en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘清,女,1997年生。硕士研究生,地质资源与地质工程专业,研究方向为矿物学。E-mail:lq07230918@163.com。

通讯作者:

郭国林,男,1979年生。教授,主要从事岩浆岩岩石学方面教学与研究工作。E-mail:gglrobin@163.com。

参考文献
Akinin V V, Sobolev A V, Ntaflos T, Richter W. 2005. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): Application to composition and evolution of mantle melts. Contributions to Mineralogy and Petrology, 150(1): 85~101.
参考文献
Bai Daoyuan, Jia Baohua, Liu Wei, Chen Bihe, Liu Yaorong, Zhang Xiaoyang. 2010. Zircon SHRIMP U-Pb dating of the igneous rocks from Chengbu, Hunan: Constraint on the Neoproterozoic tectonic evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12): 1715~1726 (in Chinese with English abstract).
参考文献
Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2): 1~24.
参考文献
Bu Ling. 2017. Geologicalage, stratigraphic sequence and tectono-paleogeographic significances of the Heshangzhen Group in the eastern part of Jiangnan ancient land in China. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Bureau of Geology and Mineral Resources of Zhejiang Province. 1989. Regional Geology of Zhejiang Province. Beijing: Geological Publishing House (in Chinese).
参考文献
Carracedo J C, Day S J, Guillou H, Gravestock P. 1999. Later stages of volcanic evolution of La Palma, Canary Islands: Rift evolution, giant landslides, and the genesis of the Caldera de Taburiente. Geological Society of America Bulletin, 111(5): 755~768.
参考文献
Dai Liqun, Zhao Zifu, Zheng Yongfei, Zhang Juan. 2015. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochemistry, Geophysics, Geosystems, 16(3): 659~680.
参考文献
Davidson J P, Morgan D J, Charlier B L A, Harlou R, Hora J M. 2007. Microsampling and isotopic analysis of igneous rocks: Implications for the study of magmatic systems. Annual Review of Earth and Planetary Sciences, 35: 273~311.
参考文献
Gao Shan, Rudnick R L, Xu Wenliang, Yuan Hongling, Liu Yongsheng, Walker R J, Puchtel I S, Liu Xiaoming, Huang Hua, Wang Xiaorui, Yang Jie. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2): 41~53.
参考文献
Guo Feng, Nakamuru E, Fan Weiming, Kobayoshi K, Li Chaowen. 2007. Generation of Palaeocene adakitic andesites by magma mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661~692.
参考文献
Guo Fusheng. 2014. The Geology of Jiangshan and a Guide to Practicing of Geological Mapping. Beijing: Geological Publishing House (in Chinese).
参考文献
Haase K M, Mühe R, Stoffers P. 2000. Magmatism during extension of the lithosphere: Geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chemical Geology, 166(3-4): 225~239.
参考文献
Jia Jinsheng, Cao Suqiao, Li Hanming, Hong Hanlie, Zhong Zengqiu, Wang Chaowen, Wang Hao, Yin Ke, Han Wen. 2016. Zircon U-Pb age and geochemistry of the rhyolites in Kaihua, western Zhejiang Province and their geological implications. Geotectonica et Metallogenia, 40(4): 772~782 (in Chinese with English abstract).
参考文献
Kou Caihua, Zhang Zhaochong, Hou Tong, Liao Baoli, Li Hongbo. 2011. OIB-type picritic porphyrite from Jianchuan in the western Yunnan Province: Results of break-off of the subducting plate? Acta Petrologica Sinica, 27(9): 2679~2693 (in Chinese with English abstract).
参考文献
Larrea P, França Z, Lago M, Widom E, Galé C, Ubide T. 2013. Magmatic processes and the role of antecrysts in the genesis of Corvo Island (Azores Archipelago, Portugal). Journal of Petrology, 54(4): 769~793.
参考文献
Le Base M J. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267~288.
参考文献
Lei Chuanyang. 2021. Magmatic mixing and dynamic background of the Awengcuo composite intrusion in the western section of the Bannujiang metallogenic belt. PhD degree dissertation of Chengdu University of Technology (in Chinese with English abstract).
参考文献
Leterrier J, Maury R C, Thonon P, Girard D, Marchal M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59(1): 139~154.
参考文献
Li Changnian. 2002. Magmatic mixing and its research review. Geological Scientific and Technological Information, (4): 49~54 (in Chinese with English abstract).
参考文献
Li Changnian, Xue Rebirth, Liao Qun'an, Zhao Liangzheng. 1996. The first magmatic mixed complex group in China was found in Shangrao area, Jiangxi Province. Geological Science and Technology Information, 15(1): 6 (in Chinese with English abstract).
参考文献
Li Xianhua. 1999. Constraints from the Geochemistry of the Crustal Growth and Evolution during Proterozoic: A Case Study from South China, Chemical Geodynamics. Beijing: Science Press (in Chinese).
参考文献
Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341~357.
参考文献
Li Xianhua, Li Wuxian, Li Zhengxiang, Lo Chinghua, Wang Jian, Ye Meifang, Yang Yueheng. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2): 117~128.
参考文献
Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang Shihong, Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85~109.
参考文献
Lloyd F E. 1981. Upper-mantle metasomatism beneath a continental rift: Clinopyroxenes in alkali mafic lavas and nodules from Sruth West Uganda. Mineralogical Magazine, 44(335): 315~323.
参考文献
Loucks R R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology, 18(4): 346~349.
参考文献
Lu Chengzhong, Gu Mingguang. 2007. Definition of Neoproterozoic bimodal volcanic rocks in the south of Hangzhou and its tectonic significance. Geology in China, 34(4): 565~571 (in Chinese with English abstract).
参考文献
Lu Chengzhong, Yang Shufeng, Gu Mingguang, Dong Chuanwan. 2009. Geochemical characteristics of Late Jinningian bimodal magmatic complex suite in the area of Ciwu, Zhejiang: Petrological record of Rodinia supercontinent break. Acta Petrologica Sinica, 25(1): 67~76 (in Chinese with English abstract).
参考文献
Morimoto N, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman K, Aoko, Gottardi, G. 1988. Nomenclature of pyroxenes. Mineralogical Magazine, 52(367): 535~550.
参考文献
Neave D A, Putirka K D. 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102(4): 777~794.
参考文献
Neave D A, Namur O, Shorttle O, Holtz F. 2019a. Magmatic evolution biases basaltic records of mantle chemistry towards melts from recycled sources. Earth and Planetary Science Letters, 520: 199~211.
参考文献
Neave D A, Bali E, Guðfinnsson G H, Halldorsson S A, Kahl M, Schmidt A S, Holtz F. 2019b. Clinopyroxene-liquid equilibria and geothermobarometry in natural and experimental tholeiites: The 2014~2015 Holuhraun eruption, Iceland. Journal of Petrology, 60(8): 1653~1680.
参考文献
Nisbet E G, Pearce J A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 149~160.
参考文献
Pilet S, Hernandez J, Villemant B. 2002. Evidence for high silicic melt circulation and metasomatic events in the mantle beneath alkaline provinces: The Na-Fe-augitic green-core pyroxenes in the Tertiary alkali basalts of the Cantal massif (French Massif Central). Mineralogy and Petrology, 76(1): 39~62.
参考文献
Putirka K D. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1): 61~120.
参考文献
Rhodes J M, Dungan M A, Blanchard D P, Long P E. 1979. Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22N on the Mid-Atlantic Ridge. Tectonophysics, 55(1-2): 35~61.
参考文献
Shamberger P J, Garcia M O. 2007. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu‘u ‘Ō ‘ō eruption. Bulletin of Volcanology, 69(4): 345~352.
参考文献
Shu Liangshu, Faure M, Yu Jinhai, Jahn B M. 2011. Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187(3-4): 263~276.
参考文献
Shui Tao, Xu Butai, Liang Huaru, Qiu Yushuang. 1986. Paleoland collisional zone of Jiangshan-Shaoxing. Chinese Science Bulletin, 31(6): 444~448 (in Chinese).
参考文献
Streck M J. 2008. Mineral textures and zoning as evidence for open system processes. Reviews in Mineralogy and Geochemistry, 69(1): 595~622.
参考文献
Su Benxun, Zhou Meifu, Jing Jiejun, Robinson P T, Chen Chen, Xiao Yan, Shi Rendeng, Davide L, Hu Yan. 2019. Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: Constraints from trace element compositions of chromite and olivine. Science Bulletin, 64(2): 108~121.
参考文献
Su Huimin, Zhang Dongyang, Ai Y, Zhang Zhaochong. 2008. Mineralogy of clinopyroxene from the middle devonian volcanic rocks in the south margin of the Altay mountains and its geological significances. Acta Tetrologica et Mineralogica, 82(11): 1602~1612 (in Chinese with English abstract).
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313~345.
参考文献
Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Xu Yigang, Zhao Zhenhua. 2012. Metasomatized lithosphere-asthenosphere interaction during slab roll-back: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos, 155: 67~80.
参考文献
Vernon R H, Etheridge M A, Wall V J. 1988. Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flow. Lithos, 22(1): 1~11.
参考文献
Wang Jian, Pan Guitang. 2009. Neoproterozoic South China Palaeocontinents: An overview. Acta Sedimentologica Sinica, 27(5): 818~825(in Chinese with English abstract).
参考文献
Wang Xudong, Hou Tong, Wang Meng, Zhang Chao, Zhang Zhaochong, Pan R, Marxer F, Zhang Hongluo. 2021. A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5): 621~637.
参考文献
Wang Yadi, Yu Jinhai, Li Xiaoling, Jiang Wei, Xu Hua, Li Minye. 2021. Western boundary between the Yangtze and Cathaysia blocks constrained by Neoproterozoic to Cambrian sedimentary rocks in the northern and eastern Guangxi Province, South China. Acta Geologica Sinica, 95(6): 1712~1726 (in Chinese with English abstract).
参考文献
Wang Yuwang, Wang J B, Long Lingli, Zou Tao, Tang Pingzhi, Wang Lijuan. 2012. Type, indicator, mechanism, model and relationship with mineralization of magma mixing: A case study in North Xinjiang. Acta Petrologica Sinica, 28(8): 2317~2330 (in Chinese with English abstract).
参考文献
Wang Zhengjiang, Wang Jian, Duan Taizhong, Xie Yuan, Zhuo Jiewen, Yang Ping. 2010. Geochronology of middle Neoproterozoic volcanic deposits in Yangtze Craton interior of South China and its implications to tectonic settings. Science China Earth Sciences, 53(9): 1307~1315.
参考文献
Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, Huang Zhizhong. 2012. Tectonic environment of the metamorphosed basement in the Jiangnan orogen and its evolutional features. Geological Review, 58(3): 401~413 (in Chinese with English abstract).
参考文献
Wass S Y. 1979. Mutiple origine of clinopyroxenes in alkali basalti crocks. Lithos, 12: 115~132.
参考文献
Wu Xueqin, Tang Xiaoming, Luo Mansheng, Jin Chong. 2019. Geology of Jiangshan. Wuhan: China University of China Press (in Chinese).
参考文献
Xu Butai, Qiu Yushuang. 1994. A isotope geochronology study of Shangshu Formation in northwestern Zhejiang Province. Acta Geoscientica Sinica, 15(1-2): 51~59 (in Chinese with English abstract).
参考文献
Xu Yigang, Huang Xiaolong, Menzies M A, Wang Rucheng. 2003. Highly magnesian olivines and green-core clinopyroxenes in ultrapotassic lavas from western Yunnan, China: Evidence for a complex hybrid origin. European Journal of Mineralogy, 15(6): 965~975.
参考文献
Zhang Heng, Liu Yanxue, Ding Xiaozhong, Gao Linzhi, Yang Chun, Zhang Jibiao, Gong Chengqiang, Liu Haogang. 2020. Geochronology, geochemistry, whole rock Sr-Nd and zircon Hf-O isotopes of the early Neoproterozoic volcanic rocks in Jiangshan, eastern part of the Jiangnan Orogen: Constraints on petrogenesis and tectonic implications. Acta Geologica Sinica-English Edition, 94(4): 1117~1137.
参考文献
Zhang Qi, Pan Guoqiang, Li Chengdong, Jin Weijun, Jia xiuqin. 2007. Granitic magma mixing versus basaltic magma mixing: New viewpoints on granitic magma mixing process: Some crucial questions on granite study. Acta Petrologica Sinica, 23(5): 1141~1152 (in Chinese with English abstract).
参考文献
Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglin, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351~383.
参考文献
Zhou Xiaohua, Chen Rong, Zhang Wei, Li Chunhai, Gao Tianshan, Ma Xue, Zhu Qingbo, Jin Guodong. 2019. Zircon SHRIMP geochronology and Hf isotopic characteristics of volcanic rocks from the Yifeng Formation in the southern margin of the Jiuling uplift in the Jiangnan orogen. Acta Geologica Sinica, 93(5): 1069~1080 (in Chinese with English abstract).
参考文献
Zhou Xinmin, Zhu Yunhe, Chen Jianguo. 1990. Discovery of ultramafic spherulite and its genesis. Science Bulletin, (8): 604~606 (in Chinese).
参考文献
Zhou Xinmin, Zhu Yunhe. 1992. Magmatic mixing and Precambrian geology on both sides of the Jiangshao fault zone. Science of China (Part B), 22(3): 296~303 (in Chinese).
参考文献
柏道远, 贾宝华, 刘伟, 陈必河, 刘耀荣, 张晓阳. 2010. 湖南城步火成岩锆石SHRIMP U-Pb 年龄及其对江南造山带新元古代构造演化的约束. 地质学报, 84(12): 1715~1726.
参考文献
卜令. 2017. 江南古陆东段河上镇群地质年代、地层序列与构造古地理意义. 中国地质大学(北京)硕士学位论文.
参考文献
郭福生. 2014. 江山地质概论及区域地质调查实习指导书. 北京: 地质出版社.
参考文献
贾锦生, 曹素巧, 李汉明, 洪汉烈, 钟增球, 王朝文, 王浩, 殷科, 韩文. 2016. 浙西开化地区流纹岩锆石U-Pb年代学、地球化学特征及其地质意义. 大地构造与成矿学, 40(4): 772~782.
参考文献
寇彩化, 张招崇, 廖宝丽, 李宏博, 侯通. 2011. 滇西剑川苦橄玢岩中单斜辉石的矿物学特征及其地质意义. 岩石矿物学杂志, 30(3): 449~462.
参考文献
雷传扬. 2021. 班-怒成矿带西段阿翁错复式岩体的岩浆混合作用及动力学背景. 成都理工大学博士学位论文.
参考文献
李昌年. 2002. 岩浆混合作用及其研究评述. 地质科技情报, (4): 49~54.
参考文献
李昌年, 薛重生, 廖群安, 赵良政. 1996. 江西上饶地区发现我国首例岩浆混合杂岩体群. 地质科技情报, 15(1): 6.
参考文献
李献华. 1999. 元古宙地壳增长和演化的地球化学制约——以华南为例. 北京: 科学出版社.
参考文献
卢成忠, 顾明光. 2007. 杭州南部新元古代双峰式火山岩的厘定及其构造意义. 中国地质, 34(4): 565~571.
参考文献
卢成忠, 杨树锋, 顾明光, 董传万. 2009. 浙江次坞地区晋宁晚期双峰式岩浆杂岩带的地球化学特征: Rodinia 超大陆裂解的岩石学记录. 岩石学报, 25(1): 67~76.
参考文献
水涛, 徐步台, 梁如华, 邱郁双. 1986. 绍兴江山古陆对接带. 科学通报, 31(6): 444~448.
参考文献
苏慧敏, 张东阳, 艾羽, 张招崇. 2008. 阿尔泰南缘中泥盆世北塔山组火山岩中单斜辉石的矿物学研究及其地质意义. 地质学报, 82(11): 1602~1612.
参考文献
汪正江, 王剑, 段太忠, 谢渊, 卓皆文, 杨平. 2010. 扬子克拉通内新元古代中期酸性火山岩的年代学及其地质意义. 中国科学: 地球科学, 40(11): 1543~1551.
参考文献
王剑, 潘桂棠. 2009. 中国南方古大陆研究进展与问题评述. 沉积学报, 27(5): 818~825.
参考文献
王雅迪, 于津海, 李晓玲, 蒋威, 许华, 李敏业. 2021. 扬子地块与华夏地块的西段界线: 来自桂北和桂东新元古界-寒武系沉积岩的证据. 地质学报, 95(6): 1712~1726.
参考文献
王玉往, 王京彬, 龙灵利, 邹滔, 唐萍芝, 王莉娟. 2012. 岩浆混合作用的类型、标志、机制、模式及其与成矿的关系——以新疆北部为例. 岩石学报, 28(8): 2317~2330.
参考文献
王自强, 高林志, 丁孝忠, 黄志忠. 2012. “江南造山带”变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401~413.
参考文献
吴雪琴, 唐小明, 骆满生, 金宠. 2019. 江山地质. 武汉: 中国地质大学出版社.
参考文献
徐步台, 邱郁双. 1994. 浙西北上墅组同位素年代地层学研究. 地球学报, 15(1-2): 51~59.
参考文献
颜铁增, 龚日祥, 汪庆华, 余心起, 华锡宏. 2009. 中元古界蒙山组、陈塘坞组的建立. 地层学杂志, 33(3): 249~259.
参考文献
张旗, 潘国强, 李承东, 金惟俊, 贾秀勤. 2007. 花岗岩混合问题: 与玄武岩对比的启示——关于花岗岩研究的思考之一. 岩石学报, 23(5): 1141~1152.
参考文献
浙江省地质矿产局. 1989. 浙江省区域地质志. 北京: 地质出版社.
参考文献
周效华, 陈荣, 张炜, 李春海, 高天山, 马雪, 朱清波, 靳国栋. 2019. 江南造山带九岭南缘宜丰岩组火山岩锆石SHRIMP年代学及Hf同位素特征. 地质学报, 93(5): 1069~1080.
参考文献
周新民, 朱云鹤, 陈建国. 1990. 超镁铁球状岩的发现及其成因研究. 科学通报, (8): 604~606.
参考文献
周新民, 朱云鹤. 1992. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质. 中国科学(B辑), 22(3): 296~303.
目录contents

