en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

梁翼,男,1984年生。博士,讲师,硕士生导师,从事矿床学及矿床地球化学研究。E-mail:liangyi125@qq.com。

参考文献
Akinfiev N N, Zotov A V. 2010. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0~600 ℃ and pressures of 1~3000 bar. Geochemistry International, 48: 714~720.
参考文献
Chen Minghui, Yang Hongchao, Lou Yali, Bao Zhengxiang, Bao Yumin. 2008. Minerogenic particularity of Woxi W-Sb-Au deposit in west Hunan. Contributions to Geology and Mineral Resources Research, 23(1): 32~42 (in Chinese with English abstract).
参考文献
Dai Junfeng, Xu Deru, Chi Guoxiang, Li Zenghua, Deng Teng, Zhang Jian, Li Bin. 2022. Origin of the Woxi orogenic Au-Sb-W deposit in the west Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in-situ S-Pb isotopic signatures. Ore Geology Review, 150, 105134.
参考文献
Dong Shuyi, Gu Xuexiang, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Chen Wenbin. 2008. Fluid inclusion evidence for the genesis of the Woxi W-Sb-Au deposit, Hunan Province. Acta Geologica Sinica, 82 (5): 641~647 (in Chinese with English abstract).
参考文献
Fisher N H. 1945. The fineness of gold, with special reference to the Morobe gold field, New Guinea. Economic Geology, 40: 537~563.
参考文献
Fu Shanling, Hu Ruizhong, Bi Xianwu, Sullivan N A, Yan Jun. 2020a. Trace element composition of stibnite: Substitution mechanism and implications for the genesis of Sb deposits in southern China. Applied Geochemistry, 118, 104637.
参考文献
Fu Shanling, Lan Qing, Yan Jun. 2020b. Trace element chemistry of hydrothermal quartz and its genetic significance: A case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geology Reviews, 126, 103732.
参考文献
Groves D I. 1993. The crustal continuum model for Late-Archean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28: 366~374.
参考文献
Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13: 7~27.
参考文献
Gu Xuexiang, Liu Jianming, Oskar S, Franz V, Zheng Minghua. 2003. Ore fabric characteristics of Woxi W-Sb-Au deposit in Hunan and their genetic significance. Mineral Deposits, 22(1): 107~120 (in Chinese with English abstract).
参考文献
Gu Xuexiang, Liu Jianming, Oskar S, Franz V, Zheng Minghua. 2004. Syngenetic of the Woxi W-Sb-Au deposit in Hunan: Evidence from trace elements and sulfur isotopes. Chinese Journal of Geology, 39(3): 424~439 (in Chinese with English abstract).
参考文献
Gu Xuexiang, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Fu Shaohong. 2007. Rare earth element geochemistry of the Woxi W-Sb-Au deposit, Hunan Province, South China. Ore Geology Review, 31: 319~336.
参考文献
Gu Xuexiang, Zhang Yongmei, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Zheng L. 2012. The Woxi W-Sb-Au deposit in Hunan, South China: An example of Late Proterozoic sedimentary exhalative (SEDEX) mineralization. Journal of Asian Earth Sciences, 57: 54~75.
参考文献
Hu Xiongwei, Murao S, Huang Xuchuang. 1996. Genetic model of gold-antimony-tungsten mineralization: Evidence from geology and mineralization of the Wuxi deposit, Hunan, China. Bulletin of the Geological Survey of Japan, 47: 577~597.
参考文献
Johnson J W, Oelkers E H, Helgeson H C. 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0℃ to 1000℃. Computer Geoscience, 18: 899~947.
参考文献
Li Changshun. 1995. Factors effect on native gold and electrum. Gold Geology, 3: 61~66 (in Chinese with English abstract).
参考文献
Li Huan, Zhu Dapeng, Shen Liwei, Algeo T J, Elatikpo S M. 2022. A general ore formation model for metasediment-hosted Sb-(Au-W) mineralization of the Woxi and Banxi deposits in South China. Chemical Geology, 607: 121020.
参考文献
Liang Yi, Hoshino K. 2015. Thermodynamic calculations of AuxAg1-x - fluid equilibria and their applications for ore-forming conditions. Applied Geochemistry 52: 109~117.
参考文献
Liang Yi, Wang Guogang, Liu Shengyong, Sun Yuzhen, Huang Yonggang, Hoshino K. 2015. A study on the mineralization of the Woxi Au-Sb-W deposit, western Hunan, China. Resource Geology, 65: 27~38.
参考文献
Liang Yi, Zhong Jiansheng, Pei Qiuming, Hoshino K, 2021. An application for thermodynamic calculation of AuxAg1- -fluid equilibria super-pure native gold in Woxi Au-Sb-W deposit, western Hunan, China. Geochemistry International, 59(3): 314~327.
参考文献
Liang Boyi, Zhang Zhenru. 1988. A geneto-mineralogical study of main minerals from the Woxi Au-Sb-W deposit, western Hunan. Geology and Prospecting, (8): 27~32 (in Chinese with English abstract).
参考文献
Morrison G W, Rose W J, Jaireth S. 1991. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geology Reviews, 6: 333~364.
参考文献
Pal'yanova G A, Kolonin G R. 2007. Geochemical mobility of Au and Ag during hydrothermal transfer and precipitation: Thermodynamic simulation. Geochemistry International, 45: 744~757.
参考文献
Pal'yanova G A. 2008. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chemical Geology, 255: 399~413.
参考文献
Peng Bo, Piestrzynski A, Chen Guanghao. 2000. Super-pure native gold in W-Sb-Au ores from the Woxi deposit in western Hunan Province, China. Geotectonica et Metallogeni, 24(1): 51~56 (in Chinese with English abstract).
参考文献
Peng Bo, Chen Guanghao, Piestrzynski A. 2003. Ore mineralogy of stibnite ore veins and its genetic implications for the W-Sb-Au ore deposit at Woxi, western Hunan, China. Acta Mineralogica Sinica 23(1): 82~90 (in Chinese with English abstract).
参考文献
Peng Bo, Frei R. 2004. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (western Hunan, China). Mineralium Deposita, 39(3): 313~327.
参考文献
Peng Jiantang, Hu Ruizhong, Zhao Junhong, Fu Yazhou, Yuan Shunda. 2005. Rare earth element (REE) geochemistry for scheelite from the Woxi Au-W-Sb depsosit, western Hunan. Geochimica, 34(2): 115~122 (in Chinese with English abstract).
参考文献
Tagirov B R, Salvi S, Schott J, Baranova N N. 2005. Experimental study of gold-hydrosulphide complexing in aqueous solutions at 350~500℃, 500 and 1000 bars using mineral buffers. Geochimica et Cosmochimica Acta, 69: 2119~2132.
参考文献
Yang Hang, Wu Peng, Zhang Yan, Han Runsheng, Jiang Longyan, Jiang Xiaojun, Guan Shenjin. 2021. Genetic connection of Pb-Ag-Au polymetallic deposit in the Chuxiong basin, central Yunnan Province: Evidence from trace elements and S isotope of metallic minerals. Acta Geologica Sinica, 95(12): 3799~3819 (in Chinese with English abstract).
参考文献
Yang Sixue, Blum N. 1999. Arsenic as an indicator element for gold exploration in the region of the Xiangxi Au-Sb-W deposit, NW Hunan, PR China. Journal of Geochemical Exploration, 66: 441~456.
参考文献
Zhang Baoke, Wen Hongli, Wang Lei, Ma Shengfeng, Gong Aihua. 2011. Quantification of multi elements in geological samples by inductively coupled plasma-mass spectrometry with pressurized decomposition-hydrochloric acid extraction. Rock and Mineral Analysis, 30(6): 737~744 (in Chinese with English abstract).
参考文献
Zhang Liang, Yang Liqiang, Groves D I, Sun Sichen, Liu Yu, Wang Jiuyi, Li Ronghua, Wu Shenggang, Gao Lei, Guo Jinlong, Chen Xiaogang, Chen Junhui. 2019. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China. Ore Geology Reviews, 115: 103173.
参考文献
Zhang Zhenru, Guo Dingliang. 1998. Factors affecting the fineness of goldminerals and their mechanisms. Gold Science and Technology, 4: 24~28 (in Chinese with English abstract).
参考文献
Zhu Yanan, Peng Jiantang. 2015. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China. Ore Geology Reviews, 65: 55~69.
参考文献
陈明辉, 杨洪超, 娄亚利, 包正相, 鲍珏敏. 2008. 湘西沃溪钨锑金矿床成矿的独特性. 地质找矿论丛, 23(1): 32~42.
参考文献
董树义, 顾雪祥, Oskar S, Franz V, 刘建明, 郑明华, 程文斌. 2008. 湖南沃溪W-Sb-Au矿床成因的流体包裹体证据. 地质学报 82 (5): 641~647.
参考文献
顾雪祥, 刘建明, Oskar S, Franz V, 郑明华. 2003. 湖南沃溪钨-锑-金矿床的矿石组构学特征及其成因意义. 矿床地质, 22(1): 107~120.
参考文献
顾雪祥, 刘建明, Oskar S, Franz V, 郑明华. 2004. 湖南沃溪钨-锑-金建造矿床同生成因的微量元素和硫同位素证据. 地质科学, 39(3): 424~439.
参考文献
李长顺. 1995. 影响自然金和银金矿成色的因素. 黄金地质, 3: 61~66.
参考文献
梁博益, 张振儒. 1988. 湘西沃溪金锑钨矿床成因矿物学研究. 地质与勘探, (8): 27~32.
参考文献
彭渤, Piestrzynski A, 陈广浩. 2000. 湘西沃溪钨锑金矿床超纯自然金. 大地构造与成矿学. 24(1): 51~56.
参考文献
彭渤, 陈广浩, Piestrzynski A. 2003. 湘西沃溪钨锑金矿床辉锑矿脉矿物学特征及其矿床成因指示. 矿物学报, 23(1): 82~90.
参考文献
彭建堂, 胡瑞忠, 赵军红, 符亚洲, 袁顺达. 2005. 湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学. 地球化学. 34(2): 115~122.
参考文献
杨航, 吴鹏, 张艳, 韩润生, 姜龙燕, 江小均, 管申进. 2021. 滇中楚雄盆地Pb-Ag-Au多金属矿床成因联系: 金属矿物微量元素和硫同位素的证据. 地质学报, 95(12): 3799~3819.
参考文献
张保科, 温宏利, 王蕾, 马生风, 巩爱华. 2011. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 30(6): 737~744.
参考文献
张振儒, 郭定良. 1998. 影响金矿物成色的因素及机理. 黄金科学技术, 4: 24~28.
目录contents

