en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

宋雪龙,男,1988年生。博士,主要从事矿床学与地球化学研究。E-mail:1401111783@qq.com。

通讯作者:

段士刚,男,1983年生。博士,副研究员,主要从事矿床学与矿床地球化学研究工作。E-mail:dsg1102231@163.com。

参考文献
Allen M B, Windley B F, Zhang Chi. 1992. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics, 220 (1-4): 89~115.
参考文献
Apukhtina O B, Kamenetsky V S, Ehrig K, Kamenetsky M B, Maas R, Thompson J, McPhie J, Ciobanu C L, Cook N J. 2017. Early, deep magnetite fluorapatite mineralization at the Olympic dam Cu-U-Au Ag deposit, South Australial. Economic Geology, 112(6): 1531~1542.
参考文献
Black L P, Kamo S L, Allen C M, Davis D W, Aleinikoff J N, Valley J W, Mundil R, Campbell I H, Korsch R J, Williams I S, Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1): 115~140.
参考文献
Chai Fengmei, Yang Fuquan, Li Qiang, Zang Mei, Geng Xinxia, Meng Qingpeng. 2014. Metallogenic mechanism of the Abagong apatite-rich iron deposit in Altay, Xinjiang: Evidence from inclusions and stable isotopes. Acta Petrologica Sinica, 30(5) : 1397~1414(in Chinese with English abstract).
参考文献
Chen Huayong, Clark A H, Kyser T K. 2010. The Marcona magnetite deposit, Ica, south-central Peru: A product of hydrous, iron oxide-rich melts? Economic Geology, 105: 1441~1456.
参考文献
Chen Jie. 2016. A Study on themineralizationof iron ores in the Shikebutai iron deposit in western Tianshan, China. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Cheng Yuqi, Zhao Yiming, Lu Songnian. 1978. Main type groups of iron deposit of China. Acta Geologica Sinica, (4): 253~268(in Chinese with English abstract).
参考文献
Dong Lianhui, Feng Jing, Zhuang Daoze, Li Fengming, Qu Xun, Liu Dequan, Tang Yanling. 2011. Discussion of metallogenic models, mineralizaton characteristic and main type of rich iron ore of Xinjiang. Xinjiang Geology, 29 (4): 416~422(in Chinese with English abstract).
参考文献
Duan Shigang, Zhang Zuoheng, Jiang Zongsheng, Zhao Jun, Zhang Yongping, Li Fengming, Tian Jingquan. 2014. Geology, geochemistry, and geochronology of the Dunde iron-zinc ore deposit in western Tianshan, China. Ore Geology Reviews, 57: 441~461.
参考文献
Frietsch R. 1978. On the magmatic origin of iron ores of the Kiruna type. Economic Geology, 73: 478~485.
参考文献
Gao Jun, Li Maosong, Xiao Xuchang, Tang Yaoqing, He Guoqi. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287 (1-4): 213~231.
参考文献
Gao Jun, LongLingli, Klemd R, Qian Qing, Liu Dunyi, Xiong Xianming, Su Wen, Liu Wei, Wang Yitian, Yang Fuquan. 2009a. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98 (6): 1221~1238.
参考文献
Gao Jun, Qian Qing, LongLingli, Zhang Xi, Li Jilei, Su Wen. 2009b. Accretionary orogenic process of Western Tianshan, China. Geological Bulletin of China, 28 (12): 1804~1816(in Chinese with English abstract).
参考文献
Guo Xincheng, Zhang Jianshou, Yu Yuanjun, Ma Zhonghua, Zhang Jiankui. 2009. Geological characteristics and mining symbols of Beizhan iron deposit in Hejing, Xinjiang. Xinjiang Geology, 27 (4): 341~345(in Chinese with English abstract).
参考文献
Henríquez F, Nyström J O. 1998. Magnetite bombs at El Laco volcano, Chile. GFF, 120(3): 269~271.
参考文献
Henríquez F, Naslund H R, Nyström J O, Vivallo W, Aguirre R, Dobbs F M, Lledó H. 2003. New field evidence bearing on the origin of the el laco magnetite deposit, northern chile—A discussion. Economic Geology, 98: 1497~1502.
参考文献
Hou Tong, Charlier Bernard, Holtz Francois, Veksler llya, Zhang Zhaochong, Thomas Rainer, Namur Olivier. 2018. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nature Communications, 9: 1415.
参考文献
Hong Wei, Zhang Zuoheng, Baker M J, Jiang Zongsheng, Duan Shigang. 2020. Zircon U-Pb dating and stable isotopic compositions for constraining the genesis of the Chagangnuoer magnetite deposit in western Tianshan, NW China. Ore Geology Reviews, 121: 103~478.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27~62.
参考文献
Hou Tong, Charlier Bernard, Holtz Francois, Vekslerllya, Zhang Zhaochong, Thomas Rainer, Namur Olivier. 2018. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nature Communications, 9: 1415.
参考文献
Hou Tong, Zhang Zhaochong, Franco P, Santosh M, Encarnacion J, Liu Junlai, Zhao Zhidan, Zhang Lijian. 2014. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: An overview. Ore Geology Reviews, 57: 498~517.
参考文献
Hou Tong, Pan Ronghao, Yang Zongpeng, Qin Jingyi. 2020. Progress and prospective of experimental research on iron oxide apatite ore deposits. Mineral Deposits, 39(4): 579~586(in Chinese with English abstract).
参考文献
Hu Hao, Li Jianwei, Harlov D E, Lentz D R, Mcfarlane, Chris R M, Yang Yueheng. 2019. A genetic link between iron oxide apatite and iron skarn mineralization in the Jinniu volcanic basin. Daye district, eastern China: Evidence from magnetite geochemistry and multi mineral U-Pb geochronology. Geological Society of America Bulletin, 132(5-6): 899~917.
参考文献
Hu Xiujun, Chen Wenge. 2010. Geological characteristics and genesis of Chagangnuoer large-sized magnetite deposit in Southern Tianshan, Xinjiang. Resources Survey and Environment, 31(3): 185~193(in Chinese with English abstract).
参考文献
Jiang Zongsheng. 2014. Carboniferous volcanism and Fe mineralization at the Zhibo iron deposit in the Western Tianshan. Doctoral dissertation of Chinese Academy of Geological Sciences, 1~192 (in Chinese with English abstract).
参考文献
Jiang Zongsheng, Zhang Zuoheng, Wang Dachuan, Duan Shigang, Kang Yongjian. 2018. Application of in situ titanite U-Pb geochronology to volcanic-hosted magnetite deposit: New constraints on the timing and genesis of the Zhibo deposit, Western Tianshan, NW China. Ore Geology Reviews, 325~341.
参考文献
Kang Yongjian. 2018. Ore genesis of the Dunde iron-zinc-gold polymetallic deposit, West Tianshan, Xinjiang. Doctoral dissertation of Peking University, 1~178(in Chinese with English abstract).
参考文献
Li Hengxu, Zhang Zhaochong, Liu Bingxiang, Jin Yilun, Santosh M, 2022. The genetic link between iron oxide-apatite and iron skarn mineralization in the Beizhan deposit, Western Tianshan, NW China: Evidence from magnetite and gangue mineral geochemistry. Journal of Asian Earth Sciences, 241: 105460.
参考文献
Li Houmin, Ding Jianhua, Zhang Zhaochong, Li Lixing, Chen Jing, Yao Tong. 2015. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China: Constraints on metallogenesis. Journa of Asian Earth Sciences, 113: 1068~1081.
参考文献
Li Qiang, Yang Fuquan, Zhang Zhixin, Geng Xinxia, Liu Feng, Chai Fengmei. 2021. Geology and geochemistry of the submarine volcanism-related Qiaxia Fe-Cu deposit in the southern Altay, Xinjiang, Central Asian Orogenic Belt. Ore Geology Reviews, 128: 103881.
参考文献
Li Xiao-linbin, Gong Xiaoping, Ma Huadong, Han Qiong, Song Xianglong, Xie Lei, Feng Jun, Wang Jianshe. 2014. Geochemical characteristics and petrogenic age of volcanic rocks in the Shikebutai iron deposit of West Tianshan Mountains. Geology in China, 41(6): 1792~1804(in Chinese with English abstract).
参考文献
Liang Pei, Chen Huayong, Han Jinsheng, Wu Chao, Zhang Weifeng, Xu Deru, Lai Kit, Kyser Kurt. 2019. Iron oxide-copper-gold mineralization of the Devonian Laoshankou deposit (Xinjiang, NW China) in the Central Asian Orogenic Belt. Ore Geology Reviews, 104: 628~655.
参考文献
Liu Dunyi, Jian Ping. 2004. Events of the Shuanghe jadeite quartzite, eastern Dabie Mountains-SHRIMP dating, mineral inclusions and zircon REE patterns. Acta Geologica Sinica, 78(2): 211~217(in Chinese with English abstract).
参考文献
Ludwig K R. 2003. User's manual for Isoplot: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 37~41.
参考文献
Lyons J I. 1988. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico. Economic Geology, 83: 1886~1906.
参考文献
Mao Jingwen, Duan Chao, LiuJialin, Zhang Cheng. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1) : 1~14(in Chinese with English abstract).
参考文献
Martin Reich, Adam C. Simon, Fernando Barra, Gisella Palma, Tong Hou, Laura D. Bilenker. 2022. Formation of iron oxide-apatite deposits. Nature Reviews Earth & Environment, 3: 758~775.
参考文献
Meinert L D. 1984. Mineralogy and petrology of iron skarns in western British Columbia. Economic Geology, 79: 869~882.
参考文献
Niiranen T. 2005. Iron oxide-copper-gold deposits in Finland: Case studies from the Peräpohja schist belt and the Central Lapland greenstone belt. Doctoral dissertation of University of Helsinki, 1~65.
参考文献
Ningwu Research Group. 1978. Magnetite Porphyry Deposits in Ningwu Area. Beijing: Geological Publishing House, 1~196 (in Chinese without English abstract).
参考文献
Nyström J O, Henríquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Economic Geology, 89: 820~839.
参考文献
Park C F J. 1961. A magnetite “flow” in northern Chile. Economic Geology, 56: 431~436.
参考文献
Qian Qing , Gao Jun, Klemd R, He Guoqi, Song Biao, Liu Dunyi, Xu Ronghua. 2009. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: Constraints from SHRIM P zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China. International Journal of Earth Sciences, 98 (3): 551~569.
参考文献
Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184 (1-2): 123~138.
参考文献
Rudyard Frietsc, PekkaTuisku, OlofMartinsson, Jan-Anders Perdahl. 1997. Early proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geology Reviews, 12(1): 1~34.
参考文献
Shan Qiang, Zhang Bing, Luo Yong, Zhou Changping, Yu Xueyuan, Zeng Qiaosong, Yang Wubin, Niu Hecai. 2009. Characteristics and trace element geochemistry of pyrite from the Songhu iron deposit, Nilek County, Xinjiang, China. Acta Petrologica Sinica, 25(6): 1456~1464 (in Chinese with English abstract).
参考文献
Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Wu Yang Shi Fupin, Guo Xincheng, Li Wenguang. 2020. Carboniferous ore-controlling volcanic apparatus and metallogenic models for the large-scale iron deposits in the Western Tianshan, Xinjiang. Acta Petrologica Sinica, 36(9) : 2845~2868(in Chinese with English abstract).
参考文献
Song Xuexin, Chen Yuchuan, Sheng Jifu, Ai Yongde. 1981. On iron deposits formed from volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, 55 (1): 41~54(in Chinese with English abstract).
参考文献
Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by two-stage model. Earth and Planetary Science Letters, 26: 207~221.
参考文献
Sun Jinfeng, Yang Jinhui, Wu Fuyuan, Xie Liewen, Yang Yueheng, Liu Zhicaho, Li Xianhua. 2012.In situ U-Pb dating of titanite by LA-ICPMS.Chinese Science Bulletin, 57(20) : 2506~2516.
参考文献
Teng Xia, Huang Dezhi, Lu Yang, Wang Long. 2018. Ore-forming fluid and mineralization of the Taocun magnetite deposit in the Ningwu basin. Geotectonica et Metallogenia, 42(1): 73~83(in Chinese with English abstract).
参考文献
Tian Jingquan, Duan Shigang, Peng Wanlin, Li Ming, Jiang Zongsheng, Yan Rui. 2015. Geochemistry of volcanic and intrusive rocks in Zhibo iron ore deposit of western Tianshan Mountains. Mineral Deposits. 34(1): 119~138 (in Chinese with English abstract).
参考文献
Volcaniciron Deposit Research Group of the Middle-Lower Chang Jiang Valley. 1977. Porphyrite iron ore—a genetic model of a group of iron deposits in andesitic volcanic area. Acta Geologica Sinica, (1): 1~18(in Chinese with English abstract).
参考文献
Wang Bangyao, Hu Xiujun, Wang Jiangtao, Shao Qinghong, Ling Jinlan, Guo Naxin, Zhao Yanfeng, Xia Zhaode, Jiang Changyi. 2011. Geological characteristics and genesis of Chagangnuoer iron deposit in western Tianshan, Xinjiang. Mineral Deposits, 30(3): 385~402 (in Chinese with English abstract).
参考文献
Wang Bangyao, Jing Delong, Jiang Changyi, Zhang Bo, Wang Zixi, Shi Fupin. 2017. Geological background and metallogenetic mechanism of the eastern Awulale volcanic-hosted iron metallogenic belt in the western Tianshan. Acta Petrologica Sinica, 33(2) : 85~97(in Chinese with English abstract).
参考文献
Wang Chunlong, Zhu Weina, Wang Yitian. 2022. Genesis of the Kiruna-type Nixintage iron deposit, Chinese Western Tianshan, NW China: Constrains of ore geology, geochemistry and geochronology. Journal of Geochemical Exploration, 243: 107094.
参考文献
Wang Dachuan, Duan Shigang, Chen Jie, Jiang Zongsheng, Zhang Zuoheng, Jia Jindian. 2016. Zircon U-Pb age, Hf isotopic and geochemistry of volcanic rocks from Tiemulike iron deposit in western Tianshan, Xinjiang, and their geological significance. Acta Petrologica Sinica, 32(5): 1391~1408 (in Chinese with English abstract).
参考文献
Wang Denghong, Li Chunjie, Chen Zhenghui, Chen Shiping, Xiao Keyan, Li Huaqin, Liang Ting. 2006. Metallogenic characteristics and direction in mineral search in the East Tianshan, Xinjiang, China. Geological Bulletin of China, 25(8): 910~915(in Chinese with English abstract).
参考文献
Williams I S. 1989. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C III, Ridley Wi (eds. ). Applications of microanalytical techniques to understanding mineralizingprocesses. Reviews in Economic Geology, Society of Economic Geologists, 7: 1~35.
参考文献
Windley B F, Allen M B, Zhang C, Zhao Z Y, Wang G R. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology, 18(2): 128~131.
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy study and its constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16): 1589~1604(in Chinese without English abstract).
参考文献
Xiao Wenjiao, Windley B F, Huang Baochun, Han Chunming, Yuan Chao, Chen Hanlin, Sun Min, Li Jilei. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189~1217.
参考文献
Xiao Wenjiao, Pirajno F, Seltmann R, Safonova I, Muhtar M N. 2022. Metallogeny of the Southern Altaids: Key to understanding the accretionary tectonics and crustal evolution of Central Asia. Ore Geology Reviews, 144: 104871.
参考文献
Xie Liewen, Zhang Yanbin, Zhang Huihuang, Sun Jinfeng, Wu Fuyuan. 2008. In-situ determination of zircon and baddeleyite in U-Pb and Lu-Hf isotopes and trace element compositions. Chinese Science Bulletin, 53: 220~228 (in Chinese without English abstract).
参考文献
Xue Chunji, Ji Jinsheng, Yang Qianjin. 2000. Subvlcanic hydrothermal metallogeny of the China iron (cobalt) deposit, Xinjiang. Mineral Deposits, 19(2): 156~164 (in Chinese with English abstract).
参考文献
Yan Shuang, Zhou R J, Niu H C, Feng Yuexing, Nguyen N D, Zhao Zhenhua, Yang Wubin, Dong Qian, Zhao Jianxin. 2019. LA-MC-ICP-MS U-Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanic-hosted iron mineralization system, Awulale belt, Central Asia. Geological Society of America BulletinVolume, 1031~1045.
参考文献
Yang Fuquan, Liu Feng, Chai Fengmei, Zhang Zhixin, Geng Xinxia, Lv Shujun, Jiang Liping, Ou Yang-Liujin. 2011. Iron deposits in Altay, Xinjiang: Geological characteristics, time-space distribution and metallogenesis. Mineral Deposits, 30(4): 575~598 (in Chinese with English abstract).
参考文献
Yang Fuquan, Wang Yongqiang, Yang Chengdong, Li Qiang, Guo XuJi. 2018. Metallic ore deposits in the Kelan Basin, Altay, Xinjiang: Geological characteristics and metallogenesis. Mineral Deposit, 37(3): 441~462(in Chinese with English abstract).
参考文献
Yang Xiuqing, Mao Jingwen, Jiang Zongsheng, Santosh M, Zhang Zuoheng, Duan Shigang, Wang Dachuan. 2019. The carboniferous Shikebutai iron deposit in Western Tianshan, Northwestern China: Petrology, Fe-O-C-Si isotopes, and implications for iron pathways. Economic Geology, 114(6): 1207~1222.
参考文献
Yang Yueheng, Sun Jinfeng, Xie Liewen, Fan Honhrui, Wu Fuyuan. 2008. Determination of Nd isotope in geological samples by LA-MC-ICPMS. Chinese Science Bulletin, 53: 568~576 (in Chinese without English abstract).
参考文献
Yu Jinjie, Mao Jinhwen. 2002. Rare earth elements in apatite from porphyrite iron deposits of Ningwu Area. Mineral Deposits, 21(1): 65~73 (in Chinese with English abstract).
参考文献
Zhang Xi, Reiner Klemd, Gao Jun, Dong Lianhui, Wang Xinshui, Karsten Haase, Jiang Tuo, Qian Qing. 2015. Metallogenesis of the Zhibo and Chagangnuoer volcanic iron oxide deposits in the Awulale Iron Metallogenic Belt, Western Tianshan orogen, China. Journal of Asian Earth Sciences, 113: 151~172.
参考文献
Zhang Xuanjie, Zheng Guangru, Fan Ziliang, Zhou Jianxin, Song Yanbing, Wen Shixin, 2011. Structural characteristics of aeromagnetic deduced faults in Western Tianshan Mountains, Xinjiang. Geophys. Geochem. Explor. 35, 448~454 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan, Wang Meng. 2014a. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247~263.
参考文献
Zhang Zhaochong, Hou Tong, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan. 2014b. Enrichment mechanism of iron in magmatic hydrothermal system. Acta Petrologica Sinica, 30(5) : 1189~1204 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Chai Fengmei, Xie Qiuhong. 2016. High-angle subduction in a thermal structure with warm mantle-cool crust: Formation of submarine volcanics-hosted iron deposits. Geology in China, 43(2): 367~379 (in Chinese with English abstract).
参考文献
Zhang Zhaochong, Li Houmin, Li Jianwei, Song Xie-Yan, Hu Hao, Li Lixing, Chai Fengmei, Hou Tong, Xu Deru. 2021. Geological settings and metallogenesis of high-grade iron deposits in China. Science China, 64, 691~715.
参考文献
Zhang Zhenliang, Feng Xuanjie, Gao Yongwei, Wang Zhihua, Dong Fuchen. 2014. The metallogenetic epoch of magnetite deposits in Awulale Iron Belt, Western Tianshan Mountains. Acta Geologica Sinica, 88: 1047~1048.
参考文献
Zhang Zuoheng, Wang Zhiliang, Zuo Guochao, Liu Min, Wang Longsheng, Wang Jianwei. 2008. Ages and tectonic settings of the volcanic rocks in Dabate ore district in West Tianshan Mountains and their constraints on the porphyry-type mineralization. Acta Geologica Sinica, 82 (11): 1494~1503(in Chinese with English abstract).
参考文献
Zhang Zuoheng, Hong Wei, Jiang Zongsheng, Duan Shigang, Wang Zhigua, LI Fengming, Shi Fupin, Zhao Jun, Zheng Renqiao. 2012. Geological features, mineralization types and metallogenic setting of Late Paleozoic iron deposits in western Tiansl han Mountains of Xinjiang. Mineral Deposits, 31 (5): 941~964 (in Chinese with English abstract).
参考文献
Zhang Zuoheng, Hong Wei, Jiang Zongsheng, Duan Shigang, Li Fengming, Shi Fupin. 2014. Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore Geology Reviews, 57: 25~40.
参考文献
Zhao Liandang, Chen Huayong, Zhang Li, Xia Xiaoping, Zhang Weifeng, Li Dengfeng, Lu Wanjian, Liang Pei, Li Rucao, Yang Juntao, Yan Xuelu. 2017. Geology and ore genesis of the late Paleozoic Heijianshan Fe oxide-Cu (-Au) deposit in the Eastern Tianshan, NW China. Ore Geology Reviews, 91: 110~132.
参考文献
Zhao Xinfu, Zhou Meifu. 2011. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Mineral Deposit, 46: 731~747.
参考文献
Zhao Xinfu, Zeng Liping, Liao Wang, Li Wanting, Hu Hao, Li Jianwei. 2020. An overview of recent advanc es in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and it s implication for ore genesis. Earth Science Frontiers, 27(2): 197~217(in Chinese with English abstract).
参考文献
Zhu Zhixin, Li Jinyi, Dong Lianhui, Wang Kezhuo, Zhang Xiaofan, Xu Shiqi. 2011. Geological characteristics and tectonic significance of Paleozoic intrusive rocks in western Tianshan of Xinjiang Province. Earth Science Frontiers, 18: 170~179 (in Chinese with English abstract).
参考文献
Zuo Guochao, Li Shaoxiong, Yu Shaonan, Li Qiulin. 2004. The occurrence characteristics and metallotectonic evolution of Cihai iron ore deposit in Xinjiang. Northwestern Geology, 37(1): 53~61 (in Chinese with English abstract).
参考文献
Zuo Guochao, Zhang Zuoheng, Wang Zhiliang, Liu Min, Wang Longsheng, 2008. Tectonic division, stratigraphical system and evolution of western Tianshan Mountains, Xinjiang. Geology Reviews, 54(6): 48~67 (in Chinese with English abstract).
参考文献
长江中下游火山岩区铁矿研究组. 1977. 玢岩铁矿—安山质火山岩地区铁矿床的一组成因模式. 地质学报, (1): 1~18.
参考文献
柴凤梅, 杨富全, 李强, 藏梅, 耿新霞, 孟庆鹏. 2014. 新疆阿尔泰阿巴宫富磷灰石磁铁矿床成矿机制: 来自包裹体和稳定同位素证据. 岩石学报, 30(5): 1397~1414.
参考文献
陈杰. 2016. 新疆西天山式可布台铁矿成因研究. 中国地质大学(北京), 硕士学位论文, 1~75.
参考文献
陈毓川, 刘德权, 唐延龄等. 2008. 中国天山矿产及成矿体系. 北京: 地质出版社, 1~62.
参考文献
程裕淇, 赵一鸣, 陆松年. 1978. 中国几组主要铁矿类型. 地质学报, (4): 253~268.
参考文献
程裕淇, 赵一鸣, 林文蔚, 等. 1994. 中国铁矿床. 见: 宋叔和主编. 中国矿床(中册). 北京: 地质出版社, 386~479.
参考文献
董连慧, 冯京, 庄道泽, 李凤鸣, 屈迅, 刘德权, 唐延龄. 2011. 新疆富铁矿成矿特征及主攻类型成矿模式探讨. 新疆地质, 29 (4): 416~422.
参考文献
冯金星, 石福品, 汪帮耀等. 2010. 西天山阿吾拉勒成矿带火山岩型铁矿. 北京: 地质出版社, 1~132.
参考文献
高俊, 钱青, 龙灵利, 张喜, 李继磊, 苏文. 2009. 西天山的增生造山过程. 地质通报, 28 (12): 1804~1816.
参考文献
郭新成, 张建收, 余元军, 马中华, 张建奎, 宋海涛. 2009. 新疆和静县备战铁矿地质特征及找矿标志. 新疆地质, 27 (4): 341~345.
参考文献
侯通, 潘荣昊, 杨宗鹏, 秦婧怡. 2020. 磁铁矿-磷灰石型铁矿的实验模拟研究进展与展望. 矿床地质, 39(4): 579~586.
参考文献
胡秀军, 陈文革. 2010. 新疆南天山查岗诺尔大型磁铁矿矿床地质特征及矿床成因. 资源调查与环境, 31(3): 185~193.
参考文献
蒋宗胜. 2014. 西天山智博铁矿石炭纪火山作用与铁成矿研究. 中国地质科学院博士学位论文, 1~192.
参考文献
康永建. 2018. 新疆西天山敦德铁-锌-金多金属矿床成因研究. 北京大学博士学位论文, 1~178.
参考文献
李华芹, 陈富文等. 2003. 中国新疆区域成矿作用年代学. 北京: 地质出版社, 118~123.
参考文献
李潇林斌, 弓小平, 马华东, 韩琼, 宋相龙, 谢磊, 凤骏, 王建设. 2014. 西天山式可布台铁矿火山岩地球化学特征、成岩时代厘定及其构造意义. 中国地质, 41(6): 1792~1804.
参考文献
刘敦一, 简平. 2004. 大别山双河硬玉石英岩的超高压变质和退变质事件—SHRIMP 测年的证据. 地质学报, 78(2): 211~217.
参考文献
毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型—以长江中下游为例. 岩石学报, 28 (1): 1~14.
参考文献
宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社, 1~196.
参考文献
单强, 张兵, 罗勇, 周昌平, 于学元, 曾乔松, 杨武斌, 牛贺才. 2009. 新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学. 岩石学报, 25(6): 1456~1464.
参考文献
申萍, 潘鸿迪, 李昌昊, 冯浩轩, 武阳, 石福品, 郭新成, 李文广. 2020. 新疆西天山大型铁矿床石炭纪控矿火山机构及成矿模式. 岩石学报, 36(9): 2845~2868.
参考文献
宋学信, 陈毓川, 盛继福, 艾永德. 1981. 论火山-浅成矿浆铁矿床. 地质学报, 55 (1): 41~54.
参考文献
滕霞, 黄德志, 卢洋, 汪龙. 2018. 宁芜陶村磁铁矿矿床成矿流体及成矿作用. 大地构造与成矿学, 42(1): 73~83.
参考文献
田敬佺, 段士刚, 彭万林, 李明, 蒋宗胜, 严瑞. 2015. 新疆西天山智博铁矿床火山岩和侵入岩岩石地球化学. 矿床地质, 34(1): 119~138.
参考文献
涂光炽, 章振根, 林学农. 1978. 与海相火山活动有关的铁矿—以甘、新二省区为例说明. 中国科学院富铁矿科研论文集编辑组, 富铁矿科研论文集. 北京: 科学技术文献出版社, 1~12.
参考文献
汪帮耀, 胡秀军, 王江涛, 邵青红, 凌锦兰, 郭娜欣, 赵彦锋, 夏昭德, 姜常义. 2011. 西天山查岗诺尔铁矿矿床地质特征及矿床成因研究. 矿床地质, 30(3): 385~402.
参考文献
汪帮耀, 荆德龙, 姜常义, 张博, 王子玺, 石福品. 2017. 西天山阿吾拉勒火山岩型铁矿带东段成矿地质背景与成矿机理. 岩石学报, 33(2): 85~97.
参考文献
王大川, 段士刚, 陈杰, 蒋宗胜, 张作衡, 贾金典. 2016. 新疆西天山铁木里克铁矿床火山岩锆石U-Pb年代学、岩石地球化学特征及地质意义. 岩石学报, 32(5): 1391~1408.
参考文献
王登红, 李纯杰, 陈郑辉, 陈世平, 肖克炎, 李华芹, 梁婷. 2006. 东天山成矿规律与找矿方向的初步研究. 地质通报, 25(8): 910~915.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
谢烈文, 张艳斌, 张辉煌, 孙金凤, 吴福元. 2008. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定. 科学通报, 53: 220~228.
参考文献
薛春纪, 姬金生, 杨前进. 2000. 新疆磁海铁(钴)矿床次火山热液成矿学. 矿床地质, 19(2): 156~164.
参考文献
杨富全, 刘锋, 柴凤梅, 张志欣, 耿新霞, 吕书君, 姜丽萍, 欧阳刘进. 2011. 新疆阿尔泰铁矿: 地质特征、时空分布及成矿作用. 矿床地质, 30(4): 575~598.
参考文献
杨富全, 王永强, 杨成栋, 李强, 郭旭吉. 2018. 新疆阿尔泰克兰盆地金属矿床地质特征及成矿作用. 矿床地质, 37(3): 441~462.
参考文献
杨岳衡, 孙金凤, 谢烈文, 范宏瑞, 吴福元. 2008. 地质样品Nd同位素激光原位, 等离子体质谱(LA-MC-ICPMS)测定. 科学通报, 53: 568~576.
参考文献
姚培慧, 王可南, 杜春林, 林镇泰, 宋雄, 等. 1993. 中国铁矿志. 北京: 冶金工业出版社, 1~29, 372~384.
参考文献
余金杰, 毛景文. 2002. 宁芜玢岩铁矿磷灰石的稀土元素特征. 矿床地质, 21(1): 65~73.
参考文献
张玄杰, 郑广如, 范子梁, 周坚鑫, 宋燕兵, 温世新. 2011. 新疆西天山东段航磁推断断裂构造特征. 物探与化探, 35(4): 448~454.
参考文献
张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报, 30(5): 1189~1204.
参考文献
张招崇, 柴凤梅, 谢秋红. 2016. 热幔-冷壳背景下的高角度俯冲: 海相火山岩型铁矿的形成. 中国地质, 43(2): 367~379.
参考文献
张招崇, 李厚民, 李建威, 宋谢炎, 胡浩, 李立兴, 柴凤梅, 侯通, 许德如. 2021. 我国铁矿成矿背景与富铁矿成矿机制. 中国科学: 地球科学, 51(6): 827~852.
参考文献
张作衡, 王志良, 左国朝, 刘敏, 王龙生, 王见蓶. 2008. 西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约. 地质学报, 82 (11): 1494~1503.
参考文献
张作衡, 洪为, 蒋宗胜, 段士刚, 王志华, 李凤鸣, 石福品, 赵军, 郑仁乔等. 2012. 新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境. 矿床地质, 31 (5): 941~964.
参考文献
赵新福, 曾丽平, 廖旺, 李婉婷, 胡浩, 李建威. 2020. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示. 岩石学报, 27(2): 197~217.
参考文献
朱志新, 李锦轶, 董连慧, 王克卓, 张晓帆, 徐仕琪. 2011. 新疆西天山古生代侵入岩的地质特征及构造意义. 地学前缘. 18: 170~179.
参考文献
左国朝, 李绍雄, 于守南, 李秋林. 2004. 新疆磁海铁矿床产出特征及成矿构造演化. 西北地质, 37(1): 53~61.
参考文献
左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54 (6): 48~67.
目录contents

