en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘磊,男,1988年生。博士,副教授,主要从事火成岩岩石学研究。E-mail:liulei@glut.edu.cn。

参考文献
Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53: 197~214.
参考文献
Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273: 48~57.
参考文献
Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355: eaag3055.
参考文献
Coleman D S, Gray W, Clazner A F. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne intrusive suite, California. Geology, 32(5): 433~436.
参考文献
Deering C D, Keller B, Schoene B, Bachmann O, Beane R, Ovtcharova M. 2016. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution. Geology, 44: 267~270.
参考文献
Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154: 429~437.
参考文献
Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133~147.
参考文献
Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.
参考文献
He Zhenyu, Xu Xisheng. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328: 208~221.
参考文献
He Zhenyu, Yan Lili. 2021. Zircon trace element geochemistry constrains on the silicic volcanic system. Acta Petrologica et Mineralogica, 40(5): 939~951 (in Chinese with English abstract).
参考文献
He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38(5): 1419~1442 (in Chinese with English abstract).
参考文献
Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423~439.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27~62.
参考文献
Li Weikai, Cheng Yuanqi, Yang Zhiming. 2019. Geo-fo2: Integrated software for analysis of mgmatic Oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542~2555.
参考文献
Lipman P W. 1984. The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth, 89(B10): 8801~8841.
参考文献
Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166~180.
参考文献
Liu Lei, Xu Xisheng, Xia Yan. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37: 397~407.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
参考文献
Ma Changqian, Li Yanqing. 2017. Incremental growth of granitoid plutons and highly crystalline magmatic differentiation. Acta Petrologica Sinica, 33(5): 1479~1488 (in Chinese with English abstract).
参考文献
Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Lianshun, Gao Ke. 2015. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555~3568 (in Chinese with English abstract).
参考文献
MacDonald W D, Palmer H C, Deino A L, Shen Poyu. 2012. Insights into deposition and deformation of intra-caldera ignimbrites, central Nevada. Journal of Volcanology and Geothermal Research, 245-246: 40~54.
参考文献
Matzel J E P, Bowring S A, Miller R B. 2006. Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geological Society of America Bulletin, 118(11-12): 1412~1430.
参考文献
Medlin C C, Jowitt S M, Cas R A F, Smithies R H, Kirkland C L, Maas R A, Raveggi M, Howard H M, Wingate M T D. 2015. Petrogenesis of the A-type, Mesoproterozoic intra-caldera rheomorphic Kathleen ignimbrite and comagmatic Rowland suite intrusions, West Musgrave Province, Central Australia: Products of extreme fractional crystallization in a failed rift setting. Journal of Petrology, 56(3): 493~525.
参考文献
Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M. 2008. Incremental growth of the Patagonian Torres del Painelaccolith over 90k. Geology, 36(6): 459~462.
参考文献
Petford N, Cruden A R, McCaffrey K J W, Vigneresse J L. 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408(6813): 669~673.
参考文献
Schoene B. 2014. U-Th-Pb Geochronology. Treatise on Geochemistry. 2nd Edition. New York: Elsevier.
参考文献
Simon J I, Renne P R, Mundil R. 2008. Implications of pre-eruptive magmatic histories of zircons for U-Pb geochronology of silicic extrusions. Earth and Planetary Science Letters, 266: 182~194.
参考文献
Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311~325.
参考文献
Sun Fajun, Xu Xisheng, Zou Haibo, Xia Yan. 2015. Petrogenesis and magmatic evolution of ~130 Ma A-type granites in Southeast China. Journal of Asian Earth Sciences, 98: 209~225.
参考文献
Sun Jie, Liu Lei, Li Xiang, Zhao Zengxia, Zhao Yang. 2023. Identification of Late Triassic volcanic rocks in South China: Constraints on the timing initiation of the Paleo-Pacific subduction. Journal of Guilin University of Technology, 41(1): 1~13 (in Chinese with English abstract).
参考文献
Tappa M J, Coleman D S, Mills R D, Samperton K M. 2011. The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochemistry, Geophysics, Geosystems, 12(10): Q10011.
参考文献
Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70~87.
参考文献
Wang Dezi, Zhou Jincheng, Qiu Jiansheng, Fan Honghai. 2000. Characteristics and petrogenesis of Late Mesozoic granitic volcanic-intrusive complexes in southeastern China. Geological Journal of China Universities, 6(4): 487~498 (in Chinese with English abstract).
参考文献
Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.
参考文献
Wu Fuyuan, Yang Jinhui, Liu Xiaoming, Li Tiesheng, Xie Liewen, Yang Yueheng. 2005. Hf isotopes of the 3. 8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50(21): 2473~2480.
参考文献
Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1~36 (in Chinese with English abstract).
参考文献
Xia Yan, Xu Xisheng, Zhu Kongyang. 2012. Paleoproterozoic S- and A-type granites in southeastern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research, 216-219, 177~207.
参考文献
Xie Jiaying, Tao Kuiyuan, Yin Jiaheng, Mao Jianren, Xie Fanggui, Ruan Honghong, Huang Guangzhao, Xue Huaimin, Zheng Jilin, Shen Jialin. 1996. Mesozoic Volcanic Geology and Volcano-Intrusive Complexes of Southeast China Continent. Beijing: Geological Publishing House (in Chinese).
参考文献
Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiaolei, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158: 51~78.
参考文献
Xu Xisheng, Zhao Kai, He Zhenyu, Liu Lei. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402-403: 105728.
参考文献
Yan Lili, He Zhenyu, Jahn Borming, Zhao Zhidan. 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation. Lithos, 266-267: 287~308.
参考文献
Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 320-321: 28~34.
参考文献
Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xisheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data l. Chemical Geology, 542: 119~596.
参考文献
Yan Lili, He Zhenyu. 2022. Influence of magma recharge on the evolution of silicic volcanic system. Acta Geologica Sinica, 96(5): 1697~1710.
参考文献
Yue Xiaohan, Liu Lei, Zhang Zhiguo, Zhao Zengxia, Sun Jie, Zhao Yang. 2022. Petrogenesis of the Jurassic representative volcanic rocks in eastern Guangdong: Response to the early stage of the Paleo-Pacific subduction. Geological Journal of China Universities, 28(2): 199~210 (in Chinese with English abstract).
参考文献
Zheng Shishuai, Xu Xisheng. 2021. Petrogenesis of Late Cretaceous volcanic-plutonic complex from Xiaoxiong caldera in East Zhejiang. Acta Petrologica Sinica, 37(12): 3712~3734 (in Chinese with English abstract).
参考文献
Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287.
参考文献
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.
参考文献
贺振宇, 颜丽丽. 2021. 锆石微量元素地球化学对硅质火山岩浆系统的制约. 岩石矿物学杂志, 40(5): 939~951.
参考文献
贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38(5): 1419~1442.
参考文献
马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555~3568.
参考文献
马昌前, 李艳青. 2017. 花岗岩体的累积生长与高结晶度岩浆的分异. 岩石学报, 33(5): 1479~1488.
参考文献
孙杰, 刘磊, 李响, 赵增霞, 赵阳. 2023. 华南晚三叠世火山岩的识别: 对古太平洋板块俯冲启动时限的制约. 桂林理工大学学报, 43(1): 1~13.
参考文献
王德滋, 周金城, 邱检生, 范洪海. 2000. 中国东南部晚中生代花岗质火山-侵入杂岩特征与成因. 高校地质学报, 6(4): 487~498.
参考文献
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1~36.
参考文献
谢家莹, 陶奎元, 尹家衡, 毛建仁, 谢芳贵, 阮宏宏, 黄光昭, 薛怀民, 郑济林, 沈加林. 1996. 中国东南大陆中生代火山地质及火山-侵入杂岩. 北京: 地质出版社.
参考文献
颜丽丽, 贺振宇. 2022. 岩浆补给作用对硅质火山岩浆系统演化的制约. 地质学报, 96(5): 1697~1710.
参考文献
岳晓涵, 刘磊, 张治国, 赵增霞, 孙杰, 赵阳. 2022. 粤东地区侏罗纪代表性剖面火山岩成因: 对古太平洋板块俯冲早阶段的地质响应. 高校地质学报, 28(2): 199~210.
参考文献
郑世帅, 徐夕生. 2021. 浙东晚白垩世小雄破火山中火山-侵入杂岩的岩石成因. 岩石学报, 37(12): 3712~3734.
目录contents