    摘要

    湖南沃溪金锑钨矿床是江南造山带中金、锑、钨、均达到大型规模的典型矿床,其自然金的金成色值极高(>998)。本文聚焦湖南沃溪金锑钨矿床中金矿化作用,通过ICP-MS测试和包裹体显微测温实验查明不同矿物与围岩的元素地球化学特征和成矿流体特征,并通过热力学模拟分析自然金的成矿条件,探讨金成色值及金银比值对金矿化的指示作用和研究价值。ICP-MS测试结果显示,金银比值在白钨矿(103~520)和黄铁矿(69~673)中相对较高,在辉锑矿(6~65)和围岩(0.3~35)中相对较低,在石英(6~199)中则变化较大。基于包裹体显微测温结果(200~350℃),本文建立了自然金成矿流体的热力学模型,分析并查明在黄铁矿与绢云母共生的自然金成矿流体中,硫离子浓度比温度更容易影响金溶解度,且金成色值主要与温度呈正相关,与硫离子浓度呈负相关。通过对比研究和讨论,认为沃溪矿床大量金矿化可能形成于温度较高和硫离子浓度较低的白钨矿成矿流体中,而极高成色值的自然金可能与高金银比值的白钨矿和黄铁矿共生。上述方法和结论可为其他金矿床的研究提供新思路。

    Abstract

    The Woxi Au-Sb-W deposit, located in the Jiangnan orogenic belt, represents a typical case where W, Sb, and Au mineralization occur within a large-scale single deposit. The native gold produced in the Woxi deposit is characterized by extremely high gold fineness (>998). This paper, focused on the gold mineralization, uses ICP-MS analysis and microthermometric analysis of fluid inclusions to determine geochemical features in mineralogy and characteristics of ore-forming fluids, and investigates the indication of gold fineness and Au/Ag ratios for the gold mineralization. The ICP-MS analysis shows Au/Ag ratios are higher in scheelite (103~520) and pyrite (69~673) and lower in stibnite (6~65) and host rocks (0.3~35), while Au/Ag ratios vary within a large range in quartz (6~199). Based on results of the microthermometric analysis (200~350℃), this paper uses thermodynamic modelling to simulate ore-forming fluids of the native gold associated with pyrite and sericite, demonstrating that the gold solubility is easier to be decreased by the sulfur concentration than the temperature, and the gold fineness has a positive correlation with the temperature and a negative correlation with the sulfur concentration. The native gold in the Woxi deposit is more likely to precipitate in the fluid with a higher temperature and a lower sulfur concentration, and is thus associated with pyrite and scheelite. This paper is expected to provide a new method to study other gold deposits.

  • 金银矿物是指主要由金和银两种元素组成的一系列矿物,根据其金成色值(GF=Au(%)÷[Au(%)+Ag(%)] ×1000),可分为自然金(GF>800),银金矿(GF=200~800)和自然银(GF<200)三种矿物(Fisher,1945)。金成色值作为鉴定金银矿物的指标参数,是众多金银矿床研究者鉴定和分析金银矿物的重要实验数据。前人研究已证明金成色值对金矿床成因及其成矿流体特征具有指示意义,例如限定或指示成矿流体的温度、硫离子浓度、盐度和金银比值等条件(Morrison et al.,1991李长顺,1995张振儒和郭定良,1998Pal'yanova,2008; Liang Yi and Hoshino,2015)。但是,由于缺少基于实验数据的理论研究,金成色值的指示作用并未被广泛应用于矿床学研究。

  • 湖南沃溪金锑钨矿床位于扬子地台南缘江南元古宙造山带内,是该成矿带中大量金矿床多元素建造的典型热液型矿床之一,也是世界上极为罕见的同一矿床中W、Sb、Au三种元素均达到大型矿床规模的典型实例(顾雪祥等,2004)。该矿床位于湖南雪峰山成矿带中部,金、锑、钨三个矿种的单矿种探明金属储量均居湖南省前五,是该成矿带最大的金锑钨矿床,享有“全球第二大锑矿”和“全国十大黄金矿山”的美誉(彭建堂等,2005)。沃溪矿床的金矿化作用尤为特别,主要表现为自然金的金成色值大于995(彭渤等,2000Liang Yi et al.,2015),被称作“超纯自然金”。

  • 前人对沃溪矿床的研究常聚焦于矿床成因(Hu Xiongwei et al.,1996; 顾雪祥等,2003彭渤等,2003Gu Xuexiang et al.,2012)、成矿流体特征及成矿物质来源(Yang Sixue and Blum,1999; 董树义,2008Zhu Yanan and Peng Jiantang,2015; Liang Yi et al.,2015Dai Junfeng et al.,2022)、成矿模式(顾雪祥等,2004Li Huan et al.,2022)、同位素年代学研究(Peng Bo and Frei,2004; Dai Junfeng et al.,2022)和稀土元素地球化学特征(Gu Xuexiang et al.,20072012)等方面。但该矿床在诸多方面仍存在争议,尤其是自然金与白钨矿、辉锑矿之间矿物生成顺序尚存在不同认识,多数学者认为沃溪矿床自然金主要形成于辉锑矿的成矿阶段(如Yang Sixue and Blum,1999; Zhu Yanan and Peng Jiantang,2015),而部分学者则认为白钨矿阶段也可能发生大量的金矿化作用(如Liang Yi et al.,2015; Dai Junfeng et al.,2022)。造成上述争议的主要原因,是由于缺少针对金矿化特征及其成矿流体特征的专门研究,并且也缺乏利用独特的超纯自然金进行矿化条件限定的理论分析。因此,本文以沃溪矿床的自然金及其伴生矿物为主要研究对象,通过与金矿化相关的实验测试、热力学计算、三维建模等方法,研究沃溪矿床金矿化特征及成矿条件,查明金、锑、钨三个成矿元素之间的相互关联,探讨金成色值的指示作用。

  • 1 区域地质背景及矿床地质特征

  • 江南元古宙造山带分布在扬子地块和华夏地块之间(图1a),沃溪矿床位于江南元古宙造山带西段雪峰山弧形隆起带中部向北西凸出的转折部位(顾雪祥等,2003),是雪峰山成矿带中典型的金锑钨矿床(图1b)。区内出露地层由老至新分别为中元古界冷家溪群(Pt2Lj)、新元古界板溪群(Pt3Bx)以及上白垩统(K2)陆相红色砾岩(图1c)。区内的板溪群主要由马底驿组(Pt3m)和五强溪组(Pt3w)组成,两种地层以近东西走向的沃溪逆断层为界。沃溪逆断层横贯全区,北侧的上盘地层为五强溪组(Pt3w),南侧的下盘为马底驿组(Pt3m)。矿区自西向东划分为红岩溪、鱼儿山、栗家溪、十六棚公和沃溪五个矿段(图1c)。迄今为止,区内矿体均产自马底驿组地层的浅变质岩中,产出空间明显受地层和构造断裂的控制。

  • 沃溪矿床位于湖南省怀化市沅陵县沃溪镇,是雪峰山成矿带中最大的金锑钨矿床(彭建堂等,2005),现已探明金属储量分别为2.5万t的W,22万t的Sb和50 t的Au(Dai Junfeng et al.,2022)。前人对该矿床的地质特征进行了详细研究(彭建堂等,2005Gu Xuexiang et al.,2007; 陈明辉等,2008Liang Yi et al.,2021),而本文选择对矿床的矿化特征进行重点描述。沃溪矿床现已发现5条含矿石英脉和3条贫矿石英脉,均赋存于马底驿组的紫红色绢云母板岩及硅化板岩中(图2a),矿石平均品位分别为WO3(0.2%~0.8%),Sb(2%~6%)和Au(5~10 g/t)(Gu Xuexiang et al.,2007)。5条矿脉的平均厚度及平均品位如图2b所示,表明矿体的厚度与品位大致成反比。此外,钨和锑的品位在不同矿体中存在相似的变化趋势,暗示钨和锑可能存在同期热液成矿作用。矿体附近的围岩中发现的蚀变类型主要为黄铁矿化、绢云母化以及硅化。

