-
西藏冈底斯成矿带位于青藏高原中部,是我国目前最重要的有色金属矿产资源储备和开发基地之一,也是国家级资源安全保障基地(唐菊兴等,2017)。近年来,该成矿带内一系列超大型-大型斑岩-矽卡岩-浅成低温热液型多金属矿床及岩浆热液脉型矿床被相继发现并勘查评价(唐菊兴等,2019; 2021)。上述矿床具有类型丰富、成矿元素多样、控矿因素复杂、成矿时代跨度较大(170~12 Ma)等鲜明特点,与特提斯洋壳俯冲、印度-欧亚大陆碰撞等区域性构造岩浆事件紧密相关(Qu Xiaoming et al.,2017)。浦桑果矿床位于冈底斯成矿带中段,是近年来发现的大型矽卡岩型富钴铜铅锌矿床,目前矿区共探获Cu+Pb+Zn+Co金属资源量大于30×104 t,其中Pb+Zn金属量超过20×104 t,Cu金属量超过10×104 t,Co金属量超过280 t(李壮等,2019a)。浦桑果矿床从发现至今,众多学者对其展开大量的基础研究工作,主要集中在矿床地质特征(崔晓亮等,2013; 张明等,2016)、矽卡岩矿物学特征(李壮等,2018a)、成岩成矿年代学(Li Zhuang et al.,2019b; Cao Mingjian et al.,2021)、成矿物质来源(李壮等,2018b)、成岩作用(Li Zhuang et al.,2020)、成矿流体特征(Li Miao et al.,2020; Li Zhuang et al.,2022)等方面。浦桑果矿床既有赋存于矽卡岩中高品位的铜、铅、锌(Cu平均品位1.42%,Pb平均品位1.01%,Zn平均品位1.82%),又发育伴生的高品位钴(Co平均品位140 g/t)(李壮等,2019a),显示其独特的成矿作用。然而,有关该矿床中Co的元素赋存状态,目前仅有研究表明钴主要以辉砷钴矿、辉砷镍钴矿、硫铜钴矿和硫钴矿四种独立钴矿物的形式赋存(Wang Shuo et al.,2022),缺乏进一步研究。
-
闪锌矿常含有Fe、Mn、Co、Ni、Cu、Cd、Ga、Ge、In、Sn、Se、As、Te、Tl等多种微量元素(Cook et al.,2009; Ye Lin et al.,2011; Belissont et al.,2014,2016; George et al.,2016; Bauer et al.,2019a; Wei Chen et al.,2019),其微量元素组成可反映成矿物理化学条件、成矿物质来源等重要的成矿信息(Zhuang Liangliang et al.,2019; Xing Bo et al.,2022; Liu Shan et al.,2022),可作为指示矿床成因类型、反演成矿条件和指导找矿工作的一种重要指示性矿物(Murakami et al.,2013; 袁波等,2014; 裴秋明等,2015; 叶霖等,2016; Frenzel et al.,2016; Wei Chen et al.,2018; Li Zhenli et al.,2020; 王俊霖等,2020; Xing Bo et al.,2021)。硫化物原位微区微量元素测试技术(LA-ICP-MS)已被广泛应用于不同类型矿床的矿物化学研究中,此方法获得的高精度结果可真实地反映硫化物中微量元素的富集和分布规律,能有效揭示元素的赋存状态,进而反演矿床成因(Ye Lin et al.,2011; Sykora et al.,2018; Wei Chen et al.,2021; Qi Youqiang et al.,2022)。因此,开展闪锌矿微量元素成分研究,可反映浦桑果矿床闪锌矿中钴的元素赋存状态,进而反演浦桑果矿床中Co元素的赋存状态和元素替代机制。
-
本文基于详实的野外工作,对浦桑果矿床铅锌矿石进行矿相学研究,利用电子探针(EMPA)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)分析技术对不同类型的闪锌矿开展系统的原位主、微量元素地球化学成分分析,根据闪锌矿的微量元素组成特征,进一步约束钴元素的赋存状态和富集机制,探讨浦桑果矿床中钴的成矿物理化学条件。
-
1 区域地质背景
-
青藏高原位于东特提斯-喜马拉雅构造成矿域内,主要发育4条重要的构造成矿带,即位于西藏西北部的班公湖-怒江成矿带(曲晓明等,2006)、西藏中部的冈底斯成矿带(Hou Zengqian et al.,2015)、西藏东部的三江成矿带(Hou Zengqian et al.,2011)和西藏南部的北喜马拉雅成矿带(李光明等,2017)(图1a)。其中,班公湖-怒江成矿带、冈底斯成矿带和三江成矿带三个成矿带内发育总的铜金属量超过55×106 t(Tang Juxing et al.,2021),铜资源总量占全国总量的一半以上。冈底斯成矿带是中国西部最重要的成矿带之一,东起西藏工布江达县沙让钼矿床,西止昂仁朱诺铜矿床(Wang Rui et al.,2016; Liu Hong et al.,2018),东西延伸约550 km。根据矿床产出和空间分布特征可进一步将冈底斯成矿带划分为南冈底斯成矿亚带、中冈底斯成矿亚带和北冈底斯成矿亚带(唐菊光等,2017)。目前冈底斯成矿带已探获的铜金属资源总量大于3000万t、铅锌金属资源总量大于730万t(谢富伟等,2022)。研究表明,冈底斯成矿带内的金属成矿作用主要集中于3个时间段:①中侏罗世(174~160 Ma),成矿作用主要与雅鲁藏布江新特提斯洋壳北向俯冲作用有关(Tafti et al.,2009; Huang Yong et al.,2017; 郎兴海等,2017),代表性矿床为雄村铜(金)矿床(Lang Xinghai et al.,2019,2020);②始新世(51~49 Ma),成矿作用与印度-欧亚大陆的陆-陆碰撞作用有关(Zhao Junxing et al.,2014; Yang Zhiming et al.,2016),代表性矿床有吉如和沙让矿床(唐菊光等,2009; Zhao Junxing et al.,2020);③渐新世—中新世(25~12 Ma),成矿作用主要与印度-欧亚大陆后碰撞伸展作用有关(Zheng Youye et al.,2007; 林彬等,2019; Huang Yong et al.,2020; Zheng Shiji et al.,2021; Sun Xiang et al.,2021),代表性矿床有驱龙、甲玛、朱诺、冲江、白荣、岗讲、厅宫、南木等(图1b)。
-
浦桑果矿床大地构造位置位于冈底斯成矿带火山岩浆弧中段,区内出露的地层主要包括晚侏罗世麻木下组(J3m)、早白垩世楚木龙组(K1c)、早白垩世比马组(K1b)、早白垩世塔克那组(K1t)、晚白垩世设兴组(K2s)等(图2a)( 李壮等,2018a,2018b,2019a,2019b),其中塔克那组主要由灰岩、大理岩、钙质砂岩等岩性组成。区内广泛发育岩浆岩,主要包括晚三叠世—中侏罗世花岗岩(215~175 Ma)(李才等,2003; 张宏飞等,2007),晚侏罗世—白垩世中酸性火山岩及花岗岩(160~80 Ma)(Zhu Dicheng et al.,2008),古新世—始新世火山岩(70~40 Ma)(莫宣学等,2003; Zhu Dicheng et al.,2010)和渐新世—中新世二长花岗岩等中酸性岩体(33~10 Ma)(Zhou Jianping et al.,2017)。浦桑果矿区发育并广泛出露中酸性侵入岩体,岩石类型主要为花岗闪长岩和二长花岗岩。区域构造以断裂构造为主,次为褶皱构造及韧(脆)性剪切带构造。
-
图1 青藏高原构造位置图(a)、青藏高原构造单元划分图(b)(修改自Zhu Dicheng et al.,2011) 及冈底斯成矿带典型矿床分布图(c)(修改自Lang Xinghai et al.,2019)
-
Fig.1 Simplified map showing the location of the Tibetan Plateau (a) and the tectonic framework units of the Tibetan Plateau (b) (modified from Zhu Dicheng et al., 2011) and geological map of the main deposits in the Gangdese metallogenic belt (c) (modified from Lang Xinghai et al., 2019)
-
2 矿床地质特征
-
浦桑果矿区位于西藏南木林县北西方向约40 km处,矿区出露地层主要包括上白垩统设兴组、下白垩统塔克那组和古新统典中组,地层走向总体呈东西向,其中塔克那组为矿区内主要赋矿地层,岩性为大理岩、灰岩和大理岩化灰岩;设兴组岩性包括泥岩和砂岩;典中组为一套由凝灰岩、火山角砾岩等组成的火山碎屑岩(李壮等,2018a,2018b)。受南北向构造挤压作用的影响,矿区发育断裂构造及小的褶皱构造,其中断裂构造主要为近东西向的F1主干断层、F2逆断层及F3平移断层(图2a、b)。矿区出露多种类型岩浆岩,主要包括矿区西部的黑云母花岗闪长岩、中部的闪长玢岩和北部的辉长岩,其中黑云母花岗闪长岩出露地表面积约0.3 km2,呈岩基状产出;闪长玢岩出露面积约0.04 km2,呈岩株状产出,矿体主要发育于黑云母花岗闪长岩、闪长玢岩与塔克那组灰岩、大理岩等矽卡岩化接触带内。黑云母花岗闪长岩(14.6±0.3 Ma,Cao Mingjian et al.,2021)和闪长玢岩(14.6±0.3 Ma,Li Zhuang et al.,2020)等中酸性岩体侵位时代均为中新世,与矿区内Cu-Pb-Zn等金属成矿作用(14.9±0.3 Ma,Cao Mingjian et al.,2021)形成时代相近。
-
矿区内共揭露5条铜多金属矿体,矿体的成矿元素以Cu-Pb-Zn-Co元素为主,伴生Cd、Ni、Bi、Ag等多种有用金属元素,矿体编号依次为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ号矿体,矿体形态主要呈层状、似层状、透镜状和脉状(图2c、d)。目前共探获Cu+Pb+Zn+Co金属资源量超过30×104 t,Cu、Pb、Zn、Co金属平均品位分别为1.42%、1.01%、1.82%和140 g/t(Li Zhuang et al.,2022)。Ⅰ号矿体是矿区的主矿体,具有规模较大、品位较高的特点,主要发育在黑云母花岗闪长岩与下白垩统塔克那组矽卡岩化大理岩接触带中。矿区围岩蚀变类型主要为矽卡岩化、大理岩化,次为硅化、碳酸盐化、角岩化,铜铅锌等金属矿化主要与矽卡岩化相关,矽卡岩化主要发育于矿区黑云母花岗闪长岩及闪长玢岩中酸性侵入岩与早白垩世塔克那组地层的接触带及附近。矿石构造类型主要包括块状构造、层纹状构造、条带状构造、浸染状构造和脉状构造(图3);矿石结构类型包括交代结构、结晶结构、固溶体分离结构和压力结构,其中,交代结构主要包括交代残余结构、骸晶结构、包含结构等(图4)。矿区非金属矿物主要为石榴子石、硅灰石、透辉石、绿帘石等矽卡岩矿物,其中石榴子石主要为钙铁榴石和钙铝榴石(李壮等,2018b),次要矿物为石英、方解石等;金属矿物主要为黄铜矿、闪锌矿、方铅矿、黄铁矿,次要矿物为独立的钴矿物、赤铁矿、针硫铋铅矿、硫铋铜铅矿等,其中独立钴矿物类型主要包括辉砷镍钴矿、辉砷钴矿、硫铜钴矿和硫钴矿(Wang Shuo et al.,2022)。