    摘要

    塔尔塔格铁矿是新疆西天山阿吾拉勒海相火山岩型铁成矿带内的一处中型铁矿床,其铁矿体呈透镜状产于粗安玢岩内顶部,在揭示海相火山岩中铁矿床与侵入岩关系方面具有重要意义。该铁矿床发育典型的磁铁矿-磷灰石组合,基本不含硫化物,矿石以似斑状、浸染状、球粒状和晶洞等构造类型为特色,磁铁矿内发育由条带状或叶片状钛铁矿和钛氧化物构成的出溶结构,并有少量的榍石、钍石、萤石等副矿物与之共生,矿床地质特征表明该矿床为典型的与富碱、中性侵入岩有关的IOA(iron oxide apatite)型铁矿床。该矿床围岩英安岩、赋矿粗安玢岩与成矿后正长花岗岩的锆石SHRIMP U-Pb同位素加权平均年龄分别为311.3±1.4 Ma、304.7±2.9 Ma和301.1±2.8 Ma,铁矿石样品中与磁铁矿共生的榍石的LA-ICP-MS U-Pb同位素加权平均年龄为302.3±4.0 Ma和303.7±4.2 Ma,成岩成矿年龄高度吻合,进一步确定其在晚石炭世晚期成矿。本文根据地质特征认为该矿床矿石是由粗安玢岩顶部富铁挥发分聚集而形成的,并初步提出“超浅成侵入岩顶部富挥发分囊体”成矿模型,即富碱、中性岩体超浅成侵位导致挥发分在岩体顶部迅速聚集形成多处富铁和挥发分的囊体,岩体冷凝固结的同时磁铁矿快速结晶成矿。塔尔塔格“IOA型”型铁矿的成因厘定,不仅表明海相火山岩型铁矿与IOA型铁矿可能存在成因联系,还暗示了海相火山岩型铁成矿带内具有寻找IOA型铁矿的潜力。

    Abstract

    The Taertage iron deposit is a medium-sized iron deposit in the Awulale submarine volcanic iron metallogenic belt in the Western Tianshan, Xinjiang, China. It occurs in lenticular form at the top of trachyandesite and is of great significance in revealing the relationship between iron deposits and intrusive rocks in submarine volcanic rocks.The ore of the deposit is characterized by porphyritic, disseminated, spherical, miarolitic structures and develops typical magnetite-apatite assemblage, which basically does not contain sulfides. The exsolution texture composed of banded and leaf-like ilmenite and titanium oxide is developed in the magnetite, and a small amount of accessory minerals such as titanite, thorite and fluorite coexist with it. The geological characteristics of Taertage indicate that the deposit is a typical IOA(Iron oxide apatite)-type iron deposit related to alkali-rich intermediate intrusive rocks. The zircon SHRIMP U-Pb isotopic ages for wall-rock dacite, ore-bearing trachyandesite and post-mineralized syenogranite are 311.3±1.4 Ma, 304.7±2.9 Ma and 301.1±2.8 Ma respectively, and a LA-ICP-MS U-Pb isotopic dating on titanite which paragenetically associated with magnetite yields two weighted mean ages of 302.3±4.0 Ma and 303.7±4.2 Ma, which represents the age of iron mineralization.The highly consistency between age of ore-bearing trachyandesite and age of iron mineralization further confirms that the Taertag iron deposit was formed in the late Late Carboniferous. According to geological characteristics, this paper supports that the Taertage iron deposit is formed by the accumulation of iron-rich volatiles in the top of the trachyandesite, and proposes a volatile-rich pond in the top of ultra-hypabyssal intrusion model for genesis of the Taertage iron deposit, specifically the alkali-rich intermediate ultra-hypabyssal emplacement of intrusion leads to rapid accumulation of volatiles in its top which form multiple iron-rich and volatile-rich pond. Then, magnetite is rapidly crystallized during the consolidation of the intrusion. The determination of the genesis in Taertage iron deposit not only indicates that there may be a genetic relationship between the submarine volcanic iron ore and the IOA-type iron ore, but also suggests that there is a potential to explore IOA-type iron deposit in submarine volcanic iron metallogenic belt.

