en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴亮君,男,1991年生。博士研究生,助理研究员,主要从事沉积学与地质遗迹调查。E-mail:wuliangjun@mail.cgs.gov.cn。

参考文献
Ainsaar L, Kaljo D, Martma T, Meidla T, Männik P, Nõlvak J, Tinn O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 189~201.
参考文献
Albanesi G L, Bergström S M, Schmitz B, Serra F, Feltes N A, Voldman G G, Ortega G. 2013. Darriwilian (Middle Ordovician) δ13Ccarb chemostratigraphy in the Precordillera of Argentina: Documentation of the middle Darriwilian Isotope Carbon Excursion (MDICE) and its use for intercontinental correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 389(4): 48~63.
参考文献
Banner J L, Wasserburg G J, Chen J H, Humphrey J D. 1991. Uranium-series evidence on diagenesis and hydrology in Pleistocene carbonates of Barbados, West Indies. Earth and Planetary Science Letters, 108(4): 307~308.
参考文献
Bergström S M, Chen Xu, Gutiérrez-Marco J C, Dronov A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42: 97~107.
参考文献
Buggisch W, Keller M, Lehnert O. 2003. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeography, Palaeoclimatology, Palaeoecology, 195(3): 357~373.
参考文献
Chen Kefan. 2019. Theocean chemistry changes associated with the GOBE in Ordovician. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).
参考文献
Craig H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133(3467): 1833~1834.
参考文献
Deng Yiying, Fan Junxuan, Zhang Shuhan, Fang Xiang, Chen Zhongyang, Shi Yukun, Wang Haiwen, Wang Xinbing, Yang Jiao, Hou Xudong, Wang Yue, Zhang Yuandong, Chen Qing, Yang Aihua, Fan Ru, Dong Shaochun, Xu Huiqing, Shen Shuzhong. 2021. Timing and patterns of the Great Ordovician BiodiversificationEvent and Late Ordovician mass extinction: Perspectives from South China. Earth-Science Reviews, 5371: 103743.
参考文献
Edwards C T, Saltzman M R. 2014. Carbon isotope (δ13Ccarb) stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great basin, western United States: Implications for global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 1~20.
参考文献
Fan Ru, Lu Yuanzheng, Zhang Xuelei, Zhang Shiben, Duan Wenzhe, Li Xin, Deng Shenghui. 2013. New understanding of the contact relationship between Shihtzupu Formation and Pagoda Formation in Sichuan basin. Acta Geologica Sinica, 87(3): 321~329 (in Chinese with English abstract).
参考文献
Fan Ru, Deng Shenghui, Zhang Xuelei, Zhang Shiben, Lu Yuanzheng, Li Xin. 2015. Middle Ordovician (Darriwilian) Shihtzupu (Shizipu) and Guniutan Formations in the Upper Yangtze Region, South China. Geological Review, 61(4): 735~742 (in Chinese with English abstract).
参考文献
Flügel E. 2009. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer: Verlag Berlin Heidelberg.
参考文献
Gonfiantini. 1986. Environmentalisotopes in lake studies. In: Fritz P, Fontes J, eds. Handbook of Environmental Isotope Geochemistry 2: The Terrestrial Environment. Amsterdam: Elsevier.
参考文献
Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64~68.
参考文献
Huang Leqing, Liu Wei, Li Zehong. 2018. Controlling factors of sedimentary variations and evolution of the early to middle Ordovician in the Longshan area and nearby regions in northwestern Hunan. Journal of Stratigraphy, 42(1): 39~52 (in Chinese with English abstract).
参考文献
Huang Leqing, Liu Wei, Bai Daoyuan, Li Zehong, Liang Enyun, Chen Zhenbao. 2019. Characteristics, petrogenesis and resource significance of the limestone with polygonal reticulate structure of Pagoda Formation, in northwestern Hunan Province. Earth Science, 44(2): 399~414 (in Chinese with English abstract).
参考文献
Jiang Suyang, Huang Wenhui, Zhang Yongsheng. 2020. Geochemical characteristics of Middle Ordovician in western margin of Ordos basin and its implication on paleoenvironment. Geoscience, 34(3): 545~553 (in Chinese with English abstract).
参考文献
Kaljo D, Martma T, Saadre T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(1-2): 138~155.
参考文献
Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. 1995. Precambrian Research, 73(1-4): 50~54.
参考文献
Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Avta, 28(10/11): 1787~1816.
参考文献
Knoll A H, Hayes J M, Kaufman A J, Sweet K, Labert I B, 1986. Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321(6073): 832~838.
参考文献
Korte C, Jasper T, Kozur H W, Veizer J. 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(4): 333~351.
参考文献
Lehnert O, Meinhold G, Wu Rongchang, Calner M, Joachimski M M. 2014. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician) carbonate succession of the Siljan district, central Sweden. Estonian Journal of Earth Sciences, 63(4): 277~286.
参考文献
Li Chao. 2019. Middle Ordovician-Llandovery carbon isotope chemostratigraphy in Upper Yangtze Platform, South China. Master dissertation of University of Science and Technology of China (in Chinese with English abstract).
参考文献
Li Chao, Fan Junxuan, Sun Zongyuan. 2018. Review of Ordovician inorganic carbon isotope stratigraphy. Journal of Stratigraphy, 42(4): 408~428 (in Chinese with English abstract).
参考文献
Luan Xiaocong, Wu Rongchang, Zhan Renbin, Liu Jianbo. 2019. The Zitai Formation in South China: unique deeper-water marine red beds in terms of lithology, distribution and delta C-13(carb) chemostratigraphy. Palaeoworld, 28(1-2): 198~210.
参考文献
Luan Xiaocong, Zhang Xiaole, Wu Rongchang, Zhan Renbin, Liu Jianbo, Wang Guangxu, Zhang Yuichen. 2021. Environmental changes revealed by Lower-Middle Ordovician deeper-water marine red beds from the marginal Yangtze Platform, South China: Links to biodiversification. Palaeogeography, Palaeoclimatology, Palaeoecology, 562(110116): 1~14.
参考文献
Ma Xuan, Wang Zhihao, Zhang Yuandong, Song Yanyan, Fang Xiang. 2015. Carbon isotope records of the Middle-Upper Ordovician transition in Yichang area, South China. Palaeoworld, 24: 136~148.
参考文献
Munnecke A, Calner M, Harper D A T, Servais T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 389~413.
参考文献
Munnecke A, Zhang Yuandong, Liu Xiao, Cheng Junfeng. 2011. Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 307: 17~43.
参考文献
Ondř ej B, Tomáš K, Li Wenjie, Markéta H, Daniel Š, Jaroslav K. 2022. Incipient reddening of Ordovician carbonates: The origin and geochemistry of yellow and pink colouration in limestones. Sedimentary Geology, 440(106262): 1~16.
参考文献
Pan Guitang, Lu Songnian, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Hao Guojie, Luo Mansheng, Ren Fei, Yuan Sihua. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 1~23 (in Chinese with English abstract).
参考文献
Pan Ming, Hao Yanzhen, Sun Chengjie, Lv Yong, Shan Keqiang. 2020. Sedimentary characteristics of the Pridolian Series in Baoshan, Yunnan Province and their implications for paleomarine environment. Acta Geologica Sinica, 94(5): 1382~1396 (in Chinese with English abstract).
参考文献
Renard M. 1986. Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Marine Micropaleontology, 16: 117~164.
参考文献
Rong Jiayu, Huang Bing. 2014. Study of Mass Extinction over the past thirty years. Scientia Sinica (Terrae), 44(3): 377~404 (in Chinese).
参考文献
Schmitz B, Bergström S M, Wang Xiaofei. 2010. The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: Implications of its first recorded occurrences outside Baltoscandia. Journal of the Geological Society, 167: 249~259.
参考文献
Shao Longyi, Dou Jianwei, Zhang Pengfei. 1996. Paleogeographic significances of carbon and oxygen isotope in Late Permian rocks of southwest China. Geochimica, 25(6): 575~581 (in Chinese with English abstract).
参考文献
Song Yanyan, Zhang Yuandong, Goldman D, Wang Zhihao, Fang Xiang, Ma Xuan. 2014. Latest Darriwilian to Early Sandbian Graptolite Biostratigraphy in Chengkou, Northern Chongqing, South China. Nanjing: Nanjing University Press (in Chinese with English abstract).
参考文献
Tan Hui, Qin Mingyang, Li Jie, Guo Jianhua, Wu Shiqing, Bian Ruikang. 2020. Paleogeographic evolution and prototype basins of Ordovician in central Hunan and its surrounding areas. Journal of Central South University (Science and Technology), 51(12): 3430~3443 (in Chinese with English abstract).
参考文献
Tao Cheng, Ba Liqiang, Li Guangyou, Yang Huamin. 2006. Application of GasBench-IRMS in on-line continuous measurement of δ13C and δ18O in carbonate rock samples. Rock and Mineral Analysis, 25(4): 334~336 (in Chinese with English abstract).
参考文献
Trotter J A, Williams I S, Barnes C R, Lécuyer C, Nicoll R S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321: 550~554.
参考文献
Tucker M E, Wright V P, Dickson J. 2009. Carbonate Sedimentology. England, Oxford: Blackwell Science Ltd.
参考文献
Wang Jian, Duan Taizhong, Xie Yuan, Wang Zhengjiang, Hao Ming, Liu Wei. 2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739~1749 (in Chinese with English abstract).
参考文献
Wang Zhihao, Bergström S M, Song Yanyan, Ma Xuan, Zhang Yuandong. 2017. On the diachronous nature of the top of the Ordovician Kuniutan Formation on the Yangtze Platform: Implications of the conodont biostratigraphy of the Dacao section, Chongqing. Palaeoworld, 26: 37~49.
参考文献
Wu Liangjun, Chen Weihai, Rong Yuebing, Zhang Jing, Huang Chao, Zhu Haiyan, Meng Qingxin, Wu Jiwen, Luo Qukan, Bai Bing, Ou Mengmeng. 2020. Development characteristics and research value of red carbonate stone forest in the Xiangxi geopark. Carsologica Sinica, 39(2): 251~258 (in Chinese with English abstract).
参考文献
Wu Liangjun, Jiang Haixian, Chen Weihai, Peng Wenhong. 2021. Geodiversity, geotourism, geoconservation, and sustainable development in Xiangxi UNESCO Global Geopark—a case study in ethnic minority areas. Geoheritage, 13, (99): 1~18.
参考文献
Wu Rongchang, Calner M, Lehnert O, Peterffya O, Joachimski M M. 2015. Lower-Middle Ordovician δ13C chemostratigraphy of western Baltica(Jämtland, Sweden). Palaeoworld, 24(1-2): 110~122.
参考文献
Wu Rongchang, Zhan Renbin, Li Guipeng, Liu Jianbo. 2007. Brief discussion on the Lower to Middle Ordovician Zitai Formation in the Yangtze region, South China. Journal of Stratigraphy, 31(4): 325~332 (in Chinese with English abstract).
参考文献
Wu Rongchang, Liu Jianbo, Mikael C, Gong Fangyi, Oliver L, Luan Xiaocong, Li Lixia, Zhan Renbin. 2020. High-resolution carbon isotope stratigraphy of the Lower and Middle Ordovician succession of the Yangtze Platform, China: Implications for global correlation. Journal of the Geological Society, 177(3): 537~549.
参考文献
Xu Xiaosong, Wan Fang, Yin Fuguang, Chen Ming. 2001. Environment facies, ecological facies and diagenetic facies of Baota Formation of Late Ordovina. Journal of Mineralogy and Petrology, 21(3): 64~68 (in Chinese with English abstract).
参考文献
Xu Zhongjie, Lan Yizhi, Cheng Rihui, Li Shuanglin. 2017. Carbonate geochemical record of sea-level change of Lunshan Formationin Lower Ordovician in Jurong area. Journal of Jilin University (Earth Science Edition), 47(5): 1458~1470 (in Chinese with English abstract).
参考文献
Young S A, Gill B C, Edwards C T, Saltzman M R, Leslie S A. 2016. Middle-Late Ordovician (Darriwilian-Sandbian) decoupling of global sulfur and carbon cycles: Isotopic evidence from eastern and southern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 118~132.
参考文献
Young S A, Saltzman M R, Bergström S M, Leslie S A, Chen Xu. 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian-Katian) carbonates in North America and China: implications for paleoceanographic change. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(1): 166~178.
参考文献
Zhang Junpeng, Li Chao, Zhang, Yuandong. 2022. Geological evidences and mechanisms for oceanic anoxic events during the Early Paleozoic. Chinese Science Bulletin, 67(15): 1644~1659.
参考文献
Zhang Qin, Fan Shouzhong, Pan Yanshan, Li Guohui. 2004. Determination of 25 Major, Minor and trace elements in geochemical exploration samples by X-Ray fluorescence spectrometry. Rock and Mineral Analysis, 23(1): 19~24 (in Chinese with English abstract).
参考文献
Zhang Xiulian. 1985. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater. Acta Sedimentologica Sinica, 3(4): 17~30 (in Chinese with English abstract).
参考文献
Zhang Yuandong, Zhan Ren Bin, Zhen Yongyi, Wang Zhihao, Yuan Wenwei, Fang Xiang, Ma Xuan, Zhang Junpeng. 2019. Ordovician integrative stratigraphy and timescale of China. Scientia Sinica(Terrae), 49(1): 66~92 (in Chinese with English abstract).
参考文献
Zhang Yuandong, Zhan Renbin, Zhen Yongyi, Fang Xiang, Zhang Junpeng. 2020. Challenges and future perspectives of Ordovician studies in China. Journal of Stratigraphy, 44(4): 339~348 (in Chinese with English abstract).
参考文献
Zhang Yuandong, Zhan Renbin, Yuan Wenwei, Tang Peng, Li Yue, Wang Zhihao, Zhou Zhiyi, Fang Xiang, Li Wenjie, Cheng Junfeng. 2021. Lithostratigraphic subdivision and correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250~270 (in Chinese with English abstract).
参考文献
Zhang Zhili, Li Huili, Tan Guanghui, Yue Yong, Cai Xiyao, Li Jingchang. 2014. Carbon isotope chemostratigraphy of the Ordovician system in central uplift of the Tarim basin. Journal of Stratigraphy, 38(2): 181~189 (in Chinese with English abstract).
参考文献
Zhao Zongju, Pan Wenqing, Zhang Lijuan, Deng Shenghui, Huang Zhibin. 2009. Sequence Stratigraphy in the Ordovician in the Tarim basin. Geotectonica et Metallogenia, 33(1): 175~188 (in Chinese with English abstract).
参考文献
Zhou Zhiqiang, Zhou Zhiyi, Yuan Wenwei. 1999. On the Ordovician Pagoda Formation. Journal of Stratigraphy, 23(4), 283~286 (in Chinese with English abstract).
参考文献
Zhou Zhiqiang, Zhou Zhiyi, Xiang Liwen. 2016. Trilobite fauna from the Ordovician Pagoda Formation of central and western Yangtze Block, China. Beijing: Geological Publishing House, 1~422 (in Chinese).
参考文献
Zou Guangjun, Liang Enyun, Zhang Xiaoyang, Ling Yuexin, Xiong Miao. 2018. Sedimentological characteristics and lithofacies palaeogeography of the Early Ordovician in northwestern Hunan Province. Journal of Palaeogeography (Chinese Edition), 20(1): 105~118 (in Chinese with English abstract).
参考文献
陈科帆. 2019. 奥陶纪生物大辐射期间海洋化学条件的变化. 中国科学技术大学博士学位论文.
参考文献
樊茹, 卢远征, 张学磊, 张师本, 段文哲, 李鑫, 邓胜徽. 2013. 四川盆地奥陶系十字铺组与宝塔组接触关系新认识. 地质学报, 87(3): 741~747.
参考文献
樊茹, 邓胜徽, 张学磊, 张师本, 卢远征, 李鑫. 2015. 华南上扬子区中奥陶世(达瑞威尔期)十字铺组与牯牛潭组的划分与时空分布. 地质论评, 61(4): 735~742.
参考文献
黄乐清, 刘伟, 李泽泓. 2018. 湘西北龙山地区及邻区早-中奥陶世之交地层的沉积演化分析. 地层学杂志, 42(1): 39~52.
参考文献
黄乐清, 刘伟, 柏道远, 李泽泓, 梁恩云, 陈珍宝. 2019. 湘西北奥陶系宝塔组灰岩龟裂纹构造特征、成因及其资源意义. 地球科学, 44(2): 399~414.
参考文献
蒋苏扬, 黄文辉, 张永生. 2020. 鄂尔多斯盆地西缘中奥陶统地球化学特征及古环境意义. 现代地质, 34(3): 545~553.
参考文献
李超. 2019. 华南上扬子台地中奥陶统-兰多维列统碳同位素地层学. 中国科学技术大学硕士学位论文.
参考文献
李超, 樊隽轩, 孙宗元. 2018. 奥陶系无机碳同位素地层学综述. 地层学杂志, 42(4): 408~428.
参考文献
潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰, 骆满生, 任飞, 袁四化. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6) : 1~23.
参考文献
潘明, 郝彦珍, 孙成杰, 吕勇, 山克强. 2020. 云南保山普里道利统沉积特征及其对冈瓦纳北缘古海洋环境的指示. 地质学报, 94(5): 1382~1396.
参考文献
戎嘉余, 黄冰. 2014. 生物大灭绝研究三十年. 中国科学: 地球科学, 44(3): 377~404.
参考文献
邵龙义, 窦建伟, 张鹏飞. 1996. 西南地区晚二叠世氧、碳稳定同位素的古地理意义. 地球化学, 25(6): 575~581.
参考文献
谭慧, 秦明阳, 李杰, 郭建华, 吴诗情, 边瑞康. 2020. 湘中及周缘奥陶纪岩相古地理演化与原型盆地研究. 中南大学学报(自然科学版), 51(12): 3430~3443.
参考文献
陶成, 把立强, 李广友, 杨华敏. 2006. GasBench-IRMS在碳酸盐岩δ13C和δ18O在线连续分析中的应用. 岩矿测试, 25(4): 334~336.
参考文献
王剑, 段太忠, 谢渊, 汪正江, 郝明, 刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739~1749.
参考文献
吴亮君, 陈伟海, 容悦冰, 张晶, 黄超, 朱海燕, 孟庆鑫, 吴继文, 罗劬侃, 白冰, 欧梦梦. 2020. 湘西地质公园红色碳酸盐岩石林发育特征与研究价值. 中国岩溶, 39(2): 251~258.
参考文献
吴荣昌, 詹仁斌, 李贵鹏, 刘建波. 2007. 浅论华南扬子区下、中奥陶统紫台组. 地层学杂志, 34(4): 325~332.
参考文献
许效松, 万方, 尹福光, 陈明. 2001. 奥陶系宝塔组灰岩的环境相、生态相与成岩相. 矿物岩石, 21(3): 64~68.
参考文献
许中杰, 蓝艺植, 程日辉, 李双林. 2017. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录. 吉林大学学报(地球科学版), 47(5): 1458~1470.
参考文献
张俊鹏, 李超, 张元动. 2022. 早古生代海洋缺氧事件的地质记录与背景机制. 科学通报, 67(15): 1644~1659.
参考文献
张勤, 樊守忠, 潘宴山, 李国会. 2004. X射线荧光光谱法测定多目标地球化学调查样品中主次痕量组分. 岩矿测试, 23(1): 19~24.
参考文献
张秀莲. 1985. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系. 沉积学报, 3(4): 17~30.
参考文献
张元动, 詹仁斌, 甄勇毅, 王志浩, 袁文伟, 方翔, 马譞, 张俊鹏. 2019. 中国奥陶纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 66~92.
参考文献
张元动, 詹仁斌, 甄勇毅, 方翔, 张俊鹏. 2020. 中国奥陶系研究的若干问题. 地层学杂志, 44(4): 339~348.
参考文献
张元动, 詹仁斌, 袁文伟, 唐鹏, 李越, 王志浩, 周志毅, 方翔, 李文杰, 成俊峰. 2021. 中国奥陶纪岩石地层划分和对比. 地层学杂志, 45(3): 250~270.
参考文献
张智礼, 李慧莉, 谭广辉, 岳勇, 蔡习尧, 李京昌. 2014. 塔里木中央隆起区奥陶纪碳同位素特征及其地层意义. 地层学杂志, 38(2): 181~189.
参考文献
赵宗举, 潘文庆, 张丽娟, 邓胜徽, 黄智斌. 2009. 塔里木盆地奥陶系层序地层格架. 大地构造与成矿学, 33(1): 175~188.
参考文献
周志强, 周志毅, 袁文伟. 1999. 扬子区奥陶纪宝塔组的划分. 地层学杂志, 23(4): 283~286.
参考文献
周志强, 周志毅, 项礼文. 2016. 中国扬子陆块中、西部奥陶系宝塔组三叶虫动物群. 北京: 地质出版社.
参考文献
邹光均, 梁恩云, 张晓阳, 凌跃新, 熊苗. 2018. 湘西北地区早奥陶世沉积特征及岩相古地理. 古地理学报, 20(1): 105~118.
目录contents