-
图2 西藏浦桑果矿区区域地质简图(a)、矿区地质图(b)及勘探线剖面图(c、d)(修改自Li Zhuang et al.,2020)
-
Fig.2 Regional geological sketch map (a) , geological map (b) and exploration line profiles (c, d) of the Pusangguo deposit in Tibet (modified from Li Zhuang et al., 2020)
-
根据矿物共生组合特征,成矿阶段主要划分为进变质矽卡岩阶段、退变质矽卡岩阶段、石英-硫化物阶段和石英-方解石阶段(Li Zhuang et al.,2022),其中,进变质矽卡岩阶段主要矿物为石榴子石+透辉石,石榴子石主要包括钙铁榴石和钙铝榴石两种类型(李壮等,2018b);退变质矽卡岩阶段主要矿物为阳起石、绿帘石、绿泥石;石英-硫化物阶段是矿区主要的金属硫化物成矿阶段,主要矿物为石英、黄铁矿、黄铜矿、闪锌矿、方铅矿,次要矿物为少量的辉砷镍钴矿、辉砷钴矿、硫铜钴矿、硫钴矿、针硫铋铅矿和斑铜矿;石英-方解石阶段主要为石英、方解石和少量黄铁矿(图5)。
-
闪锌矿是浦桑果矿区重要的金属硫化物之一,主要与黄铜矿、方铅矿共生,根据矿物共生组合特征,可将闪锌矿划分为2种类型(Ⅰ类闪锌矿和Ⅱ类闪锌矿)。两种不同的闪锌矿在手标本颜色、矿物内反射色及化学成分方面均存在一定差别,其中Ⅰ类闪锌矿的手标本颜色主要呈深棕色、棕褐色(图3a~c、f、i),矿物内反射色主要为深红棕色(图4b、f),显微镜下主要与黄铜矿共生,形成典型的固溶体分离结构(图4a、c);Ⅱ类闪锌矿的手标本颜色主要呈棕色、黄棕色(图3b~f),矿物内反射色主要为黄棕色(图4g、i),显微镜下主要与方铅矿、黄铁矿等金属硫化物共生(图4d、e)。
-
图3 浦桑果钴铜铅锌矿床中典型矿石手标本照片
-
Fig.3 The photographs of typical ore hand specimens in the Pusangguo Co-Cu-Pb-Zn deposit
-
(a)—块状铜矿石,金属矿物主要为黄铜矿、闪锌矿,采自ZK002-23.5 m;(b)—块状锌矿石,金属矿物主要为闪锌矿和少量方铅矿,采自ZK504-167.5 m;(c)—层纹状锌矿石,金属矿物主要为闪锌矿,采自ZK504-118.5 m;(d)—条带状矿石,金属矿物主要为闪锌矿和黄铜矿,采自ZK002-112.3 m;(e)—脉状矿石,金属矿物主要为闪锌矿、方铅矿、黄铁矿和少量黄铜矿,采自ZK504-87.6 m;(f)—条带状矿石,金属矿物主要为闪锌矿、方铅矿及少量黄铜矿,采自ZK505-108.5 m;(g)—脉状矿石,金属矿物主要为黄铜矿,采自ZK504-123 m;(h)—浸染状矿石,金属矿物主要为黄铜矿及少量方铅矿,采自ZK002-53.8 m;(i)—浸染状矿石,金属矿物主要为闪锌矿、黄铜矿和方铅矿,采自ZK505-399.7 m;Ccp—黄铜矿;Py—黄铁矿;SpⅠ—Ⅰ类闪锌矿;SpⅡ—Ⅱ类闪锌矿;Gn—方铅矿;Qtz—石英
-
(a) —massive copper ore, metal minerals are mainly chalcopyrite and sphalerite, from ZK002-23.5 m; (b) —massive zinc ore, metal minerals are mainly sphalerite and minor galena, from ZK504-167.5 m; (c) —laminated zinc ore, metal minerals are mainly sphalerite, from ZK504-118.5 m; (d) —banded ore, metal minerals are mainly sphalerite and chalcopyrite, from ZK002-112.3 m; (e) —veined ore, metal minerals are mainly sphalerite, galena, pyrite and minor chalcopyrite, from ZK504-87.6 m; (f) —banded ore, metal minerals are mainly sphalerite, galena and minor chalcopyrite, from ZK505-108.5 m; (g) —veined ore, metal mineral is mainly chalcopyrite, from ZK504-123 m; (h) —disseminated ore, metal minerals are mainly chalcopyrite and minor galena, from ZK002-53.8 m; (i) —disseminated ore, metal minerals are mainly sphalerite, chalcopyrite and galena, from ZK505-399.7 m; Ccp—chalcopyrite;Py—pyrite; SpⅠ—type Ⅰ sphalerite; SpⅡ—type Ⅱ sphalerite; Gn—galena; Qtz—quartz
-
3 样品采集与分析测试
-
3.1 样品采集
-
基于详实的野外地质调查,采集了浦桑果矿区不同矿体7个钻孔中13件含闪锌矿的矿石样品,所采集样品均来自石英-硫化物阶段,具体采样位置见图2c、d,样品编号及特征详见表1。首先将采集的矿石样品磨制成标准电子探针片和激光探针片,并在显微镜下进行系统的矿相学观察,根据矿物组合特征划分闪锌矿类型,对需要分析的闪锌矿进行照相、圈点、标记,然后分别进行电子探针(EMPA)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)测试。
-
3.2 分析测试
-
主量元素电子探针分析在福州大学紫金矿业学院矿产资源研究中心实验室完成,测试仪器为JEOL-JXA-8230,仪器工作加速电压为15 kv,电流为20 nA,实验分析束斑直径5 μm,背散射图像的放大倍数在40~300000倍之间。分析测试中,S元素的检测限为50×10-6~100×10-6,Sb元素的检测限≥80×10-6,Fe和Mn元素的检测限均≥200×10-6,Si和Ni元素的检测限均≥100×10-6;S和Zn元素的标样为ZnS,Fe元素的标样为FeS2,Cd、Ga、Ge元素的标样分别为CdS、GaS、GeS,具体实验操作流程及各实验参数详见参考文献(Liu Wenyuan et al.,2016)。
-
图4 浦桑果钴铜铅锌矿床矿石矿物组合及其显微镜下特征
-
Fig.4 The photographic characteristics of typical ores in the Pusangguo Co-Cu-Pb-Zn deposit
-
(a)—呈固溶体分离结构的黄铜矿与Ⅰ类闪锌矿(-);(b)—内反射色为深红棕色的Ⅰ类闪锌矿(+);(c)—黄铜矿中发育的Ⅰ类闪锌矿(-);(d)—黄铜矿、Ⅰ类闪锌矿、方铅矿及Ⅱ类闪锌矿(-);(e)—与方铅矿共生的Ⅱ类闪锌矿(-);(f)—内反射色为红棕色的Ⅰ类闪锌矿(+);(g)—内反射色为黄棕色的Ⅱ类闪锌矿(+);(h)—Ⅰ类闪锌矿与Ⅱ类闪锌矿(-);(i)—内反射色为黄棕色的Ⅱ类闪锌矿(+);Ccp—黄铜矿;Py—黄铁矿;Gn—方铅矿;SpⅠ—Ⅰ类闪锌矿;SpⅡ—Ⅱ类闪锌矿;Grt—石榴子石;(-)—单偏光;(+)—正交偏光
-
(a) —chalcopyrite and type Ⅰ sphalerite with solid solution separation structure (-) ; (b) —type Ⅱ sphalerite with dark reddish-brown internal reflection color (+) ; (c) —type Ⅰ sphalerite developed in chalcopyrite (-) ; (d) —chalcopyrite, type Ⅰ sphalerite, galena and type Ⅱ sphalerite (-) ; (e) —two types of sphalerite associated with galena (-) ; (f) —type Ⅰ sphalerite with reddish-brown internal reflection color (+) ; (g) —type Ⅱ sphalerite with yellow-brown internal reflection color (+) ; (h) —type Ⅰ sphalerite and type Ⅱ sphalerite (-) ; (i) —type Ⅱ sphalerite with yellow-brown internal reflection color (+) ; Ccp—chalcopyrite; Py—pyrite; Gn—galena; SpⅠ—type Ⅰ sphalerite; SpⅡ—type Ⅱ sphalerite; Grt—garnet; (-) —single polarized light; (+) —orthogonal polarized light
-