    摘要

    岩浆化学混合作用长期通过岩石地球化学进行识别,一直缺乏直接的矿物学证据。针对这一问题,我们对浙江江山碗瑶乡上墅组内薄层状玄武粗安岩夹层中的单斜辉石矿物环带开展了系统的矿物学研究工作,探讨其岩石成因、构造背景和岩浆动力学过程,为江山地区新元古代岩浆构造演化过程提供新的证据。研究表明,单斜辉石以斑晶和基质两种形式产出,斑晶发育核-幔-边结构,其中幔部和边部包含有较多的钛铁矿、单斜辉石和斜长石等矿物包裹体,表明经历了复杂的岩浆活动过程。电子探针分析表明,基质和斑晶辉石都属于普通辉石,斑晶辉石从核部、幔部到边部成分呈现规律性变化,CaO和MgO含量增加、Al2O3和Na2O、K2O含量逐渐降低,但是基质辉石具有相对较低的Ti、Al和Na含量,且与斑晶边缘成分类似。单斜辉石原位微量元素组成表明,斑晶单斜辉石从核部到边部具有相似的特征,呈现Th、La、Nd和Ta等元素相对富集,Nb、K、Ti和Pb等元素相对亏损的特点。温压计算结果显示斑晶和基质的形成温度较低(1040.3~1122.3℃),斑晶核部结晶深度较深(10~12 km),而富含矿物包体的幔部和边部结晶深度较浅(3~6 km),并且幔部具有最低的稀土总量(∑REE=44.33×10-6~63.66×10-6)以及无明显Eu(Eu/Eu*=0.98~1.12)负异常。上墅组玄武粗安岩中单斜辉石的成分特征和核-幔-边结构指示岩浆混合作用的存在,可能系由偏基性和偏酸性的岩浆在中—上地壳深度发生混合的结果,江山玄武粗安岩的形成可能与新元古代晚期华夏与扬子两大陆块碰撞拼贴完成后古岛弧内部的伸展有关。

    Abstract

    Magma mixing has been recognized by bulk geochemistry for a long time, but without direct mineralogical evidence presented. In this regard, we have carried out a systematic mineralogical study on the clinopyroxene (Cpx) both occur as phenocryst and matrix in the thin-bedded basaltic trachyandesite interlayers in the Shangshu Formation at Wanyao Township, Jiangshan city in Zhejiang Province, in order to reveal its petrogenesis, tectonic setting and magmatic dynamic processes, and provide new evidence for the evolution of Proterozoic magmatic structure in the Jiangshan area. The clinopyroxene phenocrysts develop a core-mantle-rim texture, and the mantle and rim contain many mineral inclusions such as ilmenite, clinopyroxene and plagioclase, indicating that it has experienced complex process of magmatic evolution. Both the phenocryst and matrix the clinopyroxene are augite, the composition of phenocryst, from core through mantle to rim, show regular changes, i.e., the contents of CaO and MgO increased, and the contents of Al2O3, Na2O, and K2O gradually decreased, but the matrix Cpx has lower Ti, Al and Na content and similar to the edge composition of the phenocryst. In-situ trace element composition of the zoned phenocrystal show similar characteristics from core through mantle to rim, showing the enrichment in Th, La, Nd and Ta and the depletion of Nb, K, Ti and Pb. Calculated temperature and pressure results show that the formation temperature of phenocrysts and matrix is relatively low (1040.3~1122.3℃), but the crystallization depth of phenocrysts is deep (10~12 km), while the crystallization depth of mantle and edge rich in mineral inclusions is shallow (3~6 km), and the mantle has the lowest ∑REE contents (44.33×10-6~63.66×10-6) and without a negative Eu anomaly (Eu/Eu*=0.98~1.12). The composition and core-mantle-rim texture of clinopyroxene phenocrysts in the Shangshu Formation indicate the existence of magma mixing, which maybe the result of the mixing of basic and acidic magmas at the depth of middle-upper crust. The formation of Jiangshan basaltic trachyandesite may be related to the extension of the paleo-island arc after the collision and splicing of the Cathaysian and Yangtze continental blocks in the late Neoproterozoic.