    摘要

    红色碳酸盐岩是华南奥陶系的一种具有紫红—砖红色调的代表性沉积岩,其中可能蕴含特殊的古环境信息。湖南湘西三百洞地区具有一条出露良好、厚层为主的红色碳酸盐岩剖面,主要发育于大湾组和牯牛潭组内,文章对该段地层采集了355件碳、氧同位素和Mn、Sr元素分析样品,以及10件牙形刺化石样品进行研究。根据牙形刺样品约束,大湾组底界可能大致相当于弗洛阶顶界,大湾组和牯牛潭组界线在达瑞威尔阶中下部,牯牛潭组顶界大致相当于达瑞威尔阶顶界。据显微薄片鉴定、δ13C18O相关性分析和Mn-Sr元素评估,推断样品受到成岩作用影响不大。355件同位素测试样品显示三百洞剖面的δ13C和δ18O均为低幅高频振荡,δ13C在0.38‰~1.67‰之间,δ18O在9.34‰~7.21‰之间,其中可与全球对比的同位素事件有大坪阶底部碳同位素负漂事件(BDNICE)和达瑞威尔阶中部碳同位素漂移事件(MDICE),可以间接对比的有达瑞威尔阶下部碳同位素负漂事件(LDNICE) ,此外还有2次前人未命名的具有潜在对比价值的漂移。总体来看,冈瓦纳大陆北缘沿赤道由东向西具有δ13C波动幅度逐渐增强的趋势,华南的波动幅度普遍偏小,可能由海水循环过程中不同块体的底层海水分层差异造成。另外基于δ13C、δ18O的古盐度计算,红色碳酸盐岩应属于盐度中等到较高的海相碳酸盐岩,并且剖面自下到上盐度增高,大湾组底部可能存在一次氧化事件。结合剖面岩石组成、颜色、古生物丰度以及区域古地理研究,认为红色碳酸盐岩可能是暂时性相对海平面下降叠加氧化事件的产物。

    Abstract

    The red carbonate rock is a kind of representative sedimentary rock with purple-red colors of the Ordovician in South China, and may contain special palaeoenvironmental information. There is a well exposed thick red carbonate rock section in the Sanbaidong area of Xiangxi, which is mainly developed in the Dawan Formation and the Guniutan Formation. This paper studied 355 carbon-oxygen isotope, Mn-Sr element samples and 10 conodont samples on it. According to the restriction of conodont samples from these formations, the bottom boundary of the Dawan Formation may be near the top boundary of the Florian Stage, the boundary between the Dawan Formation and the Guniutan Formation may be in the lower to middle part of the Darriwilian Stage, and the top boundary of the Guniutan Formation is near the top boundary of the Darriwilian Stage. With δ13C-δ18O correlation analysis and Mn-Sr element evaluation, it is considered the samples are not strongly affected by diagenesis. 355 samples show that the δ13C and δ18O of the Sanbaidong section are low amplitude and high frequency fluctuations. The δ13C are between 0.38‰ to 1.67‰, while the δ18O are between 9.34‰ and 7.21‰. Among them, BDNICE and MDICE are two global isotopic events that can be compared with this section, and LDNICE can be compared indirectly. In addition, there are two unnamed δ13C isotope shifts with potential comparative value. In general, there is an increasing trend of δ13C from east to west along the equator on the north Gondwana. The fluctuation amplitude in South China is generally smooth, which may have been caused by the difference in bottom seawater stratification in different blocks during the seawater circulation. Based on the δ13C and δ18O calculation, the red carbonate rocks should contain marine characteristics with middle to high palaeosalinity that increases upwards. Combined with the lithology, color, palaeontological quantity of the section and regional palaeogeography, it is believed that there may be an oxidation event at the bottom of the Dawan Formation, and the red carbonate rocks may be the product of the temporary relative sea level decline superimposed oxidation events.

  • 红色碳酸盐岩是一种特殊的碳酸盐岩类型,因其有别于常见的灰白色、青灰色碳酸盐岩,且多发育瘤体、结核以及泥质条带而形成多种奇特外观,是红石林地质遗迹的成景岩石(图1a、图2a),在岩溶地质和沉积地质中具有特殊的地位(吴亮君等,2020)。以红石林为核心地质遗迹成功申报的联合国教科文组织世界地质公园(UNESCO Global Geopark)近年来就达2处,分别为泰国沙墩世界地质公园(Satun UNESCO Global Geopark,2018)和中国湘西世界地质公园(Xiangxi UNESCO Global Geopark,2020),红石林最终也得到了国际地科联的认可,被认定为世界级地质遗迹(Wu Liangjun et al.,2021)。同时,奥陶纪是一个“多事之秋”(张元动等,2020),发生了多个长周期生物圈和水圈环境变化以及多种地质事件,在华南,红色碳酸盐岩可能是这些事件的重要记录者,是研究奥陶纪全球海洋环境变化的关键而直接的研究对象,具有重要的科学价值。

  • 以往华南奥陶系的划分大多数是以岩石地层单位进行的,并且台地、斜坡和盆地相区划分又有不同。对于华南台地相区,自下而上可划分为西陵峡组、南津关组、分乡组、红花园组、大湾组、牯牛潭组、庙坡组、宝塔组、临湘组以及五峰组等(张元动等,2019)。湘西总体上属于台地相区,红色碳酸盐岩的发育地层为大湾组(O1-2d)和牯牛潭组(O2-3g),大致对应大坪阶和达瑞威尔阶,属中下奥陶统。

  • 对于大坪期至达瑞威尔期,戎嘉余等(2014)研究了多因素条件下生命辐射与气候变化的关系,强调了沉积环境和古气候对生物演化具有重要的影响力; 樊茹等(2015)讨论了上扬子区中奥陶统牯牛潭组的时空分布,明确了该组在区域上的可对比性; 李超(2019)探讨了宜昌地区中奥陶世—早志留纪碳同位素特征,识别了数次重要的漂移事件,可能指示了海洋环境的连续变化; 陈科帆(2019)讨论了宜昌地区奥陶纪生物辐射期的海洋化学条件,认为碳循环可能存在巨大扰动; 同位素地层方面,张元动等(2019)认为华南奥陶纪的同位素演化可能远比以往的认识要复杂得多,扬子区多条剖面大坪阶无机碳同位素以低负值波动为主,似乎缺乏振荡,难以进行地层对比,同时达瑞威尔中期的碳同位素正漂移事件记录不完整或缺失,只能识别出正漂移曲线的部分上升段(Schmitz et al.,2010; Ma Xuan et al.,2015); 此外,中国达瑞威尔阶的碳同位素曲线还与国际综合曲线存在较明显的不一致现象,原因还不明确(张元动等,2019)等。

  • 但可以确定的是,红色碳酸盐岩的沉积时期是整个奥陶纪生物大辐射、海水持续降温的阶段(张元动等,2019)。并且生物辐射的进程达瑞威尔期存在多次转折(Deng Yiying et al.,2021),这可能与该时期海水环境密切相关。本文着重对湖南湘西世界地质公园的红色碳酸盐岩的碳、氧同位素进行研究,探索红色碳酸盐岩沉积时期海水环境演化信息,也对不同地区高精度碳酸盐岩同位素和元素特征对比增加新的研究实例。