  • 沃溪金锑钨矿床的主要矿物为石英、白钨矿、辉锑矿、自然金、黄铁矿、绢云母以及少量的闪锌矿和其他硫化物。根据前人文献和显微镜下特征,沃溪矿床的矿物生成顺序如表1所示。显微镜观察发现,沃溪金锑钨矿床中的自然金主要有两种赋存形式:一种为不规则的他形—半自形显微金颗粒,镶嵌于早期黄铁矿(图3a~c)和石英(图3d~f)的裂隙中呈包体金;另一种为浑圆状或椭圆状的自形—半自形显微金颗粒,与石英、辉锑矿(图3g、3h)和白钨矿共生(图3i)。两种类型的自然金虽然在形态和赋存状态上存在差别,但其化学成分却保持一致,金成色值均大于998。另外,前人进行了大量自然金电子探针测试(梁博益和张振儒,1998;彭渤等,2000Liang Yi et al.,2015),证实沃溪矿床的金成色值大于995,表明金成色值极高是该矿床自然金的一个显著特征。

  • 另外,虽然白钨矿和辉锑矿同时出现在多条石英脉中,但是前人普遍认为白钨矿的成矿明显早于辉锑矿(梁博益和张振儒,1998;Yang Sixue and Blum,1999顾雪祥等,2003Liang Yi et al.,2015)。而且,根据不同矿物的同位素年代测试结果(Peng Bo and Frei,2004),可以确认白钨矿和辉锑矿是先后两个热液阶段成矿作用的产物。但是,自然金与白钨矿和辉锑矿的共生关系尚无定论,或者说自然金究竟是在白钨矿还是辉锑矿的成矿流体中形成的问题尚存在争议。上述问题对理解沃溪矿床的金矿化作用具有重要意义,且厘清大量金矿化发生在白钨矿阶段还是辉锑矿阶段对找矿勘查工作具有重要的指导作用。

  • 2 样品及测试方法

  • 本次工作采集了沃溪矿床5个矿体(V1,V3,V4,V7,V8)在6个中段(28中段至33中段)的63个矿石、脉石和围岩样品。岩石样品制成光薄片先在显微镜下观察和鉴定,再使用等离子体质谱仪(ICP-MS)对各种单矿物(白钨矿、辉锑矿、石英、黄铁矿)及围岩的微量元素进行化学成分测试。ICP-MS测试在日本广岛大学理学院地球化学实验室的Agilent 7700型等离子体质谱仪上进行,测试元素包括Mn、Co、Ni、Cu、Zn、As、Mo、Ag、Au、Pb。本次ICP-MS实验的详细分析方法和样品准备流程参照张保科等(2011)杨航等(2021),样品准备流程如下,① 单矿物分选:采用一次性滤纸将挑选出的新鲜白钨矿、辉锑矿、石英和黄铁矿样品包好,用地质锤敲碎至40~120目,经蒸馏水淘洗、烘干后在双目镜下进行反复挑纯(纯度优于99%),最后将挑好的单矿物经清洗、烘干后,用玛瑙研钵磨至200目以下备用。② 溶解样品:准确称取100 mg的粉末样品置于可封闭的聚四氟乙烯内罐中,先加入3 mL HNO3和2 mL HF,盖上聚四氟乙烯上盖封闭,再将溶样器放入烘箱中,在190℃条件下静置48 h;然后在电热板上加热(160℃)蒸干,再取1 mL H2O2和1 mL HNO3分两次滴入杯中去除溶液中过量的HF并蒸发至干;待完全冷却后加入5 mL的HCl,再次封闭于钢套中在150℃条件下放置5 h。③ 定容测试溶液:将溶解后的溶液转移至特氟龙杯中,放在天平上加入去离子水,定溶至25 mL,密封瓶口准备测试。本次ICP-MS实验的测定下限为1×10-6~8.5×10-6,分析误差小于10%。

  • 图1 沃溪金锑钨矿床的大地构造位置略图(a)、雪峰山成矿带的金锑钨矿床分布略图(b)及矿床地质简图(c)(据Yang Sixue and Blum,1999; Gu Xuexiang et al.,2007修改)

  • Fig.1 Sketch maps showing geotectonic location (a) , distribution of Au-Sb-W deposit in Xuefengshan metallogenic belt (b) and geology of the Woxi Au-Sb-W deposit (c) (modified after Yang Sixue and Blum, 1999; Gu Xuexaing et al., 2007)

  • 1 —白垩系陆相红色砾岩;2—中元古界板溪群五强溪组;3—中元古界板溪群马底驿组;4—中元古界冷家溪群;5—向斜与背斜; 6—逆断层;7—矿床及其规模(大黑色圆点代表大型金锑(钨)矿床,小黑色圆点代表中(小)型金锑(钨)矿床);8—城镇;9—雪峰山成矿带范围;10—地层边界线

  • 1 —Cretaceous red conglomerate; 2—Wuqiangxi Formation in Banxi Group (Mesoproterozoic) ; 3—Madiyi Formation in Banxi Group (Mesoproterozoic) ; 4—Lengjiaxi Group (Mesoproterozoic) ; 5—syncline and anticline; 6—reverse faults; 7—ore deposits (larger solid circles are large-scaled Au-Sb- (W) deposits, smaller solid circles are middle (or small) -scaled Au-Sb- (W) deposits) ; 8—town; 9—Xuefengshan metallogenic belt; 10—strata boundary

  • 图2 沃溪金锑钨矿床的地质剖面图(a)及矿体的平均厚度和品位变化(b)(据Liang Yi et al.,2015修改)

  • Fig.2 Geological section (a) , average ore grades and thickness of ore bodies (b) in the Woxi Au-Sb-W deposit (modified after Liang Yi et al., 2015)

  • 1 —白垩系红色砾岩;2—五强溪组砂质板岩;3—马底驿组绢云母板岩;4—矿体及编号;5—断层及编号

  • 1 —Cretaceous red conglomerate; 2—Wuqiangxi Formation sandy slates; 3—Madiyi Formation sericite slates; 4—ore veins and their numbers; 5—faults and their numbers

  • 表1 沃溪金锑钨矿床的矿物生成顺序表(据Liang Yi et al.,2015; Dai Junfeng et al.,2022修改)

  • Table1 Mineralization epoch and paragenesis diagram of the Woxi Au-Sb-W deposit (modified after Liang Yi et al., 2015; Dai Junfeng et al., 2022)

  • 本次工作还对沃溪矿床的流体包裹体进行了显微测温实验。流体包裹体的均一温度和冰点温度测定使用Linkam THMSG 600型冷-热台,分别选取与自然金伴生的石英和白钨矿中流体包裹体共126个进行测试。仪器的测定温度范围为-196~500℃,测试误差<0.1℃。冰点及均一温度的测定过程如下:测试冰点时先将温度降到-60~-40℃,然后缓慢升温,控制在10~20℃/min,在>-30℃时控制在5℃/min以下,在冰点附近时升温速率<1℃/min;均一温度测定先以10℃/min 的速度加热,当包裹体中气泡快速变小且跳动时,以1~5℃/min加热,在相变温度附近升温速率<1℃/min。所测流体包裹体均属于气液相包裹体,均一温度结果均低于400℃,且都能均一到液相。

  • 图3 沃溪金锑钨矿床中自然金的显微特征

  • Fig.3 Microscopic characteristics of native gold in the Woxi Au-Sb-W deposit

  • (a~b)—黄铁矿及其微裂隙中的自然金;(c)—照片b的背散射照片;(d~f)—石英及其微裂隙中的自然金;(g~h)—辉锑矿晶粒间的自然金;(i)—与石英和白钨矿伴生的自然金; Qtz—石英;Py—黄铁矿;Au—自然金;Stb—辉锑矿;Sch—白钨矿

  • (a~b) —native gold in micro-fractures of pyrite; (c) —BSE image of photo b; (d~f) —native gold in micro-fractures of quartz; (g~h) —native gold in stibnite; (i) —native gold in scheelite and quartz; Qtz—quartz; Py—pyrite; Au—native gold; Stb—stibnite; Sch—scheelite

  • 3 测试结果

  • 3.1 ICP-MS测试

  • 本次工作共测试了黄铁矿、白钨矿、辉锑矿、石英、围岩五类样品,测试结果如表2所示。ICP-MS实验测试结果显示,黄铁矿中Au元素含量为3.76×10-6~430.90×10-6,Ag元素含量为0.03×10-6~1.58×10-6,As元素含量为0.01×10-6~31.02×10-6,Au/Ag比值为69.3~673.0,As/Au比值为0.69~1.45。白钨矿中Au元素含量为6.15×10-6~18.73×10-6,Ag元素含量为0.02×10-6~0.11×10-6,As元素含量为3.85×10-6~147.96×10-6,Au/Ag比值为102.5~520.0,As/Au比值为0.28~9.48。辉锑矿中Au元素含量为0.06×10-6~39.92×10-6,Ag元素含量为0.02×10-6~0.11×10-6,As元素含量为0.01×10-6~0.16×10-6,Au/Ag比值为6.0~65.4,As/Au比值为0.01~0.25。石英中Au元素含量为0.11×10-6~2.28×10-6,Ag元素含量为0.01×10-6~0.24×10-6,As元素含量为0.01×10-6~2.82×10-6,Au/Ag比值为5.5~199.0,As/Au比值为0.01~1.75。围岩中Au元素含量为0.09×10-6~6.32×10-6,Ag元素含量为0.11×10-6~0.36×10-6,As元素含量为0.01×10-6~0.13×10-6,Au/Ag比值为0.3~35.1,As/Au比值为0.02~0.20。

