en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

白洋,男,1991年生。讲师,镁铁-超镁铁岩成岩成矿作用研究方向。E-mail:baiyang01@tyut.edu.cn。

参考文献
Bai Yang, Su Benxun, Xiao Yan, Chen Chen, Cui Mengmeng, He Xiaoqing, Qin Liping, Charlier B. 2019. Diffusion-driven chromium isotope fractionation in minerals of ultramafic cumulates: Elemental and isotopic evidence from the Stillwater complex. Geochimica et Cosmochimica Acta, 263: 167~181.
参考文献
Bai Yang, Su Benxun, Xiao Yan, Cui Mengmeng, Charlier B. 2020. Magnesium and iron isotopic evidence of inter-mineral diffusion in ultramafic cumulates of the peridotite zone, Stillwater complex. Geochimica et Cosmochimica Acta, 292: 152~169.
参考文献
Bai Yang, Su Benxun, Xiao Yan, Cui Mengmeng, Wang Jing, Yuan Qinghan. 2023. Distribution of Co-Ni in mafic-ultramafic layered intrusion and implications for formation of magmatic deposits: A case study of the Stillwater complex. Acta Petrologica Sinica, 39: 1172~1184 (in Chinese with English abstract).
参考文献
Ball J W, Bassett R L. 2000. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis. Chemical Geology, 168: 123~134.
参考文献
Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites: Questioning about the rock/melt interaction metallogeny. Geological Bulletin of China, 28: 1741~1761 (in Chinese with English abstract).
参考文献
Birck J L, Allègre C J. 1984. Chromium isotopic anomalies in Allende refractory inclusions. Geophysical Research Letters, 11: 943~946.
参考文献
Bonnand P, James R H, Parkinson I J, Connelly D P, Fairchild I J. 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10~20.
参考文献
Bonnand P, Parkinson I J, Anand M. 2016. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochimica et Cosmochimica Acta, 175: 208~221.
参考文献
Bonnand P, Bruand E, Matzen A K, Jerram M, Schiavi F, Wood B J, Halliday A N. 2020a. Redox control on chromium isotope behavior in silicate melts in contact with magnesiochromite. Geochimica et Cosmochimica Acta, 288: 282~300.
参考文献
Bonnand P, Doucelance R, Boyet M, Bachèlery P, Bosq C, Auclair D, Schiano P. 2020b. The influence of igneous processes on the chromium isotopic compositions of ocean island basalts. Earth and Planetary Science Letters, 532: 116~128.
参考文献
Bouilhol P, Burg J P, Bodinier J L. 2009. Magma and fluid percolation in arc to forearc mantle: Evidence from Sapat (Kohistan, Northern Pakistan). Lithos, 107: 17~37.
参考文献
Cawthorn R G, Ashwal L D. 2009. Origin of anorthosite and magnetite layers in the Bushveld complex, constrained by major element compositions of plagioclase. Journal of Petrology, 50: 1607~1637.
参考文献
Chen Chen, Su Benxun, Uysal I, Avc E, Zhang Pengfei, Xiao Yan, He Yongsheng. 2015. Iron isotopic constraints on the origin of peridotite and chromitite in the K1z1ldağ ophiolite, southern Turkey. Chemical Geology, 417: 115~124.
参考文献
Chen Chen, Su Benxun, Xiao Yan, Sakyi P A, He Xiaoqing, Pang K N, Uysal I, Avci E, Qin Liping. 2019. High-temperature chromium isotope fractionation and its implications: Constraints from Kizildag ophiolite, SE Turkey. Lithos, 343: 361~369.
参考文献
Chen Liemeng, Song Xieyan, Zhu Xiangkun, Zhang Xiaoqi, Yu Songyue, Yi Junnian. 2014. Iron isotope fractionation during crystallization and sub-solidus re-equilibration: Constraints from the Baima mafic layered intrusion, SW China. Chemical Geology, 380: 97~109.
参考文献
Chen Liemeng, Teng Fangzhen, Song Xieyan, Hu Ruizhong, Yu Songyue, Zhu Dan, Kang Jie. 2018. Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion. Earth and Planetary Science Letters, 487: 74~83.
参考文献
Chen Yanhong, Yang Jingsui, 2018. Formation of podiform chromitite deposits: Review and prospects. Earth Science, 43: 991~1010 (in Chinese with English abstract).
参考文献
Coogan L A, Jenkin G R, Wilson R N. 2002. Constraining the cooling rate of the lower oceanic crust: A new approach applied to the Oman ophiolite. Earth and Planetary Science Letters, 199: 127~146.
参考文献
Drake M J, Newsom H E, Capobianco C J. 1989. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies. Geochimica et Cosmochimica Acta, 53: 2101~2111.
参考文献
Eales H V, Costin G. 2012. Crystally contaminated komatiite: Primary source of the chromitites and Marginal, Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld Complex. Economic Geology, 107: 645~665.
参考文献
Economou-Eliopoulos M, Frei R, Mitsis I. 2020. Factors controlling the chromium isotope compositions in podiform chromitites. Minerals, 10: 1~22.
参考文献
Eggins S M, Rudnick R L, McDonough W F. 1998. The composition of peridotites and their minerals: A laser-ablation ICP-MS study. Earth and Planetary Science Letters, 154: 53~71.
参考文献
Elkins L J, Gaetani G A, Sims K W. 2008. Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth and Planetary Science Letters, 265: 270~286.
参考文献
Farkaš J, Chrastny V, Novak M, Cadkova E, Pasava J, Chakrabarti R, Jacobsen S B, Ackerman L, Bullen T D. 2013. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth's mantle over geologic time. Geochimica et Cosmochimica Acta, 123: 74~92.
参考文献
Freer R. 1981. Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contributions to Mineralogy and Petrology, 76: 440~454.
参考文献
Frey F A, Garcia M O, Roden M F. 1994. Geochemical characteristics of Koolau Volcano: Implications of intershield geochemical differences among Hawaiian volcanoes. Geochimica et Cosmochimica Acta, 58: 1441~1462.
参考文献
Friedrich B M, Marques J C, Olivo G R, Frantz J C, Joy B, Waldemir J A Q. 2019. Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: Evidence from inclusions in chromite. Mineralium Deposita, 4: 1~22.
参考文献
Ganguly J. 2002. Diffusion kinetics in minerals: Principles and applications to tectono-metamorphic processes. European Mineralogical Union Notes in Mineralogy, 4: 271~309.
参考文献
Hellebrand E, Snow J E, Dick H J, Hofmann A W. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410: 677~681.
参考文献
Helz R T. 1987. Differentiation behavior of Kilauea Iki lava lake, Kilauea volcano, Hawaii: An overview of past and current work. Magmatic Processes: Physicochemical Principles, 1: 241~258.
参考文献
Helz R T, Kirschenbaum H K, Marinenko J W, Qian R. 1994. Whole-rock analyses of core samples from the 1967, 1975, 1979 and 1981 drillings of Kilauea lki lava lake, Hawaii. US Geological Survey Open File Report, 684: 1~65.
参考文献
Helz R T. 2012. Trace-element analyses of core samples from the 1967~1988 drillings of Kilauea Iki lava lake, Hawaii. US Department of the Interior, US Geological Survey Open File Report, 1050: 1~56.
参考文献
Huang Fang, Lundstrom C C, McDonough W F. 2006. Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. American Mineralogist, 91: 1385~1400.
参考文献
Ionov D A, O'Reilly S Y, Genshaft Y S, Kopylova M G. 1996. Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions, and trace-element residence. Contributions to Mineralogy and Petrology, 125: 375~392.
参考文献
Ionov D A, Hofmann A W. 2007. Depth of formation of subcontinental off-craton peridotites. Earth and Planetary Science Letters, 261: 620~634.
参考文献
Irving A J, Frey F A. 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42: 771~787.
参考文献
Jin Zhenmin, Bai Quan, Kohlstedt David, Jin Shuyan. 1996. Experimental study on the relationship between chromite enrichment and partial melting of the upper mantle. Geological Review, 42: 424~429 (in Chinese with English abstract).
参考文献
Jollands M C, O'Neill H S C, Van Orman J. 2017. Substitution and diffusion of Cr2+ and Cr3+ in synthetic forsterite and natural olivine at 1200-1500°C and 1 bar. Geochimica et Cosmochimica Acta, 220: 407~428.
参考文献
Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42: 655~671.
参考文献
Klein-BenDavid O, Pettke T, Kessel R. 2011. Chromium mobility in hydrous fluids at upper mantle conditions. Lithos, 125: 122~130.
参考文献
König S, Münker C, Schuth S. 2010. Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta, 74: 684~704.
参考文献
Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591: 1220~1247.
参考文献
Lugmair G W, Shukolyukov A. 1998. Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62: 2863~2886.
参考文献
Lundstrom C C, Shaw H F, Ryerson F J, Williams Q, Gill J. 1998. Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: Implications for elemental fractionations in the depleted mantle. Geochimica et Cosmochimica Acta, 62: 849~862.
参考文献
Ma Haibo, Xu Lijuan, Shen Ji, Liu Shengao, Li Shuguang. 2022. Chromium isotope fractionation during magmatic processes: Evidence from mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 327: 79~92.
参考文献
Mallmann G, O'Neill H S C. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50: 1765~1794.
参考文献
McDonald J A. 1965. Liquid immiscibility as one factor in chromitite seam formation in the Bushveld igneous complex. Economic Geology, 60: 1674~1685.
参考文献
McDonough W F, Sun Shensu. 1995. The composition of the Earth. Chemical Geology, 120: 223~253.
参考文献
Moynier F, Yin Qingzhu, Schauble E. 2011. Isotopic evidence of Cr partitioning into Earth's core. Science, 331: 1417~1420.
参考文献
Ohtani E, Kawabe I, Moriyama J, Nagata Y. 1989. Partitioning of elements between majorite garnet and melt and implications for petrogenesis of komatiite. Contributions to Mineralogy and Petrology, 103: 263~269.
参考文献
Palme H, O'Neill H S C. 2014. Cosmochemical estimates of mantle composition. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford, Elsevier: 1~39.
参考文献
Papike J J, Karner J M, Shearer C K. 2005. Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. American Mineralogist, 90: 277~290.
参考文献
Qin Liping, Wang Xiangli. 2017. Chromium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 379~414.
参考文献
Richter F M, Watson E B, Mendybaev R A, Dauphas N, Georg B, Watkins J, Valley J. 2009. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73: 4250~4263.
参考文献
Ringwood A E, Kato T, Hibberson W, Ware N. 1990. High-pressure geochemistry of Cr, V and Mn and implications for the origin of the Moon. Nature, 347: 174~176.
参考文献
Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 177: 314~327.
参考文献
Ruan Tao, Zhong Hong, Zhu Jianming, Bai Zhongjie. 2021. The formation of giant podiform chromitite by asthenospheric melts in supra-subduction zone environments. Online in Research Square, doi. org/10. 21203/rs. 3. rs-225374/v1.
参考文献
Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33: 267~309.
参考文献
Rudnick R L, Gao Shan. 2014. Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition. Oxford, Elsevier: 1~39.
参考文献
Scheiderich K, Amini M, Holmden C, Francois R. 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth and Planetary Science Letters, 423: 87~97.
参考文献
Schoenberg R, Zink S, Staubwasser M, Blanckenburg F V. 2008. The stable Cr isotope inventory of Solid Earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology, 249: 294~306.
参考文献
Schoenberg R, Merdian A, Holmden C, Kleinhanns I C, Haler K, Wille M, Reitter E. 2016. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochimica et Cosmochimica Acta, 183: 14~30.
参考文献
Selkin P A, Gee J S, Meurer W P, Hemming S R. 2006. Paleointensity record from the 2. 7 Ga Stillwater complex, Montana. Geochemistry, Geophysics, Geosystems, 9: 1~9.
参考文献
Shen Ji, Liu Jia, Qin Liping, Wang Shuijiong, Li Shuguang, Xia Jiuxing, Ke Shan, Yang Jingsui. 2016. Chromium isotope signature during continental crust subduction in metamorphic rocks. Geochemistry, Geophysics, Geosystems, 16: 3840~3854.
参考文献
Shen Ji, Qin Liping, Fang Ziyao, Zhang Yingnan, Liu Jia. , Liu Wei, Wang Fangyue, Xiao Yan, Yu Huimin, Wei Shiqiang. 2018. High-temperature inter-mineral Cr isotope fractionation: A comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton. Earth and Planetary Science Letters, 499: 278~290.
参考文献
Shen Ji, Yang Bing, Xia Jiuxing. 2020a. Chromium element and isotope geochemistry in high temperature systems. Journal of University of Science and Technology of China, 50: 1229~1248.
参考文献
Shen Ji, Xia Jiuxing, Qin Liping, Carlson R W, Huang Shichun, Helz R T, Mock T D. 2020b. Stable chromium isotope fractionation during magmatic differentiation: Insights from Hawaiian basalts and implications for planetary redox conditions. Geochimica et Cosmochimica Acta, 278: 289~304.
参考文献
Shen Ji, Wang Shuijiong, Qin Liping, Ni Huawei, Li Shuguang, Du Jinxue, Shen Tingting, Zhang Lifei, Yu Huimin. 2021. Tracing serpentinite dehydration in a subduction channel: Chromium element and isotope evidence from subducted oceanic crust. Geochimica et Cosmochimica Acta, 313: 1~20.
参考文献
Siebert J, Badro J, Antonangeli D, Ryerson F J. 2013. Terrestrial accretion under oxidizing conditions. Science, 339: 1194~1197.
参考文献
Spandler C, Mavrogenes J, Arculus R. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater complex. Geology, 33: 893~896.
参考文献
Spandler C, Pettke T, Rubatto D. 2011. Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. Journal of Petrology, 52: 1207~1236.
参考文献
Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan. 2018a. Potential applications of Fe and Mg isotopes in genesis of chromite deposits in ophiolites. Earth Science, 43: 1011~1024 (in Chinese with English abstract).
参考文献
Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018b. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37: 1035~1046 (in Chinese with English abstract).
参考文献
Su Benxun, Bai Yang, Cui Mengmeng, Wang Jing, Xiao Yan, Lenaz D, Sakyi P A, Robinson P T. 2020a. Petrogenesis of the ultramafic zone of the Stillwater complex in North America: Constraints from mineral chemistry and stable isotopes of Li and O. Contributions to Mineralogy and Petrology, 175: 1~28.
参考文献
Su Benxun, Robinson P T, Chen Chen, Xiao Yan, Melcher F, Bai Yang, Gu Xiaoyan, Uysal I, Lenaz D. 2020b. The occurrence, origin and fate of water in podiform chromitites. American Mineralogist, 105: 894~903.
参考文献
Su Benxun, Chen Chen, Xiao Yan, Robinson P T, Liu Xia, Wang Jing, Uysal I, Bai Yang, Sun Yang. 2021a. The critical role of fluid-mediated diffusion in anomalous Fe-Mg-O isotope fractionations in ultramafic rocks of ophiolites. Journal of Geophysical Research: Solid Earth, 126: 1~20.
参考文献
Su Benxun, Liu Xia, Chen Chen, Robinson P T, Xiao Yan, Zhou Meifu, Bai Yang, Uysal I, Zhang Pengfei. 2021b. A new model for chromitite formation in ophiolites: Fluid immiscibility. Science China: Earth Sciences, 64: 220~230.
参考文献
Su Benxun, Liu Xia, Yuan Qinghan, Luo Yang, Pan Qiqi, Bai Yang, Cui Mengmeng, Xiao Yan, Tang Dongmei. 2022. Role and significance of fluids in magmatic-type chromite and platinum-group element mineralization. Acta Geologica Sinica, 96(12): 4091~4100 (in Chinese with English abstract).
参考文献
Sutton S R, Jones K W, Gordon B, Rivers M L, Bajt S, Smith J V. 1993. Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochimica et Cosmochimica Acta, 57: 461~468.
参考文献
Tang Dongmei, Qin Kezhang, Evans N J, Fang Linru. 2023. Silicate mineral inclusions in chromite from the Eastern Bushveld complex: Implications for the origin and evolution of hydrous melt during chromite mineralization in the Critical Zone. Lithos, 438: 106997.
参考文献
Talkington R W, Lipin B R. 1986. Platinum-group minerals in chromite seams of the Stillwater complex, Montana. Economic Geology, 81: 1179~1186.
参考文献
Wall C J, Scoates J S, Weis D, Friedman R M, Amini M, Meurer W P. 2018. The Stillwater complex: Integrating zircon geochronological and geochemical constraints on the age, emplacement history and crystallization of a large, open-system layered intrusion. Journal of Petrology, 59: 153~190.
参考文献
Walter M J, Newsom H E, Ertel W, Holzheid A. 2000. Siderophile elements in the Earth and Moon: Metal/silicate partitioning and implications for core formation. Origin of the Earth and Moon, 1: 265~289.
参考文献
Walter M J. 2003. Melt extraction and compositional variability in mantle lithosphere. Treatise on Geochemistry, 2: 568.
参考文献
Wang Xiangli, Planavsky N J, Reinhard C T, Zou Huijuan, Ague J J, Wu Yuanbao, Peucker-Ehrenbrink B. 2016. Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chemical Geology, 423: 19~33.
参考文献
Watenphul A, Schmidt C, Jahn S. 2014. Cr (III) solubility in aqueous fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 126: 212~227.
参考文献
White W M, Klein E M. 2014. Composition of the oceanic crust. Treatise on Geochemistry, 4: 457~496.
参考文献
Xia Jiuxing, Qin Liping, Shen Ji, Carlson R W, Ionov D A, Mock T D. 2017. Chromium isotope heterogeneity in the mantle. Earth Planetary Science Letters, 464: 103~115.
参考文献
Xiao Yan, Teng Fangzhen, Su Benxun, Hu Yan, Zhou Meifu, Zhu Bin, Shi Rendeng, Huang Qishuai, Gong Xiaohan, He Yongsheng. 2016. Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet. Geochemistry, Geophysics, Geosystems, 17: 940~953.
参考文献
Xiao Yan, Pan Qiqi, Tang Dongmei, Mao Yajing, Tian Shihong, Chen Chen, Su Benxun, Liu Xia. 2021. Retrospects and prospects on Li isotope geochemistry during petrogenesis and mineralization of mafic-ultramafic rocks. Earth Sciences, 46: 4334~4345 (in Chinese with English abstract).
参考文献
Yamakawa A, Yamashita K, Makishima A, Nakamura E. 2009. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. Analytical Chemistry, 81: 9787~9794.
参考文献
Yang Shuying, Humayun M, Salters V J M. 2018. Elemental systematics in MORB glasses from the mid-Atlantic ridge. Geochemistry, Geophysics, Geosystems, 19: 4236~4259.
参考文献
白洋, 苏本勋, 肖燕, 崔梦萌, 王静, 袁庆晗. 2023. Co-Ni在镁铁-超镁铁层状岩体中的分布特征及对岩浆成矿的指示: 以Stillwater岩体为例. 岩石学报, 39: 1172~1184.
参考文献
鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28: 1741~1761.
参考文献
陈艳虹, 杨经绥. 2018. 豆荚状铬铁矿床研究回顾与展望. 地球科学, 43: 991~1010.
参考文献
金振民, Bai Q, Kohlstedt D L, 金淑燕. 1996. 铬铁矿预富集和上地幔部分熔融关系的实验研究. 地质论评, 42: 424~429.
参考文献
苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山. 2018a. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43: 1011~1024.
参考文献
苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018b. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37: 1035~1046.
参考文献
苏本勋, 刘霞, 袁庆晗, 罗扬, 潘旗旗, 白洋, 崔梦萌, 肖燕, 唐冬梅. 2022. 流体在岩浆型铬铁矿和铂族元素成矿过程中的作用及意义. 地质学报, 96(12): 4091~4100.
参考文献
肖燕, 潘旗旗, 唐冬梅, 毛亚晶, 田世洪, 陈晨, 苏本勋, 刘霞. 2021. 镁铁-超镁铁质岩成岩成矿过程中的锂同位素地球化学: 回顾与展望. 地球科学, 46: 4334~4345.
目录contents

