en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何兰芳,男,1972年生。高级工程师,主要从事矿床电磁学、电磁岩石物理学研究。E-mail:mofoo@263.net。

参考文献
Aleksander K C. 2018. Military use of unmanned aerial vehicles—A historical study. Safety & Defense, 4: 17~21.
参考文献
Andreev B A. 1937. Application of geophysical methods for exploration of chromite deposits. Transactions Scientific Geology Institute, Leningrad.
参考文献
Bao Peisheng, Su Li, Wang Jun, Zhai Qingguo. 2014. Origin of the Zedang and Luobusa ophiolites, Tibet. Acta Geologica Sinica (English Edition), 88: 669~698.
参考文献
Bedini E. 2017. The use of hyperspectral remote sensing for mineral exploration: A review. Journal of Hyperspectral Remote Sensing, 7(4): 189~211.
参考文献
Bioucas-Dias J M, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J. 2013. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2): 6~36.
参考文献
Boerner D E, Kurtz R D, Jones A G. 1993a. Orthogonality in CSAMT and MT measurements. Geophysics, 58(7): 924~934.
参考文献
Boerner D E, Wright J A, Thurlow J G, Reed L E. 1993b. Tensor CSAMT studies at the Buchansmine in central Newfoundland. Geophysics, 58(1): 12~19.
参考文献
Boschetto N B, Hohmann G W. 1991. Controlled-source audio-frequency magnetotelluric responses of three-dimensional bodies. Geophysics, 56(2): 255~264.
参考文献
Cagniard L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18: 605~635.
参考文献
Cao Hui, Wang Kunpeng, Wang Xuben, Duan Changsheng, Lan Xing, Luo Wei, Zhang Zhiyong. 2021. Tipper data forward modeling and inversion of three-dimensional tensor CSAMT. Journal of Applied Geophysics, 193: 104432.
参考文献
Cao Xuhong. 1999. Geophysical characteristics of chromites and ultrabasic rocks in Qilian moutain district and their prospecting methods. Geology and Prospecting, 26(2): 40~44 (in Chinese with English abstract).
参考文献
Christensen N I. 1978. Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47: 131~157.
参考文献
Coleman C, Li Yaoguo. 2018. Quantifying the error level in computed magnetic amplitude data for 3D magnetization inversion error in magnetic amplitude data. Geophysics, 83(5): J75~J84.
参考文献
Cuerno-Rejado C, Garcia-Hernandez L, Sanchez-Carmona A, Carrio A, Sanchez Lopez J L, Campoy P. 2016. Historical evolution of the unmanned aerial vehicles to the present. Dyna, 91(3): 282~288.
参考文献
Davis W E, Jackson W H, Richter D H. 1957. Gravity prospecting for chromite deposits in Camaguey Province, Cuba. Geophysics, 22: 848~869.
参考文献
del Cerro J, Cruz Ulloa C, Barrientos A, de León Rivas J. 2021. Unmanned aerial vehicles in agriculture: A survey. Agronomy, 11(2): 203.
参考文献
Di Qingyun, Wang Ruo, Wang Miaoyue. 2008. Modeling and Inversion Method of Controlled Source Audio Magnetotelluric Data and Their Application. Beijing: Science Press(in Chinese).
参考文献
Eshaghzadeh A, Sahbari S S, Dehghanpour A. 2020. 2D inverse modeling of the gravity field due to a chromite deposit using the Marquardt's algorithm and forced neural network. Bulletin of the Mineral Research and Exploration, 161(161): 33~47.
参考文献
Essa K S, Munschy M. 2019. Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128(5): 1~16.
参考文献
Essa K S, Abo-Ezz E R, Géraud Y. 2021. Utilizing the analytical signal method in prospecting gravity anomaly profiles. Environmental Earth Sciences, 80(17): 1~21.
参考文献
Flint D E, de AlbearJ F, Guild P W. 1948. Geology and chromite deposits of the Camagüey district, Camagüey Province, Cuba. Geologic Investigations in the American Republics. US Government Printing Office, 39~63.
参考文献
Frasheri A I. 2009. The peculiarities of geophysical methods in exploration for chrome deposits. SEG Expanded Abstracts 2009, 1310~1314.
参考文献
Fu Hongru, Jiang Jiagui. 1986. Test result of borehole radiowave penetration method in the Xianggeshan chromite ore district, Tibet. Geophysical and Geochemical Exploration, 10: 57~60 (in Chinese with English abstract).
参考文献
Garcia X, Boerner D, Pedersen L B. 2003. Electric and magnetic galvanic distortion decomposition of tensor CSAMT data. Application to data from the Buchans Mine (Newfoundland, Canada). Geophysical Journal International, 154(3): 957~969.
参考文献
Goldstein M A. 1971. Magnetotelluric experiments employing an artificial dipole source. Doctoral dissertation of University of Toronto, Canada.
参考文献
Goldstein M A, Strangway D W. 1975. Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics, 40(4): 669~683.
参考文献
Guha A. 2020. Mineral exploration using hyperspectral data. Hyperspectral Remote Sensing. Elsevier.
参考文献
Hammer S. 1945. Estimating ore masses in gravity prospecting. Geophysics, 10: 50~62.
参考文献
Hammer S, Nettleton L L, Hastings W K. 1945. Gravimeter prospecting for chromite in Cuba. Geophysics, 10: 34~49.
参考文献
Hawkes H E. 1951. Magnetic exploration for chromite. Geological Suevey Bulletin (No. 973). US Government Printing Office, 1~21.
参考文献
He Jishan. 1990. Controlled Source Audio Magnetotelluric Method. Changsha: Press of Central South University (in Chinese).
参考文献
He Lanfang. 2014. Petro-electricity and its origin: Examples from Luobusha ultramafic rock and Upper Yangtze black shale. Doctoral dissertation of Nanjing University(in Chinese with English abstract).
参考文献
He Lanfang, Chen Ling, Dorji, He Zhanxiang, Wang Xuben, Xiao Bayi, Xu Ligui, Xi Xiaolu, Yao Hongchun, Chen Rujun. 2018. Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet. Geophysics, 83(2): B47~B57.
参考文献
Hornicka E, Targosz P, Loska M, Wojdyła M. 2020. Complex geophysical investigation in search of chromite deposits at Ljuboten greenfield site. Proceedings of NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining (Vol. 2020, No. 1, 1~5). European Association of Geoscientists & Engineers.
参考文献
Horen H, Zamora M, Dubuisson G. 1996. Seismic waves velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge. Geophysical Research Letters, 23: 9~12.
参考文献
Hu Xiangyun, Peng Ronghua, Wu Guiju, Wang Weiping, Huo Guangpu, Han Bo. 2013. Mineral exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China. Geophysics, 78(3): B111~B119.
参考文献
Hunt C P, Moskowitz B M, Banerjee S K. 1995. Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants, 3: 189~204.
参考文献
Jacobs J A, Testa S M. 2005. Overview of chromium (VI) in the environment: Background and history. In: Chromium (VI) Handbook, 1~21.
参考文献
Jiang Mei, Peng Miao, Yang Jingsui, Tan Handong, Qian Rongyi, Zhang Yuwen, Xu Lehong, Zhang Lishu, Li Qingqing. 2015. Seismic reflection and magnetotelluric profiles across the Luobusa ophiolite: Evidence for the deep structure of the Yarlung Zangbo suture zone, southern Tibet. Journal of Asian Earth Sciences, 110: 4~9.
参考文献
Jiang Mei, Yang Jingsui, Zhang Yuwen, Tan Handong, Peng Miao, Wu Liangshi, Xu Lehong, Zhang Lishu, Li Qinqin. 2013. Deep tectonic characteristics and ore-prospecting potential of the Zetang Crbearing ultramafic rock mass in Tibet. Geology in China, 40(3): 780~789(in Chinese with English abstract).
参考文献
Jiang Mei, Yang Jingsui, Zhang Lishu, Zhang Liwen, Peng Miao, Li Qingqing. 2016. The magnetic anomaly characteristics of Dongpo, Xigaze and some other ophiolite rock masses along the Yarlung Zangbo suture zone and their ore prospecting significance. Geology in China, 43(5): 1666~1678(in Chinese with Englishabstract).
参考文献
Jin Li. 2015. High-precision gravity and magnetic exploration in the research and application of chromite exploration. Master's thesis of Chengdu Unversity of Technology.
参考文献
Ju Xing, Han Song, Guo Hua, Xiao Mengchu. 2020. The safe application of CH4 unmanned aerial vehicle in aerogeophysics. China Mining Magazine, 29(S2): 159~162 (in Chinese with Englishabstract).
参考文献
Koleli N, Demir A. 2016. Chromite. In: Environmental Materials and Waste. London: Academic Press, 245~263.
参考文献
Kospiri A, Kosho P, Vuksaj N. 1999. Case histories of the application of geophysical methods to chromite exploration in the Balkans. Second Balkan Geophysical Congress and Exhibition (Extended Abstract), Istanbul, Jul. 5~9, O7~3.
参考文献
Kumar A, Bhalla M S. 1984. Source of stable remanence in chromite ores. Geophysical Research Letters, 11(3): 177~180.
参考文献
Kumar D, Satyanarayanan M, Kumar K S, Raju P V. 2022. Electrical resistivity tomography of Mesoarchaean chromitite bands from Katpal in Sukinda Ultramafic Complex, Odisha. Journal of Earth System Science, 131(1): 1~15.
参考文献
Lee F W. 1939. Part I—History and activities of the section of geophysics of the United States Geological Survey. Eos, Transactions American Geophysical Union, 20(3): 280~291.
参考文献
Li Yaoguo, Shearer S E, Haney M M, Dannemiller N. 2010. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics, 75(1): L1~L11.
参考文献
Li Yaoguo, He Zhanxiang, Liu Yunxiang. 2012. Application of magnetic amplitude inversion in exploration for volcanic units in a basin environment. Geophysics, 77(5): B219~B225.
参考文献
Li Zelin. 2014. Research on 3-D inversion of magnetic data in the presence of strong remanence. Master's thesis of China Unversity of Geosciences (Beijing).
参考文献
Liang Fenghua, Xu Zhiqing, Ba Dengzhu, Liu Fei, Xiong Fahui, Jia Yi. 2011. Tectonic occurrence and emplacement mechanism of ophiolites from Luobusa-Zedang, Tibet. Acta Petrologica Sinica, 27(11): 3255~3268 (in Chinese with English abstract).
参考文献
Lin Liping. 2013. The inferred structure by gravity and magnetic data and its prospecting significance in the central region of Yarlung Zangbo River and Two Other rivers. Master's thesis of Chengdu Unversity of Technology.
参考文献
Liu Jianxin, Li Zeng, Zeng Fanyong, Zhang Yuxiang, Qiu Jie. 2020. Application research of ground high-precision magnetic measurement in geological mapping: Taking the chromite ore disctrict of Ngape, Magwe Province, Myanmar as an example. Chinese Journal of Engineering Geophysics, 17(4): 441~446 (in Chinese with English abstract).
参考文献
Liu Ling. 2021. Application of gravity data processing and interpretation technology in geological structure interpretation and mineral prediction in southern Tibet. Doctoral dissertation of China University of Geosciences (Beijing).
参考文献
Liu Tianyou, Yang Jingsui, Liu Jianxiong, Gou Jingchang, Su Baohua. 2012. The effects of using high-precision gravity and magnetic methods to explore chromite in the Xiugou iron deposit, Langxian County, Tibet. Geophysical and Geochemical Exploration, 36(3): 325~331 (in Chinese with English abstract).
参考文献
Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Element Geochemistry. Beijing: Science Press (in Chinese).
参考文献
Lunk H J. 2015. Discovery, properties and applications of chromium and its compounds. ChemTexts, 1(1): 1~17.
参考文献
Mohanty W K, Mandal A, Sharma S P, Gupta S, Misra S. 2011. Integrated geological and geophysical studies for delineation of chromite deposits: A case study from Tangarparha, Orissa, India. Geophysics, 76(5): B173~B185.
参考文献
Mondal S, Guha A, Pal S K. 2022. Support vector machine-based integration of AVIRISNG hyperspectral and ground geophysical data for identifying potential zones for chromite exploration—A study in Tamil Nadu, India. Advances in Space Research, https: //doi. org/10. 1016/j. asr. 2022. 04. 048.
