en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王迪,女,1998年生。硕士研究生,矿物学、岩石学、矿床学专业。E-mail:wd98@foxmail.com。

通讯作者:

张泽明,男,1961年生。研究员,主要从事大陆造山带的变质作用、岩浆作用与构造演化。E-mail:zzm2111@sina.com。

参考文献
Allegre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.
参考文献
Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Developments in Geochemistry. Amsterdam: Elsevier, 2: 63~114.
参考文献
Burg J P, Nievergelt P, Oberli F, Seward D, Davy P, Maurin J C, Diao Zhizhong, Meier M. 1998. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences, 16(2-3): 239~252.
参考文献
Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33~51.
参考文献
Chapman J B, Ducea M N, DeCelles P G, Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919~922.
参考文献
Chen Jianlin, Xu Jifeng, Zhao Weixia, Dong Yanhui, Wang Baodi, Kang Zhiqiang. 2011. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the southern Tibetan Plateau. Lithos, 125(3-4): 928~939.
参考文献
Chen Yue, Zhu Dicheng, Zhao Zhidan, Meng Fanyi, Wang Qing, Santosh M, Wang Liquan, Dong Guochen, Mo Xuanxue. 2014. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449~463.
参考文献
Chiu Hanyi, Chung Sunlin, Wu Fuyuan, Liu Dunyi, Liang Yuhsuan, Lin Ijhen, Iizuka Y, Xie Liewen, Wang Yanbin, Chu Meifei. 2009. ZirconU-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1-2): 3~19.
参考文献
Chung Sunlin, Liu Dunyi, Ji Jianqing, Chu Meifei, Lee Haoyang, Wen Dajen, Lo Chinghua, Lee Tungyi, Qian Qing, Zhang Qi. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021.
参考文献
Chung Sunlin, Chu Meifei, Zhang Yuquan, Xie Yingwei, Lo Chinghua, Lee Tungyi, Lan Chingying, Li Xianhua, Zhang Qi, Wang Yizhao. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173~196.
参考文献
Chung Sunlin, Chu Meifei, Ji Jianqing, O'Reilly S Y, Pearson N J, Liu Dunyi, Lee Tunhyi, Lo Chinghua. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36~48.
参考文献
Corfu F, Hanchar J M, Hoskin P W, Kinny P. 2003. Atlas of zircon textures. Reviewsin Mineralogy and Geochemistry, 53(1): 469~500.
参考文献
Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662~665.
参考文献
Ding Huixia, Zhang Zeming. 2019. Early Cenozoic thickening and reworking of the eastern Gangdese arc, south Tibet: Constraints from the Oligocene granitoids. Geological Society, London, Special Publications, 474(1): 291~308.
参考文献
Ding Lin, Zhong Dalai. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China Series D: Earth Sciences, 42(5): 491~505.
参考文献
Ding Lin, Kapp P, Zhong Dalai, Deng Wanming. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10), 1833~1865.
参考文献
Dong Xin, Zhang Zeming, Liu Feng, Wang Wei, Yu Fei, Shen Kun. 2011a. Zircon U-Pb geochronology of the Nyainqêntanglha Group from the Lhasa terrane: New constraints on the Triassic orogeny of the south Tibet. Journal of Asian Earth Sciences, 42(4): 732~739.
参考文献
Dong Xin, Zhang Zeming, Santosh M, Wang Wei, Yu Fei, Liu Feng. 2011b. Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications. Journal of Geodynamics, 52(5): 389~405.
参考文献
Farner M J, Lee C T A. 2017. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters, 470: 96~107.
参考文献
Gao Yongfeng, Hou Zengqian, Kamber B S, Wei Ruihua, Meng Xiangjin, Zhao Rongsheng. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105~120.
参考文献
Gao Yongfeng, Yang Zhusen, Santosh M, Hou Zengqian, Wei Ruihua, Tian Shihong. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651~663.
参考文献
Geng Quanru, Pan Guitang, Zheng Lailin, Chen Zhiliang, Fisher R D, Sun Zhiming, Ou Chunsheng, Dong Han, Wang Xiaowei, Li Sheng, Lou Xiongying, Fu Heng. 2006. The Eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265~285.
参考文献
Guan Qi, Zhu Dicheng, Zhao Zhidan, Dong Guochen, Zhang Liangliang, Li Xiaowei, Liu Min, Mo Xuanxue, Liu Yongsheng, Yuan Honglin. 2012. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88~99.
参考文献
Guan Wenhui, Wang Yang. 2017. Petrogeochemical methods for quantitative estimation of the crustal thickness of orogenic belt: Overview and case studies. Journal of Earth Science and Environment, 39(2): 214~224 (in Chinese with English abstract).
参考文献
Guo Liang, Zhang Hongfei, Harris N, Pan Fabin, Xu Wangchun. 2011. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints fromU-Pb zircon dating and Hf isotopic composition. Lithos, 127(1-2): 54~67.
参考文献
Guo Liang, Zhang Hongfei, Harris N, Parrish R, Xu Wangchuan, Shi Zhangliang. 2012. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Research, 21(1): 100~111.
参考文献
Guo Zhengfu, Wilson M, Liu Jiaqi. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205~224.
参考文献
Guo Zhengfu, Wilson M, Zhang Maoliang, Cheng Zhihui, Zhang Lihong. 2015. Post-collisionalultrapotassic mafic magmatism in South Tibet: Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. Journal of Petrology, 56(7): 1365~1406.
参考文献
Hirn A, Lepine J C, Jobert G, Sapin M, Wittlinger G, Xin Xuzhong, Yuan Gaoen, Jing Wangxiang, Wen Tengji, Bai Xiongshao, Pandey M R. 1985. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23~25.
参考文献
Hou Zengqian, Gao Yongfeng, Qu Xiaoming, Rui Zongyao, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139~155.
参考文献
Ji Weiqiang, Wu Fuyuan, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. ZirconU-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229~245.
参考文献
Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, Zhang Hao. 2017. Zircon U-Pb geochronology and Hf isotopes of granitic rocks and river sands in the Nyingchi region, Tibet: Constraints on evolution of the deep crust beneath the southeast Lhasa terrane. Journal of Asian Earth Sciences, 145: 613~625.
参考文献
Jiang Ziqi, Wang Qiang, Wyman D A, Li Zhengxiang, Yang Jinhui, Shi Xiaobing, Ma Lin, Tang Gongjian, Gou Guoning, Jia Xiaohui, Guo Haifeng. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196: 213~231.
参考文献
Kapp J L D, Harrison T M, Kapp P, Grove M, Lovera O M, Ding Lin. 2005. Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research: Solid Earth, 110(B8).
参考文献
Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding Lin. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917~933.
参考文献
Kilian R, Stern R C. 2002. Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths. European Journal of Mineralogy, 14(1): 25~36.
参考文献
Lee Haoyang, Chung Sunling, Lo, Chinghua, Ji Jianqing, Lee Tungyi, Qian Qing, Zhang Qi. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20~35.
参考文献
Lin Yanhao, Zhang Zeming, Dong Xin, Shen Kun, Lu Xiao. 2013. Precambrian evolution of the Lhasa terrane, Tibet: Constraint from the zircon U-Pb geochronology of the gneisses. Precambrian Research, 237: 64~77.
参考文献
Liu Yan, Zhong Dalai. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451~466.
参考文献
Lu Tianyu, He Zhenyu, Klemd R. 2020. Two phases of post-onset collision adakitic magmatism in the southern Lhasa subterrane, Tibet, and their tectonic implications. Geological Society of America Bulletin, 132(7-8): 1587~1602.
参考文献
Lu Yongjun, Loucks R R, Fiorentini M L, Yang Zhiming, Hou Zengqian. 2015. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet. Geology, 43(7): 583~586.
参考文献
Ludwig K R. 2003. User's manual for isoplot 3. 00, a geochronlogical toolkit for microsoft excel. Geochronlogical Center Special Publication, 4: 25~32.
参考文献
Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geological Sinica, 95(1): 107~123 (in Chinese with English abstract).
参考文献
Ma Xuxuan, Attia S, Cawood T, Cao Wenrong, Xu Zhiqin, Li Haibing. 2022. Arc tempos of the Gangdese batholith, southern Tibet. Journal of Geodynamics, 149: 101897.
参考文献
Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites with slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581~593.
参考文献
Mahéo G, Guillot S, Blichert-Toft J, Rolland Y, Pêcher A. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 195(1-2): 45~58.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
参考文献
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215~224.
参考文献
Miller C H, Schuster R, Klötzli U, Frank W, Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Ptrology, 40(9): 1399~1424.
参考文献
Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135~148 (in Chinese with English abstract).
参考文献
Mo Xuanxue, Dong Guochen, Zhao Zhidan, Zhou Su, Wang Liangliang, Qiu Ruizhao, Zhang Fengqin. 2005. Special and temporal distribution and characteristics of the granitoids in the Gangdese, Tibet and implication of crustal growth and evolution. Geological Journal of China Universities, 11(3): 281~290 (in Chinese with English abstract).
参考文献
Mo Xuanxue, Dong Guochen, Zhao Zhidan, Guo Tieying, Wang Liangliang, Chen Tao. 2005. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinica (English Edition), 79(1): 66~76.
参考文献
Mo Xuanxue, Zhao Zhidan, Zhou Su, Dong Guochen, Liao Zhongli. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240~1244 (in Chinese with English abstract).
参考文献
Molnar P. 1988. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 326(1589): 33~88.
参考文献
Niu Yaoling, Zhao Zhidan, Zhu Dicheng, Mo Xuanxue. 2013. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Science Reviews, 127: 96~110.
参考文献
Pan Fabin, Zhang Hongfei, Harris N, Xu Wangchun, Guo Liang. 2012. Oligocene magmatism in the eastern margin of the east Himalayan syntaxis and its implication for the India-Asia post-collisional process. Lithos, 154: 181~192.
参考文献
Pan Guitang, Ding Jun, Yao Dongsheng, Wang Liquan. 2004. Guidebook of 1∶1500000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Aeras. Chengdu: Cartographic Publishing House (in Chinese).
参考文献
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521~533 (in Chinese with English Abstract).
参考文献
Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11: Q0AA06.
参考文献
Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12): 2508~2518.
参考文献
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.
参考文献
Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru. Journal of Petrology, 37(6): 1491~1521.
参考文献
Profeta L, Ducea M N, Chapman J B, Paterson S R, Gonzales S M H, Kirsch M, Petrescu L, DeCelles P G. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1): 17786.
参考文献
Qu Xiaoming, Hou Zengqian, Li Youguo. 2004. Melt components derived from asubducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74(3-4): 131~148.
参考文献
Sen C, Dunn T. 1995. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contributions to Mineralogy & Petrology, 119(4): 422~432.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Sundell K, Laskowski A, Kapp P, Ducea M, Chapman J. 2021. Jurassic to Neogene Quantitative crustal thickness estimates in southern Tibet. Geological Society of America Today, 31(6): 4~10.
参考文献
Tang Ming, Ji Weiqiang, Chu Xu, Wu Anbin, Chen Chen. 2021. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1): 76~80.
参考文献
Tang Yuwei, Chen Long, Zhao Zifu, Zheng Yongfei. 2020. Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet. Geological Society of America Bulletin, 132, 1347~1364.
参考文献
Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, CalsterenV P, Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45~71.
参考文献
Wang Qiang, Xu Jifeng, Jian Ping, Bao Zhiwei, Zhao Zhenhua, Li Chaofeng, Xiong Xiaolin, Ma Jinlong. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119~144.
参考文献
Wang Rui, Richards J P, Zhou Limin, Hou Zengqian, Stern R A, Creaser R A, Zhu Jingjing. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry CU-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68~94.
参考文献
Wang Xiangsong, Sun Min, Weinberg R F, Cai Keda, Zhao Guochun, Xia, Xiaoping, Li Pengfei, Liu Xijun, 2022. Adakite generation as a result of fluid-fluxed melting at normal lower crustal pressures. Earth and Planetary Science Letters, 594: 117744.
参考文献
Wen Daren, Liu Dunyi, Chung Sunlin, Chu Meifei, Ji Jianqing, Zhang Qi, Song Biao, Lee Tungyi, Yeh Mengwang, Lo Chinghua. 2008a. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191~201.
参考文献
Wen Daren, Chung Sunlin, Song Biao, Iizuka Y, Yang Huaijen, Ji Jianqing, Liu Dayun, Gallet S. 2008b. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1~11.
参考文献
Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339~342.
参考文献
Xu Wangchun, Zhang Hongfei, Guo Liang, Yuan Honglin. 2010. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293~306.
参考文献
Xu Zhiqin, Li Haibing, Yang Jingsui. 2006. An ergogenic plateau- the orogenic collage and orogenic types of the Qinghai Tibet plateau. Earth Science Frontiers, 13(4): 1~17 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Yang Jingsui, Li Haibing, Ji Shaocheng, Zhang Zeming, Liu Yan. 2011. On the tectonics of the India-Asia collision. Acta Geological Sinica, 85(1): 1~33 (in Chinese with Englishabstract).
参考文献
Yang Zhiming, Lu Yongjun, Hou Zengqian, Chang Zhaoshan. 2015. High-Mgdiorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2): 227~254.
参考文献
Yi Jiankang, Zhu Dicheng, Weinberg R F, Wang Qing, Xie Jincheng, Zhang Liangliang, Zhao Zhidan. 2022. Origin of Tibetan post-collisional high-K adakitic granites: Anatexis of intermediate to felsic arc rocks. Geology, 50: 771~775.
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
参考文献
Zeng Yunchuan, Chen Jianlin, Xu Jifeng, Lei Ming, Xiong Qiuwei. 2017. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry. Gondwana Research, 41: 51~64.
参考文献
Zhang Hongfei, Harris N, Guo Liang, Xu Wangchun. 2010. The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet. Contributions to Mineralogy and Petrology, 160(1): 83~98.
参考文献
Zhang Liyun, Ducea M N, Ding Lin, Pullen A, Kapp P, Hoffman D. 2014. Southern Tibetan Oligocene-Miocene adakites: A record of Indian slab tearing. Lithos, 210-211: 209~223.
参考文献
Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Liou J G. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719~733.
参考文献
Zhang Zeming, Dong Xin, Santosh M, Liu Feng, Wang Wei, Yiu Fei, He Zhenyu, Shen Kun. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123~137.
参考文献
Zhang Zeming, Dong Xin, Xiang Hua, Liou J G, Santosh M. 2013. Building of the deep Gangdese arc, south Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547~2580.
参考文献
Zhang Zeming, Dong Xin, Xiang Hua, Ding Huixia, He Zhenyu, Liou J G. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet: Post-collisional metamorphism and anatexis. Journal of Metamorphic Geology, 33(1): 1~21.
参考文献
Zhang Zeming, Ding Huixia, Dong Xin, Tian Zhuolin, Kang Dongyan, Mu Hongchen, Qin Shengkai, Jiang Yuanyuan, Li Mengmei. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the Eastern Himalayan orogen. Journal of Earth Science, 29(5): 1010~1025.
参考文献
Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrologica Sinica, 35(2): 275~294 (in Chinese with English abstract).
参考文献
Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zhuolin, Chen Yanfei. 2020. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Research, 77: 136~146.
参考文献
Zhang Zeming, Ding Huixia, Dong Xin, Tian Zhuolin, Palin R M, Santosh M, Chen Yanfei, Jiang Yuanyuan, Qin Shengkai, Kang Dongyan, Li Wentan. 2022. The Mesozoic magmatic, metamorphic, and tectonic evolution of the eastern Gangdese magmatic arc, southern Tibet. Geological Society of America Bulletin, 134(7-8): 1721~1740.
参考文献
Zhao Wenjin, Nelson K D, Che J, Quo J, Lu D, Wu C, Liu X. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455): 557~559.
参考文献
Zhao Zhidan, Mo Xuanxue, Dilek Y, Niu Yaoling, DePaolo D J, Robinson P, Zhu Dicheng, Sun Chenguang, Dong Guochen, Zhou Su, Luo Zhaohua, Hou Zengqian. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190~212.
参考文献
Zheng Yuanchuan, Hou Zengqian, Li Qiuyun, Sun Qingzhong, Liang Wei, Fu Qiang, Li Wei, Huang Kexian. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: Evidence from in situ zirconU-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296~311.
参考文献
Zheng Yuanchuan, Hou Zengqian, Gong Yingli, Liang Wei, Sun Qingzhong, Zhang Song, Fu Qiang, Huang Kexian, Li Qiuyun, Li Wei. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190: 240~263.
参考文献
Zhu Dicheng, Pan Guitang, Chung Sunlin, Liao Zhongli, Wang Liquan, Li Guangming. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. International Geology Review, 50(5): 442~471.
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Wang Qing, Ji Huawen, Dong Guochen, Sui Qinglin, Liu Yongsheng, Yuan Honglin, Mo Xuanxue. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290~308.
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Hou Zengqian, Mo Xuanxue. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.
参考文献
Zhu Dicheng, Wang Qing, Zhao Zhidan, Chung Sunlin, Cawood P A, Niu Yaoling, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5(1): 14289.
参考文献
Zhu Dicheng, Wang Qing, Cawood P A, Zhao Zhidan, Mo Xuanxue. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214~223.
参考文献
Zhu Dicheng, Wang Qing, Chung Sunlin, Cawood P A, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583~604.
参考文献
官文慧, 汪洋. 2017. 定量估算造山带地壳厚度的岩石地球化学方法: 综述与实例. 地球科学与环境学报, 39(2): 214~224.
参考文献
马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵. 2021. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95(1): 107~123.
参考文献
莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135~148.
参考文献
莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281~290.
参考文献
莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240~1244.
参考文献
潘桂棠, 丁俊, 姚冬生, 王立全. 2004. 1∶150万青藏高原及邻区地质图. 成都: 成都地图出版社.
参考文献
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.
参考文献
许志琴, 李海兵, 杨经绥. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1~17.
参考文献
许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1~33.
参考文献
张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化. 岩石学报, 35(2): 275~294.
目录contents