    摘要

    近年来铬(Cr)同位素体系在示踪地幔部分熔融、岩浆结晶分异及俯冲带流体相关的地质过程中均取得了重要进展。本文通过实例研究综述了Cr同位素在铬铁矿成矿作用方向的主要进展,包括:① Stillwater层状岩体橄榄岩带和K1z1ldağ蛇绿岩壳幔过渡带内铬铁矿及共生硅酸盐矿物的Cr同位素研究,揭示了层状/似层状铬铁矿成矿过程中可能发生明显的Cr同位素分馏,且主要受结晶分异和岩浆补给过程控制;② K1z1lda1z1ldağ蛇绿岩豆荚状铬铁矿床的Cr同位素研究,证明了俯冲带地幔橄榄岩中尖晶石的部分熔融,可能是豆荚状铬铁矿床主要的成矿物质来源之一,同时俯冲带流体也可能直接参与成矿;③ 层状岩体及蛇绿岩中普遍存在矿物间的Cr同位素不平衡分馏现象,不仅可用以记录岩浆作用的冷却时间,同时也证明了铬铁矿成矿过程中释放的流体对矿物间的元素交换具有明显促进作用。

    Abstract

    In recent years, chromium (Cr) isotope systematics have been widely used in tracing geological processes related to mantle partial melting, magma differentiation, and subduction fluid-related processes. This study summarizes the main advances in using Cr isotope geochemistry in chromite deposits in mafic-ultramafic rocks, including: ① Cr isotope compositions of chromite and coexisting silicates in the peridotite zone of the Stillwater complex and crust-mantle transition zone of the K1z1ldağ ophiolite reveal that Cr isotopes had been significantly fractionated during formation of both stratiform and stratiform-like chromitite, which was mainly controlled by fractional crystallization and magma replenishment; ② Cr isotope compositions of the podiform chromitite from K1z1ldağ ophiolite suggested that spinel in the mantle peridotites in the subduction zone is one of the mainly Cr sources in podiform chromitite, and the subduction zone fluids may also directly participate in mineralized formation; ③ diffusion-driven inter-mineral Cr isotope fractionation in ophiolite and layered intrusion can not only be used to estimate cooling time of magmas, but also reveal critical medium role of hydrous fluids in chemical exchange between minerals.