  • 1 研究区地质背景

  • 湘西地区属于上扬子陆架区中部(潘桂棠等,2016),在奥陶纪位于赤道南部的低纬度地区(图1b),古地理总体以北西高南东低为特点,物源可能来自于川西—川中古陆、华夏古陆以及散布的水上隆起等多个方向(吴荣昌等,2007; 邹光均等,2018; 谭慧等,2020)。区域上下奥陶统主要为稳定碳酸盐岩台地沉积,中奥陶世沉积了一套紫红色瘤状/泥质条带灰岩,并大致呈北东向广泛分布。

  • 红色碳酸盐岩在湘西地区主要发育于大湾组和牯牛潭组。大湾组以深紫红—砖红色、厚层—巨厚层、高泥质含量为特征,与其下的红花园组灰白色中薄层灰岩存在截然的颜色突变; 产少量化石,主要为头足类、腕足类等; 下部瘤体十分发育,向上减少,并且岩石颜色变浅。牯牛潭组覆于大湾组之上,二者为整合接触,牯牛潭组以紫红色-肉红色-灰绿色-灰白色、厚层—中层、中高泥质含量为特征,颜色较大湾组更为丰富; 产头足类、腕足类、三叶虫和牙形刺等化石。三百洞剖面的牯牛潭组之上无庙坡组泥-页岩组合,其岩性与典型的大田坝组中薄层泥质条带灰岩也不太相符,表现为不明显层理的肉红—淡红色泥质灰岩逐渐消失、灰白色厚层龟裂纹灰岩逐渐出现。泥质条带在剖面上部经常发育,也不是该段特有的特征(图1c),前人在本区填图工作中将牯牛潭组描述为与宝塔组直接接触,虽也有学者对宝塔组的定义包含了庙坡组或大田坝组,将其作为段处理(周志强等,19992016),但三百洞剖面该部分岩性变化过程确实属于较稳定的渐变,难以划分出段,其原因可能是本区大田坝组的岩性与牯牛潭组/宝塔组十分相近,或本区与扬子其他地区存在相变而发生岩性尖灭或缺失。为了使本文对三百洞剖面的研究主题更有针对性,此处暂且不对该段岩石地层的归属进行过多讨论,而沿用大庸市幅区域地质调查报告中的岩石地层划分方案,将牯牛潭组和宝塔组作为直接接触关系进行处理,并在下文以化学地层的视角进行进一步探讨。在区域上,大湾组和牯牛潭组的厚度此消彼长,三百洞剖面的大湾组厚约153 m,牯牛潭组厚约101 m。

  • 2 样品和实验方法

  • 2.1 样品采集

  • 为了避免破坏世界级地质遗迹,本研究选择在远离红石林核心区的三百洞剖面进行样品采集。三百洞剖面是一条沿酉水河峡谷的剖面,位于三百洞村附近,剖面起点为河谷底部码头(图2b),终点为坐苦坝村卫生所(图1a),由于该片区地层产状基本上小于10 °,因此这条剖面实际上是以海拔的上升控制地层的由老变新(图1d)。红色碳酸盐岩的颜色鲜明(图2c、d、e),因此很容易区分该套地层的顶底界线。剖面从底至顶累计爬升约282 m,最高海拔503 m,路线长度约3.58 km。

  • 剖面红色碳酸盐岩多呈厚层—巨厚层或块状,因此采样间距大致以地层厚度间隔50~80 cm进行。由于研究区岩石硬度较大,样品采集首先用大锤锤裂岩石,在破碎的岩块里用化石锤凿取内部没有脉体和溶蚀裂隙的新鲜样品进行装袋,用于显微薄片、同位素及元素分析。样品采用岩石地层单位的拼音字母进行编号,即从底至顶以HHY、DW、GNT和BT分别代表红花园组、大湾组、牯牛潭组和宝塔组,共采集样品357件。由于在运输样品过程中,DW-100和GNT-38两件样品出现了疑似污染现象,为了保证实验的可靠性,放弃对这两件样品的测试,因此,三百洞剖面总计获得有效样品355件,其中红花园组6件,大湾组182件,牯牛潭组158件,宝塔组9件。另外,为了对地层时代进行约束,采集了10件牙形刺样品,其中红花园组1件,大湾组5件,牯牛潭组3件,宝塔组1件。

  • 图1 湘西三百洞地区地质概况

  • Fig.1 Geological overview of the Sanbaidong area in Xiangxi

  • (a)—研究区地层分布情况;(b)—研究区在奥陶纪全球古地理的位置;(c)—三百洞剖面简要岩性柱状图;(d)—三百洞剖面路线距离与海拔关系(截取自“两步路”轨迹记录软件)

  • (a) —stratigraphic distribution in the study area; (b) —location of the study area in Ordovician; (c) —brief lithologic column of the Sanbaidong section; (d) —route and altitude characteristics of the Sanbaidong section (screenshot from "Liangbulu" track recording software)

  • 2.2 实验方法

  • 对355件有效样品进行了碳、氧同位素测试,为了讨论成岩作用的影响,同时配套进行了Mn、Sr元素含量测试和主要样品的显微薄片分析。按照从底至顶排序,第1至第45件样品的测试在北京科荟测试技术有限公司完成,第46至第355件样品在中国地质科学院岩溶地质研究所完成。碳、氧同位素参照DZ-T 0184.17-1997标准,使用GasBench-MAT253进行测试,具体操作方法见陶成等(2006),主要流程为取固体碳酸盐样50~600 μg放入圆底样品瓶中烘烤1小时后盖好瓶盖,在自动进样器上安装吹气针,吹入高纯氦气排出空气,每个样品吹8 min左右,然后换取气针和酸针进行加酸,反应40 min以上后进行测试,测试精度为0.01‰,得到的δ13C和δ18O均为VPDB值。Mn和Sr元素采用熔片X荧光光谱法(XRF)进行测试,具体操作方法见张勤等(2004),所用仪器为Axios X射线荧光光谱仪,测试精度优于5%。

  • 对10件牙形刺样品进行了分别鉴定,在成都地时科技有限公司进行。主要步骤为首先使用10%浓度的醋酸溶解样品,清水洗样后获得含牙形刺分子的样渣,将样渣烘干再使用浓度为2.8 g/ml的LST重液分离,然后借助立体显微镜挑样获得牙形刺分子,最后通过扫描电镜完成形貌成像并鉴定。

  • 3 结果

  • 3.1 同位素和元素测试结果

  • 本研究获得的355件碳、氧同位素数值差异幅度均不大,具体数据见附表1。其中δ13C为0.38‰~1.67‰,平均值为0.80‰; δ18O为9.34‰~7.21‰,平均值为8.35‰; MnO的含量最大值为0.56%,最小值为0.06%,平均值为0.18%; Sr的含量为146×10-6~446×10-6,平均值为275×10-6; Mn/Sr比值在1.84~12.28之间,平均值为5.34,有4件比值大于10。

  • 图2 湘西地区三百洞剖面野外露头特征

  • Fig.2 Outcrop of the Sanbaidong section in Xiangxi area

  • (a)—湘西世界地质公园核心地质遗迹红石林(湘西土家族苗族自治州地质公园管理处提供,赵敏摄);(b)—三百洞剖面起点位置河谷底部,灰白色岩石为红花园组灰岩;(c)—三百洞剖面大湾组岩性及鹦鹉螺化石(白色箭头处);(d)—三百洞剖面牯牛潭组灰红相间色调特征;(e)—三百洞剖面终点位置宝塔组灰岩

  • (a) —Red Stone Forest, the core geoheritage of Xiangxi UNESCO Global Geopark (provided by the Geopark Administration of Xiangxi Tujia &Miao Autonomous Prefecture, photographed by Zhao Min) ; (b) —the starting point of the Sanbaidong section, at the bottom of the canyon, the rocks in grayish white are the limestones of the Honghuayuan Formation; (c) —lithology and hornstone (marked by white arrow) of Dawan Formation in the Sanbaidong section; (d) —gray and red alternating characteristics of Guniutan Formation in the Sanbaidong section; (e) —Limestone of the Baota Formation in the destination of Sanbaidong section

  • 3.2 牙形刺鉴定结果

  • 10 件样品中,牙形刺获取情况差异较大。红花园组获得大量牙形刺,大湾组获得少量牙形刺,牯牛潭组下部获得少量牙形刺,上部获得较多牙形刺,宝塔组获得丰富牙形刺。经鉴定,红花园组获得关键分子如Bergstroemognathus extensusDrepanoistodus suberectusNasusgnathus dolonusJuanognathus variabilisOepikodus evaeTriangulodus brevibasis等,大湾组获得Protopanderodus varicostatusDrepanodus arcuatusProtopanderodus robustus?等,牯牛潭组获得Dzikodus tablepointensisPeriodon aculeatusProtopanderodus cooperiDrepanoistodus suberectusPaltodus? jemtlandicusBaltoniodus sp.等,宝塔组获得Yangtzeplacognathus jianyeensisPeriodon grandisComplexodus pugionifer等(图3)。

  • 4 讨论

  • 4.1 数据可靠性评价

  • 后期成岩作用会造成碳酸盐岩δ13C、δ18O的改变从而失去海洋原始环境信息,显微薄片观察岩石微观特征是判别成岩作用的直接方式。通过对剖面典型岩性显微照片的观察,可以发现灰色碳酸盐岩以生物碎屑和泥质成分为主(图4a),原始沉积组构基本未发生改造。红色碳酸盐岩发育瘤体(图4b),瘤体边界清晰,大者可超5 mm(图4c),存在灰色和红色之分,但内部成分都比较均一,并且可见生物碎屑。在一些碎裂的瘤体周缘可见方解石重结晶现象(图4d、e),且陆源物质总体较多,可能为早期成岩作用过程中因海水扰动发生一定搬运或淘洗所致。整体上红色碳酸盐岩后生脉体极少,溶蚀作用和交代作用也不强(图4b~f),因此干扰组分可能更多来自于陆源碎屑和重结晶的方解石。

  • 图3 湘西地区三百洞剖面典型牙形刺照片

  • Fig.3 The typical conodonts of the Sanbaidong section in Xiangxi area

  • (a,b)—Bergstroemognathus extensus,样品编号HHY-1;(c)—Oepikodus evae,样品编号HHY-1;(d)—Nasusgnathus dolonus,样品编号HHY-1;(e)—Protopanderodus varicostatus,样品编号DW-84;(f,g)—Drepanodus arcuatus,样品编号DW-84;(h)—Protopanderodus robustus,样品编号DW-164;(i)—Periodon aculeatus,样品编号GNT-36;(j)—Dzikodus hunanensis?,样品编号GNT-36;(k)—Dzikodus tablepointensis,样品编号GNT-36;(l)—Protopanderodus cooperi,样品编号GNT-145;(m)—Yangtzeplacognathus foliaceus,样品编号BT-9;(n)—Yangtzeplacognathus jianyeensis,样品编号BT-9;(o)—Complexodus originalis,样品编号BT-9;(p)—Complexodus pugionifer,样品编号BT-9

  • (a, b) —Bergstroemognathus extensus, sample HHY-1; (c) —Oepikodus evae, sample HHY-1; (d) —Nasusgnathus dolonus, sample HHY-1; (e) —Protopanderodus varicostatus, sample DW-84; (f, g) —Drepanodus arcuatus, sample DW-84; (h) —Protopanderodus robustus, sample DW-164; (i) —Periodon aculeatus, sample GNT-36; (j) —Dzikodus hunanensis?, sample GNT-36; (k) —Dzikodus tablepointensis, sample GNT-36; (l) —Protopanderodus cooperi, sample GNT-145; (m) —Yangtzeplacognathus foliaceus, sample BT-9; (n) —Yangtzeplacognathus jianyeensis, sample BT-9; (o) —Complexodus originalis, sample BT-9; (p) —Complexodus pugionifer, sample BT-9

  • 碳酸盐岩的同位素信息也可以判别成岩作用程度。δ13C相对比较稳定,抗成岩作用能力强,一般在碳酸盐成分大于10%时就可以代表原始沉积δ13C信息(Knoll et al.,1986)。δ18O对成岩作用敏感,当δ18O<5‰时,碳酸盐岩已受到成岩作用影响,但仍保留一定原始海水信息,当δ18O<10‰时,表明岩石已经发生蚀变,氧同位素已经不能再使用(Kaufman and Knoll,1995)。同时由于后期成岩作用会导致δ13C和δ18O的协同降低导致二者具有正相关关系(Banner et al.,1991),所以可以使用δ13C和δ18O关系图解进行成岩作用判断。此外,由于大气水循环会造成海相碳酸盐岩Sr的丢失和Mn的加入(Kaufman and Knoll,1995; 许中杰等,2017),所以也可以依据Mn/Sr比值是否小于阈值10推断碳同位素是否接近原始海水信息。

  • 图4 湘西地区三百洞剖面岩石显微特征

  • Fig.4 Microscopic characteristics of representative rocks of the Sanbaidong section in Xiangxi area

  • (a)—红花园组生物碎屑灰岩;(b)—大湾组瘤状灰岩,瘤体较小;(c)—较大的灰白色瘤体,内部成分均一,具有化石(箭头处);(d)—破碎的瘤体中存在方解石重结晶现象(圆圈内部);(e)—较大的紫红色瘤体,内部成分均一,裂缝发育重结晶方解石(圆圈内部);(f)—不发育瘤体的泥质灰岩

  • (a) —bioclastic limestone of Honghuayuan Formation; (b) —nodular limestone in Dawan Formation; (c) —large grayish white nodular with uniform internal composition and fossils (the fossil is marked by wihte arrow) ; (d) —recrystallized calcite beside the nodulars (inside the circle) ; (e) —large red nodular with uniform internal composition, recrystallized calcite in the fracture (inside the circle) ; (f) —argillaceous limestone without nodular