参考文献
Niu Zuoliang. 2013. Geopgysical exploration methods in the exploration of chromite in Mongolian research and application. Master's thesis of China University of Geosciences (Beijing).
参考文献
Park S, Choi Y. 2020. Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review. Minerals, 10(8): 663.
参考文献
Parvar K, Braun A, Layton-Matthews D, Burns M. 2017. UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman. Journal of Unmanned Vehicle Systems, 6(1): 57~69.
参考文献
Qasim M, Khan S D, Haider R. 2022. Integration of multispectral and hyperspectral remote sensing data for lithological mapping in Zhob Ophiolite, western Pakistan. Arabian Journal of Geosciences, 15(7): 1~19.
参考文献
Qiu Liquan. 2013. The effect of appling the electromagnetic wave CT to the exploration of the Norbusa (Luobusa) chromite ore district in Tibet. Geophysical & Geochemical Exploration, 37: 59~62 (in Chinese with English abstract).
参考文献
Qu Daxiang. 1978. Chromite exploration using induced polarization. Northwestern Geology, 15(1): 93~99 (in Chinese with English abstract).
参考文献
Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-AbriA H, Kusky T M, Ghulam A. 2012. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44: 121~135.
参考文献
Refai E, Wassif N A, Shoaib A. 1989. Stability of remanence and paleomagnetic studies of some chromite ores from Barramiya and Allawi occurrences, Eastern Desert, Egypt. Earth and Planetary Science Letters, 94(1-2): 151~159.
参考文献
Rong Zhihao, Liu Yunhe. 2022. 3D joint inversion of controlled-source audio-frequency magnetotelluric and magnetotelluric data. Global Geology, 25(1): 26~33.
参考文献
Sherendo T A, Vdovin A G, Martyshko P S, Mitrofanov V Y, Alekseev A V, Zamyatin D A, Vazhenin V A, Pamyatnykh L A. 2015. The nature of geomagnetic anomalies in metamorphosed chromite-bearing dunites: A case study of the southern Klyuchevskoy complex, Central Urals. Russian Geology and Geophysics, 56(3): 476~486.
参考文献
Shi Kunfa. 1999. Theory and Application of Controlled Source Audio Magnetotelluric Method. Beijing: Science Press (in Chinese).
参考文献
Streich R. 2016. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37(1): 47~80.
参考文献
Sueker J K. 2006. Chromium. Environmental Forensics, Contaminant Specific Guide. Burlington: Academic Press.
参考文献
Sun Raoxin. 2019. Two dimensional forward modeling and inversion of tensor CSAMT data for anisotropic medium. Master's thesis of China University of Geosciences (Beijing).
参考文献
Tang Jingtian, He Jishan. 2005. Controlled Source Audio Magnetotelluric Method and Its Application. Changsha: Press of Central South University (in Chinese).
参考文献
Tikhonov A N. 1950. On determining electric characteristics of the deep layers of the Earth′scrust. Dolk. Acad. Nauk. SSSR, 73(2): 295~297.
参考文献
Tong Qingxi, Zhang Bing, Zhang Lifu. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5): 689~707 (in Chinese with English abstract).
参考文献
Valavanis K P. 2008. Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Dordrecht : Springer.
参考文献
Wang Gang, Lei Da, Zhang Zhenyu, Hu Xiangyun, Li Yongbo, Wang Dayong, Zhu Wei. 2018. Tensor CSAMT and AMT studies of the Xiarihamu Ni-Cu sulfide deposit in Qinghai, China. Journal of Applied Geophysics, 159: 795~802.
参考文献
Wang Kunpeng, Tan Handong, Zhang Zhiyong, Li Zhiqiang, Cao Meng. 2017. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media. Exploration Geophysics, 48(4): 363~373.
参考文献
Wang Tao, Wang Kunpeng, Tan Handong. 2017. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media. Applied Geophysics, 14(4): 590~605.
参考文献
Wang Xibing, Zhou Xiang, Hao Zigauo. 2010. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China. Geological Bulletin of China, 29(1): 105~114 (in Chinese with English abstract).
参考文献
Wang Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review. Chinese Science Bulletin, 65: 3825~3838(in Chinese with English abstract).
参考文献
Wannamaker P E. 1997. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part I: Implications for structure of the western caldera. Geophysics, 62(2): 451~465.
参考文献
Wu Qin. 2006. A study on the prospecting direction and method of Chromium deposit in Xizang (Tibet). Shanghai Geology, 26: 58~63 (in Chinese with English abstract).
参考文献
Wynn J C. 1981. Chromite geophysics; an example of synergistic geophysical exploration for industrial commodities. Open-File Report 81-964, USGS, 1~23.
参考文献
Xi Xiaolu, Yang Haicheng, He Lanfang, Chen Rujun. 2013. Chromite mapping using induced polarization method based on spread spectrum technology. Symposium on the Application of Geophysics to Engineering and Environmental Problems 2013. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 13~19.
参考文献
Xiang Biwen, Chen Rujun, Chun Shaoheng, Yao Hongchun, Wu Hong, Liu Weiqiang. 2015. A new method for removing EM-coupling in spread spectrum induced polarization based on exponential function fitting. Geophysical and Geochemical Exploration, 39(5): 1053~1058 (in Chinese with English abstract).
参考文献
Xie Jiangtao. 2012. Tibet chromite for gravity and magnetic anomaly characteristics and distribution law research. Master's thesis of Chengdu Unversity of Technology.
参考文献
Xu Xiangzhen, Yang Jingsui, Robinson P T, Xiong Fahui, Ba Dengzhu, Guo Guolin. 2015. Origin of ultrahigh pressure and highly reduced minerals in podiform chromites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 27: 686~700.
参考文献
Yang Jingsui, Bai Wenji, Fang Qingsong, Yan Binggang, Shi Nicheng, Ma Zhesheng, Dai Mingquan, Xiong Ming. 2003. Silicon-rutile-an ultrahigh pressure (UHP) mineral from an ophiolite. Progress in Natural Science, 13: 528~531.
参考文献
Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green H W. 2007. Diamond and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35: 875~878.
参考文献
Yang Jingsui, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10: 27~130.
参考文献
Yang Jingsui, Lian Dongyang, Wu Weiwei, Yang Yu, Rui Huichao, Shi Rendeng, Xiong Fahui. 2022. Chromitites in ophiolites: Questions and thoughts. Acta Geologica Sinica, 96 (5): 608~1634 (in Chinese with English abstract).
参考文献
Yang Lunkai, Liu Hong, He Lanfang, Wang Rongtao, He Xiaohua. 2003. New approach for geothermal exploration: High-power controlled source magnetotelluric method (CSMT). Proceedings of the China Oil Field and Urban Geothermal Development and Utilization Conference. Beijing: Metallurgical Industry Press, 234~237 (in Chinese).
参考文献
Yang Ruodi. 2017. Study on the distribution and application of tensor CSAMT electromagnetic field. Master's thesis of China Unversity of Mining and Technology.
参考文献
Yu Pengliang, Qu Ting, He Rizheng, Liu Jianli, Wang Sufen, Chen Xiaolong. 2021. Application of tensor CSAMT with high-power orthogonal signal sources in Jiama copper polymetallic deposit, South Tibet. China Geology, 4(4): 1~13.
参考文献
Yüngül S. 1956. Prospecting for chromite with gravimeter and magnetometer over rugged topography in east Turkey. Geophysics, 21: 433~454.
参考文献
Zhang Chunmin, Mu Tingkui, Yan Tingyu, Chen Zeyu. 2018. Overview of hyperspectral remote sensing technology. Spacecraft Recovery and Remote Sensing, 39(3): 104~114 (in Chinese with English abstract).
参考文献
Zhang Saizhen, Wang Qingyi, Luo Yanzhong. 1994. An overview on the development in the electrical methods of China. Acta Geoophisica Sinica, 37(A01): 408~424 (in Chinese with English abstract).
参考文献
Zhang Zhengyu, Wang Gang, Hu Xiangyu, Li yongbo, Wang Dayong, Yao Dawei. 2017. Tensor CSAMT technical research and experiments. Oil Geophysical Prosepcting, 52(4): 869~874+630 (in Chinese with English abstract).
参考文献
Zhou Meifu, Robinson P T, Malpas J W, Li Zijin. 1996. Podiform chromites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37: 3~21.
参考文献
Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE geochemical constraints on the formation of Dunites in the Luobusa Ophiolite, southern Tibet. Journal of Petrology, 46: 615~639.
参考文献
Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of contamination of asthenospheric melts in supersubduction zone environments. Gondwana Research, 26: 262~283.
参考文献
Zonge K L, Hughes L J. 1991. Controlled source audio-frequency magnetotellurics. In: Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B. Society of Exploration Geophysicists, 713~810.
参考文献
曹绪宏. 1999. 祁连山地区铬铁矿和超基性岩体的地球物理特征及物探找矿方法. 地质与勘探, 26(2): 40~44.
参考文献
底青云, 王若, 王妙月. 2008. 可控源音频大地电磁数据正反演及方法应用. 北京: 科学出版社.
参考文献
何继善. 1990. 可控源音频大地电磁法. 长沙: 中南工业大学出版社.
参考文献
何兰芳. 2014. 罗布莎超基性岩与上扬子黑色页岩岩石电磁学. 南京大学博士学位论文.
参考文献
符宏如, 姜加贵. 1986. 井中无线电波法在西藏香嘎山铬铁矿区的试验结果. 物探与化探, 10: 57~60.
参考文献
姜枚, 杨经绥, 张聿文, 谭捍东, 彭淼, 吴良士, 许乐红, 张立树, 李庆庆. 2013. 西藏泽当岩体含铬超镁铁岩体的深部构造特征与找矿前景探讨. 中国地质, 40(3): 780~789.
参考文献
姜枚, 杨经绥, 张立树, 张聿文, 彭淼, 李庆庆. 2016. 沿雅鲁藏布江缝合带东坡、日喀则等蛇绿岩体磁异常特征及其找矿标志. 中国地质, 43(5): 1666~1678.
参考文献
靳力. 2015. 高精度重磁勘探在铬铁矿勘查中的研究及应用. 成都理工大学硕士学位论文.
参考文献
鞠星, 韩松, 郭华, 肖梦楚, 牛海波. 2020. 彩虹4无人机在航空物探领域的安全应用. 中国矿业, 29(S2): 159~162.
参考文献
李泽林. 2014. 强剩磁条件下磁数据三维反演研究. 中国地质大学(北京)硕士学位论文.
参考文献
梁凤华, 许志琴, 巴登珠, 徐向珍, 刘飞, 熊发挥, 贾毅. 2011. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨. 岩石学报, 27(11): 3255~3268.
参考文献
林丽萍. 2013. 西藏-江两河中部重磁推断地质构造及其找矿意义. 成都理工大学硕士学位论文.
参考文献
刘天佑, 杨宇山, 刘建雄, 苟金昌, 苏保华. 2012. 西藏朗县秀沟铬铁矿高精度重磁勘探效果. 物探与化探, 36(3): 325~331.
参考文献
刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社.
参考文献
柳建新, 曾礼, 曾凡勇, 张翔宇, 邱杰. 2020. 地面高精度磁测在地质填图中的应用研究——以缅甸马圭省额佩铬铁矿区为例. 工程地球物理学报, 17(4): 441~446.
参考文献
刘玲. 2021. 重力数据处理解释技术在藏南区域地质构造解译及矿产预测中的应用. 中国地质大学 (北京)博士学位论文.
参考文献
牛作亮. 2013. 物探方法在外蒙地区铬铁矿勘探中的应用研究. 中国地质大学(北京)硕士学位论文.
参考文献
邱礼泉. 2013. 西藏罗布莎铬铁矿区电磁波CT应用效果. 物探与化探, 37: 59~62.
参考文献
屈大祥. 1978. 激电场变特性方法寻找铬铁矿床. 西北地质, 15 (1): 93~99.
参考文献
石昆法. 1999. 可控源音频大地电磁法理论与应用. 北京: 科学出版社.
参考文献
孙尧鑫. 2019. 张量可控源音频大地电磁法二维各向异性正反演研究. 中国地质大学(北京)硕士学位论文.
参考文献
汤井田, 何继善. 2005. 可控源音频大地电磁法及其应用. 长沙: 中南大学出版社.
参考文献
童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(5): 689~707.
参考文献
王希斌, 周详, 郝梓国. 2010. 西藏罗布莎铬铁矿床的进一步找矿意见和建议. 地质通报, 29(1): 105~114.
参考文献
王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65: 3825~3838.
参考文献
吴钦. 1997. 用物探方法在西藏找到隐伏铬铁矿. 地球物理与中国建设. 北京: 地质出版社.
参考文献
吴钦. 2006. 西藏铬铁矿找矿方向和找矿方法问题探讨——兼论铬矿物探效果. 上海地质, 26: 58~63.
参考文献
西北地质科学研究所第六室情报组. 1976. 苏联肯皮尔赛岩体找铬矿工作的一些情况. 西北地质, (3): 59~60.
参考文献
向毕文, 陈儒军, 淳少恒, 姚红春, 吴宏, 刘卫强. 2015. 利用指数函数拟合去除扩频激电信号中的电磁耦合感应. 物探与化探, 39(5): 1053~1058.
参考文献
谢江涛. 2012. 西藏铬铁矿重磁异常特征及分布规律研究. 成都理工大学硕士学位论文.
参考文献
謝苗諾夫A C, 寜正. 1960. 苏联的金属矿地球物理勘探. 物探与化探, 4~11+30.
参考文献
杨经绥, 连东洋, 吴魏伟, 杨彧, 蔡鹏捷, 芮会超, 史仁灯, 熊发挥. 2022. 蛇绿岩中铬铁矿研究的问题与思考. 地质学报, 96(5): 1608~1634.
参考文献
杨轮凯, 刘宏, 何兰芳, 王永涛, 何小华. 2003. 地热勘探新技术——大功率可控源大地电磁测深法. 全国油区城镇地热开发利用经验交流会论文集(全国油区城镇地热开发利用经验交流会. 中国石油学会;中国能源研究会). 北京: 冶金工业出版社, 234~237.
参考文献
杨若迪. 2017. 张量 CSAMT 电磁场分布规律和应用技术研究. 中国矿业大学硕士学位论文.
参考文献
杨辟元. 1957. 在锡林郭勒盟以物探方法寻找铬铁矿的若干问题. 地球物理勘探, 6(5): 15~20.
参考文献
张淳民, 穆廷魁, 颜廷昱, 陈泽宇. 2018. 高光谱遥感技术发展与展望. 航天返回与遥感, 39(3): 104~114.
参考文献
张赛珍, 王庆乙, 罗延钟. 1994. 中国电法勘探发展概况. 地球物理学报, 37(A01): 408~424.
参考文献
张浩勇, 巴登珠, 郭铁鹰, 莫宣学, 薛君治, 阮桂甫, 王志宜. 1996. 西藏自治区曲松县罗布莎铬铁矿床研究. 拉萨: 西藏人民出版社.
参考文献
张振宇, 王刚, 胡祥云, 李永博, 王大勇, 姚大为. 2017. 张量CSAMT方法及对比实验. 石油地球物理勘探, 52(4): 869~874+630.
目录contents