  • 铬(Cr)的原子序数为24,为第4周期第Ⅵ B族过渡金属元素。Cr通常具有较强亲氧性,在较高氧逸度下具有强的亲铁性(Siebert et al.,2013),强还原性的环境下显示亲硫性(Ringwood et al.,1990; Moynier et al.,2011)。高温条件下,Cr具有中等挥发性,可形成气态氧化物CrO、CrO2或CrO3(半凝聚温度为1291 K; Lodders,2003),因此在分异型行星中普遍亏损(Drake et al.,1989; Walter et al.,2000)。Cr在矿物中通常呈Cr3+及Cr2+,形成六次配位及四次配位,分别与Al3+、Fe3+及Mg2+、Fe2+等离子发生类质同象;溶液中的Cr常被氧化成Cr6+的铬酸根离子,使得活动性较差的铬离子变成易溶的铬阴离子团,在流体中发生富集迁移(Wang Xiangli et al.,2016)。地幔是硅酸盐地球(BSE)最主要的Cr储库(McDonough et al.,1995),Cr含量变化范围从1000×10-6至10000×10-6不等,平均含量约为2520×10-6±10×10-6(图1;Ionov et al.,2007),辉石、石榴子石、尖晶石等富铝矿物是地幔中Cr的主要赋存矿物相(Ionov et al.,1996; Eggins et al.,1998)。大陆地壳的Cr平均含量相比于地幔明显偏低,约为135×10-6Palme et al.,2014),其中上地壳为92×10-6±17×10-6,中地壳为76×10-6±10×10-6,下地壳为215×10-6±50×10-6Rudnick et al.,19952014)。除月球玄武岩中Cr含量高于1000×10-6外,地球玄武质岩浆的Cr含量通常很低:洋岛玄武岩中Cr含量小于500×10-6Helz,19872012; Frey et al.,1994; Helz et al.,1994),大洋中脊玄武岩中Cr含量通常在300×10-6左右(White et al.,2014; Yang Shuying et al.,2018)。此外,有证据表明,Cl-可以显著提高Cr在流体中的溶解度,并随着氧逸度及压力的升高而升高,因而在富Cl-流体中可能会含有较高的Cr含量(Klein-BenDavid et al.,2011; Watenphul et al.,2014)。

  • 图1 各种矿物、岩石和流体的Cr元素含量

  • Fig.1 Cr abundances of various minerals, rocks and fluids

  • 地幔橄榄岩的Cr含量范围引自Ionov et al.(2007); 地幔矿物(橄榄石、辉石、尖晶石)的Cr含量范围引自 Ionov et al.(1996)Eggins et al.(1998); 上、中、下地壳的Cr含量范围引自Rudnick et al.(2014),洋岛玄武岩的Cr含量范围引自Frey et al.(1994),洋中脊玄武岩的Cr含量范围引自White et al.(2014),玻安岩的Cr含量范围引自 König et al.(2010),富Cl流体的Cr含量范围引自Klein-BenDavid et al.(2011)Watenphul et al.(2014),Stillwater岩体层状及K1z1ldağ蛇绿岩豆荚状铬铁矿的Cr含量范围引自Bai Yang et al.(2019)和Chen Chen et al.(2015,2019)

  • Cr contents in mantle peridotites are from Ionov et al. (2007) , and Cr contents in mantle olivine, pyroxene and spinel are from Ionov et al. (1996) and Eggins et al. (1998) , Cr contents in upper, middle and lower crusts are from Rudnick et al. (2014) , Cr contents in OIBs and MORBs are from Frey et al. (1994) and White et al. (2014) , respectively, and those in boninites are from König et al. (2010) , Cr contents in Cl-rich fluids are from Klein-BenDavid et al. (2011) and Watenphul et al. (2014) , Cr contents in chromite from Stillwater complex and K1z1ldağ ophiolite are from Bai Yang et al. (2019) and Chen Chen et al. (2015, 2019)

  • Cr的元素地球化学行为目前已有较多研究。地幔橄榄岩部分熔融程度与全岩的Cr含量没有明显相关性(Shen Ji et al.,2020a),指示橄榄岩中的Cr受部分熔融过程影响并不显著,熔体与熔融残余橄榄岩之间的分配系数近于1(Ionov et al.,2007; Palme et al.,2014)。Cr在矿物中的分配系数则会明显受其价态的影响(Papike et al.,2005; Shen Ji et al.,2018),通常情况下Cr2+在矿物及熔体之间的分配系数均小于1(Mallmann et al.,2009),Cr3+在辉石及尖晶石中的分配系数显著增加,但在橄榄石中仍保持不变(Irving et al.,1978; Sutton et al.,1993; Lundstrom et al.,1998; Huang Fang et al.,2006; Elkins et al.,2008)。因此,结晶分异过程中橄榄石的结晶可能造成熔体中Cr含量增加,斜方辉石、单斜辉石、铬铁矿的结晶均能降低熔体中Cr含量。辉石相在镁铁质岩浆的演化过程中广泛结晶分布,可能导致Cr元素从地幔—玄武岩—安山岩呈现逐渐亏损趋势。铬铁矿在镁铁质岩浆体系中尽管多作为副矿物结晶,但岩浆频繁补给(Eales et al.,2012)、岩浆房物理化学条件变化(Cawthorn et al.,2009)及围岩混染(Spandler et al.,2005),也可能触发铬铁矿持续结晶并大尺度“贫化”熔体中的Cr,其研究对于理解Cr元素在岩浆通道中的行为及铬铁矿成矿过程具有重要意义。

  • Cr有四个同位素:50Cr(4.35%)、52Cr(83.79%)、53Cr(9.50%)及54Cr(2.36%),其中50Cr、52Cr、54Cr为非放射性成因,部分53Cr可由53Mn放射性衰变而来,53Mn极短的半衰期(3.7±0.4 Ma)使得Cr同位素的非质量相关分馏成为对太阳系诞生初期(≤20 Ma)精确定年的可靠手段(Birck et al.,1984; Lugmair et al.,1998; Yamakawa et al.,2009)。随着多接收电感耦合等离子体质谱(MC-ICP-MS)分析技术的迅猛发展,高温地质过程中Cr同位素的质量相关分馏也逐渐得到广泛关注。对于Cr稳定同位素组成采用δ进行表示:

  • δ53Cr=53Cr/52Cr样品 /53Cr/52CrNIST SRM 979-1]×1000

  • 其中,NIST SRM 979是国际上通用的铬同位素标准,其53Cr/52Cr=0.11339±0.00015(Ball et al.,2000)。实际应用中通常涉及到的两相间Cr同位素分馏系数α,被定义为:

  • αA-B=RA/RB

  • 其中,R为两相各自的53Cr/52Cr。对于平衡同位素分馏,其分馏系数一般较小,两相间同位素分馏系数α与同位素组成差值可以近似的表示为:

  • Δ53CrA-B=δ53CrA-δ53CrB=103lnαA-B

  • Schoenberg et al.(2008)最先报道了地幔橄榄岩、超基性岩堆晶、铬铁岩、洋壳及陆壳玄武岩等不同地质体具有一致的Cr同位素组成(δ53Cr=-0.12‰±0.10‰),并将其作为硅酸盐地球(BSE)的平均Cr同位素值。随后,Schoenberg et al.(2016)发现了地幔橄榄岩Cr同位素与Mg#具有正相关关系,暗示在地幔部分熔融过程中可能存在Cr同位素分馏。Xia Jiuxing et al.(2017)对来自不同地区的经历过不同程度部分熔融和交代作用的地幔橄榄岩包体Cr同位素组成分析显示,“饱满”橄榄岩的δ53Cr值约为-0.14‰±0.12‰,“难熔”橄榄岩δ53Cr值则会随全岩CaO和Al2O3含量的降低而升高,证明部分熔融过程中的确存在Cr同位素的分馏。受熔体交代的“富集”橄榄岩具有极轻的Cr同位素组成(-1.36‰±0.04‰和-0.77‰±0.06‰),可能与交代过程中Cr的不平衡分馏有关。为解释部分熔融过程中Cr同位素分馏机理,Shen Ji et al.(2018)分析了华北东部不同地区橄榄岩包体中的单矿物(橄榄石、辉石、尖晶石)的Cr同位素组成,当矿物间达到Cr同位素平衡时,总体上均遵循δ53Cr尖晶石≥ δ53Cr辉石 ≥ δ53Cr橄榄石顺序,指示部分熔融过程中Cr同位素的分馏可能与辉石相的熔融及尖晶石相的残留有关;富单斜辉石二辉橄榄岩和异剥橄榄岩样品矿物间Cr同位素分馏在平衡范围之外,则可能反映交代过程的影响,目前地幔交代作用导致的Cr同位素分馏行为尚不明确。

  • Cr同位素在岩浆结晶分异过程中的分馏行为也逐渐得以证实。Bonnand et al.(2016)首次测定了月球玄武岩的δ53Cr值,显示出Cr含量及δ53Cr值均与Mg#具有正相关关系,暗示月球玄武岩在结晶分异过程中发生了Cr同位素的分馏,且主要受尖晶石和辉石结晶的控制。随后,Bonnand et al.(2020a)对比人工合成的硅酸盐熔体结晶分异过程中Cr同位素的变化,显示铬铁矿的结晶会导致残余熔体Cr同位素明显偏轻,且分馏尺度受氧逸度变化的影响。Shen Ji et al.(2020b)Bonnand et al.(2020b)分别分析了Hawaii和Fangataufa Island洋岛玄武岩的Cr同位素组成,Ma Haibo et al.(2022)则对不同地区洋中脊玄武岩Cr同位素组成进行研究,结果均表明在地球玄武岩的氧逸度条件下,结晶分异过程同样可以导致Cr同位素分馏,且洋中脊玄武岩中Cr同位素分馏尺度更大,可能是因为洋中脊玄武岩具有更低的氧逸度,表明Cr同位素具有作为岩浆“氧逸度计”的潜力。

  • 近期的研究表明,与流体作用有关的地质过程同样可能造成Cr同位素的分馏。Farkaš et al.(2013)最早发现,随着蛇纹石化程度的增加,蛇纹岩的δ53Cr值最高可达+1.22‰±0.02‰,更高价(Cr6+)的含Cr低温流体(例如海水的δ53Cr=+0.41‰~+1.51‰; Bonnand et al.,2013; Scheiderich et al.,2015)在蛇纹石化过程中会被还原形成次生矿物,造成蛇纹岩重的Cr同位素组成。Wang Xiangli et al.(2016)对俯冲带蛇纹岩Cr同位素分析同样显示重的Cr同位素组成(δ53Cr=-0.20‰~+0.60‰),但该研究认为海水极低的Cr含量(0.05×10-9~1×10-9)难以在蛇纹石化过程中改变橄榄岩初始的Cr同位素组成,而俯冲过程中蛇纹岩脱水释放的富Cl流体,能够有效络合轻的Cr同位素,从而造成蛇纹岩偏重的Cr同位素组成,该结果也与Shen Ji et al.(2021)对西南天山高压蛇纹岩Cr同位素分析结果(δ53Cr=-0.19‰~-0.02‰)一致。这些蛇纹岩脱水/熔融衍生的高Cr含量、轻Cr同位素的流体,可能交代地幔楔橄榄岩,从而影响俯冲带地幔橄榄岩以及弧岩浆的Cr同位素组成。

  • 1 Cr同位素制约层状铬铁矿床的形成过程

  • Schoenberg et al.(2008)在测定固体硅酸盐地球的Cr同位素组成时,对Bushveld和Great Dyke大型层状岩体的铬铁岩及伴生的堆晶岩进行了Cr同位素分析,结果显示铬铁岩(δ53Cr=-0.12‰~-0.03‰)具有较伴生纯橄岩(δ53Cr=-0.21‰)及方辉橄榄岩(δ53Cr=-0.10‰)略重的Cr同位素组成,与Farkaš et al.(2013)对来自全球五个不同地区的典型层状岩体铬铁岩Cr同位素组成(δ53Cr =-0.20‰~+0.03‰,平均值为-0.09‰)相似,但受限于分析样品类型有限,上述研究均未对此差异做出明确解释。

  • 基于Cr同位素在指示铬铁矿结晶及岩浆分异过程中的应用,Bai Yang et al.(2019)对Stillwater岩体橄榄岩带内的两个成矿层(B和G铬铁岩旋回)中的浸染状铬铁岩、反豆状铬铁岩、块状铬铁岩以及一个硅酸盐堆晶层(最底层旋回)中的纯橄岩、方辉橄榄岩、斜方辉石岩进行了单矿物Cr同位素分析,结果显示铬铁矿的δ53Cr范围为-0.23‰~-0.07‰,与BSE的范围基本重合(δ53Cr=-0.22‰~-0.02‰),平均值为0.15‰,与玄武质岩浆平均值-0.16‰一致(图2)。此外,成矿层中铬铁岩的δ53Cr值,与岩浆分异参数(例如铬铁矿Mg#、TiO2)具有明显的负相关关系(图3a、b),揭示了铬铁矿结晶对熔体Cr同位素可能产生影响,重的Cr同位素优先进入到早期结晶的块状及反豆状铬铁矿岩中,造成结晶较晚的浸染状铬铁岩的Cr同位素组成偏轻;一些浸染状的铬铁矿拥有比块状及反豆状铬铁矿更重的Cr同位素组成,可能源于结晶晚期熔体中较低的Cr含量,更容易受到低Cr含量但重Cr同位素组成的富硅围岩混染的影响(Qin Liping et al.,2017),暗示壳源混染对于浸染状铬铁岩的结晶具有一定的促进作用(Spandler et al.,2005)。此外,我们在两个成矿层间并未发现其铬铁矿Cr同位素具有明显组成差异或继承关系,表明玄武质岩浆的不断补给对层状铬铁矿多旋回成矿具有关键作用(例如,Eales et al.,2012),大规模的铬铁矿层结晶并未导致整个体系Cr同位素出现大尺度的变化。