    摘要

    火山是岩浆活动在地表的主要呈现形式,古老火山由于剥蚀作用出露多阶段火山喷发产物及岩浆通道、岩浆房等,从而为揭示岩浆房内部结构和成分演化提供重要窗口。锆石在长期结晶生长过程中,能够记录岩浆系统的结晶分异、晶体-熔体分离和岩浆补给等过程。闽西南晚侏罗世廖天山破火山是保存最完整的中国东南部晚中生代早期代表性破火山之一,本文对其开展锆石U-Pb年代学、Lu-Hf同位素组成和微量元素成分分析,以期揭示其火山活动时序、岩浆来源和演化过程。廖天山火山活动具有阶段性和多期次性,一段火山活动开始于约161.5±0.7 Ma,喷发断续且规模较为有限;二段火山岩形成于159.9±0.9~156.9±0.8 Ma,该时段喷发产物规模巨大,构成破火山主体;最后岩浆在153.2±0.7 Ma沿火山通道侵出形成流纹斑岩岩穹,标志着火山活动的结束。锆石Lu-Hf同位素组成显示,廖天山破火山岩浆主要源于古元古代地壳基底的部分重熔,但有不同程度的亏损幔源物质贡献,且在三个火山活动阶段中幔源物质参与比例不同,二段火山岩中相对较低。不同批次岩浆可能从源区分别上升,在深部岩浆房发生岩浆混合,而后在浅部岩浆房短暂留存发生分离结晶作用。根据岩浆来源的变化和火山岩相组合,我们认为廖天山火山活动形成于相对挤压转向伸展的构造环境,受制于晚侏罗世古太平洋板块俯冲以及板片俯冲角度变化的地球动力学背景。

    Abstract

    Volcanoes are the only straightforward expression for the activity of magma on Earth's surface. Ancient volcanoes could expose multi-stage eruptive products, magma plumbing systems and even the magma reservoirs. Therefore, they could preserve important information on interior structure of magma reservoir and magmatic evolution. Zircons can record crystallization differentiation, crystal-melt separation, and replenishment processes of magma system. In this work, we conducted zircon U-Pb, Lu-Hf isotopic and trace element concentration studies on the late Jurassic Liaotianshan caldera in southwest Fujian Province, which is one of the earliest and best preserved Late Mesozoic calderas in SE China, to reveal its eruptive history, magma source and evolution process. The Liaotianshan volcano started to erupt intermittently at ca. 161.5±0.7 Ma as the first stage with limited scales of eruptive products, then during 159.9±0.9~156.9±0.8 Ma erupted as the second stage forming the main part of the caldera. At the final stage, magma extruded along the magma conduit forming porphyritic rhyolite domes at ca. 153.2±0.7 Ma, marking the end of the eruption. Zircon Lu-Hf isotopic compositions show that, the Liaotianshan volcanic rocks were derived mainly from partial remelting of the Paleoproterozoic crustal basement, with decreasing and then increasing degree of depleted mantle-derived involvement. Different batches of magma raised separately from source region after magma mixing in deep reservoir, and then retained briefly in shallow reservoir with similar crystallization process. The change of magma origin together with volcanic lithofacies indicate that the Liaotianshan caldera formed under a slightly compressional and then depressional geological environment, plausibly corresponding to the paleo-Pacific subduction with varying subduction angle during Late Jurassic.

  • 十余年来,岩浆侵位、演化和火山喷发机制问题是国际地学界有关火成岩研究的前沿领域之一(Petford et al.,2000; 吴福元等,2015)。关于火成岩尤其是硅质岩浆侵位-喷发机制的研究,有助于深入理解大陆地壳的分异演化过程。目前,硅质岩浆侵位-喷发机制研究的焦点在于地壳内是否存在岩基规模的岩浆房(马昌前和李艳青,2017)。不断增多的证据表明,很多大型的花岗岩类侵入体并非岩浆一次侵位而形成的巨大岩浆体结晶产物,而是在数千至数百万年内,由多次脉动的岩浆累积侵位而成(Coleman et al.,2004; Matzel et al.,2006; Michel et al.,2008)。“穿地壳岩浆系统”模型则认为岩浆在向上运移的过程中可形成多级岩浆房,岩浆房中残余的熔体可进一步向酸性成分演化并向上运移(Cashman et al.,2017)。火山活动是唯一能够直接反映地球深部存在岩浆的地球动力学现象,是了解岩浆房内部结构和成分演化的重要媒介。古老火山或破火山一般由于后期构造影响和地表剥蚀作用的改造,可以出露早期火山喷发产物、内部的岩浆通道、岩浆房,甚至伴生的深成侵入体等,从而为揭示火山岩浆系统演化和火山活动过程提供重要窗口(Lipman,1984; Medlin et al.,2015; Deering et al.,2016; Yan Lili et al.,2016)。

  • 锆石是硅质火山-侵入岩常见的副矿物,含有Th、U、Ti、Hf、P 等多种微量元素和稀土元素,且具有较好的难熔性、稳定性,可保留其长期的结晶生长历史痕迹(Hoskin and Schaltegger,2003),能够记录火成岩的结晶年龄(Schoene,2014)、温度(Watson and Harrison,2005)、氧逸度(Trail et al.,2012)、岩浆源区(Wu Fuyuan et al.,2005)、岩浆演化过程(Yan Lili et al.,20182020; 颜丽丽和贺振宇,2022)及成岩后热液事件(Hoskin and Black,2000)等一系列信息。近年来,随着测试技术的高精度化,锆石U-Pb年代学、Lu-Hf同位素和微量元素组成,在示踪火山岩浆系统的结晶分异、晶体-熔体分离、岩浆补给作用等过程以及揭示火山岩-侵入岩的成因联系、制约斑岩成矿系统的岩浆-热液系统演化等研究方面逐渐获得重视(贺振宇等,2021)。

  • 中国东南部广泛分布的晚中生代火山-侵入杂岩带以规模大、以中酸性岩为主、发育典型的破火山构造和火山-侵入杂岩及相关的金属矿床为特色,但是以往的研究大多聚焦于白垩纪破火山或火山-侵入杂岩,而对早期(中—晚侏罗世)的破火山或火山-侵入杂岩关注较少(如,Yan Lili et al.,2016; Xu Xisheng et al.,2021),有碍于对晚中生代构造-岩浆演化过程的综合认识。因此,本文选择其中保存完整但研究程度较低的早期代表性破火山闽西南廖天山破火山进行研究,应用系统的锆石U-Pb年代学、锆石Lu-Hf同位素和微量元素成分分析,以揭示其火山活动时序、岩浆来源和演化过程,进一步深入理解中国东南沿海穿地壳硅质岩浆系统的形成和演化机制。

  • 1 地质背景

  • 中国东南部是世界范围内花岗质岩石的主要分布区之一,这些大面积分布的花岗岩及对应的火山岩是幕式多期次岩浆活动的产物,在国际花岗岩及硅质火山-侵入杂岩研究领域产生了重要影响(Zhou Xinmin et al.,2006)。中国东南部火山岩最早可前溯到约204 Ma,但较为零星(孙杰等,2023),自中晚侏罗世(165~145 Ma)火山活动的强度和范围逐步增大,形成的火山岩主要分布在福建、浙江、广东等沿海地区,而白垩纪是中国东南部火山活动的高峰期,形成的火山岩集中在浙闽沿海一带,呈连续带状分布(Zhou Xinmin et al.,2006Liu Lei et al.,2016)。由此形成长约2000 km、宽约400 km的晚中生代火山-侵入杂岩带,发育多个由破火山、火山穹隆、构造洼地等组成的巨型环状火山构造(图1;王德滋等,2000; Zhou Xinmin et al.,2006)。