    摘要

    铬铁矿是关键金属铬唯一可经济利用的自然资源,主要有层状铬铁矿和蛇绿岩中的豆荚状铬铁矿两种类型,其中豆荚状铬铁矿矿体规模小、发育不规律,是一个长期存在的勘探难题。由于铬铁矿特殊的经济战略地位,美国、欧洲、苏联和中国都非常重视铬铁矿地球物理勘探。铬铁矿地球物理探测技术发展始于20世纪30年代,至20世纪80年代,发展了以重力、磁法为主导的铬铁矿地球物理勘探技术,地震、电法也被应用。这一阶段在苏联乌拉尔肯皮尔赛等超大型蛇绿岩型隐伏铬铁矿勘探取得重大突破,在其他矿区取得一定的进展。自21世纪以来,高精度的便携式仪器和新兴地球物理技术逐渐运用到铬铁矿地球物理勘探,综合地球物理成为铬铁矿勘探的主流方法,在我国罗布莎等多个岩体隐伏铬铁矿勘探中取得突破,在印度、阿尔巴尼亚等国家也取得进展。本文回顾了铬铁矿地球物理勘探的发展历程,综述了铬铁矿岩石物理特征与测量方法、重磁勘探主要应用及存在问题、电磁法勘探的主要方法,并重点介绍了音频大地电磁测深在罗布莎铬铁矿的探测效果和电磁法勘探模式,展望了张量CSAMT技术、磁异常模量反演、高光谱遥感、高密度激电、无人机物探等有望在铬铁矿地球物理勘探中发挥重要作用的前沿技术。

    Abstract

    Chromite is the only mineral that is a commercial natural source of chrome. Chromite deposits are subdivided into podiform and stratiform (layered) types based on the geometry of the ore bodies and their host rocks. The podiform chromite deposits are always developed in ophiolite complex. Geophysical exploration for podiform chromite deposits is difficult as these chromite deposits do not manifest significant geophysical anomalies. In addition, most of the podiform chromite ore bodies are small scale, they pinch out and then reappear in the host rocks. Geophysical studies for hunting the chromite deposits started around 1920s. A great number of exploration projects have been carried out between 1940s and 1980s. Geophysical approaches such as gravity, magnetic, and electromagnetic methods have been employed in chromite exploration in different survey scales. The largest podiform chromite deposit has been discovered in Kempirsai, Urals. Smaller concealed podiform chromite deposits have been found by geophysical exploration in Turkey, Greece, China and other countries as well. In the past two decades, high-precision miniaturized instruments and integrated geophysical prospecting have been widely used in chromite exploration. Comprehensive geophysical exploration using audio magnetotellurics, gravity and magnetic methods have been applied in Luobusa, southern of the Tibet Plateau, and discovered the largest and highest-grade chromite deposit in China till date. In this study, we reviewed the history and the state of the art of the chromite geophysical exploration. We summarize the rock-physical properties, geophysical approaches of chromite deposits explorations, the applications and challenges of gravity, magnetic and electromagnetic exploration for chromite deposits. Finally, we prospected the application of the emerging geophysics approaches such as the tensor CSAMT, magnetic amplitude inversion, hyper-spectral remote sensing, high-density IP and UAV used for the chromite deposits geophysical exploration.

  • 铬是一种坚硬的刚灰色金属元素,具有耐高温、耐磨损、耐腐蚀等特殊属性,铬元素(chromium)的命名来源于希腊语“chroma”(χρωμα),意为“颜色”。早在2200年前,中国秦朝开始在一些兵器中和涂料中使用铬(Lunk,2015)。1761年,德国矿物和地质学家Johann Gottlob Lehmann在西伯利亚乌拉尔山区Beryozovskoye(Beresof)矿区发现了铬酸铅(crocoite,红铅)。1797年,法国化学家Nicolas-Louis Vauquelin教授从铬酸铅中分离出了氧化铬,1798年,他用木炭还原氧化铬分离出了铬元素(Jacobs and Testa,2005; Lunk,2015)。同年,Lowit,Klaproth和Tassaert分别于Beresof矿区和法国东南部发现了铬铁矿(Sueker,2006)。19世纪初期,铬先被用于纺织工业,随后被用于制革和印染行业,1865年出现了铬用于钢铁工业的专利;20世纪30年代,铬开始用于生产不锈钢,60年代后被广泛地应用于冶金行业(Koleli and Demir,2016),成为重要的关键金属。自然界的铬主要存在于铬铁矿和铬酸铅两种矿物中,而铬铁矿是唯一可经济利用铬的来源。铬铁矿床主要有两种产出类型,即与层状基性—超基性岩体有关的层状铬铁矿和蛇绿岩控制的豆荚状铬铁矿(王焰等,2020杨经绥等,2022)。层状铬铁矿床规模较大,层位稳定,较少应用地球物理探测,地球物理勘探主要目标为蛇绿岩型豆荚状铬铁矿。因此,本文主要讨论蛇绿岩中铬铁矿地球物理勘探技术与进展。

  • 蛇绿岩型(豆荚状)铬铁矿勘探是一个地球物理难题(Frasheri,2009; Mohanty et al.,2011; Jiang Mei et al.,2015; Sherendo et al.,2015)。铬铁矿勘探通常采用地质、地球化学及重力调查,但对于隐伏蛇绿岩型(豆荚状)铬铁矿,这些地质地球物理方法收效甚微。主要原因在于:① 铬铁矿成矿专属地质条件苛刻。豆荚状铬铁矿只发育在大洋消失后残留蛇绿岩体中,这类岩体分布范围小。② 富集程度要求极高。铬元素为亲地幔元素,地壳铬元素平均丰度约为0.011%(刘英俊等,1984),但铬铁矿工业品位要求铬含量达到22%,需要富集约2200倍,比铁矿高200~400倍。③ 赋矿岩体岩相组成复杂,后期改造严重,矿体发育不规律。蛇绿岩体代表大洋岩石圈的残留,含矿蛇绿岩发育于构造复杂的汇聚板块缝合带,岩体经历了复杂的构造运动和后期改造,干扰铬铁矿勘探。④ 地球物理异常特征不明显。地球物理是勘探隐伏矿的主要手段,铬铁矿和围岩的密度、磁化率、电阻率、极化率等主要地球物理属性常常相互影响,矿致异常不明显。因此,绝大部分铬铁矿地球物理勘探效果不明显。