  • 岩浆混合作用与区域构造活动息息相关,指一种岩浆在其储源、运移和侵位过程中,被另一种或几种成分不同的岩浆注入、充填,发生机械混合或不同程度均匀混合的作用,多发生在俯冲造山带、大陆热点和地壳拉张区域的断裂带发育区内(Haase et al.,2000; Shamberger and Garcia,2007)。岩浆混合作用分为机械混合和化学混合两种,是造成火成岩复杂性和多样性的重要原因,可为探索地壳演化、壳幔相互作用提供重要线索(李昌年等,1996)。岩浆机械混合作用形成的岩石在宏观上一般可见到不均一现象,如火成岩体中广泛发育铁镁质暗色包体,甚至可出现包体与寄主岩之间相互包裹(Bonin,2004; 雷传扬,2021)。岩浆化学混合作用体现在岩石组构上具有均一性,一般肉眼上见不到端元组分或混合残留物,主要体现在地球化学特征上(张旗等,2007; 王玉往等,2012),如岩石的稀土配分曲线位于基性端元和酸性端元之间且呈扇形分布(李昌年等,2002)。岩浆化学混合作用发生的具体过程还存在争议,但是这些过程都会被矿物记录下来,因此可以从矿物的显微结构和成分来揭示岩浆发生混合作用的具体细节。

  • 江山-绍兴断裂带新元古代岩浆活动强烈,发育双峰式火山岩,并具有阶段性特征(卢成忠和顾明光,2007; Li Xianhua et al.,2008; Wang Yuwang et al.,2012; 贾锦生等,2016; Zhang Heng et al.,2020),是研究岩浆混合作用的理想场所。前人研究发现,新元古代江山-绍兴断裂带东段发生了大范围的闪长质岩浆侵入及其与辉闪质岩浆的岩浆混合作用(周新民和朱云鹤,1992),如诸暨县璜山—石角地区存在深成辉闪岩和闪长岩的岩浆混合现象,以及两岩浆混合边界上辉闪岩的球状构造(周新民等,1990),其中的石角辉闪岩和璜山闪长岩是新元古代由两种不同成分岩浆沿江绍断裂带混杂侵位于同一带状空间后,结晶形成的复合侵入体(Vernon et al.,1988)。然而,江绍断裂带自江山往西却鲜有岩浆混合作用的报道,究竟是江山-绍兴断裂带西段岩浆混合作用不如东段发育还是混合作用方式的不同从而导致难以识别?这个问题有待进一步查证。为了解决这一问题,笔者最近在浙江江山地区开展了详细的地质调查工作,发现上墅组中发育了一套薄层玄武质粗安岩,岩石手标本肉眼可见有明显斑晶,镜下鉴定这些斑晶为单斜辉石,有明显的环带特征。我们对这些单斜辉石斑晶环带开展了精细矿物学研究工作,以期根据矿物的显微结构、主微量成分的变化特征揭示单斜辉石矿物环带结构隐含的岩浆动力学过程,为区域构造演化过程研究提供新的证据。

  • 1 区域地质背景

  • 扬子地块和华夏地块在新元古代发生碰撞拼贴并形成江南造山带,至此,统一的华南板块形成(Li Xianhua et al.,2009; Shu Liangshu et al.,2011)。江南造山带保留了一系列新元古代沉积和岩浆作用记录,是研究扬子与华夏两大块体新元古代地球动力学演化过程的理想场所(王剑和潘桂棠,2009; 柏道远等,2010; 汪正江等,2010; 周效华等,2019)。北东走向的江山-绍兴断裂带是分隔扬子与华夏两地块的深大断裂(水涛等,1986; 李献华,1999; 王雅迪等,2021),断裂带内广泛发育的新元古代岩浆岩保留了两大板块碰撞拼贴及后期裂解等过程的信息。区域地质调查显示江绍断裂带内岩浆岩主要以S型、A型花岗岩和火山岩为主(Li Zhengxiang et al.,2003; Zheng Yongfei et al.,2008)。江绍断裂带北侧分布着双溪坞群(平水组、北坞组、岩山组、章村组)、河上镇群(骆家门组、虹赤村组、上墅组)和南华纪盖层(志棠组、休宁组)(浙江省地质矿产局,1989)。双溪坞群由安山岩、玄武安山岩与长英质凝灰岩、凝灰质砂岩和细砂岩组成,形成于岛弧环境(Li Xianhua et al.,2009)。河上镇群主体岩性为岩屑砂岩、粉砂质泥岩、泥岩和中基性熔岩、中酸性火山岩。南华纪盖层岩性早期主要为滨浅海相的砂泥岩,晚期主要为沉积碳酸盐岩(卜令,2017)。

  • 浙江境内的上墅组火山岩系广泛分布于江绍断裂带的萧山—富阳和衢州—江山等地,各处的岩石组合特征有所差异。萧山地区上墅组包括下段中基性熔岩、火山碎屑岩及上段酸性熔岩夹少量火山碎屑岩,年龄约为850 Ma(徐步台和邱郁双,1994)。开化地区上墅组下段发育玄武安山岩,上段为流纹岩、流纹质凝灰岩,上段流纹岩年龄为784~781 Ma(贾锦生等,2016)。

  • 江山地区河上镇群上墅组为一套中酸性—酸性火山熔岩,在空间上呈北东向条带展布,岩性上主要为英安质角砾凝灰岩、流纹质凝灰角砾岩、含角砾岩凝灰岩、流纹质玻屑凝灰岩,夹流纹斑岩及少量的沉凝灰岩,为陆相火山碎屑岩系,年龄约为842 Ma(图1; 吴雪琴等,2019; Zhang Heng et al.,2020),与下伏志棠组呈不整合接触。上覆地层主要有北部出露的寒武系灰岩、页岩,奥陶系泥页岩和石炭系泥质砂砾岩,南部出露的二叠系粉砂岩、灰岩及中生界砂砾岩、泥质粉砂岩,这些地层与上墅组呈不整合接触(郭福生,2014)。本文研究的玄武粗安岩产于上墅组下部,呈薄层状产出于上墅组的流纹质火山岩中。

  • 2 岩相学特征及分析方法

  • 2.1 岩相学特征

  • 玄武粗安岩呈夹层状产于江山上墅组流纹质凝灰岩中,岩石整体呈浅—深灰绿色,致密块状构造,斑状结构。镜下可见斑晶矿物主要有辉石(15%)和斜长石(5%),基质占80%。辉石斑晶粒径约1~3 mm,呈半自形结构,斜长石粒径约1~2 mm,呈自形—半自形结构,基质矿物主要有辉石、斜长石和正长石、钛铁矿等,颗粒较小,多呈自形—半自形结构(图2a、b)。在电子背散射电子(BSE)图像中(图2c、d),辉石斑晶明显可见核-幔-边环带结构,核部较宽较明亮,幔部、边部较窄且具有较多细小的辉石、斜长石和钛铁矿等矿物包裹体。

  • 2.2 分析方法

  • 样品磨制成电子探针片后对主要矿物进行电子探针矿物成分分析,分析测试在东华理工大学核资源与环境国家重点实验室完成。仪器型号为日本电子公司JXA-8530F,分析过程按照国家标准《硅酸盐矿物的电子探针定量分析方法》(GB/T15617—2002)进行,加速电压15 kV,探针束流20 nA,束斑直径5 μm,峰值计数时间设定为20 s,背景计数时间设定为10 s。原始数据采用在线ZAF方法校正,Si、Fe、Mg和Ca标样选用透辉石,Na和Al选用硬玉,Cr选用纯Cr2O3,Ti选用金红石,Mn选用MnO、Si、Ti、Al、Fe、Mg、Na、K、Cr、Mn和Ca的相对精度为±2%。

  • 图1 江山区域地质简图(改自Zhang Heng et al.,2020

  • Fig.1 Geological map of the Jiangshan area (modified from Zhang Heng et al., 2020)

  • 矿物原位微量元素分析在东华理工大学核资源与环境国家重点实验室的激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)上完成。分析仪器配备了一个193 nm准分子气体激光器(Geo Las HD 230V,COHERENT 公司制造),ICP-MS型号为 Agilent 7900。激光剥蚀过程中,氦气和氩气分别作为载气和补充气体,在进入 ICP 前通过T型接头与载气混合。微量元素分析束斑大小为44 μm,能量设定为4 J/cm2,剥蚀频率为6 Hz。在每次激光开始剥蚀矿物之前,监测20 s的空白气体信号,然后连续剥蚀40 s,再利用氦气清洗进样系统30 s,单点总分析时间约为90 s。用于数据校正的外部样品为SRM610、SRM612、BIR-1G、BHVO-2G和BCR-2G。利用GLITTER软件进行离线数据校正,采用SRM610的Si作为归一化元素。大部分微量元素的检出限小于0.1×10-6,相对分析误差小于10%(Su Benxun et al.,2019)。

  • 3 单斜辉石矿物化学特征

  • 3.1 斑晶辉石

  • 单斜辉石的矿物成分电子探针分析结果见表1,从结果来看单斜辉石斑晶种属全部为普通辉石(图3)。单斜辉石斑晶端元组分中Wo(硅辉石):41.03%~42.57%,平均为41.99%; En(顽火辉石):41.22%~43.73%,平均为42.21%; Fs(铁辉石):15.21%~16.38%,平均为15.81%。江山上墅组玄武粗安岩中单斜辉石斑晶的核部到幔部再到边部的Mg#(100Mg/(Mg+Fe)),TiO2、Na2O等化学成分存在一定差异。核部Mg#值介于71.62~72.42之间,平均为71.89; TiO2含量为1.50%~1.57%,平均为1.55%; Al2O3含量为5.64%~5.81%,平均为5.72%; Na2O含量为0.54%~0.60%,平均为0.57%。幔部Mg#值介于71.65~73.91之间,平均为72.94; TiO2含量为1.10%~1.59%,平均为1.30%; Al2O3含量为1.79%~5.74%,平均为3.29%; Na2O含量为0.30%~0.58%,平均为0.40%。边部Mg#值介于71.83~74.16之间,平均为73.25; TiO2含量为1.06%~1.62%,平均为1.27%; Al2O3含量为1.74%~5.74%,平均为2.91%; Na2O含量为0.28%~0.57%,平均为0.38%。单斜辉石斑晶的核部到幔部再到边部Mg#升高,Ti、Al和Na质量分数降低,背散射图像上核部也较幔部、边部明亮(图2c、d),即单斜辉石核-幔-边结构表现为反环带特征。

