Naruo Copper (gold) deposit in the Duolong ore concentration of Tibet and its geochemical exploration model. Geology in China, 41(3): 936~950 (in Chinese with English abstract).

    • Guo Na, Huang Yiru, Zheng Long, Tang Nan, Fu Yuan, Wang Cheng. 2017. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits. Acta Geoscientica Sinica, 38(5): 767~778 (in Chinese with English abstract).

    • Guo Na, Shi Weixin, Huang Yiru, Zheng Long, Tang Nan, Wang Cheng, Fu Yuan. 2018. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique. Geological Bulletin of China, 37(2-3): 446~457 (in Chinese with English abstract).

    • Halley S, Dilles J H, Tosdal R M. 2015. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Discovery, (100): 1~17.

    • Han Zehua, Wang Rui, Tong Xuesong, Sun Fei, Li Yuyao, Liu Siyu, Xue Qingwen. 2021. Multi-scale exploration of giant Qulong porphyry deposit in a collisional setting. Ore Geology Reviews, 139: 104455.

    • He Wen, Lin Bin, Yang Huanhuan, Fang Xiang, Song Yingxin, Wei Shaogang, Hou Lin. 2017. Fluid inclusion feature and its internal relationship with mineralization and epithermal alteration of the Tiegelongnan Cu-Au deposit. Acta Geoscientica Sinica, 38(5): 638~650 (in Chinese with English abstract).

    • He Wen, Lin Bin, Yang Huanhuan, Song Yingxin. 2018. Studies of metallic and trace minerals of the Tiegelongnan Cu-Au deposit, central Tibet, China. Acta Geologica Sinica (English Edition), 92(3): 1123~1138.

    • He Wen, Lin Bin, Wang Qin, Yang Huanhua, Song Yingxin. 2021. Sulphide geochemistry of the superlarge Tiegelongnan Cu (Au) deposit in Tibet, China: Implication for the mineralization process. Geological Journal, 56(8): 4249~4365.

    • Hedenquist J W, Taran Y A. 2013. Modeling the formation of advanced argillic lithocaps: Volcanic vapor condensation above porphyry intrusions. Economic Geology, 108: 1523~1540.

    • Hemley J J, Jones W R. 1964. Chemical aspects of hydrothermal alteration with emphasis on hydrogen ion metasomatism. Economic Geology, 59: 238~369.

    • Hemley J J. 1959. Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O. American Journal of Science, 257(4): 241~270.

    • Herrmann W, Blake M, Doyle M, Huston D, Kamprad J, Merry N, Pontual S. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfde deposits at Rosebery and western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96: 939~955.

    • Lerchbaumer L, Audétat A. 2012. High Cu concentrations in vapor-type fluid inclusions: An artifact? Geochimica et Cosmochimica Acta, 88: 255~274.

    • Li Dan, Wen Chunqi, Fei Guangchun, He Yangyang, Zhou Yu, Ning Mohuan. 2011. Discussion of sandstone composition and tectonic environment of the Bolong copper deposit, Tibet. Acta Mineralogica Sinica, 31(S1): 358~359 (in Chinese).

    • Li Guangming, Duan Zhiming, Liu Bo, Zhang Hui, Dong Suiliang, Zhang Li. 2011. The discovery of Jurassic accretionary complexes in Duolong area, northern Bangong Co-Nujiang sature zone, Tibet, and its geologic significance. Geological Bulletin of China, 20(8): 1256~1260 (in Chinese with English abstract).

    • Li Guangming, Zhang Xianan, Qin Kezhang, Sun Xingguo, Zhao Junxing, Yin Xianbo, Li Jinxiang, Yuan Huashan. 2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang terrane, central Tibet: Integrated evidence from geology, hydrothermal alteration and sulfide assemblages. Acta Petrologica Sinica, 31(8): 2307~2324 (in Chinese with English abstract).

    • Lin Bin, Chen Yuchuan, Tang Juxing, Wang Qin, Song Yang, Yang Chao, Wang Wenlei, He Wen, Zhang Lejun. 2017a. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang metallogenic belt of Tibet, China: Implication for generation of super-large deposit. Acta Geoligica Sinica (English Edition), 91: 602~616.

    • Lin Bin, Tang Juxing, Chen Yuchuan, Song Yang, Hall G, Wang Qin, Yang Chao, Fang Xiang, Duan Jilin, Yang Huanhuan, Liu Zhibo, Wang Yiyun, Feng Jun. 2017b. Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes. Resource Geology, 67(1): 1~21.

    • Lin Bin, Fang Xiang, Wang Yiyun, Yang Huanhuan, He Wen. 2019. Petrologic genesis of ore-bearing porphyries in Tiegelongnan giant Cu (Au, Ag) deposit, Tibet and its implications for the dynamic of Cretaceous mineralization, Duolong. Acta Petrologica Sinica, 35(3): 642~664 (in Chinese with English abstract).

    • Lin Bin, Tang Juxing, Chen Yuchuan, Baker M, Song Yang, Yang Huanhuan, Wang Qin, He Wen, Liu Zhibo. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet. Gondwana Research, 66: 168~182.