  • 图1 中国东南部晚中生代火山-侵入杂岩分布图 (据Zhou Xinmin et al.,2006修改)

  • Fig.1 Distribution of Late Mesozoic volcanic-intrusive rocks in SE China (modified from Zhou Xinmin et al., 2006)

  • 廖天山破火山是保存最完整的中国东南部晚中生代早期代表性破火山之一,位于政和-大埔断裂带以西的福建龙岩地区,平面形态为不规则半椭圆状,面积约23 km2(图2)。地貌上外围为略低缓的山岭,中间廖天山—南山顶一带为高耸陡峻的山峰,地形切割强烈。根据岩性和岩相组合,火山喷发可分为两个主要阶段:一段喷发产物断续分布于破火山边缘,构成喷发-沉积相凝灰质砂岩和泥岩、空落堆积相流纹英安质-英安质晶屑(岩屑)凝灰岩等;二段喷发产物广泛分布,构成破火山主体,由外向内依次为碎屑流堆积相流纹质(含角砾)晶屑熔结凝灰岩、空落相流纹质(含角砾、角砾)晶屑凝灰岩、溢流相流纹岩、喷发-沉积相凝灰质砂岩和泥岩等、爆溢相流纹质(含角砾)晶屑凝灰熔岩(图3a)、崩落堆积相(含集块)火山角砾岩(图3b)、空落相流纹质(含角砾、角砾)晶屑(岩屑)凝灰岩,其中空落堆积相流纹(英安)质(含角砾、角砾)晶屑(岩屑)凝灰岩遍布整个火山盆地,碎屑流堆积相流纹质(含角砾)晶屑熔结凝灰岩分布于盆地东部、爆溢相流纹质(含角砾)晶屑凝灰熔岩分布于廖天山破火山口外围及其南坡(图2)。火山机构中心位于连城县赖源乡南侧约4 km,有廖天山、南山顶等火口中心,为侵出相流纹斑岩等充填(图3c、d)。各岩性岩相围绕中心呈环状、半环状展布,总体产状呈环状内倾,倾角11°~35°。破火山内部及外围发育一系列的环状、放射状断裂和花岗斑岩、流纹斑岩脉。破火山与周围地层下石炭统林地组(C1l)、下二叠统船山组(P1c)、中二叠统栖霞组(P2q)等呈喷发不整合接触(图2),东部被早白垩世火山岩覆盖。

  • 图2 廖天山破火山地质图及采样位置

  • Fig.2 Geological map of the Liaotianshan caldera and sample locations

  • J1YξγC—早侏罗世黑云母正长花岗岩; C1l—下石炭统林地组; P1c—下二叠统船山组; P2q—中二叠统栖霞组

  • J1YξγC—early Jurassic biotite syenogranite; C1l—lower Carboniferous Lindi Fm.; P1c—lower Permian Chuanshan Fm.; P2q—middle Permian Qixia Fm.

  • 本文研究的样品采自廖天山破火山北东翼,共计6件样品(图2),包含侵出相流纹斑岩1件(LTS03)、二段火山岩4件(LTS05、LTS08、LTS16和LTS22)以及一段流纹质晶屑熔结凝灰岩1件(LTS25)。侵出相流纹斑岩呈肉红色,具斑状结构,斑晶占10%~20%,粒度0.5~4.5 mm,成分为石英、斜长石、碱性长石等;基质为显微粒状结构,由细小的石英、斜长石、黑云母等组成(图4a)。紧邻破火山口的二段流纹质含角砾晶屑熔结凝灰岩呈灰或灰紫色,由细小的岩屑、晶屑等组成(图4b)。岩石中含有3%~5%的角砾,角砾大小不一,部分可达集块级别,形态呈不规则状,杂乱分布,成分为流纹岩、凝灰岩等。远离破火山口的二段晶屑熔结凝灰岩少含或不含角砾,晶屑(碱性长石、斜长石、石英等)含量不等但一般不超过20%(图4c、d)。二段底部熔结凝灰岩(LTS22)含有较多塑变浆屑(图4e)。破火山一段流纹质晶屑熔结凝灰岩由晶屑、玻屑、塑性浆屑、岩屑、角砾等组成,晶屑主要为石英、斜长石、碱性长石、黑云母等,含量约20%,玻屑及塑变浆屑常见(图4f)。

  • 图3 廖天山破火山代表性岩石野外特征

  • Fig.3 Field photographs of representative volcanic rocks from the Liaotianshan caldera

  • (a)—爆溢相含角砾晶屑凝灰熔岩;(b)—崩落堆积相含集块火山角砾岩;(c)—流纹斑岩构成的侵出相岩穹;(d)—富斑晶的侵出相流纹斑岩

  • (a) —breccia-bearing crystal ignimbrite in explosive-overflow facies; (b) —agglomerate-bearing volcanic breccia in collapse and accumulation facies; (c) —porphyritic rhyolite dome in extrusion facies; (d) —crystal-rich porphyritic rhyolite

  • 2 分析方法与分析结果

  • 锆石采用重砂方法分选,并用环氧树脂胶结、抛光,制成样品靶。制作完成的锆石样品在显微镜下进行透射光和反射光的观察和照相,用于分析锆石晶体的晶型、裂隙和包裹体等特征。然后,进行阴极发光(CL)图像分析,进一步研究锆石的内部结构特征及成因类型,并寻找适合测试分析的点位。本文样品处理与锆石分选在廊坊市宇恒矿岩技术服务有限公司完成,锆石制靶和CL照相工作在重庆宇劲科技有限公司完成。

  • 不同样品中锆石晶体特征基本一致,呈自形—半自形的长柱状,长度约100~200 μm,可见矿物或熔体包裹体。一段和二段火山岩中的锆石CL图像显示出较好的振荡环带(图5),部分锆石发育窄的暗色环带(如:LTS08-22和LTS16-18),反映锆石结晶速率的变化和岩浆补给作用过程(贺振宇等,2021)。侵出相流纹斑岩中的锆石CL图像较暗,只有个别颗粒可见轻微的振荡环带,部分颗粒内部结构遭受一定破坏,与锆石放射性元素Th、U含量较高有关。

  • 2.1 锆石U-Pb年代

  • LA-ICP-MS锆石U-Pb定年测试在桂林理工大学广西隐伏金属矿产勘查重点实验室进行,测试仪器为搭载193 nm ArF准分子激光器GeoLas HD激光系统的Agilent 7500型ICP-MS。质量分馏校正采用锆石标样Plesovice和GJ-1作为监测标样。工作参数为:激光脉冲频率6 Hz,脉冲能量密度10 J/cm2,熔蚀微区直径为32 μm,仪器设置及分析流程参照Liu Yongsheng et al.(2010)。ICP-MS的分析数据通过ICPMSDataCal软件(Liu Yongsheng et al.,2010)计算获得同位素比值、年龄和误差。