  • 图2 江山上墅组玄武粗安岩中单斜辉石的显微照片

  • Fig.2 Microscopic photos of clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan

  • (a)、(b)—半自形单斜辉石斑晶,基质主要为斜长石和正长石(正交偏光);(c)—单斜辉石斑晶核-幔-边结构(BSE图像);(d)—单斜辉石斑晶幔部和边部发育大量钛铁矿、单斜辉石和斜长石等矿物包裹体(BSE图像); Cpx—单斜辉石; Pl—斜长石; Ilm—钛铁矿; C—核部; M—幔部; R—边部

  • (a) , (b) —hypautomorphic clinopyroxene phenocrysts, the matrix of which is mainly plagioclase and orthoclase; (c) —clinopyroxene phenocryst core-mantle-rim structure; (d) —the mantle and edge of clinopyroxene phenocrysts develop a large of mineral inclusions such as ilmenite, clinopyroxene and plagioclase; Cpx—clinopyroxene; Pl—plagioclase; Ilm—ilmenite; C—core; M—mantle; R—rim

  • 单斜辉石的稀土元素和微量元素分析结果表2,总体来看江山上墅组玄武粗安岩中单斜辉石的稀土元素含量较高,且变化范围较大。∑REE变化范围为44.33×10-6~172.18×10-6,平均为91.50×10-6; LREE/HREE变化范围为0.57~0.96,平均为0.77。从单斜辉石环带的核部到幔部再到边部微量及稀土元素含量变化特征(表2)可以看出,核部∑REE变化范围为88.36×10-6~112.40×10-6,平均为97.64×10-6; 幔部∑REE变化范围为44.33×10-6~63.66×10-6,平均为53.94×10-6; 边部∑REE变化范围为119.87×10-6~128.74×10-6,平均为123.14×10-6。在球粒陨石标准化稀土元素配分模式图中(图4a),单斜辉石环带中幔部基本上未表现出明显的Eu负异常(Eu/Eu*=0.98~1.12),核部(Eu/Eu*=0.82~0.97)和边部(Eu/Eu*=0.73~0.82)均表现出较明显的Eu负异常,因此,江山上墅组玄武粗安岩中单斜辉石斑晶的幔部相对于斑晶的核部和边部,具有低的稀土总量且未见Eu异常。此外,轻重稀土分异方面,核部(La/Yb)N的变化范围为0.63~0.92,平均为0.78; 幔部(La/Yb)N的变化范围为0.53~0.67,平均为0.57; 边部(La/Yb)N的变化范围为1.05~1.20,平均为1.13,核-幔-边三者都显示为轻稀土亏损型配分模式。在原始地幔标准化微量元素蛛网图中(图4b),单斜辉石从核部到边部表现出较为一致的特征,即单斜辉石斑晶表现出Th、La、Nd和Ta等元素富集,Nb、K、Ti、Pb和Y等元素亏损。

  • 图3 江山上墅组玄武粗安岩中单斜辉石Wo-En-Fs分类图解(底图据Mormoto et al.,1988)

  • Fig.3 Wo-En-Fs diagram of clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan (after Mormoto et al., 1988)

  • 图4 江山上墅组玄武粗安岩中单斜辉石球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989

  • Fig.4 Chondrite-normalized REEs patterns (a) and primitive mantle-normalized trace element spider diagrams (b) for clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan (normalization values from Sun and McDonough, 1989)

  • 表1 江山上墅组玄武粗安岩中单斜辉石化学组成电子探针分析结果(%)与离子数计算

  • Table1 Electron microprobe analyses (%) and ion number calculation of the clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan

  • 续表1

  • 注:Mg#=100Mg/(Mg+Fe); 阳离子的计算以6个氧离子为基准; AlZ为4次配位Al占全Al的百分比; “-”为低于检测限。

  • 3.2 基质辉石

  • 基质辉石的端元组分中Wo:41.02%~41.64%,平均为41.32%; En:42.64%~43.38%,平均为43.05%; Fs:15.33%~15.90%,平均为15.62%,基质种属也全部为普通辉石(图3)。基质辉石的Mg#值介于72.85~73.88之间,平均为73.37; TiO2含量为1.03%~1.15%,平均为1.11%; Al2O3含量为1.73%~1.86%,平均为1.81%; Na2O含量为0.28%~0.35%,平均为0.31%。相对于斑晶边部,基质辉石的化学成分总体上表现为高Mg#,低Ti、Al和Na质量分数的特点。

  • 表2 江山上墅组玄武粗安岩中单斜辉石微量元素、稀土元素化学特征表(×10-6

  • Table2 LA-ICP-MS in-situ trace elements analysis data (×10-6) of the clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan

  • 续表2

  • 注:“-”为低于检测限。

  • 微量元素分析结果(表2)表明,江山上墅组玄武粗安岩中单斜辉石基质的稀土元素总量较斑晶边部高,且变化范围较大。∑REE变化范围为99.26×10-6~172.18×10-6,平均为130.62×10-6。在球粒陨石标准化稀土元素配分模式图中(图4a),单斜辉石基质表现出明显的Eu负异常(Eu/Eu*=0.76~0.83),(La/Yb)N的变化范围为0.86~1.41,平均为0.79,轻重稀土存在一定分异。在原始地幔标准化微量元素蛛网图中(图4b),单斜辉石基质表现出Th、La、Ce、Pr和Ta等元素富集,而K、P、Ti、Eu和Pb等元素亏损的特征。

  • 4 讨论

  • 4.1 单斜辉石的结晶深度

  • 火山岩中的单斜辉石斑晶与基质多处于地球化学平衡状态,斑晶从由基质表示的最后一批熔体中结晶,这些斑晶称为自生晶。如果处于不平衡状态,斑晶可能是从早期批次的熔体中结晶出来的再循环晶,也可能是与其基质无关的捕虏晶(Davidson et al.,2007)。浙江江山上墅组玄武粗安岩中的斑晶到底是属于再循环晶、自生晶还是捕虏晶?这一结果的确定对认识玄武粗安岩的成因至关重要。用单斜辉石和玄武安山岩熔体的分配系数KD(Fe-Mg)单斜辉石-熔体值(0.26±0.05)计算得到单斜辉石与熔体的平衡曲线,再利用单斜辉石斑晶和基质的Mg#值进行投图,其结果能有效区分玄武粗安岩中单斜辉石斑晶的起源(Akinin et al.,2005; Larrea et al.,2013)。从图5可以看出,单斜辉石斑晶环带与基质处于不平衡状态,表明单斜辉石斑晶是再循环晶或是捕虏晶。然而,这些单斜辉石斑晶边部和基质均表现出明显的Eu负异常,并且都表现出Th、La、Nd和Ta等元素富集,而Nb、K、Ti、Pb和Y等元素亏损的特征(表2,图4),说明单斜辉石斑晶边部和基质之间是同源关系,即这些斑晶的核部很可能是早期岩浆熔体结晶的再循环晶,后来被其宿主岩浆捕获和改造。

  • 单斜辉石成分受结晶时的温压环境控制,可以根据单斜辉石的成分限定其形成时寄主岩浆的温压条件(Putirka,2008; Neave and Putirka,2017; Neave et al.,2019a)。江山上墅组玄武粗安岩中的单斜辉石斑晶核部具有较高的Al含量,Al2O3含量为5.64%~5.81%(平均为5.72%),是原始碱性玄武质岩浆在高压下结晶的单斜辉石; 单斜辉石基质具有较低的Al含量,Al2O3含量为1.73%~1.86%(平均为1.81%),它们是由玄武质岩浆在低压下结晶的单斜辉石(Wass,1979)。

  • 图5 江山上墅组玄武粗安岩中单斜辉石基质Mg#-斑晶 Mg#图解(据Rhodes et al.,1979; Akinin et al.,2005

  • Fig.5 Mg# values in phenocrysts vs. Mg# values in matrices of the clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan (after Rhodes et al., 1979; Akinin et al., 2005)

  • 本文采用Wang Xudong et al.(2021)建立的新的单斜辉石单矿物压力计和温度计模型,计算了温度和压力(表3),结果显示单斜辉石斑晶核部形成温度变化范围为1040.3~1122.3℃,压力变化范围主要在0.26~0.38 GPa,相应的深度为8.57~12.53 km,幔部、边部结晶深度较浅为4.33~6.83 km; 基质的结晶温度变化于1099.2~1114.6℃,压力变化于0.07~0.19 GPa,相应的深度为2.46~6.13 km。单斜辉石斑晶化学成分特征及结构表明(图2c、d,图4a),深部来源的岩浆上升至中地壳时(10~12 km)滞留并结晶出单斜辉石核部区域,部分辉石斑晶幔部和边部的Mg#比核部更高(图5),表明岩浆运移到浅部岩浆房5~6 km处时,由于偏基性岩浆的加入,从而形成了更高Mg#的单斜辉石幔部和边部。

  • 4.2 单斜辉石斑晶环带的成因

  • 实验研究表明,单斜辉石的结构和地球化学成分不仅受到热力学条件的影响,而且也会受到晶体生长过程中动力学效应的制约(Neave et al.,2019b)。通常在封闭的岩浆房中,矿物发育自形结构且常具有正环带(Carracedo,1999); 而由岩浆补充、混合导致岩浆房中结晶条件的变化,通常会致使矿物中反环带以及振荡环带的形成(Streck,2008)。浙江江山上墅组玄武粗安岩中单斜辉石斑晶复杂的环带结构和化学成分的差异,可以记录其结晶时所处岩浆储库的热力学条件和动力学效应。

  • 表3 江山上墅组玄武粗安岩中单斜辉石-熔体平衡温度、压力

  • Table3 Clinopyroxene-melt equilibrium temperatures and pressures in basaltic trachyandesite from the Shangshu Formation, Jiangshan

  • 注:假定1 GPa对应33 km深度; 温压计计算公式据Wang Yadi et al.,2021。

  • 单斜辉石反环带特征可以排除单斜辉石斑晶在从核部到边部生长过程中地壳混染或部分结晶,这些过程形成的是正环带而不是反环带(Dai Liqun et al.,2015)。这种单斜辉石反环带特征在乌干达(Lloyd,1981)、法国中部地块(Pilet et al.,2002)、云南西部(Xu Yigang et al.,2003)和华北板块(Zhang Qi et al.,2007; Gao Shan et al.,2008)的碱性玄武岩中均有描述,如多用熔体-地幔相互作用或岩浆混合作用来解释(Guo Feng et al.,2007; Streck,2008)。本论文中上墅组玄武粗安岩中的单斜辉石的核部Mg#值较低,TiO2、Na2O和Al2O3含量较高,其幔部和边部成分有一定差异(图6),但与核部相比均具有较高的Mg#值和较低的TiO2、Na2O和Al2O3含量,指示单斜辉石斑晶具有反环带特征,可为岩浆起源提供线索。辉石的幔部和边部成分明显分为两个区域,一类为富Si、Ca、Mg贫Al贫碱的辉石幔、边,另一类为贫Si、Ca、Mg富Al富碱的辉石幔、边(图6),指示其结晶过程可能是分别在偏基性与偏酸性的岩浆房中发生的。在稀土元素配分模式图中(图4a),单斜辉石核部、边部、基质具有相似的稀土配分模式,而幔部具有最低的稀土元素总量,且未见Eu负异常(核部和边部都具有Eu负异常),结合单斜辉石结晶深度,认为深部来源的岩浆上升到中地壳时滞留并结晶出单斜辉石核部后,再次运移到浅部岩浆房中,此后由于更基性岩浆注入浅部岩浆房并发生岩浆混合,岩浆快速结晶形成了富含矿物包裹体的斑晶幔部和边部。因此可以认为单斜辉石斑晶核-幔-边环带结构是岩浆混合的结果。