  • 多数地球物理方法都已在铬铁矿勘探中应用,但地球物理勘探体系以重磁为主导。一些常用的地球物理方法如重力、磁法、电法(包括直流电法和电磁法)、地震等都已被试验和应用(Hammer et al.,1945a,1945b; Yüngül,1956; Davis et al.,1957吴钦,2006; Frasheri,2009; Mohanty et al.,2011; Xi Xiaolu et al.,2013; Jiang Mei et al.,2015)。由于蛇绿岩的主要组成岩石——超基性岩和其中的豆荚状铬铁矿都具有明显的密度和磁化率异常,重力和磁法一直是铬铁矿勘探的主要地球物理手段(Hammer et al.,1945a; 吴钦,2006; Mohanty et al.,2011; 刘天佑等,2012),但重力和磁法都是基于位场理论的地球物理方法,体积效应明显,垂向分辨率有限。具有高密度和相对低磁化率的铬铁矿常常与相对低密度、高磁化率、蛇纹石化严重的纯橄岩伴生,制约了重磁的勘探效果。超基性岩属于硬岩,蛇绿岩常常为复杂构造环境中的陡倾或块状岩体,不利于地震勘探(Christensen,1978; Horen et al.,1996; Jiang Mei et al.,2015)。虽然电阻率法和激电测深在很多矿区开展了攻关实验,但以往的铬铁矿地球物理勘探体系以重磁为主导,这一认识至今还在影响一些地质和勘探地球物理学家。

  • 本文回顾铬铁矿地球物理勘探的发展历程,介绍铬铁矿岩石物理特征、重磁勘探、电磁法勘探的技术现状,以罗布莎岩体为例分析超基性岩岩石电磁学特征与机理,在此基础上提出铬铁矿电磁学探测模型和技术体系,最后展望铬铁矿地球勘探前沿技术和发展趋势。

  • 1 铬铁矿地球物理勘探发展历程

  • 铬铁矿地球物理勘探经历了近百年的发展历程,但缺乏系统的梳理。铬铁矿地球物理勘探的文献有限,鲜有相关的综述文献,梳理铬铁矿地球物理勘探的发展历程非常困难。本节依据检索的文献和一些资料粗略梳理铬铁矿地球物理勘探的发展历程。铬铁矿地球物理勘探在整个技术发展历程上和金属矿地球物理是同步发展的,同样受方法和仪器的制约,还受矿业经济和市场需求的影响。

  • 据文献推测,铬铁矿地球物理勘探起始于20世纪20年代(Lee,1939; Hawkes,1951),早期使用的方法包括重力(扭秤)和磁法,但确切的岩体和年份没有查到相应记录。20世纪20~30年代,地球物理技术在石油勘探中迅猛发展,在这一背景下,美国矿业局建立矿产地球物理专业团队,并顺应矿业发展的勘探需求积极推动了矿产地球物理技术的完善和发展(Lee,1939)。苏联于1929年开始执行第一个五年计划,物探队伍也相应地改变了组织机构并扩大了工作规模,开始进入一个新发展阶段(谢苗诺夫著,宁正译,1960)。Hawkes(1951)引用Andreev(1937)介绍铬铁矿地球物理勘探的俄文版文献,零星描述了这一阶段的铬铁矿地球物理勘探工作。由于蛇绿岩型铬铁矿探测难度极大,加上这一时期重力勘探仪器精度低、勘探成本高,磁法勘探仪器也处于发展阶段,这一阶段铬铁矿地球物理勘探效果不被认可。

  • 20 世纪40~60年代,全球铬铁矿地球物理勘探大范围展开,以重磁勘探为主导,陆续投入了其他方法。20世纪40年代开始,美国战时生产委员会(War Production Board)制订了战略性矿产勘探计划,美国地质调查局(此时已接管美国矿业局的地质勘探工作)的主要关注点已转移到包括铬铁矿在内一些特定的战略性矿产的资源调查与勘探,并开始在古巴实施铬铁矿地球物理勘探,期望通过当时昂贵的扭秤重力勘探发现隐伏铬铁矿。古巴Camaguey地区具有当时重力勘探要求的平坦地形条件(Hammer et al.,1945a),该地区重力勘探取得了初步发现,总体效果也没达到预期,研究成果仍被后续研究和勘探广泛参考和引用。尽管与之同期也开展了磁法勘探,但由于致密块状铬铁矿本身磁性不强,反而是围岩中蛇纹石化围岩中磁铁矿会导致高磁异常(Flint et al.,1948),具有较大争议。但至今,铬铁矿及其围岩的磁性结构特征仍具有重要的指导意义。土耳其1941年开始铬铁矿地球物理勘探,1952~1956年在其东部复杂地形区实施了铬铁矿重磁勘探,探索了铬铁矿重力勘探的地形改正等相关处理技术,这一地区磁法勘探也取得了较好的效果(Yüngül,1956)。希腊、阿尔巴尼亚、前南斯拉夫采用磁法、时间域激电等地球物理方法开展了铬铁矿勘探,有一些成功实例表明地球物理异常和浅埋铬铁矿之间存在一定的对应关系(Kospiri,1999)。Hawkes(1951)综述了当时的铬铁矿磁法勘探现状,认为磁法勘探难以建立观测异常和矿体之间直接或间接的联系。

  • 20 世纪70年代开始集中攻关铬铁矿综合地球物理勘探技术,新世纪以来地球物理新技术不断在铬铁矿勘探中应用。20世纪70年代末期,美国地质调查局组织了一次蛇绿岩型铬铁矿综合地球物理勘探,开展了岩石物理、航磁、地面磁法、重力、高频地震、甚低频电磁法、激发极化法等地球物理方法综合探测铬铁矿的实验研究,对于浅埋豆荚状铬铁矿取得一定的效果,但依然没有找到对蛇绿岩型铬铁矿有效探测的方法组合(Wynn,1981)。苏联在1938年发表了铬铁矿地球物理勘探综述文献,1940年出版了铬铁矿专著,但这些珍贵的文献资料在英文主导的文献系统都无法下载,粗略推测苏联在20世纪40年代前就已投入了大规模的铬铁矿地球物理勘探(Sherendo et al.,2015)。20世纪60~70年代苏联铬铁矿勘探有重大进展,但没有找到支撑文献(西北地质科学研究所第六室情报组,1976),这一缺憾只能期待后续文献发现或希望有条件的团队弥补。20世纪80年代末到21世纪初,大型层状铬铁矿持续稳定开采,铬铁矿地球物理勘探处于低谷期。进入21世纪后,便携式数字化地球物理勘探仪器和重磁电数据处理技术逐步发展成熟,一些铬铁矿矿区开启了新一轮的三维重磁勘探、电法和综合地球物理勘探(Frasheri,2009; Mohanty et al.,2011)。为克服起伏地形带来的困难,遥感、无人机航测等新兴地球物理技术开始在铬铁矿勘探中应用(Rajendran et al.,2012; Mondal et al.,2022)。

  • 我国开展了多种地球物理方法的铬铁矿勘探,20世纪60~70年代达到勘探高峰期。据全国地质资料馆资料目录推测,我国铬铁矿地球物理勘探最早在宁夏小松山岩体展开。1954年12月提交的报告表明当年或之前已在吉林永吉县大黑山开展铬铁矿重磁勘探,本次勘探没有找到新的超基性岩体。由于沿用苏联成熟的技术体系,我国铬铁矿地球物理勘探的起点较高。20世纪50年代在内蒙锡林郭勒盟超基性岩地球物理勘探中已开始采用包括航空磁法、地面磁法、扭称(重力)、金属量测量(地电化学法的前身)在内综合地球物理勘探。依据当时的物探结果,我国著名的地球物理学家顾功叙先生建议铬铁矿地球物理勘探应当注意找大矿,著名地质学家李璞先生建议物探帮助寻找地质规律(杨辟元,1957),这些建议至今对于铬铁矿地球物理勘探仍有重要的指导意义。由于铬铁矿需求与资源禀赋之间的矛盾非常突出,我国从20世纪50年代开始就非常重视铬铁矿地球物理勘探工作,60年代达到顶峰(图1)。这一阶段的铬铁矿地球物理勘探一直持续到20世纪80年代末,涵盖了我国主要的含铬超基性岩体。这一阶段以重磁主导的地球物理方法技术体系,除了在极少量矿区发挥了一定的作用外,整体勘探效果不佳。20世纪90年代我国铬铁矿地球物理勘探几乎处于停滞状态。21世纪以来,我国铬铁矿地球物理勘探和研究工作缓慢复苏,但勘探目标主要集中在极少量矿区和蛇绿岩体,综合地球物理勘探、区域地球物理异常与铬铁矿成矿规律研究工作陆续展开,一些新兴的地球物理技术投入应用(吴钦,2006; 刘天佑等,2012; Jiang Mei et al.,2015)。在罗布莎矿区投入电磁法为主导的大规模地球物理勘探,并取得重大勘探突破(He Lanfang et al.,2018)。

  • 图1 我国铬铁矿地球物理勘探成果形成年份直方图 (资料来源:全国地质资料馆)

  • Fig.1 Annual cartogram of chromite geophysical exploration projects (reports) in China (statistics data from National Geological Library of China)

  • 2 铬铁矿与围岩的岩石物理特征

  • 金属矿地球物理勘探中,岩石物理常常被理解成物性测量或物性分析,为物探数据的地质解释提供依据。岩石物理测量主要参数包括密度、磁化率和剩磁、电阻率和极化率测量,少量研究测量了时间常数等激电参数。密度通过测量样品的质量和体积比值获取。磁化率可采用手持磁化率仪快速测量,精密磁化率和剩磁需要采用专用测量系统完成。岩石电性特征主要包括岩石的复电阻率和极化率,获取方法主要有两类:一类是在野外采用小四极等装置实测露头电阻率,另一类为在室内测试岩石样品的电阻率。我国自20世纪80年代初开始了测量并研究天然岩矿石标本和人工标本的复电阻率(张赛珍等,1994)。早期使用国产BT6型频率特性分析仪搭建测试平台,1988年开始使用英国进口的1250型频率特性分析仪搭建测试平台。何兰芳(2014)研究了岩石宽频复电阻率测量方法和影响因素,以及蛇绿岩型铬铁矿主要的组成岩石电磁学特征及形成机理。