  • 此外,Co/Ni比值在五类样品中差别较小,范围介于0.14~0.92之间,均小于1(图4a),但辉锑矿和围岩中的Co/Ni比值整体比其他三类相对更高(图4b)。五类样品中Zn和Pb元素含量差别较小,但其在V7和V8中明显较高,与少量闪锌矿和方铅矿的产出位置相符(Liang Yi et al.,2015)。五类样品中Mn、Cu、Mo元素含量差别较小,但出现深部位置的样品上述三种元素含量普遍较高。

  • 表2 沃溪金锑钨矿床的矿物ICP-MS测试结果(×10-6

  • Table2 Results of ICP-MS analysis (×10-6) on minerals in the Woxi Au-Sb-W deposit

  • 对比以上数据可知,黄铁矿中的Au元素含量最高,其次为白钨矿和辉锑矿,而石英和围岩相对较低。白钨矿和黄铁矿的As元素含量较高,而辉锑矿、石英和围岩的As元素含量普遍较低。如图4c、d所示,Au/Ag比值和As/Au比值在黄铁矿和白钨矿中普遍较高,在辉锑矿和围岩中则普遍较低,而在石英中则差别较大(较高和较低的情况均存在)。总体上,黄铁矿与白钨矿的微量元素特征相似,与辉锑矿差异较大,而围岩则含量较低,仅在元素比值方面与辉锑矿相似。

  • 3.2 流体包裹体显微测温

  • 石英和白钨矿中流体包裹体的岩相学特征较为相似,以富液相流体包裹体为主,多呈长条形和不规则的孤立原生包裹体产出,大小介于5~20 μm之间,少数可达20 μm以上,气相百分比主要集中在15%~25%之间。次生包裹体和假次生包裹体较少,形态多为椭圆形和不规则形态,大小在5~10 μm之间,气相百分比主要集中在5%~10%。本次测试共选择与自然金伴生的石英(如图3e中的石英)和白钨矿(如图3i中的白钨矿)中126个流体包裹体进行显微测温和盐度计算,结果如图5所示。白钨矿的包裹体测试结果显示,均一温度范围介于180~360℃之间,两个峰值分别出现在200~220℃和300~320℃之间(图5a);盐度(%NaCleq)范围介于3%~10%之间,峰值出现在7%~8%之间(图5c)。石英的包裹体测试结果显示,均一温度范围介于180~360℃之间,两个峰值分别出现在220~240℃和300~320℃之间(图5b);盐度(%NaCleq)范围介于1%~10%之间,两个峰值分别出现在4%~5%和8%~9%之间(图5d)。总体上,白钨矿和石英的流体包裹体在均一温度和盐度的差别较小,二者均一温度都在200℃和300℃附近出现两个峰值,绝大多数包裹体的温度集中在200~350℃的范围,而二者的盐度(%NaCleq)均在8%附近出现峰值。从温度波峰的包裹体个数来看,白钨矿在300℃附近的包裹体个数明显多于200℃附近的包裹体个数,而石英包裹体则差别较小。根据沃溪矿床的矿物生成顺序(表1)可知,早期形成大量白钨矿的成矿温度可能更高,与早期石英的形成温度相似,而晚期石英则形成温度较低。

  • 图4 沃溪金锑钨矿床ICP-MS测试结果对比

  • Fig.4 A comparison of ICP-MS analysis results in the Woxi Au-Sb-W deposit

  • (a)—Co-Ni关系对比图;(b)—Ni-Co/Ni关系对比图;(c)—Au-Au/Ag关系对比图;(d)—Au-Au/As关系对比图;Py—黄铁矿;Sch—白钨矿;Qtz—石英;Stb—辉锑矿; HR—围岩

  • (a) —binary plots of Co-Ni; (b) —binary plots of Ni-Co/Ni; (c) —binary plots of Au-Au/Ag; (d) —binary plots of Au-Au/As;Py—pyrite; Sch—scheelite; Qtz—quartz; Stb—stibnite; HR—host rocks

  • 图5 沃溪金锑钨矿床中白钨矿(a、c)与石英(b、d)中流体包裹体均一温度和盐度直方图

  • Fig.5 Histograms of homogenization temperatures and salinities of fluid inclusions in scheelite (a, c) and quartz (b, d) of the Woxi Au-Sb-W deposit

  • 4 三维模型分析

  • 4.1 三维建模方法

  • 本文的三维模型主要通过以下三个步骤建立:① 金银矿物的热力学计算;② 二维制图及数据插值;③ 三维建模。本文采用的热力学计算方法是基于Liang Yi and Hoshino(2015)发表的金银矿物理想混合模型。该模型提出成矿溶液中金银固溶体的化学平衡反应式为:AuXAg1-X+H++1/4O2aq=XAu++(1-X)Ag++1/2H2O,其中X为Au的摩尔系数(可换算为金成色值),Au+和Ag+分别代表成矿溶液中所有的金和银离子。本次模拟计算所涉及的离子和矿物种类及化学反应式如表3所示,表中各化学反应在不同温度和压力条件下达到平衡时的lgK值由SUPCRT92软件(Johnson et al.,1992)计算获得,相关热力学参数取自前人文献(Tagirov et al.,2005; Pal'yanova and Kolonin,2007; Pal'yanova,2008; Akinfiev and Zotov,2010)。基于上述金银矿物的热力学计算方法,本文可在pH-lgfO2图中获得200℃(图6a)和350℃(图6b)的金(mΣAu)和银的溶解度(mΣAg)等值线和金银比值(R=lg(m∑Au/m∑Ag))等值线,并且可以自主设定金成色值和其他物理化学条件,为三维建模提供大量的基础数据。通过变换不同的成矿流体条件(如温度、压力、盐度和硫离子浓度)获得大量等值线的二维数据,本文利用MATLAB软件的Linspace和interp1函数对各类等值线数据进行插值计算,最后结合MATLAB软件的surf函数建立各类等值线的三维模型。

  • 4.2 金溶解度的三维模型

  • 本文分别以pH、lgfO2、温度(T)为三维模型的X,Y,Z坐标轴参数,计算并获得金溶解度(mΣAu)的等值线模型(图7a),其中温度的取值范围参考多数流体包裹体的均一温度范围(200~350℃)。由于温度降低会导致黄铁矿的稳定区域和H2S-HS--SO2-4的界线交点向更低的lgfO2区域位移,因此图7a中的三维模型整体呈现倾斜的似圆柱形态。如图7a所示,等值线模型整体随温度下降而缓慢缩小,最大mΣAu值(10-4)的模型在300℃附近消失,证明金溶解度与温度整体呈正相关。例如,mΣAu=10-6的金溶解度等值线模型在T=350℃时的截面面积约是T=200℃时的1.5倍,表明温度越高则越可能形成较高含金浓度的成矿流体。由于沃溪矿床的自然金通常与黄铁矿和绢云母共存(如顾雪祥等,2003Gu Xuexiang et al.,2007; Liang Yi et al.,2015),因此黄铁矿和绢云母两种矿物都稳定的pH-lgfO2区域成为重点观察的空间区域。该空间区域在图7a中为一不规则的四方体与mΣAu=10-5的模型大致平行,当T=350℃时横截面积最小,区域内金溶解度介于10-7~10-5之间;在T=200℃时横截面积最大,区域内金溶解度可介于10-8~10-5之间。由此可知,在黄铁矿—绢云母的稳定空间内,高温和低温均能形成较高金浓度的含矿流体,而且温度的降低不一定能造成金的大量沉淀。

  • 图6 lgfO2-pH图显示热力学模拟计算200℃(a)和350℃(b)条件下金(m∑Au)和银(m∑Ag)的溶解度及金银比值R(lg(m∑Au/m∑Ag))等值线

  • Fig.6 lgfO2-pH diagrams showing isopleths of gold (m∑Au) and silver (m∑Ag) solubility and R ratios (lg (m∑Au/m∑Ag) ) at 200℃ (a) and 350℃ (b)

  • Py—黄铁矿; Ht—赤铁矿; Mt—磁铁矿; Po—磁黄铁矿; Ka—高岭石; Se—绢云母; Kf—钾长石

  • Py—pyrite; Ht—hematite; Mt—magnetite; Po—pyrrhotite; Ka—kaolinite; Se—sericite; Kf—K-feldspar

  • 本文还分别以pH、lgfO2、硫离子浓度(mΣS)为三维模型的坐标轴,计算并获得T=350℃时金溶解度的等值线模型(图7b),其中mΣS的取值范围为0.01~0.20 mol/kg。等值线模型在图7b中呈现倒立的圆锥状形态并与黄铁矿—绢云母的稳定空间相交,例如mΣAu=10-4的模型在mΣS= 0.03时尖灭。由此可知,三维模型整体随着硫离子浓度的降低而明显缩小,表明硫离子浓度与金溶解度呈明显的正相关。在黄铁矿—绢云母的稳定空间中,mΣAu=10-4的模型仅出现在mΣS>0.045的区域,mΣAu=10-5的模型出现在mΣS>0.015的区域,而在mΣS=0.01的截面上最大的mΣAu等值线模型为10-6。由此可知,由于高mΣAu值的模型与黄铁矿—绢云母的稳定空间相交,黄铁矿—绢云母的稳定空间可划分成两个区域,高mΣS区域更容易形成较高金浓度的含矿流体,而低mΣS区域则更利于金的沉淀。