  • 海相火山岩型铁矿由我国学者提出,指的是在一定地质环境中与海相火山活动有关的铁矿床。我国海相火山岩型铁矿主要分布于新疆阿尔泰(杨富全等,2011)、天山(王登红等,2006Duan Shigang et al.,2014; Zhang Zuoheng et al.,2014)和扬子板块的西南缘(宋学信等,1981张招崇等,2021)。它具有规模大、富矿比例高、成群或成带分布和综合利用价值高等特点,是我国富铁矿石的主要来源之一。然而,国外却没有划分出相应的铁矿类型(Zhang Zhaochong et al.,2014a2014b),目前对这种铁矿争议较大。海相火山岩是否仅仅是容矿围岩,可否凭此划分单独的铁矿类型,是主要疑问。一些海相火山岩型铁矿因伴生矽卡岩而被归为矽卡岩型铁矿,例如新疆阿尔泰的恰夏、加尔巴斯岛和萨尔布拉克(杨富全,2018Li Qiang et al.,2021),西天山的查岗诺尔、敦德和备战(Duan Shigang et al.,2014王大川等,2016康永建,2018Hong Wei et al.,2020);另一些海相火山岩型铁矿因共/伴生铜-金(或银、铌、稀土元素、铀、铋和钴)元素而被划分为铁氧化物-铜-金(iron oxide-copper-gold,IOCG)矿床,如云南大红山、鹅头厂和稀矿山(Zhao Xinfu and Zhou Meifu,2011),新疆东天山的雅满苏、黑尖山和沙泉子,阿尔泰的乔夏哈拉和老山口矿山等(Zhao Liandang et al.,2017; Liang Pei et al.,2019)。因此,对于海相火山岩型铁矿是否属于单独一种铁矿类型还存在很大争议。

  • 铁氧化物-磷灰石矿床(iron oxide-apatite deposits,IOA),又称Kiruna型铁矿,以大量发育磁铁矿-磷灰石矿石为特征,是全球铁的主要来源之一(Frietsch,1978; Martin et al.,2022; Nyström and Henríquez,1994)。这种铁矿在我国长江中下游的宁芜矿集区大量发育,被定义为“玢岩型铁矿”或称为陆相火山岩型铁矿(程裕淇等,1994陈毓川等,2008)。这种矿化类型实际上在海相火山岩型铁矿带中也有发现,如新疆阿尔泰的阿巴宫铁矿就发育磁铁矿-磷灰石组合,具有IOA型铁矿的典型特征(柴凤梅等,2014),只是当时没有提出这是属于IOA型铁矿。最近,也有一些学者在阿吾拉勒铁矿带的尼新塔格铁矿和备战铁矿中发现了IOA型铁矿石(Li Hengxu et al.,2022; Wang Chunlong et al.,2022)。可见,IOA型铁矿在成因上也可以和海底火山作用有密切的联系。在海相火山岩型铁矿带中发现和厘定IOA型铁矿对于研究成矿带内铁矿成因和成矿系统的发育具有重要意义。

  • 阿吾拉勒铁成矿带位于新疆西天山中部(图1a),是我国最重要的海相火山岩型铁成矿带之一 (Hou Tong et al.,2014; Zhang Zhaochong et al.,2014a; Zhang Zuoheng et al.,2014; Li Houmin et al.,2015),该成矿带内已发现备战、敦德、智博和查岗诺尔4个大型铁矿,松湖、式可布台、阿克萨依、铁木里克、尼新塔格及雾岭等多个中—小型铁矿床(图1b;冯金星等,2010张作衡等,2012),累计探明铁矿石资源量超过16亿t,是中国十大重要金属矿产资源接替基地之一(董连慧等,2011张作衡等,2012)。然而,与宁芜矿集区的IOA型铁矿相比,该成矿带内铁矿与侵入岩之间常缺乏明确的空间关系,导致研究其成矿物质或成矿流体来源十分困难。最近发现,该成矿带内的塔尔塔格铁矿与侵入岩关系密切,产在粗安玢岩岩体的顶部,发育典型的磁铁矿-磷灰石组合,是该成矿带内确定的首例独立的IOA型铁矿,对于研究成矿带内铁成矿作用、与侵入岩关系,揭示不同类型矿石之间的联系具有重要意义。但目前尚未见到对该矿床研究的公开报道。

  • 塔尔塔格铁矿床位于新疆新源县那拉提镇北东约12 km(图1b),现已探明铁矿石资源量约6740万t,达中型规模。本文介绍该矿床地质特征,火山岩、侵入岩和赋矿侵入岩锆石SHRIMP U-Pb测年结果及对铁矿石中榍石的LA-ICP-MS U-Pb测年结果,并简要讨论矿床成因,以期为深化阿吾拉勒铁成矿带铁矿成因认识提供有益参考。

  • 图1 阿吾拉勒铁成矿带大地构造位置图(a)及地质简图(b)(据冯金星等,2010申萍等,2020修改)

  • Fig.1 Sketch map (a) and simplified geological map (b) of the Awulale iron metallogenetic belt (AIMB) (modified after Feng Jinxing et al., 2010; Shen Ping et al.,2020)

  • 1 —第四纪;2—古近纪—新近纪;3—侏罗纪沉积建造;4—二叠纪沉积建造;5—石炭纪火山沉积建造;6—泥盆纪火山沉积建造;7—志留纪火山沉积建造;8—前寒武纪地层;9—二叠纪侵入岩;10—石炭纪侵入岩;11—泥盆纪侵入岩;12—志留纪侵入岩;13—蛇绿岩;14—断层;15—铁矿床

  • 1 —Quaternary; 2—Paleogene-Neogene; 3—Jurrassic sediments; 4—Permian sediments; 5—Carboniferous volcanic and sedimentary rocks; 6—Devonian volcanic and sedimentary rocks; 7—Silurian volcanic and sedimentary rocks; 8—Precambrian; 9—Permian intrusions; 10—Carboniferous intrusions; 11—Devonian intrusions; 12—Silurian intrusions; 13—ophiolitic; 14—fault; 15—iron deposit

  • 1 区域地质背景

  • 新疆西天山造山带呈楔形位于准噶尔板块和塔里木板块之间(图1a),是一个经历了多期次板块俯冲、碰撞、陆-陆叠覆造山和复杂变形改造而形成的复合造山带(Windley et al.,1990Allen et al.,1992张作衡等,2008左国朝等,2008Gao Jun et al.,2009a2009bXiao Wenjiao et al.,20092022)。在地质构造单元方面,中国西天山自北向南被划分为北天山弧增生体、伊犁地块北缘活动陆缘、伊犁地块、伊犁地块南缘活动陆缘、中天山复合弧地体和塔里木北部被动大陆边缘。阿吾拉勒铁铜多金属成矿带呈近东西向横亘于伊犁地块之内(图1),它的构造演化历史是伊犁地块地质历史的一部分(Gao Jun et al.,19982009a)。

  • 阿吾拉勒铁成矿带出露的地层包括:局部地区出露的前寒武纪结晶基底(Gao Jun et al.,1998Qian Qing et al.,2009),成矿带南、北边缘分布的志留系和泥盆系,以及带内主要的石炭系海相火山岩、二叠系陆相火山岩和局部的侏罗系沉积岩。石炭系是成矿带内出露的最主要地层(图1b),包括下石炭统大哈拉军山组和上石炭统伊什基里克组,其中大哈拉军山组为一套海相火山喷发-沉积碎屑岩夹碳酸盐岩建造,成矿带东段的铁矿床如智博、敦德、备战、查岗诺尔铁矿多赋存于该组之中(郭新成等,2009冯金星等,2010蒋宗胜,2014田敬佺等,2015);伊什基里克组主要为一套海陆交互相的类复理式建造,阿吾拉勒成矿带西段的铁矿床如式可布台、苏洛、铁木里克、塔尔塔格铁矿多赋存于该组之中(李潇林斌等,2014陈杰,2016王大川等,2016)。

  • 阿吾拉勒成矿带内火山机构和断裂构造发育,由西到东分布多个火山活动中心(陈毓川等,2008),构造总体呈近东西向展布,其次为北西向和北东向,是该区重要的控矿、容矿机构,控制着成矿带的金属成矿事件(冯金星等,2010)。航磁解译发现,次级断裂常错断主断裂,形成菱形的构造格局(张玄杰等,2011)。

  • 强烈的岩浆活动使得区内广泛发育石炭纪和二叠纪侵入岩,岩石种类多样,且自西向东时代逐渐变新,岩性从基性岩向碱性岩逐渐过渡,其中海西晚期的中酸性侵入岩体非常发育,主要为一套与洋盆收敛俯冲有关的钙碱性侵入岩、与同碰撞有关的富铝花岗岩和后造山的富钾花岗岩等(朱志新等,2011)。

  • 2 矿床地质特征

  • 2.1 矿区地质

  • 塔尔塔格矿区出露地层主要为上石炭统伊什基里克组二段的一套中性—中酸性火山熔岩,可分为爆发相、喷溢相、喷发-沉积相和超浅成侵入相(图2)。

  • 爆发相:在矿区北部山脊附近出现,主要由近火山口崩落堆积的集块岩和溅落堆积的含集块(熔结)火山角砾岩构成,火山角砾、集块多呈棱角状,大小混杂,磨圆度、分选性差。

  • 图2 塔尔塔格铁矿火山岩岩相图 (据汉沣矿业有限责任公司,2012修改)

  • Fig.2 Volcanic phase map of the Taertage iron deposit (modified after Hanfeng Mining Limited Company, 2012

  • 1 —伊什基里克组四段;2—伊什基里克组三段;3—伊什基里克组二段;4—爆发相集块岩、角砾岩;5—喷发-沉积相含角砾凝灰岩;6—超浅成侵入相粗安玢岩;7—正长花岗岩;8—断层;9—铁矿体;10—铁矿化;11—剖面;12—产状

  • 1 —the fourth Member of Ishkirik Formation; 2—the third Member of Ishkirik Formation; 3—the second Member of Ishkirik Formation; 4—explosive agglomerate and breccia; 5—eruptive-sedimentary brecciated tuff; 6—ultra-hypabyssal intrusive trachyandesite; 7—syenogranite; 8—fault; 9—iron ore body; 10—iron mineralization; 11—cross section; 12—attitude

  • 喷溢相:主要由安山岩、英安岩、流纹岩构成的韵律层组成,在矿区火山韵律反复出现2次,再向南到矿区外被黄土层覆盖,局部露头见有安山岩、粗面岩、晶屑凝灰岩、含砾凝灰岩等。矿区内英安岩和流纹岩中,出现斑晶定向排列,或流纹构造明显,个别地段还可见被拉长的气泡,显示岩层整体向南或西南方向倾,倾角约为50°(图3)。

  • 超浅成侵入相:主要为粗安玢岩,该侵入岩呈北西西向侵入到喷溢相和爆发相中,穿切主要火山机构,表明同火山期的断层活动较为频繁。粗安玢岩呈灰白色,斑状结构,块状构造,斑晶主要为碱性斜长石,含量不均匀,平均约为35%,自形板状晶形,粒径粗大,一般为5~10 mm,个别达25 mm;基质为隐晶质,平均含量约为60%;其他矿物如角闪石等含量约为5%。

  • 喷发-沉积相:位于矿区外南侧和矿区北部山脊以北,主要由含角砾凝灰岩、熔结凝灰岩、火山沉积砾岩和含角砾安山质熔岩组成,各岩石间呈互层状产出。

  • 矿区内构造作用主要表现为脆性断裂,走向北东,倾向南东,倾角约50°,沿走向呈舒缓波状弯曲,断层两侧岩石破碎,火山岩层和侵入岩被右行走滑断层错开(图2),断层经过之处形成低洼和山垭地貌。

  • 矿区发育正长花岗岩和少量辉石闪长岩脉。正长花岗岩呈肉红色,花岗结构,块状构造,主要由半自形—他形的钾长石(含量约55%)、半自形板状斜长石 (含量约20%)、石英(含量约20%)及少量角闪石等组成,呈北西西走向侵入到火山岩和粗安玢岩中。辉石闪长岩脉呈黑灰色,斑状结构,块状构造,斑晶主要由基性斜长石和少量单斜辉石组成,基质为隐晶质,受北西西走向脆性断裂控制,可能为更晚期脉岩。

  • 2.2 矿体特征

  • 塔尔塔格铁矿产于粗安玢岩中,由3个磁铁矿主矿体(Ⅰ、Ⅱ、Ⅲ)组成,每个主矿体又可分为2~3个次矿体,埋深多介于40~400 m之间。其中Ⅰ-1和Ⅱ-1、Ⅱ-2号矿体呈不规则带状展布于地表(图2),Ⅰ-2为隐伏矿体,Ⅰ、Ⅱ号矿体TFe品位为22.68%~25.16%;Ⅲ(Ⅲ-1、Ⅲ-2、Ⅲ-3)号磁铁矿体为隐伏矿体,规模最大(图4b),分布于I号和Ⅱ号矿体东南部,矿体形态为透镜状,发育尖灭、膨大收缩等现象,TFe品位为26%~28%。

  • 粗安玢岩中一般无蚀变,但靠近磁铁矿体可见少量围岩蚀变,主要类型有钠长石化、钾长石化和绿帘石化,蚀变程度极弱。钠长石化蚀变主要表现为被磁铁矿基质包围的斜长石斑晶钙含量显著降低,进而以钠长石为主(笔者未发表数据),以及侵入岩顶部的磁铁矿+钠长石脉。钾长石化蚀变呈不规则片状产出,弥散于似斑状构造磁铁矿石的基质中。绿帘石化主要表现为靠近矿体发育密集的球状绿帘石。矿化和蚀变具有如下的分带:由浸染状、似斑状磁铁矿化中心向外(图5a~c)→晶洞、囊状磁铁矿化+脉状磁铁矿化(图5d~j)→不规则片状钾长石化(图5k)→球状、斑点状绿帘石化(图5l)。在新鲜未蚀变的侵入岩中未见矿化现象(图6a、b)。

  • 图3 塔尔塔格矿区P3—P3’地质剖面图(剖面位置见图2)

  • Fig.3 Section geological map of the Taertage iron deposit for P3—P3’(the position of the section is shown in Fig.2)

  • 1 —安山岩;2—流纹岩;3—英安岩;4—粗安玢岩;5—采样位置及编号;6—中细粒花岗岩;7—正长花岗岩;8—磁铁矿化;9—钾长石化;10—绿帘石化

  • 1 —andesite; 2—rhyolite; 3—dacite; 4—trachyandesite; 5—sampling location and its number; 6—medium-fine grained granite; 7—syenogranite; 8—iron mineralization; 9—K-feldspar alteration; 10—epidtion

  • 图4 塔尔塔格铁矿Ⅱ号矿体12号勘探线剖面图(a)和Ⅲ号矿体15号勘探线剖面图(b) (据汉沣矿业有限责任公司,2012修改)

  • Fig.4 Geological details along the NE-SW cross-section 12 of the Ⅱ iron deposit (a) and the NE-SW cross-section 15 of the Ⅲ iron deposit (b) (modified after Hanfeng Mining Limited Company, 2012

  • 1 —粗安玢岩;2—铁矿化;3—铁矿体;4—钻孔

  • 1 —trachyandesite; 2—iron mineralization; 3—iron ore body; 4—drilling

  • 矿石主要为浸染状构造(图5a、b,粗安玢岩中分布中—细粒磁铁矿)、似斑状构造(图5c,钠长石斑晶+细粒磁铁矿)、脉状构造(图5g~j,粗晶磁铁矿脉、磁铁矿+钠长石脉)、球粒状构造(图5f,球状磁铁矿)和晶洞构造(图5e,晶洞中中—粗粒自形磁铁矿),自形粒状结构、半自形粒状结构、他形粒状结构、包含结构、出溶结构。矿体周围晶洞十分发育,可见磁铁矿、长石、方柱石、绿帘石、方解石等充填其中(图5d)。

  • 矿石矿物主要为磁铁矿,显微镜下零星可见少量黄铁矿。脉石矿物主要为斜长石、磷灰石、钾长石(图6c)、绿帘石,以及少量的方解石、方柱石、绿泥石、榍石(图6d)、钍石、沥青铀矿、萤石等。斜长石主要为早期岩浆房中结晶的斑晶矿物,矿石发育典型的磁铁矿-磷灰石组合(图6e~g)。磁铁矿粒径多在0.5~2.0 mm,含少量粒度小于0.35 mm细粒磁铁矿。粒度大于0.5 mm磁铁矿多呈半自形—他形粒状充填在基质中或沿长石斑晶边缘生长,与钠长石形成共生组合(图6h),小于0.35 mm的细粒磁铁矿则包裹在钾长石、斜长石集合体内。磁铁矿V-Ti含量较高(蒋宗胜等,未发表),常见钛铁矿及钛氧化物的格子状、条带状出溶结构(图6i~j)。

  • 根据矿石组构及矿物之间的共生关系可见,塔尔塔格铁矿成岩、成矿近乎同期,除了粗大的斜长石斑晶可能在岩浆房中就已形成外,磁铁矿成矿和粗安玢岩基质的固结可能是近于同时发生的,因此将成岩成矿过程大致分为如下三个阶段(图7):第一阶段为成岩期,以斜长石斑晶的形成为主,可能处于深部岩浆房环境;第二阶段为磁铁矿体形成和基质固结阶段,大量晶洞的存在表明该阶段挥发分十分富集,形成了球形磁铁矿集合体(图5f)、球形绿帘石(图5l)和大量未完全充填的晶洞(图5d),磁铁矿可替代基质而构成类似潜火山岩似斑状结构的“斜长石斑晶+中细粒磁铁矿”似斑状矿石(图5c),钠长石化、钾长石化和绿帘石化蚀变也在该阶段形成;第三阶段以粗粒磁铁矿+钠长石脉状矿化为代表(图5j),它以粗安玢岩顶部冷凝节理为容矿空间充填而成(图5g)。

