en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

龚正,男,1987年生。副研究员,活动构造研究方向。E-mail:gz184144@hotmail.com。

参考文献
Bai Mingkun, Marie-Luce C, Pan Jiawei, Replumaz A, Leloup P, Metois M, Li Haibing. 2018. Southeastward increases of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.
参考文献
Bai Mingkun, Marie-Luce C, Li Haibing, Pan Jiawei, Wu Qiong, Wang Shiguang, Liu Fucai, Jiao Liqing, Zhang Jinjiang, Zhang Lei, Gong Zheng. 2022. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault. Acta Geologica Sinica, 96(7): 2312~2332 (in Chinese with English abstract).
参考文献
Burchfiel B, Chen Zhi, Liu Yupin, Royden L. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37: 661~736.
参考文献
Caine J, Evans J, Forster C. 1996. Fault zone architecture and permeability structure. Geology, 24(11): 1025~1028.
参考文献
Cao Kai, Wang Guocan, Leloup P, Maheo G, Xu Yadong, Pieter A, Replumaz A, Zhang Kexin. 2019. Oligocene-early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics, 38: 37~391.
参考文献
Carpenter B, Marone C, Saffer D. 2011. Weakness of the San Andreas fault revealed by samples from the active fault zone. Nature Geoscience, 4(4): 251~254.
参考文献
Cheng Jia, Xu Xiwei, Gan Weijun, Ma Wentao, Chen Weitao, Zhang Yong. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chinese Journal of Geophysics, 55(4): 1198~1212 (in Chinese with English abstract).
参考文献
Chen Lichun, Ran Yongkang, Wang Hu, Li Yanbao, Ma Xinquan. 2013. The Lushan Ms7. 0 earthquake and activity of the southern segment of the Longmenshan fault zone. China Science Bulletin, 58(28-29): 3475~3482.
参考文献
Chen Yuntai, Yang Zhixian, Zhang Yong, Liu Chao. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Scinetia Sinica Terra, 43(6): 1064~1072.
参考文献
Childs C, Manzocchi T, Walsh J, Bonson C, Nicol A, Schopfer M. 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31: 117~127.
参考文献
Deng Qidong, Zhang Peizhen, Ran Yongkang, Yang Xiaoping, Min Wei, Chu Quanzhi. 2003. Basic characteristic of active tectonics of China. Science in China (Series D), 46(4): 356~372.
参考文献
Densmore A, Ellis M, Li Yong, Zhou Rongjun, Hancock G, Richardson N. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 26: TC4005.
参考文献
Ding Rui, Ren Junjie, Zhang Shimin, Lv Yanwu, Liu Hanyong. 2018. Late Quaternary Paleoearthquakes on the middle segment of the Lijiang-Xiaojinhe fault, southeast Tibet. Seismology and Geology, 40(3): 622~640 (in Chinese with English abstract).
参考文献
Faulkner D, Jackson C, Lunn R, Schliche R, Shiton Z, Wibberley C, Withjack M. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32: 1557~1575.
参考文献
Faulkner D, Mitchell T, Jenson E, Cembrano J. 2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research, 116: B05403.
参考文献
Fossen H. 2016. Structural Geology, 2nd Edition. New York: Cambridge University Press, 177~218.
参考文献
Gan Weijun, Molnar P, Zhang Peizhen, Xiao Genru, Liang Shiming, Zhang Keliang, Li Zhangjun, Xu Keke, Zhang Ling. 2021. Initiation of clockwise rotation and eastward transport of Southeastern Tibet inferred from deflected fault traces and GPS observations. The Geological society of America, 134(5-6): 1129~1142.
参考文献
He Honglin, Yasutaka I, He Yulin, Msayoshi T, Chen Jia, Chen Changyun, Masayoshi T, Tomoo E, Shinsuke O. 2008. Newly-generated Daliangshan fault zone-shortcutting on the central section of Xianshuihe-Xiaojiang fault system. Science in China Series D: Earth Sciences, 51(9): 1248~1258.
参考文献
He Xiangli, Li Haibing, Zhang Lei, Wang Huan, Ge Chenglong, Chao Yong, Bai Mingkun, Li Chenglong, Ye Xiaozhou, Han Shuai. 2018. Mineral and chemical response to low magnetic susceptibility of the fault gouge from the Guanxian-Anxian fault zone and fault creep setting in the Longmen Shan. Chinese Journal of Geophysics, 61(5): 1782~1796 (in Chinese with English abstract).
参考文献
He Xiangli, Li Haibing, Wang Huan, Zhang Lei, Sun Zhiming, Si Jialiang. 2020. Rock composition and structural characteristics of creep-slip fault zone: A case of the Guanxian-Anxian fault zone in the Longmen Shan, China. Acta Petrologica Sinica, 36(10): 3209~3224 (in Chinese with English abstract).
参考文献
Hull J. 1988. Thickness-displacement relationships for deformation zones. Journal of Structural Geology, 10: 431~435.
参考文献
Kuo Liwei, Li Haibing, Smith S, Di-Toro G, Suppe J, Song Shengrong, Nielsen S, Sheu H, Si Jialiang. 2014. Gouge graphitization and dynamic fault weakening during the 2008 MW7. 9 Wenchuan earthquake. Geology, 42(1): 47~50.
参考文献
Li Chenglong, Li Haibing, Wang Huan, Zhang Lei, Sun Zhiming, Zhang Jiajia, Yun Kun, Zhang Jinjiang. 2020. Rock characteristics and internal structures of the Beichuan fault zone at Nanba outcrop in the northeastern segment of the 2008 Wenchuan seismogenic fault. Acta Petrologica Sinica, 36(10): 3192~3208 (in Chinese with English abstract).
参考文献
Li Chenglong, Li Haibing, Wang Huan, Zhang Jinjiang. 2021. Petrological and geochemical characteristics and deformation behavior of the Beichuan section of the Wenchuan earthquake fault zone. Acta Petrologica Sinica, 37(10): 3145~3146 (in Chinese with English abstract).
参考文献
Li Haibing, Xu Zhiqin, Wang Huan, Si Jialiang, Li Tianfu, Song Shengrong, Pei Junling, Guo Liwei, Sun Zhiming, Huang Yao, Marie-Luce C, Liu Dongliang. 2013. The principle slip zone of the 2008 Wenchuan earthquake: A thrust fault oblique cutting the Yingxiu-Beichuan fault zone. Geology in China, 40(1): 121~139 (in Chinese with English abstract).
参考文献
Li Haibing, Xu Zhiqin, Wang Huan, Zhang Lei, He Xiangli, Si Jialiang, Sun Zhiming. 2018. Fault behavior, physical properties and seismic activity of the Wenchuan earthquake fault zone: Evidence from the Wenchuan earthquake fault scientific Drilling Project (WFSD). Chinese Journal of Geophysics, 61(5): 1680~1697 (in Chinese with English abstract).
参考文献
Li Le, Chen Qifu, Niu Fenglin, Fu Hong, Liu Ruifeng, Hou Yanyan. 2009. Slip rate along the Lijiang-Ninglang fault zone estimated from repeating microearthquakes. Chinese Science Bulletin, 54(3): 447~455.
参考文献
Li Ning, Zhu Liangyu, Liu Lei. 2018. Study on present day locking degree and seismic hazard of the Lijiang-xiaojinhe fault zone. Seismology and Geology, 41(2): 244~250 (in Chinese with English abstract).
参考文献
Lin Aiming. 2011. Seismic slip recorded by fluidized ultracataclastic veins formed in a coseismic shear zone during the 2008 MW7. 9 Wenchuan earthquake. Geology, 39(6): 547~550.
参考文献
Liu Dongliang, Li Haibing, Lee Teh Quei, Sun Zhiming, Liu Jiang, Han Liang, Marie-luce Chevalier. 2016. Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake (MW7. 9, 2008) and its implication for earthquake slip processes. Journal of Asian Earth Sciences, 115: 468~479.
参考文献
Liu Xiaoxia, Shao Zhigang. 2020. Current fault movement characteristics in the Lijiang-Xiaojinhe fault zone. Chinese Journal of Geophysics, 63(3): 1117~1126 (in Chinese with English abstract).
参考文献
Liu-Zeng Jing, Tapponnier P, Gaudemer Y, Ding Lin. 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. Journal of Geophysical Research, 113: F04018.
参考文献
Mitchell T, Faulkner D. 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31: 802~816.
参考文献
Power W, Tullis T, Weeks J. 1988. Roughness and wear during brittle faulting. Journal of Geophysical Research, 3(B12): 15268~15278.
参考文献
Savage H, Brodsky E. 2011. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research, 116: B03405.
参考文献
Scholz C. 1987. Wear and gouge formation in brittle faulting. Geology, 15: 493~495.
参考文献
Shen Zhengkang, Lu Jiangning, Wang Min, Burgman R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.
参考文献
Sibson R. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3): 191~213.
参考文献
Wang Erchie, Burchfiel B, Royden L, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red river, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper. 327.
参考文献
Wang Erchie, Meng Qingren. 2009. Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt. Science in China Series D: Earth Sciences, 52(5): 579~592.
参考文献
Wang Erchie, Kirby E, Furlong K, Soest M, Xu G, Kamp P, Hodges K. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience. 5(9): 640~645.
参考文献
Wang Huan, Li Haibing, Si Jialiang, Huang Yao. 2013. The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan. Acta Petrologica, 29(6): 2048~2060 (in Chinese with English abstract).
参考文献
Wang Huan, Li Haibing, Si Jialiang, Sun Zhiming, Huang yao. 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-620: 101~114.
参考文献
Wang Huan, Li Haibing, Janssen Christoph, Sun Zhiming, Si Jialiang. 2015. Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening. Journal of Structural Geology, 74: 159~171.
参考文献
Wang Shifeng, Jiang Guiguo, Xu Tiande, Tian Yuntao, Zheng Dewen, Fang Xiaomin. 2012. The Jinhe-Qinghe fault—An inactive branch of the Xianshuihe-Xiaojiang fault zone, eastern Tibet. Tectophysics, 544-545: 93~102.
参考文献
Wang Qingliang, Cui Duxin, Wang Wenping, Zhang Sixin, Liu Jingwen, Shi Qi. 2008. Present-day vertical crust movement of the Western Sichuan region. Science in China Series D: Earth Sciences, 38(5): 598~610.
参考文献
Wang Yanzhao, Wang Enning, Shen Zhengkang, Wang Min, Gan Weijun, Qiao Xuejun, Meng Guojue, Li Tieming, Tao Wei, Yang Yonglin, Cheng Jia, Li Peng. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences, 51(9): 1267~1283.
参考文献
Wibberley C, Yielding G, Di Toro G. 2008. Recent advances in the understanding of fault zone internal structure: A review. Geological Society, London, Special Publications, 299(1): 5~33.
参考文献
Wu Guiling, Zhu Chengyu, Wang Guocan, Zhang Pan. 2019. Demarcation of the geomorphological boundaries of southeastern Tibet: Implication for expansion mechanisms of the plateau edge. Seismology and Geology, 41(2): 281~299 (in Chinese with English abstract).
参考文献
Xiang Hongfa, Xu Xiwei, Guo Shunmin, Zhang Wanxia, Li Hongwu, Yu Guihua. 2002. Sinistral thrusting along the Lijiang-Xiaojinhe fault since Quaternary and its geologic-tectonic significance. Seismology and Geology, 24(2): 188~198 (in Chinese with English abstract).
参考文献
Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangming, Yu Guihua. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sciences in China Series D, 46(S2): 210~226.
参考文献
Xu Zhiqin, Li Huaqi, Hou Liwei, Fu Xiaofang, Chen Wen, Zeng lingshen, Cai Zhihui, Chen Fangyuan. 2007. Uplift of the Longmen-Jiping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: Large-scale detachment faulting and extrusion mechanism. Geological Bulletin of China, 26(10): 1252~1276 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Ji Shaocheng, Li Haibing, Hou Liwei, Fu Xiaofang, Cai Zhihui. 2008. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 31(3): 291~301.
参考文献
Zhang Lei, Sun Zhiming, Li Haibing, Zhao Laishi, Cao Yong, Ye Xiaozhou, Wang Leizhen, Wang Huan, He Xiangli, Han Shuai, Bai Mingkun, Ge Chenglong, Zhao Yue. 2017. Mannetic susceptibility of WFSD-2 borehole cores from the Longmenshan thrust belt and its implications for great seismic activity. Chinese Journal of Geophysics, 60(1): 225~239 (in Chinese with English abstract).
参考文献
Zhang Peizhen. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7~22.
参考文献
Zhang Peizhen, Deng Qidong, Zhang Guomin, Ma Jin, Gan Weijun, Min Wei, Mao Fengying, Wang Qi. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China (Series D), 46: 13~24.
参考文献
Zhang Peizhen, Shen Zhenkang, Wang Min, Gan Weijun, Burgmann R, Molnar P, Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Sun Hanrong, You Xinzhao. 2004. Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9): 809~812.
参考文献
Zheng Yong, Li Haibing, Sun Zhiming, Wang Huan, Zhang Jiajia, Li Chenglong, Cao Yong. 2016. New geochronology constraints on timing and depth of the ancient earthquakes along the Longmen Shan fault belt, eastern Tibet. Tectonics, 35: 2781~2806.
参考文献
Zhu Chengyu, Wang Guochan, Leloup P, Cao Kai, Maheo G, Cheng Yue, Zhang Pan, Shen Tianyi, Wu Guiling, Sotiriou P, Wu Bo. 2021. Role of the early Miocene Jinhe-Qinghe trust belt in the building of the southeastern Tibetan Plateau topography. Tectonopysics, 811: 228871.
参考文献
白明坤, Marie-Luce C, 李海兵, 潘家伟, 吴琼, 王世广, 刘富财, 焦利青, 张进江, 张蕾, 龚正. 2022. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究. 地质学报, 96(7): 2312~2332.
参考文献
程佳, 徐锡伟, 甘卫军, 马文涛, 陈为涛, 张勇. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源. 地球物理学报, 55(4): 1198~1212.
参考文献
陈立春, 冉永康, 王虎, 李彦宝, 马兴全. 2013. 庐山地震与龙门山断裂带南段活动性. 科学通报, 58(20): 1925~1932.
参考文献
陈运泰, 杨智娴, 张勇, 刘超. 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064~1072.
参考文献
丁锐, 任俊杰, 张世民, 吕延武, 刘汉永. 2018. 丽江-小金额和断裂中段晚第四纪古地震历史. 地震地质, 40(3): 622~640.
参考文献
何祥丽, 李海兵, 张蕾, 王焕, 葛成隆, 曹勇, 白明坤, 李成龙, 叶小舟, 韩帅. 2018. 龙门山灌县-安县断裂带断层泥低磁化率的矿物化学响应和蠕滑作用环境. 地球物理学报, 61(5): 1782~1796.
参考文献
何祥丽, 李海兵, 王焕, 张蕾, 孙知明, 司家亮. 2020. 蠕滑断裂带岩石组成和构造特征分析: 以龙门山灌县-安县断裂带为例. 岩石学报, 36(10): 3209~3224.
参考文献
李成龙, 李海兵, 王焕, 张蕾, 孙知明, 张佳佳, 云琨, 张进江. 2020. 2008年汶川地震断裂带北东段南坝地区岩石特征与内部结构. 岩石学报, 36(10): 3192~3208.
参考文献
李成龙, 李海兵, 王焕, 张进江. 2021. 龙门山汶川地震断裂带北川段岩石与地球化学特征及其变形行为. 岩石学报, 37(10): 3145~3146.
参考文献
李海兵, 许志琴, 王焕, 司家亮, 李天福, 宋圣荣, 裴军令, 郭力维, 孙知明, 黄尧, Marie-Luce Chevalier, 刘栋梁. 2013. 汶川地震主滑移带(PSZ): 映秀-北川断裂带内的斜切逆冲断裂. 中国地质, 40(1): 121~139.
参考文献
李海兵, 许志琴, 王焕, 张蕾, 何祥丽, 司家亮, 孙知明. 2018. 汶川地震断裂带滑移行为、物理性质及其大地震活动性-来自汶川地震断裂带科学钻探的证据. 地球物理学报, 61(5): 1680~1697.
参考文献
李乐, 陈棋福, 钮凤林, 付虹, 刘瑞丰, 侯燕燕. 2008. 利用重复地震估算丽江-宁蒗断裂带的深部滑动速率. 科学通报, 53(23): 2925~2932.
参考文献
李宁, 朱良玉, 刘雷. 2018. 丽江-小金河断裂带现今闭锁程度与地震危险性分析. 地震地质, 41(2): 244~250.
参考文献
刘晓霞, 邵志刚. 2020. 丽江-小金河断裂带现今断层运动特征. 地球物理学报, 63(3): 1117~1126.
参考文献
王二七, 孟庆任. 2008. 对龙门山中生代和新生代构造演化的讨论. 中国科学D辑: 地球科学, 38(10): 1221~1233.
参考文献
王焕, 李海兵, 司家亮, 黄尧. 2013. 汶川地震断裂带结构特征与龙门山隆升的关系. 岩石学报, 29(6): 2048~2060.
参考文献
王庆良, 崔笃信, 王文萍, 张四新, 刘锦文, 史旗. 2008. 川西地区现金垂直地壳运动研究. 中国科学D辑, 38(5): 598~610.
参考文献
王阎昭, 王恩宁, 沈正康, 王敏, 甘卫军, 乔学军, 孟国杰, 李铁明, 陶玮, 杨永林, 程佳, 李鹏. 2008. 基于GPS资料约束反演川滇地区主要断裂现金活动速率. 中国科学D辑, 38(5): 582~597.
参考文献
吴贵灵, 祝成宇, 王国灿, 张攀. 2019. 青藏高燕东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示. 地震地质, 41(2): 281~299.
参考文献
向宏发, 徐锡伟, 虢顺民, 张晚霞, 李洪武, 于贵华. 2002. 丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义. 地震地质, 24(2): 188~198.
参考文献
许志琴, 李化启, 侯立炜, 付小芳, 陈文, 曾令森, 蔡志慧, 陈方远. 2007. 青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制. 地质通报, 26(10): 1262~1276.
参考文献
徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑, 33: 151~162.
参考文献
张蕾, 孙知明, 李海兵, 赵来时, 曹勇, 叶小舟, 王雷振, 王焕, 何祥丽, 韩帅, 白明坤, 葛成隆, 赵越. 2017. 龙门山构造带WFSD-2钻孔岩心磁化率特征及其对大地震活动的响应. 地球物理学报, 60(1): 225~239.
目录contents