  • Stillwater岩体的硅酸盐矿物具有比铬铁矿更重且变化范围更大的Cr同位素组分(δ53Cr橄榄石=-0.09‰~+0.25‰;δ53Cr斜方辉石=-0.11‰~+0.07‰),并在同一样品中呈现δ53Cr橄榄石 ≥ δ53Cr斜方辉石 ≥ δ53Cr铬铁矿的矿物间Cr同位素分馏特征。铬铁矿由于本身极高的Cr含量,即使受到后期过程的影响,通常仍能保持其初始的Cr同位素组分(Drake et al.,1989; Ohtani et al.,1989)。相反对于硅酸盐矿物而言,随着Cr在其中的溶解度下降,轻同位素比重同位素拥有更快的扩散速率(Papike et al.,2005; Jollands et al.,2017),导致硅酸盐矿物残余具有较重的Cr同位素(Freer,1981; Ganguly,2002; Richter et al.,2009),并且在硅酸盐矿物中显示出从核部到边缘逐渐减少的Cr元素剖面,为Cr同位素的不平衡分馏提供了直接的证据(图4,表1~4)。由于元素的扩散本质上记录的是岩浆从高温到低温的冷却过程,而Cr在硅酸盐矿物中具有较Fe、Mg、Li更小的扩散速率及较高的封闭温度,可揭示缓慢冷却的岩浆过程。基于Stillwater岩体硅酸盐矿物Cr元素剖面及Cr同位素组分对岩体橄榄岩带的冷却进行模拟,结果显示橄榄岩带的冷却时间介于0.01~0.1 Ma之间(Bai Yang et al.,2019)。该结果相比于前人基于扩散冷却的热力学计算约1 Ma的冷却时间更快,而与基于对流冷却模型结果0.02 Ma冷却时间相类似(Selkin et al.,2006),为Stillwater岩体橄榄岩带的对流冷却机制提供了新的证据(Coogan et al.,2002; Wall et al.,2018)。

  • 图2 代表性矿物和岩石的Cr同位素组成

  • Fig.2 Cr isotope compositions of typical minerals and rocks

  • 地幔橄榄岩及幔源矿物的δ53Cr值引自Xia Jiuxing et al.(2017)Shen Ji et al.(2018);豆荚状铬铁矿δ53Cr值引自Shen Ji et al.(2016)Chen Chen et al.(2019)Economou-Eliopoulos et al.(2020)Ruan Tao et al.(2021); 玄武质岩浆的δ53Cr值引自Shen Ji et al.(2020b)Bonnand et al.(2020b)Ma Haibo et al.(2022); 侵入体及Stillwater岩体的δ53Cr值引自Schoenberg et al.(2008)Farkaš et al.(2013)Bai Yang et al.(2019); 缩写: WR—全岩; Ol—橄榄石; Py—辉石; Sp—尖晶石; Chr—铬铁矿; Opx—斜方辉石; Chrt—铬铁岩; Du—纯橄岩; Hart—方辉橄榄岩

  • The δ53Cr values of mantle peridotite and minerals are from Xia Jiuxing et al. (2017) and Shen Ji et al. (2018) ; the δ53Cr values of rocks and minerals in ophiolites are from Shen Ji et al. (2016) , Chen Chen et al. (2019) , Economou-Eliopoulos et al. (2020) and Ruan Tao et al. (2021) ; the δ53Cr values of basalts are from Shen Ji et al. (2020b) , Bonnand et al. (2020b) and Ma Haibo et al. (2022) ; the δ53Cr values of intrusions and Stillwater complex are from Schoenberg et al. (2008) , Farkaš et al. (2013) and Bai Yang et al. (2019) ; abbreviation: WR—whole rock; Ol—olivine; Py—pyroxene; Sp—spinel; Chr—chromite; Opx—orthopyroxene; Chrt—chromitite; Du—dunite; Hart—harzburgite

  • 表1 Stillwater岩体橄榄岩带内斜方辉石的主量元素成分剖面(%)

  • Table1 Major element compositional profiles (%) of orthopyroxene from the peridotite zone of the Stillwater complex

  • 注:斜方辉石主量元素成分剖面分析方法见Bai Yang et al.(2019)

  • 2 Cr同位素制约豆荚状铬铁矿床的成矿物质来源

  • Farkaš et al.(2013)首次对豆荚状铬铁矿床的δ53Cr值分析发现,其平均值为-0.07‰±0.08‰,与Shen Ji et al.(2016)报道的罗布莎铬铁岩δ53Cr(+0.06‰±0.06‰)的平均值在误差范围内相一致,均略重于硅酸盐地球Cr同位素组成。Economou-Eliopoulos et al.(2020)对Balkan Peninsula蛇绿岩带内多个铬铁岩的Cr同位素组成进行分析,δ53Cr值在-0.18‰~+0.16‰之间分布(图5),并认为δ53Cr值与Cr#之间的负相关关系指示铬铁岩的部分熔融成因。然而该结论与前人认为的地幔部分熔融过程中Cr同位素的演化趋势恰好相反(Schoenberg et al.,2016; Xia Jiuxing et al.,2017)。Ruan Tao et al.(2021)分析了西藏罗布莎铬铁矿床的方辉橄榄岩围岩、软流圈交代成因橄榄岩、纯橄岩薄壳及豆荚状铬铁岩中铬铁矿单矿物的Cr同位素组成,发现铬铁岩中铬铁矿的δ53Cr值(-0.13‰~-0.10‰)与软流圈交代成因橄榄岩中铬铁矿的δ53Cr值(-0.15‰~-0.14‰)一致,因此认为豆荚状铬铁矿床的成矿Cr主要来源于富Cr的软流圈熔体。纯橄岩薄壳中铬铁矿(δ53Cr=0.00‰~+0.03‰)的Cr同位素组成代表玻安质熔体的Cr同位素组成,较豆荚状铬铁岩的δ53Cr值明显偏重,暗示玻安岩对成矿物质来源的贡献可能较为有限(鲍佩声,2009陈艳虹等,2018)。

  • 表2 Stillwater岩体橄榄岩带内橄榄石成分剖面(×10-6

  • Table2 Compositional profiles (×10-6) of olivine from the peridotite zone of the Stillwater complex

  • 注:橄榄石元素成分剖面分析方法见Bai Yang et al.(2019);“-”表示含量未检出。

  • 表3 Stillwater岩体橄榄岩带内橄榄石核—幔—边的元素成分变化(×10-6

  • Table3 Element compositional variations (×10-6) of core-mantle-rim of olivine from the peridotite zone of the Stillwater complex

  • 注:橄榄石元素成分分析方法见Bai Yang et al.(2019);“-”表示含量未检出。

  • 表4 Stillwater岩体橄榄岩带内斜方辉石边—核—边的元素成分变化(×10-6

  • Table4 Element compositional variations (×10-6) of rim-core-rim of orthopyroxene from the peridotite zone of the Stillwater complex

  • 注:斜方辉石元素成分分析方法见Bai Yang et al.(2019);“-”表示含量未检出。

  • 图3 Stillwater岩体橄榄岩带铬铁矿TiO2(a)及Mg#(b)含量与Cr同位素组成图解及K1z1ldağ 蛇绿岩似层状铬铁矿TiO2与Cr同位素组成图解(c)

  • Fig.3 Correlation diagrams of TiO2 (a) and Mg# (b) vs. δ53Cr for chromite in peridotite zone of Stillwater complex, and TiO2 vs. δ53Cr for chromite in stratiform-like chromitite of K1z1ldağ ophiolite (c)

  • 铬铁矿的δ53Cr值及元素含量数据引自Bai Yang et al.(2019)Chen Chen et al.(2019); 不同铬铁岩类型: B—条带状铬铁岩,D—浸染状铬铁岩,A—反豆状铬铁岩,M—块状铬铁岩

  • The δ53Cr values and elemental compositions of chromite are from Bai Yang et al. (2019) and Chen Chen et al. (2019) ; different types of chromitite: B—banded chromitite, D—disseminated chromitite, A—anti-nodular chromitite, M—massive chromitite

  • 图4 Stillwater岩体中橄榄岩带内橄榄石及斜方辉石Cr含量(×10-6)成分剖面

  • Fig.4 Compositional profiles of Cr concentration (×10-6) in olivine and orthopyroxene from the peridotite zone of the Stillwater complex

  • 图5 豆荚状铬铁矿床内不同岩石类型中铬铁矿的Cr 同位素组成与Cr#的相关性图解

  • Fig.5 δ53Cr versus Cr# of chromite separates in different types of rocks from podiform chromitite

  • 幔源尖晶石及辉石Cr同位素组成引自Shen Ji et al.(2018); 罗布莎样品Cr同位素组成引自Ruan Tao et al.(2021); Balkan Peninsula蛇绿岩铬铁岩的Cr同位素组成引自 Economou-Eliopoulos et al.(2020)

  • Average Cr isotope compositions of pyroxene and spinel in mantle peridotites are from Shen Ji et al. (2018) ; Cr isotope compositions from Luobusha samples are from Ruan Tao et al. (2021) ; Cr isotope compositions from Balkan Peninsula ophiolite are from Economou-Eliopoulos et al. (2020)

  • 然而Chen Chen et al.(2019)针对K1z1ldağ蛇绿岩豆荚状铬铁岩和纯橄岩薄壳中铬铁矿Cr同位素组成分析取得了不同的结果(图5)。虽然豆荚状铬铁岩中铬铁矿的Cr同位素组成(δ53Cr=-0.11‰~-0.04‰,平均δ53Cr=-0.08‰)与罗布莎铬铁岩中铬铁矿较为接近,但两个纯橄岩薄壳中铬铁矿Cr同位素组成(平均δ53Cr=-0.13‰)均较罗布莎纯橄岩薄壳中的铬铁矿明显偏轻,而更接近豆荚状铬铁岩中铬铁矿的Cr同位素组成。整体上K1z1ldağ蛇绿岩不同岩石类型中的铬铁矿Cr同位素变化范围相对较小,指示其具有类似的成因。考虑到铬铁矿在洋中脊(MOR)和俯冲带(SSZ)均可结晶,而洋中脊环境(MOR)原始地幔因减压导致的低程度部分熔融与俯冲带位置(SSZ)亏损地幔橄榄岩因流体渗透导致的高程度部分熔融之间的差异(Kamenetsky et al.,2001),可能分别代表辉石及尖晶石的熔融提供Cr的来源。虽有实验岩石学显示尖晶石在特定条件下会先于辉石发生熔融(金振民等,1996),但该过程中释放的Cr又会瞬间被熔融残余的尖晶石吸收,造成残余尖晶石Cr#的升高(Hellebrand et al.,2001; Walter,2003)。因此MOR型蛇绿岩中豆荚状铬铁矿可能继承源区辉石轻Cr同位素(δ53Cr辉石=-0.16‰),而SSZ型蛇绿岩中铬铁矿则拥有源区尖晶石相对重的Cr同位素(图5;δ53Cr尖晶石=-0.12‰)。该过程从尖晶石及辉石的Cr含量上也能得到印证(图1)——绝大多数豆荚状铬铁矿床形成于SSZ环境,而MOR环境大多只能造成局部的矿化(Rollinson et al.,2013)。另一方面,俯冲板片中蛇纹岩脱水产生的富Cl流体通常具有较高的Cr溶解度(图1),可以络合斜绿泥石、绿辉石等低温次生富Cr矿物,并沿着熔体通道进入岩浆房作为潜在的成矿物质来源(Bouilhol et al.,2009; Spandler et al.,2011; Watenphul et al.,2014)。K1z1ldağ蛇绿岩中的铬铁岩样品KZ14-27-2具有明显轻的Cr同位素组成(图5; δ53Cr=-0.29‰),就可能与俯冲带板片脱水形成的轻Cr同位素流体有关(Wang Xiangli et al.,2016; Shen Ji et al.,2021)。