    摘要

    青藏高原南部的冈底斯岩浆弧广泛发育新生代的花岗岩,然而这些花岗岩的成因仍存在争议。本文对冈底斯东段米林地区的晚渐新世二云母花岗岩进行了年代学和地球化学研究。全岩化学分析结果显示,这些花岗岩为中钾—高钾钙碱性系列,偏铝质,富集轻稀土元素和Rb、Th、U等大离子亲石元素,亏损重稀土元素和Nb、Ta、Ti等高场强元素,高Sr、低Y,具有较高的Sr/Y比值 (37~85),显示出埃达克质岩石的地球化学特征。锆石U-Pb定年结果显示,所研究的二云母花岗岩结晶年龄为~26.6 Ma。这些花岗岩中的锆石具有较低的正εHf(t)值 (+0.4~+7.3)。综合现有的研究结果,我们认为冈底斯弧东段的晚渐新世花岗岩起源于加厚下地壳始新世弧岩浆岩的部分熔融,但具有古老地壳物质的贡献。印度与亚洲大陆的持续汇聚导致冈底斯弧地壳加厚,加厚下地壳发生高级变质和部分熔融形成了晚渐新世的埃达克质花岗岩。

    Abstract

    Cenozoic granites are widely exposed in the Gangdese magmatic arc of the southern Tibetan Plateau. However, the origin of these granites remains controversial. We report geochronology and geochemistry study about the late Oligocene two-mica granites from the Milin area in the eastern Gangdese arc. Whole-rock chemical analyses show that these granites belong to medium-high potassium calc-alkaline series, weakly peraluminous. The samples are enriched in light rare earth elements and large ion lithophile elements such as Rb, Th and U, and depleted in heavy rare earth elements and high field strength elements such as Nb, Ta and Ti. All samples exhibit high Sr and low Y, with high Sr/Y ratio (37~85), and chemical affinity to adakites. The two-mica granites have the crystallization age of ~26. 6 Ma. Zircon Hf isotopes show that these granites have low and positive εHf(t) values (+0.4 to +7.3). Taking previous data into account, we conclude that the late Oligocene granites from the Milin area were derived from partial melting of the Eocene arc-type magmatic rocks in the thickened lower crust, but with contribution of ancient crustal materials. The continental collision-induced crustal shortening and thickening resulted in the partial melting of the thickened lower crust, and formation of the widespread late Oligocene adakitic granites.

  • 位于青藏高原拉萨地体南部的冈底斯岩浆弧形成于中生代新特提斯洋岩石圈北向俯冲过程中,而且在印度与亚洲大陆碰撞过程中叠加了强烈的新生代岩浆作用 (Allegre et al.,1984; Yin An et al.,2000; Kapp et al.,2007)。印度与亚洲大陆碰撞和印度大陆的持续俯冲使冈底斯岩浆弧广泛发生始新世—中新世的岩浆作用,形成了广泛分布的始新世林子宗火山岩系 (莫宣学等,20032007; Chung Sunlin et al.,2005; Lee Haoyang et al.,2009; Niu Yaoling et al.,2013)和冈底斯岩基 (莫宣学等,2005; Wen Daren et al.,2008a; Ji Weiqiang et al.,2009; Wang Rui et al.,2015),以及渐新世—中新世的、多具埃达克质岩石地球化学特征的中酸性岩浆岩 (Chung Sunlin et al.,20032009; Hou Zengqian et al.,2004; Gao Yongfeng et al.,2007; Guo Zhengfu et al.,2007)。此外,冈底斯弧还发育有渐新世—中新世幔源钾质—超钾质岩浆岩 (Miller et al.,1999; Williams et al.,2001; Zhao Zhidan et al.,2009; Guo Zhengfu et al.,2015)。

  • Chung Sunlin et al.(2003)Hou Zengqian et al. (2004)最先在冈底斯岩浆弧发现了中新世埃达克质岩石,之后的研究表明,渐新世至中新世的埃达克质岩石在冈底斯南部有广泛分布 (Ding Lin et al.,2003; Qu Xiaoming et al.,2004; Wen Daren et al.,2008a; Chung Sunlin et al.,2009; Xu Wangchun et al.,2010; Chen Jianlin et al.,2011; Pan Fabin et al.,2012; Zheng Yuanchuan et al.,2012; Ding Huixia et al.,2019; Lu Tianyu et al.,2020; Yi Jiankang et al.,2022)。尽管已经对这些埃达克质岩石进行了大量研究,但对它们的成因还存在争议。相关的成因机制包括:俯冲新特提斯洋壳的部分熔融 (Qu Xiaoming et al.,2004)、加厚基性下地壳的部分熔融 (Chung Sunlin et al.,2003; Hou Zengqian et al.,2004)、含水基性岩浆在高压下的分离结晶 (Lu Yongjun et al.,2015)等。

  • 本文对冈底斯弧东段米林西部普龙—吞不容地区的晚渐新世花岗岩进行了地球化学、锆石U-Pb年代学和Hf同位素研究。综合前人的研究成果,本文探讨了冈底斯弧东段晚渐新世花岗岩的成因,为冈底斯弧地壳的加厚和再造提供了重要限定。