硫化物原位微量元素采用LA-ICP-MS对其进行分析,测试在西北大学大陆动力学国家重点实验室完成。实验仪器为Agilent 7500a高分辨扇形磁场质谱仪(SF-ICP-MS),联用New Wave UP 213激光剥蚀系统(Hu Zhaochu et al.,2012),激光剥蚀束斑直径大小为40 μm。分析过程中,分析频率为10 Hz,输出能量密度约12 J/cm2,采用He气作为实验中吹扫气体,分析过程中尽量避开含有杂质的矿物区域。SF-ICP-MS采用低分辨模式,可检测硫化物样品中主、微量元素/同位素从7Li至238U共计58个;分析前对NIST610进行仪器调谐,监控ThO+/Th+氧化物产率低于0.2%,使232Th 和139La (含量分别为37.8×10-6和35.8×10-6)的剥蚀信号均大于2×105 cps,238U/232Th≈1,有效降低元素分馏效应。此次分析测试元素主要包括49Ti、51V、53Cr、55Mn、57Fe、59Co、60Ni、65Cu、66Zn、69Ga、73Ge、75As、 78Se、107Ag、114Cd、115In、118Sn、121Sb、128Te、197Au、 205Tl、208Pb和209Bi,每个测点分析时间为80 s,其中仪器背景值采集时间20 s,激光剥蚀样品信号采集时间40 s和仪器吹扫时间20 s。所用标样均为USGS硅酸盐合成玻璃样品NIST610、BCR-2G及GSE-1G,用于校准Ti、V、Se、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、As、Ag、Cd、In、Sn、Sb等元素,元素含量采用GeoReM推荐值。每隔5个测试点进行1个NIST610、1个BCR-2G和1个GSE-1G标样的标定测试。同时,测试数据采用多内标和外标相结合的方法对元素含量进行最终定量计算(Liu Yongsheng et al.,2010);闪锌矿微量元素含量采用Zn为内标元素进行校准计算,Zn内标元素主要采用上述电子探针分析测定其元素含量值。利用硅酸盐标准样品校准硫化物矿物,获得硫化物的微量元素含量误差小于10%(Yuan Jihai et al.,2011)。数据采用EXCEL和ICPMSDataCal软件(Liu Yongsheng et al.,2010)进行离线处理,分别采用内标法和归一法处理数据,结果偏差小于10%。
-
图5 浦桑果矿床主要成矿阶段及其矿物生成顺序(修改自Li Zhuang et al.,2022)
-
Fig.5 The main paragenesis sequence and mineral assemblages of the Pusangguo deposit (modified after Li Zhuang et al., 2022)
-
4 分析结果
-
4.1 主量元素组成
-
浦桑果富钴铜铅锌矿床中闪锌矿以黄棕色-棕黑色为主,对13件闪锌矿样品进行主量元素电子探针分析,共45个测点(其中Ⅰ类闪锌矿28个测点,Ⅱ类闪锌矿17个测点),分析结果见附表1。闪锌矿的主量元素分析结果表明,两类闪锌矿(SpⅠ和SpⅡ)具有相似的Zn和S元素含量,其中SpⅠ中的Zn元素含量(57.04%~63.15%,平均60.22%)和S元素含量(32.72%~33.55%,平均33.13%);SpⅡ中Zn元素含量(58.18%~62.12%,平均60.16%)和元素含量S(32.83%~33.54%,平均33.25%)。SpⅠ中Fe元素含量(平均5.69%)低于Sp2中Fe含量(平均6.09%),而SpⅠ中Co元素含量(0.21%~0.41%,平均0.27%)高于SpⅡ中Co元素含量(0~0.17%,平均0.12%)。SpⅠ和SpⅡ中As、Se、Ni、Cu、Ag、Bi、Pb等元素部分含量低于检出限或含量均较低。
-
4.2 微量元素特征
-
利用LA-ICP-MS对13件闪锌矿样品进行微量元素分析,共计83个测点(其中SpⅠ测点44个,SpⅡ测点39个),微量元素分析结果见附表2和图6,其特征如下:
-
(1)Zn元素含量变化较小。与闪锌矿的电子探针测试Zn含量结果(57.04%~63.15%,平均值为60.22%)相比,SpⅠ和SpⅡ两类不同闪锌矿的LA-ICP-MS分析结果中Zn含量(595139×10-6~631909×10-6,平均值610936×10-6)变化较小。
-
(2)Fe、Mn、Co元素均较为富集。与电子探针分析Fe元素含量结果(3.41%~7.98%,平均值5.84%)相比,LA-ICP-MS分析结果中闪锌矿Fe元素含量(31656×10-6~88891×10-6,Fe平均值55985×10-6)相近,且SpⅠ中的Fe和Mn元素含量均略低于SpⅡ中的含量:SpⅠ中Fe元素含量为31656×10-6~88891×10-6,平均值为55438×10-6;SpⅡ中Fe元素含量为32571×10-6~81548×10-6,平均值为56601×10-6。SpⅠ中Mn元素含量为1436×10-6~5315×10-6,平均值为2830×10-6;SpⅡ中Mn元素含量为1317×10-6~6443×10-6,平均值为2910×10-6。SpⅠ和SpⅡ中均富集Co,与电子探针分析Co元素含量(0.06%~0.41%,平均值为0.21%)相比,LA-ICP-MS分析结果中Co元素含量(80×10-6~3038×10-6,平均值1127×10-6)略偏低,且SpⅠ中Co元素含量明显高于SpⅡ中Co元素含量:SpⅠ中Co元素含量为928×10-6~3038×10-6,平均值为1606×10-6;SpⅡ中Co元素含量为80.10×10-6~949×10-6,平均值为586×10-6。Fe、Mn、Co元素信号曲线总体较为平坦,平行于Zn元素的信号曲线(图7)。
-
图6 浦桑果钴铜铅锌矿床闪锌矿微量元素含量盒须图
-
Fig.6 Box-and-whisker plots for the sphalerite trace element compositions from the Pusangguo Co-Cu-Pb-Zn deposit
-
(3)稀散元素Cd最为富集,In、Se次之,但变化范围较大,Ge、Se、Tl元素含量均较低,Te含量低于检测限。SpⅠ中Cd元素含量为2349×10-6~4651×10-6,平均值为3181×10-6;SpⅡ中Cd元素含量为2334×10-6~5020×10-6,平均值为3229×10-6。SpⅠ中In元素含量为0.10×10-6~42.71×10-6,平均值为6.13×10-6;SpⅡ中In元素含量为 0.08×10-6~47.83×10-6,平均值为17.88×10-6。SpⅠ中Se元素含量为2.13×10-6~217×10-6,平均值为10.04×10-6;SpⅡ中Se元素含量为1.89×10-6~36.33×10-6,平均值为10.01×10-6。SpⅠ中Ga元素含量为0.06×10-6~15.56×10-6,平均值为0.74×10-6;SpⅡ中Ga元素含量为0.32×10-6~1.84×10-6,平均值为0.61×10-6。SpⅠ中Ge元素含量为0.33×10-6~71.23×10-6,平均值2.35×10-6;SpⅡ中Ge元素含量为0.30×10-6~0.93×10-6,平均值为0.50×10-6。Cd、In元素信号曲线主要平行于Zn元素曲线,整体较平坦,Ga、Ge、Se、Tl元素信号曲线主要呈锯齿状(图7)。
-
(4)Cu元素含量高但不均匀,Sn、Pb元素含量较低。SpⅠ中Cu元素含量为7.35×10-6~21804×10-6,平均值为4996×10-6;SpⅡ中Cu元素含量为7.58×10-6~33121×10-6,平均值为5436×10-6。SpⅠ中Sn元素含量为4.30×10-6~103×10-6(平均值为6.63×10-6),SpⅡ中Sn元素含量为2.22×10-6~17.39×10-6(平均值为8.04×10-6)。SpⅠ中Pb元素含量为0.14×10-6~77.29×10-6(平均值为8.25×10-6),SpⅡ中Pb元素含量为0.23×10-6~379×10-6(平均值为36.95×10-6)。Cu、Pb元素信号曲线不平坦,主要呈锯齿状(图7)。
-
(5)As、Au、Ag、Sb元素含量较低且不均匀。其中SpⅠ和SpⅡ中的As元素含量部分低于检测限,但在SpⅠ中出现高值31.01×10-6。SpⅠ中Ag元素含量为0.96×10-6~61.12×10-6(出现高值1806×10-6),平均值为9.28×10-6;SpⅡ中Ag元素含量为0.89×10-6~15.65×10-6,平均值为4.18×10-6。SpⅠ中Sb元素含量为0.01×10-6~19.36×10-6(高值146×10-6),平均值为1.19×10-6;SpⅡ中Sb元素含量为0.01×10-6~0.47×10-6,平均值为0.10×10-6。Ag、As、Sb元素剥蚀信号曲线不平坦,整体呈锯齿状(图7)。
-
图7 浦桑果矿床闪锌矿代表性LA-ICP-MS激光剥蚀时间信号强度谱线图
-
Fig.7 Representative LA-ICP-MS time-resolved depth profiles (characterized by being stable and flat) for sphalerite from the Pusangguo deposit
-
5 讨论
-
5.1 微量元素的赋存形式和替代机制
-
大量研究证实,金属元素通过简单的阳离子置换作用(M2+→Zn2+),闪锌矿晶格中的Zn2+容易被具有相似离子半径和电荷的Cd2+、Fe2+、Mn2+、Co2+等二价金属阳离子替换(Johan,1988; Cook et al.,2009; Belissont et al.,2016; Li Zhenli et al.,2020)。然而,一价金属阳离子(Cu+、Ag+)、三价金属阳离子(As3+、Ga3+、Sb3+、In3+等)和四价金属阳离子(Sn4+、Ge4+等)由于具有更大的离子半径,只能通过更复杂的元素耦合替换作用占据闪锌矿中Zn2+的晶格位置,如2Cu++Ge4+→3Zn2+、2(Ag+,Cu+)+Sn4+→3Zn2+、In3++Sn4++(Cu,Ag)++□→4Zn2+(□表示空位)(Cook et al.,2009; Bonnet et al.,2016; Li Zhenli et al.,2020; Liu Shan et al.,2022; Zhou Chuang et al.,2022)。此外,一些微量元素在闪锌矿中也可以矿物显微包裹体形式存在(Cook et al.,2009; Wang Kexin et al.,2021; Yang Qing et al.,2022)。
-
LA-ICP-MS分析能为矿物中金属元素的赋存形式和元素替代机制提供重要信息(Cook et al.,2009; Gregory et al.,2014,2015)。当元素的激光剥蚀时间信号强度谱线图出现多处波峰,表明该元素主要以矿物显微包裹体形式存在;当谱线表现为平直或平坦形状时,指示该元素主要以固溶体形式赋存于矿物晶格中(Ye Lin et al.,2011; Li Zhenli et al.,2020)。在LA-ICP-MS激光剥蚀时间信号强度谱线图中(图7),Fe、Mn、Co、Cd、In、Ga、Ge、As和Ag元素均表现为平坦的曲线或平行于Zn含量的曲线,表明Fe、Mn、Co、Cd、In等元素主要是以固溶体形式赋存于闪锌矿晶格中。Cu、Pb、Sb、Bi等元素部分表现出锯齿状或波峰状,说明其以类质同象和矿物显微包裹体形式赋存于闪锌矿中。
-