  • 此外,K1z1ldağ蛇绿岩豆荚状铬铁岩与似层状铬铁岩中铬铁矿的Cr同位素组成存在的差异也被揭示。壳-幔过渡带内的似层状铬铁矿(δ53Cr=-0.29‰~-0.07‰,平均值为-0.18‰)具有明显比地幔豆荚状铬铁矿轻的Cr同位素组成,并与Stillwater层状铬铁矿(δ53Cr=-0.23‰~-0.07‰,平均值为-0.15‰)及玄武质岩浆(δ53Cr=-0.16‰)的平均Cr同位素组成更为接近(图5)。似层状铬铁矿的Cr同位素与Mg#等结晶分异参数也具有良好的正相关关系(图3c),加之壳-幔过渡带的似层状铬铁岩产出有典型的堆晶结构,与层状岩体在铬铁矿成因、矿体形态、产出位置等均具有可比性,其Cr同位素组成特征同样也可能由结晶分异作用控制。

  • 3 矿物间异常Cr同位素分馏记录铬铁矿成矿过程中流体的作用

  • 对K1z1ldağ蛇绿岩和Stillwater层状岩体中硅酸盐矿物Cr同位素分析结果显示,除豆荚状铬铁岩外,其他所有岩石类型中(包括层状岩体中的铬铁岩及堆晶硅酸岩、蛇绿岩中的似层状铬铁岩、纯橄岩堆晶及地幔中的纯橄岩薄壳、方辉橄榄岩)硅酸盐矿物与共存的铬铁矿之间均呈现异常的Cr同位素分馏特征(图6;Δ53Cr橄榄石-铬铁矿 ≥ 0)。类似的金属稳定同位素在层状岩体及蛇绿岩体中的粒间不平衡分馏并不鲜见(Chen Liemeng et al.,20142018; Xiao Yan et al.,2016),K1z1ldağ蛇绿岩及Stillwater岩体中矿物间的Fe、Mg、Li同位素的异常分馏也相继被报道(Su Benxun et al.,2020a2021a2021b; Bai Yang et al.,2020; 肖燕等,2021)。早期我们认为这种元素迁移的驱动力来源于亚固相状态下矿物间元素的分配系数发生改变,这种机理能够解释铬铁岩中高δ53Cr值的硅酸盐矿物,但是无法解释方辉橄榄岩及纯橄岩中同样高δ53Cr值的硅酸盐矿物,以及硅酸盐堆晶岩比铬铁岩更大的Δ53Cr橄榄石-铬铁矿分馏尺度(图6)。我们在层状岩体中发现几乎所有的铬铁矿均结晶于辉石中而并不直接与橄榄石接触(Bai Yang et al.,20192020; Su Benxun et al.,2020a; 白洋等,2023),这使得元素透过矿物晶界直接交换更加难以实现。

  • 图6 Stillwater层状岩体和K1z1ldağ蛇绿岩中橄榄石和铬铁矿Cr-Fe同位素分馏相关性图解(数据引自Chen Chen et al.,20152019; Bai Yang et al.,20192020

  • Fig.6 Δ56Feolivine-chromite vs. Δ53Crolivine-chromite of samples from Stillwater complex and K1z1ldağ ophiolite (data are from Chen Chen et al., 2015, 2019; Bai Yang et al., 2019, 2020)

  • 苏本勋等(2018a,2018b,2022; Su Benxun et al.,2020b2021b)在利用流体不混溶模型来解释豆荚状铬铁矿中存在的大量含水矿物包裹体及“选择性蚀变”现象时,曾对蛇绿岩中异常的Fe同位素分馏特征做出解释:铬铁矿结晶过程中吸附的流体会改造或水化熔体中的橄榄石,并从橄榄石中淋滤出轻的Fe同位素,从而导致橄榄石中偏高的δ56Fe值及粒间Fe同位素的不平衡。该流体迁移过程对铬铁岩和纯橄岩薄壳的影响较为显著,随着流体向外扩散时含量的逐渐减少或Fe在流体中逐渐达到饱和,方辉橄榄岩围岩所受影响也逐渐减弱,因此Δ56Fe橄榄石-铬铁矿呈现从铬铁岩到纯橄岩薄壳再到方辉橄榄岩围岩逐渐减小的趋势(图6)。而以Bushveld及Stillwater等为代表的层状铬铁岩内也具有相似的含水矿物包裹体(在矿物类型、包裹体形态、产出位置等均具可比性)及选择性蚀变特征,暗示流体在两种成因的铬铁矿床上具有相似的作用(McDonald,1965; Talkington et al.,1986; Spandler et al.,2005; Friedrich et al.,2019; Tang Dongmei et al.,2023)。Su Benxun et al.(2021a)发现Stillwater岩体铬铁岩中的橄榄石和辉石的Li含量及同位素特征明显区别于方辉橄榄岩和纯橄岩,进一步证明层状铬铁岩在铬铁矿结晶过程中会吸附并释放流体,并与周围矿物发生明显的物质交换。

  • 从这一角度来看,两种不同成因的铬铁矿床具有相似的矿物间Cr同位素不平衡特征,均代表铬铁矿释放的流体对于硅酸盐矿物Cr元素的萃取,至于硅酸盐堆晶比铬铁岩更明显的不平衡尺度(更高的Δ53Cr橄榄石-铬铁矿值)可能是由于Cr在铬铁矿中具有极高的分配系数,铬铁矿结晶后释放出的流体相,Cr含量应当处于一种极度亏损的状态,再加上铬铁矿释放的流体通常是富Cl的,在蛇纹石化硅酸盐矿物过程中足以萃取更大范围围岩中橄榄石和辉石的Cr(图1),导致纯橄岩薄壳和方辉橄榄岩围岩的粒间不平衡程度相似,而并未像Fe同位素呈现随距离增加而变化的特征。从这一角度来说,铬铁矿释放的流体相,其性质也应当更贴近“流体”而非“熔体”,后者大多低于1000×10-6的Cr溶解度(图1),可能无法影响到方辉橄榄岩中硅酸盐矿物的Cr同位素组成。

  • 至于豆荚状铬铁岩中的橄榄石,可能代表着与铬铁矿在深部共结的橄榄石微晶核,这些在熔体通道内结晶的橄榄石尚未经历铬铁矿释放的流体改造,就被“圈闭”于豆状铬铁岩的“豆间”或“豆内”,并形成“豆状”或“环状”的铬铁矿形态。豆荚状铬铁矿中橄榄石的δ53Cr平均值为-0.13‰,恰好与BSE的平均Cr同位素一致,而与地幔端元(方辉橄榄岩及纯橄岩薄壳)中橄榄石的δ53Cr平均值(+0.28‰)及壳幔过渡带(似层状铬铁岩及堆晶纯橄岩)的δ53Cr平均值(+0.11‰)有明显差异。豆荚状铬铁岩中橄榄石所呈现的Fe同位素不平衡,应该仍属于亚固相状态下与相邻铬铁矿之间的Fe-Mg交换,同样在亚固相状态下Cr元素则由于极慢的扩散速率,豆荚状铬铁岩内的橄榄石得以保存相对初始的δ53Cr值,并可能对熔体通道的Cr同位素信息进行记录。

  • 4 总结与展望

  • 目前,Cr同位素在铬铁矿床的研究中已经取得了一些进展。层状铬铁矿床与蛇绿岩似层状铬铁矿床一致的矿物间Cr同位素分布特征,显示两者经历了相似的堆晶成矿过程及不混溶流体改造。豆荚状铬铁岩普遍具有较重且变化范围较小的Cr同位素组成,具有指示其成矿物质来源的潜力。层状及豆荚状铬铁矿床铬铁矿相似的含水矿物包裹体特征、选择性蚀变现象以及一致的Fe-Cr同位素分馏特征,揭示了流体在铬铁矿成矿过程中具有的重要作用。然而Cr同位素地球化学研究仍处于初始阶段,分馏机制上仍存在较大的争议,Cr同位素对于铬铁矿成岩成矿过程的刻画也只停留于解释数据而并未形成有效的找矿指标,温度和氧逸度等结晶条件的变化是否会引起矿物间以及矿物与流体间Cr同位素的再分配尚不明确,Cr同位素的流体活动性的研究明显不足。随着我们对Cr同位素分馏机理认识的加深和同位素分析精度的不断提高,结合岩石矿物显微结构和流体组成相关认识的不断加深,Cr同位素将为精细刻画铬铁矿床乃至其他各种类型的岩浆矿床的成岩成矿过程及深部动力学机制提供更多依据。

  • 致谢:审稿专家和编辑为本文的修改完善提出了建设性的意见与建议,在此致以衷心的感谢!

  • 参考文献

    • Bai Yang, Su Benxun, Xiao Yan, Chen Chen, Cui Mengmeng, He Xiaoqing, Qin Liping, Charlier B. 2019. Diffusion-driven chromium isotope fractionation in minerals of ultramafic cumulates: Elemental and isotopic evidence from the Stillwater complex. Geochimica et Cosmochimica Acta, 263: 167~181.

    • Bai Yang, Su Benxun, Xiao Yan, Cui Mengmeng, Charlier B. 2020. Magnesium and iron isotopic evidence of inter-mineral diffusion in ultramafic cumulates of the peridotite zone, Stillwater complex. Geochimica et Cosmochimica Acta, 292: 152~169.

    • Bai Yang, Su Benxun, Xiao Yan, Cui Mengmeng, Wang Jing, Yuan Qinghan. 2023. Distribution of Co-Ni in mafic-ultramafic layered intrusion and implications for formation of magmatic deposits: A case study of the Stillwater complex. Acta Petrologica Sinica, 39: 1172~1184 (in Chinese with English abstract).

    • Ball J W, Bassett R L. 2000. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis. Chemical Geology, 168: 123~134.

    • Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites: Questioning about the rock/melt interaction metallogeny. Geological Bulletin of China, 28: 1741~1761 (in Chinese with English abstract).

    • Birck J L, Allègre C J. 1984. Chromium isotopic anomalies in Allende refractory inclusions. Geophysical Research Letters, 11: 943~946.

    • Bonnand P, James R H, Parkinson I J, Connelly D P, Fairchild I J. 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10~20.

    • Bonnand P, Parkinson I J, Anand M. 2016. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochimica et Cosmochimica Acta, 175: 208~221.

    • Bonnand P, Bruand E, Matzen A K, Jerram M, Schiavi F, Wood B J, Halliday A N. 2020a. Redox control on chromium isotope behavior in silicate melts in contact with magnesiochromite. Geochimica et Cosmochimica Acta, 288: 282~300.

    • Bonnand P, Doucelance R, Boyet M, Bachèlery P, Bosq C, Auclair D, Schiano P. 2020b. The influence of igneous processes on the chromium isotopic compositions of ocean island basalts. Earth and Planetary Science Letters, 532: 116~128.

    • Bouilhol P, Burg J P, Bodinier J L. 2009. Magma and fluid percolation in arc to forearc mantle: Evidence from Sapat (Kohistan, Northern Pakistan). Lithos, 107: 17~37.

    • Cawthorn R G, Ashwal L D. 2009. Origin of anorthosite and magnetite layers in the Bushveld complex, constrained by major element compositions of plagioclase. Journal of Petrology, 50: 1607~1637.

    • Chen Chen, Su Benxun, Uysal I, Avc E, Zhang Pengfei, Xiao Yan, He Yongsheng. 2015. Iron isotopic constraints on the origin of peridotite and chromitite in the K1z1ldağ ophiolite, southern Turkey. Chemical Geology, 417: 115~124.

    • Chen Chen, Su Benxun, Xiao Yan, Sakyi P A, He Xiaoqing, Pang K N, Uysal I, Avci E, Qin Liping. 2019. High-temperature chromium isotope fractionation and its implications: Constraints from Kizildag ophiolite, SE Turkey. Lithos, 343: 361~369.

    • Chen Liemeng, Song Xieyan, Zhu Xiangkun, Zhang Xiaoqi, Yu Songyue, Yi Junnian. 2014. Iron isotope fractionation during crystallization and sub-solidus re-equilibration: Constraints from the Baima mafic layered intrusion, SW China. Chemical Geology, 380: 97~109.