  • 1 地质背景和样品

  • 青藏高原由北向南由松潘-甘孜地体、北羌塘地体、南羌塘地体、拉萨地体和喜马拉雅带组成,这些地体依次被昆仑、金沙江、龙木错-双湖、班公湖-怒江和雅鲁藏布江缝合带分隔 (Allegre et al.,1984; Yin An et al.,2000; 许志琴等,20062011)。拉萨地体长约2000 km,由狮泉河-纳木错蛇绿混杂岩带和洛坝堆-米拉山断裂划分为北、中和南三个亚地体 (Zhu Dicheng et al.,2011)。北拉萨地体主要由中三叠世—白垩纪的沉积岩、早白垩世火山岩和火山-沉积地层,以及白垩纪的花岗岩组成 (潘桂棠等,2004; Zhu Dicheng et al.,20112012)。中拉萨地体由前寒武纪的结晶基底、寒武纪—二叠纪的沉积岩、晚侏罗世—早白垩世火山-沉积岩和中、新生代的变质岩组成 (潘桂棠等,2004; Kapp et al.,2005; Dong Xin et al.,2011a2011b; Zhu Dicheng et al.,2012; Lin Yanhao et al.,2013; Chen Yue et al.,2014)。南拉萨地体主要由白垩纪—第三纪的冈底斯岩基、第三纪的林子宗火山岩系组成,在东部地区出露有晚白垩世—渐新世的中高级变质岩 (Zhang Zeming et al.,201520202022)和少量三叠纪—白垩纪的火山-沉积岩 (潘桂棠等,20042006; Zhu Dicheng et al.,20082013)。

  • 冈底斯岩浆弧位于拉萨地体南部,主要由中、新生代冈底斯岩基和第三纪的林子宗火山岩系组成(图1a)(Allegre et al.,1984; Yin An et al.,2000; 潘桂棠等,2004; 莫宣学等,2005; Wen Daren et al.,2008a; Ji Weiqiang et al.,2009; Zhu Dicheng et al.,201120152018)。现有研究表明,冈底斯岩浆弧经历了长期的幕式岩浆作用,岩浆作用峰期为晚白垩世、早始新世、和渐新世—中新世 (Zhu Dicheng et al.,2017; 马绪宣等,2021; Ma Xuxuan et al.,2022)。张泽明等 (2019)Zhang Zeming et al. (2022)将冈底斯弧岩浆作用划分为新特提斯洋岩石圈俯冲和印度-亚洲大陆碰撞两个阶段,包括五个期次。新特提斯洋岩石圈俯冲阶段包括新特提斯洋早期俯冲 (220~100 Ma)、新特提斯洋中脊俯冲 (100~80 Ma)、新特提斯洋晚期俯冲 (80~65 Ma)三个期次。新特提斯洋早期俯冲过程中形成了早中侏罗世岩浆岩。洋中脊俯冲期形成了广泛分布的晚白垩世基性和中酸性岩浆岩。新特提斯洋晚期俯冲过程中主要以中酸性岩浆作用为特征。大陆碰撞阶段包括同碰撞 (65~40 Ma)和后碰撞 (40~8 Ma)两个期次。同碰撞期形成了在冈底斯弧较广泛分布的中酸性岩和基性岩,后碰撞期形成了渐新世—中新世的多具有埃达克质成分的中酸性岩。

  • 研究区位于喜马拉雅东构造结西侧的冈底斯岩浆弧东端。这里由三个构造单元组成,分别为喜马拉雅带、印度-雅鲁藏布江缝合带和冈底斯弧(拉萨地体)(图1b)。喜马拉雅带包括特提斯喜马拉雅岩系和高喜马拉雅结晶岩系,前者主要由古生代和中生代沉积岩组成,后者主要由高级变质岩组成 (Liu Yan et al.,1997; Burg et al.,1998; Ding Lin et al.,1999; Geng Quanru et al.,2006; Zhang Zeming et al.,201020122015)。印度-雅江缝合带是由强烈变形的蛇绿混杂岩组成,代表新特提斯洋壳的残余 (Yin An et al.,2000; Zhang Zeming et al.,2018)。东冈底斯弧包括古生代—中生代沉积岩和侏罗纪的火山岩,侏罗纪—白垩纪的花岗岩、晚白垩世辉长岩-花岗闪长岩(里龙岩基)和花岗岩(卧龙岩基)、古新世—始新世辉长岩和花岗岩 (Wen Daren et al.,2008b; Zheng Yuanchuan et al.,2014; Tang Yuwei et al.,2020; Zhang Zeming et al.,2020)。这些深成岩和沉积岩在晚中生代和早新生代经历了不同程度的变质作用,并被渐新世花岗岩侵入 (Zhang Zeming et al.,2020)。

  • 本文所研究的6个花岗岩样品采集于米林西部的普龙村和吞不容村(图2a、b)。这些岩石具块状构造,中粗粒结构,主要由半自形—他形钾长石 (30%~35%),半自形—自形的斜长石 (35%~40%)和他形的石英 (30%~35%)组成,含有少量的黑云母 (2%~5%),白云母 (~2%)和绿帘石(<1%)(图2c、d)。本文将这些花岗岩称之为二云母花岗岩。

  • 2 分析方法

  • 锆石U-Pb定年和微量元素分析在中国地质科学院地质研究所采用激光剥蚀等离子体质谱仪 (LA-ICP-MS,ICP-MS型号为Agilent 7700e)进行测试。本次分析的激光束斑直径为24 μm、剥蚀频率为5 Hz。每个分析数据都包含了大约20~30 s的空白背景信号,以及50 s的数据信号。采用锆石标准样品91500进行同位素矫正。分析数据处理采用软件Iolite完成 (Paton et al.,2010)。使用Isoplot /Ex_ver3进行锆石谐和图绘制和年龄加权平均计算 (Ludwig,2003)。

  • 图1 青藏高原(a)和冈底斯岩浆弧东段(b)地质简图(据Zhang Zeming et al.,2020修改)

  • Fig.1 Geological map of the Tibetan Plateau (a) and the eastern Gangdese magmatic arc (b) (after Zhang Zeming et al., 2020)

  • KSZ—昆仑缝合带; JSSZ—金沙江缝合带; LSSZ—龙木措-双湖缝合带; BNSZ—班公湖-怒江缝合带; YTSZ—雅鲁藏布江缝合带

  • KSZ—Kunlun suture zone; JSSZ—Jinsha suture zone; LSSZ—Longmu Co-Shuanghu suture zone; BNSZ—Bangong-Nujiang suture zone; YTSZ—Yarlung-Tsangpo suture zone

  • 锆石Hf同位素分析在中国地质大学(北京)矿物激光微区分析实验室 (Milma Lab)通过LA-MC-ICP-MS方法完成。分析中采用NewWave193UC型ArF准分子激光器进行剥蚀取样,Thermo Fisher Neptune Plus多接收电感耦合等离子体质谱仪测试信号强度。分析采用的激光剥蚀束斑直径为44 μm,剥蚀频率为8 Hz。分析过程中采用氦气作为剥蚀物质载气。使用锆石标准样品91500和GJ-1作为参考。所有原始数据首先通过Neptune Plus的数据处理软件来进行转化,生成每个点的信号-时间关系文件而后利用Iolite软件进行数据处理 (Paton et al.,2011)。

  • 全岩主量、微量元素分析在武汉上谱分析科技有限公司分析。主量元素采用XRF荧光光谱分析,整体精度优于5%。全岩微量元素含量测试利用Agilent 7700e型电感耦合等离子体质谱仪分析,元素含量整体误差优于5%。

  • 3 分析结果

  • 3.1 锆石U-Pb年代学

  • 所研究的6个二云母花岗岩中的锆石多为自形到半自形柱状。基于锆石阴极发光图像,多数锆石颗粒具有核-边结构(图3)。边部显示振荡环带,暗色发光。少数锆石颗粒不具有核边结构,总体具有清晰的振荡环带。T20-21-1和T20-50-4样品的锆石边部获得了较一致的206Pb/238U年龄,分别在27.9~25.4 Ma和29.8~25.0 Ma之间,加权平均年龄分别为26.4±0.3 Ma和26.3±0.5 Ma(图4、5,表1)。这些锆石边部分析点的Th、U含量相似,在54×10-6~1458×10-6和52×10-6~1364×10-6之间,Th/U比值为0.34~1.40。另外4个样品锆石边部获得的206Pb/238U年龄在33.0~22.1 Ma之间(图4~6),其Th、U含量变化范围较大,Th含量为51×10-6~2952×10-6,U含量为123×10-6~7340×10-6,Th/U比值为0.04~2.00(多数大于0.2)。6个样品的锆石边部给出的年龄峰值为~26.6 Ma(图6)。

  • 图2 米林地区二云母花岗岩野外和显微照片

  • Fig.2 Field views and photomicrographs of two-mica granites from Milin area

  • (a)、(b)—二云母花岗岩露头照片;(c)、(d)—二云母花岗岩显微照片;Pl—斜长石; Kfs—钾长石; Qz—石英; Bt—黑云母; Ms—白云母

  • (a) , (b) —field views of two-mica granites; (c) , (d) —photomicrographs of two-mica granites; Pl—plagioclase; Kfs—K-feldspar; Qz—quartz; Bt—biotite; Ms—muscovite

  • 具核-边结构锆石的核部发光较强,有的具有振荡环带,有的不具环带(图3)。4个样品(T20-25-1、T20-28-1、T20-38-3和T20-50-4)中9颗具有振荡环带的锆石核获得了54.5~46.5 Ma的206Pb/238U年龄(图4~6),其Th的含量为93×10-6~320×10-6,U的含量为234×10-6~1820×10-6,Th/U比值在0.14~0.84之间(表1)。所分析的锆石边部和核部的稀土元素配分模式都表现为轻稀土元素亏损,重稀土元素富集,具明显的Eu元素负异常(图4、5)。

  • 3.2 锆石Hf同位素

  • 从6个二云母花岗岩样品的锆石边部各选取5个点进行了Hf同位素分析 (表2)。30个分析点获得的(176Hf/177Hf)i值为0.282762~0.282960,具有正且变化范围较小的εHft)值(+0.4~+7.3),相对应的二阶段模式年龄(tDM2)在1086~641 Ma之间(图7)。

  • 图3 米林地区二云母花岗岩中代表性锆石颗粒的阴极发光图像

  • Fig.3 Cathodoluminescence images of representative zircon grains from two-mica granites in Milin area

  • 实线圆和虚线圆分别表示U-Pb定年和Lu-Hf同位素分析点的位置,相邻数值代表U-Pb年龄(εHft)值)

  • The solid and dashed line circles refer to the locations of U-Pb dating and Lu-Hf isotope analysis spots, respectively; corresponding U-Pb age and εHf (t) values in parentheses are shown near the analytical spots

  • 3.3 全岩主、微量元素地球化学

  • 所研究的6个二云母花岗岩具有类似的主量元素含量,SiO2=70.11%~73.81%,K2O=2.82%~4.13%,Na2O=3.74%~4.32%,Al2O3=14.36%~15.38%,MgO=0.38%~0.80%,TiO2=0.17%~0.40%,CaO=1.87%~2.51%,Fe2O3=1.52%~2.69%(表3)。它们的Mg#=29.6~37.2,铝饱和指数(A/CNK)在1.00~1.09之间。在硅-碱图解中,6个样品均落在花岗岩区域(图8a),在SiO2-K2O图中样品落在中钾-高钾钙碱性系列区域(图8b),在A/CNK-A/NK图中样品均落入过铝质系列区域(图8c)。