  • 图6 江山上墅组玄武粗安岩中单斜辉石化学组分相关图

  • Fig.6 Chemical compositional correlation diagrams of clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan

  • 图7 江山上墅组玄武粗安岩中单斜辉石Ti-(Ca+ Na)关系图(底图据Leterrier et al.,1982

  • Fig.7 Plot of Ti vs. (Ca+ Na) diagram of clinopyroxenes in basaltic trachyandesite from the Shangshu Formation, Jiangshan (after Leterrier et al., 1982)

  • 机械混合作用形成的岩石中常广泛发育大量铁镁质暗色包体(Bonin,2004; 雷传扬,2021),江山-绍兴断裂带江山以东曾有大量岩浆机械混合作用现象的报道(周新民和朱云鹤,1992),如诸暨县璜山—石角地区存在深成辉闪岩和闪长岩的岩浆混合现象。本次研究的江山上墅组玄武粗安岩中并未发现肉眼可见的包体,镜下单斜辉石斑晶环带结构特征和化学成分的差异指示上墅组玄武粗安岩存在岩浆化学混合作用,可能暗示新元古代江山在江山-绍兴断裂带中具有较为特殊岩浆动力学背景,区域构造上可能与江山地处该断裂带东西部的转折部位有关。

  • 4.3 岩石构造背景

  • 单斜辉石的成分与岩浆和构造环境有密切关系,特别是Ti、Al、Na及Cr等微量元素的成分对岩浆系列和构造环境有良好的指示作用(Le Base,1962; Leterrier et al.,1982)。由于岩浆的快速冷却会导致的Ti和Al含量富集,Leterrier et al.(1982)提出用Ca+Na来代替Al,利用Ti-(Ca+Na)图解进行岩石系列鉴别。江山上墅组玄武粗安岩中只有个别的单斜辉石斑晶点落入到分界线上,其余均属于拉斑玄武岩系列,表明其母岩浆属于拉斑系列(图7)。

  • 单斜辉石的AlZ值(4次配位的Al占全Al的百分比)和TiO2之间的关系可以推测辉石母岩浆的源区特征(Loucks,1990; 苏慧敏等,2008; 寇彩化等,2011; Tang Gongjian et al.,2012)。例如,长江中天山骆驼沟辉长岩中辉石具有岛弧和裂谷的双重特征,指示其母岩浆起源于软流圈与俯冲板片交代的岩石圈地幔的相互作用(Tang Gongjian et al.,2012)。本文江山上墅组玄武粗安岩中单斜辉石的斑晶和基质均投入与弧有关的玄武岩区域(图8a),这与江山地区出露的深成火成岩体形成于大陆弧环境相吻合(Zhang Heng et al.,2020)。此外,单斜辉石的TiO2、MnO、Na2O含量和计算的F1、F2参数值能够判断源岩生成的构造环境(Nisbet and Pearce,1977)。如图8b所示,研究样品投图落在板块内部拉斑玄武岩和火山弧玄武岩区域内,落在火山弧有关的区域内的主要是斑晶的边部、幔部以及基质数据,而落在板内玄武岩区内的主要是斑晶的核部和少量的幔部数据,代表早期的结晶环境。因此,我们认为单斜辉石环带的形成应该与一个古岛弧的伸展有关,即构造环境归因于古岛弧的内部伸展,这与前人(Li Xianhua et al.,2008; 卢成忠等,2009; 王自强等,2012)认识一致。

  • 图8 江山上墅组玄武粗安岩中单斜辉石AlZ-TiO2图(据Loucks,1990)和单斜辉石F1-F2图解(据Nisbet and Pearce,1977

  • Fig.8 AlZ-TiO2 diagram of clinopyroxenes (after Loucks, 1990) and F1-F2 diagram of clinopyroxene in basaltic trachyandesite from the Shangshu Formation, Jiangshan (after Nisbet and Pearce, 1977)

  • WPT—板块内部拉斑玄武岩; WPA—板块内部碱性玄武岩; VAB—火山弧玄武岩; OFB—洋底玄武岩

  • F1=-0.012SiO2-0.0807TiO2+0.0026Al2O3-0.0012FeO-0.0026MnO+0.0087MgO-0.0128CaO-0.0419Na2O; F2=-0.0469SiO2-0.0818TiO2-0.0212Al2O3-0.0041FeO-0.1435MnO-0.0029MgO+0.0085CaO+0.016Na2O; WPT—intraplate tholeiiticbasalt; WPA—intraplate alkali basalt; VAB—volcanic arc basalt; OFB—ocean floor basalt

  • 在江南造山带东部南缘,沿江山-绍兴缝合线西北侧,有一系列新元古界上墅组火山岩被认为形成于弧后伸展环境(Gao Shan et al.,2008; Li Xianhua et al.,2008; 王自强等,2012)。浙西河上镇群上墅组双峰式火山岩代表了新元古代晚期华夏与扬子两大陆块由碰撞拼贴造山阶段转化成陆内拉张造盆阶段(卢成忠和顾明光,2007),形成于弧后裂谷环境(Li Xianhua et al.,2008; 卢成忠等,2009; 王自强等,2012)。杭州市南部新元古界上墅组双峰式火山岩产出于江山-绍兴断裂带之内,形成于陆内拉张环境(卢成忠和顾明光,2007)。结合上述认识,我们认为江山玄武粗安岩的形成可能与新元古代晚期华夏与扬子两大陆块碰撞拼贴完成后的古岛弧内部的伸展有关。

  • 5 结论

  • (1)浙江江山上墅组玄武粗安岩中产出具有核-幔-边环带结构的单斜辉石,斑晶的幔部和边部包含有大量的钛铁矿、单斜辉石和斜长石等矿物包裹体,说明斑晶形成过程中经历了复杂的岩浆混合过程。

  • (2)矿物温压计算结果显示,斑晶核部结晶深度(10~12 km)较深,幔部和边部结晶深度较浅(5~6 km),可能由深部来源的岩浆上升到中地壳时(10~12 km)滞留并结晶出单斜辉石核部后,再次运移到5~6 km处的浅部岩浆房发生岩浆混合,从而结晶出富含矿物包裹体的斑晶幔部和边部。

  • (3)单斜辉石核-幔-边环带结构和成分特征反映了浙江江山上墅组玄武粗安岩结晶过程中存在岩浆混合作用,可能为拉斑质的初始岩浆向上运移至中上地壳处与偏基性的岩浆发生混合,构造背景上可能与新元古代晚期华夏与扬子两大陆块碰撞拼贴形成的古岛弧内部伸展有关。

  • (4)江山-绍兴断裂带江山上墅组玄武粗安岩中的单斜辉石矿物学研究指示存在岩浆化学混合作用,而江山-绍兴断裂带江山以东大量存在岩浆机械混合作用,江山以西却鲜有岩浆混合作用的报道,暗示江山在新元古代具有独特的岩浆动力学背景,可能代表江山-绍兴断裂带区域构造的转折部位。

  • 致谢: 编委和两位审稿人对本文的完善提出了建设性的意见和帮助,在此深表谢意。

  • 参考文献

    • Akinin V V, Sobolev A V, Ntaflos T, Richter W. 2005. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): Application to composition and evolution of mantle melts. Contributions to Mineralogy and Petrology, 150(1): 85~101.

    • Bai Daoyuan, Jia Baohua, Liu Wei, Chen Bihe, Liu Yaorong, Zhang Xiaoyang. 2010. Zircon SHRIMP U-Pb dating of the igneous rocks from Chengbu, Hunan: Constraint on the Neoproterozoic tectonic evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12): 1715~1726 (in Chinese with English abstract).

    • Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2): 1~24.

    • Bu Ling. 2017. Geologicalage, stratigraphic sequence and tectono-paleogeographic significances of the Heshangzhen Group in the eastern part of Jiangnan ancient land in China. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Bureau of Geology and Mineral Resources of Zhejiang Province. 1989. Regional Geology of Zhejiang Province. Beijing: Geological Publishing House (in Chinese).

    • Carracedo J C, Day S J, Guillou H, Gravestock P. 1999. Later stages of volcanic evolution of La Palma, Canary Islands: Rift evolution, giant landslides, and the genesis of the Caldera de Taburiente. Geological Society of America Bulletin, 111(5): 755~768.

    • Dai Liqun, Zhao Zifu, Zheng Yongfei, Zhang Juan. 2015. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochemistry, Geophysics, Geosystems, 16(3): 659~680.

    • Davidson J P, Morgan D J, Charlier B L A, Harlou R, Hora J M. 2007. Microsampling and isotopic analysis of igneous rocks: Implications for the study of magmatic systems. Annual Review of Earth and Planetary Sciences, 35: 273~311.

    • Gao Shan, Rudnick R L, Xu Wenliang, Yuan Hongling, Liu Yongsheng, Walker R J, Puchtel I S, Liu Xiaoming, Huang Hua, Wang Xiaorui, Yang Jie. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2): 41~53.

    • Guo Feng, Nakamuru E, Fan Weiming, Kobayoshi K, Li Chaowen. 2007. Generation of Palaeocene adakitic andesites by magma mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661~692.

    • Guo Fusheng. 2014. The Geology of Jiangshan and a Guide to Practicing of Geological Mapping. Beijing: Geological Publishing House (in Chinese).

    • Haase K M, Mühe R, Stoffers P. 2000. Magmatism during extension of the lithosphere: Geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chemical Geology, 166(3-4): 225~239.

    • Jia Jinsheng, Cao Suqiao, Li Hanming, Hong Hanlie, Zhong Zengqiu, Wang Chaowen, Wang Hao, Yin Ke, Han Wen. 2016. Zircon U-Pb age and geochemistry of the rhyolites in Kaihua, western Zhejiang Province and their geological implications. Geotectonica et Metallogenia, 40(4): 772~782 (in Chinese with English abstract).

    • Kou Caihua, Zhang Zhaochong, Hou Tong, Liao Baoli, Li Hongbo. 2011. OIB-type picritic porphyrite from Jianchuan in the western Yunnan Province: Results of break-off of the subducting plate? Acta Petrologica Sinica, 27(9): 2679~2693 (in Chinese with English abstract).