闪锌矿中Mn2+、Fe2+、Co2+和Cd2+主要通过简单直接的元素置换替代闪锌矿中的Zn2+(Pfaff et al.,2011; Yuan Bo et al.,2018; Torró et al.,2022)。浦桑果矿床闪锌矿中光滑平直的Mn、Fe、Cd和Co信号曲线(图7a~d),表明Mn2+、Fe2+、Co2+和Cd2+主要以简单的离子置换反应进入到闪锌矿晶格中(Fe2+,Mn2+,Cd2+,Co2+↔Zn2+)。浦桑果矿区中Fe和Mn呈正相关(相关系数R=0.997),表明Fe和Mn两种元素可相互促进地进入闪锌矿晶格中,指示可能存在如下的元素置换机制:Fe2++Mn2+→2Zn2+(Yang Qing et al.,2022)。Sb、Ag、Sn、As、In、Cu元素具有较大的离子半径和不同的价位,一般通过相互之间更复杂的耦合替代机制进入闪锌矿晶格中(Cook et al.,2009; Ye Lin et al.,2011),Sb3+、As3+、Sn3+、In3+等三价金属阳离子和四价离子Sn4+主要与一价阳离子Cu+和Ag+通过元素耦合替代机制置换闪锌矿中Zn2+(Belissont et al.,2016; Makovicky and Topa,2018)。浦桑果矿区闪锌矿中Sb与Cu(图8a)和Sb与Ag(图8b)均呈斜率接近1的正相关关系,表明可能存在如下替代关系:Sb3++Cu+→2Zn2+和Ag++Sb3+→2Zn2+;Sn与Cu+Ag(图8c)和In与Cu+Ag(图8d)均呈正相关关系,指示可能存在如下替代关系:(In3+,Sn3+)+(Cu+,Ag+)→2Zn2+。As一般以As3+形式存在于硫化物晶格中(Makovicky and Topa,2018),且Pb和As一般通过如下替代关系进入闪锌矿晶格:4Zn2+→Pb2++2As3++□(晶格空位)(Zhuang Liangliang et al.,2019; Liu Shan et al.,2022)。浦桑果矿床闪锌矿中,Pb的信号剥蚀曲线整体呈平坦且含量较高(图7c),且Pb与As呈明显的正相关(图8e),指示也可能存在如下替换机制:4Zn2+→Pb2++2As3++□;此外,As与Ag呈明显的正相关(图8f),表明可能存在如下的元素替换关系:2Zn2+→As3++Ag+。
-
5.2 闪锌矿微量元素组成对成矿物理化学条件的指示
-
前人研究表明,闪锌矿中的微量元素(如Fe、Mn、Co、Cd、In、Ga、Ge元素等)组成可有效地指示成矿温度(Möller,1987; Kelley et al.,2004; Lockington et al.,2014; Frenzel et al.,2016; Belissont et al.,2014; Bauer et al.,2019b)。高温条件下(200~355℃)形成的闪锌矿常富集Fe(3.58%~11.42%)、Mn(0.2%~0.4%)、Co等元素,形成颜色较深的铁闪锌矿(如滇东南都龙矽卡岩型锡铅锌多金属矿床、云南澜沧老厂铅锌矿床中、云南保山核桃坪矽卡岩型铅锌矿床的闪锌矿);低温条件下(110~180℃)形成的闪锌矿常相对贫Fe(0.23%~2.0%)和Mn(0.003%~0.05%),富集Ga、Ge、As、Tl等元素,形成颜色相对较浅的闪锌矿(刘英俊等,1984;叶霖等,2012,2016)。浦桑果矿床中闪锌矿颜色多呈黄棕色—棕褐色,相对富集Fe元素(31656×10-6~88891×10-6,平均值为55985×10-6)、Mn元素(1317×10-6~6443×10-6,平均值为2868×10-6)和Co元素(80.1×10-6~3038×10-6,平均值为1127×10-6)(附表2),符合上述与岩浆或火山活动有关的中-高温热液成因闪锌矿的Fe、Mn含量。随着成矿温度从高温→中温→低温的变化,闪锌矿中Ge含量依次增高,一般高温闪锌矿含Ge<5.0×10-6,中温闪锌矿Ge含量介于5.00×10-6~50.0×10-6之间,低温闪锌矿Ge含量>50.0×10-6(高永宝等,2016; Wu Yue et al.,2019)。本次测试的闪锌矿除1个高值点(Ge=71.2×10-6)外,其余测点的Ge元素含量均介于0.30×10-6~4.35×10-6(平均值为0.53×10-6)(附表2),与高温闪锌矿中Ge含量一致。计算结果表明,浦桑果矿床中闪锌矿In/Ga(0.2~129.8,平均值为28.3,n=83)和In/Ge(0.1~134.3,平均值为24.8,n=78)比值相对较高,但明显低于高温热液矿床(如芙蓉锡矿田狗头岭矿区产出的闪锌矿In/Ga=149.8~792.7,In/Ge=2091~16923,Ye Lin et al.,2012),其Zn/Cd比值介于121~260之间(平均203),与中温条件下形成闪锌矿Zn/Cd比值(100<Zn/Cd<500,Wen Hanjie et al.,2016)相似。
-
图8 浦桑果钴铜铅锌矿床中闪锌矿的微量元素相关性图解
-
Fig.8 Correlation of trace elements in sphalerite from the Pusangguo Co-Cu-Pb-Zn deposit
-
浦桑果矿床中具有大量的黄铜矿和黄铁矿等含铁矿物,指示Fe是成矿流体中的主要成分,根据闪锌矿的经验温度计公式Fe/Zn(闪锌矿)=0.0013*t-0.2953(Keith et al.,2014),计算出浦桑果矿床闪锌矿沉淀的流体最低温度为267~340℃(平均值为298℃),指示闪锌矿形成温度为中-高温条件,该结果与已开展的石英-硫化物成矿阶段中含矿石英流体包裹体测温结果相接近(256~378℃,Li Zhuang et al.,2022)。此外,闪锌矿中特定的微量元素组成比值也可作为地质温度计,从而有效估算成矿温度(Cook et al.,2009; Bauer et al.,2019a; Xing Bo et al.,2021),如闪锌矿中Ga/Ge比值可与闪锌矿中的流体温度相对比(Möller,1987),可运用闪锌矿lg(Ga/Ge)-T关系图中估算其成矿温度,然而此方法只适用于成矿温度低于300℃的Pb-Zn矿床中(Möller et al.,1987)。近年来,Frenzel et al.(2016)提出闪锌矿中Ga、Ge、In、Mn、Fe、Ag、Co、Cd和Cu微量元素的含量能用于有效估算不同矿床类型不同成矿温度的闪锌矿成矿温度,并总结提出了如下闪锌矿GGIMFis地质温度计计算公式:
-
式中,m代表元素的摩尔含量。根据上述计算公式本次获得了浦桑果中闪锌矿的成矿温度,成矿温度(t,单位℃)位于237~345℃之间,与岩浆热液成因的矽卡岩矿床中闪锌矿的形成温度(253~300℃)基本吻合。
-
已有实验研究表明,闪锌矿晶格中FeS的含量主要受到温度(t)、硫逸度()和氧逸度()的综合影响,具有高FeS含量的闪锌矿往往形成于偏高温、低和低的流体中(Scott and Barnes,1971; Keith et al.,2014; Liu Shan et al.,2022)。根据闪锌矿中FeS摩尔分数与成矿温度(GGIMFis地质温度计计算结果)、硫逸度()关系图解(Warmada et al.,2003)(图9),结合浦桑果矿床中FeS摩尔分数为4.99%~14.0%,可知闪锌矿形成的硫逸度为10-13.4~10-8.3。Mn主要以MnS形式进入闪锌矿的矿物晶格中,且闪锌矿中的Mn含量受到成矿氧化还原条件的强烈影响(Bernardini et al.,2004; Kelley et al.,2004),闪锌矿中高Mn含量一般指示其形成于还原条件(Kelley et al.,2004; Zhuang Liangliang et al.,2019)。浦桑果矿床闪锌矿中Mn含量均较高(1317×10-6~6443×10-6,平均2868×10-6),且SpⅡ中Mn含量(平均2910×10-6)高于SpⅠ中Mn含量(2830×10-6),表明其形成于一个更加还原的条件。综上所述,浦桑果钴铜铅锌矿床中的闪锌矿形成于中高温、低氧逸度和低硫逸度的条件。
-
图9 浦桑果矿床共生硫化物形成温度与硫逸度关系图解(底图修改自Warmada et al.,2003)
-
Fig.9 Deposition conditions of sulfides paragenesis in terms of temperature and sulfur fugacity (modified from Warmada et al., 2003)
-
Bn—斑铜矿;Py—黄铁矿;Ccp—黄铜矿;Po—磁黄铁矿;Fm—脆硫锑铅矿;Td—黝铜矿;Uy—硫金银矿
-
Bn—bornite; Py—pyrite; Ccp—chalcopyrite; Po—pyrrhotite; Fm—famatinite; Td—tetrahedrite; Uy—uytenbogaardtite
-
6 结论
-
(1)浦桑果矿床中主要发育两种类型闪锌矿:深棕色—棕褐色的Ⅰ类闪锌矿和浅棕色—黄棕色的Ⅱ类闪锌矿。闪锌矿中普遍富集Co元素,具有相对富集Fe、Mn,贫Ga、Ge、In元素的特征。Ⅰ类闪锌矿中Co元素含量普遍高于Ⅱ类闪锌矿中的Co元素含量。
-
(2)类质同象是闪锌矿中Co、Fe、Mn、Cd、In元素的主要赋存形式,而Cu、Pb、Sb、Bi等元素则以类质同象和矿物显微包体等多种形式赋存。微量元素在闪锌矿中除存在简单的元素置换替代外(Fe2+,Mn2+,Cd2+,Co2+→Zn2+),还存在(In3+,Sn3+)+(Cu+,Ag+)→2Zn2+、4Zn2+→Pb2++2As3++□(空位)等复杂的元素耦合替代关系。
-
(3)闪锌矿微量元素组成特征表明,浦桑果矿床闪锌矿主要形成于中高温(237~345℃)、低硫逸度(lg=-13.4~-8.3)和低氧逸度条件,其成矿作用过程与岩浆热液活动密切相关。
-
致谢:感谢西藏地勘局第六地质大队对笔者提供的野外帮助和支持;感谢中国地质科学院矿产资源研究所王立强研究员在野外样品采集与室内分析中提供的帮助;感谢福州大学紫金矿业学院电子探针实验室刘文元老师和西北大学大陆动力学国家重点实验室弓化栋老师的实验指导;感谢审稿专家和期刊编辑提出的宝贵修改意见和建议。
-
附件:本文附件(附表1、2)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202410091?st=article_issue
-
参考文献
-
Bauer M E, Burisch M, Ostendorf J, Krause J, Frenzel M, Seifert T, Gutzmer J. 2019a. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineralium Deposita, 54(2): 237~262.
-
Bauer M E, Seifert T, Burisch M, Krause J, Richter N, Gutzmer J. 2019b. Indium-bearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: Evidence for late-stage diffusion of indium into sphalerite. Mineralium Deposita, 54(2): 175~192.