  • LA-ICP-MS锆石U-Pb定年结果显示每个样品的分析点均具有谐和且近于一致的年龄(图6,表1)。其中,侵出相流纹斑岩中的锆石由于较高的放射性元素Th、U含量,使得部分锆石内部晶格遭受破坏,测得的部分年龄结果明显偏离谐和线(图6a;Sun Fajun et al.,2015),未参与平均年龄计算。一段火山岩的206Pb/238U加权平均年龄为161.5±0.7 Ma,二段火山岩由外向内4件火山岩的206Pb/238U加权平均年龄变化范围为159.9±0.9~156.9±0.8 Ma,侵出相流纹斑岩的206Pb/238U加权平均年龄为153.2±0.7 Ma。尽管相邻层位岩石的定年结果较为接近,但总体年龄结果明显超出误差范围,反映火山活动时间较长。此外,二段火山岩中包含了少量新元古代(814 Ma)、古生代(443~426 Ma)和早侏罗世(185 Ma)等的继承锆石。

  • 图4 廖天山破火山代表性样品显微岩相学特征

  • Fig.4 Photomicrographs of representative samples from the Liaotianshan caldera

  • (a)—侵出相流纹斑岩;(b)—二段流纹质含角砾晶屑熔结凝灰岩;(c、d)—二段晶屑熔结凝灰岩;(e)—二段底部熔结凝灰岩;(f)—一段流纹质晶屑熔结凝灰岩

  • (a) —porphyritic rhyolite in extrusion facies; (b) —the second stage rhyolitic breccia-bearing crystal ignimbrite; (c, d) —the second stage crystal ignimbrite; (e) —the second stage ignimbrite in bottom layer; (f) —the first stage rhyolitic crystal ignimbrite

  • 2.2 锆石微量元素

  • 锆石微量元素含量在LA-ICP-MS锆石U-Pb定年测试时同步获得,分馏校正采用玻璃标准物质NIST610作外标,锆石标样GJ-1作为监测标样(Liu Yongsheng et al.,2010)。ICP-MS的分析数据通过ICPMSDataCal软件(Liu Yongsheng et al.,2010)计算获得元素含量,测试信号选择U-Pb定年结果的相同区间。

  • 不同样品中的锆石显示了基本重叠的微量元素组成,且具有较大的变化范围。不过,一段和二段火山岩样品锆石的Th、U元素含量分别低于2175×10-6和3148×10-6,而侵出相流纹斑岩锆石的Th、U元素含量分别高达1894×10-6~5673×10-6和7091×10-6~13144×10-6。不同样品锆石的微量元素普遍表现出高Th/U比值、轻稀土元素亏损、重稀土元素富集、明显Ce正异常和Eu负异常的特征(图7,表2)。只有在最晚期形成的侵出相流纹斑岩中,部分锆石的轻稀土元素明显更为富集,使得Ce异常几乎消失,但同时Eu负异常更为强烈(图7a),呈现热液锆石的微量元素特征(Sun Fajun et al.,2015)。这些轻稀土富集的锆石具有正常岩浆锆石一致的结晶年龄和Hf同位素组成,表明其很有可能是在连续的岩浆演化过程中达到岩浆流体平衡条件下结晶而成(Sun Fajun et al.,2015)。为了便于更好地比较岩浆结晶锆石的微量元素含量变化规律,依据La元素含量作为标准筛选出不受包裹体和蚀变影响的锆石。这些锆石的Ti含量变化于1.07×10-6~33.6×10-6,进一步应用锆石Ti温度计(Ferry and Watson,2007)计算出锆石的结晶温度为619~963℃(图8a;表2)。锆石Eu异常程度较高(Eu/Eu*≤0.64),随着Eu/Eu*的降低以及Hf含量的增高,Th/U、Sm/Yb比值降低,反映了斜长石、磷灰石、锆石等的结晶过程(图8)。侵出相流纹斑岩具有极为强烈的Eu负异常,表明锆石结晶时伴随着明显的斜长石等矿物的结晶,与其包含大量斜长石、石英等斑晶的岩相学特征吻合(图4a)。锆石Ce异常能够半定量地反映岩浆的氧逸度(Trail et al.,2012; 贺振宇等,2021),计算结果显示多数样品平均ΔFMQ变化范围为+0.2~+3.3,而二段中下部火山岩(LTS16)平均ΔFMQ为3.6,反映岩浆演化过程的氧逸度具有一定范围的变化。

  • 表1 廖天山破火山LA-ICP-MS锆石U-Pb同位素定年结果

  • Table1 LA-ICP-MS zircon U-Pb dating results of the Liaotianshan caldera

  • 续表1

  • 续表1

  • 图5 廖天山破火山代表性锆石CL图像

  • Fig.5 Cathodoluminescence images of representative zircons from the Liaotianshan caldera

  • 2.3 锆石Lu-Hf同位素

  • 锆石Lu-Hf 同位素分析在桂林理工大学广西隐伏金属矿产勘查重点实验室进行,锆石Lu-Hf同位素分析与U-Pb同位素定年在相同颗粒上进行,选取CL图像特征完全一致的邻近或对应区域进行测试(图5),所用仪器为193 nm ArF激光器GeoLas HD激光剥蚀系统和Neptune Plus MC-ICPMS。具体工作参数为:激光脉冲重复频率6 Hz,脉冲能量10 J/cm2,溶蚀孔径32 μm。在计算(176Hf/177Hf)i和εHf值时,176Lu的衰变常数采用1.867×10-11 a-1Söderlund et al.,2004),εHf的计算采用Bouvier et al.(2008)推荐的球粒陨石Hf同位素值,即176Lu/177Hf = 0.0336,176Hf/177Hf = 0.282785。Hf模式年龄计算中,亏损地幔176Hf/177Hf现在值采用0.28325,176Lu/177Hf为0.0384(Griffin et al.,2000),两阶段模式年龄采用平均地壳(176Lu/177Hf)C = 0.015(Griffin et al.,2002)进行计算。

  • 图6 廖天山破火山锆石U-Pb定年结果

  • Fig.6 Zircon U-Pb dating results of the Liaotianshan caldera

  • 本文对一段、二段火山岩和侵出相流纹斑岩各分析了1个样品的锆石Lu-Hf同位素组成。一段火山岩样品的εHft)变化于-9.1~-5.9,平均值为-7.9,对应的两阶段Hf模式年龄为1.76~1.56 Ga;二段火山岩样品的εHft)变化于-11.3~-6.4,对应的两阶段Hf模式年龄为1.89~1.58 Ga;侵出相流纹斑岩的锆石εHft)变化于-5.9~-2.1,对应的两阶段Hf模式年龄为1.55~1.34 Ga。总体上,每件样品的锆石Hf同位素组成基本均一,大致呈现钟形对称特征,并且锆石Hf同位素组成表现出较为富集的特点(图9,表3)。

  • 图7 廖天山破火山锆石球粒陨石标准化稀土元素配分图 (标准化值据Anders and Grevesse,1989

  • Fig.7 Chondrite-normalized REE patterns for the zircons from the Liaotianshan caldera (normalization values after Anders and Grevesse, 1989)

  • 图8 廖天山破火山锆石微量元素组成协变图解

  • Fig.8 Trace element compositional variations in zircons from the Liaotianshan caldera

  • 表2 廖天山破火山LA-ICP-MS锆石微量元素分析结果(×10-6

  • Table2 LA-ICP-MS zircon trace element concentrations (×10-6) of the Liaotianshan caldera

  • 续表2

  • 注:Eu/Eu*=EuN/(SmN*GdN0.5T为锆石Ti温度计(Ferry and Watson,2007)计算出锆石的结晶温度;氧逸度计算参照Li Weikai et al.(2019)程序;“-”表示低于检测限;“--”代表该数值由于锆石轻稀土富集造成异常。