  • 3 样品和分析测试方法

  • 本文沿P3—P3’剖面采集英安岩(TE-41)、粗安玢岩(TE-48)、正长花岗岩(TE-25)、浸染状矿石(TG-38,TG-52)样品进行年代学研究,具体采样位置见图3。

  • 图5 塔尔塔格铁矿石及围岩蚀变照片

  • Fig.5 Photographs of iron ores and the wall rock alteration from the Taertage iron deposit

  • (a)—稠密浸染状构造;(b)—稀疏浸染状构造;(c)—似斑状构造;(d)—杏仁构造;(e)—晶洞构造;(f)—球粒状构造;(g)—沿冷凝节理充填的细脉状矿石;(h)—网脉状构造;(i)—细脉状构造;(j)—粗粒磁铁矿+钠长石脉状矿化;(k)—不规则片状钾长石化与磁铁矿共生;(l)—球状绿帘石化;Mag—磁铁矿;Ep—绿帘石;Scp—方柱石

  • (a)—dense disseminated structure; (b)—sparse disseminated structure; (c)—porphyritic structure; (d)—amygdaloidal structure; (e)—miarolitic structure; (f)—spherical porphyritic structure; (g)—veined iron ore filled along joints; (h)—mesh vein structure; (i)—fine vein structure; (j)—coarse-grained magnetite and veined albite; (k)—magnetite and irregular flaked K-feldspar; (l)—spherical porphyritic epidote; Mag—magnetite; Ep—epidote; Scp—scapolite

  • 粗安玢岩样品(样品编号TE-48)呈浅灰白褐色,斑状结构,块状构造(图6b)。斑晶为碱性斜长石,含量约30%,自形板状晶形,粒径较大,多为10~15 mm。基质约68%,微晶或隐晶质,其他矿物约2%。英安岩样品(样品编号TE-41)呈浅灰色,斑状结构,块状构造(图6k)。斑晶含量约20%,主要为长石和石英,基质为隐晶质或霏细结构。正长花岗岩样品(样品编号TE-25)呈肉红色,花岗结构,块状构造(图6l),主要由钾长石、斜长石、石英及少量的角闪石等组成。

  • 浸染状矿石样品(样品编号TG-38,TG-52)呈似斑状构造(图5c),斑晶为粗晶斜长石,被细粒磁铁矿胶结,显微镜下可见钛铁矿及钛氧化物的格子状、条带状出溶结构(图6i、j);榍石自形程度较好,以不规则菱形为主(图6d),少量呈现出典型的“信封”状特征,粒径0.5~1.5 mm,与磁铁矿密切伴生,因此可以用榍石年龄代表磁铁矿的形成时代。

  • 图6 塔尔塔格矿区野外、手标本及镜下照片

  • Fig.6 Field and hand samples from Taertage iron deposit and photographs under microscope

  • (a)—粗安玢岩野外照片;(b)—粗安玢岩手标本;(c)—钾长石化的基质(单偏光);(d)—磁铁矿-榍石组合(BSE);(e)—磁铁矿-磷灰石-钛铁矿-榍石组合(BSE);(f、g)—磁铁矿-磷灰石组合(正交偏光);(h)—磁铁矿基质+斜长石斑晶(单偏光);(i)—钛铁矿格子状出溶结构(BSE);(j)—钛铁矿条带状出溶结构(BSE);(k)—英安岩手标本;(l)—正长花岗岩手标本;Mag—磁铁矿;Cpx—辉石;Pl—斜长石;Ap—磷灰石;Ttn—榍石;Ilm—钛铁矿;Kfs—钾长石

  • (a)—field photograph of Trachyandesite; (b)—hand specimen photograph of Trachyandesite; (c)—K-feldsparization of matrix(plane polarized light); (d)—magnetite-apatite-ilmenite-titanite (backscattered electron image) ; (e)—magnetite-apatite-ilmenite-titanite (backscattered electron image) ; (f, g)—magnetite-apatite (crossed polarized light) K-feldsparization of matrix (plane polarized light) ; (h) —magnetite matrix and plagioclase phenocrysts (plane polarized light) ; (i) —lattice exsolution structure of Ilmenite (backscattered electron image) ; (j) —striped exsolution structure of ilmenite (backscattered electron image) ; (k) —hand specimen photograph of dacite; (l)—hand specimen photograph of syenogranite; Mag—magnetite; Cpx—clinopyroxene; Pl—plagioclase; Ap—apatite; Ttn—titanite; Ilm—ilmenite; Kfs—K-feldspar

  • 锆石挑选、制靶工作在北京科荟测试技术有限公司完成,将样品破碎到60~80目,用水淘和磁选方法选出无磁性重矿物后在双目镜下手工挑选出锆石,并将其与标准锆石TEM(Black et al.,2004)固定于环氧树脂中制成样品靶。锆石阴极发光(CL)照相及U-Pb定年均在中国地质科学院地质研究所北京离子探针中心SHRIMP Ⅱ仪器上完成。在CL图像中选取无裂隙、无包裹体、结构单一、图像灰度均匀且发育岩浆环带的位置测定,具体流程及原理详见相关文献(Williams,1989刘敦一等,2004)。测试时采用跳峰扫描,仪器质量分辨率约为5000(1%峰高),一次离子流O2-强度为25 nA,使用25 μm大小的束斑,每个数据点测定由5次扫描获得(单点误差为1σ,加权平均年龄误差为2σ,误差置信度为95%),样品点清洗时间为180 s。使用204Pb进行普通Pb校正(Stacey and Kramers,1975)并用SQUID 1.02和ISOPLOT2.49软件(Ludwig,2003)对数据进行处理。

  • 图7 塔尔塔格铁矿成矿期次划分

  • Fig.7 Generalized paragenetic sequence of mineralization and alteration in the Taertage iron deposit

  • 榍石挑选、制靶、背散射图像拍摄工作在北京科荟测试技术有限公司完成,制备工作与锆石类似(谢烈文等,2008杨岳衡等,2008)。选取无裂隙、无包裹体、图像灰度均匀、结构均一且无继承核的位置测试,所有标准玻璃物质分析之前,需在5%稀硝酸中进行10 min超声清洗,然后在18 MΩ·cm 超纯水中进行10 min超声清洗,去除表面可能存在的普通Pb污染。测试工作在中国科学院地质与地球物理研究所LA-ICP-MS实验室完成,所用仪器为连接GeoLas Pro型193 nm准分子激光剥蚀系统的Agilent 7500a型四极杆电感耦合等离子体质谱仪(Q-ICPMS),测试前对仪器进行校正并对参数进行优化,以确保仪器有较高的灵敏度,同时使得氧化物和二价离子产率较低,仪器配置与参数详见谢烈文等(2008)。本文数据采集选用跳峰模式,分析元素的积分时间分别为10 ms(29Si、43Ca、232Th和238U),15 ms(204Pb、206Pb和208Pb)以及30 ms(207Pb)。单点分析时间为150 s,包括30 s背景信号收集,60 s样品信号收集和60 s清洗管道、样品池的时间。样品与标样交叉分析,每10个样品测定一组榍石标样(2个BLR-1榍石、1个OLT榍石),每个样品测定3个微量元素标样NIST610。实验采取单点分析模式,激光剥蚀束斑直径为32 μm(榍石颗粒较小),剥蚀频率为6 Hz,详细分析流程见Sun Jinfeng et al.(2012)

  • 4 测试结果

  • 4.1 锆石SHRIMP U-Pb测年

  • 粗安玢岩(TE-48)中锆石呈半自形—自形粒状或短柱状,粒径约80~150 μm,长宽比在2∶1到1∶1之间(个别可达4∶1),发育振荡环带,少量锆石中可见扇形分带结构(图8),具有岩浆锆石特征(Rubatto,2002吴元保等,2004)。17个谐和度较高的数据点U、Th含量以及Th/U比值分别介于58.11×10-6~415.51×10-6、83.29×10-6~773.77×10-6和0.48~8.69之间(表1);在U-Pb年龄谐和图中(图8),206Pb/238U表面年龄介于308.5 Ma~299.0(表1)之间,加权平均值为304.7± 2.9 Ma(MSWD=0.31)(图8),代表了粗安玢岩的形成时代。

  • 英安岩(TE-41)中锆石呈半自形—自形粒状或短柱状,粒径约70~150 μm,长宽比在3∶1到1∶1之间,振荡环带发育(图8),为典型的岩浆锆石(Rubatto,2002)。去除谐和度较低的测试点,10个数据点U、Th含量以及Th/U比值分别介于116.43×10-6~508.27×10-6、100.56×10-6~856.05×10-6和0.64~1.74之间(表1);在U-Pb年龄谐和图中(图8),206Pb/238U表面年龄介于313.3~307.6 Ma之间(表1),加权平均值为311.4±1.4 Ma(MSWD=0.49)(图8),代表了英安岩的结晶年龄。

  • 正长花岗岩(TE-25)中的锆石呈半自形—自形短柱状,长宽比在2∶1到3∶1之间,粒径介于80~120 μm之间,韵律环带较为发育(图8),具有岩浆锆石特征(Rubatto,2002; Hoskin and Schaltegger,2003吴元保等,2004)。去除谐和度低于90%的测试点,13个数据点U、Th含量以及Th/U比值分别介于49.70×10-6~93.02×10-6、31.74×10-6~69.29×10-6和0.59~0.77之间(表1);在U-Pb年龄谐和图中(图8),206Pb/238U表面年龄介于312.1~291.9 Ma之间(表1),加权平均值为301.1±2.8 Ma(MSWD=1.4)(图8),代表了正长花岗岩的结晶年龄。

  • 表1 塔尔塔格铁矿岩浆岩SHRIMP锆石U-Pb分析结果

  • Table1 SHRIMP U-Pb data for zircons from magmatic rocks, Taertage iron deposit

  • 4.2 LA-ICP-MS榍石U-Pb测年

  • TG-38样品中的榍石呈半自形—自形短柱状,长宽比在2∶1到3∶1之间,粒径介于100~200 μm之间,在BSE图像中,不发育明显的环带结构(图9)。30个数据点谐和度均符合要求,其Th含量变化较大,介于10×10-6~630×10-6之间,多小于300×10-6,U含量介于33×10-6~168×10-6之间,多小于100×10-6,Th/U比值介于0.2~14.3之间,多小于10(表2)。在Tera-Wasserburg谐和图中,下交点年龄为302.3±4.0 Ma(图9),根据上交点所获得的初始207Pb/206Pb(0.2420)同位素组成,对样品进行普通Pb校正,获得其206Pb/238U加权平均年龄为302.2±4.1 Ma(图9),与下交点年龄在误差范围内一致。

  • TG-52样品中的榍石呈半自形—自形短柱状,粒状次之,长宽比在2∶1到1∶1之间,粒径介于 100~180 μm之间,在BSE图像中,环带结构发育不明显(图9)。去除谐和度低于90%的测试点,21个数据点的U含量介于9×10-6~379×10-6之间,多小于100×10-6,且只有一个点大于200×10-6;Th含量介于58×10-6~417×10-6之间,多小于200×10-6;Th/U比值介于1~10之间(表2)。在Tera-Wasserburg谐和图中,下交点年龄为303.7±4.2 Ma(图9),根据上交点所获得的初始207Pb/206Pb(0.7160)同位素组成,对样品进行普通Pb校正,获得其206Pb/238U加权平均年龄为303.5±4.2 Ma(图9),与下交点年龄在误差范围内一致。

  • 图8 塔尔塔格铁矿岩浆岩锆石CL图像及U-Pb年龄谐和图

  • Fig.8 Representative CL images and concordia diagrams for analyzed zircons from Taertage iron deposit

  • 5 讨论

  • 5.1 塔尔塔格IOA型铁矿的厘定

  • IOA型铁矿床在世界范围内广泛分布,如瑞典的Kiruna铁矿(Frietsch,1978Nyström and Henríquez,1994),芬兰北部Misi地区的铁矿 (Niiranen,2005),哈萨克斯坦的图尔盖铁矿集区(陈毓川等,2008),加拿大英属哥伦比亚省西部铁矿带(Meinert,1984),科迪勒拉成矿带的El Laco铁矿床(Park,1961Nyström and Henríquez,1994Henríquez and Nyström,1998Henríquez et al.,2003)、Cerro de Mercado铁矿床(Lyons,1988)、Marcona铁矿床(Chen Huayong et al.,2010)等。这种铁矿的主要矿物除磁铁矿和磷灰石外,还常含有阳起石,在时空上常与碱性—钙碱性的中酸性火山岩—潜火山岩密切相关(侯通等,2020)。塔尔塔格铁矿内虽未见阳起石,但发育典型的磁铁矿-磷灰石组合,与IOA型铁矿地质特征相似。本文将塔尔塔格铁矿与典型IOA型铁矿(Kiruna铁矿)和宁芜玢岩铁矿进行了对比(表3),并以宁芜玢岩铁矿为主要对比对象进行分析。

  • 图9 塔尔塔格铁矿榍石BSE图像及U-Pb年龄谐和图

  • Fig.9 Representative backscattered electron images and concordia diagrams for analyzed titanites from Taertage iron deposit

  • 据表3可知,塔尔塔格铁矿、宁芜玢岩铁矿和Kiruna铁矿均形成于伸展地质背景中,与富碱侵入岩或火山岩关系密切,矿化以磁铁矿为主,并共生有不同含量的磷灰石。

  • 在岩浆岩侵入关系与空间矿化类型的变化方面,以宁芜矿集区铁矿为代表的这类铁矿出现如下三种情况(长江中下游火山岩区铁矿研究组,1977宁芜研究项目编写小组,1978赵新福等,2020):①产于潜火山岩体(辉石闪长玢岩)及其附近火山岩层中的铁矿,如宁芜盆地的梅山、凹山、陶村、和尚桥,庐枞盆地的罗河、泥河等矿床,主要为典型的IOA型磁铁矿-磷灰石-阳起石(透辉石)矿化;②产于潜火山岩体(辉长闪长岩-辉长闪长玢岩)与围岩接触带的铁矿床,如姑山、白象山、钟九、和睦山、凤凰山等矿床,表现为矽卡岩型矿化,以充填和交代成矿方式为主;③产于火山岩-火山沉积岩中、与侵入岩无直接接触关系的铁矿床,如龙旗山、竹园山、龙虎山等矿床,表现为似层状的磁铁矿化或赤铁矿化,伴有中低温热液蚀变,可能为中低温热液成矿。塔尔塔格铁矿床赋存在粗安玢岩侵入岩内顶部,发育磁铁矿-磷灰石组合,与第一种情况的陶村铁矿地质特征极为相似(滕霞等,2018)。本文获得塔尔塔格铁矿英安岩、赋矿粗安玢岩与成矿后正长花岗岩的锆石SHRIMP U-Pb同位素加权平均年龄分别为311.3±1.4 Ma、304.7±2.9 Ma和301.1±2.8 Ma,与已有地质证据吻合较好,分别代表了古火山机构喷溢相、超浅成侵入相和本旋回结束的时间。并获得2件铁矿石样品中与磁铁矿共生的榍石的LA-ICP-MS U-Pb同位素加权平均年龄为302.3±4.0 Ma和303.7±4.2 Ma,与容矿的粗安玢岩成岩年龄高度吻合,进一步证明塔尔塔格铁矿在晚石炭世晚期成矿,与火山喷发旋回晚期的侵入岩有关。

  • 表2 塔尔塔格铁矿LA-ICP-MS 榍石U-Pb分析结果

  • Table2 LA-ICP-MS U-Pb data of titanite from Taertage iron deposit

  • IOA型矿床常伴有分带特征良好的围岩蚀变,如宁芜地区典型的IOA型铁矿蚀变自下而上、从早到晚可分为3个带:早期(下部)浅色蚀变带,以钠长石化、钾长石化为主;主成矿期(中部)深色蚀变带,分布在岩体上部至接触带附近的安山岩中,主要由透辉石、磷灰石、阳起石、石榴子石、硬石膏等组成;晚期(上部)浅色蚀变带主要发育黄铁矿化、硅化、硬石膏化、碳酸盐化等(长江中下游火山岩区铁矿研究组,1977宁芜研究项目编写小组,1978赵新福等,2020)。塔尔塔格铁矿围岩蚀变较弱,但分带性较为明显,早期形成的斜长石斑晶边缘常发生钠长石化,矿体外侧发育不规则片状钾长石化,球状、斑点状绿帘石化,与玢岩型铁矿早期浅色蚀变带相对应;磁铁矿常与辉石、磷灰石等共生,对应着玢岩型铁矿中期深色蚀变带;塔尔塔格铁矿不发育晚期的浅色蚀变,且基本不含黄铁矿等硫化物,有别于典型的玢岩铁矿,而与Kiruna铁矿更为相近(表3)。

  • 表3 塔尔塔格铁矿床与Kiruna铁矿和宁芜玢岩铁矿对比

  • Table3 Comparison of Taertage iron deposit with Kiruna-type iron deposit and porphyrite iron deposit of Ningwu area