  • 二云母花岗岩具有低的Cr(0.62×10-6~2.64×10-6)、Ni(1.08×10-6~3.50×10-6)、 Y(5.5×10-6~15.2×10-6)和Yb(0.66×10-6~1.41×10-6)含量,高的Sr含量(458×10-6~678×10-6),高的Sr/Y比值(37~85)。在原始地幔标准化微量元素图中,二云母花岗岩显示相对富集Rb、Th、U等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素(图9a)。6个样品的稀土元素总量在68×10-6~186×10-6之间。在球粒陨石标准化后的稀土元素配分图中,显示具有较强的稀土分馏,为轻稀土富集,重稀土亏损的右倾型曲线,(La/Yb)N比值为17.42~34.14,无或弱的负Eu异常(δEu=0.69~1.01)(图9b)。

  • 表1 米林地区二云母花岗岩的锆石 LA-ICP-MS U-Pb定年结果

  • Table1 Zircon LA-ICP-MS U-Pb dating results of two-mica granites from Milin area

  • 续表1

  • 4 讨论

  • 4.1 岩石成因

  • 本文6个花岗岩样品的锆石或锆石边部具振荡环带,具有较高的Th/U比值(多数大于0.2),为岩浆结晶锆石特征(Corfu et al.,2003)。两个样品(T20-21-1和T20-50-4)的岩浆结晶锆石给出了26.4±0.3 Ma和26.3±0.5 Ma的加权平均年龄,全部样品的岩浆结晶锆石和岩浆结晶边给出了~26.6 Ma的峰值年龄(图6)。所以我们认为所研究的二云母花岗岩结晶时间为~26.6 Ma的晚渐新世。

  • 表2 米林地区二云母花岗岩的锆石Hf同位素组成

  • Table2 Zircon Hf isotopic compositions of two-mica granites from Milin area

  • 现有的研究表明,冈底斯弧东段米林和林芝地区广泛分布有晚渐新世的花岗岩(图1b)。这些岩石具有相似的地球化学特征,为花岗闪长岩或花岗岩(图8a),为中钾—高钾钙碱性系列 (图8b),呈准铝质—过铝质(图8c)和具有低的MgO含量(图8d)。同时,这些岩石多数具有轻重稀土分异,高的Sr和La含量,低的Y和Yb含量,即具高Sr/Y和(La/Yb)N比值的埃达克岩石的地球化学特征(图9、10)。

  • 关于冈底斯弧晚渐新世埃达克质岩石的成因存在争议,主要成因机制包括:俯冲新特提斯洋壳的部分熔融 (Qu Xiaoming et al.,2004)、俯冲板片熔体交代上地幔的部分熔融 (Gao Yongfeng et al.,20072010)、加厚下地壳的部分熔融 (Chiu Hanyi et al.,2009; Chen Jianlin et al.,2011; Zeng Yunchuan et al.,2017)、俯冲的印度基性下地壳的部分熔融 (Xu Wangchun et al.,2010; Jiang Ziqi et al.,2014)、幔源岩浆在高压下的分离结晶 (Lu Yongjun et al.,2015)、壳源岩浆和幔源超钾质熔体的混合 (Yang Zhiming et al.,2015)、长英质弧岩浆岩的部分熔融 (Yi Jiankang et al.,2022)以及中下地壳基性岩在角闪岩相下的注水熔融 (Wang Xiangsong et al.,2022)。

  • 研究表明,俯冲板片(俯冲的洋壳或俯冲的印度基性下地壳)部分熔融以及俯冲板片熔体交代地幔部分熔融形成的埃达克质岩浆易与地幔楔中超基性岩发生混染,因此具有相对较高的MgO、Cr和Ni含量 (Sen et al.,1995; Kilian et al.,2002)。另外,起源于俯冲板片部分熔融的熔体还可能由于与幔源岩浆发生不完全混合,在埃达克质岩石中形成高硅镁安山岩(闪长岩)或低硅富铌玄武岩(辉绿岩)的包体 (Jiang Ziqi et al.,2014)。冈底斯弧东段晚渐新世埃达克质岩具有较低的MgO和相容元素含量(图8d、11),且没有中基性岩包体,这些表明它们不太可能是由俯冲板片部分熔融或俯冲板片熔体交代地幔部分熔融产生的。

  • 图4 米林地区二云母花岗岩(T20-21-1、T20-25-1、T20-28-1)中锆石U-Pb谐和图(a、c、e)和锆石球粒陨石标准化稀土元素配分图(b、d、f)(标准化值据 Boynton,1984

  • Fig.4 U-Pb concordia diagrams (a, c, e) , and chondrite-normalized REE patterns (b, d, f) of the zircons from two-mica granites (T20-21-1、T20-25-1、T20-28-1) in Milin area (normalization values after Boynton, 1984)

  • 基性幔源岩浆分离结晶被认为是冈底斯弧埃达克质岩石的一种成因机制 (Lu Yongjun et al.,2015)。如果冈底斯弧东段晚渐新世埃达克质岩是幔源岩浆分离结晶形成的,应该伴有同时期的基性堆晶岩,但在研究区并没有发现同时期的基性岩。另外,幔源岩浆在高压下分离结晶会形成石榴子石的堆晶。由于石榴子石富含重稀土元素,其分离结晶后形成的埃达克质岩石会有随着SiO2含量增高Sr/Y比值升高的特征 (Castillo et al.,1999; Macpherson et al.,2006)。而研究区晚渐新世埃达克质岩石的Sr/Y比值与SiO2含量之间无明显的相关性 (图12a),因此不是基性岩浆高压分离结晶的产物。幔源岩浆在低压下分离结晶过程中角闪石会发生分离结晶,所形成的埃达克质岩石的Dy/Yb比值会随着SiO2含量的增加而增加 (Castillo et al.,1999)。但是所研究的花岗岩的SiO2含量与Dy/Yb比值之间并无明显的相关性 (图12b)。这表明所研究埃达克质岩石也不是幔源岩浆在低压下角闪石分离结晶的产物。

  • 图5 米林地区二云母花岗岩(T20-38-3、T20-50-4、T20-53-2)中锆石U-Pb谐和图(a、c、e)和锆石球粒陨石标准化稀土元素配分图(b、d、f)(标准化值据 Boynton,1984

  • Fig.5 U-Pb concordia diagrams (a, c, e) , and chondrite-normalized REE patterns (b, d, f) of the zircons from two-mica granites (T20-38-3、T20-50-4、T20-53-2) in Milin area (normalization values after Boynton, 1984)

  • Yang Zhiming et al.(2015)认为冈底斯弧新生代的埃达克质岩石可能是壳源岩浆和幔源超钾质熔体混合作用的产物。这种混合作用需要两个阶段,首先是强烈交代的岩石圈地幔发生部分熔融形成超钾质熔体,然后超钾质岩浆在加厚新生下地壳底垫使下地壳发生熔融,并发生熔体混合形成埃达克质岩浆。这样形成的埃达克质岩石应该兼具超钾质岩的高MgO、Cr、Ni含量和加厚下地壳部分熔融形成的埃达克质岩石的高Sr和低Y含量的特征。然而研究区的晚渐新世埃达克质岩石并不具有高MgO、Cr和Ni含量,不支持幔源和壳源岩浆混合成因模型。

  • 表3 米林地区二云母花岗岩的全岩化学组成

  • Table3 Whole-rock chemical compositions of two-mica granites from Milin area

  • 续表3

  • 图6 米林地区二云母花岗岩中锆石U-Pb年龄直方图

  • Fig.6 Histogram of zircon U-Pb ages from two-mica granites in Milin area

  • 最近有研究认为,冈底斯东段的晚渐新世埃达克质岩石是中压(>0.7 GPa)条件下早期形成的中酸性弧岩浆岩部分熔融的产物 (Yi Jiankang et al.,2022),或者是正常中下地壳压力 (1.0~1.1 GPa)条件下由基性岩水致熔融的产物 (Wang Xiangsong et al.,2022)。但是,我们认为正常下地壳相对较低的温度不足以导致中酸性弧岩浆岩发生高程度部分熔融,不能形成大面积分布的埃达克质岩石。水致基性岩熔融模型认为俯冲的印度板片沉积物的脱水作用提供了所需要的水。但是,印度板片沉积物在俯冲过程中的脱水作用是逐渐发生的,到达中下地壳时可能无法再提供水致基性岩熔融所需要的大量水。另外,同期的超钾质岩浆规模较小,也无法提供大量的含水流体使中下地壳发生广泛的部分熔融。

  • 图7 冈底斯弧东段晚渐新世花岗岩锆石U-Pb年龄与εHft)值图(冈底斯岩基范围据 Ding Huixia et al.,2019

  • Fig.7 Zircon U-Pb ages vs. εHf (t) of the late Oligocene granites from the eastern Gangdese arc (the field of Gangdese batholith is from Ding Huixia et al., 2019)

  • 研究区已经发表的同时代花岗岩的岩浆锆石和继承锆石数据据 Zhang Hongfei et al. (2010); Guo Liang et al. (2011); Pan Fabin et al. (2012); Zheng Yuanchuan et al. (2012); Ji Weiqiang et al. (2017); Ding Huixia et al. (2019); Yi Jiankang et al. (2022)

  • The magmatic zircon and inherited zircon data of coeval granites is after Zhang Hongfei et al. (2010) ; Guo Liang et al. (2011) ; Pan Fabin et al. (2012) ; Zheng Yuanchuan et al. (2012) ; Ji Weiqiang et al. (2017) ; Ding Huixia et al. (2019) ; Yi Jiankang et al. (2022)

  • 基于上述讨论,且在埃达克质岩石成因分类图解中冈底斯弧东段的晚渐新世花岗岩都落在了加厚下地壳部分熔融的埃达克质岩石区域(图8d、11),我们认为这些花岗岩最可能是加厚下地壳部分熔融的产物。加厚下地壳具有高的温度和高的压力,可以使基性和长英质岩石发生高程度部分熔融,并形成富含石榴子石的残留体,所形成的熔体具有低HREE和低Y含量,高的Sr/Y比值。

  • 4.2 地壳厚度估算

  • 冈底斯岩浆弧现在具有近双倍的正常地壳厚度,但地壳加厚的时间和机制还存在争议 (Hirn et al.,1985; Molnar,1988; Zhao Wenjin et al.,1993)。地壳厚度对岩浆岩的成分起着控制作用 (Farner et al.,2017),起源于加厚下地壳的花岗岩的Sr/Y、La/Yb比值可以用于古地壳厚度估算 (Chapman et al.,2015; Profeta et al.,2015; Sundell et al.,2021)。Sundell et al. (2021)Profeta et al. (2015)的经验公式基础上,建立了基于ln(Sr/Y)-ln(La/Yb)的多元线性回归计算地壳厚度(H,单位为km)经验公式:

  • H= (-10.6±16.9) + (10.3±9.5) ×ln (Sr/Y) + (8.8±8.2) ×ln (La/Yb)

  • 本文使用该公式和晚渐新世花岗岩的全岩成分计算了冈底斯岩浆弧东段晚渐新世的地壳厚度。为了排除基性岩或分离结晶形成的高硅花岗岩,以及排除由幔源或先存的变沉积岩部分熔融形成的埃达克质岩石,可用于计算的岩石全岩成分应为SiO2=55%~68%,MgO=0~4%,Rb/Sr= 0.05~0.2。基于本文和已收集的文献数据,有7个样品符合上述成分特征,其Sr/Y和La/Yb比值在45~91和22~81之间,计算出的地壳厚度在59~71 km,平均厚度约为65 km。值得注意的是,由此计算出的地壳厚度代表最小地壳厚度。这表明冈底斯东段晚渐新世的地壳厚度至少约为65 km。