  • 图7 在GF=999 和 mΣS=0.1 mol/kg条件下绘制的pH-lgfO2-T金溶解度(m∑Au)等值线三维模型(a)和在GF=999 和T=350℃条件下绘制的pH-lgfO2-mΣS金溶解度(m∑Au)等值线三维模型(b)

  • Fig.7 3D modelling plotting the pH-lgfO2-T models of gold solubility (a) at GF=999 and mΣS=0.1 mol/kg, and the pH-lgfO2-mΣS models of gold solubility (b) at GF=999 and T=350℃

  • 氯离子浓度(mΣCl)均为1 mol/kg; Py—黄铁矿;Ht—赤铁矿;Mt—磁铁矿;Po—磁黄铁矿;Ka—高岭石;Se—绢云母;Kf—钾长石

  • total dissolved chlorine (mΣCl) is 1 mol/kg; Py—pyrite; Ht—hematite; Mt—magnetite; Po—pyrrhotite; Ka—kaolinite; Se—sericite; Kf—K-feldspar

  • 4.3 金成色值的三维模型

  • 本文分别以pH、lgfO2、金成色值(GF)为三维模型的坐标轴,在T=350℃ 和mΣS=0.1 mol/kg条件下,计算并获得自然金(GF>800)的成矿流体中金银比值[R=lg(mΣAu/mΣAg)]的等值线模型(图8a)。三维模型在HSO-4和HS-占主导的两个区域呈现平行于pH-lgfO2面的水平层状形态,在SO2-4和H2S占主导的两个区域呈现倾向pH=10的方向且平行于pH-lgfO2面的透镜体形态。由于三维模型在上述四个区域都平行于pH-lgfO2面,且金银比值的等值线皆垂直于pH轴,表明金银比值在各区域内不受氧逸度的影响。图8a的pH-T面和lgfO2-R面直接显示金银比值随金成色值升高而逐渐增大,证明二者呈正相关。在H2S-HS-的还原区域内,当金银比值大于1时只能形成大于990的金成色值,即仅能形成超纯自然金。另外,其他金银比值同样也能形成大于990的金成色值,如pH值小于4时金银比值可以等于或者小于-1。这说明虽然金银比值对金成色值具有决定性的控制作用,但其他条件也可以通过改变理论所需的金银比值而对金成色值产生显著影响。换句话说,成矿流体中某个条件的改变促使理论所需的金银比值变小则会导致最终形成的金成色值升高。例如,图6和图8a均显示pH值可以控制金银比值等值线的空间分布,表现为pH值的降低可导致所需的金银比值减小,进而形成更高的金成色值。由此可知,同样控制绢云母稳定区域的pH值也是金成色值的控制因素。在图8a的黄铁矿—绢云母稳定空间中,随着金成色从999降到800,金银比值的范围从-0.45~1.94减小到-2.85~-0.46,证明pH值和金银比值均能较大幅度影响金成色值。因此,通过建立三维模型可以分析成矿流体的物理化学条件与金成色值的相关性及对其影响程度。

  • 表3 热力学计算所涉及矿物和金银离子的种类及反应式

  • Table3 Minerals and aqueous species of gold and silver and their formation reactions counted in this paper

  • 注:g—气态;aq—液态。

  • 本文还以pH、T、mΣS为三维模型的坐标轴,在还原区域(黄铁矿的稳定区域)计算并获得GF=999时的金银比值等值线模型(图8b)。该模型在HS-区域显示为R=2的均值体,而在H2S区域显示为大致平行的弯曲层状,整体朝pH=2的方向倾斜。图8b直接显示在H2S区域内金银比值随着T升高而逐渐减小,即如果成矿流体的温度升高会造成理论的金银比值降低从而促使形成的金成色值升高,证明金成色值与T呈正相关。相反地, H2S区域内的金银比值随着mΣS的升高却逐渐增大,证明金成色值与mΣS呈负相关。而且,在mΣS=0.01~0.1的范围内,金银比值随mΣS的增大速率比其他mΣS范围明显更高,表明低硫的流体中mΣS变化对金成色值的影响更明显。例如,在图8b的绢云母稳定空间中,当T=350℃时,金银比值的范围随着mΣS的升高逐渐增大,从-1.5~-1.8增加到0~1.8,最小的金银比值出现在最高T和最低mΣS的位置。

  • 图8 在T=350℃和mΣS=0.1 mol/kg条件下绘制的 pH-lgfO2-GF金银比值(R)等值线三维模型(a)和在 GF=999 和还原条件下绘制的pH-T-mΣS金银比值(R)等值线三维模型(b)

  • Fig.8 3D modelling plotting the pH-lgfO2-GF models of R isopleths (a) at T=350℃ and mΣS=0.1 mol/kg, and the pH-T-mΣS models of R isopleths (b) at GF=999 andreductive conditions

  • 氯离子浓度(mΣCl)均为1 mol/kg; Py—黄铁矿; Ht—赤铁矿; Mt—磁铁矿; Po—磁黄铁矿; Ka—高岭石; Se—绢云母; Kf—钾长石

  • Total dissolved chlorine (mΣCl) is 1 mol/kg; Py—pyrite; Ht—hematite; Mt—magnetite; Po—pyrrhotite; Ka—kaolinite; Se—sericite; Kf—K-feldspar

  • 5 讨论

  • 5.1 钨矿化与锑矿化

  • 雪峰山成矿带以钨矿化和锑矿化为显著特征,产出巨量的钨矿床和锑矿床,造就了湖南省“锑都”的美誉。该成矿带虽然也产出金锑矿或金钨矿共生的大型矿床,但多数为单独成矿的金矿床、钨矿床或锑矿床(Zhang Liang et al.,2019),而像沃溪这种金锑钨三个矿种均达到大型矿床实属特例。因此,该成矿带存在大规模的金、锑、钨成矿作用是不争的事实,沃溪矿床是研究该成矿带中金、锑、钨矿化关系的典型案例。

  • 根据图2b中沃溪矿床五条矿体的平均厚度和平均品位可知,钨矿化和锑矿化的矿化位置相同,而钨和锑的品位在五条矿体的相似变化则证明二者很可能是同期成矿热液的产物。但是,前人通过多种途径已证明钨矿化的主要成矿阶段明显早于锑矿化,包括矿石矿相学(Gu Xuexiang et al.,2007; Liang Yi et al.,2021)、同位素年龄测试(Peng Bo and Frei,2004; Dai Junfeng et al.,2022)、稀土元素化学测试(彭建堂等,2005)、流体包裹体测温(董树义等,2008Zhu Yanan and Peng Jiantang,2015)及LA-ICP-MS测试(Liang Yi et al.,2015; Fu Shanling et al.,2020a; Li Huan et al.,2022)。由此可知,沃溪矿床的钨矿化和锑矿化在成矿时间、成矿温度、成矿流体特征等诸多方面均存在明显差异。Zhu Yanan and Peng Jiantang(2015)通过对辉锑矿流体包裹体进行红外显微测温获得均一温度在140~200℃之间,明显低于本次工作获得白钨矿中流体包裹体的均一温度,符合晚期成矿热液的温度特征;Liang et al.(2015)通过对单个流体包裹体进行LA-ICP-MS测试获得白钨矿中流体包裹体的铜、铅、锌、金、银、钼等金属元素含量明显高于与辉锑矿共生的石英中包裹体的金属元素含量。因此,沃溪矿床的钨和锑在矿化阶段和成矿流体特征上存在明显差异。

  • 本文通过对不同单矿物进行ICP-MS测试获得白钨矿和辉锑矿的微量元素地球化学特征,证明二者在元素地球化学特征上存在差异。实验结果证明(表2),白钨矿中Au和As元素含量普遍较高,而辉锑矿中则普遍较低。在Co/Ni、Au/Ag、Au/As比值上白钨矿和辉锑矿存在显著区别,而白钨矿与黄铁矿相似,辉锑矿与围岩相似(图4)。前人对沃溪矿床的白钨矿、辉锑矿、石英等矿物也进行LA-ICP-MS原位测试(Fu Shanling et al.,2020a2020b; Li Huan et al.,2022),Fu Shanling et al.(2020b)通过LA-ICP-MS测试出辉锑矿的Au/Ag比值为0~22.25,Au/As比值为0~0.004,与本次ICP-MS测试的结果接近。Au和As元素常被认为在金矿床中可呈现正相关的共生关系,Yang Sixue and Blum(1999)曾通过大量的样品测试证明Au和As元素含量在沃溪矿床的不同位置和矿物组合呈现明显的正相关。本次工作测定白钨矿和黄铁矿的Au/As比值整体高于辉锑矿和围岩,暗示前者与金矿化关系更为紧密。虽然不同矿物的微量元素比值差异可以作为矿化关系的经验判断,但该差异可能受到多种因素影响,例如流体组分元素浓度比值和微量元素在不同矿物中替代的难易程度。相对于白钨矿和黄铁矿,辉锑矿中微量元素则更可能由于难以替代的原因而具有相对较低的含量。但是,Au/As比值不仅在较晚阶段形成的辉锑矿中较低,而且在早—晚阶段形成的石英中也存在由高—低的规律,表明早期成矿流体中Au/As比值可能较高,为上述推测结果提供了佐证。此外,成矿流体中Au/Ag比值已被证明是控制金成色值的关键因素(Morrison et al.,1991; Pal'yanova,2008; Liang Yi and Hoshino,2015),高Au/Ag比值对形成超纯自然金的高成色值起到决定性作用。本次工作测定白钨矿和黄铁矿中的Au/Ag比值整体高于辉锑矿和围岩,也暗示前者与超纯自然金的矿化关系更紧密。综上所述,沃溪矿床的钨矿化和锑矿化不仅存在矿化特征的差异,与金矿化的紧密关系也可能存在明显差别。