  • 综上,塔尔塔格铁矿为典型的产于侵入岩体内顶部的IOA型铁矿。塔尔塔格IOA型铁矿的发现,表明IOA型铁矿可以形成于海相火山岩-潜火山岩的铁矿成矿系统中。近期,有学者在同一成矿带的备战和尼新塔格铁矿中发现了IOA型矿石(Li Hengxu et al.,2022; Wang Chunlong et al.,2022),说明IOA铁矿和矽卡岩型或中温热液交代型铁矿可以共生,对于揭示阿吾拉勒成矿带内铁矿成因提供了新思路。IOA型与矽卡岩型或交代型铁矿石共生的现象在长江中下游地区玢岩型铁矿中较为常见,例如白象山、和睦山、太平山、龙桥、马鞭山和马口等铁矿中均发现过该现象。学者们将这些同期形成的矽卡岩型和热液型铁矿作为玢岩铁矿成矿系统的一部分(宁芜研究项目编写小组,1978)。在典型矽卡岩型铁矿中也发现过IOA型铁矿石,如湖北大冶王豹山矽卡岩型铁矿的深部铁矿石富磷灰石且磁铁矿Ti、V含量更高,暗示形成温度更高(Hu Hao et al.,2019)。因此,IOA型铁矿与矽卡岩型铁矿可以形成于同一成矿体系,早期高温阶段形成IOA型铁矿化,晚期温度降低则形成矽卡岩型铁矿化,两者具有密切的成因联系(赵新福等,2020)。

  • 塔尔塔格IOA型铁矿的厘定,还在区域找矿方面具有重大意义。IOA型铁矿与矽卡岩型铁矿可以形成于同一成矿体系,阿吾拉勒成矿带东段的大型铁矿,如备战、敦德、智博和查岗诺尔,均普遍发育矽卡岩化,与成矿有关的侵入岩尚未出露,在这些矽卡岩化主矿体之下,是否也具有IOA型铁矿的找矿潜力?在宁芜和庐枞盆地,无论是大王山(或砖桥)岩浆活动旋回还是娘娘山(或浮山)岩浆活动旋回,IOA型铁矿化都是发生在火山口附近,并与下伏侵入岩有着成因联系(毛景文等,2012),IOA型铁矿还有强烈的磁性,那么可否依据火山口和强磁异常叠加进行找矿?阿吾拉勒成矿带内由西到东分布多个火山活动中心(陈毓川等,2008),塔尔塔格铁矿位于古火山口附近,与具潜火山岩特点的粗安玢岩有关。还有一些学者认为IOA型铁矿与IOCG型铜金矿床可能存在连续演化的成因模式(Chen Huayong et al.,2010),两种类型的矿体可密切伴生(Apukhtina et al.,2017)。如果这种连续演化的成因模式成立,那么是否可以在阿吾拉勒成矿带开展晚石炭世铜、金矿床的勘查?该成矿带的式可布台铁矿就具有“上铁下铜”的分布规律(陈杰,2016),敦德铁矿便是已探明的铁-锌-金多金属矿床(康永建,2018)。

  • 5.2 塔尔塔格铁矿成因浅析

  • 塔尔塔格铁矿是阿吾拉勒成矿带内新发现的铁矿化类型,其成因具有重要意义。本文根据宏观矿化现象和矿相学特征对其成因进行简要分析。关于海相火山岩环境中IOA型铁矿的成因,长期以来存在如下两种主要争议:一种是液态不混溶形成的富铁熔体贯入或海底喷发结晶形成,即“铁矿浆”成矿(如姚培慧等,1993王登红等,2006冯金星等,2010胡秀军等,2010汪帮耀等,2011Hou Tong et al.,2018);另一种是火山-潜火山气液交代或充填火山岩、火山断裂而成(涂光炽等,1978姚培慧等,1993薛春纪等,2000李华芹等,2003Duan Shigang et al.,2014Yan Shuang et al.,2019Hong Wei et al.,2020);或者由上述两种机制叠加形成(左国朝等,2004Zhang Xi et al.,2015汪帮耀等,2017Jiang Zongsheng et al.,2018)。另外,还有极少数观点认为是海底热液喷流沉积形成(郭新成等,2009单强等,2009Yang Xiuqing et al.,2019)。

  • 塔尔塔格铁矿床产在侵入岩内,显然与海底热液喷流沉积成因无关。该矿床矿石发育似斑状构造、浸染状构造、脉状构造、球粒状构造和晶洞构造,磁铁矿内部发育格子状的钛铁矿及钛氧化物出溶结构,具有典型的岩浆期成矿特点,但本文认为,不能据此判定其为“铁矿浆”成矿。在该矿床的主要矿石中,中—粗粒磁铁矿颗粒或磁铁矿集合体呈浸染状至稠密浸染状分布在侵入岩的基质中,显然并非由理想的铁矿浆冷却结晶形成的以磁铁矿为基质的矿石。另外,该矿床边部的球状磁铁矿与球状绿帘石、晶洞空间上紧密伴生,特征上相似,这些球状磁铁矿可能是磁铁矿充填晶洞的结果。根据宏观矿化现象和矿相学特征,本文认为该矿床的铁矿石是由富铁挥发分在尚未固结的侵入岩体顶部聚集而成,并提出“侵入岩顶部富挥发分囊体”成矿模型,即富碱、中性侵入岩超浅成侵位导致挥发分在岩体顶部迅速聚集形成多处富铁和挥发分的囊体,磁铁矿在岩体冷凝固结的同时快速结晶成矿,或者磁铁矿结晶稍早于基质固结而发生磁铁矿胶结斜长石斑晶形成似斑状构造矿石。侵入岩顶部的球状磁铁矿(图5f)、球状绿帘石(图5l)、方柱石晶洞(图5d)等,应该均是挥发分在侵入岩熔体顶部聚集形成。侵入岩顶部平直的磁铁矿+钠长石脉的发育 (图5g),表明侵入岩体自顶部向下逐渐固结,顶部形成冷凝节理,由挥发分充填磁铁矿+钠长石形成。

  • 综上,提出塔尔塔格铁矿成矿模式(图10):晚石炭世由于裂谷伸展作用导致地幔发生减压熔融而形成玄武质岩浆,岩浆沿断裂上升侵位,由于地壳浅部断裂系统发达,岩浆通过断裂浅成—超浅成侵位,经历部分无水矿物结晶后达到挥发相过饱和,从而形成巨量的独立挥发相。这种挥发相具有较小的密度,会在岩体内迅速上升到岩体顶部聚集成多处富铁和挥发分的囊体,在与侵入岩体发生钠长石化的过程中,岩石中的铁被钠替代进入囊体,使之进一步富铁(张招崇等,201420162021),岩体基质冷凝固结的同时磁铁矿快速结晶成矿。侵入岩浅成—超浅成侵位是成矿的关键因素,侵入岩顶部熔岩层充当了圈闭层,从而使成矿热液聚集在侵入岩顶部成矿,而不是在围岩中成矿。

  • 6 结论

  • (1)塔尔塔格铁矿区发育一个晚石炭世的火山机构,该火山机构英安岩年龄为311.3±1.4 Ma,铁矿体产在粗安玢岩顶部,粗安玢岩年龄为304.7±2.9 Ma,晚期侵入的正长花岗岩年龄为301.1±2.8 Ma。矿石中与磁铁矿共生的榍石U-Pb年龄为302.3±4.0 Ma和303.7±4.2 Ma,与赋矿粗安玢岩成岩年龄在误差范围内一致,成岩、成矿几乎同时,均发生于晚石炭世晚期。

  • (2)塔尔塔格铁矿在地质特征上与宁芜玢岩铁矿十分相似,是产于侵入岩体内顶部的IOA型铁矿床,其铁矿类型的厘定表明IOA型铁矿可以形成于海相火山岩-潜火山岩铁成矿系统中,对阿吾拉勒成矿带的区域找矿工作具有重要意义。本文认为塔尔塔格铁矿床是由侵入岩体顶部的富铁挥发分聚集后形成,并提出“侵入岩顶部富挥发分囊体成矿模型”,即岩体超浅成侵位导致挥发分在岩体顶部迅速聚集形成多处富铁和挥发分的囊体,岩体冷凝固结的同时磁铁矿快速结晶成矿。

  • 致谢:本文矿床地质特征部分为项目组共同工作成果,参加野外工作还有康永建、肖艳东、范侥、赵玉京、许亚东、吕成帅、宋哲;室内测试得到中国地质科学院地质研究所北京离子探针中心康月蓝博士、包泽民老师和中国科学院地质与地球物理研究所杨昊明博士、吴石头高工、孙金凤老师的帮助;匿名审稿专家给论文提出了许多建设性的意见和建议。在此一并表示衷心地感谢!

  • 图10 塔尔塔格铁矿成矿模式图

  • Fig.10 Metallogenic model of the Taertage iron deoposit

  • ①—岩体顶部岩冷凝节理形成的脉状矿石;②—浸染状、似斑状矿石;③—斑球状矿石;④—晶洞构造矿石;⑤—斑球状绿帘石

  • ①—veined iron ore filled along joints; ②—disseminated and porphyritic structure; ③—spherical porphyritic structure; ④—miarolitic structure; ⑤—spherical porphyritic epidote

  • 注释

  • ❶ 汉沣矿业有限责任公司.2012. 新疆新源县塔尔塔格铁多金属矿勘探报告. 福建: 第八地质大队,1~25.

  • 参考文献

    • Allen M B, Windley B F, Zhang Chi. 1992. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics, 220 (1-4): 89~115.

    • Apukhtina O B, Kamenetsky V S, Ehrig K, Kamenetsky M B, Maas R, Thompson J, McPhie J, Ciobanu C L, Cook N J. 2017. Early, deep magnetite fluorapatite mineralization at the Olympic dam Cu-U-Au Ag deposit, South Australial. Economic Geology, 112(6): 1531~1542.

    • Black L P, Kamo S L, Allen C M, Davis D W, Aleinikoff J N, Valley J W, Mundil R, Campbell I H, Korsch R J, Williams I S, Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1): 115~140.

    • Chai Fengmei, Yang Fuquan, Li Qiang, Zang Mei, Geng Xinxia, Meng Qingpeng. 2014. Metallogenic mechanism of the Abagong apatite-rich iron deposit in Altay, Xinjiang: Evidence from inclusions and stable isotopes. Acta Petrologica Sinica, 30(5) : 1397~1414(in Chinese with English abstract).

    • Chen Huayong, Clark A H, Kyser T K. 2010. The Marcona magnetite deposit, Ica, south-central Peru: A product of hydrous, iron oxide-rich melts? Economic Geology, 105: 1441~1456.

    • Chen Jie. 2016. A Study on themineralizationof iron ores in the Shikebutai iron deposit in western Tianshan, China. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Cheng Yuqi, Zhao Yiming, Lu Songnian. 1978. Main type groups of iron deposit of China. Acta Geologica Sinica, (4): 253~268(in Chinese with English abstract).

    • Dong Lianhui, Feng Jing, Zhuang Daoze, Li Fengming, Qu Xun, Liu Dequan, Tang Yanling. 2011. Discussion of metallogenic models, mineralizaton characteristic and main type of rich iron ore of Xinjiang. Xinjiang Geology, 29 (4): 416~422(in Chinese with English abstract).

    • Duan Shigang, Zhang Zuoheng, Jiang Zongsheng, Zhao Jun, Zhang Yongping, Li Fengming, Tian Jingquan. 2014. Geology, geochemistry, and geochronology of the Dunde iron-zinc ore deposit in western Tianshan, China. Ore Geology Reviews, 57: 441~461.

    • Frietsch R. 1978. On the magmatic origin of iron ores of the Kiruna type. Economic Geology, 73: 478~485.

    • Gao Jun, Li Maosong, Xiao Xuchang, Tang Yaoqing, He Guoqi. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287 (1-4): 213~231.

    • Gao Jun, LongLingli, Klemd R, Qian Qing, Liu Dunyi, Xiong Xianming, Su Wen, Liu Wei, Wang Yitian, Yang Fuquan. 2009a. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98 (6): 1221~1238.

    • Gao Jun, Qian Qing, LongLingli, Zhang Xi, Li Jilei, Su Wen. 2009b. Accretionary orogenic process of Western Tianshan, China. Geological Bulletin of China, 28 (12): 1804~1816(in Chinese with English abstract).

    • Guo Xincheng, Zhang Jianshou, Yu Yuanjun, Ma Zhonghua, Zhang Jiankui. 2009. Geological characteristics and mining symbols of Beizhan iron deposit in Hejing, Xinjiang. Xinjiang Geology, 27 (4): 341~345(in Chinese with English abstract).

    • Henríquez F, Nyström J O. 1998. Magnetite bombs at El Laco volcano, Chile. GFF, 120(3): 269~271.

    • Henríquez F, Naslund H R, Nyström J O, Vivallo W, Aguirre R, Dobbs F M, Lledó H. 2003. New field evidence bearing on the origin of the el laco magnetite deposit, northern chile—A discussion. Economic Geology, 98: 1497~1502.

    • Hou Tong, Charlier Bernard, Holtz Francois, Veksler llya, Zhang Zhaochong, Thomas Rainer, Namur Olivier. 2018. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nature Communications, 9: 1415.

    • Hong Wei, Zhang Zuoheng, Baker M J, Jiang Zongsheng, Duan Shigang. 2020. Zircon U-Pb dating and stable isotopic compositions for constraining the genesis of the Chagangnuoer magnetite deposit in western Tianshan, NW China. Ore Geology Reviews, 121: 103~478.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27~62.

    • Hou Tong, Charlier Bernard, Holtz Francois, Vekslerllya, Zhang Zhaochong, Thomas Rainer, Namur Olivier. 2018. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nature Communications, 9: 1415.

    • Hou Tong, Zhang Zhaochong, Franco P, Santosh M, Encarnacion J, Liu Junlai, Zhao Zhidan, Zhang Lijian. 2014. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: An overview. Ore Geology Reviews, 57: 498~517.

    • Hou Tong, Pan Ronghao, Yang Zongpeng, Qin Jingyi. 2020. Progress and prospective of experimental research on iron oxide apatite ore deposits. Mineral Deposits, 39(4): 579~586(in Chinese with English abstract).

    • Hu Hao, Li Jianwei, Harlov D E, Lentz D R, Mcfarlane, Chris R M, Yang Yueheng. 2019. A genetic link between iron oxide apatite and iron skarn mineralization in the Jinniu volcanic basin. Daye district, eastern China: Evidence from magnetite geochemistry and multi mineral U-Pb geochronology. Geological Society of America Bulletin, 132(5-6): 899~917.

    • Hu Xiujun, Chen Wenge. 2010. Geological characteristics and genesis of Chagangnuoer large-sized magnetite deposit in Southern Tianshan, Xinjiang. Resources Survey and Environment, 31(3): 185~193(in Chinese with English abstract).

    • Jiang Zongsheng. 2014. Carboniferous volcanism and Fe mineralization at the Zhibo iron deposit in the Western Tianshan. Doctoral dissertation of Chinese Academy of Geological Sciences, 1~192 (in Chinese with English abstract).

    • Jiang Zongsheng, Zhang Zuoheng, Wang Dachuan, Duan Shigang, Kang Yongjian. 2018. Application of in situ titanite U-Pb geochronology to volcanic-hosted magnetite deposit: New constraints on the timing and genesis of the Zhibo deposit, Western Tianshan, NW China. Ore Geology Reviews, 325~341.

    • Kang Yongjian. 2018. Ore genesis of the Dunde iron-zinc-gold polymetallic deposit, West Tianshan, Xinjiang. Doctoral dissertation of Peking University, 1~178(in Chinese with English abstract).

    • Li Hengxu, Zhang Zhaochong, Liu Bingxiang, Jin Yilun, Santosh M, 2022. The genetic link between iron oxide-apatite and iron skarn mineralization in the Beizhan deposit, Western Tianshan, NW China: Evidence from magnetite and gangue mineral geochemistry. Journal of Asian Earth Sciences, 241: 105460.

    • Li Houmin, Ding Jianhua, Zhang Zhaochong, Li Lixing, Chen Jing, Yao Tong. 2015. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China: Constraints on metallogenesis. Journa of Asian Earth Sciences, 113: 1068~1081.

    • Li Qiang, Yang Fuquan, Zhang Zhixin, Geng Xinxia, Liu Feng, Chai Fengmei. 2021. Geology and geochemistry of the submarine volcanism-related Qiaxia Fe-Cu deposit in the southern Altay, Xinjiang, Central Asian Orogenic Belt. Ore Geology Reviews, 128: 103881.

    • Li Xiao-linbin, Gong Xiaoping, Ma Huadong, Han Qiong, Song Xianglong, Xie Lei, Feng Jun, Wang Jianshe. 2014. Geochemical characteristics and petrogenic age of volcanic rocks in the Shikebutai iron deposit of West Tianshan Mountains. Geology in China, 41(6): 1792~1804(in Chinese with English abstract).

    • Liang Pei, Chen Huayong, Han Jinsheng, Wu Chao, Zhang Weifeng, Xu Deru, Lai Kit, Kyser Kurt. 2019. Iron oxide-copper-gold mineralization of the Devonian Laoshankou deposit (Xinjiang, NW China) in the Central Asian Orogenic Belt. Ore Geology Reviews, 104: 628~655.

    • Liu Dunyi, Jian Ping. 2004. Events of the Shuanghe jadeite quartzite, eastern Dabie Mountains-SHRIMP dating, mineral inclusions and zircon REE patterns. Acta Geologica Sinica, 78(2): 211~217(in Chinese with English abstract).

    • Ludwig K R. 2003. User's manual for Isoplot: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 37~41.

    • Lyons J I. 1988. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico. Economic Geology, 83: 1886~1906.

    • Mao Jingwen, Duan Chao, LiuJialin, Zhang Cheng. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1) : 1~14(in Chinese with English abstract).

    • Martin Reich, Adam C. Simon, Fernando Barra, Gisella Palma, Tong Hou, Laura D. Bilenker. 2022. Formation of iron oxide-apatite deposits. Nature Reviews Earth & Environment, 3: 758~775.