  • 分析表明,355件样品的δ18O均小于5‰,但均大于10‰,说明岩石受到一定的成岩作用影响。其中,红色碳酸盐岩的δ18O值较灰色碳酸盐岩要低,说明红色碳酸盐岩受到淡水影响更多; 355件碳、氧同位素的总体相关性R2为0.4271(图5a),显示出具有中—低相关性; Mn/Sr比值的平均值为5.34,只有4件大于10,说明这些碳酸盐岩虽然受到一定成岩作用影响,但总体上仍可以反映海水的原始信息。

  • 4.2 沉积时代讨论

  • 牙形刺样品中,红花园组样品采集于剖面最底部的HHY-1处,代表剖面的最老时限,大湾组3件采集于DW-84附近,所获牙形刺均不多,2件采集于DW-164附近,牙形刺同样不多,可能的原因是大湾组高价铁泥质含量高,原始环境不适于牙形动物生存,牯牛潭组2件样品采集于GNT-36附近,1件样品采集于GNT-145附近,上部比下部颜色浅,上部获得的牙形刺也比下部多,宝塔组1件采集于剖面终点BT-9处,获得丰富牙形刺。牙形刺获取数量和碳酸盐岩颜色紫红程度有负相关系。剖面底界的灰白色碳酸盐岩获得了带化石Oepikodus evae,顶界的灰白色碳酸盐岩也获得了带化石Yangtzeplacognathus jianyeensis,红色碳酸盐岩层内的样品只有GNT-36获得了带化石Dzikodus tablepointensis

  • 根据获得的牙形刺化石,三百洞剖面红花园组和大湾组的界线可被限定于弗洛阶顶界附近; 大湾组和牯牛潭组的界线虽不能直接限定,但牯牛潭组内部的GNT-36样品中含Eoplacognathus suecicus-Dzikodus tablepointensis带化石,为中达瑞威尔期,其下的DW-164样品中含Drepanodus arcuatusProtopanderodus robustus?,可能为Lenodus variabilis带至Yangtzeplacognathus crassus带,推测大湾组和牯牛潭组的界线大致在达瑞威尔阶中下部; 牯牛潭组和宝塔组的界线在岩性上易区分,以肉红—淡红色泥质灰岩消失,灰白色龟裂纹灰岩出现为界线,在层位BT-9也获得了桑比阶带化石Yangtzeplacognathus jianyeensis,因此牯牛潭组和宝塔组的界线应在达瑞威尔阶和桑比阶界线附近。

  • 由于目前在湘西地区尚未见任何弗洛阶、大坪阶、达瑞威尔阶和桑比阶的斑脱岩报道,本研究在三百洞剖面也没有发现,参考国际地层单位的绝对年龄,推测湘西红色碳酸盐岩的发育时限大致在470~458 Ma之间,跨度约12 Ma。

  • 图5 湘西地区三百洞剖面碳、氧同位素相关性

  • Fig.5 Correlation of carbon and oxygen isotopes of the Sanbaidong section in Xiangxi area

  • (a)—三百洞剖面整体碳、氧同位素相关性(b)—“箱”型漂移段碳、氧同位素相关性

  • (a) —correlation of all carbon and oxygen isotopes in the Sanbaidong section; (b) —correlation of carbon and oxygen isotopes in the "box" type drift section

  • 4.3 碳同位素演化趋势

  • 根据355件碳同位素演化曲线可见(图6),弗洛阶和大坪阶界线附近的δ13C存在2次约0.5‰的负漂,第一次从曲线底部第1个样品的0.19‰下降至第3个样品的0.38‰,随后快速回升至0.5‰左右,第二次从第7个样品的0.63‰下降至第9个样品的0.08‰; 在大坪阶下部存在一次δ13C从0.08‰上升到1.39‰并持续的振荡、再下降至0.04‰的现象,构成一个“齿状”形态; 曲线中下部有一段低幅波动,δ13C数值缓慢上升至0.43‰,随后出现一次较快速的正漂(间隔13个样品),上升至1.24‰,并低幅振荡到Dzikodus tablepointensis带,再从1.23‰快速下降至0.43‰(间隔5个样品),其中下降幅度最大的是第216号样品至第217号样品,下降了0.58‰,形成一个完整的“箱型”正漂循环(图6),在达瑞威尔阶中上段的GNT-62至GNT-76之间则存在一个“尖峰”振荡,碳同位素从0.54‰快速上升至1.27‰再迅速下降至0.5‰,整个过程仅间隔14个样品,随后δ13C数值振荡上升,到曲线顶部达到最高值1.67‰,最后在桑比阶底界附近存在一个约0.76‰的负漂。

  • δ13C演化曲线有2个令人注意的现象,第一个是从曲线形态来看δ13C在大湾组上部至牯牛潭组下部存在一次“箱型”漂移,涉及的样品为DW-128至GNT-31,由于δ18O在这个阶段也存在幅度约0.7‰左右的近同步的正漂移,怀疑可能受到突然增强的成岩作用影响。针对这些样品单独进行δ13C和δ18O相关性分析(图5b),方差R2为0.5349,说明有一定相关性,但仍不是高度相关; 使用Mn/Sr指标校验,这一批87件样品的Mn/Sr比值平均为4.52,甚至低于整体曲线的比值,说明样品应是没有失去原始海水信息; 另外,由于大气降水中的δ13C平均值约为7‰(Tucker et al,2009),δ18O最低可低于30‰(Gonfiantini,1986),因此大气水循环对海相碳酸盐岩δ13C和δ18O的影响应该是同步降低,而“箱型”漂移表现的却是正漂,这些证据倾向于指示并没有严重的成岩作用影响,可能原始海水本身就存在这一次变化。

  • 第二个是曲线中上部存在数个异常“陡峭”的负漂现象,包括上文所述的“箱型”漂移的下降段,可能为非正常原因。首先,不整合值得重视,有前人提出区域上牯牛潭组的顶部或达瑞威尔阶中上部可能涉及沉积间断(Munnecke et al,2011; 樊茹等,2013; 张元动等,20192020),导致庙坡组底部存在穿时(Song Yanyan et al.,2014; Wang Zhihao et al.,2017),作者在剖面实测过程中尤为注意不整合的识别,碳酸盐岩中的沉积间断常具有古岩溶、缝合线或古土壤等现象,但经过实际调查与查阅前人地质填图资料,未发现三百洞剖面存在明显不整合的证据,因此从剖面的实际露头表现来说,尚不足以支持不整合的结论。但三百洞剖面具有另外一种特殊情况,即由于本剖面地层产状平缓,多小于10°,形成的地貌为峡谷边缘的崖壁、岩溶石林和溶丘等,因此在沿海拔上升的过程中,不可避免地会遇到样品采集至一个溶丘的顶部,需要平移至更高的溶丘的底部进行继续采集,虽然作者非常小心地使用海拔记录仪、罗盘、测距仪等工具以及进行岩性观察进行地层约束,且在平移后适当从更低位的位置开始采集(这样做的作用是即使存在少量的重复样品,也不会影响整个曲线趋势,却可以避免过多的遗漏),但仍然存在两个采样点之间地层不对应的概率。

  • 图6 湘西地区三百洞剖面碳同位素及相关元素演化曲线

  • Fig.6 Evolution curve of carbon isotopes and related elements of the Sanbaidong section in Xiangxi area

  • ①—Yangtzeplacognathus jianyeensis/Pygodus anserinus带; ②—Eoplacognathus pseudoplanus-Dzikodus tablepointensis带; ③—Oepikodus evae带,其顶底界为推测界线,厚度以红色碳酸盐岩的出现设为0 m; C1~C3—幅度较大且尚未有命名的碳同位素振荡,详细解释见正文; TP1~TP11—剖面中受平移采样点影响而导致潜在的不连续的位置,详细解释同样见正文

  • ①—Yangtzeplacognathus jianyeensis/Pygodus anserinus Zone; ②—Eoplacognathus pseudoplanus-Dzikodus tablepointensis Zone; ③—Oepikodus evae Zone, the top and bottom boundaries are conjectured, the thickness is set as 0 m with the occurrence of red carbonate rock; C1~C3 (δ13C isotope shift) —in the δ13C curve are large amplitude and unnamed shocks, see the text for detailed discussions; TP1~TP11 (translation point) —are the locations in the Sanbaidong section affected by the potential discontinuous sampling points, also see the text for detailed discussions

  • 为了清晰地找出曲线的哪部分数据可能会受到平移采样的影响而变形,图6将全部平移采样的点位用箭头标出,按先后顺序分别记为TP1至TP11(translation point,平移点)。曲线下部的样品沿着崖壁采集,基本未平移,中上部存在平移。其中“箱型”漂移的上升段并非受平移采样影响,再次验证可能是真实原始海水信息,下降段则受到TP5影响,“尖峰”漂移的下降段受到TP7影响,达瑞威尔阶顶部的负漂受到TP11影响。其余部分虽然平移存在,但曲线连续性较好,可认为影响不大。

  • 针对TP5、TP7和TP11这3处曲线突变点位,需要评估平移的影响程度。三百洞剖面的红色碳酸盐岩沉积厚度大,多呈巨厚—块状沉积,连续采样的前提下能够将同位素的变化细节刻画得较详细,在海拔和产状约束下平移造成的信息缺失可能会比薄层地层更小; 从实际剖面露头来看,整条剖面后生脉体极少,且几乎没有角砾岩等断层迹象,没有发现地层的倒转或缺失,宏观上产状极缓也指示此处构造相对稳定,曲线正负漂移的性质可能未变; 另外虽然三百洞剖面还未建立起生物格架,但自下到上牙形刺种属演替顺序仍较清楚,可以一定程度上与标准牙形刺带对比,因此,认为这3处受平移采样影响的负漂现象仍然具有意义,代表上下地层的同位素信息存在差异,但真实漂移幅度可能没有曲线所示那么“陡峭”,缺失了漂移过程中的具体变化信息。

  • 此外,如上文所述,达瑞威尔阶中上部存在潜在的沉积间断,这也有可能与平移采样点的位置重合,在漫长风化过程中,沉积间断导致的软弱层确实有可能造成地貌上的不连续,进而使采样过程受到影响。因此虽然三百洞剖面在露头上无法直接支持不整合的结论,但仍然有不整合的可能性,在区域对比中需进一步讨论。

  • 4.4 碳同位素演化的区域对比

  • 前人对奥陶系碳同位素进行过详尽的评述和全球对比(李超等,2018),与红色碳酸盐岩沉积时期相关的全球性碳同位素漂移事件可能有3次(图7),自下到上分别为大坪阶底部碳同位素负漂事件(basal Dapingian negative isotopic carbon excursion,BDNICE)、达瑞威尔阶下部碳同位素负漂事件(lower darriwilian negative isotopic carbon excursion,LDNICE)和达瑞威尔阶中部碳同位素漂移事件(mid-Darriwilian isotopic carbon excursion,MDICE)(Buggisch et al.,2003; Ainsaar et al.,2010; Lehnert et al.,2014)。BDNICE见于大坪阶底部的Baltoniodus navis牙形刺带(Buggisch et al.,2003; 李超等,2018),δ13C在前科迪勒拉地块负漂约1‰,在北美大盆地地区负漂约0.5‰; LDNICE见于波罗的、欧洲和北美马里兰等地区,紧挨MDICE的正漂,负漂幅度大约在1‰~2‰,普遍性尚不明确(Lehnert et al.,2014; Wu Rongchang et al.,2015); MDICE始于Eoplacognathus pseudoplanus牙形刺带或Dzikodus tablepointensis牙形刺带底界附近,美国马里兰地区正漂可达4‰,爱沙尼亚南部地区正漂约1.5‰,阿根廷前科迪勒拉地区和中国中上扬子区只识别出上升段,幅度约1‰(Schmitz et al.,2010; 李超等,2018)。

  • 三百洞剖面在弗洛阶和大坪阶界线附近的记录到一次约0.54‰的负漂,间隔2个样品的间距δ13C从0.62‰下降至0.08‰,获得牙形刺Oepikodus evae等,这一次振荡尚未有前人命名,本文将其称为C1(δ13C isotope shift 1)(图6)。在湖北响水洞剖面、湖北古洞口剖面O. evae带至 Baltoniodus triangularis带存在一次约1.0‰的正漂和1.5‰的负漂(Luan Xiaocong et al.,2019; Wu Rongchang et al.,2020)(图7),浙江黄泥塘的O. evae带内部存在约1.5‰的振荡(Munnecke et al.,2011),安徽大岭存在约0.5‰的振荡(Wu Rongchang et al.,2020),C1在华南地区展现出来的可对比性比较强,是一次时限短、速率快的δ13C振荡事件。

  • 在C1之上、大坪阶的下部存在一次快速的δ13C的正漂和振荡,发生于获得Oepikodus evae牙形刺点位之上间隔10个样品处,并在DW-35处发生快速负漂,即“齿状”振荡,共涉及34个样品,δ13C数值从0.08‰上升到1.39‰后下降至0.04‰,“齿状”振荡的下降段可能为BDNICE。虽然Oepikodus evae牙形刺带可能存在一定穿时,但华南多个剖面都记录了这一次快速的负漂,如贵州红花园剖面在Baltoniodus triangularisO. evae牙形刺带存在一次约3‰的快速负漂(Munnecke et al.,2011)(图7),湖北响水洞和湖北古洞口面剖面在B. triangularis带都有着一次明显的约1.5‰的负漂(Luan Xiaocong et al.,2019; Wu Rongchang et al.,2020),国际上其他地区如阿根廷前科迪勒拉地区的B. navisO. evae牙形刺带存在一次0.9‰左右的负漂(Schmitz et al.,2010),美国内华达地区Shingle Pass剖面和犹他地区Ibex剖面R. andinus带存在一次接近1‰的负漂(Edwards and Saltzman,2014),拉脱维亚Jurmala剖面在大坪阶下部BC1段存在一次约为0.6‰的波动(Ainsaar et al.,2010),华南和国际上此处振荡幅度和时限均比较接近,因此三百洞剖面很可能记录到了BDNICE。