    摘要

    2008年汶川地震促使人们思考青藏高原东南缘走向和规模与龙门山断裂带相近的丽江-小金河断裂的活动历史,但受限于地质条件制约断裂尤其是其北段相关研究极其薄弱。基岩断裂带的物质组成与结构特征是断层长期活动的产物,蕴含丰富的历史活动信息。本文以丽江-小金河断裂盐源段多个天然剖面为研究对象,通过详细的断裂带宏观结构调查、断层岩显微构造及XRD分析发现:① 断层破碎带以一套厚度>20 m的破裂面密集带为特征,优势破裂面走向为NE20°~30°,推测为丽江-小金河断裂长期活动形成的张剪性破裂;② 断层带核部以断层角砾岩和断层泥为主,灰岩角砾岩黏土矿物含量~2%,以伊利石和伊蒙混层为主,粉砂岩断层泥黏土矿物含量~52%,以坡缕石和绿泥石为主,石英含量36%,缺失长石类矿物。断裂带宏观结构和断层岩微观结构特征均表现为角砾呈棱角状,砾径差异极大且呈零散状分布,符合快速滑动特征,指示断层滑移方式为黏滑。此外,核部断层岩带统计厚5~8 m,这一规模相对于龙门山映秀-北川断裂带核部180~280 m和安县-灌县断裂带核部40~50 m显著偏小,表明前者自形成以来的活动性远低于后者,两者的地震行为并不能简单类比。结合断裂在宏观结构特征、断层岩成分与种类以及所反映的滑动方式与隆升剥蚀量的差异,认为丽江-小金河断裂更可能是鲜水河断裂切断锦屏山-龙门山构造带之后形成的,晚新生代与龙门山断裂带具有不同的活动历史。

    Abstract

    A better understanding of the tectonic relationship between the Lijiang-Xiaojinhe fault and the Longmenshan fault belt is urgent as the devastating 2008 Wenchuan earthquake hit the eastern Tibetan Plateau. However, related researches are rare especially along its northern segment due to the poorly preserved Quaternary sediments. Fault zone structure contains valuable information about the fault's historical activity which potentially provide an alternative way to analyze this problem. Here we focus on outcrops along the Yanyuan section on the northern segment of this fault. Based on detailed field survey, X-ray diffraction and microstructure analyses, we find the damage zone is characterized by an over 20 m thick fracture zone. Strikes of the fracture cluster in the range of NE20°~30° and are interpreted as the extensional shear texture associated with the left-lateral Lijiang-Xiaojinhe fault. Fault rocks are mostly fault gouge and breccia in the fault core. Clay minerals in the limestone fault breccia are mainly illite and illite/smectite formation, whereas they are palygorskite and clinochlore in the siltstone fault gouge. Structures uncovered in both the outcrop and the micro-section show angular fragments with different grain size scattered in the fine grained matrix, showing that the northern segment of the Lijiang-Xiaojinhe fault is stick-slip rather than creep. Furthermore, the measured thickness of fault rock is 5~8 m which is considerably smaller than the reported 180~280 m and 40~50 m of the Yingxiu-Beichuan fault and Anxian-Guanxian fault among the Longmenshan fault zone, respectively. The historical activity of the Lijiang-Xiaojinhe fault is much lower than the latter, and their seismic behavior are also not analogous. Taking into account the difference in fault zone structure, composition and categories of the fault rock, as well as the slip behavior and amount of uplift-denudation they indicated, the Lijiang-Xiaojinhe fault was higly possible formed much later than the time that the Xianshuihe fault offseted the Jinpingshan-Longmenshan thrust belt. It might have a totally different history of active from the major faults in the Longmenshan fault belt over the late Cenozoic.