    • Meinert L D. 1984. Mineralogy and petrology of iron skarns in western British Columbia. Economic Geology, 79: 869~882.

    • Niiranen T. 2005. Iron oxide-copper-gold deposits in Finland: Case studies from the Peräpohja schist belt and the Central Lapland greenstone belt. Doctoral dissertation of University of Helsinki, 1~65.

    • Ningwu Research Group. 1978. Magnetite Porphyry Deposits in Ningwu Area. Beijing: Geological Publishing House, 1~196 (in Chinese without English abstract).

    • Nyström J O, Henríquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Economic Geology, 89: 820~839.

    • Park C F J. 1961. A magnetite “flow” in northern Chile. Economic Geology, 56: 431~436.

    • Qian Qing , Gao Jun, Klemd R, He Guoqi, Song Biao, Liu Dunyi, Xu Ronghua. 2009. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: Constraints from SHRIM P zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China. International Journal of Earth Sciences, 98 (3): 551~569.

    • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184 (1-2): 123~138.

    • Rudyard Frietsc, PekkaTuisku, OlofMartinsson, Jan-Anders Perdahl. 1997. Early proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geology Reviews, 12(1): 1~34.

    • Shan Qiang, Zhang Bing, Luo Yong, Zhou Changping, Yu Xueyuan, Zeng Qiaosong, Yang Wubin, Niu Hecai. 2009. Characteristics and trace element geochemistry of pyrite from the Songhu iron deposit, Nilek County, Xinjiang, China. Acta Petrologica Sinica, 25(6): 1456~1464 (in Chinese with English abstract).

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Wu Yang Shi Fupin, Guo Xincheng, Li Wenguang. 2020. Carboniferous ore-controlling volcanic apparatus and metallogenic models for the large-scale iron deposits in the Western Tianshan, Xinjiang. Acta Petrologica Sinica, 36(9) : 2845~2868(in Chinese with English abstract).

    • Song Xuexin, Chen Yuchuan, Sheng Jifu, Ai Yongde. 1981. On iron deposits formed from volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, 55 (1): 41~54(in Chinese with English abstract).

    • Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by two-stage model. Earth and Planetary Science Letters, 26: 207~221.

    • Sun Jinfeng, Yang Jinhui, Wu Fuyuan, Xie Liewen, Yang Yueheng, Liu Zhicaho, Li Xianhua. 2012.In situ U-Pb dating of titanite by LA-ICPMS.Chinese Science Bulletin, 57(20) : 2506~2516.

    • Teng Xia, Huang Dezhi, Lu Yang, Wang Long. 2018. Ore-forming fluid and mineralization of the Taocun magnetite deposit in the Ningwu basin. Geotectonica et Metallogenia, 42(1): 73~83(in Chinese with English abstract).

    • Tian Jingquan, Duan Shigang, Peng Wanlin, Li Ming, Jiang Zongsheng, Yan Rui. 2015. Geochemistry of volcanic and intrusive rocks in Zhibo iron ore deposit of western Tianshan Mountains. Mineral Deposits. 34(1): 119~138 (in Chinese with English abstract).

    • Volcaniciron Deposit Research Group of the Middle-Lower Chang Jiang Valley. 1977. Porphyrite iron ore—a genetic model of a group of iron deposits in andesitic volcanic area. Acta Geologica Sinica, (1): 1~18(in Chinese with English abstract).

    • Wang Bangyao, Hu Xiujun, Wang Jiangtao, Shao Qinghong, Ling Jinlan, Guo Naxin, Zhao Yanfeng, Xia Zhaode, Jiang Changyi. 2011. Geological characteristics and genesis of Chagangnuoer iron deposit in western Tianshan, Xinjiang. Mineral Deposits, 30(3): 385~402 (in Chinese with English abstract).

    • Wang Bangyao, Jing Delong, Jiang Changyi, Zhang Bo, Wang Zixi, Shi Fupin. 2017. Geological background and metallogenetic mechanism of the eastern Awulale volcanic-hosted iron metallogenic belt in the western Tianshan. Acta Petrologica Sinica, 33(2) : 85~97(in Chinese with English abstract).

    • Wang Chunlong, Zhu Weina, Wang Yitian. 2022. Genesis of the Kiruna-type Nixintage iron deposit, Chinese Western Tianshan, NW China: Constrains of ore geology, geochemistry and geochronology. Journal of Geochemical Exploration, 243: 107094.

    • Wang Dachuan, Duan Shigang, Chen Jie, Jiang Zongsheng, Zhang Zuoheng, Jia Jindian. 2016. Zircon U-Pb age, Hf isotopic and geochemistry of volcanic rocks from Tiemulike iron deposit in western Tianshan, Xinjiang, and their geological significance. Acta Petrologica Sinica, 32(5): 1391~1408 (in Chinese with English abstract).

    • Wang Denghong, Li Chunjie, Chen Zhenghui, Chen Shiping, Xiao Keyan, Li Huaqin, Liang Ting. 2006. Metallogenic characteristics and direction in mineral search in the East Tianshan, Xinjiang, China. Geological Bulletin of China, 25(8): 910~915(in Chinese with English abstract).

    • Williams I S. 1989. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C III, Ridley Wi (eds. ). Applications of microanalytical techniques to understanding mineralizingprocesses. Reviews in Economic Geology, Society of Economic Geologists, 7: 1~35.

    • Windley B F, Allen M B, Zhang C, Zhao Z Y, Wang G R. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology, 18(2): 128~131.

    • Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy study and its constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16): 1589~1604(in Chinese without English abstract).

    • Xiao Wenjiao, Windley B F, Huang Baochun, Han Chunming, Yuan Chao, Chen Hanlin, Sun Min, Li Jilei. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189~1217.

    • Xiao Wenjiao, Pirajno F, Seltmann R, Safonova I, Muhtar M N. 2022. Metallogeny of the Southern Altaids: Key to understanding the accretionary tectonics and crustal evolution of Central Asia. Ore Geology Reviews, 144: 104871.

    • Xie Liewen, Zhang Yanbin, Zhang Huihuang, Sun Jinfeng, Wu Fuyuan. 2008. In-situ determination of zircon and baddeleyite in U-Pb and Lu-Hf isotopes and trace element compositions. Chinese Science Bulletin, 53: 220~228 (in Chinese without English abstract).

    • Xue Chunji, Ji Jinsheng, Yang Qianjin. 2000. Subvlcanic hydrothermal metallogeny of the China iron (cobalt) deposit, Xinjiang. Mineral Deposits, 19(2): 156~164 (in Chinese with English abstract).

    • Yan Shuang, Zhou R J, Niu H C, Feng Yuexing, Nguyen N D, Zhao Zhenhua, Yang Wubin, Dong Qian, Zhao Jianxin. 2019. LA-MC-ICP-MS U-Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanic-hosted iron mineralization system, Awulale belt, Central Asia. Geological Society of America BulletinVolume, 1031~1045.

    • Yang Fuquan, Liu Feng, Chai Fengmei, Zhang Zhixin, Geng Xinxia, Lv Shujun, Jiang Liping, Ou Yang-Liujin. 2011. Iron deposits in Altay, Xinjiang: Geological characteristics, time-space distribution and metallogenesis. Mineral Deposits, 30(4): 575~598 (in Chinese with English abstract).

    • Yang Fuquan, Wang Yongqiang, Yang Chengdong, Li Qiang, Guo XuJi. 2018. Metallic ore deposits in the Kelan Basin, Altay, Xinjiang: Geological characteristics and metallogenesis. Mineral Deposit, 37(3): 441~462(in Chinese with English abstract).

    • Yang Xiuqing, Mao Jingwen, Jiang Zongsheng, Santosh M, Zhang Zuoheng, Duan Shigang, Wang Dachuan. 2019. The carboniferous Shikebutai iron deposit in Western Tianshan, Northwestern China: Petrology, Fe-O-C-Si isotopes, and implications for iron pathways. Economic Geology, 114(6): 1207~1222.

    • Yang Yueheng, Sun Jinfeng, Xie Liewen, Fan Honhrui, Wu Fuyuan. 2008. Determination of Nd isotope in geological samples by LA-MC-ICPMS. Chinese Science Bulletin, 53: 568~576 (in Chinese without English abstract).

    • Yu Jinjie, Mao Jinhwen. 2002. Rare earth elements in apatite from porphyrite iron deposits of Ningwu Area. Mineral Deposits, 21(1): 65~73 (in Chinese with English abstract).

    • Zhang Xi, Reiner Klemd, Gao Jun, Dong Lianhui, Wang Xinshui, Karsten Haase, Jiang Tuo, Qian Qing. 2015. Metallogenesis of the Zhibo and Chagangnuoer volcanic iron oxide deposits in the Awulale Iron Metallogenic Belt, Western Tianshan orogen, China. Journal of Asian Earth Sciences, 113: 151~172.

    • Zhang Xuanjie, Zheng Guangru, Fan Ziliang, Zhou Jianxin, Song Yanbing, Wen Shixin, 2011. Structural characteristics of aeromagnetic deduced faults in Western Tianshan Mountains, Xinjiang. Geophys. Geochem. Explor. 35, 448~454 (in Chinese with English abstract).

    • Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan, Wang Meng. 2014a. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247~263.

    • Zhang Zhaochong, Hou Tong, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan. 2014b. Enrichment mechanism of iron in magmatic hydrothermal system. Acta Petrologica Sinica, 30(5) : 1189~1204 (in Chinese with English abstract).

    • Zhang Zhaochong, Chai Fengmei, Xie Qiuhong. 2016. High-angle subduction in a thermal structure with warm mantle-cool crust: Formation of submarine volcanics-hosted iron deposits. Geology in China, 43(2): 367~379 (in Chinese with English abstract).

    • Zhang Zhaochong, Li Houmin, Li Jianwei, Song Xie-Yan, Hu Hao, Li Lixing, Chai Fengmei, Hou Tong, Xu Deru. 2021. Geological settings and metallogenesis of high-grade iron deposits in China. Science China, 64, 691~715.

    • Zhang Zhenliang, Feng Xuanjie, Gao Yongwei, Wang Zhihua, Dong Fuchen. 2014. The metallogenetic epoch of magnetite deposits in Awulale Iron Belt, Western Tianshan Mountains. Acta Geologica Sinica, 88: 1047~1048.

    • Zhang Zuoheng, Wang Zhiliang, Zuo Guochao, Liu Min, Wang Longsheng, Wang Jianwei. 2008. Ages and tectonic settings of the volcanic rocks in Dabate ore district in West Tianshan Mountains and their constraints on the porphyry-type mineralization. Acta Geologica Sinica, 82 (11): 1494~1503(in Chinese with English abstract).

    • Zhang Zuoheng, Hong Wei, Jiang Zongsheng, Duan Shigang, Wang Zhigua, LI Fengming, Shi Fupin, Zhao Jun, Zheng Renqiao. 2012. Geological features, mineralization types and metallogenic setting of Late Paleozoic iron deposits in western Tiansl han Mountains of Xinjiang. Mineral Deposits, 31 (5): 941~964 (in Chinese with English abstract).

    • Zhang Zuoheng, Hong Wei, Jiang Zongsheng, Duan Shigang, Li Fengming, Shi Fupin. 2014. Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore Geology Reviews, 57: 25~40.

    • Zhao Liandang, Chen Huayong, Zhang Li, Xia Xiaoping, Zhang Weifeng, Li Dengfeng, Lu Wanjian, Liang Pei, Li Rucao, Yang Juntao, Yan Xuelu. 2017. Geology and ore genesis of the late Paleozoic Heijianshan Fe oxide-Cu (-Au) deposit in the Eastern Tianshan, NW China. Ore Geology Reviews, 91: 110~132.

    • Zhao Xinfu, Zhou Meifu. 2011. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Mineral Deposit, 46: 731~747.

    • Zhao Xinfu, Zeng Liping, Liao Wang, Li Wanting, Hu Hao, Li Jianwei. 2020. An overview of recent advanc es in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and it s implication for ore genesis. Earth Science Frontiers, 27(2): 197~217(in Chinese with English abstract).

    • Zhu Zhixin, Li Jinyi, Dong Lianhui, Wang Kezhuo, Zhang Xiaofan, Xu Shiqi. 2011. Geological characteristics and tectonic significance of Paleozoic intrusive rocks in western Tianshan of Xinjiang Province. Earth Science Frontiers, 18: 170~179 (in Chinese with English abstract).

    • Zuo Guochao, Li Shaoxiong, Yu Shaonan, Li Qiulin. 2004. The occurrence characteristics and metallotectonic evolution of Cihai iron ore deposit in Xinjiang. Northwestern Geology, 37(1): 53~61 (in Chinese with English abstract).

    • Zuo Guochao, Zhang Zuoheng, Wang Zhiliang, Liu Min, Wang Longsheng, 2008. Tectonic division, stratigraphical system and evolution of western Tianshan Mountains, Xinjiang. Geology Reviews, 54(6): 48~67 (in Chinese with English abstract).

    • 长江中下游火山岩区铁矿研究组. 1977. 玢岩铁矿—安山质火山岩地区铁矿床的一组成因模式. 地质学报, (1): 1~18.

    • 柴凤梅, 杨富全, 李强, 藏梅, 耿新霞, 孟庆鹏. 2014. 新疆阿尔泰阿巴宫富磷灰石磁铁矿床成矿机制: 来自包裹体和稳定同位素证据. 岩石学报, 30(5): 1397~1414.

    • 陈杰. 2016. 新疆西天山式可布台铁矿成因研究. 中国地质大学(北京), 硕士学位论文, 1~75.

    • 陈毓川, 刘德权, 唐延龄等. 2008. 中国天山矿产及成矿体系. 北京: 地质出版社, 1~62.

    • 程裕淇, 赵一鸣, 陆松年. 1978. 中国几组主要铁矿类型. 地质学报, (4): 253~268.

    • 程裕淇, 赵一鸣, 林文蔚, 等. 1994. 中国铁矿床. 见: 宋叔和主编. 中国矿床(中册). 北京: 地质出版社, 386~479.

    • 董连慧, 冯京, 庄道泽, 李凤鸣, 屈迅, 刘德权, 唐延龄. 2011. 新疆富铁矿成矿特征及主攻类型成矿模式探讨. 新疆地质, 29 (4): 416~422.

    • 冯金星, 石福品, 汪帮耀等. 2010. 西天山阿吾拉勒成矿带火山岩型铁矿. 北京: 地质出版社, 1~132.

    • 高俊, 钱青, 龙灵利, 张喜, 李继磊, 苏文. 2009. 西天山的增生造山过程. 地质通报, 28 (12): 1804~1816.

    • 郭新成, 张建收, 余元军, 马中华, 张建奎, 宋海涛. 2009. 新疆和静县备战铁矿地质特征及找矿标志. 新疆地质, 27 (4): 341~345.

    • 侯通, 潘荣昊, 杨宗鹏, 秦婧怡. 2020. 磁铁矿-磷灰石型铁矿的实验模拟研究进展与展望. 矿床地质, 39(4): 579~586.

    • 胡秀军, 陈文革. 2010. 新疆南天山查岗诺尔大型磁铁矿矿床地质特征及矿床成因. 资源调查与环境, 31(3): 185~193.

    • 蒋宗胜. 2014. 西天山智博铁矿石炭纪火山作用与铁成矿研究. 中国地质科学院博士学位论文, 1~192.

    • 康永建. 2018. 新疆西天山敦德铁-锌-金多金属矿床成因研究. 北京大学博士学位论文, 1~178.

    • 李华芹, 陈富文等. 2003. 中国新疆区域成矿作用年代学. 北京: 地质出版社, 118~123.

    • 李潇林斌, 弓小平, 马华东, 韩琼, 宋相龙, 谢磊, 凤骏, 王建设. 2014. 西天山式可布台铁矿火山岩地球化学特征、成岩时代厘定及其构造意义. 中国地质, 41(6): 1792~1804.

    • 刘敦一, 简平. 2004. 大别山双河硬玉石英岩的超高压变质和退变质事件—SHRIMP 测年的证据. 地质学报, 78(2): 211~217.

    • 毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型—以长江中下游为例. 岩石学报, 28 (1): 1~14.

    • 宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社, 1~196.

    • 单强, 张兵, 罗勇, 周昌平, 于学元, 曾乔松, 杨武斌, 牛贺才. 2009. 新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学. 岩石学报, 25(6): 1456~1464.

    • 申萍, 潘鸿迪, 李昌昊, 冯浩轩, 武阳, 石福品, 郭新成, 李文广. 2020. 新疆西天山大型铁矿床石炭纪控矿火山机构及成矿模式. 岩石学报, 36(9): 2845~2868.

    • 宋学信, 陈毓川, 盛继福, 艾永德. 1981. 论火山-浅成矿浆铁矿床. 地质学报, 55 (1): 41~54.

    • 滕霞, 黄德志, 卢洋, 汪龙. 2018. 宁芜陶村磁铁矿矿床成矿流体及成矿作用. 大地构造与成矿学, 42(1): 73~83.

    • 田敬佺, 段士刚, 彭万林, 李明, 蒋宗胜, 严瑞. 2015. 新疆西天山智博铁矿床火山岩和侵入岩岩石地球化学. 矿床地质, 34(1): 119~138.

    • 涂光炽, 章振根, 林学农. 1978. 与海相火山活动有关的铁矿—以甘、新二省区为例说明. 中国科学院富铁矿科研论文集编辑组, 富铁矿科研论文集. 北京: 科学技术文献出版社, 1~12.

    • 汪帮耀, 胡秀军, 王江涛, 邵青红, 凌锦兰, 郭娜欣, 赵彦锋, 夏昭德, 姜常义. 2011. 西天山查岗诺尔铁矿矿床地质特征及矿床成因研究. 矿床地质, 30(3): 385~402.