-
Bernardini G P, Borgheresi M, Cipriani C, Di Benedetto F, Romanelli M. 2004. Mn distribution in sphalerite: An EPR study. Physics and Chemistry of Minerals, 31(2): 80~84.
-
Belissont R, Boiron M C, Luais B, Cathelineau M. 2014. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochimica et Cosmochimica Acta, 126: 518~540.
-
Belissont R, Muñoz M, Boiron M C, Luais B, Mathon O. 2016. Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: Insights into Ge incorporation, partitioning and isotopic fractionation. Geochimica et Cosmochimica Acta, 177: 298~314.
-
Bonnet J, Mosser-Ruck R, Caumon M C, Rouer O, Andre-Mayer A S, Cauzid J, Peiffert C. 2016. Trace element distribution (Cu, Ga, Ge, Cd, and Fe) IN sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA-ICP-MS, Raman spectroscopy, and crystallography. The Canadian Mineralogist, 54(5): 1261~1284.
-
Cao Mingjian, Qin Kezhang, Evans N J, Li Guangming, Ling Xiaoxiao, McInnes B I A, Zhao Junxing. 2021. Titanite in situ SIMS U-Pb geochronology, elemental and Nd isotopic signatures record mineralization and fluid characteristics at the Pusangguo skarn deposit, Tibet. Mineralium Deposita, 56(5): 907~916.
-
Cook N J, Ciobanu C L, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F. 2009. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16): 4761~4791.
-
Cui Xiaoliang. 2013. Study on mineralization of Pusangguo copper polymetallic deposit in Nanmulin County, Tibet. Doctor degree thesis of Chengdu University of Technology (in Chinese with English abstract).
-
Frenzel M, Hirsch T, Gutzmer J. 2016. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type—A meta-analysis. Ore Geology Reviews, 76: 52~78.
-
Gao Yongbao, Li Kan, Qian Bing, Li Wenyuan, Zheng Minchang, Zhang Chenguang. 2016. Trace elements, S, Pb, He, Ar and C isotopes of sphalerite in the Mayuan Pb-Zn deposit, at the northern margin of the Yangtze plate, China. Acta Petrologica Sinica, 32(1): 251~263 (in Chinese with English abstract).
-
George L L, Cook N J, Ciobanu C L. 2016. Partitioning of trace elements in co-crystallized sphalerite-galena-chalcopyrite hydrothermal ores. Ore Geology Reviews, 77: 97~116.
-
Gregory D, Meffre S, Large R. 2014. Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. American Mineralogist, 99(4): 633~644.
-
Gregory D D, Large R R, Halpin J A, Baturina E L, Lyons T W, Wu Song, Danyushevsky L, Sack P J, Chappaz A, Maslennikov V V, Bull S W. 2015. Trace element content of sedimentary pyrite in black shales. Economic Geology, 110(6): 1389~1410.
-
Hou Zengqian, Zhang Hongrui, Pan Xiaofei, Yang Zhiming. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39(1~2): 21~45.
-
Hou Zengqian, Duan Lianfeng, Lu Yongjun, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541~1575.
-
Hu Zhaochu, Liu Yongsheng, Gao Shan, Liu Wengui, Zhang Wen, Tong Xirun, Lin Lin, Zong Keqing, Li Ming, Chen Haihong, Zhou Lian, Yang Lu. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391~1399.
-
Huang Yong, Li Guangming, Ding Jun, Dai Jie, Yan Guoqiang, Dong Suiliang, Huang Hanxiao. 2017. Origin of the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan Plateau, SW China. Acta Geologica Sinica (English Edition), 91(1): 109~134.
-
Huang Yong, Ren Minghua, Liang Wei, Li Guangming, Heilbronn K, Dai Zuowen, Wang Yiyun, Zhang Li. 2020. Origin of the Oligocene Tuolangla porphyry-skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet. China Geology, 3(3): 369~384.
-
Johan Z. 1988. Indium and germanium in the structure of sphalerite: An example of coupled substitution with copper. Mineralogy and Petrology, 39(3): 211~229.
-
Kelley K D, Leach D L, Johnson C A, Clark J L, Fayek M, Slack J F, Anderson V M, Ayuso R A, Ridley W I. 2004. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks range, Alaska: Implications for ore formation. Economic Geology, 99: 1509~1532.
-
Keith M, Haase K M, Schwarz-Schampera U, Klemd R, Petersen S, Bach W. 2014. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, 42(8): 699~702.
-
Lang Xinghai, Cui Zhiwei, Wang Xuhui, Deng Yulin, Xie Fuwei, Han Peng, Yang Zongyao, Zhang Zhong, Huang Yong, Li Zhijun, Yin Qing, Zhang Jinshu, Ding Feng, Dong Shuyi, Wang Zizheng, Zhang Li. 2017. Comprehensive information prospecting model and target prediction for the Xiongcun area, Xietongmen county, Tibet. Acta Geoscientica Sinica, 38(5): 790~802 (in Chinese with English abstract).
-
Lang Xinghai, Wang Xuhui, Deng Yulin, Tang Juxing, Xie Fuwei, Yang Zongyao, Yin Qing, Jiang Kai. 2019. Hydrothermal evolution and ore precipitation of the No. 2 porphyry Cu-Au deposit in the Xiongcun district, Tibet: Evidence from cathodoluminescence, fluid inclusions, and isotopes. Ore Geology Reviews, 114: 103141.