  • 5.2 金矿化

  • 对于沃溪矿床的成因类型,大部分学者认为沃溪矿床是造山型金矿(Zhu Yanan and Peng Jiantang,2015; Liang Yi et al.,2021; Dai Junfeng et al.,2022),也有少部分前人研究认为沃溪矿床是岩浆热液型(Peng Bo and Frei,2004)或喷流沉积型矿床(Gu Xuexiang et al.,2012)。本文实验结果证明,沃溪矿床的流体包裹体具有低—中高温、低盐度的特征,且该矿床产出的自然金具有极高的金成色值,符合造山型金矿床的特征(Groves et al.,1998; Pal'yanova,2008),因此本次工作以沃溪矿床自然金的显微特征和金成色值特征为研究对象,研究该矿床的金矿化作用。根据显微镜下照片(图3)可以证明自然金的形态与伴生矿物存在必然的联系,石英和黄铁矿裂隙的自然金多呈不规则的他形—半自形结构,而辉锑矿晶粒间的自然金颗粒则呈浑圆状的自形结构。但是,上述两种自然金在化学成分上并无差异,金成色值均大于998。由于辉锑矿中自然金数量较少,因此本文认为浑圆状的自然金很可能是在后期辉锑矿的矿化阶段被位移和改造的结果,辉锑矿的成矿流体改变了该类自然金的物理形态但未对化学成分产生明显的影响。换言之,后期辉锑矿的成矿流体可能未能达到促使早期形成的自然金重结晶或再活化的热力学条件。

  • 热力学模拟自然金的成矿流体可以帮助理解自然金的形成过程和重结晶的热力学条件,因此本文基于实验结果三维建模分析了沃溪矿床的金矿化作用。根据三维模型(图7)显示,在温度降低时金的溶解度并没有产生明显的变化,即高温和低温均可能形成高浓度的含金成矿流体。因此,温度的降低不一定造成金的大量沉淀,进而暗示温度可能不是沃溪矿床大量金矿化的决定因素,黄铁矿和绢云母共生的高温流体(石英-白钨矿阶段的成矿流体)也可能是自然金的成矿流体。白钨矿和石英的流体包裹体测温结果显示,在白钨矿的主成矿阶段温度可能较高(接近甚至大于300℃),而石英则由于形成阶段较多而形成温度范围较广。因此,白钨矿的成矿流体更可能具有较高金浓度的特征。该观点基于均一温度和热力学模拟的结果,同时可以得到前人研究成果的验证。例如Liang Yi et al.(2015)使用LA-ICP-MS测得白钨矿中流体包裹体的金含量相对其他矿物更高,高温包裹体(>300℃)可达到18~24 μg/g,低温包裹体(<200℃)也能达到11 μg/g。综上所述,白钨矿的成矿流体具备金矿化的必要条件。

  • 以硫离子浓度为Z轴的三维模型表明高mΣAu值的模型与黄铁矿—绢云母的稳定空间相交(图7b),造成高mΣS区域更容易形成高浓度的含金成矿流体,而低mΣS区域则更利于金的大量沉淀。上述结果暗示成矿流体的硫含量可能是沃溪矿床大量金矿化的决定因素,所以黄铁矿和绢云母共生的低硫流体更可能是自然金的成矿流体。对比白钨矿和辉锑矿的矿化特征可知,硫化物富集程度最高的辉锑矿阶段明显不太可能具备低硫的成矿流体条件,而少见硫化物共生的白钨矿阶段则更可能形成于低硫的成矿流体。因此,沃溪矿床的金沉淀可能发生在形成白钨矿的成矿流体中。

  • 另一方面,通过对金成色值的变化规律进行模拟分析(图8a),证明成矿流体中的金银比值是金成色值的决定性因素。根据模拟结果表明沃溪矿床的超纯自然金最可能在R>1的成矿流体中形成。事实上,如此高的金银比值在其他类型矿床中很难被验证,除了造山型金矿床普遍具有高金银比值的特点(Groves,1993)。流体包裹体LA-ICP-MS测试也证明白钨矿的包裹体中金银比值(≥2.2)最高(Liang Yi et al.,2015),与本文的ICP-MS测试结果相符。由此可知,较高的金银比值可被推断为超纯自然金在沃溪矿床的主要成因。图4显示,白钨矿和黄铁矿的微量元素地球化学特征明显与辉锑矿和围岩的微量元素含量存在较大区别,尤其是白钨矿的金银比值明显比辉锑矿更大。因此,相比于辉锑矿,白钨矿的成矿流体更可能具备较高的金含量和金银比值,进而更可能形成超纯自然金。而且,基于温度和硫离子浓度的三维模型分析还证实温度与金成色值成正相关,而硫离子浓度则与金成色值呈负相关(图8b)。上述结果进一步地说明白钨矿阶段的成矿流体比辉锑矿阶段的更可能形成超纯自然金。

  • 综上所述,本文基于微量元素地球化学分析和流体包裹体显微测试证明白钨矿与辉锑矿的矿化特征和成矿流体特征存在明显区别,通过三维建模分析超纯自然金的成矿流体特征,最后对比论证了沃溪矿床的金矿化主要发生在白钨矿的成矿阶段,因此金与钨的关联更为密切。

  • 6 结论

  • 本文详细调查了沃溪金锑钨矿床的矿物学特征和矿化特征,完成单矿物ICP-MS测试和流体包裹体测温与盐度计算,并对自然金的成矿流体特征进行了热力学计算和模拟分析,获得以下结论:

  • (1)单矿物ICP-MS测试结果显示沃溪矿床的五类样品在微量元素地球化学特征上存在明显区别,金银比值在白钨矿(103~520)和黄铁矿(69~673)中相对较高,在辉锑矿(6~65)和围岩(0.3~35)中相对较低,在石英(6~199)中则变化较大,暗示早期成矿阶段的白钨矿和黄铁矿可能与自然金关系更为紧密。

  • (2)流体包裹体研究表明,白钨矿和石英的均一温度都出现两个峰值(200℃和300℃),但白钨矿在300℃附近的包裹体个数明显更多;白钨矿的盐度峰值为7%~8%,石英则有两个盐度峰值(4%~5%和8%~9%),表明形成大量白钨矿的早期成矿阶段中成矿温度和盐度可能更高。

  • (3)基于实验结果的热力学模拟分析证实,自然金的成矿流体在低硫和高温条件下更容易形成超纯自然金,推断白钨矿阶段更可能发生大量的金矿化。

  • 致谢:野外工作得到了湖南黄金集团有限责任公司的领导及技术人员的大力支持和帮助,日本广岛大学理学研究科的Aya Katsube博士和范桥辉教授在实验和数据处理过程中给予了许多帮助,审稿人对本文进行了详细的审阅并提出了宝贵的修改建议,在此一并表示衷心的感谢。

  • 参考文献

    • Akinfiev N N, Zotov A V. 2010. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0~600 ℃ and pressures of 1~3000 bar. Geochemistry International, 48: 714~720.

    • Chen Minghui, Yang Hongchao, Lou Yali, Bao Zhengxiang, Bao Yumin. 2008. Minerogenic particularity of Woxi W-Sb-Au deposit in west Hunan. Contributions to Geology and Mineral Resources Research, 23(1): 32~42 (in Chinese with English abstract).

    • Dai Junfeng, Xu Deru, Chi Guoxiang, Li Zenghua, Deng Teng, Zhang Jian, Li Bin. 2022. Origin of the Woxi orogenic Au-Sb-W deposit in the west Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in-situ S-Pb isotopic signatures. Ore Geology Review, 150, 105134.

    • Dong Shuyi, Gu Xuexiang, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Chen Wenbin. 2008. Fluid inclusion evidence for the genesis of the Woxi W-Sb-Au deposit, Hunan Province. Acta Geologica Sinica, 82 (5): 641~647 (in Chinese with English abstract).

    • Fisher N H. 1945. The fineness of gold, with special reference to the Morobe gold field, New Guinea. Economic Geology, 40: 537~563.

    • Fu Shanling, Hu Ruizhong, Bi Xianwu, Sullivan N A, Yan Jun. 2020a. Trace element composition of stibnite: Substitution mechanism and implications for the genesis of Sb deposits in southern China. Applied Geochemistry, 118, 104637.

    • Fu Shanling, Lan Qing, Yan Jun. 2020b. Trace element chemistry of hydrothermal quartz and its genetic significance: A case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geology Reviews, 126, 103732.

    • Groves D I. 1993. The crustal continuum model for Late-Archean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28: 366~374.

    • Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13: 7~27.

    • Gu Xuexiang, Liu Jianming, Oskar S, Franz V, Zheng Minghua. 2003. Ore fabric characteristics of Woxi W-Sb-Au deposit in Hunan and their genetic significance. Mineral Deposits, 22(1): 107~120 (in Chinese with English abstract).