    • 汪帮耀, 荆德龙, 姜常义, 张博, 王子玺, 石福品. 2017. 西天山阿吾拉勒火山岩型铁矿带东段成矿地质背景与成矿机理. 岩石学报, 33(2): 85~97.

    • 王大川, 段士刚, 陈杰, 蒋宗胜, 张作衡, 贾金典. 2016. 新疆西天山铁木里克铁矿床火山岩锆石U-Pb年代学、岩石地球化学特征及地质意义. 岩石学报, 32(5): 1391~1408.

    • 王登红, 李纯杰, 陈郑辉, 陈世平, 肖克炎, 李华芹, 梁婷. 2006. 东天山成矿规律与找矿方向的初步研究. 地质通报, 25(8): 910~915.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 谢烈文, 张艳斌, 张辉煌, 孙金凤, 吴福元. 2008. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定. 科学通报, 53: 220~228.

    • 薛春纪, 姬金生, 杨前进. 2000. 新疆磁海铁(钴)矿床次火山热液成矿学. 矿床地质, 19(2): 156~164.

    • 杨富全, 刘锋, 柴凤梅, 张志欣, 耿新霞, 吕书君, 姜丽萍, 欧阳刘进. 2011. 新疆阿尔泰铁矿: 地质特征、时空分布及成矿作用. 矿床地质, 30(4): 575~598.

    • 杨富全, 王永强, 杨成栋, 李强, 郭旭吉. 2018. 新疆阿尔泰克兰盆地金属矿床地质特征及成矿作用. 矿床地质, 37(3): 441~462.

    • 杨岳衡, 孙金凤, 谢烈文, 范宏瑞, 吴福元. 2008. 地质样品Nd同位素激光原位, 等离子体质谱(LA-MC-ICPMS)测定. 科学通报, 53: 568~576.

    • 姚培慧, 王可南, 杜春林, 林镇泰, 宋雄, 等. 1993. 中国铁矿志. 北京: 冶金工业出版社, 1~29, 372~384.

    • 余金杰, 毛景文. 2002. 宁芜玢岩铁矿磷灰石的稀土元素特征. 矿床地质, 21(1): 65~73.

    • 张玄杰, 郑广如, 范子梁, 周坚鑫, 宋燕兵, 温世新. 2011. 新疆西天山东段航磁推断断裂构造特征. 物探与化探, 35(4): 448~454.

    • 张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报, 30(5): 1189~1204.

    • 张招崇, 柴凤梅, 谢秋红. 2016. 热幔-冷壳背景下的高角度俯冲: 海相火山岩型铁矿的形成. 中国地质, 43(2): 367~379.

    • 张招崇, 李厚民, 李建威, 宋谢炎, 胡浩, 李立兴, 柴凤梅, 侯通, 许德如. 2021. 我国铁矿成矿背景与富铁矿成矿机制. 中国科学: 地球科学, 51(6): 827~852.

    • 张作衡, 王志良, 左国朝, 刘敏, 王龙生, 王见蓶. 2008. 西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约. 地质学报, 82 (11): 1494~1503.

    • 张作衡, 洪为, 蒋宗胜, 段士刚, 王志华, 李凤鸣, 石福品, 赵军, 郑仁乔等. 2012. 新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境. 矿床地质, 31 (5): 941~964.

    • 赵新福, 曾丽平, 廖旺, 李婉婷, 胡浩, 李建威. 2020. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示. 岩石学报, 27(2): 197~217.

    • 朱志新, 李锦轶, 董连慧, 王克卓, 张晓帆, 徐仕琪. 2011. 新疆西天山古生代侵入岩的地质特征及构造意义. 地学前缘. 18: 170~179.

    • 左国朝, 李绍雄, 于守南, 李秋林. 2004. 新疆磁海铁矿床产出特征及成矿构造演化. 西北地质, 37(1): 53~61.

    • 左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54 (6): 48~67.

  • 参考文献

    • Allen M B, Windley B F, Zhang Chi. 1992. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics, 220 (1-4): 89~115.

    • Apukhtina O B, Kamenetsky V S, Ehrig K, Kamenetsky M B, Maas R, Thompson J, McPhie J, Ciobanu C L, Cook N J. 2017. Early, deep magnetite fluorapatite mineralization at the Olympic dam Cu-U-Au Ag deposit, South Australial. Economic Geology, 112(6): 1531~1542.

    • Black L P, Kamo S L, Allen C M, Davis D W, Aleinikoff J N, Valley J W, Mundil R, Campbell I H, Korsch R J, Williams I S, Foudoulis C. 2004. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1): 115~140.

    • Chai Fengmei, Yang Fuquan, Li Qiang, Zang Mei, Geng Xinxia, Meng Qingpeng. 2014. Metallogenic mechanism of the Abagong apatite-rich iron deposit in Altay, Xinjiang: Evidence from inclusions and stable isotopes. Acta Petrologica Sinica, 30(5) : 1397~1414(in Chinese with English abstract).

    • Chen Huayong, Clark A H, Kyser T K. 2010. The Marcona magnetite deposit, Ica, south-central Peru: A product of hydrous, iron oxide-rich melts? Economic Geology, 105: 1441~1456.

    • Chen Jie. 2016. A Study on themineralizationof iron ores in the Shikebutai iron deposit in western Tianshan, China. Master's thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Cheng Yuqi, Zhao Yiming, Lu Songnian. 1978. Main type groups of iron deposit of China. Acta Geologica Sinica, (4): 253~268(in Chinese with English abstract).

    • Dong Lianhui, Feng Jing, Zhuang Daoze, Li Fengming, Qu Xun, Liu Dequan, Tang Yanling. 2011. Discussion of metallogenic models, mineralizaton characteristic and main type of rich iron ore of Xinjiang. Xinjiang Geology, 29 (4): 416~422(in Chinese with English abstract).

    • Duan Shigang, Zhang Zuoheng, Jiang Zongsheng, Zhao Jun, Zhang Yongping, Li Fengming, Tian Jingquan. 2014. Geology, geochemistry, and geochronology of the Dunde iron-zinc ore deposit in western Tianshan, China. Ore Geology Reviews, 57: 441~461.

    • Frietsch R. 1978. On the magmatic origin of iron ores of the Kiruna type. Economic Geology, 73: 478~485.

    • Gao Jun, Li Maosong, Xiao Xuchang, Tang Yaoqing, He Guoqi. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China. Tectonophysics, 287 (1-4): 213~231.

    • Gao Jun, LongLingli, Klemd R, Qian Qing, Liu Dunyi, Xiong Xianming, Su Wen, Liu Wei, Wang Yitian, Yang Fuquan. 2009a. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks. International Journal of Earth Sciences, 98 (6): 1221~1238.

    • Gao Jun, Qian Qing, LongLingli, Zhang Xi, Li Jilei, Su Wen. 2009b. Accretionary orogenic process of Western Tianshan, China. Geological Bulletin of China, 28 (12): 1804~1816(in Chinese with English abstract).

    • Guo Xincheng, Zhang Jianshou, Yu Yuanjun, Ma Zhonghua, Zhang Jiankui. 2009. Geological characteristics and mining symbols of Beizhan iron deposit in Hejing, Xinjiang. Xinjiang Geology, 27 (4): 341~345(in Chinese with English abstract).

    • Henríquez F, Nyström J O. 1998. Magnetite bombs at El Laco volcano, Chile. GFF, 120(3): 269~271.

    • Henríquez F, Naslund H R, Nyström J O, Vivallo W, Aguirre R, Dobbs F M, Lledó H. 2003. New field evidence bearing on the origin of the el laco magnetite deposit, northern chile—A discussion. Economic Geology, 98: 1497~1502.

    • Hou Tong, Charlier Bernard, Holtz Francois, Veksler llya, Zhang Zhaochong, Thomas Rainer, Namur Olivier. 2018. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nature Communications, 9: 1415.

    • Hong Wei, Zhang Zuoheng, Baker M J, Jiang Zongsheng, Duan Shigang. 2020. Zircon U-Pb dating and stable isotopic compositions for constraining the genesis of the Chagangnuoer magnetite deposit in western Tianshan, NW China. Ore Geology Reviews, 121: 103~478.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53: 27~62.

    • Hou Tong, Charlier Bernard, Holtz Francois, Vekslerllya, Zhang Zhaochong, Thomas Rainer, Namur Olivier. 2018. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits. Nature Communications, 9: 1415.

    • Hou Tong, Zhang Zhaochong, Franco P, Santosh M, Encarnacion J, Liu Junlai, Zhao Zhidan, Zhang Lijian. 2014. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: An overview. Ore Geology Reviews, 57: 498~517.

    • Hou Tong, Pan Ronghao, Yang Zongpeng, Qin Jingyi. 2020. Progress and prospective of experimental research on iron oxide apatite ore deposits. Mineral Deposits, 39(4): 579~586(in Chinese with English abstract).

    • Hu Hao, Li Jianwei, Harlov D E, Lentz D R, Mcfarlane, Chris R M, Yang Yueheng. 2019. A genetic link between iron oxide apatite and iron skarn mineralization in the Jinniu volcanic basin. Daye district, eastern China: Evidence from magnetite geochemistry and multi mineral U-Pb geochronology. Geological Society of America Bulletin, 132(5-6): 899~917.

    • Hu Xiujun, Chen Wenge. 2010. Geological characteristics and genesis of Chagangnuoer large-sized magnetite deposit in Southern Tianshan, Xinjiang. Resources Survey and Environment, 31(3): 185~193(in Chinese with English abstract).

    • Jiang Zongsheng. 2014. Carboniferous volcanism and Fe mineralization at the Zhibo iron deposit in the Western Tianshan. Doctoral dissertation of Chinese Academy of Geological Sciences, 1~192 (in Chinese with English abstract).

    • Jiang Zongsheng, Zhang Zuoheng, Wang Dachuan, Duan Shigang, Kang Yongjian. 2018. Application of in situ titanite U-Pb geochronology to volcanic-hosted magnetite deposit: New constraints on the timing and genesis of the Zhibo deposit, Western Tianshan, NW China. Ore Geology Reviews, 325~341.

    • Kang Yongjian. 2018. Ore genesis of the Dunde iron-zinc-gold polymetallic deposit, West Tianshan, Xinjiang. Doctoral dissertation of Peking University, 1~178(in Chinese with English abstract).

    • Li Hengxu, Zhang Zhaochong, Liu Bingxiang, Jin Yilun, Santosh M, 2022. The genetic link between iron oxide-apatite and iron skarn mineralization in the Beizhan deposit, Western Tianshan, NW China: Evidence from magnetite and gangue mineral geochemistry. Journal of Asian Earth Sciences, 241: 105460.

    • Li Houmin, Ding Jianhua, Zhang Zhaochong, Li Lixing, Chen Jing, Yao Tong. 2015. Iron-rich fragments in the Yamansu iron deposit, Xinjiang, NW China: Constraints on metallogenesis. Journa of Asian Earth Sciences, 113: 1068~1081.

    • Li Qiang, Yang Fuquan, Zhang Zhixin, Geng Xinxia, Liu Feng, Chai Fengmei. 2021. Geology and geochemistry of the submarine volcanism-related Qiaxia Fe-Cu deposit in the southern Altay, Xinjiang, Central Asian Orogenic Belt. Ore Geology Reviews, 128: 103881.

    • Li Xiao-linbin, Gong Xiaoping, Ma Huadong, Han Qiong, Song Xianglong, Xie Lei, Feng Jun, Wang Jianshe. 2014. Geochemical characteristics and petrogenic age of volcanic rocks in the Shikebutai iron deposit of West Tianshan Mountains. Geology in China, 41(6): 1792~1804(in Chinese with English abstract).

    • Liang Pei, Chen Huayong, Han Jinsheng, Wu Chao, Zhang Weifeng, Xu Deru, Lai Kit, Kyser Kurt. 2019. Iron oxide-copper-gold mineralization of the Devonian Laoshankou deposit (Xinjiang, NW China) in the Central Asian Orogenic Belt. Ore Geology Reviews, 104: 628~655.

    • Liu Dunyi, Jian Ping. 2004. Events of the Shuanghe jadeite quartzite, eastern Dabie Mountains-SHRIMP dating, mineral inclusions and zircon REE patterns. Acta Geologica Sinica, 78(2): 211~217(in Chinese with English abstract).

    • Ludwig K R. 2003. User's manual for Isoplot: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 4: 37~41.

    • Lyons J I. 1988. Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico. Economic Geology, 83: 1886~1906.

    • Mao Jingwen, Duan Chao, LiuJialin, Zhang Cheng. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1) : 1~14(in Chinese with English abstract).

    • Martin Reich, Adam C. Simon, Fernando Barra, Gisella Palma, Tong Hou, Laura D. Bilenker. 2022. Formation of iron oxide-apatite deposits. Nature Reviews Earth & Environment, 3: 758~775.

    • Meinert L D. 1984. Mineralogy and petrology of iron skarns in western British Columbia. Economic Geology, 79: 869~882.

    • Niiranen T. 2005. Iron oxide-copper-gold deposits in Finland: Case studies from the Peräpohja schist belt and the Central Lapland greenstone belt. Doctoral dissertation of University of Helsinki, 1~65.

    • Ningwu Research Group. 1978. Magnetite Porphyry Deposits in Ningwu Area. Beijing: Geological Publishing House, 1~196 (in Chinese without English abstract).

    • Nyström J O, Henríquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Economic Geology, 89: 820~839.

    • Park C F J. 1961. A magnetite “flow” in northern Chile. Economic Geology, 56: 431~436.

    • Qian Qing , Gao Jun, Klemd R, He Guoqi, Song Biao, Liu Dunyi, Xu Ronghua. 2009. Early Paleozoic tectonic evolution of the Chinese South Tianshan Orogen: Constraints from SHRIM P zircon U-Pb geochronology and geochemistry of basaltic and dioritic rocks from Xiate, NW China. International Journal of Earth Sciences, 98 (3): 551~569.

    • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184 (1-2): 123~138.

    • Rudyard Frietsc, PekkaTuisku, OlofMartinsson, Jan-Anders Perdahl. 1997. Early proterozoic Cu-(Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geology Reviews, 12(1): 1~34.

    • Shan Qiang, Zhang Bing, Luo Yong, Zhou Changping, Yu Xueyuan, Zeng Qiaosong, Yang Wubin, Niu Hecai. 2009. Characteristics and trace element geochemistry of pyrite from the Songhu iron deposit, Nilek County, Xinjiang, China. Acta Petrologica Sinica, 25(6): 1456~1464 (in Chinese with English abstract).

    • Shen Ping, Pan Hongdi, Li Changhao, Feng Haoxuan, Wu Yang Shi Fupin, Guo Xincheng, Li Wenguang. 2020. Carboniferous ore-controlling volcanic apparatus and metallogenic models for the large-scale iron deposits in the Western Tianshan, Xinjiang. Acta Petrologica Sinica, 36(9) : 2845~2868(in Chinese with English abstract).

    • Song Xuexin, Chen Yuchuan, Sheng Jifu, Ai Yongde. 1981. On iron deposits formed from volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, 55 (1): 41~54(in Chinese with English abstract).

    • Stacey J S, Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by two-stage model. Earth and Planetary Science Letters, 26: 207~221.

    • Sun Jinfeng, Yang Jinhui, Wu Fuyuan, Xie Liewen, Yang Yueheng, Liu Zhicaho, Li Xianhua. 2012.In situ U-Pb dating of titanite by LA-ICPMS.Chinese Science Bulletin, 57(20) : 2506~2516.

    • Teng Xia, Huang Dezhi, Lu Yang, Wang Long. 2018. Ore-forming fluid and mineralization of the Taocun magnetite deposit in the Ningwu basin. Geotectonica et Metallogenia, 42(1): 73~83(in Chinese with English abstract).

    • Tian Jingquan, Duan Shigang, Peng Wanlin, Li Ming, Jiang Zongsheng, Yan Rui. 2015. Geochemistry of volcanic and intrusive rocks in Zhibo iron ore deposit of western Tianshan Mountains. Mineral Deposits. 34(1): 119~138 (in Chinese with English abstract).

    • Volcaniciron Deposit Research Group of the Middle-Lower Chang Jiang Valley. 1977. Porphyrite iron ore—a genetic model of a group of iron deposits in andesitic volcanic area. Acta Geologica Sinica, (1): 1~18(in Chinese with English abstract).

    • Wang Bangyao, Hu Xiujun, Wang Jiangtao, Shao Qinghong, Ling Jinlan, Guo Naxin, Zhao Yanfeng, Xia Zhaode, Jiang Changyi. 2011. Geological characteristics and genesis of Chagangnuoer iron deposit in western Tianshan, Xinjiang. Mineral Deposits, 30(3): 385~402 (in Chinese with English abstract).

    • Wang Bangyao, Jing Delong, Jiang Changyi, Zhang Bo, Wang Zixi, Shi Fupin. 2017. Geological background and metallogenetic mechanism of the eastern Awulale volcanic-hosted iron metallogenic belt in the western Tianshan. Acta Petrologica Sinica, 33(2) : 85~97(in Chinese with English abstract).

    • Wang Chunlong, Zhu Weina, Wang Yitian. 2022. Genesis of the Kiruna-type Nixintage iron deposit, Chinese Western Tianshan, NW China: Constrains of ore geology, geochemistry and geochronology. Journal of Geochemical Exploration, 243: 107094.