    • Liu Zhibo, Wang Wenlei, Song Yang, Wang Qin. 2017. Geo-information extraction and integration of ore-controlling structure in the Duolong ore concentration area of Tibet. Acta Geoscientica Sinica, 38(5): 803~812 (in Chinese with English abstract).

    • Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Economic Geology, 70(3): 577~583.

    • Parry W T, Ballantyne J M, Jacobs D C. 1984. Geochemistry of hydrothermal sericite from Roosevelt hot spring and the Tintic and Santa-Tiata porphyry copper systems. Economic Geology, 79(1): 72~86.

    • Post J L, Noble P L. 1993. The near-infrared combination band frequencies of dioctohedral smectites, micas and illites. Clays and Clay Minerals, 41: 639~644.

    • Rieder M, Cavazzini G, D'yakonov Y S, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval' P V, Mueller G, Neiva A M, Radoslovich E W, Robert J L. 1998. Nomenclature of the micas. Clays and Clay Minerals, 46: 586~595.

    • Seedorff E, Einaudi M T. 2004. Henderson porphyry molybdenum system, Colorado II. decoupling of introduction and deposition of metals during 705 geochemical evolution of hydrothermal fluids. Economic Geology, 99: 39~72.

    • Sillitoe R H. 1993. Epithermal models: Genetic types, geometrical controls and shallow features. Geological Association of Canada Special Paper, 40: 403~417.

    • Song Yang, Tang Juxing, Qu Xiaoming, Wang Denghong, Xin Hongbo, Yang Chao, Lin Bin. 2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition. Advances in Earth Science, 29(7): 795~809 (in Chinese with English abstract).

    • Song Yang, Yang Huanhuan, Lin Bin, Liu Zhibo, Wang Qin, Gao Ke, Yang Chao, Fang Xiang. 2017. The preservation system of epithermal deposits in South Qiangtang terrane of central Tibetan Plateau and its significance: A case study of the Tiegelongnan superlarge deposit. Acta Geoscientica Sinica, 38(5): 659~669 (in Chinese with English abstract).

    • Song Yang, Yang Chao, Wei Shaogang, Yang Huanhuan, Fang Xiang, Lu Hongbo. 2018. Tectonic control, reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu (Au) deposit, central Tibet, China. Minerals, 8(9): 398.

    • Song Yang, Tang Juxing, Liu Zhibo, Li Faqiao, Wang Qin, Xiao Yang, Wang Yanglin. 2019. Mechanism of Tiegelongnan-Duobuza ramp style ore-controlling structure, Tibet: Evidence from geophysical exploration. Mineral Deposits, 38(6): 1263~1277 (in Chinese with English abstract).

    • Sun Jia, Mao Jingwen, Beaudoin G, Duan Xianzhe, Yao Fojun, Ouyang Hegen, Wu Yue, Li Yubin, Meng Xuyang. 2017. Geochronology and geochemistry of porphyritic intrusions in the Duolong porphyry and epithermal Cu-Au district, central Tibet: Implications for the genesis and exploration of porphyry copper deposits. Ore Geology Reviews, 80: 1004~1019.

    • Sun Weidong, Liang Huaying, Ling Mingxing, Zhan Meizhen, Ding Xing, Zhang Hong, Yang Xiaoyong, Li Yiliang, Ireland T R, Wei Qirong, Fan Weiming. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263~275.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.

    • Tang Juxing, Sun Xingguo, Ding Shuai, Wang Qin, Wang Yiyun, Yang Chao, Chen Hongqi, Li Yanbo, Li Yubin, Wei Lujie, Zhang Zhi, Song Junlong, Yang Huanhuan, Duan Jilin, Gao Ke, Fang Xiang, Tan Jiangyun. 2014a. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area, Tibet. Acta Geoscientica Sinica, 35(1): 6~10 (in Chinese with English abstract).

    • Tang Juxing, Wang Qin, Yang Chao, Ding Shuai, Lang Xinghai, Liu Hongfei, Huang Yong, Zheng Wenbao, Wang Liqiang, Gao Yiming, Feng Jun, Duan Jilin, Song Yang, Wang Yiyun, Lin Bin, Fang Xiang, Zhang Zhi, Yang Huanhuan. 2014b. Two porphyry-epithermal deposit metallogenic subseries in Tibetan Plateau: “practice of absence prospecting” deposit metallogenic series. Mineral Deposits, 33(6): 1151~1170 (in Chinese with English abstract).

    • Tang Juxing, Song Yang, Wang Qin, Lin Bin, Yang Chao, Guo Na, Fang Xiang, Yang Huanhuan, Wang Yiyun, Gao Ke, Ding Shuai, Zhang Zhi, Duan Jilin, Chen Hongqi, Li Dengkui, Feng Jun, Liu Zhibo, Wei Shaogang, He Wen, Song Junlong, Li Yanbo, Wei Lujie. 2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit: The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet. Acta Geosicentica Sinica, 37(6): 663~690 (in Chinese with English abstract).

    • Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bing. 2017. Mineralization, exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571~613.

    • Tang Nan, Lin Bin, Wang Yiyun, Li Jiajun. 2021. Application of short-wavelength infrared spectroscopy in porphyry-epithermal system: A case study of Tiegelongnan super-large copper (gold) deposit, Tibet. Acta Geologica Sinica, 95(8): 2613~2627 (in Chinese with English abstract).