    • Gu Xuexiang, Liu Jianming, Oskar S, Franz V, Zheng Minghua. 2004. Syngenetic of the Woxi W-Sb-Au deposit in Hunan: Evidence from trace elements and sulfur isotopes. Chinese Journal of Geology, 39(3): 424~439 (in Chinese with English abstract).

    • Gu Xuexiang, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Fu Shaohong. 2007. Rare earth element geochemistry of the Woxi W-Sb-Au deposit, Hunan Province, South China. Ore Geology Review, 31: 319~336.

    • Gu Xuexiang, Zhang Yongmei, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Zheng L. 2012. The Woxi W-Sb-Au deposit in Hunan, South China: An example of Late Proterozoic sedimentary exhalative (SEDEX) mineralization. Journal of Asian Earth Sciences, 57: 54~75.

    • Hu Xiongwei, Murao S, Huang Xuchuang. 1996. Genetic model of gold-antimony-tungsten mineralization: Evidence from geology and mineralization of the Wuxi deposit, Hunan, China. Bulletin of the Geological Survey of Japan, 47: 577~597.

    • Johnson J W, Oelkers E H, Helgeson H C. 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0℃ to 1000℃. Computer Geoscience, 18: 899~947.

    • Li Changshun. 1995. Factors effect on native gold and electrum. Gold Geology, 3: 61~66 (in Chinese with English abstract).

    • Li Huan, Zhu Dapeng, Shen Liwei, Algeo T J, Elatikpo S M. 2022. A general ore formation model for metasediment-hosted Sb-(Au-W) mineralization of the Woxi and Banxi deposits in South China. Chemical Geology, 607: 121020.

    • Liang Yi, Hoshino K. 2015. Thermodynamic calculations of AuxAg1-x - fluid equilibria and their applications for ore-forming conditions. Applied Geochemistry 52: 109~117.

    • Liang Yi, Wang Guogang, Liu Shengyong, Sun Yuzhen, Huang Yonggang, Hoshino K. 2015. A study on the mineralization of the Woxi Au-Sb-W deposit, western Hunan, China. Resource Geology, 65: 27~38.

    • Liang Yi, Zhong Jiansheng, Pei Qiuming, Hoshino K, 2021. An application for thermodynamic calculation of AuxAg1- -fluid equilibria super-pure native gold in Woxi Au-Sb-W deposit, western Hunan, China. Geochemistry International, 59(3): 314~327.

    • Liang Boyi, Zhang Zhenru. 1988. A geneto-mineralogical study of main minerals from the Woxi Au-Sb-W deposit, western Hunan. Geology and Prospecting, (8): 27~32 (in Chinese with English abstract).

    • Morrison G W, Rose W J, Jaireth S. 1991. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geology Reviews, 6: 333~364.

    • Pal'yanova G A, Kolonin G R. 2007. Geochemical mobility of Au and Ag during hydrothermal transfer and precipitation: Thermodynamic simulation. Geochemistry International, 45: 744~757.

    • Pal'yanova G A. 2008. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chemical Geology, 255: 399~413.

    • Peng Bo, Piestrzynski A, Chen Guanghao. 2000. Super-pure native gold in W-Sb-Au ores from the Woxi deposit in western Hunan Province, China. Geotectonica et Metallogeni, 24(1): 51~56 (in Chinese with English abstract).

    • Peng Bo, Chen Guanghao, Piestrzynski A. 2003. Ore mineralogy of stibnite ore veins and its genetic implications for the W-Sb-Au ore deposit at Woxi, western Hunan, China. Acta Mineralogica Sinica 23(1): 82~90 (in Chinese with English abstract).

    • Peng Bo, Frei R. 2004. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (western Hunan, China). Mineralium Deposita, 39(3): 313~327.

    • Peng Jiantang, Hu Ruizhong, Zhao Junhong, Fu Yazhou, Yuan Shunda. 2005. Rare earth element (REE) geochemistry for scheelite from the Woxi Au-W-Sb depsosit, western Hunan. Geochimica, 34(2): 115~122 (in Chinese with English abstract).

    • Tagirov B R, Salvi S, Schott J, Baranova N N. 2005. Experimental study of gold-hydrosulphide complexing in aqueous solutions at 350~500℃, 500 and 1000 bars using mineral buffers. Geochimica et Cosmochimica Acta, 69: 2119~2132.

    • Yang Hang, Wu Peng, Zhang Yan, Han Runsheng, Jiang Longyan, Jiang Xiaojun, Guan Shenjin. 2021. Genetic connection of Pb-Ag-Au polymetallic deposit in the Chuxiong basin, central Yunnan Province: Evidence from trace elements and S isotope of metallic minerals. Acta Geologica Sinica, 95(12): 3799~3819 (in Chinese with English abstract).

    • Yang Sixue, Blum N. 1999. Arsenic as an indicator element for gold exploration in the region of the Xiangxi Au-Sb-W deposit, NW Hunan, PR China. Journal of Geochemical Exploration, 66: 441~456.

    • Zhang Baoke, Wen Hongli, Wang Lei, Ma Shengfeng, Gong Aihua. 2011. Quantification of multi elements in geological samples by inductively coupled plasma-mass spectrometry with pressurized decomposition-hydrochloric acid extraction. Rock and Mineral Analysis, 30(6): 737~744 (in Chinese with English abstract).

    • Zhang Liang, Yang Liqiang, Groves D I, Sun Sichen, Liu Yu, Wang Jiuyi, Li Ronghua, Wu Shenggang, Gao Lei, Guo Jinlong, Chen Xiaogang, Chen Junhui. 2019. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China. Ore Geology Reviews, 115: 103173.

    • Zhang Zhenru, Guo Dingliang. 1998. Factors affecting the fineness of goldminerals and their mechanisms. Gold Science and Technology, 4: 24~28 (in Chinese with English abstract).

    • Zhu Yanan, Peng Jiantang. 2015. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China. Ore Geology Reviews, 65: 55~69.

    • 陈明辉, 杨洪超, 娄亚利, 包正相, 鲍珏敏. 2008. 湘西沃溪钨锑金矿床成矿的独特性. 地质找矿论丛, 23(1): 32~42.

    • 董树义, 顾雪祥, Oskar S, Franz V, 刘建明, 郑明华, 程文斌. 2008. 湖南沃溪W-Sb-Au矿床成因的流体包裹体证据. 地质学报 82 (5): 641~647.

    • 顾雪祥, 刘建明, Oskar S, Franz V, 郑明华. 2003. 湖南沃溪钨-锑-金矿床的矿石组构学特征及其成因意义. 矿床地质, 22(1): 107~120.

    • 顾雪祥, 刘建明, Oskar S, Franz V, 郑明华. 2004. 湖南沃溪钨-锑-金建造矿床同生成因的微量元素和硫同位素证据. 地质科学, 39(3): 424~439.

    • 李长顺. 1995. 影响自然金和银金矿成色的因素. 黄金地质, 3: 61~66.

    • 梁博益, 张振儒. 1988. 湘西沃溪金锑钨矿床成因矿物学研究. 地质与勘探, (8): 27~32.

    • 彭渤, Piestrzynski A, 陈广浩. 2000. 湘西沃溪钨锑金矿床超纯自然金. 大地构造与成矿学. 24(1): 51~56.

    • 彭渤, 陈广浩, Piestrzynski A. 2003. 湘西沃溪钨锑金矿床辉锑矿脉矿物学特征及其矿床成因指示. 矿物学报, 23(1): 82~90.

    • 彭建堂, 胡瑞忠, 赵军红, 符亚洲, 袁顺达. 2005. 湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学. 地球化学. 34(2): 115~122.

    • 杨航, 吴鹏, 张艳, 韩润生, 姜龙燕, 江小均, 管申进. 2021. 滇中楚雄盆地Pb-Ag-Au多金属矿床成因联系: 金属矿物微量元素和硫同位素的证据. 地质学报, 95(12): 3799~3819.

    • 张保科, 温宏利, 王蕾, 马生风, 巩爱华. 2011. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 30(6): 737~744.

    • 张振儒, 郭定良. 1998. 影响金矿物成色的因素及机理. 黄金科学技术, 4: 24~28.

  • 参考文献

    • Akinfiev N N, Zotov A V. 2010. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0~600 ℃ and pressures of 1~3000 bar. Geochemistry International, 48: 714~720.

    • Chen Minghui, Yang Hongchao, Lou Yali, Bao Zhengxiang, Bao Yumin. 2008. Minerogenic particularity of Woxi W-Sb-Au deposit in west Hunan. Contributions to Geology and Mineral Resources Research, 23(1): 32~42 (in Chinese with English abstract).

    • Dai Junfeng, Xu Deru, Chi Guoxiang, Li Zenghua, Deng Teng, Zhang Jian, Li Bin. 2022. Origin of the Woxi orogenic Au-Sb-W deposit in the west Jiangnan Orogen of South China: Constraints from apatite and wolframite U-Pb dating and pyrite in-situ S-Pb isotopic signatures. Ore Geology Review, 150, 105134.

    • Dong Shuyi, Gu Xuexiang, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Chen Wenbin. 2008. Fluid inclusion evidence for the genesis of the Woxi W-Sb-Au deposit, Hunan Province. Acta Geologica Sinica, 82 (5): 641~647 (in Chinese with English abstract).