  • 前人利用类似的计算方法对冈底斯古地壳厚度进行了计算。如官文慧和汪洋(2017)基于新生代冈底斯弧花岗岩的全岩Sr/Y、Dy/Yb值,计算出在晚渐新世时冈底斯弧地壳厚度为70~85 km。 Sundell et al. (2021)基于花岗岩全岩Sr/Y和La/Yb比值估算出冈底斯弧中段在晚渐新世的地壳厚度约为67 km。 Zhu Dicheng et al. (2017)通过冈底斯弧中段花岗岩的全岩(La/Yb)N值计算出在晚渐新世时冈底斯地壳厚度为68±12 km。Tang Ming et al. (2021)建立花岗岩锆石Eu异常与地壳厚度关系式,对冈底斯地区河砂中的碎屑锆石进行了计算。其计算结果显示冈底斯弧在~26 Ma时的地壳厚度为60~70 km。上述地壳厚度计算结果与本文结果基本一致,都说明冈底斯岩浆弧地壳在晚渐新世时呈显著的加厚状态。

  • 图8 冈底斯弧东段晚渐新世花岗岩主量元素图(研究区已发表晚渐新世花岗岩资料文献来源见图7说明)

  • Fig.8 Diagrams of major elements of the late Oligocene granites from the eastern Gangdese arc (the data sources are the same as Fig.7)

  • (a)—硅-碱图解(据Middlemost,1994);(b)—SiO2-K2O图(据Peccerillo et al.,1976);(c)—A/CNK-A/NK图(据Maniar et al.,1989);(d)—SiO2-MgO图解(据Wang Qiang et al.,2006

  • (a) —SiO2 vs. total alkalis (after Middlemost, 1994) ; (b) —SiO2 vs. K2O (after Peccerillo et al., 1976) ; (c) —A/CNK vs. A/NK (after Maniar et al., 1989) ; (d) —SiO2 vs. MgO (after Wang Qiang et al., 2006)

  • 图9 冈底斯弧东段晚渐新世花岗岩原始地幔标准化微量元素图(a)和球粒陨石标准化稀土元素配分图(b)(标准化值据 Sun et al.,1989)(研究区已发表晚渐新世花岗岩资料文献来源见图7说明)

  • Fig.9 Primitive mantle-normalized trace element patterns (a) and chondrite-normalized REE patterns (b) of the late Oligocene granites from the eastern Gangdese arc (normalized values after Sun et al., 1989) (the data sources are the same as Fig.7)

  • 图10 冈底斯弧东段晚渐新世花岗岩Y-Sr/Y(a)与YbN-(La/Yb)N关系图(b) (据Defant et al.,1990; Petford et al.,1996) (研究区已发表资料文献来源见图7说明)

  • Fig.10 Y vs. Sr/Y (a) and YbN vs. (La/Yb) N (b) diagrams of the late Oligocene granites from the eastern Gangdese arc (after Defant et al., 1990; Petford et al., 1996) (the data sources are the same as Fig.7)

  • 图11 冈底斯弧东段晚渐新世花岗岩Mg#-Ni(a)和Cr-Ni(b)关系图 (据Guan Qi et al.,2012) (研究区已发表资料文献来源见图7说明)

  • Fig.11 Mg# vs. Ni (a) and Cr vs. Ni (b) diagrams of the late Oligocene granites from the eastern Gangdese arc (after Guan Qi et al., 2012) (the data sources are the same as Fig.7)

  • 4.3 岩浆源区

  • 如上所述,所研究的晚渐新世花岗岩中的锆石普遍含有继承的岩浆核 (图3),而且T20-25-1、T20-28-1、T20-38-3、T20-50-4这4个样品中的锆石继承岩浆核得到了始新世的结晶年龄 (图4、5)。另2个样品(T20-21-1和T20-53-2)中的锆石颗粒也多具有继承的岩浆核(图3),也可能具有始新世的结晶年龄。另外,前人在本研究区的同时期花岗岩中也得到了始新世的原岩年龄(Yi Jiankang et al.,2022)。因此我们推测冈底斯弧东段晚渐新世花岗岩多具有始新世的原岩年龄。而且,晚渐新世花岗岩的岩浆锆石具有正的εHft)值(+0.4~+7.3),其与始新世时期冈底斯岩基岩浆岩锆石的Hf同位素特征相似 (图7)。因此,这些晚渐新世花岗岩的原岩可能主要是始新世的岩浆岩。除此之外,所研究花岗岩显示弱过铝质特征 (图8c),其岩浆锆石中还存在继承的碎屑核(图3),指示源区存在沉积岩。这很可能表明古老地壳物质对晚渐新世埃达克质岩石的形成也有贡献。

  • 现有的研究表明,冈底斯弧东段地区的晚渐新世花岗岩的锆石中普遍含有始新世时期的继承岩浆核和更早期继承的碎屑核 (Zheng Yuanchuan et al.,2012; Ding Huixia et al.,2019; Yi Jiankang et al.,2022)。因此,始新世的岩浆岩和古地壳岩石可能是冈底斯弧东段晚渐新世埃达克质岩的源岩。综上所述,我们认为冈底斯弧东段的始新世岩浆岩和更早期的沉积岩在后碰撞造山过程中被埋藏到加厚下地壳,并发生部分熔融形成了晚渐新世的花岗岩。

  • 图12 冈底斯弧东段晚渐新世花岗岩SiO2-Sr/Y(a)和SiO2-Dy/Yb(b)关系图 (研究区已发表资料文献来源见图7说明)

  • Fig.12 SiO2 vs. Sr/Y (a) and SiO2 vs. Dy/Yb (b) diagrams of the late Oligocene granites from the eastern Gangdese arc (the data sources are the same as Fig.7)

  • 5 动力学机制

  • 冈底斯岩浆弧新生代岩浆作用的动力机制是青藏高原的重要研究内容之一。现有研究表明,早新生代(65~40 Ma)是冈底斯弧最主要岩浆活动,形成了大体积的幔源与壳源岩浆(Mo Xuanxue et al.,2005; Zhu Dicheng et al.,2018)。随着印度与亚洲大陆的碰撞,深俯冲新特提斯洋板块断离导致的软流圈上涌很可能是早新生代强烈岩浆作用的动力学机制。

  • 现有研究表明,冈底斯岩浆弧在渐新世—中新世经历了强烈的地壳加厚,加厚下地壳经历了高级变质和深熔作用(Zhang Zeming et al.,201020132015; Guo Liang et al.,2012; Pan Fabin et al.2012; Ding Huixia et al.,2019; Sundell et al.,2021; Tang Ming et al.,2021)。关于渐新世—中新世岩浆活动的动力学机制主要包括:俯冲印度板片回转或断离(Miller et al.,1999; Mahéo et al.,2002; Hou Zengqian et al.,2004; Zhang Hongfei et al.,2010; Guo Liang et al.,2012; Pan Fabin et al.,2012; Zhang Liyun et al.,2014)、加厚岩石圈的对流移去或山根的拆沉(Turner et al.,1996; Miller et al.,1999; Williams et al.,2001; Chung Sunlin et al.,20032005; Ji Weiqiang et al.,20092017)和地壳加厚作用(Zhang Zeming et al.,2015; Ding Huixia et al.,2019; Lu Tianyu et al.,2020)。俯冲印度板片回转或断离、加厚岩石圈的对流移去以及山根的拆沉会引起软流圈地幔上涌,进而导致幔源岩浆作用。但是,在东冈底斯弧缺少该时期的幔源岩浆岩,上述机制不太可能与渐新世—中新世岩浆作用相关。因此,我们认为印度大陆岩石圈持续俯冲导致的地壳缩短加厚,加厚下地壳的显著增温和部分熔融很可能是导致冈底斯弧东段林芝地区渐新世—中新世岩浆作用的主要机制。这与我们上面得出的结论,即所研究的花岗岩是起源于加厚下地壳的埃达克质岩石是一致的。

  • 结合现有资料,我们认为在印度-亚洲大陆碰撞早期,深俯冲的新特提斯洋板断裂,软流圈上涌引起了广泛的始新世岩浆活动,形成了包括冈底斯弧东段晚渐新世的花岗岩原岩。晚始新世至渐新世时期印度与亚洲大陆的持续汇聚导致冈底斯弧地壳缩短和加厚,被埋藏到加厚下地壳的早期弧岩浆岩和伴生的沉积岩发生高温变质和强烈部分熔融,形成了晚始新世至渐新世的花岗岩。

  • 6 结论

  • (1)晚渐新世(~26.6 Ma)的花岗岩在冈底斯岩浆弧东段的米林和林芝地区广泛产出。这些花岗岩多数具高Sr和低Y含量,富集轻稀土元素,亏损重稀土元素,显示埃达克质岩石的地球化学特征。

  • (2)冈底斯东段晚渐新世花岗岩起源于始新世岩浆岩的部分熔融,但有古老地壳岩石的参与。冈底斯弧东段在晚渐新世具有加厚的地壳,其地壳厚度为~65 km。

  • (3)大陆持续汇聚过程中的地壳缩短加厚使始新世岩浆岩和古老岩石被埋藏到加厚下地壳,并发生部分熔融形成了晚渐新世的埃达克质花岗岩。

  • 致谢:感谢芦维瑞、郭明明、吴双鹏和任宏飞同学在野外工作和实验中给予的帮助。

  • 参考文献

    • Allegre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.

    • Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Developments in Geochemistry. Amsterdam: Elsevier, 2: 63~114.

    • Burg J P, Nievergelt P, Oberli F, Seward D, Davy P, Maurin J C, Diao Zhizhong, Meier M. 1998. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences, 16(2-3): 239~252.

    • Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33~51.

    • Chapman J B, Ducea M N, DeCelles P G, Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919~922.

    • Chen Jianlin, Xu Jifeng, Zhao Weixia, Dong Yanhui, Wang Baodi, Kang Zhiqiang. 2011. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the southern Tibetan Plateau. Lithos, 125(3-4): 928~939.

    • Chen Yue, Zhu Dicheng, Zhao Zhidan, Meng Fanyi, Wang Qing, Santosh M, Wang Liquan, Dong Guochen, Mo Xuanxue. 2014. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449~463.

    • Chiu Hanyi, Chung Sunlin, Wu Fuyuan, Liu Dunyi, Liang Yuhsuan, Lin Ijhen, Iizuka Y, Xie Liewen, Wang Yanbin, Chu Meifei. 2009. ZirconU-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1-2): 3~19.

    • Chung Sunlin, Liu Dunyi, Ji Jianqing, Chu Meifei, Lee Haoyang, Wen Dajen, Lo Chinghua, Lee Tungyi, Qian Qing, Zhang Qi. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021.

    • Chung Sunlin, Chu Meifei, Zhang Yuquan, Xie Yingwei, Lo Chinghua, Lee Tungyi, Lan Chingying, Li Xianhua, Zhang Qi, Wang Yizhao. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173~196.

    • Chung Sunlin, Chu Meifei, Ji Jianqing, O'Reilly S Y, Pearson N J, Liu Dunyi, Lee Tunhyi, Lo Chinghua. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36~48.

    • Corfu F, Hanchar J M, Hoskin P W, Kinny P. 2003. Atlas of zircon textures. Reviewsin Mineralogy and Geochemistry, 53(1): 469~500.

    • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662~665.

    • Ding Huixia, Zhang Zeming. 2019. Early Cenozoic thickening and reworking of the eastern Gangdese arc, south Tibet: Constraints from the Oligocene granitoids. Geological Society, London, Special Publications, 474(1): 291~308.