  • 表3 廖天山破火山锆石Lu-Hf同位素分析结果

  • Table3 Zircon Lu-Hf isotopic compositions of the Liaotianshan caldera

  • 续表3

  • 图9 廖天山破火山锆石Lu-Hf同位素分析结果

  • Fig.9 Zircon Lu-Hf isotopic compositions of the Liaotianshan caldera

  • 3 讨论

  • 3.1 廖天山火山的活动时代与过程

  • 基于火山灰40Ar-39Ar年龄得出的酸性火山岩的喷发时代及其离子探针锆石U-Pb年龄对比显示,二者之间的时差一般小于0.1 Ma(Simon et al.,2008),明显小于LA-ICP-MS锆石U-Pb定年的误差范围。因此,本文得到的不同样品的年代学结果,可以代表相应岩石的喷发成岩年龄。廖天山破火山一段、二段火山岩和侵出相流纹斑岩的野外产状和岩相组合,反映了火山活动的旋回性特征。而且,廖天山破火山周围缺少同时代的火山机构,我们认为一段、二段火山岩和侵出相流纹斑岩均为同一火山多阶段火山活动的产物。因此,廖天山火山活动开始于约161.5±0.7 Ma,一段喷发-沉积相岩石组合反映初始阶段火山喷发产物规模较为有限,且经历了比较明显的喷发沉寂。二段火山岩层厚巨大(约1500 m厚;图2)且集中形成于159.9~156.9 Ma期间,暗示火山活动剧烈程度有所增强;最终于153.2±0.7 Ma沿破火山口侵出的流纹斑岩标志着火山活动的结束。不同层位岩石之间明显的时代间隔,以及地层中多次喷发-沉积相凝灰质砂岩、泥岩的出现,反映火山活动具有阶段性和间歇期。

  • 中国东南部晚中生代火山活动持续时间较长,并且总体表现出向洋年轻化和向北东向年轻化的双重趋势(Liu Lei et al.,2016; 岳晓涵等,2022)。其中,最早的火山活动可以上溯到约204 Ma(孙杰等,2023),最晚则可持续到约87 Ma(Liu Lei et al.,20122016; 郑世帅和徐夕生,2021)。基于火山岩的岩性、岩相和地球化学特征的对比,可以划分为不同的火山旋回或火山岩地层组(谢家莹等,1996)。廖天山破火山一段、二段火山岩的岩性、岩相特征大致对应区域上的长林组和南园组第二段火山岩地层。对不同火山岩地层典型剖面的研究表明,福建地区中侏罗统长林组形成于160~148 Ma,南园组作为福建地区晚中生代火山活动峰期产物形成于145~130 Ma(Liu Lei et al.,2016)。廖天山破火山一段火山岩形成于161.5 Ma,主体的二段火山岩形成于159.9~156.9 Ma,均明显早于典型剖面相应地层的时代。因此,尽管具有相似的岩性和岩相组合,内陆地区火山岩的形成时代也早于沿海地区的对应物,符合中国东南部晚中生代火山活动向洋年轻化的整体变化趋势。

  • 3.2 较大时间跨度及多级穿地壳岩浆系统

  • 中国东南部晚中生代岩浆活动以长英质岩浆作用为主,中、基性火成岩相对较少,目前普遍认识到这些大规模长英质岩浆不可能是由幔源基性岩浆直接分异而来(Zhou Xinmin et al.,2000; Liu Lei et al.,20122016; Yan Lili et al.,2016; Xu Xisheng et al.,2021; 贺振宇等,2022)。因此,我们认为廖天山破火山岩浆主要来源于地壳组分的部分熔融。

  • 地壳组分的部分熔融需要首先考虑地壳基底的成分。闽西南地区属于华夏地块范围内,华夏地块的古老基底主要为形成于古元古代的八都群和麻源群等(浙西南、闽西北地区),得到大量变火山岩、混合岩、同构造花岗岩、角闪石岩等的年代学分析结果的支持(如,Xia Yan et al.,2012)。浙江瓯江中河流砂碎屑锆石U-Pb 年代学和 Hf 同位素研究结果,也佐证华夏地块东部的地壳主要形成于古元古代(Xu Xisheng et al.,2007)。廖天山破火山的锆石Lu-Hf同位素成分少部分落入华夏地块地壳基底范围,但整体较之明显亏损(图10),反映这些火山岩虽然主要源于古元古代地壳基底的部分熔融(Liu Lei et al.,20122016; Xu Xisheng et al.,2021),但有一定程度的新生亏损幔源物质的加入,而且从一段火山岩至侵出相,贡献比例先略为降低后逐渐增大。事实上,该变化规律符合整个中国东南部晚中生代火成岩锆石εHft)值所普遍呈现出的总体趋势(图10)。这一趋势被解释为亏损地幔来源组分在岩石成因中的贡献存在差异(Liu Lei et al.,2016)。

  • 廖天山破火山不同单元岩石显示出相似的锆石结晶温度(图8a),具有类似的斑晶矿物组合(斜长石、碱性长石、石英等;图4),锆石微量元素协变图解也显示不同批次岩浆经历了相似矿物的结晶过程(图8b~d),这些特征暗示岩浆可能来自同一源区,并在喷发前留存在相似温压条件的浅层岩浆储库。然而,按照目前的实验模拟和理论计算的结果,中上地壳内的侵入岩体冷凝较快,小规模(1000 m宽)的岩体冷凝到固相线只需要近万年的时间,而大的侵入体也只需要数十万年(马昌前和李艳青,2017)。廖天山破火山不同岩石单元的年龄跨度远远超出了岩浆在浅层岩浆储库留存所允许的时间尺度,暗示不同时代的岩浆更可能是从源区分别上升的不同批次岩浆。岩浆氧逸度的差异也印证了这一点。而单个样品所呈现的锆石Lu-Hf同位素的均一性以及样品之间的差异性,反映壳-幔岩浆混合较为彻底,进一步揭示了单一批次上升的岩浆规模有限。一般来说,幔源岩浆与其诱发的地壳物质部分熔融形成的长英质岩浆在深部岩浆房可以发生混合形成壳幔混源岩浆(Griffin et al.,2002),而后的分离结晶作用则发生在浅部岩浆房(郑世帅和徐夕生,2021)。这种“穿地壳岩浆系统”的多级岩浆房模型可以很好地解释廖天山破火山岩石的岩浆起源和演化过程(图11)。

  • 破火山中的侵出相和火山通道相可视为喷发相向侵入相的过渡形式。目前,学术界关于火山岩和侵入岩的成因联系,普遍认为存在两种形式:一种是二者为同源岩浆经历了不同程度的演化(Cashman et al.,2017),另一种是二者为不同来源的岩浆独立形成(Tappa et al.,2011)。破火山以及与之相关的火山-侵入杂岩是火山岩和侵入岩共生关系最为密切的形式,其中侵入岩通常以中央侵入体的形式产出,与喷发的火山岩为共用岩浆通道的连续岩浆作用所形成,绝大多数情况下是同一岩浆房的产物(Yan Lili et al.,20162018; Xu Xisheng et al.,2021; 郑世帅和徐夕生,2021贺振宇等,2022)。但是,廖天山破火山的岩石成因研究表明,产出关系密切的火山岩与晚期侵出相也可能形成于较大的时间跨度,并且属于不同批次岩浆活动的产物,反映了穿地壳岩浆系统的多阶段岩浆补给和熔体汇聚过程。

  • 图10 廖天山及邻区(据Liu Lei et al.,2016; 岳晓涵等,2022; 孙杰等,2023)晚中生代火山岩锆石Hf 同位素与基底成分(据Xu Xisheng et al.,2007)对比

  • Fig.10 Zircon Hf isotopic compositions of Liaotianshan and adjacent (after Liu Lei et al., 2016; Yue Xiaohan et al., 2022; Sun Jie et al., 2023) Late Mesozoic volcanic rocks and basement materials (after Xu Xisheng et al., 2007

  • 图11 廖天山火山活动的构造-岩浆-火山模式图

  • Fig.11 Cartoon showing the tectono-magma-volcano activity to form the Liaotianshan caldera