    • Larrea P, França Z, Lago M, Widom E, Galé C, Ubide T. 2013. Magmatic processes and the role of antecrysts in the genesis of Corvo Island (Azores Archipelago, Portugal). Journal of Petrology, 54(4): 769~793.

    • Le Base M J. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267~288.

    • Lei Chuanyang. 2021. Magmatic mixing and dynamic background of the Awengcuo composite intrusion in the western section of the Bannujiang metallogenic belt. PhD degree dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Leterrier J, Maury R C, Thonon P, Girard D, Marchal M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59(1): 139~154.

    • Li Changnian. 2002. Magmatic mixing and its research review. Geological Scientific and Technological Information, (4): 49~54 (in Chinese with English abstract).

    • Li Changnian, Xue Rebirth, Liao Qun'an, Zhao Liangzheng. 1996. The first magmatic mixed complex group in China was found in Shangrao area, Jiangxi Province. Geological Science and Technology Information, 15(1): 6 (in Chinese with English abstract).

    • Li Xianhua. 1999. Constraints from the Geochemistry of the Crustal Growth and Evolution during Proterozoic: A Case Study from South China, Chemical Geodynamics. Beijing: Science Press (in Chinese).

    • Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341~357.

    • Li Xianhua, Li Wuxian, Li Zhengxiang, Lo Chinghua, Wang Jian, Ye Meifang, Yang Yueheng. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2): 117~128.

    • Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang Shihong, Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85~109.

    • Lloyd F E. 1981. Upper-mantle metasomatism beneath a continental rift: Clinopyroxenes in alkali mafic lavas and nodules from Sruth West Uganda. Mineralogical Magazine, 44(335): 315~323.

    • Loucks R R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology, 18(4): 346~349.

    • Lu Chengzhong, Gu Mingguang. 2007. Definition of Neoproterozoic bimodal volcanic rocks in the south of Hangzhou and its tectonic significance. Geology in China, 34(4): 565~571 (in Chinese with English abstract).

    • Lu Chengzhong, Yang Shufeng, Gu Mingguang, Dong Chuanwan. 2009. Geochemical characteristics of Late Jinningian bimodal magmatic complex suite in the area of Ciwu, Zhejiang: Petrological record of Rodinia supercontinent break. Acta Petrologica Sinica, 25(1): 67~76 (in Chinese with English abstract).

    • Morimoto N, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman K, Aoko, Gottardi, G. 1988. Nomenclature of pyroxenes. Mineralogical Magazine, 52(367): 535~550.

    • Neave D A, Putirka K D. 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102(4): 777~794.

    • Neave D A, Namur O, Shorttle O, Holtz F. 2019a. Magmatic evolution biases basaltic records of mantle chemistry towards melts from recycled sources. Earth and Planetary Science Letters, 520: 199~211.

    • Neave D A, Bali E, Guðfinnsson G H, Halldorsson S A, Kahl M, Schmidt A S, Holtz F. 2019b. Clinopyroxene-liquid equilibria and geothermobarometry in natural and experimental tholeiites: The 2014~2015 Holuhraun eruption, Iceland. Journal of Petrology, 60(8): 1653~1680.

    • Nisbet E G, Pearce J A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 149~160.

    • Pilet S, Hernandez J, Villemant B. 2002. Evidence for high silicic melt circulation and metasomatic events in the mantle beneath alkaline provinces: The Na-Fe-augitic green-core pyroxenes in the Tertiary alkali basalts of the Cantal massif (French Massif Central). Mineralogy and Petrology, 76(1): 39~62.

    • Putirka K D. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1): 61~120.

    • Rhodes J M, Dungan M A, Blanchard D P, Long P E. 1979. Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22N on the Mid-Atlantic Ridge. Tectonophysics, 55(1-2): 35~61.

    • Shamberger P J, Garcia M O. 2007. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu‘u ‘Ō ‘ō eruption. Bulletin of Volcanology, 69(4): 345~352.

    • Shu Liangshu, Faure M, Yu Jinhai, Jahn B M. 2011. Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187(3-4): 263~276.

    • Shui Tao, Xu Butai, Liang Huaru, Qiu Yushuang. 1986. Paleoland collisional zone of Jiangshan-Shaoxing. Chinese Science Bulletin, 31(6): 444~448 (in Chinese).

    • Streck M J. 2008. Mineral textures and zoning as evidence for open system processes. Reviews in Mineralogy and Geochemistry, 69(1): 595~622.

    • Su Benxun, Zhou Meifu, Jing Jiejun, Robinson P T, Chen Chen, Xiao Yan, Shi Rendeng, Davide L, Hu Yan. 2019. Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: Constraints from trace element compositions of chromite and olivine. Science Bulletin, 64(2): 108~121.

    • Su Huimin, Zhang Dongyang, Ai Y, Zhang Zhaochong. 2008. Mineralogy of clinopyroxene from the middle devonian volcanic rocks in the south margin of the Altay mountains and its geological significances. Acta Tetrologica et Mineralogica, 82(11): 1602~1612 (in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313~345.

    • Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Xu Yigang, Zhao Zhenhua. 2012. Metasomatized lithosphere-asthenosphere interaction during slab roll-back: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos, 155: 67~80.

    • Vernon R H, Etheridge M A, Wall V J. 1988. Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flow. Lithos, 22(1): 1~11.

    • Wang Jian, Pan Guitang. 2009. Neoproterozoic South China Palaeocontinents: An overview. Acta Sedimentologica Sinica, 27(5): 818~825(in Chinese with English abstract).

    • Wang Xudong, Hou Tong, Wang Meng, Zhang Chao, Zhang Zhaochong, Pan R, Marxer F, Zhang Hongluo. 2021. A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5): 621~637.

    • Wang Yadi, Yu Jinhai, Li Xiaoling, Jiang Wei, Xu Hua, Li Minye. 2021. Western boundary between the Yangtze and Cathaysia blocks constrained by Neoproterozoic to Cambrian sedimentary rocks in the northern and eastern Guangxi Province, South China. Acta Geologica Sinica, 95(6): 1712~1726 (in Chinese with English abstract).

    • Wang Yuwang, Wang J B, Long Lingli, Zou Tao, Tang Pingzhi, Wang Lijuan. 2012. Type, indicator, mechanism, model and relationship with mineralization of magma mixing: A case study in North Xinjiang. Acta Petrologica Sinica, 28(8): 2317~2330 (in Chinese with English abstract).

    • Wang Zhengjiang, Wang Jian, Duan Taizhong, Xie Yuan, Zhuo Jiewen, Yang Ping. 2010. Geochronology of middle Neoproterozoic volcanic deposits in Yangtze Craton interior of South China and its implications to tectonic settings. Science China Earth Sciences, 53(9): 1307~1315.

    • Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, Huang Zhizhong. 2012. Tectonic environment of the metamorphosed basement in the Jiangnan orogen and its evolutional features. Geological Review, 58(3): 401~413 (in Chinese with English abstract).

    • Wass S Y. 1979. Mutiple origine of clinopyroxenes in alkali basalti crocks. Lithos, 12: 115~132.

    • Wu Xueqin, Tang Xiaoming, Luo Mansheng, Jin Chong. 2019. Geology of Jiangshan. Wuhan: China University of China Press (in Chinese).

    • Xu Butai, Qiu Yushuang. 1994. A isotope geochronology study of Shangshu Formation in northwestern Zhejiang Province. Acta Geoscientica Sinica, 15(1-2): 51~59 (in Chinese with English abstract).

    • Xu Yigang, Huang Xiaolong, Menzies M A, Wang Rucheng. 2003. Highly magnesian olivines and green-core clinopyroxenes in ultrapotassic lavas from western Yunnan, China: Evidence for a complex hybrid origin. European Journal of Mineralogy, 15(6): 965~975.

    • Zhang Heng, Liu Yanxue, Ding Xiaozhong, Gao Linzhi, Yang Chun, Zhang Jibiao, Gong Chengqiang, Liu Haogang. 2020. Geochronology, geochemistry, whole rock Sr-Nd and zircon Hf-O isotopes of the early Neoproterozoic volcanic rocks in Jiangshan, eastern part of the Jiangnan Orogen: Constraints on petrogenesis and tectonic implications. Acta Geologica Sinica-English Edition, 94(4): 1117~1137.

    • Zhang Qi, Pan Guoqiang, Li Chengdong, Jin Weijun, Jia xiuqin. 2007. Granitic magma mixing versus basaltic magma mixing: New viewpoints on granitic magma mixing process: Some crucial questions on granite study. Acta Petrologica Sinica, 23(5): 1141~1152 (in Chinese with English abstract).

    • Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglin, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351~383.

    • Zhou Xiaohua, Chen Rong, Zhang Wei, Li Chunhai, Gao Tianshan, Ma Xue, Zhu Qingbo, Jin Guodong. 2019. Zircon SHRIMP geochronology and Hf isotopic characteristics of volcanic rocks from the Yifeng Formation in the southern margin of the Jiuling uplift in the Jiangnan orogen. Acta Geologica Sinica, 93(5): 1069~1080 (in Chinese with English abstract).

    • Zhou Xinmin, Zhu Yunhe, Chen Jianguo. 1990. Discovery of ultramafic spherulite and its genesis. Science Bulletin, (8): 604~606 (in Chinese).

    • Zhou Xinmin, Zhu Yunhe. 1992. Magmatic mixing and Precambrian geology on both sides of the Jiangshao fault zone. Science of China (Part B), 22(3): 296~303 (in Chinese).

    • 柏道远, 贾宝华, 刘伟, 陈必河, 刘耀荣, 张晓阳. 2010. 湖南城步火成岩锆石SHRIMP U-Pb 年龄及其对江南造山带新元古代构造演化的约束. 地质学报, 84(12): 1715~1726.

    • 卜令. 2017. 江南古陆东段河上镇群地质年代、地层序列与构造古地理意义. 中国地质大学(北京)硕士学位论文.

    • 郭福生. 2014. 江山地质概论及区域地质调查实习指导书. 北京: 地质出版社.

    • 贾锦生, 曹素巧, 李汉明, 洪汉烈, 钟增球, 王朝文, 王浩, 殷科, 韩文. 2016. 浙西开化地区流纹岩锆石U-Pb年代学、地球化学特征及其地质意义. 大地构造与成矿学, 40(4): 772~782.

    • 寇彩化, 张招崇, 廖宝丽, 李宏博, 侯通. 2011. 滇西剑川苦橄玢岩中单斜辉石的矿物学特征及其地质意义. 岩石矿物学杂志, 30(3): 449~462.

    • 雷传扬. 2021. 班-怒成矿带西段阿翁错复式岩体的岩浆混合作用及动力学背景. 成都理工大学博士学位论文.

    • 李昌年. 2002. 岩浆混合作用及其研究评述. 地质科技情报, (4): 49~54.

    • 李昌年, 薛重生, 廖群安, 赵良政. 1996. 江西上饶地区发现我国首例岩浆混合杂岩体群. 地质科技情报, 15(1): 6.