  • 2008年MW7.9汶川地震使得青藏高原东缘映秀-北川断裂和安县-灌县断裂同时发生破裂,同时也刷新了人们对龙门山断裂带大震活动的认知。新的研究表明映秀-北川断裂是一条历史强震多发的断裂,形成的断层岩厚达数百米(王焕等,2013李海兵等,2013),并记录到多期假玄武玻璃(Wang Huan et al.,2015)、超碎裂岩脉体(Lin Aiming,2011)、高磁化率和石墨化断层泥(Kuo Liwei et al.,2014Liu Dongliang et al.,2016; 张蕾等,2017)等同震高温产物。由此产生的一个疑问是同处青藏高原东缘、东南缘,走向相同且空间位置上极为接近的丽江-小金河断裂是否具有相似的地震行为?丽江-小金河断裂西起云南剑川盆地,沿NE55°走向经过丽江、宁蒗等地,往东交汇于鲜水河断裂,其走向与规模皆与龙门山断裂带相近(图1a),部分研究甚至认为中新世以前,断裂所处的锦屏山-玉龙雪山构造带与龙门山逆冲推覆构造带连为一体(Burchfiel et al.,1995; Wang Erchie et al.,1998; 许志琴等,2007),两者在构造上具有同源性。在此前提之下,考虑两者大震活动是否可以类比具有一定的合理性。

  • 另一方面,丽江-小金河断裂本身的地震活动同样值得关注。作为川滇块体内部最大的断裂之一,尽管块体晚第四纪以来活动强烈(Deng Qidong et al.,2003Zhang Peizhen et al.,2003),但断裂本身有记录以来并未有形成地表破裂的地震发生。鲜水河断裂跨越丽江-小金河断裂一带,走滑速率从>10 mm/a迅速降至~5 mm/a(Zhang Peizhen,2013; Bai Mingkun et al.,2018; 白明坤等,2022),历史强震记录同样北侧远超南侧。有研究认为这部分应变主要被大凉山块体吸收,大凉山断裂3 Ma以来的走滑速率高达3.1~3.7 mm/a(He Honglin et al.,2008; Zhang Peizhen,2013),但丽江-小金河断裂尤其是其北段活动性并不高;另一种观点认为应变以微震群的形式释放,断裂此段滑动形式为蠕滑(李宁等,2018)。需要指出的是低滑动速率与断层具有发生大震的能力并不矛盾,以映秀-北川断裂为例,地质与大地测量学滑动速率均很低(Zhang Peizhen et al.,2004; Densmore et al.,2007),但2008年汶川地震和2013年芦山地震表明其地震活动并不可忽视(陈立春等,2013; 陈运泰等,2013),这一现象显然与该断裂带断层岩规模及其高温构造现象更为契合(李海兵等,2018);同理若丽江-小金河断裂北段的滑动方式与安县-灌县断裂相同,断裂带理应观测到更多蠕滑的证据(何祥丽等,2018)。换而言之,断层带的结构特征与物质组成是断裂带长期演化的产物,蕴含丰富断层历史活动信息,对理解断层的滑动行为与历史活动性,甚至区域构造演化都具有重要意义。本文以丽江-小金河断裂盐源段为研究对象,通过对断裂带规模、宏微观结构及断层岩XRD成分分析,探讨断裂的滑动机制及历史活动强度,同时结合前人对龙门山断裂带的研究成果探讨两者之间的构造联系,为客观地认识和理解丽江-小金河断裂的地震行为提供科学依据。

  • 1 区域构造背景

  • 青藏高原物质向东南挤出受到华南块体的阻挡,沿边界断裂带发生顺时针旋转形成了当今川滇块体菱形构造格局(徐锡伟等,2003Zhang Peizhen et al.,2004Gan Weijun et al.,2021),块体北、东边界为左旋走滑鲜水河-安宁河-则木河-小江断裂带,西、南边界为右旋走滑金沙江断裂和红河断裂(图1a)。块体内部以锦屏山(木里)-玉龙断裂和金河-菁河断裂为界,形成了三级台地式地貌,均海拔从4000 m降至3000 m和2000 m(图1c)。这一地貌形态被认为是青藏高原东南缘晚新生代逐步向外扩展的证据(Liu-Zeng Jing et al.,2008; 吴贵灵等,2019),低温热年代学证据表明锦屏山-玉龙断裂在晚渐新世—早中新世开始活动(Cao Kai et al.,2019),中新世20~14 Ma主要活动迁移至金河-菁河断裂(Wang Shifeng et al.,2012Zhu Chengyu et al.,2021),同期龙门山断裂带记录到大范围快速冷却事件(Wang Erchie et al.,2012),两者作为整体隆升,直至晚中新世鲜水河断裂切穿这一构造带,新的板块边界被安宁河-则木河-小江断裂带取代。

  • 丽江-小金河断裂横切第二级台地面,将川滇块体划分为滇中和滇西两个子块体。地质学和大地测量学结果揭示断层具有明显的左旋走滑特征,滑动速率1~5 mm/a,中部走滑速率大于两端(向宏发等,2002; 徐锡伟等,2003; Shen Zhengkang et al.,2005; 李乐等,2008),但对断层的倾滑分量存在较大的争论,既有支持挤压的观点(向宏发等,2002; 徐锡伟等,2003; 程佳等,2012; 刘晓霞和邵志刚,2020),又有支持拉张(王阎昭等,2008; 王庆良等,2008丁锐等,2018)和纯走滑(Zhang Peizhen,2013)的观点。这一争论实际反映丽江-小金河断裂构造的复杂性与多解性,一方面它可理解为调节锦屏山-玉龙断裂和金河-菁河逆冲推覆构造体系发育的次级断层,另一方面也可理解成鲜水河断裂切穿这一逆冲推覆体系之后新形成的断裂,这一差别必然会体现在其运动学性质之上。受第四纪地貌面发育不良的约束,目前对丽江-小金河断裂的研究主要集中在中段和南段,断裂北段尤以宁蒗县以北以基岩断裂为主,断层带规模有多大,断层带有何特征,甚至断裂带是否存在皆未有正式报道。

  • 2 丽江-小金河断裂带规模与宏观结构特征

  • 在丽江-小金河断裂盐源段共发现天然断裂带剖面四个,自西向东分别为九洛沟、干沟—新沟、道沟坪子和沈子河剖面(图1b),对各剖面揭示的断裂带特征分述如下。

  • 2.1 九洛沟剖面

  • 九洛沟剖面位于盐源盆地西北侧高地之上,地貌上呈现出清晰的线性特征,线性地貌延伸距离>2 km(图2a)。该地貌实际由两条对向冲沟组成,呈两侧高中间低的槽谷形态(图2c、f)。出露地层为三叠系陆源碎屑岩和浅海相灰岩,地层大规模向NE陡倾,统计产状335°~352°/NE∠50°~75°(图2b)。区域地层走向表明该线性地貌并非由岩性差异所致,岩性界面走向为NW—NNW,与NE55°呈大角度相交。图2c所示界面更可能受断层控制,冲沟NW侧为中厚层灰岩,SE侧为浅黄色泥质粉砂岩,两者接触带为一套破碎的粉砂岩,其优势裂隙面产状为30°/SE∠55°(图2d)。线性地貌北端两侧岩性同为灰岩,但产状明显不同,NW侧350°/NE∠54°,SE侧335°/NE∠22°(图2f),两者之间出露一套半固结的断层角砾岩,角砾岩呈条带状分布,宽0.2~0.5 m,可追溯距离>10 m,角砾分布凌乱,含少量黑色黏土矿物(图2g)。

  • 图1 川滇菱形块体构造背景

  • Fig.1 Tectonic background of the Chuan-Dian block

  • (a)—川滇块体构造简图;(b)—川滇块体中部断裂分布,丽江-小金河断裂位于锦屏山-玉龙断裂和金河-菁河断裂中间;(c)—块体中部三级台阶式地貌

  • (a) —sketch map of the Chuan-Dian block; (b) —fault distribution in the middle of the Chuan-Dian block, the Lijiang-Xiaojinhe fault is between the Jinpingshan-Yulong fault and the Jinhe-Jinghe fault; (c) —step-like landform within the block

  • 2.2 干沟—新沟剖面

  • 干沟—新沟剖面位于白乌镇正北~3 km处,断层贯穿中上三叠统博大组,岩性为浅海相-陆相石英砂岩、粉砂岩和灰岩。断裂位于砂岩和粉砂岩交界处,基岩极度破碎,测得附近较完整的砂岩产状为351°/SW∠21°,与远处采石场出露的灰岩地层走向一致(图3c),但剖面未见断层岩出露。破碎带粉砂岩一侧优势裂隙面产状为22°/SE∠69°(图3d),另一侧发育次级断层面,产状为30°/NW∠71°(图3e)。断层面可识别明显的擦痕,擦痕侧伏角25°,指示一定的水平分量,并非重力滑坡成因。此组破裂面的分布并不局限于断裂带及其附近,距离断裂带~1.5 km灰岩地层中同样发育此组面理(图3c)。

  • 图2 丽江-小金河断裂盐源段九洛沟剖面

  • Fig.2 The Jiuluogou section in the Yanyuan segment of the Lijiang-Xiaojinhe fault zone

  • (a)—断层地表线性地貌;(b)—区域地层走向NW,倾向NE;(c)—灰岩与粉砂岩通过破碎带相互接触;(d)—破碎带位置与冲沟底部重合,优势次级破裂面走向NE30°;(e)—粉砂岩原岩层理;(f)—断层两侧地层产状不一致;(g)—灰岩断层角砾,位置见图(f)

  • (a) —linear imprint of the fault trace; (b) —regional strata dip to NE; (c) —limestone contacted with the siltstone by fracture zone; (d) —location of the damage zone coincides with the bottom of the gully; (e) —beddings in the siltstone are recognizable and in sharp contrast with the damage zone in (d) ; (f) —attitude of the strata on both side of the fault; (g) —fault breccia, see the red dot in (f)

  • 2.3 道沟坪子剖面

  • 道沟坪子剖面位于白乌镇NE方向,与冲沟交汇处出露两个断层带剖面,两者直线距离~0.3 km(图4a)。剖面1为SE分支,出露的断层岩带厚~5 m(图4b),由黑色断层泥与断层角砾组成,角砾呈零散状分布于泥质基质中(图4d),断层泥具有极高的黏土矿物含量(图4f)。剖面2为NW分支,断层带核部断层岩厚~8 m(图4c),断层岩同为断层泥和断层角砾,以断层角砾岩为主,角砾含量普遍大于30%,原岩为灰色粉砂岩(图4e)。剖面2南东侧发育一套厚~22 m的破裂面密集带,优势破裂面产状为33°/SE∠66°(图4h),与九洛沟剖面和干沟—新沟剖面一致。

  • 2.4 沈子河剖面

  • 沈子河剖面出露地层仍为三叠系沉积岩,但地层产状有很大的变化,走向由NW转变为NE。如图5a所示,沿断层走向共出露两个天然剖面,SW侧断层带核部出露黑色断层泥和断层角砾(图5d)。NE侧剖面共识别出4个单元,从东向西分别为黑色粉砂岩破碎带、灰色粉砂岩破碎带、断层岩带和中厚层细砂岩-粉砂岩互层带(图5f)。断层岩带宽~6.95 m,由泥质基质和棱角状角砾组成,泥质成分含量<20%,角砾直径从几厘米到几米不等。断层带核部通过断层面与两侧单元相互接触,断层产状分别为40°/NW∠68°和50°/NW∠64°(图5b),SE侧破碎带总厚度>23 m。在黑色和灰色粉砂岩破碎带分别测得优势破裂面产状分别为20°/SE∠70°(图5c)和35°/NW∠82°(图5e),产状同样与前述剖面一致。

  • 图3 丽江-小金河断裂盐源段干沟—新沟剖面

  • Fig.3 The Gangou—Xingou section in the Yanyuan segment of the Lijiang-Xiaojinhe fault zone