  • 3.3 火山活动过程的地球动力学机制

  • 廖天山破火山机构中火山岩地层保存良好的整合接触关系,且总体产状呈环状内倾(倾角11°~35°),反映火山喷发后岩浆房塌陷规模较小,也符合小规模多批次岩浆分别上涌喷发的情形。此外,火山喷发过程中存在明显的普林尼式空落沉积(图3),以上均说明火山活动发生在相对挤压(或是伸展程度不明显)的构造背景(MacDonald et al.,2012),与之对比晚白垩世火山活动则发生在明显的伸展构造背景(贺振宇等,2022)。

  • 地壳内高的岩浆通量或岩浆添加速率有利于酸性岩浆喷发形成超级火山,而岩浆通量较低时,岩浆就会停留在地壳内结晶成侵入岩(马昌前等,2015)。如前所述,廖天山破火山一段喷发-沉积相岩石组合反映初始阶段火山喷发规模较为有限,二段火山岩层厚巨大且集中形成于159.9~156.9 Ma期间,表明该时段岩浆规模明显增强。形成大规模的壳源岩浆需要足够且持续的“热源”,暗示了诱发地壳基底部分熔融的底侵玄武质岩浆规模变大。廖天山破火山不同单元来自相似地壳源区的部分熔融,并在岩浆演化过程中有不同比例的亏损幔源物质贡献,与中国东南部晚中生代火成岩的整体趋势一致(Liu Lei et al.,2016)。结合廖天山破火山与晚白垩世火山机构所体现的相对挤压到伸展环境的转变,反映其形成于古太平洋板块俯冲以及板片俯冲角度变化的地球动力学背景(Zhou Xinmin et al.,2006; Liu Lei et al.,2016; Xu Xisheng et al.,2021)。古太平洋板块的持续俯冲可以引发规模逐渐变大的玄武质岩浆底侵。而古太平洋板块俯冲可能启动于约204 Ma(孙杰等,2023),在早阶段呈现为前进式俯冲,伴随着对上覆岩石圈的挤压程度增强,不利于亏损幔源岩浆上升与其诱发的壳源长英质岩浆混合,因此表现为岩浆中幔源组分比例的降低(图10;Liu Lei et al.,2016; 孙杰等,2023)。而在约160 Ma开始的俯冲作用晚阶段,板片俯冲角度逐渐增大,并逐渐转变为后撤式俯冲,进而促使上覆岩石圈处于逐渐增强的伸展环境,亏损幔源岩浆易于上升与其诱发的壳源长英质岩浆混合,表现为岩浆中幔源组分比例升高(图10;Liu Lei et al.,2016; 孙杰等,2023)。

  • 中国东南部早侏罗世岩浆活动规模有限,而在以廖天山火山活动为代表的中晚侏罗世开始,岩浆活动尤其是火山喷发明显增强。这一方面反映了俯冲带上覆陆壳处于比较明显的伸展环境,另一方面也表明诱发地壳基底部分熔融的底侵玄武质岩浆规模变大,壳幔相互作用程度明显增强。这些底侵玄武质岩浆主要源于俯冲板片脱水上升诱发板片之上地幔楔的熔融(图11;Zhou Xinmin et al.,2006; He Zhenyu et al.2012; Xu Xisheng et al.,2021),中晚侏罗世开始的大规模岩浆作用说明,古太平洋板块俯冲正式进入成熟期,板片之上地幔楔已经成型。以廖天山火山活动为代表,壳幔相互作用影响下的中国东南部晚中生代岩浆弧形成的大幕正式拉开。

  • 4 结论

  • (1)廖天山火山活动开始于约161.5±0.7 Ma,一段火山喷发规模较为有限;二段火山岩形成于159.9±0.9~156.9±0.8 Ma,该时段喷发产物规模巨大,构成破火山主体;153.2±0.7 Ma沿破火山口侵出的流纹斑岩标志着火山活动的结束。廖天山火山活动具有阶段性和多期次性,对应的是多批次岩浆分别喷发。

  • (2)廖天山破火山岩石主要源于古元古代地壳基底的部分重熔,但有不同程度的亏损幔源物质贡献,幔源物质参与程度先减少后升高。不同批次岩浆可能从源区分别上升,在深部岩浆房发生岩浆混合,而后在浅部岩浆房短暂留存发生分离结晶作用,表现出相似的岩浆演化过程。

  • (3)廖天山火山活动可能对应于晚侏罗世古太平洋板块俯冲以及板片俯冲角度变化的地球动力学背景。早期的前进式俯冲不利于幔源岩浆上升与壳源长英质岩浆混合,晚期板片俯冲角度逐渐增大,在增强的伸展环境下幔源岩浆可以更多地参与到岩浆作用过程。廖天山破火山活动代表中国东南部晚中生代岩浆弧的形成正式开始。

  • 致谢:两位审稿人审阅了本文并提出许多建设性意见,李政林和余红霞在实验测试工作中给予了帮助,在此表示感谢!

  • 参考文献

    • Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53: 197~214.

    • Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273: 48~57.

    • Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355: eaag3055.

    • Coleman D S, Gray W, Clazner A F. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne intrusive suite, California. Geology, 32(5): 433~436.

    • Deering C D, Keller B, Schoene B, Bachmann O, Beane R, Ovtcharova M. 2016. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution. Geology, 44: 267~270.

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154: 429~437.

    • Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133~147.

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.

    • He Zhenyu, Xu Xisheng. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328: 208~221.

    • He Zhenyu, Yan Lili. 2021. Zircon trace element geochemistry constrains on the silicic volcanic system. Acta Petrologica et Mineralogica, 40(5): 939~951 (in Chinese with English abstract).

    • He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38(5): 1419~1442 (in Chinese with English abstract).

    • Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423~439.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27~62.

    • Li Weikai, Cheng Yuanqi, Yang Zhiming. 2019. Geo-fo2: Integrated software for analysis of mgmatic Oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542~2555.

    • Lipman P W. 1984. The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth, 89(B10): 8801~8841.

    • Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166~180.

    • Liu Lei, Xu Xisheng, Xia Yan. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37: 397~407.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Ma Changqian, Li Yanqing. 2017. Incremental growth of granitoid plutons and highly crystalline magmatic differentiation. Acta Petrologica Sinica, 33(5): 1479~1488 (in Chinese with English abstract).

    • Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Lianshun, Gao Ke. 2015. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555~3568 (in Chinese with English abstract).

    • MacDonald W D, Palmer H C, Deino A L, Shen Poyu. 2012. Insights into deposition and deformation of intra-caldera ignimbrites, central Nevada. Journal of Volcanology and Geothermal Research, 245-246: 40~54.

    • Matzel J E P, Bowring S A, Miller R B. 2006. Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geological Society of America Bulletin, 118(11-12): 1412~1430.

    • Medlin C C, Jowitt S M, Cas R A F, Smithies R H, Kirkland C L, Maas R A, Raveggi M, Howard H M, Wingate M T D. 2015. Petrogenesis of the A-type, Mesoproterozoic intra-caldera rheomorphic Kathleen ignimbrite and comagmatic Rowland suite intrusions, West Musgrave Province, Central Australia: Products of extreme fractional crystallization in a failed rift setting. Journal of Petrology, 56(3): 493~525.

    • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M. 2008. Incremental growth of the Patagonian Torres del Painelaccolith over 90k. Geology, 36(6): 459~462.

    • Petford N, Cruden A R, McCaffrey K J W, Vigneresse J L. 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408(6813): 669~673.

    • Schoene B. 2014. U-Th-Pb Geochronology. Treatise on Geochemistry. 2nd Edition. New York: Elsevier.

    • Simon J I, Renne P R, Mundil R. 2008. Implications of pre-eruptive magmatic histories of zircons for U-Pb geochronology of silicic extrusions. Earth and Planetary Science Letters, 266: 182~194.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311~325.