    • Tappert M, Rivard B, Giles D, Tappert R, Mauger A. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53: 26~38.

    • Uribe-Mogollon C, Maher K. 2018. White mica geochemistry of the copper cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113(6): 1269~1295.

    • Wang Rui, Cudahy T, Laukamp C, Walshe J L, Bath A, Mei Yuan, Young C, Roache T J, Jenkins A, Roberts M, Barker A, Laird J. 2017. White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, western Australia. Economic Geology, 112(5): 1153~1176.

    • Wang Yiyun, Tang Juxing, Song Yang, Yang Chao, Lin Bin, Gao Ke. 2008. A study of colusite from Tiegelongnan supperlarge Cu (Au, Ag) deposit and its geological significance. Mineral Deposit, 37(6): 1281~1295 (in Chinese with English abstract).

    • Wang Yurong, Hu Shouxi. 2000. Experimental study on gold activation and migration during potassium metasomatic alteration—a case study of gold deposits in North China Craton. Science China Earth Sciences, 30(5): 499~508 (in Chinese with English abstract).

    • Xue Qingwen, Wang Rui, Liu Siyu, Shi Weixin, Tong Xuesong, Li Yuyao, Sun Fei. 2021. Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, southern Tibet. Ore Geology Reviews, 134: 104156.

    • Yang Chao, Tang Juxing, Wang Yiyun, Yang Huanhuan, Wang Qin, Sun Xingguo, Feng Jun, Yin Xianbo, Ding Shuai, Fang Xiang, Zhang Zhi, Li Yubin. 2014. Fluid and geological characteristics researches of southern Tiegelong epithermal porphyry Cu-Au deposit in Tibet. Mineral Deposits, 33(6): 1287~1305 (in Chinese with English abstract).

    • Yang Chao, Beaudoin Georges, Tang Juxing, Song Yang, Zhang Zhi. 2020a. Hydrothermal fluid evolution at the Tiegelongnan porphyry-epithermal Cu (Au) deposit, Tibet, China: Constraints from H and O stable isotope and in-situ S isotope. Ore Geology Reviews, 125, DOI: https: //doi. org/10. 1016/j. oregeorev. 2020. 103694.

    • Yang Chao, Tang Juxing, Beaudoin Georges, Song Yang, Lin Bin, Wang Qin, Fang Xiang. 2020b. Geology and geochronology of the Tiegelongnan porphyry-epithermal Cu (Au) deposit, Tibet, China: Formation, exhumation and preservation history. Ore Geology Reviews, 123, DOI: 10. 1016/j. oregeorev. 2020. 103575.

    • Yang Huanhuan, Song Yang, Dilles John H, Sousa Francis, Danisik Martin, Yang Chao. 2019. The thermal-tectonic history of the Duolong ore district: Evidence from apatite (U-Th)/He dating. Acta Petrologica Sinica, 35(3): 867~878 (in Chinese with English abstract).

    • Zhang Xianan, Li Guangming, Qin Kezhang, Lehmann Bernd, Li Jinxiang, Zhao Junxing. 2020. Porphyry to epithermal transition at the Rongna Cu-(Au) deposit, Tibet: Insights from H-O isotopes and fluid inclusion analysis. Ore Geology Reviews, DOI: https: //doi. org/10. 1016/j. oregeorev. 2020. 103585.

    • 段志明, 李光明, 张晖, 段瑶瑶. 2013. 西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束. 地质通报, 32(5): 742~750.

    • 方向, 唐菊兴, 李彦波, 王勤, 丁帅, 张志, 杨超, 李玉彬, 陈红旗, 卫鲁杰, 尼玛. 2014. 西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型. 中国地质, 41(3): 936~950.

    • 郭娜, 黄一入, 郑龙, 唐楠, 伏媛, 王成. 2017. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例. 地球学报, 38(5): 767~778.

    • 郭娜, 史维鑫, 黄一入, 郑龙, 唐楠, 王成, 伏媛. 2018. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建. 地质通报, 37(Z1): 446~457.

    • 贺文, 林彬, 杨欢欢, 方向, 宋英昕, 韦少港, 侯淋. 2017. 西藏铁格隆南Cu-Au矿床成矿流体特征及与矿化蚀变的内在联系. 地球学报, 38(5): 638~650.

    • 李丹, 温春齐, 费光春, 何阳阳, 周玉, 宁墨奂. 2011. 西藏波龙铜矿床的砂岩成分与构造环境探讨. 矿物学报, 31(S1): 358~359.

    • 李光明, 段志明, 刘波, 张晖, 董随亮, 张丽. 2011. 西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义. 地质通报, 30(8): 1256~1260.

    • 李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、热液蚀变及金属矿物组合证据. 岩石学报31(8): 2307~2324.

    • 林彬, 方向, 王艺云, 杨欢欢, 贺文. 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示. 岩石学报, 35(3): 642~664.

    • 刘治博, 王文磊, 宋扬, 王勤. 2017. 多龙矿集区控矿构造信息提取、识别与融合. 地球学报, 38(5): 803~812.