-
Lang Xinghai, Deng Yulin, Wang Xuhui, Tang Juxing, Yin Qing, Xie Fuwei, Yang Zongyao, Li Zhuang, He Qing, Li Liang, Zhang Zhong, Jiang Kai. 2020. Geochronology and geochemistry of volcanic rocks of the BimaFormation, southern Lhasa subterrane, Tibet: Implications for early Neo-Tethyan subduction. Gondwana Research, 80: 335~349.
-
Li Cai, Wang Tianwu, Li Huimin, Zeng Qinggao. 2003. Discovery ofindosinian megaporphyritic granodiorite in the Gangdise area: Evidence for the existence of Paleo-Gangdise. Regional Geology of China, 22(5): 364~366 (in Chinese with English abstract).
-
Li Guangming, Zhang Linkui, Jiao Yanjie, Xia Xiangbiao, Dong Suiliang, FuJiangang, Liang Wei, Zhang Zhi, Wu Jianyang, Dong Lei, Huang Yong. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogenic belt, southern Tibet. Mineral Deposits, 36(4): 1003~1008 (in Chinese with English abstract).
-
Li Miao, Zheng Youye, Feng Quanlin, Xu Jing, Wu Song, Sun Guoping. 2020. Ore genesis of skarn mineralization in continental collision orogens: A case study from the Pusangguo Co-bearing Cu-Pb-Zn deposit in Tibet. Ore Geology Reviews, 122: 103523.
-
Li Zhenli, Ye Lin, Hu Yusi, Wei Chen, Huang Zhilong, Yang Yulong, Danyushevsky L. 2020. Trace elements in sulfides from the Maozu Pb-Zn deposit, Yunnan Province, China: Implications for trace-element incorporation mechanisms and ore genesis. American Mineralogist, 105(11): 1734~1751.
-
Li Zhuang, Wang Liqiang, Li Haifeng, Dan Zhenwangxiu, Shi Shuo. 2018a. Sulfur and lead isotopic compositions of the Pusangguo Cu-Pb-Zn polymetallic deposit in Tibet: Implications for the source of ore-forming material. Geoscience, 32(1): 56~65 (in Chinese with English abstract).
-
Li Zhuang, Tang Juxing, Wang Liqiang, Li Haifeng, Liu Wenyuan. 2018b. Mineralogical characteristics of skarn in the Pusangguo Pb-Zn polymetallic deposit of Tibet and their geological significance. Acta Petrologica et Mineralogica, 37(2): 241~258 (in Chinese with English abstract).
-
Li Zhuang, Lang Xinghai, Zhang Qizhi, He Liang. 2019a. Petrogenesis and geodynamic settings of the intermediate-acid intrusions related to the Pusangguo copper-dominated polymetallic deposit in Tibet: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes. Acta Petrologica Sinica, 35(3): 737~759 (in Chinese with English abstract).
-
Li Zhuang, Lang Xinghai, Rickleman D, Duan Jilin, Zhang Qizhi. 2019b. Age and genesis of the Pusangguo skarn Cu-dominated polymetallic deposit, Gangdese metallogenic belt, Tibet. Journal of Asian Earth Sciences, 169: 210~227.
-
Li Zhuang, Lang Xinghai, Zhang Qizhi, Liu Xinkai, Yang Xin. 2020. Petrogenesis and geodynamic implications of the intrusions related to the Pusangguo skarn Cu-dominated polymetallic deposit in Tibet: Constraints from geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes. Geological Journal, 55(12): 7659~7686.
-
Li Zhuang, Zhang Peng, Zhu Junrong, Xu Jiaoqi, Niu Xudong. 2022. Fluid origin and evolution of the Pusangguo Cu-Pb-Zn skarn deposit in Tibet: Constraints from fluid inclusions and isotope compositions. Ore Geology Reviews, 150: 105197.
-
Lin Bin, Tang Juxing, Tang Pan, Zheng Wenbao, Hall G, Chen Guoliang, Zhang Zhongkun. 2019. Polycentric complex mineralization model of porphyry system: A case study of Jiama superlarge deposit in Tibet. Mineral Deposits, 38(6): 1204~1222 (in Chinese with English abstract).
-
Lin Ye, Cook N J, Ciobanu C L, Liu Yuping, Zhang Qian, Liu Tiegeng, Gao Wei, Yang Yulong, Danyushevskiy L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geology Reviews, 39(4): 188~217.
-
Liu Hong, Li Guangming, Huang Hanxiao, Cao Huawen, Yuan Qian, Li Yingxu, Ouyang Yuan, Lan Shuangshuang, Lü Menghong, Yan Guoqiang. 2018. Petrogenesis of Late Cretaceous Jiangla'angzong I-type granite in central Lhasa terrane, Tibet, China: Constraints from whole-rock geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes. Acta Geologica Sinica (English Edition), 92(4): 1396~1414.
-
Liu Shan, Zhang Yu, Ai Guoliang, Xue Xilin, Li Hongbin, Ahmad Shah S, Wang Naihui, Chen Xi. 2022. LA-ICP-MS trace element geochemistry of sphalerite: Metallogenic constraints on the Qingshuitang Pb-Zn deposit in the Qinhang ore belt, South China. Ore Geology Reviews, 141: 104659.
-
Liu Wenyuan, Cook N J, Ciobanu C L, Liu Yu, Qiu Xiaoping, Chen Yuchuan. 2016. Mineralogy of tin-sulfides in the Zijinshan porphyry-epithermal system, Fujian Province, China. Ore Geology Reviews, 72: 682~698.
-
Liu Yingjun, Cao Liming, Li Zhaolin. 1984. Element Geochemistry. Beijing: Science Publishing House (in Chinese with English abstract).
-
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
-
Lockington J A, Cook N J, Ciobanu C L. 2014. Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineralogy and Petrology, 108(6): 873~890.
-
Makovicky E, Topa D. 2015. Crystal chemical formula for sartorite homologues. Mineralogical Magazine, 79(1): 25~31.
-
Möller P. 1987. Correlation of homogenization temperatures of accessory minerals from sphalerite-bearing deposits and Ga/Ge model temperatures. Chemical Geology, 61(1~4): 153~159.
-
Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135~148 (in Chinese with English abstract).
-
Murakami H, Ishihara S. 2013. Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: A femto-second LA-ICPMS study. Ore Geology Reviews, 53: 223~243.
-
Pei Qiuming, Zhang Shouting, Cao Huawen, Tang Li, Xu Teng, Li Junjun, Zhang Xuhuang, Guo Nana. 2015. Trace element geochemistry of the Luotuoshan sulfur-zinc polymetallic deposit in Luanchuan, western Henan, and its geological implications. Acta Petrologicaet Mineralogica, 34(5): 741~754 (in Chinese with English abstract).
-
Pfaff K, Koenig A, Wenzel T, Ridley I, Hildebrandt L H, Leach D L, Markl G. 2011. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis. Chemical Geology, 286(3-4): 118~134.
-
Qi Youqiang, Hu Ruizhong, Gao Jianfeng, Leng Chengbiao, Gao Wei, Gong Haotian. 2022. Trace and minor elements in sulfides from the Lengshuikeng Ag-Pb-Zn deposit, South China: A LA-ICP-MS study. Ore Geology Reviews, 141: 104663.
-
Qu Xiaoming, Xin Hongbo. 2006. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China. Geological Bulletin of China, 25(7): 792~799 (in Chinese with English abstract).
-
Qu Xiaoming, Hou Zengqian, Zaw K, Li Youguo. 2007. Characteristics and genesis of gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results. Ore Geology Reviews, 31(1-4): 205~223.
-
Scott S D, Barnes H L. 1971. Sphalerite geothermometry and geobarometry. Economic Geology, 66(4): 653~669.
-
Sun Xiang, Hollings P, Lu Yongjun. 2021. Geology and origin of the Zhunuo porphyry copper deposit, Gangdese belt, southern Tibet. Mineralium Deposita, 56(3): 457~480.
-
Sykora S, Cooke D R, Meffre S, Stephanov A S, Gardner K, Scott R, Selley D, Harris A C. 2018. Evolution of pyrite trace element compositions from porphyry-style and epithermal conditions at the Lihir gold deposit: Implications for ore genesis and mineral processing. Economic Geology, 113(1): 193~208.
-
Tafti R, Mortensen J K, Lang J R, Rebagliati M, Oliver J L. 2009. Jurassic U-Pb and Re-Os ages for the newly discovered Xietongmen Cu-Au porphyry district, Tibet, PRC: Implications for metallogenic epochs in the southern gangdese belt. Economic Geology, 104(1): 127~136.
-
Tang Juxing. 2019. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent major metallogenic belts. Acta Petrologica Sinica, 35(3): 617~624 (in Chinese with English abstract).
-
Tang Juxing, Chen Yuchuan, Wang Denghong, Wang Chenghui, Xu Yuanping, Qu Wenjun, Huang Wei, Huang Yong. 2009. Re-Os dating of molybdenite from the Sharang porphyry molybdenum deposit in Gongbo'gyamda County, Tibet and its geological significance. Acta Geologica Sinica, 83(5): 698~704 (in Chinese with English abstract).
-
Tang Juxing, Wang Qin, Yang Huanhuan, Gao Xin, Zhang Zebin, Zou Bing. 2017. Mineralization, exploration and resource potential of porphyry-skarn-epithermal copper polymetallic deposits in Tibet. Acta Geoscientica Sinica, 38(5): 571~613 (in Chinese with English abstract).
-
Tang Juxing, Yang Huanhuan, Song Yang, Wang Liqiang, Liu Zhibo, Li Baolong, Lin Bin, Peng Bo, Wang Genhou, Zeng Qinggao, Wang Qin, Chen Wei, Wang Nan, Li Zhijun, Li Yubin, Li Yanbo, Li Haifeng, Lei Chuanyang. 2021. Thecopper polymetallic deposits and resource potential in the Tibet Plateau. China Geology, 4(1): 1~16.