  • (a)—相关构造现象(b~e)平面位置分布图;(b)—基岩陡坎;(c)—灰岩中发育的大型张节理,临空面为层理面;(d)—破碎带中发育的密集裂隙面;(e)—NE30°走向次级断层面,侧伏角25°

  • (a) —spatial distribution of (b~e) ; (b) —fault scarp; (c) —large-scale extensional crack in limestone, noting the beddings are vertical; (d) —dense-populated fissures in the damage zone; (e) —slickenline with pitch angle of 25° developed on the NE30° striking secondary fault plane

  • 3 断层岩显微构造及成分分析

  • 按照原岩岩性差异可将丽江-小金河断裂带地表出露的断层岩细分为灰岩和粉砂岩质断层岩,前者主要在九洛沟剖面出露,并且以断层角砾岩为主,后者以道沟坪子剖面最为典型。选取这两个剖面采样,对断层岩的显微结构和成分进行了详细分析。灰岩质角砾岩中细粒基质含量极少,呈黑色分布于角砾周缘(图6a),角砾呈棱角状,大小不一,粒径较小的颗粒往往呈条带状出现,可能与局部应变集中有关(图6b)。角砾岩内发育大量方解石脉体,脉体切穿角砾或沿角砾边缘分布。粉砂岩质角砾岩中角砾同样呈棱角状,颗粒大小极不均匀,但黏土矿物含量极高,角砾基本呈零散状分布于其中。角砾仍可识别出原岩结构,同一样品中相邻角砾具有完全不同的粒度(图6c),暗示其并非原位产出。角砾岩中发育石英脉体,后期被破坏成碎块状(图6d),但部分区域仍可识别其初始条带状形态(图6c)。

  • 选取代表性的灰岩角砾岩和粉砂岩断层泥进行X射线衍射分析,其结果如图7所示。灰岩角砾岩主要构成矿物为方解石和白云石,含量分别为37%和61%,黏土矿物的总含量为2%。粉砂岩断层泥黏土矿物含量为52%,石英含量为36%,方解石含量为9%,黄铁矿含量为3%,缺失长石类矿物。黏土矿物分析显示,灰岩角砾岩中的黏土矿物主要为伊利石和伊利石-蒙脱石混层,两者含量占比为97%,同时含少量高岭石(2%)和绿泥石(1%),而粉砂岩断层泥中伊利石的含量仅为4%,伊蒙混层含量高达29%,坡缕石36%,绿泥石31%。

  • 图4 丽江-小金河断裂盐源段道沟坪子剖面

  • Fig.4 The Daogoupingzi section in the Yanyuan segment of the Lijiang-Xiaojinhe fault zone

  • (a)—剖面位置;(b)—SE分支断层剖面1简图;(c)—NW分支断层剖面2简图;(d、e)—剖面出露的典型断层角砾;(f、g)—剖面出露的典型断层泥;(h)—剖面2破碎带发育的密集面理带;(i)—基岩地层,清晰的层理与断裂带差异分明

  • (a) —location of the fault sections; (b) —section 1 on the SE side of the fault; (c) —section 2 on the NW side of the fault; (d, e) —typical fault breccia in each section; (f, g) —typical fault gouge in each section; (h) —damage zone in section 2; (i) —base rock noting the clear bedding are in sharp contact to those rocks in the fault zone

  • 图5 丽江-小金河断裂盐源段沈子河剖面

  • Fig.5 The Shenzihe section in the Yanyuan segment of the Lijiang-Xiaojinhe fault zone

  • (a)—断层带出露位置;(b、d)—出露的断层角砾与断层泥带;(c、e)—断层岩SE侧发育的破碎带;(f)—断层带剖面简图

  • (a) —location of the fault outcrops; (b, d) —fault breccia and fault gouge; (c, e) —damage zone on the SE side of the fault core; (f) —sketch of the fault zone

  • 4 讨论

  • 4.1 NE20°~30°走向次级破裂面与丽江-小金河断裂之间的构造联系

  • 上述剖面从西至东直线距离~40 km,但都观测到NE20°~30°走向次级破裂面出现。破裂面陡倾,倾角普遍>60°,倾向SE或NW。该组破裂面的产出不受岩性控制,灰岩、粉砂岩和细砂岩地层中都有发育,但以断裂带附近泥质粉砂岩分布最为密集,其密集程度高度形似劈理带(图2~5)。由此导致对它们的形成机理也有不同解读:① 是区域构造应变的产物;② 与丽江-小金河断裂的活动密切相关。区分两者的关键不仅在于此组破裂面是否仅在断裂带附近发育,而且也在于是否与区域构造背景相互匹配。

  • 图6 丽江-小金河断裂断层岩显微构造特征

  • Fig.6 Microstructure of the fault rocks in the Lijiang-Xiaojinhe fault zone

  • (a、b)—灰岩断层角砾岩;(c、d)—粉砂岩断层角砾岩

  • (a, b) —limestone fault breccia; (c, d) —siltstone fault breccia

  • 图7 丽江-小金河断裂带断层岩XRD成分分析

  • Fig.7 XRD analysis of the fault rocks in the Lijiang-Xiaojinhe fault zone

  • (a)—粉砂岩断层泥;(b)—灰岩断层角砾岩

  • (a) —siltstone fault gouge; (b) —limestone fault breccia

  • 我们的调查发现NE20°~30°走向级破裂面不仅沿丽江-小金河断裂带产出,并且同一剖面相同岩性地层离断层核部越远破裂面越稀疏,地层的原生层理面也越清晰(图2e,图4i)。反之亦然,受此组破裂面的控制,靠近断层带核部断层岩的地层破碎极其严重,其原生层理已完全无法识别(图2d,图4h),这一现象更支持它们是断层活动的产物。此外,调查同时发现不同地点区域地层变形方式并不一致,西洛沟剖面至道沟坪子剖面地层走向皆为NW—NNW,地层变形以NE-SW向挤压为主,而沈子河及以北地区地层走向为NE,地层变形以NW-SE向挤压为主。这两种变形方式与松潘-甘孜褶皱带早期和晚期变形方式相互对应(王二七和孟庆任,2008),并且在盐源盆地内部及周缘都有显著的体现(四川省地质局,1971),如若此组破裂面为区域变质的产物,其产出状态理应同时体现出这种变化,而非展现出高度的一致性。

  • 如图8所示,NE20°~30°破裂面密集带同样可理解成断层破碎带。破裂面与丽江-小金河断裂(走向NE55°)呈锐夹角相交,按照里德尔左行简单剪切模型判断,这一方向构造面为张剪性,运动学方式为左旋兼正断。遗憾的是产出的密集面理带并无脉体或其他标志物发育,缺乏相应的物质基础验证这一观点,但更远处相同产状的节理面和次级断层面可作为参考。如图3c所示,粉砂岩中发育的次级断层面同时具有水平和垂直位移分量,而图3d灰岩中发育的巨型节理面具有明显的拉张性质,这些现象与模型相互吻合。故此,我们更倾向于将此组破裂面视为丽江-小金河断裂长期左旋活动的产物,归属于丽江-小金河断裂破碎带单元。

  • 图8 NE20°~30°破裂面与丽江-小金河断裂之间的构造联系简图

  • Fig.8 Simplified model showing the relation between the NE20°~30° striking fissures and the Lijiang-Xiaojinhe fault

  • 4.2 丽江-小金河断裂北段滑移方式

  • 长期蠕滑的断层在断裂带成分、宏观结构与断层岩微观结构上与长期黏滑的断层存在显著差异(Wang Huan et al.,2014; 何祥丽等,2020李成龙等,2021),例如快速摩擦滑动形成的高温可导致断层带含铁矿物磁学性质发生改变(张蕾等,2017),使得流体瞬时气化形成超碎裂岩脉体(Lin Aiming,2011),甚至使得岩石发生熔融形成假玄武玻璃(Wang Huan et al.,2015);相比较而言,蠕滑断层的应变释放是一个相对缓慢的过程,不仅缺失此类快速滑动的构造现象,而且往往有大量弱强度矿物的富集(Carpenter et al.,2011)。我们的调查表明丽江-小金河断裂北段并非一条长期蠕滑的断层,而是典型的黏滑断层,从宏观露头到显微结构,丽江-小金河断裂带均表现为大小不一的角砾凌乱分布,角砾呈棱角状,无任何磨圆,灰岩角砾岩中层状硅酸盐弱强度矿物含量更是极其稀少,这些都是典型的快速滑动特征。即便原岩为泥质粉砂岩,层状硅酸盐等强度较弱的矿物含量较高,细粒基质中仍可识别出快速碾磨破坏形成的石英碎斑(图6c、d)。反观长期蠕滑断层形成的断层岩通常表现出为弥散式变形,以龙门山安县-灌县断裂为例,断层泥和断层角砾都具有压溶变形的特征,清晰展现出矿物溶解、转移和沉积的连续过程,且断层泥中发育大量透入性面理,面理呈拖尾构造、似S-C组构等特殊形态(何祥丽等,2018李海兵等,2018),这些变形特征与丽江-小金河断裂带差异甚大。

  • 4.3 丽江-小金河断裂带规模

  • 典型的断裂带结构由断裂带核部(厚度CT)和破碎带组成(Caine et al.,1996; Wibberley et al.,2008; Faulkner et al.,2010),前者通常由被强烈碾磨、细粒化的断层泥、角砾岩或超碎裂岩组成,后者为包绕前者的破碎基岩(图9a)。大量的研究表明这两个单元的厚度与断裂累计位移(D)呈正相关(Scholz,1987; Faulkner et al.,2010; Savage and Brodsky,2011),尽管对这一规律的内在机制认识不统一,例如与断层面粗糙度(Power et al.,1988)、应变软硬化(Hull et al.,1988)或构造位置(Childs et al.,2009)等相关,但这一统计规律适用于规模不同、运动学性质各异的断裂带(Mitchell and Faulkner,2009; Faulkner et al.,2011; Savage and Brodsky,2011)。断裂带核部的比例系数为0.001~1,平均值为0.01(Fossen,2016),以2008年汶川地震为例,地震形成位移接近或大于10 m,深钻揭示形成的断层岩厚度为0.07~0.12 m(李海兵等,2018),相关数据同样符合这一统计规律。

  • 若将断裂带一侧发育的破裂面密集带视为断层破碎带(图9a),那么丽江-小金河断裂北段地表出露规模>29 m(表1),其中核部宽度0.2~8 m,组成物质为断层泥和断层角砾岩,破碎带宽度>22 m。需要指出的是九洛沟剖面断层带规模相较于其他剖面明显偏小,断层岩带厚度0.2~0.5 m,推测原因是该剖面仅为丽江-小金河断裂一条分支断层,而干沟—新沟剖面和道沟坪子剖面已经证实丽江-小金河断裂发育同向次级断层,故此认为该剖面断层岩带规模并不具有代表性。此外,由于对破碎带宽度的测量与剖面出露情况密切相关,上述剖面与断层岩带的界线大多可清晰辨别(图2g,图4f,图5b),但基岩破碎带与围岩之间的界面通常难以限定,在计算断裂带累计位移时,仅考虑道沟坪子和沈子河剖面断层岩带厚度,亦即通过断层带核部统计关系估算丽江-小金河断裂的历史累计位移。