    • Sun Fajun, Xu Xisheng, Zou Haibo, Xia Yan. 2015. Petrogenesis and magmatic evolution of ~130 Ma A-type granites in Southeast China. Journal of Asian Earth Sciences, 98: 209~225.

    • Sun Jie, Liu Lei, Li Xiang, Zhao Zengxia, Zhao Yang. 2023. Identification of Late Triassic volcanic rocks in South China: Constraints on the timing initiation of the Paleo-Pacific subduction. Journal of Guilin University of Technology, 41(1): 1~13 (in Chinese with English abstract).

    • Tappa M J, Coleman D S, Mills R D, Samperton K M. 2011. The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochemistry, Geophysics, Geosystems, 12(10): Q10011.

    • Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70~87.

    • Wang Dezi, Zhou Jincheng, Qiu Jiansheng, Fan Honghai. 2000. Characteristics and petrogenesis of Late Mesozoic granitic volcanic-intrusive complexes in southeastern China. Geological Journal of China Universities, 6(4): 487~498 (in Chinese with English abstract).

    • Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.

    • Wu Fuyuan, Yang Jinhui, Liu Xiaoming, Li Tiesheng, Xie Liewen, Yang Yueheng. 2005. Hf isotopes of the 3. 8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50(21): 2473~2480.

    • Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1~36 (in Chinese with English abstract).

    • Xia Yan, Xu Xisheng, Zhu Kongyang. 2012. Paleoproterozoic S- and A-type granites in southeastern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research, 216-219, 177~207.

    • Xie Jiaying, Tao Kuiyuan, Yin Jiaheng, Mao Jianren, Xie Fanggui, Ruan Honghong, Huang Guangzhao, Xue Huaimin, Zheng Jilin, Shen Jialin. 1996. Mesozoic Volcanic Geology and Volcano-Intrusive Complexes of Southeast China Continent. Beijing: Geological Publishing House (in Chinese).

    • Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiaolei, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158: 51~78.

    • Xu Xisheng, Zhao Kai, He Zhenyu, Liu Lei. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402-403: 105728.

    • Yan Lili, He Zhenyu, Jahn Borming, Zhao Zhidan. 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation. Lithos, 266-267: 287~308.

    • Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 320-321: 28~34.

    • Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xisheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data l. Chemical Geology, 542: 119~596.

    • Yan Lili, He Zhenyu. 2022. Influence of magma recharge on the evolution of silicic volcanic system. Acta Geologica Sinica, 96(5): 1697~1710.

    • Yue Xiaohan, Liu Lei, Zhang Zhiguo, Zhao Zengxia, Sun Jie, Zhao Yang. 2022. Petrogenesis of the Jurassic representative volcanic rocks in eastern Guangdong: Response to the early stage of the Paleo-Pacific subduction. Geological Journal of China Universities, 28(2): 199~210 (in Chinese with English abstract).

    • Zheng Shishuai, Xu Xisheng. 2021. Petrogenesis of Late Cretaceous volcanic-plutonic complex from Xiaoxiong caldera in East Zhejiang. Acta Petrologica Sinica, 37(12): 3712~3734 (in Chinese with English abstract).

    • Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287.

    • Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.

    • 贺振宇, 颜丽丽. 2021. 锆石微量元素地球化学对硅质火山岩浆系统的制约. 岩石矿物学杂志, 40(5): 939~951.

    • 贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38(5): 1419~1442.

    • 马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555~3568.

    • 马昌前, 李艳青. 2017. 花岗岩体的累积生长与高结晶度岩浆的分异. 岩石学报, 33(5): 1479~1488.

    • 孙杰, 刘磊, 李响, 赵增霞, 赵阳. 2023. 华南晚三叠世火山岩的识别: 对古太平洋板块俯冲启动时限的制约. 桂林理工大学学报, 43(1): 1~13.

    • 王德滋, 周金城, 邱检生, 范洪海. 2000. 中国东南部晚中生代花岗质火山-侵入杂岩特征与成因. 高校地质学报, 6(4): 487~498.

    • 吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1~36.

    • 谢家莹, 陶奎元, 尹家衡, 毛建仁, 谢芳贵, 阮宏宏, 黄光昭, 薛怀民, 郑济林, 沈加林. 1996. 中国东南大陆中生代火山地质及火山-侵入杂岩. 北京: 地质出版社.

    • 颜丽丽, 贺振宇. 2022. 岩浆补给作用对硅质火山岩浆系统演化的制约. 地质学报, 96(5): 1697~1710.

    • 岳晓涵, 刘磊, 张治国, 赵增霞, 孙杰, 赵阳. 2022. 粤东地区侏罗纪代表性剖面火山岩成因: 对古太平洋板块俯冲早阶段的地质响应. 高校地质学报, 28(2): 199~210.

    • 郑世帅, 徐夕生. 2021. 浙东晚白垩世小雄破火山中火山-侵入杂岩的岩石成因. 岩石学报, 37(12): 3712~3734.

  • 参考文献

    • Anders E, Grevesse N. 1989. Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53: 197~214.

    • Bouvier A, Vervoort J D, Patchett P J. 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273: 48~57.

    • Cashman K V, Sparks R S J, Blundy J D. 2017. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355: eaag3055.

    • Coleman D S, Gray W, Clazner A F. 2004. Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne intrusive suite, California. Geology, 32(5): 433~436.

    • Deering C D, Keller B, Schoene B, Bachmann O, Beane R, Ovtcharova M. 2016. Zircon record of the plutonic-volcanic connection and protracted rhyolite melt evolution. Geology, 44: 267~270.

    • Ferry J M, Watson E B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154: 429~437.

    • Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O'Reilly S Y, Shee S R. 2000. The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64: 133~147.

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu Xisheng, Zhou Xinmin. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237~269.

    • He Zhenyu, Xu Xisheng. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology, 328: 208~221.

    • He Zhenyu, Yan Lili. 2021. Zircon trace element geochemistry constrains on the silicic volcanic system. Acta Petrologica et Mineralogica, 40(5): 939~951 (in Chinese with English abstract).

    • He Zhenyu, Yan Lili, Chu Pingli, Xiang Hua, Jiang Zikun. 2022. Volcanological evolution and paleoenvironment of the Late Cretaceous Changyu volcano in the coastal SE China. Acta Petrologica Sinica, 38(5): 1419~1442 (in Chinese with English abstract).

    • Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423~439.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27~62.

    • Li Weikai, Cheng Yuanqi, Yang Zhiming. 2019. Geo-fo2: Integrated software for analysis of mgmatic Oxygen fugacity. Geochemistry, Geophysics, Geosystems, 20(5): 2542~2555.

    • Lipman P W. 1984. The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth, 89(B10): 8801~8841.

    • Liu Lei, Xu Xisheng, Zou Haibo. 2012. Episodic eruptions of the Late Mesozoic volcanic sequences in southeastern Zhejiang, SE China: Petrogenesis and implications for the geodynamics of paleo-Pacific subduction. Lithos, 154: 166~180.

    • Liu Lei, Xu Xisheng, Xia Yan. 2016. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism. Gondwana Research, 37: 397~407.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Ma Changqian, Li Yanqing. 2017. Incremental growth of granitoid plutons and highly crystalline magmatic differentiation. Acta Petrologica Sinica, 33(5): 1479~1488 (in Chinese with English abstract).

    • Ma Changqian, Xiong Fuhao, Yin Shuo, Wang Lianshun, Gao Ke. 2015. Intensity and cyclicity of orogenic magmatism: An example from a Paleo-Tethyan granitoid batholith, Eastern Kunlun, northern Qinghai-Tibetan Plateau. Acta Petrologica Sinica, 31(12): 3555~3568 (in Chinese with English abstract).

    • MacDonald W D, Palmer H C, Deino A L, Shen Poyu. 2012. Insights into deposition and deformation of intra-caldera ignimbrites, central Nevada. Journal of Volcanology and Geothermal Research, 245-246: 40~54.