  • BDNICE向上是稳定的低幅振荡,随后在三百洞剖面的中上部存在两次比较明显的碳同位素波动,可能记录了MDICE的信息。第一次是在发现Dzikodus tablepointensis层位之下的DW-128至GNT-31编号的样品之间,87件样品共同构成一次“箱型”正漂移,第二次是在发现Dzikodus tablepointensis层位之上的GNT-62至GNT-76编号的样品之间,14件样品构成一次“尖峰”振荡。以Dzikodus tablepointensis出现的层位为约束,很可能MDICE在三百洞剖面是“尖峰”振荡而不是“箱型”振荡,但三百洞剖面的振荡幅度相比北美等地区要小很多,北美俄亥俄州和马里兰州的正漂幅度约4‰(Young et al.,2016),本剖面最大正漂幅度仅0.84‰左右。上扬子区其他剖面也有类似情况,湖南常德茅草铺剖面只识别了δ13C的上升段,正漂幅度约0.9‰,湖北宜昌普溪河剖面的正漂幅度约1.7‰(Schmitz et al.,2010; 李超等,2018),贵州红花园正漂幅度约1.5‰(Munnecke et al.,2011),浙江黄泥塘剖面正漂幅度仅0.6‰左右(Munnecke et al.,2011)。其他板块的MDICE特征也各有不同,爱沙尼亚Valga Mehikoorma地区的Eoplacognathus pseudoplanus牙形刺带存在一次约1.5‰的正漂(Kaljo et al.,2007); 阿根廷前科迪勒拉地区在同一牙形刺带存在约1‰的正漂(Albanesi et al.,2013); 拉脱维亚Jurmala剖面的BC2~BC3段存在一个约1.4‰的正漂(Ainsaar et al.,2010); 塔里木盆地的南一沟剖面有一次约0.6‰的正漂(张智礼等,2014); 柯坪地区有可能存在一次超过3‰的正漂(赵宗举等,2009); 鄂尔多斯盆地西缘中奥陶统桌子山组中上部存在一次约2‰的正漂(蒋苏扬等,2020),但塔里木和鄂尔多斯地区的数据还缺乏与国际地层单位的对比。考虑到MDICE的起始层位是比较稳定的,且可能持续2~3个牙形刺带,因此三百洞剖面对MDICE的响应可能是从发现牙形刺Dzikodus tablepointensis层位略向下之下也就是GNT-32号样品附近开始,以GNT-32的低值0.43‰上升至1.27‰,下降段的具体信息缺失,最上部只记录到了GNT-73附近的信息。同时,由于湖南常德剖面存在确切的不整合记录,导致常德剖面缺失MDICE上部的特征,而三百洞剖面和常德剖面的MDICE曲线形态比较接近,因此三百洞剖面的MDICE上部缺失也有可能是不整合导致。

  • 图7 三百洞剖面 δ13 C 演化事件与华南其它地区的对比(浙江黄泥塘剖面、贵州红花园剖面参考Munnecke et al.,2011; 湖南常德茅草铺剖面、湖北宜昌普溪河剖面参考Schmitz et al.,2010; 李超等,2018; 湖北响水洞剖面、湖北古洞口剖面、安徽大岭剖面参考Luan Xiaocong et al.,2019; Wu Rongchang et al.,2020

  • Fig.7 δ13 C evolution events in Sanbaidong section and South China (The Huangnitang and Honghuayuan section were modified after Munnecke et al., 2011; the Maocaopu and Puxihe section were modified after Schmitz et al., 2010 and Li Chao et al., 2018; the Xiangshuidong, Gudongkou and Daling sections weremodified after Luan Xiaocong et al., 2019 and Wu Rongchang et al., 2020)

  • BDNICE一大坪阶底部碳同位素负漂事件; LDNICE一达瑞威尔阶下部䂠同位素负漂事件; MDICE一达瑞威尔阶中部碳同位素漂移事件; 三百洞剖面中,除上文图6注明的 3 个有带化石约束的牙形剌带外,其余牙形刺带均按照等距展示,具体界线末明确

  • BDNICE—Basal Dapingian Negative Isotopic Carbon Excursion; LDNICE—Lower Darriwilian Negative Isotopic Carbon Excursion; MDICE—Mid-Darriwilian Isotopic Carbon Excursion; in the Sanbaidong section, except for the3standard conodont zones with fossil constraints mentioned in Fig.6, the rest conodont zones are displayed at equal intervals with ellipsis, note the boundary is not clear

  • 对于三百洞剖面达瑞威尔阶另一个较明显的碳同位素波动,即以DW-128开始的“箱型”漂移的上升段,根据上文所述,应反映原始海水信息,本文命名为C2(δ13C isotope shift 2)。C2在华南有良好的可比性,在贵州红花园剖面的Microzarkodina parva带至Lenodus antivariabilis带存在一次速率较快的2.2‰左右的正漂(Munnecke et al.,2011),在湖北响水洞剖面的Baltoniodus norrlandicus带至L.antivariabilis带存在约2‰的正漂(Luan Xiaocong et al.,2019),在湖北古洞口剖面相同牙形刺带存在1‰左右的正漂,古洞口剖面的曲线顶端仍在上升区间但未向上继续取样(Wu Rongchang et al.,2020)。虽然这些地区的C2漂移幅度不一样,但从曲线斜率来看,大部分的漂移速率均是相当快的。三百洞剖面的C2没有带化石控制,依据华南其他剖面的对比,推测C2大致出现时代为L.antivariabilis带上部。其他板块关于C2的可对比数据较少,因此C2有可能是地区性表现。

  • 与MDICE相关的还有LDNICE。LDNICE被描述为紧挨在MDICE正漂之下的一次负漂(Lehnert et al.,2014; Wu Rongchang et al.,2015; 李超等,2018),在波罗的、欧洲和美国有不同程度显现。三百洞剖面在“箱型”漂移下降段的GNT-27到GNT-32从1.23‰下降至0.43‰,虽然下降段缺失信息,LDNICE的具体表现在三百洞剖面不可知,但根据δ13C由下到上确实存在大幅下降(相对于本剖面的),LDNICE在三百洞剖面有存在的可能。

  • 在达瑞威尔阶和桑比阶界线附近,三百洞剖面δ13C存在一次约0.76‰的负漂,本文命名为C3(δ13C isotope shift 3),从GNT-148的1.67‰间隔8个样下降至GNT-156的0.91‰,其中主要的下降段在GNT-155和GNT-156,从1.54‰下降至0.91‰,受平移点TP11影响,负漂速率不可信,且不能完全排除因不整合所致。但通过华南的湖南常德剖面在P. anserinus带中存在一次短时约0.6‰的负漂(Schmitz et al.,2010)以及贵州红花园剖面在Yangtzeplacognathus jianyeensis/Pygodus anserinus带存在相近幅度的负漂推断,C3具有一定对比价值(无论是正常沉积还是沉积间断均有意义),需要进一步研究。

  • 因此,三百洞剖面可与区域上对比的同位素事件有BDNICE和MDICE,二者均有牙形刺样品约束; 可以间接对比的是LDNICE; 还有2次前人未命名的具有潜在价值的漂移,即C1和C2(本剖面的C3因负漂幅度不可信,未将其列入)。三百洞剖面的δ13C演化曲线具有三个明显特征,首先是漂移幅度不大,可能和华南当时的整体环境有关,BDNICE负漂幅度约1.43‰,MDICE的正漂幅度为0.84‰,LDNICE的负漂幅度为0.8‰,即便如此,这些漂移幅度在整体平稳的δ13C演化曲线中仍较突出,也尚可与全球综合演化曲线进行对比(图8); 其次是δ13C演化曲线的下部比上部可信度更高,这与采样方法及潜在的沉积间断有关; 第三是根据全球多条剖面的对比,可能冈瓦纳大陆北缘沿赤道由东向西,即华南—塔里木—波罗的—劳伦存在δ13C波动幅度逐渐增强的趋势,具体原因尚未清楚,但根据全球海平面在奥陶纪早—中期持续上升(Haq and Schutter,2008; Munnecke et al.,2010),促进形成更广阔的陆表海(张元动等,2020),以及根据化石壳体氧同位素(Trotter et al.,2008)和本文获得的全岩氧同位素所反映古温度的总体降温趋势,推测不同区域碳同位素差异可能是由海水循环影响下不同块体间的海水分层差异增大造成。

  • 图8 三百洞剖面δ13C演化曲线与全球综合演化曲线对比(图件改自Bergström et al.,2009

  • Fig.8 Comparison of δ13C evolution curve between the Sanbaidong section and the global generalized curve (modified after Bergström et al., 2009)

  • g—笔石带; c—牙形刺带; 每个阶一级单位细分为两到四个亚阶,这些亚阶由字母和数字组成,字母为各阶名称的缩写,数字为亚阶的排序

  • g—graptolite zone; c—conodont zone; each of the global stages is subdivided into two to four substages, the mark of substage consisted of letters and numbers, the letters are the abbreviation of the stage name, and the number is the ordering of the substage within the stage

  • 4.5 古环境特征

  • 在地质历史中,碳酸盐岩的碳、氧同位素特征与地球碳循环密切相关(Tucker et al.,2009),因此可以根据碳、氧同位素反映古海水的多种环境信息(Young et al.,2008; Flügel et al.,2009),虽然使用碳、氧同位素恢复较老地层的古环境可能会存在偏差,但经过成岩作用评估的数据仍然可在一定程度上代表古环境的演化趋势(Flügel et al.,2009)。

  • Keith and Weber(1964)使用δ13C和δ18O来反演侏罗纪以来古海水盐度并提出古盐度Z的计算公式(1),经学者研究,在古老碳酸盐岩形成后碳同位素难以交换而比较稳定,并且Z值公式主要取决于δ13C,所以这一公式同样适用于寒武纪以来的碳酸盐岩(张秀莲等,1985; 许中杰等,2017; 潘明等,2020)。δ13C和δ18O均用PDB标准,当样品Z值大于120时相当于盐度高的海相石灰岩,当Z值小于120则相当于盐度低的淡水石灰岩。

  • Z=2.048×δ13C+50+0.498×δ18O+50
    (1)
  • 结果显示,古盐度Z值的全部Z值均大于122,平均值为124.8,最大值为126.7,因此红色碳酸盐岩应属于盐度中等到较高的海相石灰岩,并且越向上古盐度越高。

  • 碳酸盐岩的Sr元素含量也可以用于区分陆地水和海水的影响程度,一般Sr的增加代表海相沉积作用的增强、海水影响增大(Renard,1986; Flügel et al.,2009)。三百洞剖面的Sr元素含量从底至顶逐渐振荡升高(图6),长期趋势较稳定,在红色碳酸盐岩顶部甚至接近400×10-6,接近保存完好的腕足壳体的阈值(>400×10-6)(Korte et al.,2005),属于全岩中Sr元素保存尚好的情况。说明红色碳酸盐岩底部陆地水作用强,向上逐渐减弱,海水作用逐渐增强,与碳、氧同位素恢复的古盐度结果相符。

  • 总体来看,红色碳酸盐岩的发育可能代表一次氧化事件的出现(Ondřej Bábek et al.,2022),红色碳酸盐岩在华南分布较广,区域上可与粉砂岩、页岩等相变,有学者认为红色碳酸盐岩(紫台组)为深水环境(Luan Xiaocong et al.,2019、2021),依据是在华南数条剖面中的红层下部发现代表海侵的碳同位素漂移; 也有学者认为其代表较浅环境(张元动等,2021; 张俊鹏等,2022)。湘西红色碳酸盐岩的厚度巨大,是沉积速率较快的结果,与下伏红花园组灰白色中薄层灰岩的差异明显。大湾组下部和中部化石极少,牙形刺样品在大湾组采集件数最多,但收获却最少,同时鹦鹉螺化石在大湾组内也不多见,特别是在大湾组下部几乎未有发现,第一件采获的鹦鹉螺化石样品在层位DW-72附近。至牯牛潭组和宝塔组各种化石明显增多,化石丰度与岩石红色程度、泥质/瘤体含量具有负相关,鹦鹉螺是一种游泳掠食动物(许效松等,2001),三百洞剖面大湾组底部的沉积环境可能不适合其生存。从古地理的角度来看,早奥陶世末期构造沉降出现差异化(王剑等,2012),来自南东方向的挤压作用使武陵山一线形成古隆起并很可能暴露于水上(黄乐清等,2018; 邹光均等,2018),导致红花园组顶部存在一次构造隆升成因的海退事件(黄乐清等,2018),作为响应,围绕古丈至张家界地区的大湾组和牯牛潭组沉积供给大为增强,并可能存在物源方向的改变(谭慧等,2020)。此外,本研究的δ18O值在红色碳酸盐岩中比在灰色碳酸盐岩中更低、红花园组过渡至大湾组时陆源物质含量增多,指示可能在早期成岩阶段红色碳酸盐岩受陆源和大气降水影响更大,与前人在区调工作中认为的永顺南部红花园组浅海陆棚低能环境转变为大湾组潮坪浅滩环境的观点相符。因此,本研究区的红色碳酸盐岩更可能发育于较浅环境,是暂时性相对海平面下降叠加氧化事件的产物,华南其他地区存在深水成因的红色碳酸盐岩则有可能是构造活动和海平面振荡共同导致的相变结果。

  • 5 结论

  • (1)三百洞剖面红色碳酸盐岩主要发育于大湾组和牯牛潭组,355件同位素测试样品显示δ13C和δ18O均为低幅高频振荡,δ13C在0.38‰~1.67‰之间,δ18O在9.34‰~7.21‰之间,通过δ13C-δ18O相关性分析和Mn-Sr元素评估,样品受到成岩作用影响不大。

  • (2)根据牙形刺带化石OepikodusevaeDzikodus tablepointensisYangtzeplacognathus jianyeensis等的约束,三百洞剖面红花园组和大湾组的界线可大致限定在弗洛阶顶界附近,大湾组和牯牛潭组的界线大致在达瑞威尔阶中下部,牯牛潭组和宝塔组的界线大致在达瑞威尔阶和桑比阶界线附近。

  • (3)三百洞剖面可与全球对比的同位素事件有BDNICE和MDICE,可以间接对比的是LDNICE,此外还有2次前人未命名的具有潜在对比价值的漂移。冈瓦纳大陆北缘沿赤道由东向西似具有δ13C波动幅度逐渐增强的趋势,华南的波动幅度普遍偏小,可能由海水循环过程中不同块体的海水分层差异造成。

  • (4)红色碳酸盐岩的盐度中等到较高,大湾组底部可能存在一次氧化事件。结合剖面岩石组成、颜色和古生物丰度以及区域古地理,认为红色碳酸盐岩可能是暂时性相对海平面下降叠加氧化事件的产物。

  • 附件:本文附件(附表1)详见 http://www.geojournals.cn/dzxb/dzxb/article/abstract/202304095?st=article_issue。

  • 注释

  • ❶ 湖南省地质调查院,2007,1∶25万大庸市幅区域地质调查报告。

  • 参考文献

    • Ainsaar L, Kaljo D, Martma T, Meidla T, Männik P, Nõlvak J, Tinn O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 189~201.