  • 铬铁矿具有高密度和中低磁化率的物性特征。超基性岩蚀变过程中形成次生磁铁矿而具有一定的磁性,磁化率在一定程度上反映超基性岩蚀变程度,磁法勘探大部分高磁异常不对应铬铁矿。在少量蛇绿岩勘探中,低磁异常和铬铁矿有一定的对应关系(表1)。表1中的文献资料和实测结果表明:铬铁矿的密度约为3.70~4.08 g/cm3、蛇纹石化斜辉辉橄岩2.85~2.99 g/cm3、纯橄岩(含蛇纹岩)的密度约为2.16~2.70 g/cm3。铬铁矿、橄榄石、单斜辉石矿物的密度分别为4.80、4.32、3.59 g/cm3。表2为罗布莎岩体不同岩性样品的密度和磁化率统计表,铬铁矿的密度约为3.5~4.8 g/cm3,新鲜斜辉辉橄岩密度约为2.66~3.37 g/cm3,蛇纹石化斜辉辉橄岩、纯橄岩的密度约为2.40~3.12 g/cm3。可以看出,蛇纹石化超基性岩(蚀变斜辉辉橄岩、纯橄岩)岩相中磁化率最高,新鲜的斜辉辉橄岩、纯橄岩、铬铁矿具有相近的磁化率。虽然新鲜斜辉辉橄岩(方辉橄榄岩)和铬铁矿之间存在较大的密度差,但由于新鲜斜辉辉橄岩发育规模远大于铬铁矿体,常常形成范围较大的重力异常,干扰铬铁矿重力勘探。

  • 表1 不同地区铬铁矿与橄榄岩密度和磁化率变化统计表

  • Table1 Statistics of density and magnetic susceptibility of chromite and peridotite from different regions

  • 注:“-”表示该地区没有相应的统计数据。

  • 表2 罗布莎岩体物性标本密度和磁化率变化统计表

  • Table2 Statistics of sample density and magnetic susceptibility at Luobusa ophiolite in Tibet

  • 注:“-”表示没有相应的统计数据。

  • 铬铁矿和围岩(方辉橄榄岩、纯橄岩)的电阻率变化范围较大,通常可以相差几个数量级,蚀变程度是重要影响因素。据收集资料,藏北的两个超基性岩体小四极法露头测量取得铬铁矿电阻率为1900~4000 Ω·m,纯橄岩为1600~3000 Ω·m,辉橄岩为1000~2000 Ω·m。祁连山地区块状铬铁矿电阻率为89~34773 Ω·m,超基性岩的电阻率为96~50051 Ω·m(曹绪宏,1990)。由于铬铁矿岩矿石特别是岩矿石样品具有极高的电阻率,测量分析岩矿石电阻率对仪器的输入阻抗有较高的要求。何兰芳(2014)He Lanfang et al.(2018)采用英国Solartron公司生产的1260 A阻抗分析仪测量了罗布莎超基性岩和铬铁矿的电阻率,结果表明:罗布莎岩体不同岩相带样品电阻率变化范围非常大,从约1000 Ω·m变化到100 MΩ·m,平均电阻率为378 kΩ·m(图2)。铬铁矿的电阻率高于蛇纹石化围岩,低于新鲜的方辉橄榄岩和纯橄岩。岩石中硅、铁、钙、铬的含量对岩石的电阻率有较大的影响,其中硅和钙的影响较为显著,且存在一定相关性;原岩矿物成分保存完好的岩石(辉石、橄榄石含量相对高)具有高阻特征,除极少量样品外,蚀变矿物(蛇纹石)含量高岩石具有低阻特征。含水量高岩石以低阻为主,含水量低的岩石有高阻特征。蛇纹石化引起的组分和结构变化是导致超基性岩电阻率降低的主要因素(何兰芳,2014)。

  • 3 铬铁矿重磁勘探

  • 重力勘探原理基于牛顿万有引力定律,通过观测引力场的变化研究地下介质不同岩性或岩相之间的密度差异。重力勘探原理简单,但勘探结果受地形、中间层密度、矿体形态等多种因素影响,多解性很强。由于铬铁矿和围岩之间存在较大的密度差异,重力一直被广泛应用到铬铁矿地球物理勘探,但总体异常验证成功率较低。磁法勘探测量由地下岩矿石的磁性(感应磁化率和剩余磁化率)引起的观测地磁场变化,通过地磁场常数改正和日变校正后分析磁场变化探测地下含磁性介质的分布情况。虽然大多数造岩矿物实际上是非磁性的,但某些岩石类型含有足够的磁性矿物以产生显著的磁异常。赋存铬铁矿的超基性岩体相对其围岩常常具有高磁异常特征,因而可用航磁等区域性地球物理成果圈定蛇绿岩带。在蛇绿岩岩体内部,蛇纹石化超基性岩常常具有相对铬铁矿矿体更高的磁异常,给铬铁矿磁法勘探带来不确定性。

  • 图2 西藏超基性岩样品烧失量(LOI)与电阻率的对应关系散点图

  • Fig.2 Cross plot of resistivity and LOI of the ultramafic rock samples from Luobusa and the other ophiolites in Tibet

  • 尽管铬铁矿重磁勘探具有较强的多解性,但重磁勘探作为铬铁矿最早使用的地球物理探测方法一直沿用至今(Hammer et al.,1945;曹绪宏,1990; Essa et al.,20192021; 柳建新等,2020; Hornicka et al.,2020)。铬铁矿重磁勘探的主要应用包括:① 区域成矿预测:通过区域重力资料研究含矿蛇绿岩分布与重磁异常的对应关系(谢江涛,2012林丽萍,2013)。② 高精度勘探:通过高密度重磁数据采集探测浅部(小于200 m)隐伏铬铁矿(吴钦,1997靳力,2015)。③ 含矿构造分析:通过不同尺度(比例尺)重磁勘探探测矿带、矿区、矿田、矿体尺度的含矿构造(姜枚等,2013柳建新等,2020刘玲,2021)。早期的重磁勘探主要依据异常分离后剩余异常圈定矿体。近年来,铬铁矿重磁勘探数据取得一系列新的进展,重磁三维反演、聚类反演、马奎特反演等方法在最新的铬铁矿重磁勘探和老资料处理都取得了一定的效果(Eshaghzadeh et al.,2020; Essa et al.,2021)。由于单点重磁勘探数据本身并不包含深度信息,重磁勘探需要在一条剖面或一定区域内进行,重磁勘探获取的与深度有关的信息都是反演或数据挖掘的结果,因而重磁原始数据是铬铁矿地球物理勘探的关键信息。图3a为罗布莎矿区磁法观测异常,高磁异常分布范围较小,主要出现在橄榄岩和三叠系围岩的接触带附近。图3b为经过数据挖掘和三维反演后可视化效果,包含更多的信息,但在实际资料使用时还需要和地质和其他地球物理资料紧密结合。

  • 4 铬铁矿电磁法勘探:以西藏罗布莎铬铁矿为例

  • 电磁法勘探的基本理论源于麦克斯韦方程,遵循电磁场与电磁波在介质传播的基本规律。电法(含电磁法)勘探方法多达数十种,应用于铬铁矿勘探中的方法主要包括:电阻率法和高密度电法(杨辟元,1957; Kumar et al.,2022)、甚低频法、激发极化法(屈大祥,1978; Mohanty et al.,2011)、扩频激电法(Xi Xiaolu et al.,2013)、大地电磁与音频大地电测深法(He Lanfang et al.,2018)。音频大地电测深法(AMT)属于大地电磁法(Tikhonov,1950; Cagniard,1953)的一类,通过地面观测记录不同时间长度的大地电磁场电场和磁场分量的变化获得地下某个深度的电性特征,通过观测不同频率(或周期T)的电场(E)和磁场(H),可得出某个测点电阻率随频率的变化,观测不同周期的电阻率变化可计算某个测点电阻率随深度的变化。当观测大地电磁场频率范围为音频范围时,称为音频大地电磁测深(何兰芳,2014)。与重磁勘探方法不同,单点的AMT数据包含和深度有关的电性结构信息。

  • 4.1 罗布莎铬铁矿地质背景与研究现状

  • 罗布莎蛇绿岩位于雅江缝合带东段(图4),它不仅是雅江蛇绿岩的代表性岩体,更是我国极度紧缺的战略资源铬铁矿产地,出产我国90%以上的铬铁矿(Bao Peisheng et al.,2014),是认识和研究蛇绿岩专属矿种豆荚状铬铁矿形成和赋存规律的天然实验室。由于罗布莎在蛇绿岩(地幔橄榄岩)及铬铁矿研究中的双重地位,一直是地幔橄榄岩研究和铬铁矿地质勘探和研究投入的重点,岩体的矿物学、岩石学、矿床学、形成环境、构造地质等方面的研究都取得了较大进展(张浩勇等,1996; Zhou Meifu et al.,199620052014; Yang Jingsui et al.,200320072014; Bao Peisheng et al.,2014; Xu Xiangzhen et al.,2015)。但早期地球物理研究相对薄弱,一些需要地球物理和地质共同回答的关键地质问题,如岩体内部构造、岩相分布、铬铁矿富集与赋存规律等,还存在较大的争议(梁凤华等,2011; He Lanfang et al.,2014)。

  • 罗布莎是我国铬铁矿的主产区,针对铬铁矿部署和实施了大量的钻探和少量的地球物理工作,自20世纪50年代至今,钻探总进尺已超过20×104m。这些数据既为研究罗布莎铬铁矿的赋存规律提供了大量的资料,也为罗布莎的基础地质研究提供了其他岩体无法比拟的珍贵资料。但除极少量的钻孔深度超过1000 m外,大部分钻孔的深度小于400 m,而且钻孔的分布也较为集中,岩体的大部分没有钻探资料。罗布莎岩体地球物理方面的研究和勘探工作始于1967年,和国外采用的方法类似,以地面重力、磁法为主,还有少量井中物探试验工作和激电工作(Hammer et al.,1945a,1945b; Yüngül,1956; 屈大祥,1978符宏如等,1986; 吴钦,2006; Frasheri,2009; 邱礼泉,2013)。重磁方法是传统的铬铁矿找矿方法,虽然在圈定岩体和浅层铬铁矿中有不少成功实例,但由于重磁异常的多解性,同时成规模发育的新鲜辉橄岩会形成重力异常高,被蛇纹石包裹的铬铁矿也难以形成高重力低磁化率异常,因而,在缺乏其他资料标定的情况下,重磁异常验证情况并不理想。

  • 过去十年,第二次青藏科考、国家自然科学基金、中国地质调查局、矿山企业等项目持续支持了以电磁法为主导的铬铁矿地球物理勘探,其中音频大地电磁测深法(AMT)覆盖了西藏罗布莎岩体的大部分矿区,以AMT为主要手段的地球物理方法联合扩频激电、重磁等勘探方法在罗布莎实现了铬铁矿勘探的重大突破,是铬铁矿地球物理勘探成功实例。

  • 4.2 罗布莎铬铁矿岩石物理特征

  • 在实验对比包括阻抗分析、时间域激电测量、电桥测量、阻抗匹配法等四类方法的基础上,选定阻抗分析法为罗布莎复阻抗测量的主要方法。阻抗分析数据测试采用1260 A阻抗(振幅、相位)分析仪。在试验的基础上选定供电电压为3000 mV,测量最大频率范围为0.001~10 MHz,最小频率范围为0.05~10000 Hz。测量接触系统使用自制Cu-CuSO4电极系统,供电和测量电极都使用铜板。图5为56个样品的电磁学测量结果。