    • 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 2014. 西藏班公湖-怒江成矿带研究进展及一些新认识. 地球科学进展, 29(7): 795~809.

    • 宋扬, 杨欢欢, 林彬, 刘治博, 王勤, 高轲, 杨超, 方向. 2017. 青藏高原羌塘地体南缘浅成低温热液成矿系统的保存机制及其重要意义——以铁格隆南超大型矿床为例. 地球学报, 38(5): 659~669.

    • 宋扬, 唐菊兴, 刘治博, 李发桥, 王勤, 肖扬, 王阳玲. 2019. 西藏铁格隆南-多不杂矿床对冲储矿机制——地球物理勘查的证据. 矿床地质, 38(6): 1263~1277.

    • 唐菊兴, 孙兴国, 丁帅, 王勤, 王艺云, 杨超, 陈红旗, 李彦波, 李玉彬, 卫鲁杰, 张志, 宋俊龙, 杨欢欢, 段吉琳, 高轲, 方向, 谭江云. 2014a. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床. 地球学报, 35(1): 6~10.

    • 唐菊兴, 王勤, 杨超, 丁帅, 郎兴海, 刘鸿飞, 黄勇, 郑文宝, 王立强, 高一鸣, 冯军, 段吉琳, 宋杨, 王艺云, 林彬, 方向, 张志, 杨欢欢. 2014b. 青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其“缺位找矿”之实践. 矿床地质, 33(6): 1151~1170.

    • 唐菊兴, 宋扬, 王勤, 林彬, 杨超, 郭娜, 方向, 杨欢欢, 王艺云, 高轲, 丁帅, 张志, 段吉琳, 陈红旗, 粟登逵, 冯军, 刘治博, 韦少港, 贺文, 宋俊龙, 李彦波, 卫鲁杰. 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床. 地球学报, 37(6): 663~690.

    • 唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571~613.

    • 唐楠, 林彬, 李玉彬, 王艺云, 李佳俊. 2021. 短波红外光谱技术在斑岩-高硫化型浅成低温热液矿床中的应用——以西藏铁格隆南超大型铜(金)矿床为例. 地质学报, 95(8): 2613~2627.

    • 王艺云, 唐菊兴, 宋扬, 杨超, 林彬, 高轲. 2008. 西藏多龙矿集区铁格隆南超大型Cu(Au、Ag)矿床硫锡砷铜矿研究及其地质意义. 矿床地质, 37(6): 1281~1295.

    • 王玉荣, 胡受奚. 2000. 钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例. 中国科学: D辑, 30(5): 499~508.

    • 杨超, 唐菊兴, 王艺云, 杨欢欢, 王勤, 孙兴国, 冯军, 印贤波, 丁帅, 方向, 张志, 李玉彬. 2014. 西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究. 矿床地质, 33(6): 1287~1305.

    • 杨欢欢, 宋扬, Dilles John H, Sousa Francis, Danisik Martin, 杨超. 2019. 西藏多龙矿集区热构造演化历史——来自磷灰石(U-Th)/He的证据. 岩石学报, 35(3): 867~878.

  • 参考文献

    • Alva-Jimenez T. 2000. Variation in hydrothermal muscovite and chlorite composition in the highland valley porphyry Cu-Mo district, British Columbia, Canada. Master thesis of Geologist Universidad Nacional de Ingenieria, 1~155.

    • Alva-Jimenez T, Tosdal R M, Dilles J H, Dipple G, Kent A J R, Halley S. 2020. Chemical variations in hydrothermal white mica across the highland valley porphyry Cu-Mo district, British Columbia, Canada. Economic Geology, 115(4): 903~926.

    • Bird D K, Schiffman P, Elders W A, Williams A E, Mcdowell S D. 1984. Calc-silicate mineralization in active geothermal systems. Economic Geology, 79(4): 671~695.

    • Bishop B P, Bird D K. 1987. Variation in sericite compositions from fracture-zones within the Coso hot-springs geothermal system. Geochimica et Cosmochimica Acta, 51(5): 1245~1256.

    • Carrillo-Rosúa J, Morales-Ruano S, Esteban-Arispe I, Hach-Alí P F. 2009. Significance of phyllosilicate mineralogy and mineral chemistry in an epithermal environment: Insights from the Palai-Islica Au-Cu deposit (Almería, Se Spain). Clays and Clay Minerals, 57(1): 1~24.

    • Duan Zhiming, Li Guangming, Zhang Hui, Duan Yaoyao. 2013. The formation and its geologic significance of Late Triassic-Jurassic accretionary complexes and constraints on metallogenic and geological settings in Duolong porphyry copper gold ore concentration area, northern Bangong Co-Nujiang suture zone, Tibet. Geological Bulletin of China, 32(5): 742~750 (in Chinese with English abstract).

    • Einaudi M T, Hedenquist J W, Inan E E. 2003. Sulfdation state of fluids in active and extinct hydrothermal systems. Society of Economic Geologists Special Publication, 10: 285~313.

    • Fang Xiang, Tang Juxing, Li Yanbo, Wang Qin, Ding Shuai, Zhang Zhi, Yang Chao, Li Yubin, Chen Hongqi, Wei Lujie, Ni Ma. 2014. Metallogenic element spatial distribution of the Naruo Copper (gold) deposit in the Duolong ore concentration of Tibet and its geochemical exploration model. Geology in China, 41(3): 936~950 (in Chinese with English abstract).