    • Albanesi G L, Bergström S M, Schmitz B, Serra F, Feltes N A, Voldman G G, Ortega G. 2013. Darriwilian (Middle Ordovician) δ13Ccarb chemostratigraphy in the Precordillera of Argentina: Documentation of the middle Darriwilian Isotope Carbon Excursion (MDICE) and its use for intercontinental correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 389(4): 48~63.

    • Banner J L, Wasserburg G J, Chen J H, Humphrey J D. 1991. Uranium-series evidence on diagenesis and hydrology in Pleistocene carbonates of Barbados, West Indies. Earth and Planetary Science Letters, 108(4): 307~308.

    • Bergström S M, Chen Xu, Gutiérrez-Marco J C, Dronov A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42: 97~107.

    • Buggisch W, Keller M, Lehnert O. 2003. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeography, Palaeoclimatology, Palaeoecology, 195(3): 357~373.

    • Chen Kefan. 2019. Theocean chemistry changes associated with the GOBE in Ordovician. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Craig H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133(3467): 1833~1834.

    • Deng Yiying, Fan Junxuan, Zhang Shuhan, Fang Xiang, Chen Zhongyang, Shi Yukun, Wang Haiwen, Wang Xinbing, Yang Jiao, Hou Xudong, Wang Yue, Zhang Yuandong, Chen Qing, Yang Aihua, Fan Ru, Dong Shaochun, Xu Huiqing, Shen Shuzhong. 2021. Timing and patterns of the Great Ordovician BiodiversificationEvent and Late Ordovician mass extinction: Perspectives from South China. Earth-Science Reviews, 5371: 103743.

    • Edwards C T, Saltzman M R. 2014. Carbon isotope (δ13Ccarb) stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great basin, western United States: Implications for global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 1~20.

    • Fan Ru, Lu Yuanzheng, Zhang Xuelei, Zhang Shiben, Duan Wenzhe, Li Xin, Deng Shenghui. 2013. New understanding of the contact relationship between Shihtzupu Formation and Pagoda Formation in Sichuan basin. Acta Geologica Sinica, 87(3): 321~329 (in Chinese with English abstract).

    • Fan Ru, Deng Shenghui, Zhang Xuelei, Zhang Shiben, Lu Yuanzheng, Li Xin. 2015. Middle Ordovician (Darriwilian) Shihtzupu (Shizipu) and Guniutan Formations in the Upper Yangtze Region, South China. Geological Review, 61(4): 735~742 (in Chinese with English abstract).

    • Flügel E. 2009. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer: Verlag Berlin Heidelberg.

    • Gonfiantini. 1986. Environmentalisotopes in lake studies. In: Fritz P, Fontes J, eds. Handbook of Environmental Isotope Geochemistry 2: The Terrestrial Environment. Amsterdam: Elsevier.

    • Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64~68.

    • Huang Leqing, Liu Wei, Li Zehong. 2018. Controlling factors of sedimentary variations and evolution of the early to middle Ordovician in the Longshan area and nearby regions in northwestern Hunan. Journal of Stratigraphy, 42(1): 39~52 (in Chinese with English abstract).

    • Huang Leqing, Liu Wei, Bai Daoyuan, Li Zehong, Liang Enyun, Chen Zhenbao. 2019. Characteristics, petrogenesis and resource significance of the limestone with polygonal reticulate structure of Pagoda Formation, in northwestern Hunan Province. Earth Science, 44(2): 399~414 (in Chinese with English abstract).

    • Jiang Suyang, Huang Wenhui, Zhang Yongsheng. 2020. Geochemical characteristics of Middle Ordovician in western margin of Ordos basin and its implication on paleoenvironment. Geoscience, 34(3): 545~553 (in Chinese with English abstract).

    • Kaljo D, Martma T, Saadre T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(1-2): 138~155.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. 1995. Precambrian Research, 73(1-4): 50~54.

    • Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Avta, 28(10/11): 1787~1816.

    • Knoll A H, Hayes J M, Kaufman A J, Sweet K, Labert I B, 1986. Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321(6073): 832~838.

    • Korte C, Jasper T, Kozur H W, Veizer J. 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(4): 333~351.

    • Lehnert O, Meinhold G, Wu Rongchang, Calner M, Joachimski M M. 2014. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician) carbonate succession of the Siljan district, central Sweden. Estonian Journal of Earth Sciences, 63(4): 277~286.

    • Li Chao. 2019. Middle Ordovician-Llandovery carbon isotope chemostratigraphy in Upper Yangtze Platform, South China. Master dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Li Chao, Fan Junxuan, Sun Zongyuan. 2018. Review of Ordovician inorganic carbon isotope stratigraphy. Journal of Stratigraphy, 42(4): 408~428 (in Chinese with English abstract).

    • Luan Xiaocong, Wu Rongchang, Zhan Renbin, Liu Jianbo. 2019. The Zitai Formation in South China: unique deeper-water marine red beds in terms of lithology, distribution and delta C-13(carb) chemostratigraphy. Palaeoworld, 28(1-2): 198~210.

    • Luan Xiaocong, Zhang Xiaole, Wu Rongchang, Zhan Renbin, Liu Jianbo, Wang Guangxu, Zhang Yuichen. 2021. Environmental changes revealed by Lower-Middle Ordovician deeper-water marine red beds from the marginal Yangtze Platform, South China: Links to biodiversification. Palaeogeography, Palaeoclimatology, Palaeoecology, 562(110116): 1~14.

    • Ma Xuan, Wang Zhihao, Zhang Yuandong, Song Yanyan, Fang Xiang. 2015. Carbon isotope records of the Middle-Upper Ordovician transition in Yichang area, South China. Palaeoworld, 24: 136~148.

    • Munnecke A, Calner M, Harper D A T, Servais T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 389~413.

    • Munnecke A, Zhang Yuandong, Liu Xiao, Cheng Junfeng. 2011. Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 307: 17~43.

    • Ondř ej B, Tomáš K, Li Wenjie, Markéta H, Daniel Š, Jaroslav K. 2022. Incipient reddening of Ordovician carbonates: The origin and geochemistry of yellow and pink colouration in limestones. Sedimentary Geology, 440(106262): 1~16.

    • Pan Guitang, Lu Songnian, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Hao Guojie, Luo Mansheng, Ren Fei, Yuan Sihua. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 1~23 (in Chinese with English abstract).

    • Pan Ming, Hao Yanzhen, Sun Chengjie, Lv Yong, Shan Keqiang. 2020. Sedimentary characteristics of the Pridolian Series in Baoshan, Yunnan Province and their implications for paleomarine environment. Acta Geologica Sinica, 94(5): 1382~1396 (in Chinese with English abstract).

    • Renard M. 1986. Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Marine Micropaleontology, 16: 117~164.

    • Rong Jiayu, Huang Bing. 2014. Study of Mass Extinction over the past thirty years. Scientia Sinica (Terrae), 44(3): 377~404 (in Chinese).

    • Schmitz B, Bergström S M, Wang Xiaofei. 2010. The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: Implications of its first recorded occurrences outside Baltoscandia. Journal of the Geological Society, 167: 249~259.

    • Shao Longyi, Dou Jianwei, Zhang Pengfei. 1996. Paleogeographic significances of carbon and oxygen isotope in Late Permian rocks of southwest China. Geochimica, 25(6): 575~581 (in Chinese with English abstract).

    • Song Yanyan, Zhang Yuandong, Goldman D, Wang Zhihao, Fang Xiang, Ma Xuan. 2014. Latest Darriwilian to Early Sandbian Graptolite Biostratigraphy in Chengkou, Northern Chongqing, South China. Nanjing: Nanjing University Press (in Chinese with English abstract).

    • Tan Hui, Qin Mingyang, Li Jie, Guo Jianhua, Wu Shiqing, Bian Ruikang. 2020. Paleogeographic evolution and prototype basins of Ordovician in central Hunan and its surrounding areas. Journal of Central South University (Science and Technology), 51(12): 3430~3443 (in Chinese with English abstract).

    • Tao Cheng, Ba Liqiang, Li Guangyou, Yang Huamin. 2006. Application of GasBench-IRMS in on-line continuous measurement of δ13C and δ18O in carbonate rock samples. Rock and Mineral Analysis, 25(4): 334~336 (in Chinese with English abstract).

    • Trotter J A, Williams I S, Barnes C R, Lécuyer C, Nicoll R S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321: 550~554.

    • Tucker M E, Wright V P, Dickson J. 2009. Carbonate Sedimentology. England, Oxford: Blackwell Science Ltd.

    • Wang Jian, Duan Taizhong, Xie Yuan, Wang Zhengjiang, Hao Ming, Liu Wei. 2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739~1749 (in Chinese with English abstract).

    • Wang Zhihao, Bergström S M, Song Yanyan, Ma Xuan, Zhang Yuandong. 2017. On the diachronous nature of the top of the Ordovician Kuniutan Formation on the Yangtze Platform: Implications of the conodont biostratigraphy of the Dacao section, Chongqing. Palaeoworld, 26: 37~49.

    • Wu Liangjun, Chen Weihai, Rong Yuebing, Zhang Jing, Huang Chao, Zhu Haiyan, Meng Qingxin, Wu Jiwen, Luo Qukan, Bai Bing, Ou Mengmeng. 2020. Development characteristics and research value of red carbonate stone forest in the Xiangxi geopark. Carsologica Sinica, 39(2): 251~258 (in Chinese with English abstract).

    • Wu Liangjun, Jiang Haixian, Chen Weihai, Peng Wenhong. 2021. Geodiversity, geotourism, geoconservation, and sustainable development in Xiangxi UNESCO Global Geopark—a case study in ethnic minority areas. Geoheritage, 13, (99): 1~18.

    • Wu Rongchang, Calner M, Lehnert O, Peterffya O, Joachimski M M. 2015. Lower-Middle Ordovician δ13C chemostratigraphy of western Baltica(Jämtland, Sweden). Palaeoworld, 24(1-2): 110~122.

    • Wu Rongchang, Zhan Renbin, Li Guipeng, Liu Jianbo. 2007. Brief discussion on the Lower to Middle Ordovician Zitai Formation in the Yangtze region, South China. Journal of Stratigraphy, 31(4): 325~332 (in Chinese with English abstract).

    • Wu Rongchang, Liu Jianbo, Mikael C, Gong Fangyi, Oliver L, Luan Xiaocong, Li Lixia, Zhan Renbin. 2020. High-resolution carbon isotope stratigraphy of the Lower and Middle Ordovician succession of the Yangtze Platform, China: Implications for global correlation. Journal of the Geological Society, 177(3): 537~549.

    • Xu Xiaosong, Wan Fang, Yin Fuguang, Chen Ming. 2001. Environment facies, ecological facies and diagenetic facies of Baota Formation of Late Ordovina. Journal of Mineralogy and Petrology, 21(3): 64~68 (in Chinese with English abstract).

    • Xu Zhongjie, Lan Yizhi, Cheng Rihui, Li Shuanglin. 2017. Carbonate geochemical record of sea-level change of Lunshan Formationin Lower Ordovician in Jurong area. Journal of Jilin University (Earth Science Edition), 47(5): 1458~1470 (in Chinese with English abstract).

    • Young S A, Gill B C, Edwards C T, Saltzman M R, Leslie S A. 2016. Middle-Late Ordovician (Darriwilian-Sandbian) decoupling of global sulfur and carbon cycles: Isotopic evidence from eastern and southern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 118~132.

    • Young S A, Saltzman M R, Bergström S M, Leslie S A, Chen Xu. 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian-Katian) carbonates in North America and China: implications for paleoceanographic change. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(1): 166~178.

    • Zhang Junpeng, Li Chao, Zhang, Yuandong. 2022. Geological evidences and mechanisms for oceanic anoxic events during the Early Paleozoic. Chinese Science Bulletin, 67(15): 1644~1659.

    • Zhang Qin, Fan Shouzhong, Pan Yanshan, Li Guohui. 2004. Determination of 25 Major, Minor and trace elements in geochemical exploration samples by X-Ray fluorescence spectrometry. Rock and Mineral Analysis, 23(1): 19~24 (in Chinese with English abstract).

    • Zhang Xiulian. 1985. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater. Acta Sedimentologica Sinica, 3(4): 17~30 (in Chinese with English abstract).

    • Zhang Yuandong, Zhan Ren Bin, Zhen Yongyi, Wang Zhihao, Yuan Wenwei, Fang Xiang, Ma Xuan, Zhang Junpeng. 2019. Ordovician integrative stratigraphy and timescale of China. Scientia Sinica(Terrae), 49(1): 66~92 (in Chinese with English abstract).

    • Zhang Yuandong, Zhan Renbin, Zhen Yongyi, Fang Xiang, Zhang Junpeng. 2020. Challenges and future perspectives of Ordovician studies in China. Journal of Stratigraphy, 44(4): 339~348 (in Chinese with English abstract).

    • Zhang Yuandong, Zhan Renbin, Yuan Wenwei, Tang Peng, Li Yue, Wang Zhihao, Zhou Zhiyi, Fang Xiang, Li Wenjie, Cheng Junfeng. 2021. Lithostratigraphic subdivision and correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250~270 (in Chinese with English abstract).

    • Zhang Zhili, Li Huili, Tan Guanghui, Yue Yong, Cai Xiyao, Li Jingchang. 2014. Carbon isotope chemostratigraphy of the Ordovician system in central uplift of the Tarim basin. Journal of Stratigraphy, 38(2): 181~189 (in Chinese with English abstract).