-
Torró L, Benites D, Vallance J, Laurent O, Ortiz-Benavente B A, Chelle-Michou C, Proenza J A, Fontboté L. 2022. Trace element geochemistry of sphalerite and chalcopyrite in arc-hosted VMS deposits. Journal of Geochemical Exploration, 232: 106882.
-
Wang Junlin, Deng Anping, Zhang Yu, Shao Yongjun, Li Hongbin. 2020. Cu-Pb-Zn and W-Mo-Pb-Zn systematic mineralization environment of Huangshaping deposit in Hunan: Indicator of sphalerite geochemistry. Mineral Resource Geology, 34(1): 56-63 (in Chinese with English abstract).
-
Wang Kexin, Zhai Degao, Liu Jiajun, Wu Han. 2021. LA-ICP-MS trace element analysis of pyrite from the Dafang gold deposit, South China: Implications for ore genesis. Ore Geology Reviews, 139: 104507.
-
Wang Rui, Collins W J, Weinberg R F, Li Jinxiang, Li Qiuyun, He Wenyan, Richards J P, Hou Zengqian, Zhou Limin, SternR A. 2016. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: Direct evidence for crust-mantle mixing and metamorphism in the deep crust. Contributions to Mineralogy and Petrology, 171(7): 62.
-
Wang Shuo, Cao Mingjian, Li Guangming, Silang Wangdui, Shan Pengfei, Qin Kezhang. 2022. The occurrence of cobalt and implications for genesis of the Pusangguo cobalt-rich skarn deposit in Gangdese, Tibet. Ore Geology Reviews, 150: 105193.
-
Warmada I W, Lehmann B, Simandjuntak M. 2003. Polymetallic sulfides and sulfosalts of thePongkor epithermal gold-silver deposit, west Java, Indonesia. The Canadian Mineralogist, 41(1): 185~200.
-
Wei Chen, Huang Zhilong, Yan Zaifei, Hu Yusi, Ye Lin. 2018. Trace element contents in sphalerite from theNayongzhi Zn-Pb deposit, northwestern Guizhou, China: Insights into incorporation mechanisms, metallogenic temperature and ore genesis. Minerals, 8(11): 490.
-
Wei Chen, Ye Lin, Hu Yusi, Danyushevskiy L, Li Zhenli, Huang Zhilong. 2019. Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit, northeastern Yunnan, China: Insights from SEM and LA-ICP-MS studies. Ore Geology Reviews, 115: 103175.
-
Wei Chen, Ye Lin, Hu Yusi, Huang Zhilong, Danyushevsky L, Wang Haoyu. 2021. LA-ICP-MS analyses of trace elements in base metal sulfides from carbonate-hosted Zn-Pb deposits, South China: A case study of the Maoping deposit. Ore Geology Reviews, 130: 103945.
-
Wen Hanjie, Zhu Chuanwei, Zhang Yuxu, Cloquet C, Fan Haifeng, Fu Shaohong. 2016. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Scientific Reports, 6: 25273.
-
Wu Yue, Kong Zhigang, Chen Maohong, Zhang Changqing, Caoliang, Tang Youjun, Yuan Xin, Zhang Pei. 2019. Trace elements in sphalerites from the Mississippi Valley-type lead-zinc deposits around the margins of Yangtze block and its geological implications: A LA-ICP-MS study. Acta Petrologica Sinica, 35(11): 3443~3460 (in Chinese with English abstract).
-
Xie Fuwei, Lang Xinghai, Tang Juxing, He Qing, Deng Yulin, Wang Xuhui, Wang Yong, Jia Min. 2022. Metallogenic regularity of Gangdese metallogenic belt, Tibet. Mineral Deposits, 41(5): 952~974 (in Chinese with English abstract).
-
Xing Bo, Mao Jingwen, Xiao Xiaoniu, Liu Huan, Jia Fudong, Wang Shoushuai, Huang Wuyan, Li Hongyu. 2021. Genetic discrimination of the Dingjiashan Pb-Zn deposit, SE China, based on sphalerite chemistry. Ore Geology Reviews, 135: 104212.
-
Xing Bo, Mao Jingwen, Xiao Xiaoniu, Liu Huan, Zhang Cai, Guo Sheng, Li Hongyu, Huang Wuyan, Lai C. 2022. Metallogenic discrimination by sphalerite trace element geochemistry: An example from the Fengyan Zn-Pb deposit in central Fujian, SE China. Ore Geology Reviews, 141: 104651.
-
Yang Zhiming, Hou Zengqian, Chang Zhaoshan, Li Qiuyun, Liu Yunfei, Qu Huanchun, Sun Maoyu, Xu Bo. 2016. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 245: 243~257.
-
Ye Lin, Gao Wei, Yang Yulong, Liu Tiegeng, Peng Shaosong. 2012. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province. Acta Petrologica Sinica, 28(5): 1362~1372 (in Chinese with English abstract).
-
Ye Lin, Li Zhenli, Hu Yusi, Huang Zhilong, Zhou Jiaxi, Fan Haifeng, Leonid D. 2016. Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan Province, China: A LA-ICPMS study. Acta Petrologica Sinica, 32(11): 3377~3393 (in Chinese with English abstract).
-
Yang Qing, Zhang Xiaojun, Ulrich T, Zhang Jun, Wang Jian. 2022. Trace element compositions of sulfides from Pb-Zn deposits in the northeast Yunnan and northwest Guizhou Provinces, SW China: Insights from LA-ICP-MS analyses of sphalerite and pyrite. Ore Geology Reviews, 141: 104639.
-
Yuan Bo, Mao Jingwen, Yan Xinghu, Wu Yue, Zhang Feng, Zhao Liangliang. 2014. Sources of metallogenic materials and metallogenic mechanism of Daliangzi ore field in Sichuan Province: Constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite. Acta Petrologica Sinica, 30(1): 209~220(in Chinese with English abstract).
-
Yuan Bo, Zhang Changqing, Yu Hongjun, Yang Yaomin, Zhao Yuexia, Zhu Chaocheng, Ding Qingfeng, Zhou Yubin, Yang Jichao, Xu Yue. 2018. Element enrichment characteristics: Insights from element geochemistry of sphalerite in Daliangzi Pb-Zn deposit, Sichuan, Southwest China. Journal of Geochemical Exploration, 186: 187~201.
-
Yuan Jihai, Zhan Xiuchun, Sun Dongyang, Zhao Linghao, Fan Chenzi, Kuai Lijun, Hu Mingyue. 2011. Investigation on matrix effects in silicate minerals by laser ablation-inductively coupled plasma-mass spectrometry. Chinese Journal of Analytical Chemistry, 39(10): 1582~1588 (in Chinese with English abstract).
-
Zhang Hongfei, Xu Wangchun, Guo Jianqiu, Zong Keqing, Cai Hongming, Yuan Honglin. 2007. Indosinian orogenesis of the Gangdese terrane: Evidence from zircon U-Pb dating and petrogenesis of granitoids. Earth Science-Journal of China University of Geosciences, 32(2): 155~166 (in Chinese with English abstract).
-
Zhang Pingju, Zhong Kanghui, Yang Chengye. 2016. The geological characteristics of polymetallic deposit in Pusangguo Tibet Cu-Pb-Zn metallogenic mechanism. Sichuan Nonferrous Metals, 3: 27~30 (in Chinese with English abstract).
-
Zhao Junxing, Qin Kezhang, Li Guangming, Li Jinxiang, Xiao Bo, Chen Lei, Yang Yueheng, Li Chao, Liu Yongsheng. 2014. Collision-related genesis of the Sharang porphyry molybdenum deposit, Tibet: Evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes. Ore Geology Reviews, 56: 312~326.
-
Zhao Junxing, Qin Kezhang, Evans N J, Li Guangming, Shi Ruizhe. 2020. Volatile components and magma-metal sources at the Sharang porphyry Mo deposit, Tibet. Ore Geology Reviews, 126: 103779.
-
Zheng Shiji, Zhong Hong, Bai Zhongjie, Zhang Zhongkun, Wu Chengquan. 2021. High-sulfidation veins in the Jiama porphyry system, South Tibet. Mineralium Deposita, 56(2): 205~214.
-
Zheng Youye, Zhang Gangyang, Xu Rongke, Gao Shunbao, Pang Yingchun, Cao Liang, Du Andao, Shi Yuruo. 2007. Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139~3147.
-
Zhou Chuang, Yang Zhen, Sun Huashan, Koua K A D, Lyu Changliang. 2022. LA-ICP-MS trace element analysis of sphalerite and pyrite from the Beishan Pb-Zn ore district, South China: Implications for ore genesis. Ore Geology Reviews, 150: 105128.
-
Zhou Xiang, Zheng Jianping, Xiong Qing, Yang Jingsui, Wu Yuanbao, Zhao Junhong, Griffin W L, Dai Hongkun. 2017. Early Mesozoic deep-crust reworking beneath the central Lhasa terrane (south Tibet): Evidence from intermediate gneiss xenoliths in granites. Lithos, 274-275: 225~239.
-
Zhu Dicheng, Mo Xuanxue, Zhao Zhidan, Niu Yaoling, Wang Liquan, Chu Qiuhong, Pan Guitang, Xu Jifeng, Zhou Changyong. 2010. Presence of Permian extension- and arc-type magmatism in southern Tibet: Paleogeographic implications. Geological Society of America Bulletin, 122(7-8): 979~993.
-
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung S L, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.