  • 图9 断层带核部与碎裂带结构单元划分(a)及丽江-小金河断裂、映秀-北川断裂和安县-灌县断裂累计位移估算(b)(改自Fossen,2016

  • Fig.9 Classification of the fault core and fault damage zone (a) and the estimated historical slip of the Lijiang-Xiaojinhe fault, the Yingxiu-Beichuan fault and the Anxian-Guanxian fault (b) (modified from Fossen, 2016)

  • 两个剖面直线距离>10 km,但无论从断裂带结构还是断裂带规模上都表现出一致性:断层岩单侧皆发育厚度>20 m的破裂面密集带(图4h,图5e),且断层岩带厚度分别为5 m、8 m和6.95 m(表1)。以断裂带核部统计关系的平均值D=100CT计算,断裂累计位移为0.5~0.8 km(图9b),这一数值明显小于龙门山映秀-北川断裂和安县-灌县断裂,后者报道的断层岩厚度分别为180~280 m和40~50 m,位移估算值分别为18~28 km和4~5 km(李海兵等,2018)。

  • 表1 丽江-小金河断裂北段断裂带规模统计

  • Table1 Statistics of the thickness of the Lijiang-Xiaojinhe fault zone

  • 4.4 与龙门山断裂带之间的构造联系

  • 龙门山断裂带由三条NE走向断裂组成,自西向东分别为汶川-茂县断裂、映秀-北川断裂和安县-灌县断裂,三者呈叠瓦状向四川盆地内部逆冲。断裂带初始活动时代为晚三叠世,汶川-茂县断裂糜棱岩云母40Ar-39Ar年龄为220~120 Ma(Xu Zhiqin et al.,2008),映秀-北川断裂假玄武玻璃同位素年龄为229~216 Ma(Zheng Yong et al.,2016);新生代在NW-SE向挤压下重新活化,直至中新世被鲜水河断裂系左旋错断(Wang Erchie et al.,1998; 许志琴等,2007)。王二七和孟庆任(2008)认为汶川-茂县断裂是松潘-甘孜块体和扬子块体的真实边界,其SW方向的延伸是金河-菁河断裂,被鲜水河断裂断错位移~60 km(Wang Shifeng et al.,2012),这意味着川滇块体中部锦屏山-玉龙雪山构造带在中新世之前仍与龙门山构造带连为一体。其内部走向与龙门山断裂带一致、空间位置极为接近的丽江-小金河断裂极有可能是后者或者其中某条断裂SW方向的延伸,然而这一推测与本文观察到的断层岩规模并不相符,如若两者具有相同的活动历史,形成的断层岩规模理论上应保持一致。

  • Wang Huan et al.(2014)结合地表露头和钻孔岩心分析将映秀-北川断裂带厚达数百米的断层岩带细分成了五个单元:碎裂岩带、黑色断层泥和角砾岩带、灰色断层角砾岩带、深灰色断层角砾岩带以及黑色断层泥和角砾岩带,断裂带具有典型的多核结构;相比较而言,丽江-小金河断裂带出露的断层岩更简单,以黑色或灰色断层泥和角砾岩为主,为单核结构。此外,不同种类的断层岩形成的温压条件不同,以碎裂岩为例,Sibson(1977)认为其形成深度为脆-韧性转换带,它在地表的出现表明映秀-北川断裂带经历了10~15 km的抬升(王焕等,2013),而汶川-茂县断裂带地表糜棱岩指示的温压条件更高,对应的隆升剥蚀量也更大;反观丽江-小金河断裂带出露的脆性断层岩均为地壳浅部断层作用的产物,相较于映秀-北川断裂带更新。结合前文丽江-小金河断裂与安县-灌县断裂滑移方式上的差异(何祥丽等,2018),无论是从断层岩的规模、种类、结构还是它们所反映的断层活动强度、滑移方式与抬升量来看,丽江-小金河断裂与龙门山断裂带都存在显著差异。

  • 两者的差异同时也体现在断层岩成分之上。前人研究表明映秀-北川断裂和安县-灌县断裂断层岩具有较高的长石矿物含量(王焕等,2013何祥丽等,2018李成龙等,20202021),具体数值5%~35%不等(表2),但丽江-小金河断裂这一数值为零。两者切穿的地层皆以三叠系粉砂岩为主,长石含量的变化不太可能由岩性差异所致,XRD分析显示两者石英含量高度一致,丽江-小金河断裂带为36%,后者占比范围为28%~65%,佐证其原岩皆为富含石英的粉砂岩。考虑到长石与石英矿物的稳定性不同,一方面可认为这一现象由流体蚀变所致,亦即丽江-小金河断裂带经历了长期流体改造,长石矿物蚀变成为黏土矿物与石英;但也不排除是断层活动的直接结果,长石矿物的熔点低于石英,断层摩擦形成的高温完全可以导致长石选择性地熔融分解。综上所述,丽江-小金河断裂并不能简单地认为是龙门山断裂带或者其中某条断裂SW方向的延续,两者晚新生代可能具有完全不同的构造活动历史,同理发生在两条断裂上的地震活动并不能简单地进行类比。本文更倾向于认为丽江-小金河断裂是鲜水河断裂切穿锦屏山-龙门山逆冲推覆体系之后新形成的断裂,但这一观点仍有待进一步的断层泥年代学和断层几何运动学证据检验。

  • 表2 丽江-小金河断裂断、映秀-北川断裂和安县-灌县断裂典型断层岩矿物含量(%)

  • Table2 Mineral contents (%) of the typical fault rocks in the Lijiang-Xiaojinhe fault, the Yinxiu-Beichuan fault and the Anxian-Guanxian fault

  • 5 结论

  • 通过对丽江-小金河断裂盐源段断裂带规模和宏观结构特征的调查研究,结合断层岩显微构造和成分分析获得了下述结论:

  • (1)断裂斜切晚三叠世沉积地层,以沈子河剖面为界,东西两侧地层向NE(SW)和NW方向陡倾,分别对应松潘-甘孜褶皱带早期NE-SW和晚期SE-NW向挤压变形。断层破碎带发育一套走向NE20°~30°的破裂面密集带,不论区域地层产状如何变化,该组破裂面产状稳定且沿断裂带线性分布,推测是丽江-小金河断裂左旋走滑过程中形成的张剪性破裂。

  • (2)断层带宏观结构和断层岩显微结构指示丽江-小金河断裂北段并非长期蠕滑而成。断层带中棱角状断层角砾与细粒基质混杂堆积,角砾大小差异极大,微观尺度上亦可见撕裂的石英碎斑零散分布于黏土矿物中,具有典型的快速滑动特征。

  • (3)断层带核部以断层角砾岩和断层泥为主,断层岩带宽5~8 m,这一规模相对于龙门山映秀-北川断裂180~280 m和安县-灌县断裂40~50 m显著偏小,暗示丽江-小金河断裂的历史活动性远低于龙门山断裂带,两者的地震行为并不能简单地进行类比。此外,映秀-北川断裂与汶川-茂县断裂地表出露的碎裂岩和糜棱岩,安县-灌县断裂带所展现出的蠕滑特征,以及断层岩成分差异都指示丽江-小金河断裂并不能简单地理解为龙门山断裂带其中任何一条SW方向的延伸,它更可能是鲜水河断裂切穿锦屏山-龙门山逆冲推覆构造之后新生成的断裂。

  • 致谢:中国地质科学院地质研究所郑勇博士对野外工作提供帮助,汶川地震科钻中心魏金川工程师和中国地质科学院地质研究所司家亮和李成龙博士在薄片制备、XRD分析过程中给予了极大帮助,在此一并表示感谢。感谢匿名审稿专家审阅本文并提出重要修改建议。

  • 注释

  • ❶ 四川省地质局.1971.中华人民共和国区域地质测量报告1∶20万盐源幅。

  • 参考文献

    • Bai Mingkun, Marie-Luce C, Pan Jiawei, Replumaz A, Leloup P, Metois M, Li Haibing. 2018. Southeastward increases of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.

    • Bai Mingkun, Marie-Luce C, Li Haibing, Pan Jiawei, Wu Qiong, Wang Shiguang, Liu Fucai, Jiao Liqing, Zhang Jinjiang, Zhang Lei, Gong Zheng. 2022. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault. Acta Geologica Sinica, 96(7): 2312~2332 (in Chinese with English abstract).

    • Burchfiel B, Chen Zhi, Liu Yupin, Royden L. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37: 661~736.

    • Caine J, Evans J, Forster C. 1996. Fault zone architecture and permeability structure. Geology, 24(11): 1025~1028.

    • Cao Kai, Wang Guocan, Leloup P, Maheo G, Xu Yadong, Pieter A, Replumaz A, Zhang Kexin. 2019. Oligocene-early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics, 38: 37~391.

    • Carpenter B, Marone C, Saffer D. 2011. Weakness of the San Andreas fault revealed by samples from the active fault zone. Nature Geoscience, 4(4): 251~254.

    • Cheng Jia, Xu Xiwei, Gan Weijun, Ma Wentao, Chen Weitao, Zhang Yong. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chinese Journal of Geophysics, 55(4): 1198~1212 (in Chinese with English abstract).

    • Chen Lichun, Ran Yongkang, Wang Hu, Li Yanbao, Ma Xinquan. 2013. The Lushan Ms7. 0 earthquake and activity of the southern segment of the Longmenshan fault zone. China Science Bulletin, 58(28-29): 3475~3482.

    • Chen Yuntai, Yang Zhixian, Zhang Yong, Liu Chao. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Scinetia Sinica Terra, 43(6): 1064~1072.

    • Childs C, Manzocchi T, Walsh J, Bonson C, Nicol A, Schopfer M. 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31: 117~127.

    • Deng Qidong, Zhang Peizhen, Ran Yongkang, Yang Xiaoping, Min Wei, Chu Quanzhi. 2003. Basic characteristic of active tectonics of China. Science in China (Series D), 46(4): 356~372.

    • Densmore A, Ellis M, Li Yong, Zhou Rongjun, Hancock G, Richardson N. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 26: TC4005.

    • Ding Rui, Ren Junjie, Zhang Shimin, Lv Yanwu, Liu Hanyong. 2018. Late Quaternary Paleoearthquakes on the middle segment of the Lijiang-Xiaojinhe fault, southeast Tibet. Seismology and Geology, 40(3): 622~640 (in Chinese with English abstract).

    • Faulkner D, Jackson C, Lunn R, Schliche R, Shiton Z, Wibberley C, Withjack M. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32: 1557~1575.

    • Faulkner D, Mitchell T, Jenson E, Cembrano J. 2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research, 116: B05403.

    • Fossen H. 2016. Structural Geology, 2nd Edition. New York: Cambridge University Press, 177~218.

    • Gan Weijun, Molnar P, Zhang Peizhen, Xiao Genru, Liang Shiming, Zhang Keliang, Li Zhangjun, Xu Keke, Zhang Ling. 2021. Initiation of clockwise rotation and eastward transport of Southeastern Tibet inferred from deflected fault traces and GPS observations. The Geological society of America, 134(5-6): 1129~1142.

    • He Honglin, Yasutaka I, He Yulin, Msayoshi T, Chen Jia, Chen Changyun, Masayoshi T, Tomoo E, Shinsuke O. 2008. Newly-generated Daliangshan fault zone-shortcutting on the central section of Xianshuihe-Xiaojiang fault system. Science in China Series D: Earth Sciences, 51(9): 1248~1258.