  • 4.3 罗布莎铬铁矿AMT勘探

  • 岩石物理分析和电磁探测都表明,蛇绿岩内部不同岩相带存在显著的电性差异,铬铁矿电磁法勘探具有较好的地球物理前提。电磁探测与岩石物理分析结果表明:组成蛇绿岩的超基性岩不同岩相岩石和铬铁矿存在较大的电阻率差异,其成因为不同组分、结构对电性的影响(He Lanfang et al.,2018)。基于这一认识,在罗布莎铬铁矿中小尺度地球物理探测中,大量使用了AMT。野外操作和数据处理相关细节请参考何兰芳(2014)。本节介绍AMT异常和铬铁矿含矿构造之间的联系。建立铬铁矿和岩石电磁学之间的联系,是实现铬铁矿勘探突破的关键,也是探索铬铁矿电磁学机理的关键。先期研究和地质成果表明,铬铁矿主要发育在辉橄岩和纯橄岩的过渡带中(张浩勇等,1996; Zhou Meifu et al.,2005; 王希斌等,2010)。

  • 图3 罗布莎岩体ΔT化极磁异常分布(a)及其反演磁化率三维分布(b)(据何兰芳,2014修改)

  • Fig.3 Distribution of reduction to pole of magnetic anomalies in Luobusa Ophiolite (a) and distribution map of 3D susceptibility inversion result (b) (modified after He Lanfang, 2014)

  • T—三叠系;φ—罗布莎蛇绿岩;η—辉石岩;ZH—杂岩;RL—砾岩

  • T—Triassic; φ—Luobusa ophiolite; η—pyroxenite; ZH—complex; RL—conglomerate

  • 图4 罗布莎蛇绿岩地质简图(据He Lanfang et al.,2018修改)

  • Fig.4 Schematic geological map of the Luobusa Ophiolite (modified after He Lanfang et al., 2018)

  • 1 —方辉橄榄岩(含纯橄岩和二辉橄榄岩);2—纯橄岩;3—铬铁矿体;4—辉长岩为主的堆晶岩;5—辉长岩异剥橄榄岩和辉石岩组成的堆晶岩;6—面积性研究区;7—第三系罗布莎群;8—上三叠统;9—石英闪长岩,石英二长岩;10—黑云母花岗岩;11—岩相界限;12—不整合接触界限;13—逆断层;14—(走滑)断层;15—典型剖面位置

  • 1 —harzburgite (bearing dunite and lherzolite) ; 2—dunite; 3—chromites ore; 4—cumulus bojite; 5—cumulus consist of bojite, wehrlite; 6—scope of the surface area; 7—Luobusa Group conglomerate; 8—Upper Triassic; 9—quartz diorite, quartz monzonite; 10—biotite granite; 11—lithostratigraphic boundary; 12—unconformable contact; 13—reverse fault; 14—strike-slip fault; 15—section location

  • 通过不同岩相带电磁异常和岩石电磁学实验分析进一步表明岩体的电磁学特征和岩相之间存在密切的联系(图6)。图6a为一个6 m厚的已知矿的电磁学模型,从模型中可以看出,矿体发育在一个高阻异常(代表辉橄岩)和低阻异常区(代表蛇纹石化纯橄岩)过渡带中。在这个基础上,构建了基于超基性岩岩石电磁学的第一类铬铁矿勘探模型,过渡带模型(T模型)。这类模型以高阻(辉橄岩)、低阻(纯橄岩)和高低阻过渡带异常组合为特征。依托这一模型,参照重磁结果,部署了地球物理异常(模型)验证孔,其中的02孔(ZKWT02)揭示了厚度49.18 m的优质铬铁矿层(含厚约3 m的夹石),发现了我国目前规模最大的铬铁矿(图6b)。此外,依据电磁学异常和钻孔结果,本研究提供了另外两类电磁学勘探模式:低阻异常圈闭模式(E模式)和低阻裂隙模式(F模式)。低阻裂隙模式(图6c)以狭窄倾斜的低阻裂隙为特征,统计表明,这类模式的矿体规模较小。F模式(图6d)以高阻或次高阻环境中的相对异常圈闭为特征,特别是浅部异常。在这一模式中,铬铁矿常常发育异常边缘,从已有钻孔来看,矿体的规模相对较小。图7为L矿区(L矿区范围见图4)已知矿和4000 m等高程反演电阻率等值平面图的对应关系图。结果表明,已知矿围着一个高阻电性体发育。这一高阻岩体具有高重力的特征,在电磁法没有全面铺开之前,它一直被认为是规模巨大的矿体引起的重力异常,但钻探没有发现矿体。通过岩石电磁学研究可以发现,高阻体主要对应密度相对较高辉橄岩。岩石电磁学在铬铁矿勘探能发挥较为重要的作用。但包括AMT在内的地球物理勘探是一种间接探测方法,探测的对象为控矿构造或含矿构造,探测的目标为缩小靶区范围或降低勘探风险。基于AMT物探异常提供的验证孔虽然取得重大发现,但也有不少钻孔没有钻遇预期矿体,电磁法主导的铬铁矿地球物理探测体系还有较大的提升空间。

  • 图5 罗布莎钻孔岩芯电阻率随深度变化散点图

  • Fig.5 Cross plot of resistivity and sampling depth of the ultramafic rock samples from Luobusa and the other ophiolites in Tibet

  • 5 铬铁矿地球物理勘探展望

  • 豆荚状铬铁矿是勘探难度最大的一类金属矿,近百年的探索实践虽然有所突破,但依然是地球物理难题,勘探突破依赖于新兴的地球物理技术。近年来,金属矿地球物理勘探技术已取得飞速发展,涌现出一批新兴技术,本节展望张量CSAMT技术、磁异常模量反演、高光谱遥感、高密度激电、无人机物探五类具有潜在应用前景的地球物理探测技术。

  • 5.1 张量CSAMT技术

  • 可控源音频大地电磁测深法(CSAMT)是对音频大地测深法(AMT)的一种补充,目的是通过人工源(通常为接地电偶极子)发射的电磁信号来弥补天然性的不足(Goldstein,1971; Goldstein and Strangway,1975),随后CSAMT被广泛应用(何继善,1990; Zonge and Hughes,1991; 石昆法,1999; 汤井田与何继善,2005; 底青云等,2008; Hu Xiangyun et al.,2013; Streich,2016; Rong Zhihao and Liu Yunhe,2022)。为提高CSAMT抗干扰能力和探测深度,中石油在21世纪初开发了大功率可控源电磁测深技术(CSMT),最大发射功率超过150 kW,最大发射电流超过100 A,最低发射周期达256 s(杨轮凯等,2003; 王晓凡等,2004)。由于CSAMT常常采用标量采集方法,对于具有三维特征的地下探测目标,20世纪90年代开始探索张量CSAMT(Boschetto and Hohmann,1991; Boerner et al.,1993a1993b; Wannamaker,1997)。目前,张量CASMT理论推导与正反演已有大量的工作(孙尧鑫,2010; Wang Kunpeng et al.,2017; Wang Tao et al.,2017; 杨若迪,2017; Cao Hui et al.,2021),野外实验工作也有报道(Garcia et al.,2003; Wang Gang et al.,2018)。张振宇等(2017)采用两个相互垂直的发射、五分量接收张量CSAMT试验,通过与AMT对比结果表明张量CSAMT远区数据与同测点AMT数据重合性很好,曲线整体形态一致,高频段数据更圆滑。中国地质科学院在西藏甲玛铜钼矿开展了大功率张量CSAMT探测工作,通过大电流(大于60 A)、大收发距(大于25 km)张量可控源勘探,获取了矿区超过3 km深度的电性结构(图8),异常已被钻探验证,为张量CSAMT探测金属矿的成功实例(Yu Pengliang et al.,2021)。虽然张量CSAMT在铬铁矿中还没有应用报道,但这种方法既有人工源频率电磁法抗干扰性,又通过正交发射和接受弥补了标量CSAMT对于三维目标探测的不足,预期在未来豆荚状铬铁矿探测中可发挥重要的作用。

  • 图6 罗布莎岩体AMT电阻率反演剖面与电磁学找矿模型

  • Fig.6 Relationship between the resistivity domain and the chromite deposit in the AMT section

  • (a)—已知矿和AMT反演结果的对应关系,矿体发育在高(代表辉橄岩)低阻(代表低阻带)异常的过渡带;(b)—异常验证钻孔(02钻孔)所在AMT反演剖面和矿产地质剖面叠合图,过渡带模型(T模型)的代表性剖面;(c),(d)—F模式和E模式的代表性剖面

  • (a) —the relationship between a known deposit with a thickness of 6 m and the resistivity cross section, which lies in the transition zone from the higher resistivity domain (the fresh harzburgite) to lower resistivity domain (the serpentinized harzburgite and dunite) ; (b) —the location of our proposed borehole and deposit unveiled by the borehole 02, showing an example of the transition zone model (T model) for chromite exploration; (c) —referred to as the ‘lower resistivity fracture’ model (F model) , and (d) reflect the ‘lower resistivity entrapment’ model (E model)

  • 图7 L矿区4000 m 高程电阻率等值平面和已知矿体投影对应关系

  • Fig.7 Iso-elevation resistivity contour map at 4000 m shows the correlationship to locations of the known ore deposits

  • 图8 张量CSAMT和大地电磁测深探测二维剖面结果对比(据Yu Pengliang et al.,2021

  • Fig.8 Comparison of 2D inversion results of tensor CSAMT and MT data of sections A—A′ and B—B′ (after Yu Pengliang et al., 2021)

  • (a)—剖面A—A′张量CSAMT二维反演结果;(b)—剖面A—A′大地电磁结果;(c)—剖面B—B′张量CSAMT二维反演结果;(d)—剖面B—B′大地电磁结果;JMKZ为3000 m科学钻

  • (a) —2D CSAMT inversion results of section A—A′; (b) —2D MT inversion results of section A—A′; (c) —2D CSAMT inversion results of section B—B′; (d) —2D MT inversion results of section B—B′; JMKZ is a scientific borehole with a depth of 3000 m

  • 5.2 磁异常模量反演

  • 如前文所述,磁法是铬铁矿地球物理勘探的重要方法,近年发展起来的三维反演已成功用于实现磁数据的定量解释。实际地质情况往往非常复杂,当强剩磁存在的时候,场源的磁化方向通常与地磁场方向偏差很大,由于剩磁方向未知导致常规三维反演中感应磁化方向与地磁场方向一致的假设不再成立,此时若简单将地磁场方向当作有效磁化方向来进行反演,反演结果会出现较大偏差甚至是完全错误,三维反演方法仍面临强剩磁引起的困难(李泽林,2014Coleman and Li Yaoguo,2018)。由于磁异常模量对总磁化强度方向的依赖性弱,同时又可以从磁异常直接计算得到,为克服反演中的剩磁影响,近年发展了磁异常模量反演技术和磁化强度向量三维反演技术(李泽林,2014)。Li Yaoguo et al. (2010,2012)详细介绍了模量反演方法的相关技术和实例。铬铁矿和含矿围岩具有较强的磁化率和剩磁特征,不同岩相带组成岩石磁化率和剩磁存在一定的差异(Kuma and Bhalla,1984; Refai et al.,1989; 姜枚等,2016)。罗布莎铬铁矿三维模量反演结果表明:磁异常模量反演有望更精细反演蛇绿岩内不同的岩相分布,为铬铁矿成矿预测提供更充分的依据(何兰芳等,2016)。