    • Guo Na, Huang Yiru, Zheng Long, Tang Nan, Fu Yuan, Wang Cheng. 2017. Alteration zoning and prospecting model of epithermal deposit revealed by shortwave infrared technique: A case study of Tiegelongnan and Sinongduo deposits. Acta Geoscientica Sinica, 38(5): 767~778 (in Chinese with English abstract).

    • Guo Na, Shi Weixin, Huang Yiru, Zheng Long, Tang Nan, Wang Cheng, Fu Yuan. 2018. Alteration mapping and prospecting model construction in the Tiegelongnan ore deposit of the Duolong ore concentration area, northern Tibet, based on shortwave infrared technique. Geological Bulletin of China, 37(2-3): 446~457 (in Chinese with English abstract).

    • Halley S, Dilles J H, Tosdal R M. 2015. Footprints: Hydrothermal alteration and geochemical dispersion around porphyry copper deposits. SEG Discovery, (100): 1~17.

    • Han Zehua, Wang Rui, Tong Xuesong, Sun Fei, Li Yuyao, Liu Siyu, Xue Qingwen. 2021. Multi-scale exploration of giant Qulong porphyry deposit in a collisional setting. Ore Geology Reviews, 139: 104455.

    • He Wen, Lin Bin, Yang Huanhuan, Fang Xiang, Song Yingxin, Wei Shaogang, Hou Lin. 2017. Fluid inclusion feature and its internal relationship with mineralization and epithermal alteration of the Tiegelongnan Cu-Au deposit. Acta Geoscientica Sinica, 38(5): 638~650 (in Chinese with English abstract).

    • He Wen, Lin Bin, Yang Huanhuan, Song Yingxin. 2018. Studies of metallic and trace minerals of the Tiegelongnan Cu-Au deposit, central Tibet, China. Acta Geologica Sinica (English Edition), 92(3): 1123~1138.

    • He Wen, Lin Bin, Wang Qin, Yang Huanhua, Song Yingxin. 2021. Sulphide geochemistry of the superlarge Tiegelongnan Cu (Au) deposit in Tibet, China: Implication for the mineralization process. Geological Journal, 56(8): 4249~4365.

    • Hedenquist J W, Taran Y A. 2013. Modeling the formation of advanced argillic lithocaps: Volcanic vapor condensation above porphyry intrusions. Economic Geology, 108: 1523~1540.

    • Hemley J J, Jones W R. 1964. Chemical aspects of hydrothermal alteration with emphasis on hydrogen ion metasomatism. Economic Geology, 59: 238~369.

    • Hemley J J. 1959. Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O. American Journal of Science, 257(4): 241~270.

    • Herrmann W, Blake M, Doyle M, Huston D, Kamprad J, Merry N, Pontual S. 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfde deposits at Rosebery and western Tharsis, Tasmania, and Highway-Reward, Queensland. Economic Geology, 96: 939~955.

    • Lerchbaumer L, Audétat A. 2012. High Cu concentrations in vapor-type fluid inclusions: An artifact? Geochimica et Cosmochimica Acta, 88: 255~274.

    • Li Dan, Wen Chunqi, Fei Guangchun, He Yangyang, Zhou Yu, Ning Mohuan. 2011. Discussion of sandstone composition and tectonic environment of the Bolong copper deposit, Tibet. Acta Mineralogica Sinica, 31(S1): 358~359 (in Chinese).

    • Li Guangming, Duan Zhiming, Liu Bo, Zhang Hui, Dong Suiliang, Zhang Li. 2011. The discovery of Jurassic accretionary complexes in Duolong area, northern Bangong Co-Nujiang sature zone, Tibet, and its geologic significance. Geological Bulletin of China, 20(8): 1256~1260 (in Chinese with English abstract).

    • Li Guangming, Zhang Xianan, Qin Kezhang, Sun Xingguo, Zhao Junxing, Yin Xianbo, Li Jinxiang, Yuan Huashan. 2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang terrane, central Tibet: Integrated evidence from geology, hydrothermal alteration and sulfide assemblages. Acta Petrologica Sinica, 31(8): 2307~2324 (in Chinese with English abstract).

    • Lin Bin, Chen Yuchuan, Tang Juxing, Wang Qin, Song Yang, Yang Chao, Wang Wenlei, He Wen, Zhang Lejun. 2017a. 40Ar/39Ar and Rb-Sr ages of the Tiegelongnan porphyry Cu-(Au) deposit in the Bangong Co-Nujiang metallogenic belt of Tibet, China: Implication for generation of super-large deposit. Acta Geoligica Sinica (English Edition), 91: 602~616.

    • Lin Bin, Tang Juxing, Chen Yuchuan, Song Yang, Hall G, Wang Qin, Yang Chao, Fang Xiang, Duan Jilin, Yang Huanhuan, Liu Zhibo, Wang Yiyun, Feng Jun. 2017b. Geochronology and genesis of the Tiegelongnan porphyry Cu(Au) deposit in Tibet: Evidence from U-Pb, Re-Os dating and Hf, S, and H-O isotopes. Resource Geology, 67(1): 1~21.