    • 李献华. 1999. 元古宙地壳增长和演化的地球化学制约——以华南为例. 北京: 科学出版社.

    • 卢成忠, 顾明光. 2007. 杭州南部新元古代双峰式火山岩的厘定及其构造意义. 中国地质, 34(4): 565~571.

    • 卢成忠, 杨树锋, 顾明光, 董传万. 2009. 浙江次坞地区晋宁晚期双峰式岩浆杂岩带的地球化学特征: Rodinia 超大陆裂解的岩石学记录. 岩石学报, 25(1): 67~76.

    • 水涛, 徐步台, 梁如华, 邱郁双. 1986. 绍兴江山古陆对接带. 科学通报, 31(6): 444~448.

    • 苏慧敏, 张东阳, 艾羽, 张招崇. 2008. 阿尔泰南缘中泥盆世北塔山组火山岩中单斜辉石的矿物学研究及其地质意义. 地质学报, 82(11): 1602~1612.

    • 汪正江, 王剑, 段太忠, 谢渊, 卓皆文, 杨平. 2010. 扬子克拉通内新元古代中期酸性火山岩的年代学及其地质意义. 中国科学: 地球科学, 40(11): 1543~1551.

    • 王剑, 潘桂棠. 2009. 中国南方古大陆研究进展与问题评述. 沉积学报, 27(5): 818~825.

    • 王雅迪, 于津海, 李晓玲, 蒋威, 许华, 李敏业. 2021. 扬子地块与华夏地块的西段界线: 来自桂北和桂东新元古界-寒武系沉积岩的证据. 地质学报, 95(6): 1712~1726.

    • 王玉往, 王京彬, 龙灵利, 邹滔, 唐萍芝, 王莉娟. 2012. 岩浆混合作用的类型、标志、机制、模式及其与成矿的关系——以新疆北部为例. 岩石学报, 28(8): 2317~2330.

    • 王自强, 高林志, 丁孝忠, 黄志忠. 2012. “江南造山带”变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401~413.

    • 吴雪琴, 唐小明, 骆满生, 金宠. 2019. 江山地质. 武汉: 中国地质大学出版社.

    • 徐步台, 邱郁双. 1994. 浙西北上墅组同位素年代地层学研究. 地球学报, 15(1-2): 51~59.

    • 颜铁增, 龚日祥, 汪庆华, 余心起, 华锡宏. 2009. 中元古界蒙山组、陈塘坞组的建立. 地层学杂志, 33(3): 249~259.

    • 张旗, 潘国强, 李承东, 金惟俊, 贾秀勤. 2007. 花岗岩混合问题: 与玄武岩对比的启示——关于花岗岩研究的思考之一. 岩石学报, 23(5): 1141~1152.

    • 浙江省地质矿产局. 1989. 浙江省区域地质志. 北京: 地质出版社.

    • 周效华, 陈荣, 张炜, 李春海, 高天山, 马雪, 朱清波, 靳国栋. 2019. 江南造山带九岭南缘宜丰岩组火山岩锆石SHRIMP年代学及Hf同位素特征. 地质学报, 93(5): 1069~1080.

    • 周新民, 朱云鹤, 陈建国. 1990. 超镁铁球状岩的发现及其成因研究. 科学通报, (8): 604~606.

    • 周新民, 朱云鹤. 1992. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质. 中国科学(B辑), 22(3): 296~303.

  • 参考文献

    • Akinin V V, Sobolev A V, Ntaflos T, Richter W. 2005. Clinopyroxene megacrysts from Enmelen melanephelinitic volcanoes (Chukchi Peninsula, Russia): Application to composition and evolution of mantle melts. Contributions to Mineralogy and Petrology, 150(1): 85~101.

    • Bai Daoyuan, Jia Baohua, Liu Wei, Chen Bihe, Liu Yaorong, Zhang Xiaoyang. 2010. Zircon SHRIMP U-Pb dating of the igneous rocks from Chengbu, Hunan: Constraint on the Neoproterozoic tectonic evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12): 1715~1726 (in Chinese with English abstract).

    • Bonin B. 2004. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos, 78(1-2): 1~24.

    • Bu Ling. 2017. Geologicalage, stratigraphic sequence and tectono-paleogeographic significances of the Heshangzhen Group in the eastern part of Jiangnan ancient land in China. Master thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Bureau of Geology and Mineral Resources of Zhejiang Province. 1989. Regional Geology of Zhejiang Province. Beijing: Geological Publishing House (in Chinese).

    • Carracedo J C, Day S J, Guillou H, Gravestock P. 1999. Later stages of volcanic evolution of La Palma, Canary Islands: Rift evolution, giant landslides, and the genesis of the Caldera de Taburiente. Geological Society of America Bulletin, 111(5): 755~768.

    • Dai Liqun, Zhao Zifu, Zheng Yongfei, Zhang Juan. 2015. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen. Geochemistry, Geophysics, Geosystems, 16(3): 659~680.

    • Davidson J P, Morgan D J, Charlier B L A, Harlou R, Hora J M. 2007. Microsampling and isotopic analysis of igneous rocks: Implications for the study of magmatic systems. Annual Review of Earth and Planetary Sciences, 35: 273~311.

    • Gao Shan, Rudnick R L, Xu Wenliang, Yuan Hongling, Liu Yongsheng, Walker R J, Puchtel I S, Liu Xiaoming, Huang Hua, Wang Xiaorui, Yang Jie. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2): 41~53.

    • Guo Feng, Nakamuru E, Fan Weiming, Kobayoshi K, Li Chaowen. 2007. Generation of Palaeocene adakitic andesites by magma mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661~692.

    • Guo Fusheng. 2014. The Geology of Jiangshan and a Guide to Practicing of Geological Mapping. Beijing: Geological Publishing House (in Chinese).

    • Haase K M, Mühe R, Stoffers P. 2000. Magmatism during extension of the lithosphere: Geochemical constraints from lavas of the Shaban Deep, northern Red Sea. Chemical Geology, 166(3-4): 225~239.

    • Jia Jinsheng, Cao Suqiao, Li Hanming, Hong Hanlie, Zhong Zengqiu, Wang Chaowen, Wang Hao, Yin Ke, Han Wen. 2016. Zircon U-Pb age and geochemistry of the rhyolites in Kaihua, western Zhejiang Province and their geological implications. Geotectonica et Metallogenia, 40(4): 772~782 (in Chinese with English abstract).

    • Kou Caihua, Zhang Zhaochong, Hou Tong, Liao Baoli, Li Hongbo. 2011. OIB-type picritic porphyrite from Jianchuan in the western Yunnan Province: Results of break-off of the subducting plate? Acta Petrologica Sinica, 27(9): 2679~2693 (in Chinese with English abstract).

    • Larrea P, França Z, Lago M, Widom E, Galé C, Ubide T. 2013. Magmatic processes and the role of antecrysts in the genesis of Corvo Island (Azores Archipelago, Portugal). Journal of Petrology, 54(4): 769~793.

    • Le Base M J. 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science, 260(4): 267~288.

    • Lei Chuanyang. 2021. Magmatic mixing and dynamic background of the Awengcuo composite intrusion in the western section of the Bannujiang metallogenic belt. PhD degree dissertation of Chengdu University of Technology (in Chinese with English abstract).

    • Leterrier J, Maury R C, Thonon P, Girard D, Marchal M. 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Planetary Science Letters, 59(1): 139~154.

    • Li Changnian. 2002. Magmatic mixing and its research review. Geological Scientific and Technological Information, (4): 49~54 (in Chinese with English abstract).

    • Li Changnian, Xue Rebirth, Liao Qun'an, Zhao Liangzheng. 1996. The first magmatic mixed complex group in China was found in Shangrao area, Jiangxi Province. Geological Science and Technology Information, 15(1): 6 (in Chinese with English abstract).

    • Li Xianhua. 1999. Constraints from the Geochemistry of the Crustal Growth and Evolution during Proterozoic: A Case Study from South China, Chemical Geodynamics. Beijing: Science Press (in Chinese).

    • Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341~357.

    • Li Xianhua, Li Wuxian, Li Zhengxiang, Lo Chinghua, Wang Jian, Ye Meifang, Yang Yueheng. 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research, 174(1-2): 117~128.

    • Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang Shihong, Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85~109.

    • Lloyd F E. 1981. Upper-mantle metasomatism beneath a continental rift: Clinopyroxenes in alkali mafic lavas and nodules from Sruth West Uganda. Mineralogical Magazine, 44(335): 315~323.

    • Loucks R R. 1990. Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene. Geology, 18(4): 346~349.

    • Lu Chengzhong, Gu Mingguang. 2007. Definition of Neoproterozoic bimodal volcanic rocks in the south of Hangzhou and its tectonic significance. Geology in China, 34(4): 565~571 (in Chinese with English abstract).

    • Lu Chengzhong, Yang Shufeng, Gu Mingguang, Dong Chuanwan. 2009. Geochemical characteristics of Late Jinningian bimodal magmatic complex suite in the area of Ciwu, Zhejiang: Petrological record of Rodinia supercontinent break. Acta Petrologica Sinica, 25(1): 67~76 (in Chinese with English abstract).

    • Morimoto N, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman K, Aoko, Gottardi, G. 1988. Nomenclature of pyroxenes. Mineralogical Magazine, 52(367): 535~550.

    • Neave D A, Putirka K D. 2017. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. American Mineralogist, 102(4): 777~794.

    • Neave D A, Namur O, Shorttle O, Holtz F. 2019a. Magmatic evolution biases basaltic records of mantle chemistry towards melts from recycled sources. Earth and Planetary Science Letters, 520: 199~211.

    • Neave D A, Bali E, Guðfinnsson G H, Halldorsson S A, Kahl M, Schmidt A S, Holtz F. 2019b. Clinopyroxene-liquid equilibria and geothermobarometry in natural and experimental tholeiites: The 2014~2015 Holuhraun eruption, Iceland. Journal of Petrology, 60(8): 1653~1680.

    • Nisbet E G, Pearce J A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 149~160.

    • Pilet S, Hernandez J, Villemant B. 2002. Evidence for high silicic melt circulation and metasomatic events in the mantle beneath alkaline provinces: The Na-Fe-augitic green-core pyroxenes in the Tertiary alkali basalts of the Cantal massif (French Massif Central). Mineralogy and Petrology, 76(1): 39~62.

    • Putirka K D. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69(1): 61~120.

    • Rhodes J M, Dungan M A, Blanchard D P, Long P E. 1979. Magma mixing at mid-ocean ridges: Evidence from basalts drilled near 22N on the Mid-Atlantic Ridge. Tectonophysics, 55(1-2): 35~61.

    • Shamberger P J, Garcia M O. 2007. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu‘u ‘Ō ‘ō eruption. Bulletin of Volcanology, 69(4): 345~352.

    • Shu Liangshu, Faure M, Yu Jinhai, Jahn B M. 2011. Geochronological and geochemical features of the Cathaysia block (South China): New evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research, 187(3-4): 263~276.