  • 5.3 高密度激电勘探

  • 从20世纪50年代开始,激电法就已在铬铁矿地球物理勘探中投入使用,由于铬铁矿和围岩含有一定磁铁矿,铬铁矿具有一定激发极化异常。但在以往的电法勘探过程中,基本上都是采取单台仪器逐点测量的方式来进行数据采集工作,劳动强度大、数据规模小、施工效率低,并且由于每个测点的测量时间不相同,因此测量数据很容易受到随时间变化噪声的干扰。电磁法仪器的飞速发展,分布式组网采集的方式应运而生,让激电勘探突破了通道数目的限制,可开展多测道同步高密度采集(图9;何兰芳等,2016),采集系统可由一个或多个控制单元通过无线组网控制数据采集单元同步采集,每个数据采集单元可连接4~5个接地电极。一些新兴的通讯和控制技术如WiFi、蓝牙、ZigBee等无线技术也被应用在分布式采集中的控制和数据传输。为了提高探测系统的抗噪能力、提升勘探深度和施工效率,中南大学开发了阵列式扩频激电法,通过对大地发送扩频信号,由接收机接收测量电位差信息,一次测量可提供电阻率、相对相位以及频散率等多种电性参数(向毕文等,2015)。扩频激电法已在罗布莎矿区实验,在0.5 km2的区域内采集了大约500个激电测点,通过扫面电阻率和极化率预测铬铁矿有利区,钻探验证钻了4个钻孔,其中3个发现了铬铁矿,1个发现了铬铁矿矿化,为铬铁矿勘探提供了地球物理新技术(Xi Xiaolu et al.,2013)。

  • 图9 分布式激电采集站野外布置示意图(据何兰芳等,2016

  • Fig.9 Field layout diagram of distributed IP data acquisition station (after He Lanfang et al., 2016)

  • 5.4 高光谱遥感

  • 遥感技术是一门源于20世纪50~60年代的一门新兴的交叉科学技术,20世纪80年代在美国出现了融合影像和光谱探测的成像光谱遥感并取得了重大突破(童庆禧等,2016)。随后技术发展快速推动了多光谱和高光谱遥感的飞速发展,并在矿产资源勘探广泛应用(Bioucas-Dias et al.,2013; Bedini et al.,2017)。美国地质调查局(USGS)对各种主要岩石类型进行了较系统的光谱测量,测量中采用了实验室、野外地面光谱测量方法、遥感光谱学(航空高光谱成像)测量方法,并制成了USGS光谱数据库。在国家高技术研究发展计划(863计划)支持下,我国创建了涵盖岩矿、农作物、水体等典型地物,包括9500多组光谱及完整配套参数的光谱数据库(童庆禧等,2016; 张淳民等,2018)。铬铁矿含矿岩体中不同组成矿物具有不同的能量分裂量,不同的离子会产生不同的吸收能谱,这些矿物中的每一种都具有独特的晶体结构,矿物颗粒粒径也影响整体反射率、吸收深度,因此可以通过光谱识别特定的矿物。铬铁矿和铂族元素(PGE)发育在基性—超基性岩地质体中,岩体延伸范围大,大部分和造山带密切相关,发育在高陡复杂山区,地面探测难度极大,高光谱遥感在蛇绿岩探测和辅助地质调查中应用前景广阔,基于高光谱数据铬铁矿探测非常重要(Guha,2020)。Rajendran et al.(2012) 利用Landsat TM和ASTER数据研究阿曼山脉北部Semail蛇绿岩地块的超镁铁质岩结果表明,高光谱遥感在检测蛇绿岩区域内潜在的含铬铁矿矿化带区域勘探方面很有前景,可成功圈定含铬铁矿的蛇纹石化带。并建议勘探地质学家、矿业学家和矿主采用这种技术,在其他干旱地区铬铁矿区进行更多的勘探和开发。Qasim et al.(2022) 通过实验室高光谱分析建立模型,利用ASTER和Sentinel-2B遥感数据研究了特提斯蛇绿岩链巴基斯坦Zhob蛇绿岩Naweoba区块地质特征,修正了之前绘制的地质图,新发现了蛇绿岩中一些传统的野外方法没有发现的新的橄榄岩露头,预测该区块中具有经济潜力的锰矿床和铬铁矿床。

  • 5.5 无人机地球物理航测

  • 早在2000多年前,古希腊和中国就有了无人飞行器的构想和记载,但无人驾驶飞机系统(无人机,UAV)首次引入是在第一次世界大战期间的1917年,在当时它们的实用性和潜在价值并没有被认可(Valavanis,2008; Cuerno-Rejado et al.,2016)。无人机的飞速发展是在1991年海湾战争之后,近年在各种军事和民用应用领域都达到了前所未有的增长水平(Valavanis,2008; Aleksander,2018; del Cerro et al.,2021)。在过去的十年中,无人机已在采矿业勘探、开发和矿山修复各个阶段广泛应用,包括遥感、航空地球物理测量、地形测量、岩石边坡分析、工作环境分析、地下测量以及土壤、水、生态恢复和地面沉降监测等方面进行地质和结构分析(Park and Choi,2020)。将无人飞行平台作为智能搭载平台执行航空物探任务,可以降低航空物探飞行作业风险,已成为航空物探发展领域的新趋向(鞠星等,2020)。应用无人机投放和回收地面地球物理仪器也是极具应用前景的无人机技术。理论上,非耦合接触的地面地球物理方法都可以通过无人机载荷实施,目前成熟的方法有无人机高光谱、无人机航磁、无人机瞬变电磁,短期内有望实现的方法有无人航放、无人机频域电磁法。和飞行驾驶机载航空遥感物探系统相比,无人机航测系统能极大地降低飞行高度,提高航测分辨率,这对于没有明显地球物理异常的铬铁矿勘探非常重要,但目前铬铁矿航测的文献资料非常有限。Parvar et al.(2017)报道了在Oman Samail蛇绿岩中南部实施的无人机航磁应用实例,通过已知矿露头航磁测量分析铬铁矿的航磁异常特征,在此基础上,通过低空飞行测量获取高精度航测数据反演和异常分析发现一处隐伏的铬铁矿。

  • 致谢:感谢两位审稿专家耐心细致的审稿并提出宝贵的修改建议,感谢责任编辑耐心细致的修改。本项研究获得了西藏矿业、江南矿业、西藏自治区地质调查院的大力支持,在此深表感谢!

  • 注释

  • ❶ 王晓凡,何兰芳,杨轮凯,刘振捷.2004. 物探新技术在深层地热勘探中的应用. 第一届中国探矿者年会中国矿业联合会论文集,北京.

  • ❷ 何兰芳,多吉,查亚兵,常富国,陈儒军,姚红春.2016. 冈底斯成矿带东段铬铁矿深部找矿物探方法研究成果报告(V1).西藏自治区地质调查院[形成机构].全国地质资料馆[发表机构],2021-04-22. DOI: 10.35080/n01.c.170228.

  • 参考文献

    • Aleksander K C. 2018. Military use of unmanned aerial vehicles—A historical study. Safety & Defense, 4: 17~21.

    • Andreev B A. 1937. Application of geophysical methods for exploration of chromite deposits. Transactions Scientific Geology Institute, Leningrad.

    • Bao Peisheng, Su Li, Wang Jun, Zhai Qingguo. 2014. Origin of the Zedang and Luobusa ophiolites, Tibet. Acta Geologica Sinica (English Edition), 88: 669~698.

    • Bedini E. 2017. The use of hyperspectral remote sensing for mineral exploration: A review. Journal of Hyperspectral Remote Sensing, 7(4): 189~211.

    • Bioucas-Dias J M, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J. 2013. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2): 6~36.

    • Boerner D E, Kurtz R D, Jones A G. 1993a. Orthogonality in CSAMT and MT measurements. Geophysics, 58(7): 924~934.

    • Boerner D E, Wright J A, Thurlow J G, Reed L E. 1993b. Tensor CSAMT studies at the Buchansmine in central Newfoundland. Geophysics, 58(1): 12~19.

    • Boschetto N B, Hohmann G W. 1991. Controlled-source audio-frequency magnetotelluric responses of three-dimensional bodies. Geophysics, 56(2): 255~264.

    • Cagniard L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18: 605~635.

    • Cao Hui, Wang Kunpeng, Wang Xuben, Duan Changsheng, Lan Xing, Luo Wei, Zhang Zhiyong. 2021. Tipper data forward modeling and inversion of three-dimensional tensor CSAMT. Journal of Applied Geophysics, 193: 104432.

    • Cao Xuhong. 1999. Geophysical characteristics of chromites and ultrabasic rocks in Qilian moutain district and their prospecting methods. Geology and Prospecting, 26(2): 40~44 (in Chinese with English abstract).

    • Christensen N I. 1978. Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47: 131~157.

    • Coleman C, Li Yaoguo. 2018. Quantifying the error level in computed magnetic amplitude data for 3D magnetization inversion error in magnetic amplitude data. Geophysics, 83(5): J75~J84.

    • Cuerno-Rejado C, Garcia-Hernandez L, Sanchez-Carmona A, Carrio A, Sanchez Lopez J L, Campoy P. 2016. Historical evolution of the unmanned aerial vehicles to the present. Dyna, 91(3): 282~288.

    • Davis W E, Jackson W H, Richter D H. 1957. Gravity prospecting for chromite deposits in Camaguey Province, Cuba. Geophysics, 22: 848~869.

    • del Cerro J, Cruz Ulloa C, Barrientos A, de León Rivas J. 2021. Unmanned aerial vehicles in agriculture: A survey. Agronomy, 11(2): 203.

    • Di Qingyun, Wang Ruo, Wang Miaoyue. 2008. Modeling and Inversion Method of Controlled Source Audio Magnetotelluric Data and Their Application. Beijing: Science Press(in Chinese).

    • Eshaghzadeh A, Sahbari S S, Dehghanpour A. 2020. 2D inverse modeling of the gravity field due to a chromite deposit using the Marquardt's algorithm and forced neural network. Bulletin of the Mineral Research and Exploration, 161(161): 33~47.

    • Essa K S, Munschy M. 2019. Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128(5): 1~16.

    • Essa K S, Abo-Ezz E R, Géraud Y. 2021. Utilizing the analytical signal method in prospecting gravity anomaly profiles. Environmental Earth Sciences, 80(17): 1~21.

    • Flint D E, de AlbearJ F, Guild P W. 1948. Geology and chromite deposits of the Camagüey district, Camagüey Province, Cuba. Geologic Investigations in the American Republics. US Government Printing Office, 39~63.

    • Frasheri A I. 2009. The peculiarities of geophysical methods in exploration for chrome deposits. SEG Expanded Abstracts 2009, 1310~1314.

    • Fu Hongru, Jiang Jiagui. 1986. Test result of borehole radiowave penetration method in the Xianggeshan chromite ore district, Tibet. Geophysical and Geochemical Exploration, 10: 57~60 (in Chinese with English abstract).

    • Garcia X, Boerner D, Pedersen L B. 2003. Electric and magnetic galvanic distortion decomposition of tensor CSAMT data. Application to data from the Buchans Mine (Newfoundland, Canada). Geophysical Journal International, 154(3): 957~969.

    • Goldstein M A. 1971. Magnetotelluric experiments employing an artificial dipole source. Doctoral dissertation of University of Toronto, Canada.

    • Goldstein M A, Strangway D W. 1975. Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics, 40(4): 669~683.