    • He Xiangli, Li Haibing, Zhang Lei, Wang Huan, Ge Chenglong, Chao Yong, Bai Mingkun, Li Chenglong, Ye Xiaozhou, Han Shuai. 2018. Mineral and chemical response to low magnetic susceptibility of the fault gouge from the Guanxian-Anxian fault zone and fault creep setting in the Longmen Shan. Chinese Journal of Geophysics, 61(5): 1782~1796 (in Chinese with English abstract).

    • He Xiangli, Li Haibing, Wang Huan, Zhang Lei, Sun Zhiming, Si Jialiang. 2020. Rock composition and structural characteristics of creep-slip fault zone: A case of the Guanxian-Anxian fault zone in the Longmen Shan, China. Acta Petrologica Sinica, 36(10): 3209~3224 (in Chinese with English abstract).

    • Hull J. 1988. Thickness-displacement relationships for deformation zones. Journal of Structural Geology, 10: 431~435.

    • Kuo Liwei, Li Haibing, Smith S, Di-Toro G, Suppe J, Song Shengrong, Nielsen S, Sheu H, Si Jialiang. 2014. Gouge graphitization and dynamic fault weakening during the 2008 MW7. 9 Wenchuan earthquake. Geology, 42(1): 47~50.

    • Li Chenglong, Li Haibing, Wang Huan, Zhang Lei, Sun Zhiming, Zhang Jiajia, Yun Kun, Zhang Jinjiang. 2020. Rock characteristics and internal structures of the Beichuan fault zone at Nanba outcrop in the northeastern segment of the 2008 Wenchuan seismogenic fault. Acta Petrologica Sinica, 36(10): 3192~3208 (in Chinese with English abstract).

    • Li Chenglong, Li Haibing, Wang Huan, Zhang Jinjiang. 2021. Petrological and geochemical characteristics and deformation behavior of the Beichuan section of the Wenchuan earthquake fault zone. Acta Petrologica Sinica, 37(10): 3145~3146 (in Chinese with English abstract).

    • Li Haibing, Xu Zhiqin, Wang Huan, Si Jialiang, Li Tianfu, Song Shengrong, Pei Junling, Guo Liwei, Sun Zhiming, Huang Yao, Marie-Luce C, Liu Dongliang. 2013. The principle slip zone of the 2008 Wenchuan earthquake: A thrust fault oblique cutting the Yingxiu-Beichuan fault zone. Geology in China, 40(1): 121~139 (in Chinese with English abstract).

    • Li Haibing, Xu Zhiqin, Wang Huan, Zhang Lei, He Xiangli, Si Jialiang, Sun Zhiming. 2018. Fault behavior, physical properties and seismic activity of the Wenchuan earthquake fault zone: Evidence from the Wenchuan earthquake fault scientific Drilling Project (WFSD). Chinese Journal of Geophysics, 61(5): 1680~1697 (in Chinese with English abstract).

    • Li Le, Chen Qifu, Niu Fenglin, Fu Hong, Liu Ruifeng, Hou Yanyan. 2009. Slip rate along the Lijiang-Ninglang fault zone estimated from repeating microearthquakes. Chinese Science Bulletin, 54(3): 447~455.

    • Li Ning, Zhu Liangyu, Liu Lei. 2018. Study on present day locking degree and seismic hazard of the Lijiang-xiaojinhe fault zone. Seismology and Geology, 41(2): 244~250 (in Chinese with English abstract).

    • Lin Aiming. 2011. Seismic slip recorded by fluidized ultracataclastic veins formed in a coseismic shear zone during the 2008 MW7. 9 Wenchuan earthquake. Geology, 39(6): 547~550.

    • Liu Dongliang, Li Haibing, Lee Teh Quei, Sun Zhiming, Liu Jiang, Han Liang, Marie-luce Chevalier. 2016. Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake (MW7. 9, 2008) and its implication for earthquake slip processes. Journal of Asian Earth Sciences, 115: 468~479.

    • Liu Xiaoxia, Shao Zhigang. 2020. Current fault movement characteristics in the Lijiang-Xiaojinhe fault zone. Chinese Journal of Geophysics, 63(3): 1117~1126 (in Chinese with English abstract).

    • Liu-Zeng Jing, Tapponnier P, Gaudemer Y, Ding Lin. 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. Journal of Geophysical Research, 113: F04018.

    • Mitchell T, Faulkner D. 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31: 802~816.

    • Power W, Tullis T, Weeks J. 1988. Roughness and wear during brittle faulting. Journal of Geophysical Research, 3(B12): 15268~15278.

    • Savage H, Brodsky E. 2011. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research, 116: B03405.

    • Scholz C. 1987. Wear and gouge formation in brittle faulting. Geology, 15: 493~495.

    • Shen Zhengkang, Lu Jiangning, Wang Min, Burgman R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.

    • Sibson R. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3): 191~213.

    • Wang Erchie, Burchfiel B, Royden L, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red river, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper. 327.

    • Wang Erchie, Meng Qingren. 2009. Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt. Science in China Series D: Earth Sciences, 52(5): 579~592.

    • Wang Erchie, Kirby E, Furlong K, Soest M, Xu G, Kamp P, Hodges K. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience. 5(9): 640~645.

    • Wang Huan, Li Haibing, Si Jialiang, Huang Yao. 2013. The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan. Acta Petrologica, 29(6): 2048~2060 (in Chinese with English abstract).

    • Wang Huan, Li Haibing, Si Jialiang, Sun Zhiming, Huang yao. 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-620: 101~114.

    • Wang Huan, Li Haibing, Janssen Christoph, Sun Zhiming, Si Jialiang. 2015. Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening. Journal of Structural Geology, 74: 159~171.

    • Wang Shifeng, Jiang Guiguo, Xu Tiande, Tian Yuntao, Zheng Dewen, Fang Xiaomin. 2012. The Jinhe-Qinghe fault—An inactive branch of the Xianshuihe-Xiaojiang fault zone, eastern Tibet. Tectophysics, 544-545: 93~102.

    • Wang Qingliang, Cui Duxin, Wang Wenping, Zhang Sixin, Liu Jingwen, Shi Qi. 2008. Present-day vertical crust movement of the Western Sichuan region. Science in China Series D: Earth Sciences, 38(5): 598~610.

    • Wang Yanzhao, Wang Enning, Shen Zhengkang, Wang Min, Gan Weijun, Qiao Xuejun, Meng Guojue, Li Tieming, Tao Wei, Yang Yonglin, Cheng Jia, Li Peng. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences, 51(9): 1267~1283.

    • Wibberley C, Yielding G, Di Toro G. 2008. Recent advances in the understanding of fault zone internal structure: A review. Geological Society, London, Special Publications, 299(1): 5~33.

    • Wu Guiling, Zhu Chengyu, Wang Guocan, Zhang Pan. 2019. Demarcation of the geomorphological boundaries of southeastern Tibet: Implication for expansion mechanisms of the plateau edge. Seismology and Geology, 41(2): 281~299 (in Chinese with English abstract).

    • Xiang Hongfa, Xu Xiwei, Guo Shunmin, Zhang Wanxia, Li Hongwu, Yu Guihua. 2002. Sinistral thrusting along the Lijiang-Xiaojinhe fault since Quaternary and its geologic-tectonic significance. Seismology and Geology, 24(2): 188~198 (in Chinese with English abstract).

    • Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangming, Yu Guihua. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sciences in China Series D, 46(S2): 210~226.

    • Xu Zhiqin, Li Huaqi, Hou Liwei, Fu Xiaofang, Chen Wen, Zeng lingshen, Cai Zhihui, Chen Fangyuan. 2007. Uplift of the Longmen-Jiping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: Large-scale detachment faulting and extrusion mechanism. Geological Bulletin of China, 26(10): 1252~1276 (in Chinese with English abstract).

    • Xu Zhiqin, Ji Shaocheng, Li Haibing, Hou Liwei, Fu Xiaofang, Cai Zhihui. 2008. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 31(3): 291~301.

    • Zhang Lei, Sun Zhiming, Li Haibing, Zhao Laishi, Cao Yong, Ye Xiaozhou, Wang Leizhen, Wang Huan, He Xiangli, Han Shuai, Bai Mingkun, Ge Chenglong, Zhao Yue. 2017. Mannetic susceptibility of WFSD-2 borehole cores from the Longmenshan thrust belt and its implications for great seismic activity. Chinese Journal of Geophysics, 60(1): 225~239 (in Chinese with English abstract).

    • Zhang Peizhen. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7~22.

    • Zhang Peizhen, Deng Qidong, Zhang Guomin, Ma Jin, Gan Weijun, Min Wei, Mao Fengying, Wang Qi. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China (Series D), 46: 13~24.

    • Zhang Peizhen, Shen Zhenkang, Wang Min, Gan Weijun, Burgmann R, Molnar P, Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Sun Hanrong, You Xinzhao. 2004. Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9): 809~812.

    • Zheng Yong, Li Haibing, Sun Zhiming, Wang Huan, Zhang Jiajia, Li Chenglong, Cao Yong. 2016. New geochronology constraints on timing and depth of the ancient earthquakes along the Longmen Shan fault belt, eastern Tibet. Tectonics, 35: 2781~2806.

    • Zhu Chengyu, Wang Guochan, Leloup P, Cao Kai, Maheo G, Cheng Yue, Zhang Pan, Shen Tianyi, Wu Guiling, Sotiriou P, Wu Bo. 2021. Role of the early Miocene Jinhe-Qinghe trust belt in the building of the southeastern Tibetan Plateau topography. Tectonopysics, 811: 228871.

    • 白明坤, Marie-Luce C, 李海兵, 潘家伟, 吴琼, 王世广, 刘富财, 焦利青, 张进江, 张蕾, 龚正. 2022. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究. 地质学报, 96(7): 2312~2332.

    • 程佳, 徐锡伟, 甘卫军, 马文涛, 陈为涛, 张勇. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源. 地球物理学报, 55(4): 1198~1212.

    • 陈立春, 冉永康, 王虎, 李彦宝, 马兴全. 2013. 庐山地震与龙门山断裂带南段活动性. 科学通报, 58(20): 1925~1932.

    • 陈运泰, 杨智娴, 张勇, 刘超. 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064~1072.

    • 丁锐, 任俊杰, 张世民, 吕延武, 刘汉永. 2018. 丽江-小金额和断裂中段晚第四纪古地震历史. 地震地质, 40(3): 622~640.

    • 何祥丽, 李海兵, 张蕾, 王焕, 葛成隆, 曹勇, 白明坤, 李成龙, 叶小舟, 韩帅. 2018. 龙门山灌县-安县断裂带断层泥低磁化率的矿物化学响应和蠕滑作用环境. 地球物理学报, 61(5): 1782~1796.

    • 何祥丽, 李海兵, 王焕, 张蕾, 孙知明, 司家亮. 2020. 蠕滑断裂带岩石组成和构造特征分析: 以龙门山灌县-安县断裂带为例. 岩石学报, 36(10): 3209~3224.

    • 李成龙, 李海兵, 王焕, 张蕾, 孙知明, 张佳佳, 云琨, 张进江. 2020. 2008年汶川地震断裂带北东段南坝地区岩石特征与内部结构. 岩石学报, 36(10): 3192~3208.

    • 李成龙, 李海兵, 王焕, 张进江. 2021. 龙门山汶川地震断裂带北川段岩石与地球化学特征及其变形行为. 岩石学报, 37(10): 3145~3146.