    • Shui Tao, Xu Butai, Liang Huaru, Qiu Yushuang. 1986. Paleoland collisional zone of Jiangshan-Shaoxing. Chinese Science Bulletin, 31(6): 444~448 (in Chinese).

    • Streck M J. 2008. Mineral textures and zoning as evidence for open system processes. Reviews in Mineralogy and Geochemistry, 69(1): 595~622.

    • Su Benxun, Zhou Meifu, Jing Jiejun, Robinson P T, Chen Chen, Xiao Yan, Shi Rendeng, Davide L, Hu Yan. 2019. Distinctive melt activity and chromite mineralization in Luobusa and Purang ophiolites, southern Tibet: Constraints from trace element compositions of chromite and olivine. Science Bulletin, 64(2): 108~121.

    • Su Huimin, Zhang Dongyang, Ai Y, Zhang Zhaochong. 2008. Mineralogy of clinopyroxene from the middle devonian volcanic rocks in the south margin of the Altay mountains and its geological significances. Acta Tetrologica et Mineralogica, 82(11): 1602~1612 (in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publication, 42(1): 313~345.

    • Tang Gongjian, Wang Qiang, Wyman D A, Li Zhengxiang, Xu Yigang, Zhao Zhenhua. 2012. Metasomatized lithosphere-asthenosphere interaction during slab roll-back: Evidence from Late Carboniferous gabbros in the Luotuogou area, Central Tianshan. Lithos, 155: 67~80.

    • Vernon R H, Etheridge M A, Wall V J. 1988. Shape and microstructure of microgranitoid enclaves: Indicators of magma mingling and flow. Lithos, 22(1): 1~11.

    • Wang Jian, Pan Guitang. 2009. Neoproterozoic South China Palaeocontinents: An overview. Acta Sedimentologica Sinica, 27(5): 818~825(in Chinese with English abstract).

    • Wang Xudong, Hou Tong, Wang Meng, Zhang Chao, Zhang Zhaochong, Pan R, Marxer F, Zhang Hongluo. 2021. A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. European Journal of Mineralogy, 33(5): 621~637.

    • Wang Yadi, Yu Jinhai, Li Xiaoling, Jiang Wei, Xu Hua, Li Minye. 2021. Western boundary between the Yangtze and Cathaysia blocks constrained by Neoproterozoic to Cambrian sedimentary rocks in the northern and eastern Guangxi Province, South China. Acta Geologica Sinica, 95(6): 1712~1726 (in Chinese with English abstract).

    • Wang Yuwang, Wang J B, Long Lingli, Zou Tao, Tang Pingzhi, Wang Lijuan. 2012. Type, indicator, mechanism, model and relationship with mineralization of magma mixing: A case study in North Xinjiang. Acta Petrologica Sinica, 28(8): 2317~2330 (in Chinese with English abstract).

    • Wang Zhengjiang, Wang Jian, Duan Taizhong, Xie Yuan, Zhuo Jiewen, Yang Ping. 2010. Geochronology of middle Neoproterozoic volcanic deposits in Yangtze Craton interior of South China and its implications to tectonic settings. Science China Earth Sciences, 53(9): 1307~1315.

    • Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, Huang Zhizhong. 2012. Tectonic environment of the metamorphosed basement in the Jiangnan orogen and its evolutional features. Geological Review, 58(3): 401~413 (in Chinese with English abstract).

    • Wass S Y. 1979. Mutiple origine of clinopyroxenes in alkali basalti crocks. Lithos, 12: 115~132.

    • Wu Xueqin, Tang Xiaoming, Luo Mansheng, Jin Chong. 2019. Geology of Jiangshan. Wuhan: China University of China Press (in Chinese).

    • Xu Butai, Qiu Yushuang. 1994. A isotope geochronology study of Shangshu Formation in northwestern Zhejiang Province. Acta Geoscientica Sinica, 15(1-2): 51~59 (in Chinese with English abstract).

    • Xu Yigang, Huang Xiaolong, Menzies M A, Wang Rucheng. 2003. Highly magnesian olivines and green-core clinopyroxenes in ultrapotassic lavas from western Yunnan, China: Evidence for a complex hybrid origin. European Journal of Mineralogy, 15(6): 965~975.

    • Zhang Heng, Liu Yanxue, Ding Xiaozhong, Gao Linzhi, Yang Chun, Zhang Jibiao, Gong Chengqiang, Liu Haogang. 2020. Geochronology, geochemistry, whole rock Sr-Nd and zircon Hf-O isotopes of the early Neoproterozoic volcanic rocks in Jiangshan, eastern part of the Jiangnan Orogen: Constraints on petrogenesis and tectonic implications. Acta Geologica Sinica-English Edition, 94(4): 1117~1137.

    • Zhang Qi, Pan Guoqiang, Li Chengdong, Jin Weijun, Jia xiuqin. 2007. Granitic magma mixing versus basaltic magma mixing: New viewpoints on granitic magma mixing process: Some crucial questions on granite study. Acta Petrologica Sinica, 23(5): 1141~1152 (in Chinese with English abstract).

    • Zheng Yongfei, Wu Rongxin, Wu Yuanbao, Zhang Shaobing, Yuan Honglin, Wu Fuyuan. 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351~383.

    • Zhou Xiaohua, Chen Rong, Zhang Wei, Li Chunhai, Gao Tianshan, Ma Xue, Zhu Qingbo, Jin Guodong. 2019. Zircon SHRIMP geochronology and Hf isotopic characteristics of volcanic rocks from the Yifeng Formation in the southern margin of the Jiuling uplift in the Jiangnan orogen. Acta Geologica Sinica, 93(5): 1069~1080 (in Chinese with English abstract).

    • Zhou Xinmin, Zhu Yunhe, Chen Jianguo. 1990. Discovery of ultramafic spherulite and its genesis. Science Bulletin, (8): 604~606 (in Chinese).

    • Zhou Xinmin, Zhu Yunhe. 1992. Magmatic mixing and Precambrian geology on both sides of the Jiangshao fault zone. Science of China (Part B), 22(3): 296~303 (in Chinese).

    • 柏道远, 贾宝华, 刘伟, 陈必河, 刘耀荣, 张晓阳. 2010. 湖南城步火成岩锆石SHRIMP U-Pb 年龄及其对江南造山带新元古代构造演化的约束. 地质学报, 84(12): 1715~1726.

    • 卜令. 2017. 江南古陆东段河上镇群地质年代、地层序列与构造古地理意义. 中国地质大学(北京)硕士学位论文.

    • 郭福生. 2014. 江山地质概论及区域地质调查实习指导书. 北京: 地质出版社.

    • 贾锦生, 曹素巧, 李汉明, 洪汉烈, 钟增球, 王朝文, 王浩, 殷科, 韩文. 2016. 浙西开化地区流纹岩锆石U-Pb年代学、地球化学特征及其地质意义. 大地构造与成矿学, 40(4): 772~782.

    • 寇彩化, 张招崇, 廖宝丽, 李宏博, 侯通. 2011. 滇西剑川苦橄玢岩中单斜辉石的矿物学特征及其地质意义. 岩石矿物学杂志, 30(3): 449~462.

    • 雷传扬. 2021. 班-怒成矿带西段阿翁错复式岩体的岩浆混合作用及动力学背景. 成都理工大学博士学位论文.

    • 李昌年. 2002. 岩浆混合作用及其研究评述. 地质科技情报, (4): 49~54.

    • 李昌年, 薛重生, 廖群安, 赵良政. 1996. 江西上饶地区发现我国首例岩浆混合杂岩体群. 地质科技情报, 15(1): 6.

    • 李献华. 1999. 元古宙地壳增长和演化的地球化学制约——以华南为例. 北京: 科学出版社.

    • 卢成忠, 顾明光. 2007. 杭州南部新元古代双峰式火山岩的厘定及其构造意义. 中国地质, 34(4): 565~571.

    • 卢成忠, 杨树锋, 顾明光, 董传万. 2009. 浙江次坞地区晋宁晚期双峰式岩浆杂岩带的地球化学特征: Rodinia 超大陆裂解的岩石学记录. 岩石学报, 25(1): 67~76.

    • 水涛, 徐步台, 梁如华, 邱郁双. 1986. 绍兴江山古陆对接带. 科学通报, 31(6): 444~448.

    • 苏慧敏, 张东阳, 艾羽, 张招崇. 2008. 阿尔泰南缘中泥盆世北塔山组火山岩中单斜辉石的矿物学研究及其地质意义. 地质学报, 82(11): 1602~1612.

    • 汪正江, 王剑, 段太忠, 谢渊, 卓皆文, 杨平. 2010. 扬子克拉通内新元古代中期酸性火山岩的年代学及其地质意义. 中国科学: 地球科学, 40(11): 1543~1551.

    • 王剑, 潘桂棠. 2009. 中国南方古大陆研究进展与问题评述. 沉积学报, 27(5): 818~825.

    • 王雅迪, 于津海, 李晓玲, 蒋威, 许华, 李敏业. 2021. 扬子地块与华夏地块的西段界线: 来自桂北和桂东新元古界-寒武系沉积岩的证据. 地质学报, 95(6): 1712~1726.

    • 王玉往, 王京彬, 龙灵利, 邹滔, 唐萍芝, 王莉娟. 2012. 岩浆混合作用的类型、标志、机制、模式及其与成矿的关系——以新疆北部为例. 岩石学报, 28(8): 2317~2330.

    • 王自强, 高林志, 丁孝忠, 黄志忠. 2012. “江南造山带”变质基底形成的构造环境及演化特征. 地质论评, 58(3): 401~413.

    • 吴雪琴, 唐小明, 骆满生, 金宠. 2019. 江山地质. 武汉: 中国地质大学出版社.

    • 徐步台, 邱郁双. 1994. 浙西北上墅组同位素年代地层学研究. 地球学报, 15(1-2): 51~59.

    • 颜铁增, 龚日祥, 汪庆华, 余心起, 华锡宏. 2009. 中元古界蒙山组、陈塘坞组的建立. 地层学杂志, 33(3): 249~259.

    • 张旗, 潘国强, 李承东, 金惟俊, 贾秀勤. 2007. 花岗岩混合问题: 与玄武岩对比的启示——关于花岗岩研究的思考之一. 岩石学报, 23(5): 1141~1152.

    • 浙江省地质矿产局. 1989. 浙江省区域地质志. 北京: 地质出版社.

    • 周效华, 陈荣, 张炜, 李春海, 高天山, 马雪, 朱清波, 靳国栋. 2019. 江南造山带九岭南缘宜丰岩组火山岩锆石SHRIMP年代学及Hf同位素特征. 地质学报, 93(5): 1069~1080.

    • 周新民, 朱云鹤, 陈建国. 1990. 超镁铁球状岩的发现及其成因研究. 科学通报, (8): 604~606.

    • 周新民, 朱云鹤. 1992. 江绍断裂带的岩浆混合作用及其两侧的前寒武纪地质. 中国科学(B辑), 22(3): 296~303.