    • Wang Dachuan, Duan Shigang, Chen Jie, Jiang Zongsheng, Zhang Zuoheng, Jia Jindian. 2016. Zircon U-Pb age, Hf isotopic and geochemistry of volcanic rocks from Tiemulike iron deposit in western Tianshan, Xinjiang, and their geological significance. Acta Petrologica Sinica, 32(5): 1391~1408 (in Chinese with English abstract).

    • Wang Denghong, Li Chunjie, Chen Zhenghui, Chen Shiping, Xiao Keyan, Li Huaqin, Liang Ting. 2006. Metallogenic characteristics and direction in mineral search in the East Tianshan, Xinjiang, China. Geological Bulletin of China, 25(8): 910~915(in Chinese with English abstract).

    • Williams I S. 1989. U-Th-Pb geochronology by ion microprobe. In: McKibben M A, Shanks W C III, Ridley Wi (eds. ). Applications of microanalytical techniques to understanding mineralizingprocesses. Reviews in Economic Geology, Society of Economic Geologists, 7: 1~35.

    • Windley B F, Allen M B, Zhang C, Zhao Z Y, Wang G R. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology, 18(2): 128~131.

    • Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy study and its constraints on U-Pb age interpretation. Chinese Science Bulletin, 49(16): 1589~1604(in Chinese without English abstract).

    • Xiao Wenjiao, Windley B F, Huang Baochun, Han Chunming, Yuan Chao, Chen Hanlin, Sun Min, Li Jilei. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189~1217.

    • Xiao Wenjiao, Pirajno F, Seltmann R, Safonova I, Muhtar M N. 2022. Metallogeny of the Southern Altaids: Key to understanding the accretionary tectonics and crustal evolution of Central Asia. Ore Geology Reviews, 144: 104871.

    • Xie Liewen, Zhang Yanbin, Zhang Huihuang, Sun Jinfeng, Wu Fuyuan. 2008. In-situ determination of zircon and baddeleyite in U-Pb and Lu-Hf isotopes and trace element compositions. Chinese Science Bulletin, 53: 220~228 (in Chinese without English abstract).

    • Xue Chunji, Ji Jinsheng, Yang Qianjin. 2000. Subvlcanic hydrothermal metallogeny of the China iron (cobalt) deposit, Xinjiang. Mineral Deposits, 19(2): 156~164 (in Chinese with English abstract).

    • Yan Shuang, Zhou R J, Niu H C, Feng Yuexing, Nguyen N D, Zhao Zhenhua, Yang Wubin, Dong Qian, Zhao Jianxin. 2019. LA-MC-ICP-MS U-Pb dating of low-U garnets reveals multiple episodes of skarn formation in the volcanic-hosted iron mineralization system, Awulale belt, Central Asia. Geological Society of America BulletinVolume, 1031~1045.

    • Yang Fuquan, Liu Feng, Chai Fengmei, Zhang Zhixin, Geng Xinxia, Lv Shujun, Jiang Liping, Ou Yang-Liujin. 2011. Iron deposits in Altay, Xinjiang: Geological characteristics, time-space distribution and metallogenesis. Mineral Deposits, 30(4): 575~598 (in Chinese with English abstract).

    • Yang Fuquan, Wang Yongqiang, Yang Chengdong, Li Qiang, Guo XuJi. 2018. Metallic ore deposits in the Kelan Basin, Altay, Xinjiang: Geological characteristics and metallogenesis. Mineral Deposit, 37(3): 441~462(in Chinese with English abstract).

    • Yang Xiuqing, Mao Jingwen, Jiang Zongsheng, Santosh M, Zhang Zuoheng, Duan Shigang, Wang Dachuan. 2019. The carboniferous Shikebutai iron deposit in Western Tianshan, Northwestern China: Petrology, Fe-O-C-Si isotopes, and implications for iron pathways. Economic Geology, 114(6): 1207~1222.

    • Yang Yueheng, Sun Jinfeng, Xie Liewen, Fan Honhrui, Wu Fuyuan. 2008. Determination of Nd isotope in geological samples by LA-MC-ICPMS. Chinese Science Bulletin, 53: 568~576 (in Chinese without English abstract).

    • Yu Jinjie, Mao Jinhwen. 2002. Rare earth elements in apatite from porphyrite iron deposits of Ningwu Area. Mineral Deposits, 21(1): 65~73 (in Chinese with English abstract).

    • Zhang Xi, Reiner Klemd, Gao Jun, Dong Lianhui, Wang Xinshui, Karsten Haase, Jiang Tuo, Qian Qing. 2015. Metallogenesis of the Zhibo and Chagangnuoer volcanic iron oxide deposits in the Awulale Iron Metallogenic Belt, Western Tianshan orogen, China. Journal of Asian Earth Sciences, 113: 151~172.

    • Zhang Xuanjie, Zheng Guangru, Fan Ziliang, Zhou Jianxin, Song Yanbing, Wen Shixin, 2011. Structural characteristics of aeromagnetic deduced faults in Western Tianshan Mountains, Xinjiang. Geophys. Geochem. Explor. 35, 448~454 (in Chinese with English abstract).

    • Zhang Zhaochong, Hou Tong, Santosh M, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan, Wang Meng. 2014a. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247~263.

    • Zhang Zhaochong, Hou Tong, Li Houmin, Li Jianwei, Zhang Zuoheng, Song Xieyan. 2014b. Enrichment mechanism of iron in magmatic hydrothermal system. Acta Petrologica Sinica, 30(5) : 1189~1204 (in Chinese with English abstract).

    • Zhang Zhaochong, Chai Fengmei, Xie Qiuhong. 2016. High-angle subduction in a thermal structure with warm mantle-cool crust: Formation of submarine volcanics-hosted iron deposits. Geology in China, 43(2): 367~379 (in Chinese with English abstract).

    • Zhang Zhaochong, Li Houmin, Li Jianwei, Song Xie-Yan, Hu Hao, Li Lixing, Chai Fengmei, Hou Tong, Xu Deru. 2021. Geological settings and metallogenesis of high-grade iron deposits in China. Science China, 64, 691~715.

    • Zhang Zhenliang, Feng Xuanjie, Gao Yongwei, Wang Zhihua, Dong Fuchen. 2014. The metallogenetic epoch of magnetite deposits in Awulale Iron Belt, Western Tianshan Mountains. Acta Geologica Sinica, 88: 1047~1048.

    • Zhang Zuoheng, Wang Zhiliang, Zuo Guochao, Liu Min, Wang Longsheng, Wang Jianwei. 2008. Ages and tectonic settings of the volcanic rocks in Dabate ore district in West Tianshan Mountains and their constraints on the porphyry-type mineralization. Acta Geologica Sinica, 82 (11): 1494~1503(in Chinese with English abstract).

    • Zhang Zuoheng, Hong Wei, Jiang Zongsheng, Duan Shigang, Wang Zhigua, LI Fengming, Shi Fupin, Zhao Jun, Zheng Renqiao. 2012. Geological features, mineralization types and metallogenic setting of Late Paleozoic iron deposits in western Tiansl han Mountains of Xinjiang. Mineral Deposits, 31 (5): 941~964 (in Chinese with English abstract).

    • Zhang Zuoheng, Hong Wei, Jiang Zongsheng, Duan Shigang, Li Fengming, Shi Fupin. 2014. Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore Geology Reviews, 57: 25~40.

    • Zhao Liandang, Chen Huayong, Zhang Li, Xia Xiaoping, Zhang Weifeng, Li Dengfeng, Lu Wanjian, Liang Pei, Li Rucao, Yang Juntao, Yan Xuelu. 2017. Geology and ore genesis of the late Paleozoic Heijianshan Fe oxide-Cu (-Au) deposit in the Eastern Tianshan, NW China. Ore Geology Reviews, 91: 110~132.

    • Zhao Xinfu, Zhou Meifu. 2011. Fe-Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide-copper-gold) metallogenic province. Mineral Deposit, 46: 731~747.

    • Zhao Xinfu, Zeng Liping, Liao Wang, Li Wanting, Hu Hao, Li Jianwei. 2020. An overview of recent advanc es in porphyrite iron (iron oxide-apatite, IOA) deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt and it s implication for ore genesis. Earth Science Frontiers, 27(2): 197~217(in Chinese with English abstract).

    • Zhu Zhixin, Li Jinyi, Dong Lianhui, Wang Kezhuo, Zhang Xiaofan, Xu Shiqi. 2011. Geological characteristics and tectonic significance of Paleozoic intrusive rocks in western Tianshan of Xinjiang Province. Earth Science Frontiers, 18: 170~179 (in Chinese with English abstract).

    • Zuo Guochao, Li Shaoxiong, Yu Shaonan, Li Qiulin. 2004. The occurrence characteristics and metallotectonic evolution of Cihai iron ore deposit in Xinjiang. Northwestern Geology, 37(1): 53~61 (in Chinese with English abstract).

    • Zuo Guochao, Zhang Zuoheng, Wang Zhiliang, Liu Min, Wang Longsheng, 2008. Tectonic division, stratigraphical system and evolution of western Tianshan Mountains, Xinjiang. Geology Reviews, 54(6): 48~67 (in Chinese with English abstract).

    • 长江中下游火山岩区铁矿研究组. 1977. 玢岩铁矿—安山质火山岩地区铁矿床的一组成因模式. 地质学报, (1): 1~18.

    • 柴凤梅, 杨富全, 李强, 藏梅, 耿新霞, 孟庆鹏. 2014. 新疆阿尔泰阿巴宫富磷灰石磁铁矿床成矿机制: 来自包裹体和稳定同位素证据. 岩石学报, 30(5): 1397~1414.

    • 陈杰. 2016. 新疆西天山式可布台铁矿成因研究. 中国地质大学(北京), 硕士学位论文, 1~75.

    • 陈毓川, 刘德权, 唐延龄等. 2008. 中国天山矿产及成矿体系. 北京: 地质出版社, 1~62.

    • 程裕淇, 赵一鸣, 陆松年. 1978. 中国几组主要铁矿类型. 地质学报, (4): 253~268.

    • 程裕淇, 赵一鸣, 林文蔚, 等. 1994. 中国铁矿床. 见: 宋叔和主编. 中国矿床(中册). 北京: 地质出版社, 386~479.

    • 董连慧, 冯京, 庄道泽, 李凤鸣, 屈迅, 刘德权, 唐延龄. 2011. 新疆富铁矿成矿特征及主攻类型成矿模式探讨. 新疆地质, 29 (4): 416~422.

    • 冯金星, 石福品, 汪帮耀等. 2010. 西天山阿吾拉勒成矿带火山岩型铁矿. 北京: 地质出版社, 1~132.

    • 高俊, 钱青, 龙灵利, 张喜, 李继磊, 苏文. 2009. 西天山的增生造山过程. 地质通报, 28 (12): 1804~1816.

    • 郭新成, 张建收, 余元军, 马中华, 张建奎, 宋海涛. 2009. 新疆和静县备战铁矿地质特征及找矿标志. 新疆地质, 27 (4): 341~345.

    • 侯通, 潘荣昊, 杨宗鹏, 秦婧怡. 2020. 磁铁矿-磷灰石型铁矿的实验模拟研究进展与展望. 矿床地质, 39(4): 579~586.

    • 胡秀军, 陈文革. 2010. 新疆南天山查岗诺尔大型磁铁矿矿床地质特征及矿床成因. 资源调查与环境, 31(3): 185~193.

    • 蒋宗胜. 2014. 西天山智博铁矿石炭纪火山作用与铁成矿研究. 中国地质科学院博士学位论文, 1~192.

    • 康永建. 2018. 新疆西天山敦德铁-锌-金多金属矿床成因研究. 北京大学博士学位论文, 1~178.

    • 李华芹, 陈富文等. 2003. 中国新疆区域成矿作用年代学. 北京: 地质出版社, 118~123.

    • 李潇林斌, 弓小平, 马华东, 韩琼, 宋相龙, 谢磊, 凤骏, 王建设. 2014. 西天山式可布台铁矿火山岩地球化学特征、成岩时代厘定及其构造意义. 中国地质, 41(6): 1792~1804.

    • 刘敦一, 简平. 2004. 大别山双河硬玉石英岩的超高压变质和退变质事件—SHRIMP 测年的证据. 地质学报, 78(2): 211~217.

    • 毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型—以长江中下游为例. 岩石学报, 28 (1): 1~14.

    • 宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社, 1~196.

    • 单强, 张兵, 罗勇, 周昌平, 于学元, 曾乔松, 杨武斌, 牛贺才. 2009. 新疆尼勒克县松湖铁矿床黄铁矿的特征和微量元素地球化学. 岩石学报, 25(6): 1456~1464.

    • 申萍, 潘鸿迪, 李昌昊, 冯浩轩, 武阳, 石福品, 郭新成, 李文广. 2020. 新疆西天山大型铁矿床石炭纪控矿火山机构及成矿模式. 岩石学报, 36(9): 2845~2868.

    • 宋学信, 陈毓川, 盛继福, 艾永德. 1981. 论火山-浅成矿浆铁矿床. 地质学报, 55 (1): 41~54.

    • 滕霞, 黄德志, 卢洋, 汪龙. 2018. 宁芜陶村磁铁矿矿床成矿流体及成矿作用. 大地构造与成矿学, 42(1): 73~83.

    • 田敬佺, 段士刚, 彭万林, 李明, 蒋宗胜, 严瑞. 2015. 新疆西天山智博铁矿床火山岩和侵入岩岩石地球化学. 矿床地质, 34(1): 119~138.

    • 涂光炽, 章振根, 林学农. 1978. 与海相火山活动有关的铁矿—以甘、新二省区为例说明. 中国科学院富铁矿科研论文集编辑组, 富铁矿科研论文集. 北京: 科学技术文献出版社, 1~12.

    • 汪帮耀, 胡秀军, 王江涛, 邵青红, 凌锦兰, 郭娜欣, 赵彦锋, 夏昭德, 姜常义. 2011. 西天山查岗诺尔铁矿矿床地质特征及矿床成因研究. 矿床地质, 30(3): 385~402.

    • 汪帮耀, 荆德龙, 姜常义, 张博, 王子玺, 石福品. 2017. 西天山阿吾拉勒火山岩型铁矿带东段成矿地质背景与成矿机理. 岩石学报, 33(2): 85~97.

    • 王大川, 段士刚, 陈杰, 蒋宗胜, 张作衡, 贾金典. 2016. 新疆西天山铁木里克铁矿床火山岩锆石U-Pb年代学、岩石地球化学特征及地质意义. 岩石学报, 32(5): 1391~1408.

    • 王登红, 李纯杰, 陈郑辉, 陈世平, 肖克炎, 李华芹, 梁婷. 2006. 东天山成矿规律与找矿方向的初步研究. 地质通报, 25(8): 910~915.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 谢烈文, 张艳斌, 张辉煌, 孙金凤, 吴福元. 2008. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定. 科学通报, 53: 220~228.

    • 薛春纪, 姬金生, 杨前进. 2000. 新疆磁海铁(钴)矿床次火山热液成矿学. 矿床地质, 19(2): 156~164.

    • 杨富全, 刘锋, 柴凤梅, 张志欣, 耿新霞, 吕书君, 姜丽萍, 欧阳刘进. 2011. 新疆阿尔泰铁矿: 地质特征、时空分布及成矿作用. 矿床地质, 30(4): 575~598.

    • 杨富全, 王永强, 杨成栋, 李强, 郭旭吉. 2018. 新疆阿尔泰克兰盆地金属矿床地质特征及成矿作用. 矿床地质, 37(3): 441~462.

    • 杨岳衡, 孙金凤, 谢烈文, 范宏瑞, 吴福元. 2008. 地质样品Nd同位素激光原位, 等离子体质谱(LA-MC-ICPMS)测定. 科学通报, 53: 568~576.

    • 姚培慧, 王可南, 杜春林, 林镇泰, 宋雄, 等. 1993. 中国铁矿志. 北京: 冶金工业出版社, 1~29, 372~384.

    • 余金杰, 毛景文. 2002. 宁芜玢岩铁矿磷灰石的稀土元素特征. 矿床地质, 21(1): 65~73.

    • 张玄杰, 郑广如, 范子梁, 周坚鑫, 宋燕兵, 温世新. 2011. 新疆西天山东段航磁推断断裂构造特征. 物探与化探, 35(4): 448~454.

    • 张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报, 30(5): 1189~1204.

    • 张招崇, 柴凤梅, 谢秋红. 2016. 热幔-冷壳背景下的高角度俯冲: 海相火山岩型铁矿的形成. 中国地质, 43(2): 367~379.

    • 张招崇, 李厚民, 李建威, 宋谢炎, 胡浩, 李立兴, 柴凤梅, 侯通, 许德如. 2021. 我国铁矿成矿背景与富铁矿成矿机制. 中国科学: 地球科学, 51(6): 827~852.

    • 张作衡, 王志良, 左国朝, 刘敏, 王龙生, 王见蓶. 2008. 西天山达巴特矿区火山岩的形成时代、构造背景及对斑岩型矿化的制约. 地质学报, 82 (11): 1494~1503.

    • 张作衡, 洪为, 蒋宗胜, 段士刚, 王志华, 李凤鸣, 石福品, 赵军, 郑仁乔等. 2012. 新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境. 矿床地质, 31 (5): 941~964.

    • 赵新福, 曾丽平, 廖旺, 李婉婷, 胡浩, 李建威. 2020. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示. 岩石学报, 27(2): 197~217.

    • 朱志新, 李锦轶, 董连慧, 王克卓, 张晓帆, 徐仕琪. 2011. 新疆西天山古生代侵入岩的地质特征及构造意义. 地学前缘. 18: 170~179.

    • 左国朝, 李绍雄, 于守南, 李秋林. 2004. 新疆磁海铁矿床产出特征及成矿构造演化. 西北地质, 37(1): 53~61.

    • 左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54 (6): 48~67.