    • Lin Bin, Fang Xiang, Wang Yiyun, Yang Huanhuan, He Wen. 2019. Petrologic genesis of ore-bearing porphyries in Tiegelongnan giant Cu (Au, Ag) deposit, Tibet and its implications for the dynamic of Cretaceous mineralization, Duolong. Acta Petrologica Sinica, 35(3): 642~664 (in Chinese with English abstract).

    • Lin Bin, Tang Juxing, Chen Yuchuan, Baker M, Song Yang, Yang Huanhuan, Wang Qin, He Wen, Liu Zhibo. 2019. Geology and geochronology of Naruo large porphyry-breccia Cu deposit in the Duolong district, Tibet. Gondwana Research, 66: 168~182.

    • Liu Zhibo, Wang Wenlei, Song Yang, Wang Qin. 2017. Geo-information extraction and integration of ore-controlling structure in the Duolong ore concentration area of Tibet. Acta Geoscientica Sinica, 38(5): 803~812 (in Chinese with English abstract).

    • Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alteration reactions. Economic Geology, 70(3): 577~583.

    • Parry W T, Ballantyne J M, Jacobs D C. 1984. Geochemistry of hydrothermal sericite from Roosevelt hot spring and the Tintic and Santa-Tiata porphyry copper systems. Economic Geology, 79(1): 72~86.

    • Post J L, Noble P L. 1993. The near-infrared combination band frequencies of dioctohedral smectites, micas and illites. Clays and Clay Minerals, 41: 639~644.

    • Rieder M, Cavazzini G, D'yakonov Y S, Frank-Kamenetskii V A, Gottardi G, Guggenheim S, Koval' P V, Mueller G, Neiva A M, Radoslovich E W, Robert J L. 1998. Nomenclature of the micas. Clays and Clay Minerals, 46: 586~595.

    • Seedorff E, Einaudi M T. 2004. Henderson porphyry molybdenum system, Colorado II. decoupling of introduction and deposition of metals during 705 geochemical evolution of hydrothermal fluids. Economic Geology, 99: 39~72.

    • Sillitoe R H. 1993. Epithermal models: Genetic types, geometrical controls and shallow features. Geological Association of Canada Special Paper, 40: 403~417.

    • Song Yang, Tang Juxing, Qu Xiaoming, Wang Denghong, Xin Hongbo, Yang Chao, Lin Bin. 2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition. Advances in Earth Science, 29(7): 795~809 (in Chinese with English abstract).

    • Song Yang, Yang Huanhuan, Lin Bin, Liu Zhibo, Wang Qin, Gao Ke, Yang Chao, Fang Xiang. 2017. The preservation system of epithermal deposits in South Qiangtang terrane of central Tibetan Plateau and its significance: A case study of the Tiegelongnan superlarge deposit. Acta Geoscientica Sinica, 38(5): 659~669 (in Chinese with English abstract).

    • Song Yang, Yang Chao, Wei Shaogang, Yang Huanhuan, Fang Xiang, Lu Hongbo. 2018. Tectonic control, reconstruction and preservation of the Tiegelongnan porphyry and epithermal overprinting Cu (Au) deposit, central Tibet, China. Minerals, 8(9): 398.

    • Song Yang, Tang Juxing, Liu Zhibo, Li Faqiao, Wang Qin, Xiao Yang, Wang Yanglin. 2019. Mechanism of Tiegelongnan-Duobuza ramp style ore-controlling structure, Tibet: Evidence from geophysical exploration. Mineral Deposits, 38(6): 1263~1277 (in Chinese with English abstract).

    • Sun Jia, Mao Jingwen, Beaudoin G, Duan Xianzhe, Yao Fojun, Ouyang Hegen, Wu Yue, Li Yubin, Meng Xuyang. 2017. Geochronology and geochemistry of porphyritic intrusions in the Duolong porphyry and epithermal Cu-Au district, central Tibet: Implications for the genesis and exploration of porphyry copper deposits. Ore Geology Reviews, 80: 1004~1019.

    • Sun Weidong, Liang Huaying, Ling Mingxing, Zhan Meizhen, Ding Xing, Zhang Hong, Yang Xiaoyong, Li Yiliang, Ireland T R, Wei Qirong, Fan Weiming. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263~275.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65: 97~131.

    • Tang Juxing, Sun Xingguo, Ding Shuai, Wang Qin, Wang Yiyun, Yang Chao, Chen Hongqi, Li Yanbo, Li Yubin, Wei Lujie, Zhang Zhi, Song Junlong, Yang Huanhuan, Duan Jilin, Gao Ke, Fang Xiang, Tan Jiangyun. 2014a. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area, Tibet. Acta Geoscientica Sinica, 35(1): 6~10 (in Chinese with English abstract).

    • Tang Juxing, Wang Qin, Yang Chao, Ding Shuai, Lang Xinghai, Liu Hongfei, Huang Yong, Zheng Wenbao, Wang Liqiang, Gao Yiming, Feng Jun, Duan Jilin, Song Yang, Wang Yiyun, Lin Bin, Fang Xiang, Zhang Zhi, Yang Huanhuan. 2014b. Two porphyry-epithermal deposit metallogenic subseries in Tibetan Plateau: “practice of absence prospecting” deposit metallogenic series. Mineral Deposits, 33(6): 1151~1170 (in Chinese with English abstract).