    • Zhao Zongju, Pan Wenqing, Zhang Lijuan, Deng Shenghui, Huang Zhibin. 2009. Sequence Stratigraphy in the Ordovician in the Tarim basin. Geotectonica et Metallogenia, 33(1): 175~188 (in Chinese with English abstract).

    • Zhou Zhiqiang, Zhou Zhiyi, Yuan Wenwei. 1999. On the Ordovician Pagoda Formation. Journal of Stratigraphy, 23(4), 283~286 (in Chinese with English abstract).

    • Zhou Zhiqiang, Zhou Zhiyi, Xiang Liwen. 2016. Trilobite fauna from the Ordovician Pagoda Formation of central and western Yangtze Block, China. Beijing: Geological Publishing House, 1~422 (in Chinese).

    • Zou Guangjun, Liang Enyun, Zhang Xiaoyang, Ling Yuexin, Xiong Miao. 2018. Sedimentological characteristics and lithofacies palaeogeography of the Early Ordovician in northwestern Hunan Province. Journal of Palaeogeography (Chinese Edition), 20(1): 105~118 (in Chinese with English abstract).

    • 陈科帆. 2019. 奥陶纪生物大辐射期间海洋化学条件的变化. 中国科学技术大学博士学位论文.

    • 樊茹, 卢远征, 张学磊, 张师本, 段文哲, 李鑫, 邓胜徽. 2013. 四川盆地奥陶系十字铺组与宝塔组接触关系新认识. 地质学报, 87(3): 741~747.

    • 樊茹, 邓胜徽, 张学磊, 张师本, 卢远征, 李鑫. 2015. 华南上扬子区中奥陶世(达瑞威尔期)十字铺组与牯牛潭组的划分与时空分布. 地质论评, 61(4): 735~742.

    • 黄乐清, 刘伟, 李泽泓. 2018. 湘西北龙山地区及邻区早-中奥陶世之交地层的沉积演化分析. 地层学杂志, 42(1): 39~52.

    • 黄乐清, 刘伟, 柏道远, 李泽泓, 梁恩云, 陈珍宝. 2019. 湘西北奥陶系宝塔组灰岩龟裂纹构造特征、成因及其资源意义. 地球科学, 44(2): 399~414.

    • 蒋苏扬, 黄文辉, 张永生. 2020. 鄂尔多斯盆地西缘中奥陶统地球化学特征及古环境意义. 现代地质, 34(3): 545~553.

    • 李超. 2019. 华南上扬子台地中奥陶统-兰多维列统碳同位素地层学. 中国科学技术大学硕士学位论文.

    • 李超, 樊隽轩, 孙宗元. 2018. 奥陶系无机碳同位素地层学综述. 地层学杂志, 42(4): 408~428.

    • 潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰, 骆满生, 任飞, 袁四化. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6) : 1~23.

    • 潘明, 郝彦珍, 孙成杰, 吕勇, 山克强. 2020. 云南保山普里道利统沉积特征及其对冈瓦纳北缘古海洋环境的指示. 地质学报, 94(5): 1382~1396.

    • 戎嘉余, 黄冰. 2014. 生物大灭绝研究三十年. 中国科学: 地球科学, 44(3): 377~404.

    • 邵龙义, 窦建伟, 张鹏飞. 1996. 西南地区晚二叠世氧、碳稳定同位素的古地理意义. 地球化学, 25(6): 575~581.

    • 谭慧, 秦明阳, 李杰, 郭建华, 吴诗情, 边瑞康. 2020. 湘中及周缘奥陶纪岩相古地理演化与原型盆地研究. 中南大学学报(自然科学版), 51(12): 3430~3443.

    • 陶成, 把立强, 李广友, 杨华敏. 2006. GasBench-IRMS在碳酸盐岩δ13C和δ18O在线连续分析中的应用. 岩矿测试, 25(4): 334~336.

    • 王剑, 段太忠, 谢渊, 汪正江, 郝明, 刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739~1749.

    • 吴亮君, 陈伟海, 容悦冰, 张晶, 黄超, 朱海燕, 孟庆鑫, 吴继文, 罗劬侃, 白冰, 欧梦梦. 2020. 湘西地质公园红色碳酸盐岩石林发育特征与研究价值. 中国岩溶, 39(2): 251~258.

    • 吴荣昌, 詹仁斌, 李贵鹏, 刘建波. 2007. 浅论华南扬子区下、中奥陶统紫台组. 地层学杂志, 34(4): 325~332.

    • 许效松, 万方, 尹福光, 陈明. 2001. 奥陶系宝塔组灰岩的环境相、生态相与成岩相. 矿物岩石, 21(3): 64~68.

    • 许中杰, 蓝艺植, 程日辉, 李双林. 2017. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录. 吉林大学学报(地球科学版), 47(5): 1458~1470.

    • 张俊鹏, 李超, 张元动. 2022. 早古生代海洋缺氧事件的地质记录与背景机制. 科学通报, 67(15): 1644~1659.

    • 张勤, 樊守忠, 潘宴山, 李国会. 2004. X射线荧光光谱法测定多目标地球化学调查样品中主次痕量组分. 岩矿测试, 23(1): 19~24.

    • 张秀莲. 1985. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系. 沉积学报, 3(4): 17~30.

    • 张元动, 詹仁斌, 甄勇毅, 王志浩, 袁文伟, 方翔, 马譞, 张俊鹏. 2019. 中国奥陶纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 66~92.

    • 张元动, 詹仁斌, 甄勇毅, 方翔, 张俊鹏. 2020. 中国奥陶系研究的若干问题. 地层学杂志, 44(4): 339~348.

    • 张元动, 詹仁斌, 袁文伟, 唐鹏, 李越, 王志浩, 周志毅, 方翔, 李文杰, 成俊峰. 2021. 中国奥陶纪岩石地层划分和对比. 地层学杂志, 45(3): 250~270.

    • 张智礼, 李慧莉, 谭广辉, 岳勇, 蔡习尧, 李京昌. 2014. 塔里木中央隆起区奥陶纪碳同位素特征及其地层意义. 地层学杂志, 38(2): 181~189.

    • 赵宗举, 潘文庆, 张丽娟, 邓胜徽, 黄智斌. 2009. 塔里木盆地奥陶系层序地层格架. 大地构造与成矿学, 33(1): 175~188.

    • 周志强, 周志毅, 袁文伟. 1999. 扬子区奥陶纪宝塔组的划分. 地层学杂志, 23(4): 283~286.

    • 周志强, 周志毅, 项礼文. 2016. 中国扬子陆块中、西部奥陶系宝塔组三叶虫动物群. 北京: 地质出版社.

    • 邹光均, 梁恩云, 张晓阳, 凌跃新, 熊苗. 2018. 湘西北地区早奥陶世沉积特征及岩相古地理. 古地理学报, 20(1): 105~118.

  • 参考文献

    • Ainsaar L, Kaljo D, Martma T, Meidla T, Männik P, Nõlvak J, Tinn O. 2010. Middle and Upper Ordovician carbon isotope chemostratigraphy in Baltoscandia: A correlation standard and clues to environmental history. Palaeogeography, Palaeoclimatology, Palaeoecology, 294(3-4): 189~201.

    • Albanesi G L, Bergström S M, Schmitz B, Serra F, Feltes N A, Voldman G G, Ortega G. 2013. Darriwilian (Middle Ordovician) δ13Ccarb chemostratigraphy in the Precordillera of Argentina: Documentation of the middle Darriwilian Isotope Carbon Excursion (MDICE) and its use for intercontinental correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 389(4): 48~63.

    • Banner J L, Wasserburg G J, Chen J H, Humphrey J D. 1991. Uranium-series evidence on diagenesis and hydrology in Pleistocene carbonates of Barbados, West Indies. Earth and Planetary Science Letters, 108(4): 307~308.

    • Bergström S M, Chen Xu, Gutiérrez-Marco J C, Dronov A. 2009. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42: 97~107.

    • Buggisch W, Keller M, Lehnert O. 2003. Carbon isotope record of Late Cambrian to Early Ordovician carbonates of the Argentine Precordillera. Palaeogeography, Palaeoclimatology, Palaeoecology, 195(3): 357~373.

    • Chen Kefan. 2019. Theocean chemistry changes associated with the GOBE in Ordovician. Doctoral dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Craig H. 1961. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science, 133(3467): 1833~1834.

    • Deng Yiying, Fan Junxuan, Zhang Shuhan, Fang Xiang, Chen Zhongyang, Shi Yukun, Wang Haiwen, Wang Xinbing, Yang Jiao, Hou Xudong, Wang Yue, Zhang Yuandong, Chen Qing, Yang Aihua, Fan Ru, Dong Shaochun, Xu Huiqing, Shen Shuzhong. 2021. Timing and patterns of the Great Ordovician BiodiversificationEvent and Late Ordovician mass extinction: Perspectives from South China. Earth-Science Reviews, 5371: 103743.

    • Edwards C T, Saltzman M R. 2014. Carbon isotope (δ13Ccarb) stratigraphy of the Lower-Middle Ordovician (Tremadocian-Darriwilian) in the Great basin, western United States: Implications for global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 1~20.

    • Fan Ru, Lu Yuanzheng, Zhang Xuelei, Zhang Shiben, Duan Wenzhe, Li Xin, Deng Shenghui. 2013. New understanding of the contact relationship between Shihtzupu Formation and Pagoda Formation in Sichuan basin. Acta Geologica Sinica, 87(3): 321~329 (in Chinese with English abstract).

    • Fan Ru, Deng Shenghui, Zhang Xuelei, Zhang Shiben, Lu Yuanzheng, Li Xin. 2015. Middle Ordovician (Darriwilian) Shihtzupu (Shizipu) and Guniutan Formations in the Upper Yangtze Region, South China. Geological Review, 61(4): 735~742 (in Chinese with English abstract).

    • Flügel E. 2009. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer: Verlag Berlin Heidelberg.

    • Gonfiantini. 1986. Environmentalisotopes in lake studies. In: Fritz P, Fontes J, eds. Handbook of Environmental Isotope Geochemistry 2: The Terrestrial Environment. Amsterdam: Elsevier.

    • Haq B U, Schutter S R. 2008. A chronology of Paleozoic sea-level changes. Science, 322: 64~68.

    • Huang Leqing, Liu Wei, Li Zehong. 2018. Controlling factors of sedimentary variations and evolution of the early to middle Ordovician in the Longshan area and nearby regions in northwestern Hunan. Journal of Stratigraphy, 42(1): 39~52 (in Chinese with English abstract).

    • Huang Leqing, Liu Wei, Bai Daoyuan, Li Zehong, Liang Enyun, Chen Zhenbao. 2019. Characteristics, petrogenesis and resource significance of the limestone with polygonal reticulate structure of Pagoda Formation, in northwestern Hunan Province. Earth Science, 44(2): 399~414 (in Chinese with English abstract).

    • Jiang Suyang, Huang Wenhui, Zhang Yongsheng. 2020. Geochemical characteristics of Middle Ordovician in western margin of Ordos basin and its implication on paleoenvironment. Geoscience, 34(3): 545~553 (in Chinese with English abstract).

    • Kaljo D, Martma T, Saadre T. 2007. Post-Hunnebergian Ordovician carbon isotope trend in Baltoscandia, its environmental implications and some similarities with that of Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(1-2): 138~155.

    • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. 1995. Precambrian Research, 73(1-4): 50~54.

    • Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Avta, 28(10/11): 1787~1816.

    • Knoll A H, Hayes J M, Kaufman A J, Sweet K, Labert I B, 1986. Secular variations in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland. Nature, 321(6073): 832~838.

    • Korte C, Jasper T, Kozur H W, Veizer J. 2005. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(4): 333~351.

    • Lehnert O, Meinhold G, Wu Rongchang, Calner M, Joachimski M M. 2014. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician) carbonate succession of the Siljan district, central Sweden. Estonian Journal of Earth Sciences, 63(4): 277~286.

    • Li Chao. 2019. Middle Ordovician-Llandovery carbon isotope chemostratigraphy in Upper Yangtze Platform, South China. Master dissertation of University of Science and Technology of China (in Chinese with English abstract).

    • Li Chao, Fan Junxuan, Sun Zongyuan. 2018. Review of Ordovician inorganic carbon isotope stratigraphy. Journal of Stratigraphy, 42(4): 408~428 (in Chinese with English abstract).

    • Luan Xiaocong, Wu Rongchang, Zhan Renbin, Liu Jianbo. 2019. The Zitai Formation in South China: unique deeper-water marine red beds in terms of lithology, distribution and delta C-13(carb) chemostratigraphy. Palaeoworld, 28(1-2): 198~210.

    • Luan Xiaocong, Zhang Xiaole, Wu Rongchang, Zhan Renbin, Liu Jianbo, Wang Guangxu, Zhang Yuichen. 2021. Environmental changes revealed by Lower-Middle Ordovician deeper-water marine red beds from the marginal Yangtze Platform, South China: Links to biodiversification. Palaeogeography, Palaeoclimatology, Palaeoecology, 562(110116): 1~14.

    • Ma Xuan, Wang Zhihao, Zhang Yuandong, Song Yanyan, Fang Xiang. 2015. Carbon isotope records of the Middle-Upper Ordovician transition in Yichang area, South China. Palaeoworld, 24: 136~148.

    • Munnecke A, Calner M, Harper D A T, Servais T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296: 389~413.

    • Munnecke A, Zhang Yuandong, Liu Xiao, Cheng Junfeng. 2011. Stable carbon isotope stratigraphy in the Ordovician of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 307: 17~43.

    • Ondř ej B, Tomáš K, Li Wenjie, Markéta H, Daniel Š, Jaroslav K. 2022. Incipient reddening of Ordovician carbonates: The origin and geochemistry of yellow and pink colouration in limestones. Sedimentary Geology, 440(106262): 1~16.

    • Pan Guitang, Lu Songnian, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Hao Guojie, Luo Mansheng, Ren Fei, Yuan Sihua. 2016. Division of tectonic stages and tectonic evolution in China. Earth Science Frontiers, 23(6): 1~23 (in Chinese with English abstract).