    • Ding Lin, Zhong Dalai. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China Series D: Earth Sciences, 42(5): 491~505.

    • Ding Lin, Kapp P, Zhong Dalai, Deng Wanming. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10), 1833~1865.

    • Dong Xin, Zhang Zeming, Liu Feng, Wang Wei, Yu Fei, Shen Kun. 2011a. Zircon U-Pb geochronology of the Nyainqêntanglha Group from the Lhasa terrane: New constraints on the Triassic orogeny of the south Tibet. Journal of Asian Earth Sciences, 42(4): 732~739.

    • Dong Xin, Zhang Zeming, Santosh M, Wang Wei, Yu Fei, Liu Feng. 2011b. Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications. Journal of Geodynamics, 52(5): 389~405.

    • Farner M J, Lee C T A. 2017. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters, 470: 96~107.

    • Gao Yongfeng, Hou Zengqian, Kamber B S, Wei Ruihua, Meng Xiangjin, Zhao Rongsheng. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105~120.

    • Gao Yongfeng, Yang Zhusen, Santosh M, Hou Zengqian, Wei Ruihua, Tian Shihong. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651~663.

    • Geng Quanru, Pan Guitang, Zheng Lailin, Chen Zhiliang, Fisher R D, Sun Zhiming, Ou Chunsheng, Dong Han, Wang Xiaowei, Li Sheng, Lou Xiongying, Fu Heng. 2006. The Eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265~285.

    • Guan Qi, Zhu Dicheng, Zhao Zhidan, Dong Guochen, Zhang Liangliang, Li Xiaowei, Liu Min, Mo Xuanxue, Liu Yongsheng, Yuan Honglin. 2012. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88~99.

    • Guan Wenhui, Wang Yang. 2017. Petrogeochemical methods for quantitative estimation of the crustal thickness of orogenic belt: Overview and case studies. Journal of Earth Science and Environment, 39(2): 214~224 (in Chinese with English abstract).

    • Guo Liang, Zhang Hongfei, Harris N, Pan Fabin, Xu Wangchun. 2011. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints fromU-Pb zircon dating and Hf isotopic composition. Lithos, 127(1-2): 54~67.

    • Guo Liang, Zhang Hongfei, Harris N, Parrish R, Xu Wangchuan, Shi Zhangliang. 2012. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Research, 21(1): 100~111.

    • Guo Zhengfu, Wilson M, Liu Jiaqi. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205~224.

    • Guo Zhengfu, Wilson M, Zhang Maoliang, Cheng Zhihui, Zhang Lihong. 2015. Post-collisionalultrapotassic mafic magmatism in South Tibet: Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. Journal of Petrology, 56(7): 1365~1406.

    • Hirn A, Lepine J C, Jobert G, Sapin M, Wittlinger G, Xin Xuzhong, Yuan Gaoen, Jing Wangxiang, Wen Tengji, Bai Xiongshao, Pandey M R. 1985. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23~25.

    • Hou Zengqian, Gao Yongfeng, Qu Xiaoming, Rui Zongyao, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139~155.

    • Ji Weiqiang, Wu Fuyuan, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. ZirconU-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229~245.

    • Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, Zhang Hao. 2017. Zircon U-Pb geochronology and Hf isotopes of granitic rocks and river sands in the Nyingchi region, Tibet: Constraints on evolution of the deep crust beneath the southeast Lhasa terrane. Journal of Asian Earth Sciences, 145: 613~625.

    • Jiang Ziqi, Wang Qiang, Wyman D A, Li Zhengxiang, Yang Jinhui, Shi Xiaobing, Ma Lin, Tang Gongjian, Gou Guoning, Jia Xiaohui, Guo Haifeng. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196: 213~231.

    • Kapp J L D, Harrison T M, Kapp P, Grove M, Lovera O M, Ding Lin. 2005. Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research: Solid Earth, 110(B8).

    • Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding Lin. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917~933.

    • Kilian R, Stern R C. 2002. Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths. European Journal of Mineralogy, 14(1): 25~36.

    • Lee Haoyang, Chung Sunling, Lo, Chinghua, Ji Jianqing, Lee Tungyi, Qian Qing, Zhang Qi. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20~35.

    • Lin Yanhao, Zhang Zeming, Dong Xin, Shen Kun, Lu Xiao. 2013. Precambrian evolution of the Lhasa terrane, Tibet: Constraint from the zircon U-Pb geochronology of the gneisses. Precambrian Research, 237: 64~77.

    • Liu Yan, Zhong Dalai. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451~466.

    • Lu Tianyu, He Zhenyu, Klemd R. 2020. Two phases of post-onset collision adakitic magmatism in the southern Lhasa subterrane, Tibet, and their tectonic implications. Geological Society of America Bulletin, 132(7-8): 1587~1602.

    • Lu Yongjun, Loucks R R, Fiorentini M L, Yang Zhiming, Hou Zengqian. 2015. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet. Geology, 43(7): 583~586.

    • Ludwig K R. 2003. User's manual for isoplot 3. 00, a geochronlogical toolkit for microsoft excel. Geochronlogical Center Special Publication, 4: 25~32.

    • Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geological Sinica, 95(1): 107~123 (in Chinese with English abstract).

    • Ma Xuxuan, Attia S, Cawood T, Cao Wenrong, Xu Zhiqin, Li Haibing. 2022. Arc tempos of the Gangdese batholith, southern Tibet. Journal of Geodynamics, 149: 101897.

    • Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites with slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581~593.

    • Mahéo G, Guillot S, Blichert-Toft J, Rolland Y, Pêcher A. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 195(1-2): 45~58.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215~224.

    • Miller C H, Schuster R, Klötzli U, Frank W, Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Ptrology, 40(9): 1399~1424.

    • Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135~148 (in Chinese with English abstract).

    • Mo Xuanxue, Dong Guochen, Zhao Zhidan, Zhou Su, Wang Liangliang, Qiu Ruizhao, Zhang Fengqin. 2005. Special and temporal distribution and characteristics of the granitoids in the Gangdese, Tibet and implication of crustal growth and evolution. Geological Journal of China Universities, 11(3): 281~290 (in Chinese with English abstract).

    • Mo Xuanxue, Dong Guochen, Zhao Zhidan, Guo Tieying, Wang Liangliang, Chen Tao. 2005. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinica (English Edition), 79(1): 66~76.

    • Mo Xuanxue, Zhao Zhidan, Zhou Su, Dong Guochen, Liao Zhongli. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240~1244 (in Chinese with English abstract).

    • Molnar P. 1988. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 326(1589): 33~88.

    • Niu Yaoling, Zhao Zhidan, Zhu Dicheng, Mo Xuanxue. 2013. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Science Reviews, 127: 96~110.

    • Pan Fabin, Zhang Hongfei, Harris N, Xu Wangchun, Guo Liang. 2012. Oligocene magmatism in the eastern margin of the east Himalayan syntaxis and its implication for the India-Asia post-collisional process. Lithos, 154: 181~192.

    • Pan Guitang, Ding Jun, Yao Dongsheng, Wang Liquan. 2004. Guidebook of 1∶1500000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Aeras. Chengdu: Cartographic Publishing House (in Chinese).

    • Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521~533 (in Chinese with English Abstract).

    • Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11: Q0AA06.

    • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12): 2508~2518.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.

    • Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru. Journal of Petrology, 37(6): 1491~1521.

    • Profeta L, Ducea M N, Chapman J B, Paterson S R, Gonzales S M H, Kirsch M, Petrescu L, DeCelles P G. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1): 17786.

    • Qu Xiaoming, Hou Zengqian, Li Youguo. 2004. Melt components derived from asubducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74(3-4): 131~148.

    • Sen C, Dunn T. 1995. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contributions to Mineralogy & Petrology, 119(4): 422~432.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Sundell K, Laskowski A, Kapp P, Ducea M, Chapman J. 2021. Jurassic to Neogene Quantitative crustal thickness estimates in southern Tibet. Geological Society of America Today, 31(6): 4~10.

    • Tang Ming, Ji Weiqiang, Chu Xu, Wu Anbin, Chen Chen. 2021. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1): 76~80.

    • Tang Yuwei, Chen Long, Zhao Zifu, Zheng Yongfei. 2020. Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet. Geological Society of America Bulletin, 132, 1347~1364.

    • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, CalsterenV P, Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45~71.

    • Wang Qiang, Xu Jifeng, Jian Ping, Bao Zhiwei, Zhao Zhenhua, Li Chaofeng, Xiong Xiaolin, Ma Jinlong. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119~144.

    • Wang Rui, Richards J P, Zhou Limin, Hou Zengqian, Stern R A, Creaser R A, Zhu Jingjing. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry CU-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68~94.

    • Wang Xiangsong, Sun Min, Weinberg R F, Cai Keda, Zhao Guochun, Xia, Xiaoping, Li Pengfei, Liu Xijun, 2022. Adakite generation as a result of fluid-fluxed melting at normal lower crustal pressures. Earth and Planetary Science Letters, 594: 117744.

    • Wen Daren, Liu Dunyi, Chung Sunlin, Chu Meifei, Ji Jianqing, Zhang Qi, Song Biao, Lee Tungyi, Yeh Mengwang, Lo Chinghua. 2008a. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191~201.

    • Wen Daren, Chung Sunlin, Song Biao, Iizuka Y, Yang Huaijen, Ji Jianqing, Liu Dayun, Gallet S. 2008b. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1~11.

    • Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339~342.

    • Xu Wangchun, Zhang Hongfei, Guo Liang, Yuan Honglin. 2010. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293~306.

    • Xu Zhiqin, Li Haibing, Yang Jingsui. 2006. An ergogenic plateau- the orogenic collage and orogenic types of the Qinghai Tibet plateau. Earth Science Frontiers, 13(4): 1~17 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Ji Shaocheng, Zhang Zeming, Liu Yan. 2011. On the tectonics of the India-Asia collision. Acta Geological Sinica, 85(1): 1~33 (in Chinese with Englishabstract).

    • Yang Zhiming, Lu Yongjun, Hou Zengqian, Chang Zhaoshan. 2015. High-Mgdiorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2): 227~254.

    • Yi Jiankang, Zhu Dicheng, Weinberg R F, Wang Qing, Xie Jincheng, Zhang Liangliang, Zhao Zhidan. 2022. Origin of Tibetan post-collisional high-K adakitic granites: Anatexis of intermediate to felsic arc rocks. Geology, 50: 771~775.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Zeng Yunchuan, Chen Jianlin, Xu Jifeng, Lei Ming, Xiong Qiuwei. 2017. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry. Gondwana Research, 41: 51~64.

    • Zhang Hongfei, Harris N, Guo Liang, Xu Wangchun. 2010. The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet. Contributions to Mineralogy and Petrology, 160(1): 83~98.

    • Zhang Liyun, Ducea M N, Ding Lin, Pullen A, Kapp P, Hoffman D. 2014. Southern Tibetan Oligocene-Miocene adakites: A record of Indian slab tearing. Lithos, 210-211: 209~223.

    • Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Liou J G. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719~733.

    • Zhang Zeming, Dong Xin, Santosh M, Liu Feng, Wang Wei, Yiu Fei, He Zhenyu, Shen Kun. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123~137.

    • Zhang Zeming, Dong Xin, Xiang Hua, Liou J G, Santosh M. 2013. Building of the deep Gangdese arc, south Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547~2580.