    • Tang Juxing, Song Yang, Wang Qin, Lin Bin, Yang Chao, Guo Na, Fang Xiang, Yang Huanhuan, Wang Yiyun, Gao Ke, Ding Shuai, Zhang Zhi, Duan Jilin, Chen Hongqi, Li Dengkui, Feng Jun, Liu Zhibo, Wei Shaogang, He Wen, Song Junlong, Li Yanbo, Wei Lujie. 2016. Geological characteristics and exploration model of the Tiegelongnan Cu (Au-Ag) deposit: The first ten million tons metal resources of a porphyry-epithermal deposit in Tibet. Acta Geosicentica Sinica, 37(6): 663~690 (in Chinese with English abstract).

    • Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bing. 2017. Mineralization, exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571~613.

    • Tang Nan, Lin Bin, Wang Yiyun, Li Jiajun. 2021. Application of short-wavelength infrared spectroscopy in porphyry-epithermal system: A case study of Tiegelongnan super-large copper (gold) deposit, Tibet. Acta Geologica Sinica, 95(8): 2613~2627 (in Chinese with English abstract).

    • Tappert M, Rivard B, Giles D, Tappert R, Mauger A. 2013. The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53: 26~38.

    • Uribe-Mogollon C, Maher K. 2018. White mica geochemistry of the copper cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113(6): 1269~1295.

    • Wang Rui, Cudahy T, Laukamp C, Walshe J L, Bath A, Mei Yuan, Young C, Roache T J, Jenkins A, Roberts M, Barker A, Laird J. 2017. White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, western Australia. Economic Geology, 112(5): 1153~1176.

    • Wang Yiyun, Tang Juxing, Song Yang, Yang Chao, Lin Bin, Gao Ke. 2008. A study of colusite from Tiegelongnan supperlarge Cu (Au, Ag) deposit and its geological significance. Mineral Deposit, 37(6): 1281~1295 (in Chinese with English abstract).

    • Wang Yurong, Hu Shouxi. 2000. Experimental study on gold activation and migration during potassium metasomatic alteration—a case study of gold deposits in North China Craton. Science China Earth Sciences, 30(5): 499~508 (in Chinese with English abstract).

    • Xue Qingwen, Wang Rui, Liu Siyu, Shi Weixin, Tong Xuesong, Li Yuyao, Sun Fei. 2021. Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, southern Tibet. Ore Geology Reviews, 134: 104156.

    • Yang Chao, Tang Juxing, Wang Yiyun, Yang Huanhuan, Wang Qin, Sun Xingguo, Feng Jun, Yin Xianbo, Ding Shuai, Fang Xiang, Zhang Zhi, Li Yubin. 2014. Fluid and geological characteristics researches of southern Tiegelong epithermal porphyry Cu-Au deposit in Tibet. Mineral Deposits, 33(6): 1287~1305 (in Chinese with English abstract).

    • Yang Chao, Beaudoin Georges, Tang Juxing, Song Yang, Zhang Zhi. 2020a. Hydrothermal fluid evolution at the Tiegelongnan porphyry-epithermal Cu (Au) deposit, Tibet, China: Constraints from H and O stable isotope and in-situ S isotope. Ore Geology Reviews, 125, DOI: https: //doi. org/10. 1016/j. oregeorev. 2020. 103694.

    • Yang Chao, Tang Juxing, Beaudoin Georges, Song Yang, Lin Bin, Wang Qin, Fang Xiang. 2020b. Geology and geochronology of the Tiegelongnan porphyry-epithermal Cu (Au) deposit, Tibet, China: Formation, exhumation and preservation history. Ore Geology Reviews, 123, DOI: 10. 1016/j. oregeorev. 2020. 103575.

    • Yang Huanhuan, Song Yang, Dilles John H, Sousa Francis, Danisik Martin, Yang Chao. 2019. The thermal-tectonic history of the Duolong ore district: Evidence from apatite (U-Th)/He dating. Acta Petrologica Sinica, 35(3): 867~878 (in Chinese with English abstract).

    • Zhang Xianan, Li Guangming, Qin Kezhang, Lehmann Bernd, Li Jinxiang, Zhao Junxing. 2020. Porphyry to epithermal transition at the Rongna Cu-(Au) deposit, Tibet: Insights from H-O isotopes and fluid inclusion analysis. Ore Geology Reviews, DOI: https: //doi. org/10. 1016/j. oregeorev. 2020. 103585.

    • 段志明, 李光明, 张晖, 段瑶瑶. 2013. 西藏班公湖-怒江缝合带北缘多龙矿集区晚三叠世-侏罗纪增生杂岩结构及其对成矿地质背景的约束. 地质通报, 32(5): 742~750.

    • 方向, 唐菊兴, 李彦波, 王勤, 丁帅, 张志, 杨超, 李玉彬, 陈红旗, 卫鲁杰, 尼玛. 2014. 西藏多龙矿集区拿若铜(金)矿床成矿元素空间分布规律及地球化学勘查模型. 中国地质, 41(3): 936~950.