    • Pan Ming, Hao Yanzhen, Sun Chengjie, Lv Yong, Shan Keqiang. 2020. Sedimentary characteristics of the Pridolian Series in Baoshan, Yunnan Province and their implications for paleomarine environment. Acta Geologica Sinica, 94(5): 1382~1396 (in Chinese with English abstract).

    • Renard M. 1986. Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Marine Micropaleontology, 16: 117~164.

    • Rong Jiayu, Huang Bing. 2014. Study of Mass Extinction over the past thirty years. Scientia Sinica (Terrae), 44(3): 377~404 (in Chinese).

    • Schmitz B, Bergström S M, Wang Xiaofei. 2010. The middle Darriwilian (Ordovician) δ13C excursion (MDICE) discovered in the Yangtze Platform succession in China: Implications of its first recorded occurrences outside Baltoscandia. Journal of the Geological Society, 167: 249~259.

    • Shao Longyi, Dou Jianwei, Zhang Pengfei. 1996. Paleogeographic significances of carbon and oxygen isotope in Late Permian rocks of southwest China. Geochimica, 25(6): 575~581 (in Chinese with English abstract).

    • Song Yanyan, Zhang Yuandong, Goldman D, Wang Zhihao, Fang Xiang, Ma Xuan. 2014. Latest Darriwilian to Early Sandbian Graptolite Biostratigraphy in Chengkou, Northern Chongqing, South China. Nanjing: Nanjing University Press (in Chinese with English abstract).

    • Tan Hui, Qin Mingyang, Li Jie, Guo Jianhua, Wu Shiqing, Bian Ruikang. 2020. Paleogeographic evolution and prototype basins of Ordovician in central Hunan and its surrounding areas. Journal of Central South University (Science and Technology), 51(12): 3430~3443 (in Chinese with English abstract).

    • Tao Cheng, Ba Liqiang, Li Guangyou, Yang Huamin. 2006. Application of GasBench-IRMS in on-line continuous measurement of δ13C and δ18O in carbonate rock samples. Rock and Mineral Analysis, 25(4): 334~336 (in Chinese with English abstract).

    • Trotter J A, Williams I S, Barnes C R, Lécuyer C, Nicoll R S. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321: 550~554.

    • Tucker M E, Wright V P, Dickson J. 2009. Carbonate Sedimentology. England, Oxford: Blackwell Science Ltd.

    • Wang Jian, Duan Taizhong, Xie Yuan, Wang Zhengjiang, Hao Ming, Liu Wei. 2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739~1749 (in Chinese with English abstract).

    • Wang Zhihao, Bergström S M, Song Yanyan, Ma Xuan, Zhang Yuandong. 2017. On the diachronous nature of the top of the Ordovician Kuniutan Formation on the Yangtze Platform: Implications of the conodont biostratigraphy of the Dacao section, Chongqing. Palaeoworld, 26: 37~49.

    • Wu Liangjun, Chen Weihai, Rong Yuebing, Zhang Jing, Huang Chao, Zhu Haiyan, Meng Qingxin, Wu Jiwen, Luo Qukan, Bai Bing, Ou Mengmeng. 2020. Development characteristics and research value of red carbonate stone forest in the Xiangxi geopark. Carsologica Sinica, 39(2): 251~258 (in Chinese with English abstract).

    • Wu Liangjun, Jiang Haixian, Chen Weihai, Peng Wenhong. 2021. Geodiversity, geotourism, geoconservation, and sustainable development in Xiangxi UNESCO Global Geopark—a case study in ethnic minority areas. Geoheritage, 13, (99): 1~18.

    • Wu Rongchang, Calner M, Lehnert O, Peterffya O, Joachimski M M. 2015. Lower-Middle Ordovician δ13C chemostratigraphy of western Baltica(Jämtland, Sweden). Palaeoworld, 24(1-2): 110~122.

    • Wu Rongchang, Zhan Renbin, Li Guipeng, Liu Jianbo. 2007. Brief discussion on the Lower to Middle Ordovician Zitai Formation in the Yangtze region, South China. Journal of Stratigraphy, 31(4): 325~332 (in Chinese with English abstract).

    • Wu Rongchang, Liu Jianbo, Mikael C, Gong Fangyi, Oliver L, Luan Xiaocong, Li Lixia, Zhan Renbin. 2020. High-resolution carbon isotope stratigraphy of the Lower and Middle Ordovician succession of the Yangtze Platform, China: Implications for global correlation. Journal of the Geological Society, 177(3): 537~549.

    • Xu Xiaosong, Wan Fang, Yin Fuguang, Chen Ming. 2001. Environment facies, ecological facies and diagenetic facies of Baota Formation of Late Ordovina. Journal of Mineralogy and Petrology, 21(3): 64~68 (in Chinese with English abstract).

    • Xu Zhongjie, Lan Yizhi, Cheng Rihui, Li Shuanglin. 2017. Carbonate geochemical record of sea-level change of Lunshan Formationin Lower Ordovician in Jurong area. Journal of Jilin University (Earth Science Edition), 47(5): 1458~1470 (in Chinese with English abstract).

    • Young S A, Gill B C, Edwards C T, Saltzman M R, Leslie S A. 2016. Middle-Late Ordovician (Darriwilian-Sandbian) decoupling of global sulfur and carbon cycles: Isotopic evidence from eastern and southern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 118~132.

    • Young S A, Saltzman M R, Bergström S M, Leslie S A, Chen Xu. 2008. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian-Katian) carbonates in North America and China: implications for paleoceanographic change. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(1): 166~178.

    • Zhang Junpeng, Li Chao, Zhang, Yuandong. 2022. Geological evidences and mechanisms for oceanic anoxic events during the Early Paleozoic. Chinese Science Bulletin, 67(15): 1644~1659.

    • Zhang Qin, Fan Shouzhong, Pan Yanshan, Li Guohui. 2004. Determination of 25 Major, Minor and trace elements in geochemical exploration samples by X-Ray fluorescence spectrometry. Rock and Mineral Analysis, 23(1): 19~24 (in Chinese with English abstract).

    • Zhang Xiulian. 1985. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater. Acta Sedimentologica Sinica, 3(4): 17~30 (in Chinese with English abstract).

    • Zhang Yuandong, Zhan Ren Bin, Zhen Yongyi, Wang Zhihao, Yuan Wenwei, Fang Xiang, Ma Xuan, Zhang Junpeng. 2019. Ordovician integrative stratigraphy and timescale of China. Scientia Sinica(Terrae), 49(1): 66~92 (in Chinese with English abstract).

    • Zhang Yuandong, Zhan Renbin, Zhen Yongyi, Fang Xiang, Zhang Junpeng. 2020. Challenges and future perspectives of Ordovician studies in China. Journal of Stratigraphy, 44(4): 339~348 (in Chinese with English abstract).

    • Zhang Yuandong, Zhan Renbin, Yuan Wenwei, Tang Peng, Li Yue, Wang Zhihao, Zhou Zhiyi, Fang Xiang, Li Wenjie, Cheng Junfeng. 2021. Lithostratigraphic subdivision and correlation of the Ordovician in China. Journal of Stratigraphy, 45(3): 250~270 (in Chinese with English abstract).

    • Zhang Zhili, Li Huili, Tan Guanghui, Yue Yong, Cai Xiyao, Li Jingchang. 2014. Carbon isotope chemostratigraphy of the Ordovician system in central uplift of the Tarim basin. Journal of Stratigraphy, 38(2): 181~189 (in Chinese with English abstract).

    • Zhao Zongju, Pan Wenqing, Zhang Lijuan, Deng Shenghui, Huang Zhibin. 2009. Sequence Stratigraphy in the Ordovician in the Tarim basin. Geotectonica et Metallogenia, 33(1): 175~188 (in Chinese with English abstract).

    • Zhou Zhiqiang, Zhou Zhiyi, Yuan Wenwei. 1999. On the Ordovician Pagoda Formation. Journal of Stratigraphy, 23(4), 283~286 (in Chinese with English abstract).

    • Zhou Zhiqiang, Zhou Zhiyi, Xiang Liwen. 2016. Trilobite fauna from the Ordovician Pagoda Formation of central and western Yangtze Block, China. Beijing: Geological Publishing House, 1~422 (in Chinese).

    • Zou Guangjun, Liang Enyun, Zhang Xiaoyang, Ling Yuexin, Xiong Miao. 2018. Sedimentological characteristics and lithofacies palaeogeography of the Early Ordovician in northwestern Hunan Province. Journal of Palaeogeography (Chinese Edition), 20(1): 105~118 (in Chinese with English abstract).

    • 陈科帆. 2019. 奥陶纪生物大辐射期间海洋化学条件的变化. 中国科学技术大学博士学位论文.

    • 樊茹, 卢远征, 张学磊, 张师本, 段文哲, 李鑫, 邓胜徽. 2013. 四川盆地奥陶系十字铺组与宝塔组接触关系新认识. 地质学报, 87(3): 741~747.

    • 樊茹, 邓胜徽, 张学磊, 张师本, 卢远征, 李鑫. 2015. 华南上扬子区中奥陶世(达瑞威尔期)十字铺组与牯牛潭组的划分与时空分布. 地质论评, 61(4): 735~742.

    • 黄乐清, 刘伟, 李泽泓. 2018. 湘西北龙山地区及邻区早-中奥陶世之交地层的沉积演化分析. 地层学杂志, 42(1): 39~52.

    • 黄乐清, 刘伟, 柏道远, 李泽泓, 梁恩云, 陈珍宝. 2019. 湘西北奥陶系宝塔组灰岩龟裂纹构造特征、成因及其资源意义. 地球科学, 44(2): 399~414.

    • 蒋苏扬, 黄文辉, 张永生. 2020. 鄂尔多斯盆地西缘中奥陶统地球化学特征及古环境意义. 现代地质, 34(3): 545~553.

    • 李超. 2019. 华南上扬子台地中奥陶统-兰多维列统碳同位素地层学. 中国科学技术大学硕士学位论文.

    • 李超, 樊隽轩, 孙宗元. 2018. 奥陶系无机碳同位素地层学综述. 地层学杂志, 42(4): 408~428.

    • 潘桂棠, 陆松年, 肖庆辉, 张克信, 尹福光, 郝国杰, 骆满生, 任飞, 袁四化. 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6) : 1~23.

    • 潘明, 郝彦珍, 孙成杰, 吕勇, 山克强. 2020. 云南保山普里道利统沉积特征及其对冈瓦纳北缘古海洋环境的指示. 地质学报, 94(5): 1382~1396.

    • 戎嘉余, 黄冰. 2014. 生物大灭绝研究三十年. 中国科学: 地球科学, 44(3): 377~404.

    • 邵龙义, 窦建伟, 张鹏飞. 1996. 西南地区晚二叠世氧、碳稳定同位素的古地理意义. 地球化学, 25(6): 575~581.

    • 谭慧, 秦明阳, 李杰, 郭建华, 吴诗情, 边瑞康. 2020. 湘中及周缘奥陶纪岩相古地理演化与原型盆地研究. 中南大学学报(自然科学版), 51(12): 3430~3443.

    • 陶成, 把立强, 李广友, 杨华敏. 2006. GasBench-IRMS在碳酸盐岩δ13C和δ18O在线连续分析中的应用. 岩矿测试, 25(4): 334~336.

    • 王剑, 段太忠, 谢渊, 汪正江, 郝明, 刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739~1749.

    • 吴亮君, 陈伟海, 容悦冰, 张晶, 黄超, 朱海燕, 孟庆鑫, 吴继文, 罗劬侃, 白冰, 欧梦梦. 2020. 湘西地质公园红色碳酸盐岩石林发育特征与研究价值. 中国岩溶, 39(2): 251~258.

    • 吴荣昌, 詹仁斌, 李贵鹏, 刘建波. 2007. 浅论华南扬子区下、中奥陶统紫台组. 地层学杂志, 34(4): 325~332.

    • 许效松, 万方, 尹福光, 陈明. 2001. 奥陶系宝塔组灰岩的环境相、生态相与成岩相. 矿物岩石, 21(3): 64~68.

    • 许中杰, 蓝艺植, 程日辉, 李双林. 2017. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录. 吉林大学学报(地球科学版), 47(5): 1458~1470.

    • 张俊鹏, 李超, 张元动. 2022. 早古生代海洋缺氧事件的地质记录与背景机制. 科学通报, 67(15): 1644~1659.

    • 张勤, 樊守忠, 潘宴山, 李国会. 2004. X射线荧光光谱法测定多目标地球化学调查样品中主次痕量组分. 岩矿测试, 23(1): 19~24.

    • 张秀莲. 1985. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系. 沉积学报, 3(4): 17~30.

    • 张元动, 詹仁斌, 甄勇毅, 王志浩, 袁文伟, 方翔, 马譞, 张俊鹏. 2019. 中国奥陶纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 66~92.

    • 张元动, 詹仁斌, 甄勇毅, 方翔, 张俊鹏. 2020. 中国奥陶系研究的若干问题. 地层学杂志, 44(4): 339~348.

    • 张元动, 詹仁斌, 袁文伟, 唐鹏, 李越, 王志浩, 周志毅, 方翔, 李文杰, 成俊峰. 2021. 中国奥陶纪岩石地层划分和对比. 地层学杂志, 45(3): 250~270.

    • 张智礼, 李慧莉, 谭广辉, 岳勇, 蔡习尧, 李京昌. 2014. 塔里木中央隆起区奥陶纪碳同位素特征及其地层意义. 地层学杂志, 38(2): 181~189.

    • 赵宗举, 潘文庆, 张丽娟, 邓胜徽, 黄智斌. 2009. 塔里木盆地奥陶系层序地层格架. 大地构造与成矿学, 33(1): 175~188.

    • 周志强, 周志毅, 袁文伟. 1999. 扬子区奥陶纪宝塔组的划分. 地层学杂志, 23(4): 283~286.

    • 周志强, 周志毅, 项礼文. 2016. 中国扬子陆块中、西部奥陶系宝塔组三叶虫动物群. 北京: 地质出版社.

    • 邹光均, 梁恩云, 张晓阳, 凌跃新, 熊苗. 2018. 湘西北地区早奥陶世沉积特征及岩相古地理. 古地理学报, 20(1): 105~118.