    • Zhang Zeming, Dong Xin, Xiang Hua, Ding Huixia, He Zhenyu, Liou J G. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet: Post-collisional metamorphism and anatexis. Journal of Metamorphic Geology, 33(1): 1~21.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zhuolin, Kang Dongyan, Mu Hongchen, Qin Shengkai, Jiang Yuanyuan, Li Mengmei. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the Eastern Himalayan orogen. Journal of Earth Science, 29(5): 1010~1025.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrologica Sinica, 35(2): 275~294 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zhuolin, Chen Yanfei. 2020. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Research, 77: 136~146.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zhuolin, Palin R M, Santosh M, Chen Yanfei, Jiang Yuanyuan, Qin Shengkai, Kang Dongyan, Li Wentan. 2022. The Mesozoic magmatic, metamorphic, and tectonic evolution of the eastern Gangdese magmatic arc, southern Tibet. Geological Society of America Bulletin, 134(7-8): 1721~1740.

    • Zhao Wenjin, Nelson K D, Che J, Quo J, Lu D, Wu C, Liu X. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455): 557~559.

    • Zhao Zhidan, Mo Xuanxue, Dilek Y, Niu Yaoling, DePaolo D J, Robinson P, Zhu Dicheng, Sun Chenguang, Dong Guochen, Zhou Su, Luo Zhaohua, Hou Zengqian. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190~212.

    • Zheng Yuanchuan, Hou Zengqian, Li Qiuyun, Sun Qingzhong, Liang Wei, Fu Qiang, Li Wei, Huang Kexian. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: Evidence from in situ zirconU-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296~311.

    • Zheng Yuanchuan, Hou Zengqian, Gong Yingli, Liang Wei, Sun Qingzhong, Zhang Song, Fu Qiang, Huang Kexian, Li Qiuyun, Li Wei. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190: 240~263.

    • Zhu Dicheng, Pan Guitang, Chung Sunlin, Liao Zhongli, Wang Liquan, Li Guangming. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. International Geology Review, 50(5): 442~471.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Wang Qing, Ji Huawen, Dong Guochen, Sui Qinglin, Liu Yongsheng, Yuan Honglin, Mo Xuanxue. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290~308.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Hou Zengqian, Mo Xuanxue. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.

    • Zhu Dicheng, Wang Qing, Zhao Zhidan, Chung Sunlin, Cawood P A, Niu Yaoling, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5(1): 14289.

    • Zhu Dicheng, Wang Qing, Cawood P A, Zhao Zhidan, Mo Xuanxue. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214~223.

    • Zhu Dicheng, Wang Qing, Chung Sunlin, Cawood P A, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583~604.

    • 官文慧, 汪洋. 2017. 定量估算造山带地壳厚度的岩石地球化学方法: 综述与实例. 地球科学与环境学报, 39(2): 214~224.

    • 马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵. 2021. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95(1): 107~123.

    • 莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135~148.

    • 莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281~290.

    • 莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240~1244.

    • 潘桂棠, 丁俊, 姚冬生, 王立全. 2004. 1∶150万青藏高原及邻区地质图. 成都: 成都地图出版社.

    • 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.

    • 许志琴, 李海兵, 杨经绥. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1~17.

    • 许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1~33.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化. 岩石学报, 35(2): 275~294.

  • 参考文献

    • Allegre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Schärer U, Marcoux J. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.

    • Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Developments in Geochemistry. Amsterdam: Elsevier, 2: 63~114.

    • Burg J P, Nievergelt P, Oberli F, Seward D, Davy P, Maurin J C, Diao Zhizhong, Meier M. 1998. The Namche Barwa syntaxis: Evidence for exhumation related to compressional crustal folding. Journal of Asian Earth Sciences, 16(2-3): 239~252.

    • Castillo P R, Janney P E, Solidum R U. 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1): 33~51.

    • Chapman J B, Ducea M N, DeCelles P G, Profeta L. 2015. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology, 43(10): 919~922.

    • Chen Jianlin, Xu Jifeng, Zhao Weixia, Dong Yanhui, Wang Baodi, Kang Zhiqiang. 2011. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the southern Tibetan Plateau. Lithos, 125(3-4): 928~939.

    • Chen Yue, Zhu Dicheng, Zhao Zhidan, Meng Fanyi, Wang Qing, Santosh M, Wang Liquan, Dong Guochen, Mo Xuanxue. 2014. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449~463.

    • Chiu Hanyi, Chung Sunlin, Wu Fuyuan, Liu Dunyi, Liang Yuhsuan, Lin Ijhen, Iizuka Y, Xie Liewen, Wang Yanbin, Chu Meifei. 2009. ZirconU-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477(1-2): 3~19.

    • Chung Sunlin, Liu Dunyi, Ji Jianqing, Chu Meifei, Lee Haoyang, Wen Dajen, Lo Chinghua, Lee Tungyi, Qian Qing, Zhang Qi. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021.

    • Chung Sunlin, Chu Meifei, Zhang Yuquan, Xie Yingwei, Lo Chinghua, Lee Tungyi, Lan Chingying, Li Xianhua, Zhang Qi, Wang Yizhao. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173~196.

    • Chung Sunlin, Chu Meifei, Ji Jianqing, O'Reilly S Y, Pearson N J, Liu Dunyi, Lee Tunhyi, Lo Chinghua. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36~48.

    • Corfu F, Hanchar J M, Hoskin P W, Kinny P. 2003. Atlas of zircon textures. Reviewsin Mineralogy and Geochemistry, 53(1): 469~500.

    • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662~665.

    • Ding Huixia, Zhang Zeming. 2019. Early Cenozoic thickening and reworking of the eastern Gangdese arc, south Tibet: Constraints from the Oligocene granitoids. Geological Society, London, Special Publications, 474(1): 291~308.

    • Ding Lin, Zhong Dalai. 1999. Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Science in China Series D: Earth Sciences, 42(5): 491~505.

    • Ding Lin, Kapp P, Zhong Dalai, Deng Wanming. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10), 1833~1865.

    • Dong Xin, Zhang Zeming, Liu Feng, Wang Wei, Yu Fei, Shen Kun. 2011a. Zircon U-Pb geochronology of the Nyainqêntanglha Group from the Lhasa terrane: New constraints on the Triassic orogeny of the south Tibet. Journal of Asian Earth Sciences, 42(4): 732~739.

    • Dong Xin, Zhang Zeming, Santosh M, Wang Wei, Yu Fei, Liu Feng. 2011b. Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications. Journal of Geodynamics, 52(5): 389~405.

    • Farner M J, Lee C T A. 2017. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth and Planetary Science Letters, 470: 96~107.

    • Gao Yongfeng, Hou Zengqian, Kamber B S, Wei Ruihua, Meng Xiangjin, Zhao Rongsheng. 2007. Adakite-like porphyries from the southern Tibetan continental collision zones: Evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology, 153(1): 105~120.

    • Gao Yongfeng, Yang Zhusen, Santosh M, Hou Zengqian, Wei Ruihua, Tian Shihong. 2010. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos, 119(3-4): 651~663.

    • Geng Quanru, Pan Guitang, Zheng Lailin, Chen Zhiliang, Fisher R D, Sun Zhiming, Ou Chunsheng, Dong Han, Wang Xiaowei, Li Sheng, Lou Xiongying, Fu Heng. 2006. The Eastern Himalayan syntaxis: Major tectonic domains, ophiolitic mélanges and geologic evolution. Journal of Asian Earth Sciences, 27(3): 265~285.

    • Guan Qi, Zhu Dicheng, Zhao Zhidan, Dong Guochen, Zhang Liangliang, Li Xiaowei, Liu Min, Mo Xuanxue, Liu Yongsheng, Yuan Honglin. 2012. Crustal thickening prior to 38 Ma in southern Tibet: Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith. Gondwana Research, 21(1): 88~99.

    • Guan Wenhui, Wang Yang. 2017. Petrogeochemical methods for quantitative estimation of the crustal thickness of orogenic belt: Overview and case studies. Journal of Earth Science and Environment, 39(2): 214~224 (in Chinese with English abstract).

    • Guo Liang, Zhang Hongfei, Harris N, Pan Fabin, Xu Wangchun. 2011. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints fromU-Pb zircon dating and Hf isotopic composition. Lithos, 127(1-2): 54~67.

    • Guo Liang, Zhang Hongfei, Harris N, Parrish R, Xu Wangchuan, Shi Zhangliang. 2012. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Research, 21(1): 100~111.

    • Guo Zhengfu, Wilson M, Liu Jiaqi. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205~224.

    • Guo Zhengfu, Wilson M, Zhang Maoliang, Cheng Zhihui, Zhang Lihong. 2015. Post-collisionalultrapotassic mafic magmatism in South Tibet: Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. Journal of Petrology, 56(7): 1365~1406.

    • Hirn A, Lepine J C, Jobert G, Sapin M, Wittlinger G, Xin Xuzhong, Yuan Gaoen, Jing Wangxiang, Wen Tengji, Bai Xiongshao, Pandey M R. 1985. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23~25.

    • Hou Zengqian, Gao Yongfeng, Qu Xiaoming, Rui Zongyao, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139~155.

    • Ji Weiqiang, Wu Fuyuan, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. ZirconU-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229~245.

    • Ji Weiqiang, Wu Fuyuan, Liu Chuanzhou, Zhang Hao. 2017. Zircon U-Pb geochronology and Hf isotopes of granitic rocks and river sands in the Nyingchi region, Tibet: Constraints on evolution of the deep crust beneath the southeast Lhasa terrane. Journal of Asian Earth Sciences, 145: 613~625.

    • Jiang Ziqi, Wang Qiang, Wyman D A, Li Zhengxiang, Yang Jinhui, Shi Xiaobing, Ma Lin, Tang Gongjian, Gou Guoning, Jia Xiaohui, Guo Haifeng. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous-Early Oligocene (~91-30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196: 213~231.

    • Kapp J L D, Harrison T M, Kapp P, Grove M, Lovera O M, Ding Lin. 2005. Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research: Solid Earth, 110(B8).

    • Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding Lin. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917~933.

    • Kilian R, Stern R C. 2002. Constraints on the interaction between slab melts and the mantle wedge from adakitic glass in peridotite xenoliths. European Journal of Mineralogy, 14(1): 25~36.

    • Lee Haoyang, Chung Sunling, Lo, Chinghua, Ji Jianqing, Lee Tungyi, Qian Qing, Zhang Qi. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics, 477(1-2): 20~35.

    • Lin Yanhao, Zhang Zeming, Dong Xin, Shen Kun, Lu Xiao. 2013. Precambrian evolution of the Lhasa terrane, Tibet: Constraint from the zircon U-Pb geochronology of the gneisses. Precambrian Research, 237: 64~77.

    • Liu Yan, Zhong Dalai. 1997. Petrology of high-pressure granulites from the eastern Himalayan syntaxis. Journal of Metamorphic Geology, 15(4): 451~466.

    • Lu Tianyu, He Zhenyu, Klemd R. 2020. Two phases of post-onset collision adakitic magmatism in the southern Lhasa subterrane, Tibet, and their tectonic implications. Geological Society of America Bulletin, 132(7-8): 1587~1602.

    • Lu Yongjun, Loucks R R, Fiorentini M L, Yang Zhiming, Hou Zengqian. 2015. Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet. Geology, 43(7): 583~586.

    • Ludwig K R. 2003. User's manual for isoplot 3. 00, a geochronlogical toolkit for microsoft excel. Geochronlogical Center Special Publication, 4: 25~32.

    • Ma Xuxuan, Xu Zhiqin, Liu Fei, Zhao Zhongbao, Li Haibing. 2021. Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet. Acta Geological Sinica, 95(1): 107~123 (in Chinese with English abstract).