    • 郭娜, 黄一入, 郑龙, 唐楠, 伏媛, 王成. 2017. 高硫-低硫化浅成低温热液矿床的短波红外矿物分布特征及找矿模型——以西藏铁格隆南(荣那矿段)、斯弄多矿床为例. 地球学报, 38(5): 767~778.

    • 郭娜, 史维鑫, 黄一入, 郑龙, 唐楠, 王成, 伏媛. 2018. 基于短波红外技术的西藏多龙矿集区铁格隆南矿床荣那矿段及其外围蚀变填图-勘查模型构建. 地质通报, 37(Z1): 446~457.

    • 贺文, 林彬, 杨欢欢, 方向, 宋英昕, 韦少港, 侯淋. 2017. 西藏铁格隆南Cu-Au矿床成矿流体特征及与矿化蚀变的内在联系. 地球学报, 38(5): 638~650.

    • 李丹, 温春齐, 费光春, 何阳阳, 周玉, 宁墨奂. 2011. 西藏波龙铜矿床的砂岩成分与构造环境探讨. 矿物学报, 31(S1): 358~359.

    • 李光明, 段志明, 刘波, 张晖, 董随亮, 张丽. 2011. 西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义. 地质通报, 30(8): 1256~1260.

    • 李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、热液蚀变及金属矿物组合证据. 岩石学报31(8): 2307~2324.

    • 林彬, 方向, 王艺云, 杨欢欢, 贺文. 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示. 岩石学报, 35(3): 642~664.

    • 刘治博, 王文磊, 宋扬, 王勤. 2017. 多龙矿集区控矿构造信息提取、识别与融合. 地球学报, 38(5): 803~812.

    • 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 2014. 西藏班公湖-怒江成矿带研究进展及一些新认识. 地球科学进展, 29(7): 795~809.

    • 宋扬, 杨欢欢, 林彬, 刘治博, 王勤, 高轲, 杨超, 方向. 2017. 青藏高原羌塘地体南缘浅成低温热液成矿系统的保存机制及其重要意义——以铁格隆南超大型矿床为例. 地球学报, 38(5): 659~669.

    • 宋扬, 唐菊兴, 刘治博, 李发桥, 王勤, 肖扬, 王阳玲. 2019. 西藏铁格隆南-多不杂矿床对冲储矿机制——地球物理勘查的证据. 矿床地质, 38(6): 1263~1277.

    • 唐菊兴, 孙兴国, 丁帅, 王勤, 王艺云, 杨超, 陈红旗, 李彦波, 李玉彬, 卫鲁杰, 张志, 宋俊龙, 杨欢欢, 段吉琳, 高轲, 方向, 谭江云. 2014a. 西藏多龙矿集区发现浅成低温热液型铜(金银)矿床. 地球学报, 35(1): 6~10.

    • 唐菊兴, 王勤, 杨超, 丁帅, 郎兴海, 刘鸿飞, 黄勇, 郑文宝, 王立强, 高一鸣, 冯军, 段吉琳, 宋杨, 王艺云, 林彬, 方向, 张志, 杨欢欢. 2014b. 青藏高原两个斑岩-浅成低温热液矿床成矿亚系列及其“缺位找矿”之实践. 矿床地质, 33(6): 1151~1170.

    • 唐菊兴, 宋扬, 王勤, 林彬, 杨超, 郭娜, 方向, 杨欢欢, 王艺云, 高轲, 丁帅, 张志, 段吉琳, 陈红旗, 粟登逵, 冯军, 刘治博, 韦少港, 贺文, 宋俊龙, 李彦波, 卫鲁杰. 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型——西藏首例千万吨级斑岩-浅成低温热液型矿床. 地球学报, 37(6): 663~690.

    • 唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571~613.

    • 唐楠, 林彬, 李玉彬, 王艺云, 李佳俊. 2021. 短波红外光谱技术在斑岩-高硫化型浅成低温热液矿床中的应用——以西藏铁格隆南超大型铜(金)矿床为例. 地质学报, 95(8): 2613~2627.

    • 王艺云, 唐菊兴, 宋扬, 杨超, 林彬, 高轲. 2008. 西藏多龙矿集区铁格隆南超大型Cu(Au、Ag)矿床硫锡砷铜矿研究及其地质意义. 矿床地质, 37(6): 1281~1295.

    • 王玉荣, 胡受奚. 2000. 钾交代蚀变过程中金活化转移实验研究——以华北地台金矿为例. 中国科学: D辑, 30(5): 499~508.

    • 杨超, 唐菊兴, 王艺云, 杨欢欢, 王勤, 孙兴国, 冯军, 印贤波, 丁帅, 方向, 张志, 李玉彬. 2014. 西藏铁格隆南浅成低温热液型-斑岩型Cu-Au矿床流体及地质特征研究. 矿床地质, 33(6): 1287~1305.

    • 杨欢欢, 宋扬, Dilles John H, Sousa Francis, Danisik Martin, 杨超. 2019. 西藏多龙矿集区热构造演化历史——来自磷灰石(U-Th)/He的证据. 岩石学报, 35(3): 867~878.