    • Matzel J E P, Bowring S A, Miller R B. 2006. Time scales of pluton construction at differing crustal levels: Examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geological Society of America Bulletin, 118(11-12): 1412~1430.

    • Medlin C C, Jowitt S M, Cas R A F, Smithies R H, Kirkland C L, Maas R A, Raveggi M, Howard H M, Wingate M T D. 2015. Petrogenesis of the A-type, Mesoproterozoic intra-caldera rheomorphic Kathleen ignimbrite and comagmatic Rowland suite intrusions, West Musgrave Province, Central Australia: Products of extreme fractional crystallization in a failed rift setting. Journal of Petrology, 56(3): 493~525.

    • Michel J, Baumgartner L, Putlitz B, Schaltegger U, Ovtcharova M. 2008. Incremental growth of the Patagonian Torres del Painelaccolith over 90k. Geology, 36(6): 459~462.

    • Petford N, Cruden A R, McCaffrey K J W, Vigneresse J L. 2000. Granite magma formation, transport and emplacement in the Earth's crust. Nature, 408(6813): 669~673.

    • Schoene B. 2014. U-Th-Pb Geochronology. Treatise on Geochemistry. 2nd Edition. New York: Elsevier.

    • Simon J I, Renne P R, Mundil R. 2008. Implications of pre-eruptive magmatic histories of zircons for U-Pb geochronology of silicic extrusions. Earth and Planetary Science Letters, 266: 182~194.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219: 311~325.

    • Sun Fajun, Xu Xisheng, Zou Haibo, Xia Yan. 2015. Petrogenesis and magmatic evolution of ~130 Ma A-type granites in Southeast China. Journal of Asian Earth Sciences, 98: 209~225.

    • Sun Jie, Liu Lei, Li Xiang, Zhao Zengxia, Zhao Yang. 2023. Identification of Late Triassic volcanic rocks in South China: Constraints on the timing initiation of the Paleo-Pacific subduction. Journal of Guilin University of Technology, 41(1): 1~13 (in Chinese with English abstract).

    • Tappa M J, Coleman D S, Mills R D, Samperton K M. 2011. The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochemistry, Geophysics, Geosystems, 12(10): Q10011.

    • Trail D, Watson E B, Tailby N D. 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta, 97: 70~87.

    • Wang Dezi, Zhou Jincheng, Qiu Jiansheng, Fan Honghai. 2000. Characteristics and petrogenesis of Late Mesozoic granitic volcanic-intrusive complexes in southeastern China. Geological Journal of China Universities, 6(4): 487~498 (in Chinese with English abstract).

    • Watson E B, Harrison T M. 2005. Zircon thermometer reveals minimum melting conditions on earliest earth. Science, 308(5723): 841~844.

    • Wu Fuyuan, Yang Jinhui, Liu Xiaoming, Li Tiesheng, Xie Liewen, Yang Yueheng. 2005. Hf isotopes of the 3. 8 Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50(21): 2473~2480.

    • Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1~36 (in Chinese with English abstract).

    • Xia Yan, Xu Xisheng, Zhu Kongyang. 2012. Paleoproterozoic S- and A-type granites in southeastern Zhejiang: Magmatism, metamorphism and implications for the crustal evolution of the Cathaysia basement. Precambrian Research, 216-219, 177~207.

    • Xie Jiaying, Tao Kuiyuan, Yin Jiaheng, Mao Jianren, Xie Fanggui, Ruan Honghong, Huang Guangzhao, Xue Huaimin, Zheng Jilin, Shen Jialin. 1996. Mesozoic Volcanic Geology and Volcano-Intrusive Complexes of Southeast China Continent. Beijing: Geological Publishing House (in Chinese).

    • Xu Xisheng, O'Reilly S Y, Griffin W L, Wang Xiaolei, Pearson N J, He Zhenyu. 2007. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 158: 51~78.

    • Xu Xisheng, Zhao Kai, He Zhenyu, Liu Lei. 2021. Cretaceous volcanic-plutonic magmatism in SE China and a genetic model. Lithos, 402-403: 105728.

    • Yan Lili, He Zhenyu, Jahn Borming, Zhao Zhidan. 2016. Formation of the Yandangshan volcanic-plutonic complex (SE China) by melt extraction and crystal accumulation. Lithos, 266-267: 287~308.

    • Yan Lili, He Zhenyu, Beier C, Klemd R. 2018. Zircon trace element constrains on the link between volcanism and plutonism in SE China. Lithos, 320-321: 28~34.

    • Yan Lili, He Zhenyu, Klemd R, Beier C, Xu Xisheng. 2020. Tracking crystal-melt segregation and magma recharge using zircon trace element data l. Chemical Geology, 542: 119~596.

    • Yan Lili, He Zhenyu. 2022. Influence of magma recharge on the evolution of silicic volcanic system. Acta Geologica Sinica, 96(5): 1697~1710.

    • Yue Xiaohan, Liu Lei, Zhang Zhiguo, Zhao Zengxia, Sun Jie, Zhao Yang. 2022. Petrogenesis of the Jurassic representative volcanic rocks in eastern Guangdong: Response to the early stage of the Paleo-Pacific subduction. Geological Journal of China Universities, 28(2): 199~210 (in Chinese with English abstract).

    • Zheng Shishuai, Xu Xisheng. 2021. Petrogenesis of Late Cretaceous volcanic-plutonic complex from Xiaoxiong caldera in East Zhejiang. Acta Petrologica Sinica, 37(12): 3712~3734 (in Chinese with English abstract).

    • Zhou Xinmin, Li Wuxian. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326: 269~287.

    • Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.

    • 贺振宇, 颜丽丽. 2021. 锆石微量元素地球化学对硅质火山岩浆系统的制约. 岩石矿物学杂志, 40(5): 939~951.

    • 贺振宇, 颜丽丽, 褚平利, 向华, 蒋子堃. 2022. 中国东南沿海晚白垩世长屿火山的活动过程与古环境意义. 岩石学报, 38(5): 1419~1442.

    • 马昌前, 熊富浩, 尹烁, 王连训, 高珂. 2015. 造山带岩浆作用的强度和旋回性: 以东昆仑古特提斯花岗岩类岩基为例. 岩石学报, 31(12): 3555~3568.

    • 马昌前, 李艳青. 2017. 花岗岩体的累积生长与高结晶度岩浆的分异. 岩石学报, 33(5): 1479~1488.

    • 孙杰, 刘磊, 李响, 赵增霞, 赵阳. 2023. 华南晚三叠世火山岩的识别: 对古太平洋板块俯冲启动时限的制约. 桂林理工大学学报, 43(1): 1~13.

    • 王德滋, 周金城, 邱检生, 范洪海. 2000. 中国东南部晚中生代花岗质火山-侵入杂岩特征与成因. 高校地质学报, 6(4): 487~498.

    • 吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1~36.

    • 谢家莹, 陶奎元, 尹家衡, 毛建仁, 谢芳贵, 阮宏宏, 黄光昭, 薛怀民, 郑济林, 沈加林. 1996. 中国东南大陆中生代火山地质及火山-侵入杂岩. 北京: 地质出版社.

    • 颜丽丽, 贺振宇. 2022. 岩浆补给作用对硅质火山岩浆系统演化的制约. 地质学报, 96(5): 1697~1710.

    • 岳晓涵, 刘磊, 张治国, 赵增霞, 孙杰, 赵阳. 2022. 粤东地区侏罗纪代表性剖面火山岩成因: 对古太平洋板块俯冲早阶段的地质响应. 高校地质学报, 28(2): 199~210.

    • 郑世帅, 徐夕生. 2021. 浙东晚白垩世小雄破火山中火山-侵入杂岩的岩石成因. 岩石学报, 37(12): 3712~3734.