    • 李海兵, 许志琴, 王焕, 司家亮, 李天福, 宋圣荣, 裴军令, 郭力维, 孙知明, 黄尧, Marie-Luce Chevalier, 刘栋梁. 2013. 汶川地震主滑移带(PSZ): 映秀-北川断裂带内的斜切逆冲断裂. 中国地质, 40(1): 121~139.

    • 李海兵, 许志琴, 王焕, 张蕾, 何祥丽, 司家亮, 孙知明. 2018. 汶川地震断裂带滑移行为、物理性质及其大地震活动性-来自汶川地震断裂带科学钻探的证据. 地球物理学报, 61(5): 1680~1697.

    • 李乐, 陈棋福, 钮凤林, 付虹, 刘瑞丰, 侯燕燕. 2008. 利用重复地震估算丽江-宁蒗断裂带的深部滑动速率. 科学通报, 53(23): 2925~2932.

    • 李宁, 朱良玉, 刘雷. 2018. 丽江-小金河断裂带现今闭锁程度与地震危险性分析. 地震地质, 41(2): 244~250.

    • 刘晓霞, 邵志刚. 2020. 丽江-小金河断裂带现今断层运动特征. 地球物理学报, 63(3): 1117~1126.

    • 王二七, 孟庆任. 2008. 对龙门山中生代和新生代构造演化的讨论. 中国科学D辑: 地球科学, 38(10): 1221~1233.

    • 王焕, 李海兵, 司家亮, 黄尧. 2013. 汶川地震断裂带结构特征与龙门山隆升的关系. 岩石学报, 29(6): 2048~2060.

    • 王庆良, 崔笃信, 王文萍, 张四新, 刘锦文, 史旗. 2008. 川西地区现金垂直地壳运动研究. 中国科学D辑, 38(5): 598~610.

    • 王阎昭, 王恩宁, 沈正康, 王敏, 甘卫军, 乔学军, 孟国杰, 李铁明, 陶玮, 杨永林, 程佳, 李鹏. 2008. 基于GPS资料约束反演川滇地区主要断裂现金活动速率. 中国科学D辑, 38(5): 582~597.

    • 吴贵灵, 祝成宇, 王国灿, 张攀. 2019. 青藏高燕东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示. 地震地质, 41(2): 281~299.

    • 向宏发, 徐锡伟, 虢顺民, 张晚霞, 李洪武, 于贵华. 2002. 丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义. 地震地质, 24(2): 188~198.

    • 许志琴, 李化启, 侯立炜, 付小芳, 陈文, 曾令森, 蔡志慧, 陈方远. 2007. 青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制. 地质通报, 26(10): 1262~1276.

    • 徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑, 33: 151~162.

    • 张蕾, 孙知明, 李海兵, 赵来时, 曹勇, 叶小舟, 王雷振, 王焕, 何祥丽, 韩帅, 白明坤, 葛成隆, 赵越. 2017. 龙门山构造带WFSD-2钻孔岩心磁化率特征及其对大地震活动的响应. 地球物理学报, 60(1): 225~239.

  • 参考文献

    • Bai Mingkun, Marie-Luce C, Pan Jiawei, Replumaz A, Leloup P, Metois M, Li Haibing. 2018. Southeastward increases of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth and Planetary Science Letters, 485: 19~31.

    • Bai Mingkun, Marie-Luce C, Li Haibing, Pan Jiawei, Wu Qiong, Wang Shiguang, Liu Fucai, Jiao Liqing, Zhang Jinjiang, Zhang Lei, Gong Zheng. 2022. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault. Acta Geologica Sinica, 96(7): 2312~2332 (in Chinese with English abstract).

    • Burchfiel B, Chen Zhi, Liu Yupin, Royden L. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37: 661~736.

    • Caine J, Evans J, Forster C. 1996. Fault zone architecture and permeability structure. Geology, 24(11): 1025~1028.

    • Cao Kai, Wang Guocan, Leloup P, Maheo G, Xu Yadong, Pieter A, Replumaz A, Zhang Kexin. 2019. Oligocene-early Miocene topographic relief generation of southeastern Tibet triggered by thrusting. Tectonics, 38: 37~391.

    • Carpenter B, Marone C, Saffer D. 2011. Weakness of the San Andreas fault revealed by samples from the active fault zone. Nature Geoscience, 4(4): 251~254.

    • Cheng Jia, Xu Xiwei, Gan Weijun, Ma Wentao, Chen Weitao, Zhang Yong. 2012. Block model and dynamic implication from the earthquake activities and crustal motion in the southeastern margin of Tibetan Plateau. Chinese Journal of Geophysics, 55(4): 1198~1212 (in Chinese with English abstract).

    • Chen Lichun, Ran Yongkang, Wang Hu, Li Yanbao, Ma Xinquan. 2013. The Lushan Ms7. 0 earthquake and activity of the southern segment of the Longmenshan fault zone. China Science Bulletin, 58(28-29): 3475~3482.

    • Chen Yuntai, Yang Zhixian, Zhang Yong, Liu Chao. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake. Scinetia Sinica Terra, 43(6): 1064~1072.

    • Childs C, Manzocchi T, Walsh J, Bonson C, Nicol A, Schopfer M. 2009. A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31: 117~127.

    • Deng Qidong, Zhang Peizhen, Ran Yongkang, Yang Xiaoping, Min Wei, Chu Quanzhi. 2003. Basic characteristic of active tectonics of China. Science in China (Series D), 46(4): 356~372.

    • Densmore A, Ellis M, Li Yong, Zhou Rongjun, Hancock G, Richardson N. 2007. Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau. Tectonics, 26: TC4005.

    • Ding Rui, Ren Junjie, Zhang Shimin, Lv Yanwu, Liu Hanyong. 2018. Late Quaternary Paleoearthquakes on the middle segment of the Lijiang-Xiaojinhe fault, southeast Tibet. Seismology and Geology, 40(3): 622~640 (in Chinese with English abstract).

    • Faulkner D, Jackson C, Lunn R, Schliche R, Shiton Z, Wibberley C, Withjack M. 2010. A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. Journal of Structural Geology, 32: 1557~1575.

    • Faulkner D, Mitchell T, Jenson E, Cembrano J. 2011. Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research, 116: B05403.

    • Fossen H. 2016. Structural Geology, 2nd Edition. New York: Cambridge University Press, 177~218.

    • Gan Weijun, Molnar P, Zhang Peizhen, Xiao Genru, Liang Shiming, Zhang Keliang, Li Zhangjun, Xu Keke, Zhang Ling. 2021. Initiation of clockwise rotation and eastward transport of Southeastern Tibet inferred from deflected fault traces and GPS observations. The Geological society of America, 134(5-6): 1129~1142.

    • He Honglin, Yasutaka I, He Yulin, Msayoshi T, Chen Jia, Chen Changyun, Masayoshi T, Tomoo E, Shinsuke O. 2008. Newly-generated Daliangshan fault zone-shortcutting on the central section of Xianshuihe-Xiaojiang fault system. Science in China Series D: Earth Sciences, 51(9): 1248~1258.

    • He Xiangli, Li Haibing, Zhang Lei, Wang Huan, Ge Chenglong, Chao Yong, Bai Mingkun, Li Chenglong, Ye Xiaozhou, Han Shuai. 2018. Mineral and chemical response to low magnetic susceptibility of the fault gouge from the Guanxian-Anxian fault zone and fault creep setting in the Longmen Shan. Chinese Journal of Geophysics, 61(5): 1782~1796 (in Chinese with English abstract).

    • He Xiangli, Li Haibing, Wang Huan, Zhang Lei, Sun Zhiming, Si Jialiang. 2020. Rock composition and structural characteristics of creep-slip fault zone: A case of the Guanxian-Anxian fault zone in the Longmen Shan, China. Acta Petrologica Sinica, 36(10): 3209~3224 (in Chinese with English abstract).

    • Hull J. 1988. Thickness-displacement relationships for deformation zones. Journal of Structural Geology, 10: 431~435.

    • Kuo Liwei, Li Haibing, Smith S, Di-Toro G, Suppe J, Song Shengrong, Nielsen S, Sheu H, Si Jialiang. 2014. Gouge graphitization and dynamic fault weakening during the 2008 MW7. 9 Wenchuan earthquake. Geology, 42(1): 47~50.

    • Li Chenglong, Li Haibing, Wang Huan, Zhang Lei, Sun Zhiming, Zhang Jiajia, Yun Kun, Zhang Jinjiang. 2020. Rock characteristics and internal structures of the Beichuan fault zone at Nanba outcrop in the northeastern segment of the 2008 Wenchuan seismogenic fault. Acta Petrologica Sinica, 36(10): 3192~3208 (in Chinese with English abstract).

    • Li Chenglong, Li Haibing, Wang Huan, Zhang Jinjiang. 2021. Petrological and geochemical characteristics and deformation behavior of the Beichuan section of the Wenchuan earthquake fault zone. Acta Petrologica Sinica, 37(10): 3145~3146 (in Chinese with English abstract).

    • Li Haibing, Xu Zhiqin, Wang Huan, Si Jialiang, Li Tianfu, Song Shengrong, Pei Junling, Guo Liwei, Sun Zhiming, Huang Yao, Marie-Luce C, Liu Dongliang. 2013. The principle slip zone of the 2008 Wenchuan earthquake: A thrust fault oblique cutting the Yingxiu-Beichuan fault zone. Geology in China, 40(1): 121~139 (in Chinese with English abstract).

    • Li Haibing, Xu Zhiqin, Wang Huan, Zhang Lei, He Xiangli, Si Jialiang, Sun Zhiming. 2018. Fault behavior, physical properties and seismic activity of the Wenchuan earthquake fault zone: Evidence from the Wenchuan earthquake fault scientific Drilling Project (WFSD). Chinese Journal of Geophysics, 61(5): 1680~1697 (in Chinese with English abstract).

    • Li Le, Chen Qifu, Niu Fenglin, Fu Hong, Liu Ruifeng, Hou Yanyan. 2009. Slip rate along the Lijiang-Ninglang fault zone estimated from repeating microearthquakes. Chinese Science Bulletin, 54(3): 447~455.

    • Li Ning, Zhu Liangyu, Liu Lei. 2018. Study on present day locking degree and seismic hazard of the Lijiang-xiaojinhe fault zone. Seismology and Geology, 41(2): 244~250 (in Chinese with English abstract).

    • Lin Aiming. 2011. Seismic slip recorded by fluidized ultracataclastic veins formed in a coseismic shear zone during the 2008 MW7. 9 Wenchuan earthquake. Geology, 39(6): 547~550.

    • Liu Dongliang, Li Haibing, Lee Teh Quei, Sun Zhiming, Liu Jiang, Han Liang, Marie-luce Chevalier. 2016. Magnetic mineral characterization close to the Yingxiu-Beichuan fault surface rupture zone of the Wenchuan earthquake (MW7. 9, 2008) and its implication for earthquake slip processes. Journal of Asian Earth Sciences, 115: 468~479.

    • Liu Xiaoxia, Shao Zhigang. 2020. Current fault movement characteristics in the Lijiang-Xiaojinhe fault zone. Chinese Journal of Geophysics, 63(3): 1117~1126 (in Chinese with English abstract).

    • Liu-Zeng Jing, Tapponnier P, Gaudemer Y, Ding Lin. 2008. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. Journal of Geophysical Research, 113: F04018.