    • Ma Xuxuan, Attia S, Cawood T, Cao Wenrong, Xu Zhiqin, Li Haibing. 2022. Arc tempos of the Gangdese batholith, southern Tibet. Journal of Geodynamics, 149: 101897.

    • Macpherson C G, Dreher S T, Thirlwall M F. 2006. Adakites with slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243(3-4): 581~593.

    • Mahéo G, Guillot S, Blichert-Toft J, Rolland Y, Pêcher A. 2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 195(1-2): 45~58.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.

    • Middlemost E A K. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215~224.

    • Miller C H, Schuster R, Klötzli U, Frank W, Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Ptrology, 40(9): 1399~1424.

    • Mo Xuanxue, Zhao Zhidan, Deng Jinfu, Dong Guochen, Zhou Su, Guo Tieying, Zhang Shuangquan, Wang Liangliang. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers, 10(3): 135~148 (in Chinese with English abstract).

    • Mo Xuanxue, Dong Guochen, Zhao Zhidan, Zhou Su, Wang Liangliang, Qiu Ruizhao, Zhang Fengqin. 2005. Special and temporal distribution and characteristics of the granitoids in the Gangdese, Tibet and implication of crustal growth and evolution. Geological Journal of China Universities, 11(3): 281~290 (in Chinese with English abstract).

    • Mo Xuanxue, Dong Guochen, Zhao Zhidan, Guo Tieying, Wang Liangliang, Chen Tao. 2005. Timing of magma mixing in the Gangdisê magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinica (English Edition), 79(1): 66~76.

    • Mo Xuanxue, Zhao Zhidan, Zhou Su, Dong Guochen, Liao Zhongli. 2007. On the timing of India-Asia continental collision. Geological Bulletin of China, 26(10): 1240~1244 (in Chinese with English abstract).

    • Molnar P. 1988. A review of geophysical constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their tectonic implications. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 326(1589): 33~88.

    • Niu Yaoling, Zhao Zhidan, Zhu Dicheng, Mo Xuanxue. 2013. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Science Reviews, 127: 96~110.

    • Pan Fabin, Zhang Hongfei, Harris N, Xu Wangchun, Guo Liang. 2012. Oligocene magmatism in the eastern margin of the east Himalayan syntaxis and its implication for the India-Asia post-collisional process. Lithos, 154: 181~192.

    • Pan Guitang, Ding Jun, Yao Dongsheng, Wang Liquan. 2004. Guidebook of 1∶1500000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Aeras. Chengdu: Cartographic Publishing House (in Chinese).

    • Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521~533 (in Chinese with English Abstract).

    • Paton C, Woodhead J D, Hellstrom J C, Hergt J M, Greig A, Maas R. 2010. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11: Q0AA06.

    • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12): 2508~2518.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.

    • Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca batholith, Peru. Journal of Petrology, 37(6): 1491~1521.

    • Profeta L, Ducea M N, Chapman J B, Paterson S R, Gonzales S M H, Kirsch M, Petrescu L, DeCelles P G. 2015. Quantifying crustal thickness over time in magmatic arcs. Scientific Reports, 5(1): 17786.

    • Qu Xiaoming, Hou Zengqian, Li Youguo. 2004. Melt components derived from asubducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos, 74(3-4): 131~148.

    • Sen C, Dunn T. 1995. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite. Contributions to Mineralogy & Petrology, 119(4): 422~432.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Sundell K, Laskowski A, Kapp P, Ducea M, Chapman J. 2021. Jurassic to Neogene Quantitative crustal thickness estimates in southern Tibet. Geological Society of America Today, 31(6): 4~10.

    • Tang Ming, Ji Weiqiang, Chu Xu, Wu Anbin, Chen Chen. 2021. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49(1): 76~80.

    • Tang Yuwei, Chen Long, Zhao Zifu, Zheng Yongfei. 2020. Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet. Geological Society of America Bulletin, 132, 1347~1364.

    • Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, CalsterenV P, Deng W. 1996. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37(1): 45~71.

    • Wang Qiang, Xu Jifeng, Jian Ping, Bao Zhiwei, Zhao Zhenhua, Li Chaofeng, Xiong Xiaolin, Ma Jinlong. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization. Journal of Petrology, 47(1): 119~144.

    • Wang Rui, Richards J P, Zhou Limin, Hou Zengqian, Stern R A, Creaser R A, Zhu Jingjing. 2015. The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry CU-Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 150: 68~94.

    • Wang Xiangsong, Sun Min, Weinberg R F, Cai Keda, Zhao Guochun, Xia, Xiaoping, Li Pengfei, Liu Xijun, 2022. Adakite generation as a result of fluid-fluxed melting at normal lower crustal pressures. Earth and Planetary Science Letters, 594: 117744.

    • Wen Daren, Liu Dunyi, Chung Sunlin, Chu Meifei, Ji Jianqing, Zhang Qi, Song Biao, Lee Tungyi, Yeh Mengwang, Lo Chinghua. 2008a. Zircon SHRIMP U-Pb ages of the Gangdese batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191~201.

    • Wen Daren, Chung Sunlin, Song Biao, Iizuka Y, Yang Huaijen, Ji Jianqing, Liu Dayun, Gallet S. 2008b. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1~11.

    • Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339~342.

    • Xu Wangchun, Zhang Hongfei, Guo Liang, Yuan Honglin. 2010. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos, 114(3-4): 293~306.

    • Xu Zhiqin, Li Haibing, Yang Jingsui. 2006. An ergogenic plateau- the orogenic collage and orogenic types of the Qinghai Tibet plateau. Earth Science Frontiers, 13(4): 1~17 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Li Haibing, Ji Shaocheng, Zhang Zeming, Liu Yan. 2011. On the tectonics of the India-Asia collision. Acta Geological Sinica, 85(1): 1~33 (in Chinese with Englishabstract).

    • Yang Zhiming, Lu Yongjun, Hou Zengqian, Chang Zhaoshan. 2015. High-Mgdiorite from Qulong in southern Tibet: Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens. Journal of Petrology, 56(2): 227~254.

    • Yi Jiankang, Zhu Dicheng, Weinberg R F, Wang Qing, Xie Jincheng, Zhang Liangliang, Zhao Zhidan. 2022. Origin of Tibetan post-collisional high-K adakitic granites: Anatexis of intermediate to felsic arc rocks. Geology, 50: 771~775.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Zeng Yunchuan, Chen Jianlin, Xu Jifeng, Lei Ming, Xiong Qiuwei. 2017. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry. Gondwana Research, 41: 51~64.

    • Zhang Hongfei, Harris N, Guo Liang, Xu Wangchun. 2010. The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet. Contributions to Mineralogy and Petrology, 160(1): 83~98.

    • Zhang Liyun, Ducea M N, Ding Lin, Pullen A, Kapp P, Hoffman D. 2014. Southern Tibetan Oligocene-Miocene adakites: A record of Indian slab tearing. Lithos, 210-211: 209~223.

    • Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Liou J G. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719~733.

    • Zhang Zeming, Dong Xin, Santosh M, Liu Feng, Wang Wei, Yiu Fei, He Zhenyu, Shen Kun. 2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research, 21(1): 123~137.

    • Zhang Zeming, Dong Xin, Xiang Hua, Liou J G, Santosh M. 2013. Building of the deep Gangdese arc, south Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547~2580.

    • Zhang Zeming, Dong Xin, Xiang Hua, Ding Huixia, He Zhenyu, Liou J G. 2015. Reworking of the Gangdese magmatic arc, southeastern Tibet: Post-collisional metamorphism and anatexis. Journal of Metamorphic Geology, 33(1): 1~21.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zhuolin, Kang Dongyan, Mu Hongchen, Qin Shengkai, Jiang Yuanyuan, Li Mengmei. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the Eastern Himalayan orogen. Journal of Earth Science, 29(5): 1010~1025.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrologica Sinica, 35(2): 275~294 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zhuolin, Chen Yanfei. 2020. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Research, 77: 136~146.

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zhuolin, Palin R M, Santosh M, Chen Yanfei, Jiang Yuanyuan, Qin Shengkai, Kang Dongyan, Li Wentan. 2022. The Mesozoic magmatic, metamorphic, and tectonic evolution of the eastern Gangdese magmatic arc, southern Tibet. Geological Society of America Bulletin, 134(7-8): 1721~1740.

    • Zhao Wenjin, Nelson K D, Che J, Quo J, Lu D, Wu C, Liu X. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455): 557~559.

    • Zhao Zhidan, Mo Xuanxue, Dilek Y, Niu Yaoling, DePaolo D J, Robinson P, Zhu Dicheng, Sun Chenguang, Dong Guochen, Zhou Su, Luo Zhaohua, Hou Zengqian. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos, 113(1-2): 190~212.

    • Zheng Yuanchuan, Hou Zengqian, Li Qiuyun, Sun Qingzhong, Liang Wei, Fu Qiang, Li Wei, Huang Kexian. 2012. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: Evidence from in situ zirconU-Pb dating, Hf-O isotopes, and whole-rock geochemistry. Lithos, 148: 296~311.

    • Zheng Yuanchuan, Hou Zengqian, Gong Yingli, Liang Wei, Sun Qingzhong, Zhang Song, Fu Qiang, Huang Kexian, Li Qiuyun, Li Wei. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belt, southern Tibet: Implications for mid-ocean ridge subduction and crustal growth. Lithos, 190: 240~263.

    • Zhu Dicheng, Pan Guitang, Chung Sunlin, Liao Zhongli, Wang Liquan, Li Guangming. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet. International Geology Review, 50(5): 442~471.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Wang Qing, Ji Huawen, Dong Guochen, Sui Qinglin, Liu Yongsheng, Yuan Honglin, Mo Xuanxue. 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology, 328: 290~308.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Dilek Y, Hou Zengqian, Mo Xuanxue. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429~1454.

    • Zhu Dicheng, Wang Qing, Zhao Zhidan, Chung Sunlin, Cawood P A, Niu Yaoling, Liu Shengao, Wu Fuyuan, Mo Xuanxue. 2015. Magmatic record of India-Asia collision. Scientific Reports, 5(1): 14289.

    • Zhu Dicheng, Wang Qing, Cawood P A, Zhao Zhidan, Mo Xuanxue. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214~223.

    • Zhu Dicheng, Wang Qing, Chung Sunlin, Cawood P A, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583~604.

    • 官文慧, 汪洋. 2017. 定量估算造山带地壳厚度的岩石地球化学方法: 综述与实例. 地球科学与环境学报, 39(2): 214~224.

    • 马绪宣, 许志琴, 刘飞, 赵中宝, 李海兵. 2021. 大陆弧岩浆幕式作用与地壳加厚: 以藏南冈底斯弧为例. 地质学报, 95(1): 107~123.

    • 莫宣学, 赵志丹, 邓晋福, 董国臣, 周肃, 郭铁鹰, 张双全, 王亮亮. 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135~148.

    • 莫宣学, 董国臣, 赵志丹, 周肃, 王亮亮, 邱瑞照, 张风琴. 2005. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息. 高校地质学报, 11(3): 281~290.

    • 莫宣学, 赵志丹, 周肃, 董国臣, 廖忠礼. 2007. 印度-亚洲大陆碰撞的时限. 地质通报, 26(10): 1240~1244.

    • 潘桂棠, 丁俊, 姚冬生, 王立全. 2004. 1∶150万青藏高原及邻区地质图. 成都: 成都地图出版社.

    • 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.

    • 许志琴, 李海兵, 杨经绥. 2006. 造山的高原——青藏高原巨型造山拼贴体和造山类型. 地学前缘, 13(4): 1~17.

    • 许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1~33.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化. 岩石学报, 35(2): 275~294.