    • Chen Liemeng, Teng Fangzhen, Song Xieyan, Hu Ruizhong, Yu Songyue, Zhu Dan, Kang Jie. 2018. Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion. Earth and Planetary Science Letters, 487: 74~83.

    • Chen Yanhong, Yang Jingsui, 2018. Formation of podiform chromitite deposits: Review and prospects. Earth Science, 43: 991~1010 (in Chinese with English abstract).

    • Coogan L A, Jenkin G R, Wilson R N. 2002. Constraining the cooling rate of the lower oceanic crust: A new approach applied to the Oman ophiolite. Earth and Planetary Science Letters, 199: 127~146.

    • Drake M J, Newsom H E, Capobianco C J. 1989. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies. Geochimica et Cosmochimica Acta, 53: 2101~2111.

    • Eales H V, Costin G. 2012. Crystally contaminated komatiite: Primary source of the chromitites and Marginal, Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld Complex. Economic Geology, 107: 645~665.

    • Economou-Eliopoulos M, Frei R, Mitsis I. 2020. Factors controlling the chromium isotope compositions in podiform chromitites. Minerals, 10: 1~22.

    • Eggins S M, Rudnick R L, McDonough W F. 1998. The composition of peridotites and their minerals: A laser-ablation ICP-MS study. Earth and Planetary Science Letters, 154: 53~71.

    • Elkins L J, Gaetani G A, Sims K W. 2008. Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth and Planetary Science Letters, 265: 270~286.

    • Farkaš J, Chrastny V, Novak M, Cadkova E, Pasava J, Chakrabarti R, Jacobsen S B, Ackerman L, Bullen T D. 2013. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth's mantle over geologic time. Geochimica et Cosmochimica Acta, 123: 74~92.

    • Freer R. 1981. Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contributions to Mineralogy and Petrology, 76: 440~454.

    • Frey F A, Garcia M O, Roden M F. 1994. Geochemical characteristics of Koolau Volcano: Implications of intershield geochemical differences among Hawaiian volcanoes. Geochimica et Cosmochimica Acta, 58: 1441~1462.

    • Friedrich B M, Marques J C, Olivo G R, Frantz J C, Joy B, Waldemir J A Q. 2019. Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: Evidence from inclusions in chromite. Mineralium Deposita, 4: 1~22.

    • Ganguly J. 2002. Diffusion kinetics in minerals: Principles and applications to tectono-metamorphic processes. European Mineralogical Union Notes in Mineralogy, 4: 271~309.

    • Hellebrand E, Snow J E, Dick H J, Hofmann A W. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410: 677~681.

    • Helz R T. 1987. Differentiation behavior of Kilauea Iki lava lake, Kilauea volcano, Hawaii: An overview of past and current work. Magmatic Processes: Physicochemical Principles, 1: 241~258.

    • Helz R T, Kirschenbaum H K, Marinenko J W, Qian R. 1994. Whole-rock analyses of core samples from the 1967, 1975, 1979 and 1981 drillings of Kilauea lki lava lake, Hawaii. US Geological Survey Open File Report, 684: 1~65.

    • Helz R T. 2012. Trace-element analyses of core samples from the 1967~1988 drillings of Kilauea Iki lava lake, Hawaii. US Department of the Interior, US Geological Survey Open File Report, 1050: 1~56.

    • Huang Fang, Lundstrom C C, McDonough W F. 2006. Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. American Mineralogist, 91: 1385~1400.

    • Ionov D A, O'Reilly S Y, Genshaft Y S, Kopylova M G. 1996. Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions, and trace-element residence. Contributions to Mineralogy and Petrology, 125: 375~392.

    • Ionov D A, Hofmann A W. 2007. Depth of formation of subcontinental off-craton peridotites. Earth and Planetary Science Letters, 261: 620~634.

    • Irving A J, Frey F A. 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42: 771~787.

    • Jin Zhenmin, Bai Quan, Kohlstedt David, Jin Shuyan. 1996. Experimental study on the relationship between chromite enrichment and partial melting of the upper mantle. Geological Review, 42: 424~429 (in Chinese with English abstract).

    • Jollands M C, O'Neill H S C, Van Orman J. 2017. Substitution and diffusion of Cr2+ and Cr3+ in synthetic forsterite and natural olivine at 1200-1500°C and 1 bar. Geochimica et Cosmochimica Acta, 220: 407~428.

    • Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42: 655~671.

    • Klein-BenDavid O, Pettke T, Kessel R. 2011. Chromium mobility in hydrous fluids at upper mantle conditions. Lithos, 125: 122~130.

    • König S, Münker C, Schuth S. 2010. Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta, 74: 684~704.

    • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591: 1220~1247.

    • Lugmair G W, Shukolyukov A. 1998. Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62: 2863~2886.

    • Lundstrom C C, Shaw H F, Ryerson F J, Williams Q, Gill J. 1998. Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: Implications for elemental fractionations in the depleted mantle. Geochimica et Cosmochimica Acta, 62: 849~862.

    • Ma Haibo, Xu Lijuan, Shen Ji, Liu Shengao, Li Shuguang. 2022. Chromium isotope fractionation during magmatic processes: Evidence from mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 327: 79~92.

    • Mallmann G, O'Neill H S C. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50: 1765~1794.

    • McDonald J A. 1965. Liquid immiscibility as one factor in chromitite seam formation in the Bushveld igneous complex. Economic Geology, 60: 1674~1685.

    • McDonough W F, Sun Shensu. 1995. The composition of the Earth. Chemical Geology, 120: 223~253.

    • Moynier F, Yin Qingzhu, Schauble E. 2011. Isotopic evidence of Cr partitioning into Earth's core. Science, 331: 1417~1420.

    • Ohtani E, Kawabe I, Moriyama J, Nagata Y. 1989. Partitioning of elements between majorite garnet and melt and implications for petrogenesis of komatiite. Contributions to Mineralogy and Petrology, 103: 263~269.

    • Palme H, O'Neill H S C. 2014. Cosmochemical estimates of mantle composition. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford, Elsevier: 1~39.

    • Papike J J, Karner J M, Shearer C K. 2005. Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. American Mineralogist, 90: 277~290.

    • Qin Liping, Wang Xiangli. 2017. Chromium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 379~414.

    • Richter F M, Watson E B, Mendybaev R A, Dauphas N, Georg B, Watkins J, Valley J. 2009. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73: 4250~4263.

    • Ringwood A E, Kato T, Hibberson W, Ware N. 1990. High-pressure geochemistry of Cr, V and Mn and implications for the origin of the Moon. Nature, 347: 174~176.

    • Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 177: 314~327.

    • Ruan Tao, Zhong Hong, Zhu Jianming, Bai Zhongjie. 2021. The formation of giant podiform chromitite by asthenospheric melts in supra-subduction zone environments. Online in Research Square, doi. org/10. 21203/rs. 3. rs-225374/v1.

    • Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33: 267~309.

    • Rudnick R L, Gao Shan. 2014. Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition. Oxford, Elsevier: 1~39.

    • Scheiderich K, Amini M, Holmden C, Francois R. 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth and Planetary Science Letters, 423: 87~97.

    • Schoenberg R, Zink S, Staubwasser M, Blanckenburg F V. 2008. The stable Cr isotope inventory of Solid Earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology, 249: 294~306.

    • Schoenberg R, Merdian A, Holmden C, Kleinhanns I C, Haler K, Wille M, Reitter E. 2016. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochimica et Cosmochimica Acta, 183: 14~30.

    • Selkin P A, Gee J S, Meurer W P, Hemming S R. 2006. Paleointensity record from the 2. 7 Ga Stillwater complex, Montana. Geochemistry, Geophysics, Geosystems, 9: 1~9.

    • Shen Ji, Liu Jia, Qin Liping, Wang Shuijiong, Li Shuguang, Xia Jiuxing, Ke Shan, Yang Jingsui. 2016. Chromium isotope signature during continental crust subduction in metamorphic rocks. Geochemistry, Geophysics, Geosystems, 16: 3840~3854.

    • Shen Ji, Qin Liping, Fang Ziyao, Zhang Yingnan, Liu Jia. , Liu Wei, Wang Fangyue, Xiao Yan, Yu Huimin, Wei Shiqiang. 2018. High-temperature inter-mineral Cr isotope fractionation: A comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton. Earth and Planetary Science Letters, 499: 278~290.

    • Shen Ji, Yang Bing, Xia Jiuxing. 2020a. Chromium element and isotope geochemistry in high temperature systems. Journal of University of Science and Technology of China, 50: 1229~1248.

    • Shen Ji, Xia Jiuxing, Qin Liping, Carlson R W, Huang Shichun, Helz R T, Mock T D. 2020b. Stable chromium isotope fractionation during magmatic differentiation: Insights from Hawaiian basalts and implications for planetary redox conditions. Geochimica et Cosmochimica Acta, 278: 289~304.

    • Shen Ji, Wang Shuijiong, Qin Liping, Ni Huawei, Li Shuguang, Du Jinxue, Shen Tingting, Zhang Lifei, Yu Huimin. 2021. Tracing serpentinite dehydration in a subduction channel: Chromium element and isotope evidence from subducted oceanic crust. Geochimica et Cosmochimica Acta, 313: 1~20.

    • Siebert J, Badro J, Antonangeli D, Ryerson F J. 2013. Terrestrial accretion under oxidizing conditions. Science, 339: 1194~1197.

    • Spandler C, Mavrogenes J, Arculus R. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater complex. Geology, 33: 893~896.

    • Spandler C, Pettke T, Rubatto D. 2011. Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. Journal of Petrology, 52: 1207~1236.

    • Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan. 2018a. Potential applications of Fe and Mg isotopes in genesis of chromite deposits in ophiolites. Earth Science, 43: 1011~1024 (in Chinese with English abstract).

    • Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018b. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37: 1035~1046 (in Chinese with English abstract).

    • Su Benxun, Bai Yang, Cui Mengmeng, Wang Jing, Xiao Yan, Lenaz D, Sakyi P A, Robinson P T. 2020a. Petrogenesis of the ultramafic zone of the Stillwater complex in North America: Constraints from mineral chemistry and stable isotopes of Li and O. Contributions to Mineralogy and Petrology, 175: 1~28.

    • Su Benxun, Robinson P T, Chen Chen, Xiao Yan, Melcher F, Bai Yang, Gu Xiaoyan, Uysal I, Lenaz D. 2020b. The occurrence, origin and fate of water in podiform chromitites. American Mineralogist, 105: 894~903.

    • Su Benxun, Chen Chen, Xiao Yan, Robinson P T, Liu Xia, Wang Jing, Uysal I, Bai Yang, Sun Yang. 2021a. The critical role of fluid-mediated diffusion in anomalous Fe-Mg-O isotope fractionations in ultramafic rocks of ophiolites. Journal of Geophysical Research: Solid Earth, 126: 1~20.

    • Su Benxun, Liu Xia, Chen Chen, Robinson P T, Xiao Yan, Zhou Meifu, Bai Yang, Uysal I, Zhang Pengfei. 2021b. A new model for chromitite formation in ophiolites: Fluid immiscibility. Science China: Earth Sciences, 64: 220~230.

    • Su Benxun, Liu Xia, Yuan Qinghan, Luo Yang, Pan Qiqi, Bai Yang, Cui Mengmeng, Xiao Yan, Tang Dongmei. 2022. Role and significance of fluids in magmatic-type chromite and platinum-group element mineralization. Acta Geologica Sinica, 96(12): 4091~4100 (in Chinese with English abstract).

    • Sutton S R, Jones K W, Gordon B, Rivers M L, Bajt S, Smith J V. 1993. Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochimica et Cosmochimica Acta, 57: 461~468.

    • Tang Dongmei, Qin Kezhang, Evans N J, Fang Linru. 2023. Silicate mineral inclusions in chromite from the Eastern Bushveld complex: Implications for the origin and evolution of hydrous melt during chromite mineralization in the Critical Zone. Lithos, 438: 106997.

    • Talkington R W, Lipin B R. 1986. Platinum-group minerals in chromite seams of the Stillwater complex, Montana. Economic Geology, 81: 1179~1186.