-
Zhuang Liangliang, Song Yucai, Liu Yingchao, Fard M, Hou Zengqian. 2019. Major and trace elements and sulfur isotopes in two stages of sphalerite from the world-class Angouran Zn-Pb deposit, Iran: Implications for mineralization conditions and type. Ore Geology Reviews, 109: 184~200.
-
崔晓亮. 2013. 西藏南木林县浦桑果铜多金属矿床成矿作用研究. 成都理工大学博士学位论文.
-
高永宝, 李侃, 钱兵, 李文渊, 郑敏昌, ChenGuang ZHANG. 2016. 扬子北缘马元铅锌矿床闪锌矿微量元素及S-Pb-He-Ar-C同位素地球化学研究. 岩石学报, 32(1): 251~263.
-
郎兴海, 崔志伟, 王旭辉, 邓煜霖, 谢富伟, 韩鹏, 杨宗耀, 张忠, 黄勇, 李志军, 尹青, 张金树, 丁枫, 董树义, 王子正, 张丽. 2017. 西藏谢通门县雄村矿集区综合信息找矿模型及靶区预测. 地球学报, 38(5): 790~802.
-
李才, 王天武, 李惠民, 曾庆高. 2003. 冈底斯地区发现印支期巨斑花岗闪长岩——古冈底斯造山的存在证据. 地质通报, 22(5): 364~366.
-
李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊, 黄勇. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003~1008.
-
李壮, 王立强, 李海峰, 旦真王修, 施硕. 2018a. 西藏浦桑果铜铅锌多金属矿床S、Pb同位素组成及对成矿物质来源的示踪. 现代地质, 32(1): 56~65.
-
李壮, 唐菊兴, 王立强, 李海峰, 刘文元. 2018b. 西藏浦桑果铅锌多金属矿床矽卡岩矿物学特征及其地质意义. 岩石矿物学杂志, 37(2): 241~258.
-
李壮, 郎兴海, 章奇志, 何亮. 2019a. 西藏浦桑果铜多金属矿床中酸性岩石成因及动力学背景: 年代学、地球化学及Sr~Nd~Pb~Hf同位素约束. 岩石学报, 35(3): 737~759.
-
李壮, 郎兴海, 章奇志, 何亮. 2019a. 西藏浦桑果铜多金属矿床中酸性岩石成因及动力学背景: 年代学、地球化学及Sr-Nd-Pb-Hf同位素约束. 岩石学报, 35(3): 737~759.
-
林彬, 唐菊兴, 唐攀, 郑文宝, Greg Hall, 陈国良, 张忠坤. 2019. 斑岩成矿系统多中心复合成矿作用模型——以西藏甲玛超大型矿床为例. 矿床地质, 38(6): 1204~1222.
-
刘英俊, 曹励明, 李兆麟. 1984. 元素地球化学. 北京: 科学出版社.
-
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度—亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135~148.
-
裴秋明, 张寿庭, 曹华文, 唐利, 许腾, 李军军, 张旭晃, 郭娜娜. 2015. 豫西栾川县骆驼山硫锌多金属矿床闪锌矿微量元素地球化学特征及其地质意义. 岩石矿物学杂志, 34(5): 741~754.
-
曲晓明, 辛洪波. 2006. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境. 地质通报, 25(7): 792~799.
-
王俊霖, 邓安平, 张宇, 邵拥军, 李宏斌. 2020. 湖南黄沙坪多金属矿床闪锌矿对Cu-Pb-Zn和W-Mo-Pb-Zn成矿系统环境的指示. 矿产与地质, 34(1): 56~63.
-
吴越, 孔志岗, 陈懋弘, 张长青, 曹亮, 唐友军, 袁鑫, 张沛. 2019. 扬子板块周缘MVT型铅锌矿床闪锌矿微量元素组成特征与指示意义: LA-ICPMS研究. 岩石学报, 35(11): 3443~3460.
-
唐菊兴. 2019. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展. 岩石学报, 35(3): 617~624.
-
唐菊兴, 陈毓川, 王登红, 王成辉, 许远平, 屈文俊, 黄卫, 黄勇. 2009. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义. 地质学报, 83(5): 698~704.
-
唐菊兴, 王勤, 杨欢欢, 高昕, 张泽斌, 邹兵. 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571~613.
-
谢富伟, 郎兴海, 唐菊兴, 何青, 邓煜霖, 王旭辉, 王勇, 贾敏. 2022. 西藏冈底斯成矿带成矿规律. 矿床地质, 41(5): 952~974.
-
叶霖, 高伟, 杨玉龙, 刘铁庚, 彭绍松. 2012. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成. 岩石学报, 28(5): 1362~1372.
-
叶霖, 李珍立, 胡宇思, 黄智龙, 周家喜, 樊海峰, Danyushevskiy L. 2016. 四川天宝山铅锌矿床硫化物微量元素组成: LA-ICPMS研究. 岩石学报, 32(11): 3377~3393.
-
袁波, 毛景文, 闫兴虎, 吴越, 张锋, 赵亮亮. 2014. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约. 岩石学报, 30(1): 209~220.
-
袁继海, 詹秀春, 孙冬阳, 赵令浩, 范晨子, 蒯丽君, 胡明月. 2011. 激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究. 分析化学, 39(10): 1582~1588.
-
张宏飞, 徐旺春, 郭建秋, 宗克清, 蔡宏明, 袁洪林. 2007. 冈底斯印支期造山事件: 花岗岩类锆石U-Pb年代学和岩石成因证据. 地球科学, 32(2): 155~166.
-
张朋举, 钟康惠, 杨成业. 2016. 西藏浦桑果铜多金属矿床地质特征与成矿机理. 四川有色金属, (3): 27~30.
-
摘要
位于东特提斯成矿域的西藏冈底斯成矿带是我国著名的铜铅锌等有色金属矿产地之一,浦桑果矿床是该成矿带内近年来找矿勘查新发现的大型富钴铜铅锌矿床,矿体主要赋存在岩体与早白垩世塔克那组接触带内,成矿作用复杂。闪锌矿是浦桑果矿床主成矿期(石英-硫化物阶段)的主要金属硫化物之一,主要发育深棕色~棕褐色的Ⅰ类闪锌矿(SpⅠ)和浅棕色~黄棕色的Ⅱ类闪锌矿(SpⅡ)。本文采用电子探针(EMPA)和激光剥蚀电感耦合等离子质谱(LA-ICP-MS),对矿区不同类型的闪锌矿开展原位微区主、微量元素分析。主、微量元素分析结果表明,闪锌矿中普遍富集Co元素且SpⅠ中Co元素含量明显高于SpⅡ中的Co元素含量,Co元素主要以类质同象形式替代Zn元素(Co2+→Zn2+);SpⅠ和SpⅡ均具有富集Fe、Mn、Cd而贫Ga、Ge、In的成分特征,其中Fe、Mn、Cd等元素主要以类质同象形式产出,而Cu、Ag、Pb、As等元素则主要以矿物包裹体形式赋存于闪锌矿中。根据不同元素间的相关关系,认为浦桑果矿床闪锌矿中可能存在Fe2++Mn2+→2Zn2+、(In3+, Sn3+)+(Cu+, Ag+)→2Zn2+、As3++Ag+→2Zn2+、Pb2++2As3++□→4Zn2+(□为晶格空位)等简单和复杂的元素替代机制。结合闪锌矿中Fe、Mn、Ge元素含量和In/Ga、In/Ge、Zn/Cd元素比值与闪锌矿GGIMFis地质温度计的计算结果,指示浦桑果矿床闪锌矿形成于中高温(237~345℃)、低氧逸度、低硫逸度( =-13.4~-8.3)的环境。
Abstract
The Gangdese metallogenic belt (GMB) in Tibet, located in the East Tethys metallogenic domain, is one of the famous Pb, Zn and other nonferrous metal areas in China. The Pusangguo is a large newly discovered cobalt-rich Cu-Pb-Zn deposit in recent years. The ore bodies mainly occurred in the contact zone between the magma and the Early Cretaceous Takena Formation strata, with the complex mineralization. Sphalerite is one of the main sulfides in the quartz-sulfides mineralization stage in the Pushangguo deposit. It mainly contains two different types: dark-brown type I sphalerite (SpI) and light-brown type II sphalerite (SpII). In this paper, the electron microprobe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) were used to analyze the major and trace elements in sphalerites. The results show that the sphalerite is generally rich in Co, and the content of Co in SpI is obviously higher than that in SpII. Co mainly replaces Zn element (Co) in the form of isomorphism Co2+↔Zn2+; Both SpI and SpII are characterized by enrichment of Fe, Mn, Cd and depletion of Ga, Ge, In, among which Fe, Mn, Cd and other elements occur mainly in the form of isomorphism, while Cu, Ag, Pb, As and other elements occur mainly in sphalerite in the form of mineral inclusions. According to the correlation between different trace elements, it is considered that there may be Fe2++Mn2+→2Zn2+、(In3+, Sn3+)+(Cu+, Ag+)→2Zn2+、As3++Ag+→2Zn2+、Pb2++2As3++□→4Zn2+ (□is lattice vacancy) and other simple complex element substitution mechanisms. The ratios of Fe, Mn, Ge, In/Ga, In/Ge, Zn/Cd in sphalerite and the calculation results based on the sphalerite GGIMPis geothermometer indicate that sphalerite was formed in the environment of medium-high temperature (237~345℃), low oxygen fugacity and low sulfur fugacity ( =-13.4~-8.3).
Keywords
Co-Cu-Pb-Zn deposit ; sphalerite ; LA-ICP-MS ; metallogenesis ; Pusangguo ; Gangdese metallogenic belt