    • Fisher N H. 1945. The fineness of gold, with special reference to the Morobe gold field, New Guinea. Economic Geology, 40: 537~563.

    • Fu Shanling, Hu Ruizhong, Bi Xianwu, Sullivan N A, Yan Jun. 2020a. Trace element composition of stibnite: Substitution mechanism and implications for the genesis of Sb deposits in southern China. Applied Geochemistry, 118, 104637.

    • Fu Shanling, Lan Qing, Yan Jun. 2020b. Trace element chemistry of hydrothermal quartz and its genetic significance: A case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geology Reviews, 126, 103732.

    • Groves D I. 1993. The crustal continuum model for Late-Archean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28: 366~374.

    • Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G, Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13: 7~27.

    • Gu Xuexiang, Liu Jianming, Oskar S, Franz V, Zheng Minghua. 2003. Ore fabric characteristics of Woxi W-Sb-Au deposit in Hunan and their genetic significance. Mineral Deposits, 22(1): 107~120 (in Chinese with English abstract).

    • Gu Xuexiang, Liu Jianming, Oskar S, Franz V, Zheng Minghua. 2004. Syngenetic of the Woxi W-Sb-Au deposit in Hunan: Evidence from trace elements and sulfur isotopes. Chinese Journal of Geology, 39(3): 424~439 (in Chinese with English abstract).

    • Gu Xuexiang, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Fu Shaohong. 2007. Rare earth element geochemistry of the Woxi W-Sb-Au deposit, Hunan Province, South China. Ore Geology Review, 31: 319~336.

    • Gu Xuexiang, Zhang Yongmei, Oskar S, Franz V, Liu Jianming, Zheng Minghua, Zheng L. 2012. The Woxi W-Sb-Au deposit in Hunan, South China: An example of Late Proterozoic sedimentary exhalative (SEDEX) mineralization. Journal of Asian Earth Sciences, 57: 54~75.

    • Hu Xiongwei, Murao S, Huang Xuchuang. 1996. Genetic model of gold-antimony-tungsten mineralization: Evidence from geology and mineralization of the Wuxi deposit, Hunan, China. Bulletin of the Geological Survey of Japan, 47: 577~597.

    • Johnson J W, Oelkers E H, Helgeson H C. 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0℃ to 1000℃. Computer Geoscience, 18: 899~947.

    • Li Changshun. 1995. Factors effect on native gold and electrum. Gold Geology, 3: 61~66 (in Chinese with English abstract).

    • Li Huan, Zhu Dapeng, Shen Liwei, Algeo T J, Elatikpo S M. 2022. A general ore formation model for metasediment-hosted Sb-(Au-W) mineralization of the Woxi and Banxi deposits in South China. Chemical Geology, 607: 121020.

    • Liang Yi, Hoshino K. 2015. Thermodynamic calculations of AuxAg1-x - fluid equilibria and their applications for ore-forming conditions. Applied Geochemistry 52: 109~117.

    • Liang Yi, Wang Guogang, Liu Shengyong, Sun Yuzhen, Huang Yonggang, Hoshino K. 2015. A study on the mineralization of the Woxi Au-Sb-W deposit, western Hunan, China. Resource Geology, 65: 27~38.

    • Liang Yi, Zhong Jiansheng, Pei Qiuming, Hoshino K, 2021. An application for thermodynamic calculation of AuxAg1- -fluid equilibria super-pure native gold in Woxi Au-Sb-W deposit, western Hunan, China. Geochemistry International, 59(3): 314~327.

    • Liang Boyi, Zhang Zhenru. 1988. A geneto-mineralogical study of main minerals from the Woxi Au-Sb-W deposit, western Hunan. Geology and Prospecting, (8): 27~32 (in Chinese with English abstract).

    • Morrison G W, Rose W J, Jaireth S. 1991. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geology Reviews, 6: 333~364.

    • Pal'yanova G A, Kolonin G R. 2007. Geochemical mobility of Au and Ag during hydrothermal transfer and precipitation: Thermodynamic simulation. Geochemistry International, 45: 744~757.

    • Pal'yanova G A. 2008. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chemical Geology, 255: 399~413.

    • Peng Bo, Piestrzynski A, Chen Guanghao. 2000. Super-pure native gold in W-Sb-Au ores from the Woxi deposit in western Hunan Province, China. Geotectonica et Metallogeni, 24(1): 51~56 (in Chinese with English abstract).

    • Peng Bo, Chen Guanghao, Piestrzynski A. 2003. Ore mineralogy of stibnite ore veins and its genetic implications for the W-Sb-Au ore deposit at Woxi, western Hunan, China. Acta Mineralogica Sinica 23(1): 82~90 (in Chinese with English abstract).

    • Peng Bo, Frei R. 2004. Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (western Hunan, China). Mineralium Deposita, 39(3): 313~327.

    • Peng Jiantang, Hu Ruizhong, Zhao Junhong, Fu Yazhou, Yuan Shunda. 2005. Rare earth element (REE) geochemistry for scheelite from the Woxi Au-W-Sb depsosit, western Hunan. Geochimica, 34(2): 115~122 (in Chinese with English abstract).

    • Tagirov B R, Salvi S, Schott J, Baranova N N. 2005. Experimental study of gold-hydrosulphide complexing in aqueous solutions at 350~500℃, 500 and 1000 bars using mineral buffers. Geochimica et Cosmochimica Acta, 69: 2119~2132.

    • Yang Hang, Wu Peng, Zhang Yan, Han Runsheng, Jiang Longyan, Jiang Xiaojun, Guan Shenjin. 2021. Genetic connection of Pb-Ag-Au polymetallic deposit in the Chuxiong basin, central Yunnan Province: Evidence from trace elements and S isotope of metallic minerals. Acta Geologica Sinica, 95(12): 3799~3819 (in Chinese with English abstract).

    • Yang Sixue, Blum N. 1999. Arsenic as an indicator element for gold exploration in the region of the Xiangxi Au-Sb-W deposit, NW Hunan, PR China. Journal of Geochemical Exploration, 66: 441~456.

    • Zhang Baoke, Wen Hongli, Wang Lei, Ma Shengfeng, Gong Aihua. 2011. Quantification of multi elements in geological samples by inductively coupled plasma-mass spectrometry with pressurized decomposition-hydrochloric acid extraction. Rock and Mineral Analysis, 30(6): 737~744 (in Chinese with English abstract).

    • Zhang Liang, Yang Liqiang, Groves D I, Sun Sichen, Liu Yu, Wang Jiuyi, Li Ronghua, Wu Shenggang, Gao Lei, Guo Jinlong, Chen Xiaogang, Chen Junhui. 2019. An overview of timing and structural geometry of gold, gold-antimony and antimony mineralization in the Jiangnan Orogen, southern China. Ore Geology Reviews, 115: 103173.

    • Zhang Zhenru, Guo Dingliang. 1998. Factors affecting the fineness of goldminerals and their mechanisms. Gold Science and Technology, 4: 24~28 (in Chinese with English abstract).

    • Zhu Yanan, Peng Jiantang. 2015. Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at the Woxi orogenic Au-Sb-W deposit, western Hunan, South China. Ore Geology Reviews, 65: 55~69.

    • 陈明辉, 杨洪超, 娄亚利, 包正相, 鲍珏敏. 2008. 湘西沃溪钨锑金矿床成矿的独特性. 地质找矿论丛, 23(1): 32~42.

    • 董树义, 顾雪祥, Oskar S, Franz V, 刘建明, 郑明华, 程文斌. 2008. 湖南沃溪W-Sb-Au矿床成因的流体包裹体证据. 地质学报 82 (5): 641~647.

    • 顾雪祥, 刘建明, Oskar S, Franz V, 郑明华. 2003. 湖南沃溪钨-锑-金矿床的矿石组构学特征及其成因意义. 矿床地质, 22(1): 107~120.

    • 顾雪祥, 刘建明, Oskar S, Franz V, 郑明华. 2004. 湖南沃溪钨-锑-金建造矿床同生成因的微量元素和硫同位素证据. 地质科学, 39(3): 424~439.

    • 李长顺. 1995. 影响自然金和银金矿成色的因素. 黄金地质, 3: 61~66.

    • 梁博益, 张振儒. 1988. 湘西沃溪金锑钨矿床成因矿物学研究. 地质与勘探, (8): 27~32.

    • 彭渤, Piestrzynski A, 陈广浩. 2000. 湘西沃溪钨锑金矿床超纯自然金. 大地构造与成矿学. 24(1): 51~56.

    • 彭渤, 陈广浩, Piestrzynski A. 2003. 湘西沃溪钨锑金矿床辉锑矿脉矿物学特征及其矿床成因指示. 矿物学报, 23(1): 82~90.

    • 彭建堂, 胡瑞忠, 赵军红, 符亚洲, 袁顺达. 2005. 湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学. 地球化学. 34(2): 115~122.

    • 杨航, 吴鹏, 张艳, 韩润生, 姜龙燕, 江小均, 管申进. 2021. 滇中楚雄盆地Pb-Ag-Au多金属矿床成因联系: 金属矿物微量元素和硫同位素的证据. 地质学报, 95(12): 3799~3819.

    • 张保科, 温宏利, 王蕾, 马生风, 巩爱华. 2011. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 30(6): 737~744.

    • 张振儒, 郭定良. 1998. 影响金矿物成色的因素及机理. 黄金科学技术, 4: 24~28.