    • Wall C J, Scoates J S, Weis D, Friedman R M, Amini M, Meurer W P. 2018. The Stillwater complex: Integrating zircon geochronological and geochemical constraints on the age, emplacement history and crystallization of a large, open-system layered intrusion. Journal of Petrology, 59: 153~190.

    • Walter M J, Newsom H E, Ertel W, Holzheid A. 2000. Siderophile elements in the Earth and Moon: Metal/silicate partitioning and implications for core formation. Origin of the Earth and Moon, 1: 265~289.

    • Walter M J. 2003. Melt extraction and compositional variability in mantle lithosphere. Treatise on Geochemistry, 2: 568.

    • Wang Xiangli, Planavsky N J, Reinhard C T, Zou Huijuan, Ague J J, Wu Yuanbao, Peucker-Ehrenbrink B. 2016. Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chemical Geology, 423: 19~33.

    • Watenphul A, Schmidt C, Jahn S. 2014. Cr (III) solubility in aqueous fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 126: 212~227.

    • White W M, Klein E M. 2014. Composition of the oceanic crust. Treatise on Geochemistry, 4: 457~496.

    • Xia Jiuxing, Qin Liping, Shen Ji, Carlson R W, Ionov D A, Mock T D. 2017. Chromium isotope heterogeneity in the mantle. Earth Planetary Science Letters, 464: 103~115.

    • Xiao Yan, Teng Fangzhen, Su Benxun, Hu Yan, Zhou Meifu, Zhu Bin, Shi Rendeng, Huang Qishuai, Gong Xiaohan, He Yongsheng. 2016. Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet. Geochemistry, Geophysics, Geosystems, 17: 940~953.

    • Xiao Yan, Pan Qiqi, Tang Dongmei, Mao Yajing, Tian Shihong, Chen Chen, Su Benxun, Liu Xia. 2021. Retrospects and prospects on Li isotope geochemistry during petrogenesis and mineralization of mafic-ultramafic rocks. Earth Sciences, 46: 4334~4345 (in Chinese with English abstract).

    • Yamakawa A, Yamashita K, Makishima A, Nakamura E. 2009. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. Analytical Chemistry, 81: 9787~9794.

    • Yang Shuying, Humayun M, Salters V J M. 2018. Elemental systematics in MORB glasses from the mid-Atlantic ridge. Geochemistry, Geophysics, Geosystems, 19: 4236~4259.

    • 白洋, 苏本勋, 肖燕, 崔梦萌, 王静, 袁庆晗. 2023. Co-Ni在镁铁-超镁铁层状岩体中的分布特征及对岩浆成矿的指示: 以Stillwater岩体为例. 岩石学报, 39: 1172~1184.

    • 鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28: 1741~1761.

    • 陈艳虹, 杨经绥. 2018. 豆荚状铬铁矿床研究回顾与展望. 地球科学, 43: 991~1010.

    • 金振民, Bai Q, Kohlstedt D L, 金淑燕. 1996. 铬铁矿预富集和上地幔部分熔融关系的实验研究. 地质论评, 42: 424~429.

    • 苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山. 2018a. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43: 1011~1024.

    • 苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018b. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37: 1035~1046.

    • 苏本勋, 刘霞, 袁庆晗, 罗扬, 潘旗旗, 白洋, 崔梦萌, 肖燕, 唐冬梅. 2022. 流体在岩浆型铬铁矿和铂族元素成矿过程中的作用及意义. 地质学报, 96(12): 4091~4100.

    • 肖燕, 潘旗旗, 唐冬梅, 毛亚晶, 田世洪, 陈晨, 苏本勋, 刘霞. 2021. 镁铁-超镁铁质岩成岩成矿过程中的锂同位素地球化学: 回顾与展望. 地球科学, 46: 4334~4345.

  • 参考文献

    • Bai Yang, Su Benxun, Xiao Yan, Chen Chen, Cui Mengmeng, He Xiaoqing, Qin Liping, Charlier B. 2019. Diffusion-driven chromium isotope fractionation in minerals of ultramafic cumulates: Elemental and isotopic evidence from the Stillwater complex. Geochimica et Cosmochimica Acta, 263: 167~181.

    • Bai Yang, Su Benxun, Xiao Yan, Cui Mengmeng, Charlier B. 2020. Magnesium and iron isotopic evidence of inter-mineral diffusion in ultramafic cumulates of the peridotite zone, Stillwater complex. Geochimica et Cosmochimica Acta, 292: 152~169.

    • Bai Yang, Su Benxun, Xiao Yan, Cui Mengmeng, Wang Jing, Yuan Qinghan. 2023. Distribution of Co-Ni in mafic-ultramafic layered intrusion and implications for formation of magmatic deposits: A case study of the Stillwater complex. Acta Petrologica Sinica, 39: 1172~1184 (in Chinese with English abstract).

    • Ball J W, Bassett R L. 2000. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis. Chemical Geology, 168: 123~134.

    • Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites: Questioning about the rock/melt interaction metallogeny. Geological Bulletin of China, 28: 1741~1761 (in Chinese with English abstract).

    • Birck J L, Allègre C J. 1984. Chromium isotopic anomalies in Allende refractory inclusions. Geophysical Research Letters, 11: 943~946.

    • Bonnand P, James R H, Parkinson I J, Connelly D P, Fairchild I J. 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10~20.

    • Bonnand P, Parkinson I J, Anand M. 2016. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon. Geochimica et Cosmochimica Acta, 175: 208~221.

    • Bonnand P, Bruand E, Matzen A K, Jerram M, Schiavi F, Wood B J, Halliday A N. 2020a. Redox control on chromium isotope behavior in silicate melts in contact with magnesiochromite. Geochimica et Cosmochimica Acta, 288: 282~300.

    • Bonnand P, Doucelance R, Boyet M, Bachèlery P, Bosq C, Auclair D, Schiano P. 2020b. The influence of igneous processes on the chromium isotopic compositions of ocean island basalts. Earth and Planetary Science Letters, 532: 116~128.

    • Bouilhol P, Burg J P, Bodinier J L. 2009. Magma and fluid percolation in arc to forearc mantle: Evidence from Sapat (Kohistan, Northern Pakistan). Lithos, 107: 17~37.

    • Cawthorn R G, Ashwal L D. 2009. Origin of anorthosite and magnetite layers in the Bushveld complex, constrained by major element compositions of plagioclase. Journal of Petrology, 50: 1607~1637.

    • Chen Chen, Su Benxun, Uysal I, Avc E, Zhang Pengfei, Xiao Yan, He Yongsheng. 2015. Iron isotopic constraints on the origin of peridotite and chromitite in the K1z1ldağ ophiolite, southern Turkey. Chemical Geology, 417: 115~124.

    • Chen Chen, Su Benxun, Xiao Yan, Sakyi P A, He Xiaoqing, Pang K N, Uysal I, Avci E, Qin Liping. 2019. High-temperature chromium isotope fractionation and its implications: Constraints from Kizildag ophiolite, SE Turkey. Lithos, 343: 361~369.

    • Chen Liemeng, Song Xieyan, Zhu Xiangkun, Zhang Xiaoqi, Yu Songyue, Yi Junnian. 2014. Iron isotope fractionation during crystallization and sub-solidus re-equilibration: Constraints from the Baima mafic layered intrusion, SW China. Chemical Geology, 380: 97~109.

    • Chen Liemeng, Teng Fangzhen, Song Xieyan, Hu Ruizhong, Yu Songyue, Zhu Dan, Kang Jie. 2018. Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion. Earth and Planetary Science Letters, 487: 74~83.

    • Chen Yanhong, Yang Jingsui, 2018. Formation of podiform chromitite deposits: Review and prospects. Earth Science, 43: 991~1010 (in Chinese with English abstract).

    • Coogan L A, Jenkin G R, Wilson R N. 2002. Constraining the cooling rate of the lower oceanic crust: A new approach applied to the Oman ophiolite. Earth and Planetary Science Letters, 199: 127~146.

    • Drake M J, Newsom H E, Capobianco C J. 1989. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies. Geochimica et Cosmochimica Acta, 53: 2101~2111.

    • Eales H V, Costin G. 2012. Crystally contaminated komatiite: Primary source of the chromitites and Marginal, Lower, and Critical Zone magmas in a staging chamber beneath the Bushveld Complex. Economic Geology, 107: 645~665.

    • Economou-Eliopoulos M, Frei R, Mitsis I. 2020. Factors controlling the chromium isotope compositions in podiform chromitites. Minerals, 10: 1~22.

    • Eggins S M, Rudnick R L, McDonough W F. 1998. The composition of peridotites and their minerals: A laser-ablation ICP-MS study. Earth and Planetary Science Letters, 154: 53~71.

    • Elkins L J, Gaetani G A, Sims K W. 2008. Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth and Planetary Science Letters, 265: 270~286.

    • Farkaš J, Chrastny V, Novak M, Cadkova E, Pasava J, Chakrabarti R, Jacobsen S B, Ackerman L, Bullen T D. 2013. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth's mantle over geologic time. Geochimica et Cosmochimica Acta, 123: 74~92.

    • Freer R. 1981. Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contributions to Mineralogy and Petrology, 76: 440~454.

    • Frey F A, Garcia M O, Roden M F. 1994. Geochemical characteristics of Koolau Volcano: Implications of intershield geochemical differences among Hawaiian volcanoes. Geochimica et Cosmochimica Acta, 58: 1441~1462.

    • Friedrich B M, Marques J C, Olivo G R, Frantz J C, Joy B, Waldemir J A Q. 2019. Petrogenesis of the massive chromitite layer from the Jacurici Complex, Brazil: Evidence from inclusions in chromite. Mineralium Deposita, 4: 1~22.

    • Ganguly J. 2002. Diffusion kinetics in minerals: Principles and applications to tectono-metamorphic processes. European Mineralogical Union Notes in Mineralogy, 4: 271~309.

    • Hellebrand E, Snow J E, Dick H J, Hofmann A W. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410: 677~681.

    • Helz R T. 1987. Differentiation behavior of Kilauea Iki lava lake, Kilauea volcano, Hawaii: An overview of past and current work. Magmatic Processes: Physicochemical Principles, 1: 241~258.

    • Helz R T, Kirschenbaum H K, Marinenko J W, Qian R. 1994. Whole-rock analyses of core samples from the 1967, 1975, 1979 and 1981 drillings of Kilauea lki lava lake, Hawaii. US Geological Survey Open File Report, 684: 1~65.

    • Helz R T. 2012. Trace-element analyses of core samples from the 1967~1988 drillings of Kilauea Iki lava lake, Hawaii. US Department of the Interior, US Geological Survey Open File Report, 1050: 1~56.

    • Huang Fang, Lundstrom C C, McDonough W F. 2006. Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. American Mineralogist, 91: 1385~1400.

    • Ionov D A, O'Reilly S Y, Genshaft Y S, Kopylova M G. 1996. Carbonate-bearing mantle peridotite xenoliths from Spitsbergen: Phase relationships, mineral compositions, and trace-element residence. Contributions to Mineralogy and Petrology, 125: 375~392.

    • Ionov D A, Hofmann A W. 2007. Depth of formation of subcontinental off-craton peridotites. Earth and Planetary Science Letters, 261: 620~634.

    • Irving A J, Frey F A. 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochimica et Cosmochimica Acta, 42: 771~787.

    • Jin Zhenmin, Bai Quan, Kohlstedt David, Jin Shuyan. 1996. Experimental study on the relationship between chromite enrichment and partial melting of the upper mantle. Geological Review, 42: 424~429 (in Chinese with English abstract).

    • Jollands M C, O'Neill H S C, Van Orman J. 2017. Substitution and diffusion of Cr2+ and Cr3+ in synthetic forsterite and natural olivine at 1200-1500°C and 1 bar. Geochimica et Cosmochimica Acta, 220: 407~428.

    • Kamenetsky V S, Crawford A J, Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42: 655~671.

    • Klein-BenDavid O, Pettke T, Kessel R. 2011. Chromium mobility in hydrous fluids at upper mantle conditions. Lithos, 125: 122~130.

    • König S, Münker C, Schuth S. 2010. Boninites as windows into trace element mobility in subduction zones. Geochimica et Cosmochimica Acta, 74: 684~704.