    • Mitchell T, Faulkner D. 2009. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile. Journal of Structural Geology, 31: 802~816.

    • Power W, Tullis T, Weeks J. 1988. Roughness and wear during brittle faulting. Journal of Geophysical Research, 3(B12): 15268~15278.

    • Savage H, Brodsky E. 2011. Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. Journal of Geophysical Research, 116: B03405.

    • Scholz C. 1987. Wear and gouge formation in brittle faulting. Geology, 15: 493~495.

    • Shen Zhengkang, Lu Jiangning, Wang Min, Burgman R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. Journal of Geophysical Research, 110: B11409.

    • Sibson R. 1977. Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3): 191~213.

    • Wang Erchie, Burchfiel B, Royden L, Chen Liangzhong, Chen Jishen, Li Wenxin, Chen Zhiliang. 1998. Late Cenozoic Xianshuihe-Xiaojiang, Red river, and Dali fault systems of southwestern Sichuan and central Yunnan, China. Geological Society of America Special Paper. 327.

    • Wang Erchie, Meng Qingren. 2009. Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt. Science in China Series D: Earth Sciences, 52(5): 579~592.

    • Wang Erchie, Kirby E, Furlong K, Soest M, Xu G, Kamp P, Hodges K. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience. 5(9): 640~645.

    • Wang Huan, Li Haibing, Si Jialiang, Huang Yao. 2013. The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan. Acta Petrologica, 29(6): 2048~2060 (in Chinese with English abstract).

    • Wang Huan, Li Haibing, Si Jialiang, Sun Zhiming, Huang yao. 2014. Internal structure of the Wenchuan earthquake fault zone, revealed by surface outcrop and WFSD-1 drilling core investigation. Tectonophysics, 619-620: 101~114.

    • Wang Huan, Li Haibing, Janssen Christoph, Sun Zhiming, Si Jialiang. 2015. Multiple generations of pseudotachylyte in the Wenchuan fault zone and their implications for coseismic weakening. Journal of Structural Geology, 74: 159~171.

    • Wang Shifeng, Jiang Guiguo, Xu Tiande, Tian Yuntao, Zheng Dewen, Fang Xiaomin. 2012. The Jinhe-Qinghe fault—An inactive branch of the Xianshuihe-Xiaojiang fault zone, eastern Tibet. Tectophysics, 544-545: 93~102.

    • Wang Qingliang, Cui Duxin, Wang Wenping, Zhang Sixin, Liu Jingwen, Shi Qi. 2008. Present-day vertical crust movement of the Western Sichuan region. Science in China Series D: Earth Sciences, 38(5): 598~610.

    • Wang Yanzhao, Wang Enning, Shen Zhengkang, Wang Min, Gan Weijun, Qiao Xuejun, Meng Guojue, Li Tieming, Tao Wei, Yang Yonglin, Cheng Jia, Li Peng. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D: Earth Sciences, 51(9): 1267~1283.

    • Wibberley C, Yielding G, Di Toro G. 2008. Recent advances in the understanding of fault zone internal structure: A review. Geological Society, London, Special Publications, 299(1): 5~33.

    • Wu Guiling, Zhu Chengyu, Wang Guocan, Zhang Pan. 2019. Demarcation of the geomorphological boundaries of southeastern Tibet: Implication for expansion mechanisms of the plateau edge. Seismology and Geology, 41(2): 281~299 (in Chinese with English abstract).

    • Xiang Hongfa, Xu Xiwei, Guo Shunmin, Zhang Wanxia, Li Hongwu, Yu Guihua. 2002. Sinistral thrusting along the Lijiang-Xiaojinhe fault since Quaternary and its geologic-tectonic significance. Seismology and Geology, 24(2): 188~198 (in Chinese with English abstract).

    • Xu Xiwei, Wen Xueze, Zheng Rongzhang, Ma Wentao, Song Fangming, Yu Guihua. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sciences in China Series D, 46(S2): 210~226.

    • Xu Zhiqin, Li Huaqi, Hou Liwei, Fu Xiaofang, Chen Wen, Zeng lingshen, Cai Zhihui, Chen Fangyuan. 2007. Uplift of the Longmen-Jiping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau: Large-scale detachment faulting and extrusion mechanism. Geological Bulletin of China, 26(10): 1252~1276 (in Chinese with English abstract).

    • Xu Zhiqin, Ji Shaocheng, Li Haibing, Hou Liwei, Fu Xiaofang, Cai Zhihui. 2008. Uplift of the Longmen Shan range and the Wenchuan earthquake. Episodes, 31(3): 291~301.

    • Zhang Lei, Sun Zhiming, Li Haibing, Zhao Laishi, Cao Yong, Ye Xiaozhou, Wang Leizhen, Wang Huan, He Xiangli, Han Shuai, Bai Mingkun, Ge Chenglong, Zhao Yue. 2017. Mannetic susceptibility of WFSD-2 borehole cores from the Longmenshan thrust belt and its implications for great seismic activity. Chinese Journal of Geophysics, 60(1): 225~239 (in Chinese with English abstract).

    • Zhang Peizhen. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7~22.

    • Zhang Peizhen, Deng Qidong, Zhang Guomin, Ma Jin, Gan Weijun, Min Wei, Mao Fengying, Wang Qi. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China (Series D), 46: 13~24.

    • Zhang Peizhen, Shen Zhenkang, Wang Min, Gan Weijun, Burgmann R, Molnar P, Wang Qi, Niu Zhijun, Sun Jianzhong, Wu Jianchun, Sun Hanrong, You Xinzhao. 2004. Continuous deformation of the Tibetan plateau from global positioning system data. Geology, 32(9): 809~812.

    • Zheng Yong, Li Haibing, Sun Zhiming, Wang Huan, Zhang Jiajia, Li Chenglong, Cao Yong. 2016. New geochronology constraints on timing and depth of the ancient earthquakes along the Longmen Shan fault belt, eastern Tibet. Tectonics, 35: 2781~2806.

    • Zhu Chengyu, Wang Guochan, Leloup P, Cao Kai, Maheo G, Cheng Yue, Zhang Pan, Shen Tianyi, Wu Guiling, Sotiriou P, Wu Bo. 2021. Role of the early Miocene Jinhe-Qinghe trust belt in the building of the southeastern Tibetan Plateau topography. Tectonopysics, 811: 228871.

    • 白明坤, Marie-Luce C, 李海兵, 潘家伟, 吴琼, 王世广, 刘富财, 焦利青, 张进江, 张蕾, 龚正. 2022. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究. 地质学报, 96(7): 2312~2332.

    • 程佳, 徐锡伟, 甘卫军, 马文涛, 陈为涛, 张勇. 2012. 青藏高原东南缘地震活动与地壳运动所反映的块体特征及其动力来源. 地球物理学报, 55(4): 1198~1212.

    • 陈立春, 冉永康, 王虎, 李彦宝, 马兴全. 2013. 庐山地震与龙门山断裂带南段活动性. 科学通报, 58(20): 1925~1932.

    • 陈运泰, 杨智娴, 张勇, 刘超. 2013. 从汶川地震到芦山地震. 中国科学: 地球科学, 43(6): 1064~1072.

    • 丁锐, 任俊杰, 张世民, 吕延武, 刘汉永. 2018. 丽江-小金额和断裂中段晚第四纪古地震历史. 地震地质, 40(3): 622~640.

    • 何祥丽, 李海兵, 张蕾, 王焕, 葛成隆, 曹勇, 白明坤, 李成龙, 叶小舟, 韩帅. 2018. 龙门山灌县-安县断裂带断层泥低磁化率的矿物化学响应和蠕滑作用环境. 地球物理学报, 61(5): 1782~1796.

    • 何祥丽, 李海兵, 王焕, 张蕾, 孙知明, 司家亮. 2020. 蠕滑断裂带岩石组成和构造特征分析: 以龙门山灌县-安县断裂带为例. 岩石学报, 36(10): 3209~3224.

    • 李成龙, 李海兵, 王焕, 张蕾, 孙知明, 张佳佳, 云琨, 张进江. 2020. 2008年汶川地震断裂带北东段南坝地区岩石特征与内部结构. 岩石学报, 36(10): 3192~3208.

    • 李成龙, 李海兵, 王焕, 张进江. 2021. 龙门山汶川地震断裂带北川段岩石与地球化学特征及其变形行为. 岩石学报, 37(10): 3145~3146.

    • 李海兵, 许志琴, 王焕, 司家亮, 李天福, 宋圣荣, 裴军令, 郭力维, 孙知明, 黄尧, Marie-Luce Chevalier, 刘栋梁. 2013. 汶川地震主滑移带(PSZ): 映秀-北川断裂带内的斜切逆冲断裂. 中国地质, 40(1): 121~139.

    • 李海兵, 许志琴, 王焕, 张蕾, 何祥丽, 司家亮, 孙知明. 2018. 汶川地震断裂带滑移行为、物理性质及其大地震活动性-来自汶川地震断裂带科学钻探的证据. 地球物理学报, 61(5): 1680~1697.

    • 李乐, 陈棋福, 钮凤林, 付虹, 刘瑞丰, 侯燕燕. 2008. 利用重复地震估算丽江-宁蒗断裂带的深部滑动速率. 科学通报, 53(23): 2925~2932.

    • 李宁, 朱良玉, 刘雷. 2018. 丽江-小金河断裂带现今闭锁程度与地震危险性分析. 地震地质, 41(2): 244~250.

    • 刘晓霞, 邵志刚. 2020. 丽江-小金河断裂带现今断层运动特征. 地球物理学报, 63(3): 1117~1126.

    • 王二七, 孟庆任. 2008. 对龙门山中生代和新生代构造演化的讨论. 中国科学D辑: 地球科学, 38(10): 1221~1233.

    • 王焕, 李海兵, 司家亮, 黄尧. 2013. 汶川地震断裂带结构特征与龙门山隆升的关系. 岩石学报, 29(6): 2048~2060.

    • 王庆良, 崔笃信, 王文萍, 张四新, 刘锦文, 史旗. 2008. 川西地区现金垂直地壳运动研究. 中国科学D辑, 38(5): 598~610.

    • 王阎昭, 王恩宁, 沈正康, 王敏, 甘卫军, 乔学军, 孟国杰, 李铁明, 陶玮, 杨永林, 程佳, 李鹏. 2008. 基于GPS资料约束反演川滇地区主要断裂现金活动速率. 中国科学D辑, 38(5): 582~597.

    • 吴贵灵, 祝成宇, 王国灿, 张攀. 2019. 青藏高燕东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示. 地震地质, 41(2): 281~299.

    • 向宏发, 徐锡伟, 虢顺民, 张晚霞, 李洪武, 于贵华. 2002. 丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义. 地震地质, 24(2): 188~198.

    • 许志琴, 李化启, 侯立炜, 付小芳, 陈文, 曾令森, 蔡志慧, 陈方远. 2007. 青藏高原东缘龙门-锦屏造山带的崛起——大型拆离断层和挤出机制. 地质通报, 26(10): 1262~1276.

    • 徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学D辑, 33: 151~162.

    • 张蕾, 孙知明, 李海兵, 赵来时, 曹勇, 叶小舟, 王雷振, 王焕, 何祥丽, 韩帅, 白明坤, 葛成隆, 赵越. 2017. 龙门山构造带WFSD-2钻孔岩心磁化率特征及其对大地震活动的响应. 地球物理学报, 60(1): 225~239.