    • Lodders K. 2003. Solar system abundances and condensation temperatures of the elements. The Astrophysical Journal, 591: 1220~1247.

    • Lugmair G W, Shukolyukov A. 1998. Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta, 62: 2863~2886.

    • Lundstrom C C, Shaw H F, Ryerson F J, Williams Q, Gill J. 1998. Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: Implications for elemental fractionations in the depleted mantle. Geochimica et Cosmochimica Acta, 62: 849~862.

    • Ma Haibo, Xu Lijuan, Shen Ji, Liu Shengao, Li Shuguang. 2022. Chromium isotope fractionation during magmatic processes: Evidence from mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 327: 79~92.

    • Mallmann G, O'Neill H S C. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50: 1765~1794.

    • McDonald J A. 1965. Liquid immiscibility as one factor in chromitite seam formation in the Bushveld igneous complex. Economic Geology, 60: 1674~1685.

    • McDonough W F, Sun Shensu. 1995. The composition of the Earth. Chemical Geology, 120: 223~253.

    • Moynier F, Yin Qingzhu, Schauble E. 2011. Isotopic evidence of Cr partitioning into Earth's core. Science, 331: 1417~1420.

    • Ohtani E, Kawabe I, Moriyama J, Nagata Y. 1989. Partitioning of elements between majorite garnet and melt and implications for petrogenesis of komatiite. Contributions to Mineralogy and Petrology, 103: 263~269.

    • Palme H, O'Neill H S C. 2014. Cosmochemical estimates of mantle composition. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry (Second Edition). Oxford, Elsevier: 1~39.

    • Papike J J, Karner J M, Shearer C K. 2005. Comparative planetary mineralogy: Valence state partitioning of Cr, Fe, Ti, and V among crystallographic sites in olivine, pyroxene, and spinel from planetary basalts. American Mineralogist, 90: 277~290.

    • Qin Liping, Wang Xiangli. 2017. Chromium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82: 379~414.

    • Richter F M, Watson E B, Mendybaev R A, Dauphas N, Georg B, Watkins J, Valley J. 2009. Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochimica et Cosmochimica Acta, 73: 4250~4263.

    • Ringwood A E, Kato T, Hibberson W, Ware N. 1990. High-pressure geochemistry of Cr, V and Mn and implications for the origin of the Moon. Nature, 347: 174~176.

    • Rollinson H, Adetunji J. 2013. Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 177: 314~327.

    • Ruan Tao, Zhong Hong, Zhu Jianming, Bai Zhongjie. 2021. The formation of giant podiform chromitite by asthenospheric melts in supra-subduction zone environments. Online in Research Square, doi. org/10. 21203/rs. 3. rs-225374/v1.

    • Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33: 267~309.

    • Rudnick R L, Gao Shan. 2014. Composition of the Continental Crust. In Treatise on Geochemistry: Second Edition. Oxford, Elsevier: 1~39.

    • Scheiderich K, Amini M, Holmden C, Francois R. 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples. Earth and Planetary Science Letters, 423: 87~97.

    • Schoenberg R, Zink S, Staubwasser M, Blanckenburg F V. 2008. The stable Cr isotope inventory of Solid Earth reservoirs determined by double spike MC-ICP-MS. Chemical Geology, 249: 294~306.

    • Schoenberg R, Merdian A, Holmden C, Kleinhanns I C, Haler K, Wille M, Reitter E. 2016. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochimica et Cosmochimica Acta, 183: 14~30.

    • Selkin P A, Gee J S, Meurer W P, Hemming S R. 2006. Paleointensity record from the 2. 7 Ga Stillwater complex, Montana. Geochemistry, Geophysics, Geosystems, 9: 1~9.

    • Shen Ji, Liu Jia, Qin Liping, Wang Shuijiong, Li Shuguang, Xia Jiuxing, Ke Shan, Yang Jingsui. 2016. Chromium isotope signature during continental crust subduction in metamorphic rocks. Geochemistry, Geophysics, Geosystems, 16: 3840~3854.

    • Shen Ji, Qin Liping, Fang Ziyao, Zhang Yingnan, Liu Jia. , Liu Wei, Wang Fangyue, Xiao Yan, Yu Huimin, Wei Shiqiang. 2018. High-temperature inter-mineral Cr isotope fractionation: A comparison of ionic model predictions and experimental investigations of mantle xenoliths from the North China Craton. Earth and Planetary Science Letters, 499: 278~290.

    • Shen Ji, Yang Bing, Xia Jiuxing. 2020a. Chromium element and isotope geochemistry in high temperature systems. Journal of University of Science and Technology of China, 50: 1229~1248.

    • Shen Ji, Xia Jiuxing, Qin Liping, Carlson R W, Huang Shichun, Helz R T, Mock T D. 2020b. Stable chromium isotope fractionation during magmatic differentiation: Insights from Hawaiian basalts and implications for planetary redox conditions. Geochimica et Cosmochimica Acta, 278: 289~304.

    • Shen Ji, Wang Shuijiong, Qin Liping, Ni Huawei, Li Shuguang, Du Jinxue, Shen Tingting, Zhang Lifei, Yu Huimin. 2021. Tracing serpentinite dehydration in a subduction channel: Chromium element and isotope evidence from subducted oceanic crust. Geochimica et Cosmochimica Acta, 313: 1~20.

    • Siebert J, Badro J, Antonangeli D, Ryerson F J. 2013. Terrestrial accretion under oxidizing conditions. Science, 339: 1194~1197.

    • Spandler C, Mavrogenes J, Arculus R. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater complex. Geology, 33: 893~896.

    • Spandler C, Pettke T, Rubatto D. 2011. Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. Journal of Petrology, 52: 1207~1236.

    • Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan. 2018a. Potential applications of Fe and Mg isotopes in genesis of chromite deposits in ophiolites. Earth Science, 43: 1011~1024 (in Chinese with English abstract).

    • Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, Cui Mengmeng, Peng Qingshan. 2018b. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37: 1035~1046 (in Chinese with English abstract).

    • Su Benxun, Bai Yang, Cui Mengmeng, Wang Jing, Xiao Yan, Lenaz D, Sakyi P A, Robinson P T. 2020a. Petrogenesis of the ultramafic zone of the Stillwater complex in North America: Constraints from mineral chemistry and stable isotopes of Li and O. Contributions to Mineralogy and Petrology, 175: 1~28.

    • Su Benxun, Robinson P T, Chen Chen, Xiao Yan, Melcher F, Bai Yang, Gu Xiaoyan, Uysal I, Lenaz D. 2020b. The occurrence, origin and fate of water in podiform chromitites. American Mineralogist, 105: 894~903.

    • Su Benxun, Chen Chen, Xiao Yan, Robinson P T, Liu Xia, Wang Jing, Uysal I, Bai Yang, Sun Yang. 2021a. The critical role of fluid-mediated diffusion in anomalous Fe-Mg-O isotope fractionations in ultramafic rocks of ophiolites. Journal of Geophysical Research: Solid Earth, 126: 1~20.

    • Su Benxun, Liu Xia, Chen Chen, Robinson P T, Xiao Yan, Zhou Meifu, Bai Yang, Uysal I, Zhang Pengfei. 2021b. A new model for chromitite formation in ophiolites: Fluid immiscibility. Science China: Earth Sciences, 64: 220~230.

    • Su Benxun, Liu Xia, Yuan Qinghan, Luo Yang, Pan Qiqi, Bai Yang, Cui Mengmeng, Xiao Yan, Tang Dongmei. 2022. Role and significance of fluids in magmatic-type chromite and platinum-group element mineralization. Acta Geologica Sinica, 96(12): 4091~4100 (in Chinese with English abstract).

    • Sutton S R, Jones K W, Gordon B, Rivers M L, Bajt S, Smith J V. 1993. Reduced chromium in olivine grains from lunar basalt 15555: X-ray absorption near edge structure (XANES). Geochimica et Cosmochimica Acta, 57: 461~468.

    • Tang Dongmei, Qin Kezhang, Evans N J, Fang Linru. 2023. Silicate mineral inclusions in chromite from the Eastern Bushveld complex: Implications for the origin and evolution of hydrous melt during chromite mineralization in the Critical Zone. Lithos, 438: 106997.

    • Talkington R W, Lipin B R. 1986. Platinum-group minerals in chromite seams of the Stillwater complex, Montana. Economic Geology, 81: 1179~1186.

    • Wall C J, Scoates J S, Weis D, Friedman R M, Amini M, Meurer W P. 2018. The Stillwater complex: Integrating zircon geochronological and geochemical constraints on the age, emplacement history and crystallization of a large, open-system layered intrusion. Journal of Petrology, 59: 153~190.

    • Walter M J, Newsom H E, Ertel W, Holzheid A. 2000. Siderophile elements in the Earth and Moon: Metal/silicate partitioning and implications for core formation. Origin of the Earth and Moon, 1: 265~289.

    • Walter M J. 2003. Melt extraction and compositional variability in mantle lithosphere. Treatise on Geochemistry, 2: 568.

    • Wang Xiangli, Planavsky N J, Reinhard C T, Zou Huijuan, Ague J J, Wu Yuanbao, Peucker-Ehrenbrink B. 2016. Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chemical Geology, 423: 19~33.

    • Watenphul A, Schmidt C, Jahn S. 2014. Cr (III) solubility in aqueous fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 126: 212~227.

    • White W M, Klein E M. 2014. Composition of the oceanic crust. Treatise on Geochemistry, 4: 457~496.

    • Xia Jiuxing, Qin Liping, Shen Ji, Carlson R W, Ionov D A, Mock T D. 2017. Chromium isotope heterogeneity in the mantle. Earth Planetary Science Letters, 464: 103~115.

    • Xiao Yan, Teng Fangzhen, Su Benxun, Hu Yan, Zhou Meifu, Zhu Bin, Shi Rendeng, Huang Qishuai, Gong Xiaohan, He Yongsheng. 2016. Iron and magnesium isotopic constraints on the origin of chemical heterogeneity in podiform chromitite from the Luobusa ophiolite, Tibet. Geochemistry, Geophysics, Geosystems, 17: 940~953.

    • Xiao Yan, Pan Qiqi, Tang Dongmei, Mao Yajing, Tian Shihong, Chen Chen, Su Benxun, Liu Xia. 2021. Retrospects and prospects on Li isotope geochemistry during petrogenesis and mineralization of mafic-ultramafic rocks. Earth Sciences, 46: 4334~4345 (in Chinese with English abstract).

    • Yamakawa A, Yamashita K, Makishima A, Nakamura E. 2009. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry. Analytical Chemistry, 81: 9787~9794.

    • Yang Shuying, Humayun M, Salters V J M. 2018. Elemental systematics in MORB glasses from the mid-Atlantic ridge. Geochemistry, Geophysics, Geosystems, 19: 4236~4259.

    • 白洋, 苏本勋, 肖燕, 崔梦萌, 王静, 袁庆晗. 2023. Co-Ni在镁铁-超镁铁层状岩体中的分布特征及对岩浆成矿的指示: 以Stillwater岩体为例. 岩石学报, 39: 1172~1184.

    • 鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28: 1741~1761.

    • 陈艳虹, 杨经绥. 2018. 豆荚状铬铁矿床研究回顾与展望. 地球科学, 43: 991~1010.

    • 金振民, Bai Q, Kohlstedt D L, 金淑燕. 1996. 铬铁矿预富集和上地幔部分熔融关系的实验研究. 地质论评, 42: 424~429.

    • 苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山. 2018a. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43: 1011~1024.

    • 苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018b. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37: 1035~1046.

    • 苏本勋, 刘霞, 袁庆晗, 罗扬, 潘旗旗, 白洋, 崔梦萌, 肖燕, 唐冬梅. 2022. 流体在岩浆型铬铁矿和铂族元素成矿过程中的作用及意义. 地质学报, 96(12): 4091~4100.

    • 肖燕, 潘旗旗, 唐冬梅, 毛亚晶, 田世洪, 陈晨, 苏本勋, 刘霞. 2021. 镁铁-超镁铁质岩成岩成矿过程中的锂同位素地球化学: 回顾与展望. 地球科学, 46: 4334~4345.