    • Guha A. 2020. Mineral exploration using hyperspectral data. Hyperspectral Remote Sensing. Elsevier.

    • Hammer S. 1945. Estimating ore masses in gravity prospecting. Geophysics, 10: 50~62.

    • Hammer S, Nettleton L L, Hastings W K. 1945. Gravimeter prospecting for chromite in Cuba. Geophysics, 10: 34~49.

    • Hawkes H E. 1951. Magnetic exploration for chromite. Geological Suevey Bulletin (No. 973). US Government Printing Office, 1~21.

    • He Jishan. 1990. Controlled Source Audio Magnetotelluric Method. Changsha: Press of Central South University (in Chinese).

    • He Lanfang. 2014. Petro-electricity and its origin: Examples from Luobusha ultramafic rock and Upper Yangtze black shale. Doctoral dissertation of Nanjing University(in Chinese with English abstract).

    • He Lanfang, Chen Ling, Dorji, He Zhanxiang, Wang Xuben, Xiao Bayi, Xu Ligui, Xi Xiaolu, Yao Hongchun, Chen Rujun. 2018. Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet. Geophysics, 83(2): B47~B57.

    • Hornicka E, Targosz P, Loska M, Wojdyła M. 2020. Complex geophysical investigation in search of chromite deposits at Ljuboten greenfield site. Proceedings of NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining (Vol. 2020, No. 1, 1~5). European Association of Geoscientists & Engineers.

    • Horen H, Zamora M, Dubuisson G. 1996. Seismic waves velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge. Geophysical Research Letters, 23: 9~12.

    • Hu Xiangyun, Peng Ronghua, Wu Guiju, Wang Weiping, Huo Guangpu, Han Bo. 2013. Mineral exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China. Geophysics, 78(3): B111~B119.

    • Hunt C P, Moskowitz B M, Banerjee S K. 1995. Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants, 3: 189~204.

    • Jacobs J A, Testa S M. 2005. Overview of chromium (VI) in the environment: Background and history. In: Chromium (VI) Handbook, 1~21.

    • Jiang Mei, Peng Miao, Yang Jingsui, Tan Handong, Qian Rongyi, Zhang Yuwen, Xu Lehong, Zhang Lishu, Li Qingqing. 2015. Seismic reflection and magnetotelluric profiles across the Luobusa ophiolite: Evidence for the deep structure of the Yarlung Zangbo suture zone, southern Tibet. Journal of Asian Earth Sciences, 110: 4~9.

    • Jiang Mei, Yang Jingsui, Zhang Yuwen, Tan Handong, Peng Miao, Wu Liangshi, Xu Lehong, Zhang Lishu, Li Qinqin. 2013. Deep tectonic characteristics and ore-prospecting potential of the Zetang Crbearing ultramafic rock mass in Tibet. Geology in China, 40(3): 780~789(in Chinese with English abstract).

    • Jiang Mei, Yang Jingsui, Zhang Lishu, Zhang Liwen, Peng Miao, Li Qingqing. 2016. The magnetic anomaly characteristics of Dongpo, Xigaze and some other ophiolite rock masses along the Yarlung Zangbo suture zone and their ore prospecting significance. Geology in China, 43(5): 1666~1678(in Chinese with Englishabstract).

    • Jin Li. 2015. High-precision gravity and magnetic exploration in the research and application of chromite exploration. Master's thesis of Chengdu Unversity of Technology.

    • Ju Xing, Han Song, Guo Hua, Xiao Mengchu. 2020. The safe application of CH4 unmanned aerial vehicle in aerogeophysics. China Mining Magazine, 29(S2): 159~162 (in Chinese with Englishabstract).

    • Koleli N, Demir A. 2016. Chromite. In: Environmental Materials and Waste. London: Academic Press, 245~263.

    • Kospiri A, Kosho P, Vuksaj N. 1999. Case histories of the application of geophysical methods to chromite exploration in the Balkans. Second Balkan Geophysical Congress and Exhibition (Extended Abstract), Istanbul, Jul. 5~9, O7~3.

    • Kumar A, Bhalla M S. 1984. Source of stable remanence in chromite ores. Geophysical Research Letters, 11(3): 177~180.

    • Kumar D, Satyanarayanan M, Kumar K S, Raju P V. 2022. Electrical resistivity tomography of Mesoarchaean chromitite bands from Katpal in Sukinda Ultramafic Complex, Odisha. Journal of Earth System Science, 131(1): 1~15.

    • Lee F W. 1939. Part I—History and activities of the section of geophysics of the United States Geological Survey. Eos, Transactions American Geophysical Union, 20(3): 280~291.

    • Li Yaoguo, Shearer S E, Haney M M, Dannemiller N. 2010. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics, 75(1): L1~L11.

    • Li Yaoguo, He Zhanxiang, Liu Yunxiang. 2012. Application of magnetic amplitude inversion in exploration for volcanic units in a basin environment. Geophysics, 77(5): B219~B225.

    • Li Zelin. 2014. Research on 3-D inversion of magnetic data in the presence of strong remanence. Master's thesis of China Unversity of Geosciences (Beijing).

    • Liang Fenghua, Xu Zhiqing, Ba Dengzhu, Liu Fei, Xiong Fahui, Jia Yi. 2011. Tectonic occurrence and emplacement mechanism of ophiolites from Luobusa-Zedang, Tibet. Acta Petrologica Sinica, 27(11): 3255~3268 (in Chinese with English abstract).

    • Lin Liping. 2013. The inferred structure by gravity and magnetic data and its prospecting significance in the central region of Yarlung Zangbo River and Two Other rivers. Master's thesis of Chengdu Unversity of Technology.

    • Liu Jianxin, Li Zeng, Zeng Fanyong, Zhang Yuxiang, Qiu Jie. 2020. Application research of ground high-precision magnetic measurement in geological mapping: Taking the chromite ore disctrict of Ngape, Magwe Province, Myanmar as an example. Chinese Journal of Engineering Geophysics, 17(4): 441~446 (in Chinese with English abstract).

    • Liu Ling. 2021. Application of gravity data processing and interpretation technology in geological structure interpretation and mineral prediction in southern Tibet. Doctoral dissertation of China University of Geosciences (Beijing).

    • Liu Tianyou, Yang Jingsui, Liu Jianxiong, Gou Jingchang, Su Baohua. 2012. The effects of using high-precision gravity and magnetic methods to explore chromite in the Xiugou iron deposit, Langxian County, Tibet. Geophysical and Geochemical Exploration, 36(3): 325~331 (in Chinese with English abstract).

    • Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Element Geochemistry. Beijing: Science Press (in Chinese).

    • Lunk H J. 2015. Discovery, properties and applications of chromium and its compounds. ChemTexts, 1(1): 1~17.

    • Mohanty W K, Mandal A, Sharma S P, Gupta S, Misra S. 2011. Integrated geological and geophysical studies for delineation of chromite deposits: A case study from Tangarparha, Orissa, India. Geophysics, 76(5): B173~B185.

    • Mondal S, Guha A, Pal S K. 2022. Support vector machine-based integration of AVIRISNG hyperspectral and ground geophysical data for identifying potential zones for chromite exploration—A study in Tamil Nadu, India. Advances in Space Research, https: //doi. org/10. 1016/j. asr. 2022. 04. 048.

    • Niu Zuoliang. 2013. Geopgysical exploration methods in the exploration of chromite in Mongolian research and application. Master's thesis of China University of Geosciences (Beijing).

    • Park S, Choi Y. 2020. Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review. Minerals, 10(8): 663.

    • Parvar K, Braun A, Layton-Matthews D, Burns M. 2017. UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman. Journal of Unmanned Vehicle Systems, 6(1): 57~69.

    • Qasim M, Khan S D, Haider R. 2022. Integration of multispectral and hyperspectral remote sensing data for lithological mapping in Zhob Ophiolite, western Pakistan. Arabian Journal of Geosciences, 15(7): 1~19.

    • Qiu Liquan. 2013. The effect of appling the electromagnetic wave CT to the exploration of the Norbusa (Luobusa) chromite ore district in Tibet. Geophysical & Geochemical Exploration, 37: 59~62 (in Chinese with English abstract).

    • Qu Daxiang. 1978. Chromite exploration using induced polarization. Northwestern Geology, 15(1): 93~99 (in Chinese with English abstract).

    • Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-AbriA H, Kusky T M, Ghulam A. 2012. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44: 121~135.

    • Refai E, Wassif N A, Shoaib A. 1989. Stability of remanence and paleomagnetic studies of some chromite ores from Barramiya and Allawi occurrences, Eastern Desert, Egypt. Earth and Planetary Science Letters, 94(1-2): 151~159.

    • Rong Zhihao, Liu Yunhe. 2022. 3D joint inversion of controlled-source audio-frequency magnetotelluric and magnetotelluric data. Global Geology, 25(1): 26~33.

    • Sherendo T A, Vdovin A G, Martyshko P S, Mitrofanov V Y, Alekseev A V, Zamyatin D A, Vazhenin V A, Pamyatnykh L A. 2015. The nature of geomagnetic anomalies in metamorphosed chromite-bearing dunites: A case study of the southern Klyuchevskoy complex, Central Urals. Russian Geology and Geophysics, 56(3): 476~486.

    • Shi Kunfa. 1999. Theory and Application of Controlled Source Audio Magnetotelluric Method. Beijing: Science Press (in Chinese).

    • Streich R. 2016. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37(1): 47~80.

    • Sueker J K. 2006. Chromium. Environmental Forensics, Contaminant Specific Guide. Burlington: Academic Press.

    • Sun Raoxin. 2019. Two dimensional forward modeling and inversion of tensor CSAMT data for anisotropic medium. Master's thesis of China University of Geosciences (Beijing).

    • Tang Jingtian, He Jishan. 2005. Controlled Source Audio Magnetotelluric Method and Its Application. Changsha: Press of Central South University (in Chinese).

    • Tikhonov A N. 1950. On determining electric characteristics of the deep layers of the Earth′scrust. Dolk. Acad. Nauk. SSSR, 73(2): 295~297.

    • Tong Qingxi, Zhang Bing, Zhang Lifu. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5): 689~707 (in Chinese with English abstract).

    • Valavanis K P. 2008. Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Dordrecht : Springer.

    • Wang Gang, Lei Da, Zhang Zhenyu, Hu Xiangyun, Li Yongbo, Wang Dayong, Zhu Wei. 2018. Tensor CSAMT and AMT studies of the Xiarihamu Ni-Cu sulfide deposit in Qinghai, China. Journal of Applied Geophysics, 159: 795~802.

    • Wang Kunpeng, Tan Handong, Zhang Zhiyong, Li Zhiqiang, Cao Meng. 2017. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media. Exploration Geophysics, 48(4): 363~373.

    • Wang Tao, Wang Kunpeng, Tan Handong. 2017. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media. Applied Geophysics, 14(4): 590~605.

    • Wang Xibing, Zhou Xiang, Hao Zigauo. 2010. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China. Geological Bulletin of China, 29(1): 105~114 (in Chinese with English abstract).

    • Wang Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review. Chinese Science Bulletin, 65: 3825~3838(in Chinese with English abstract).

    • Wannamaker P E. 1997. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part I: Implications for structure of the western caldera. Geophysics, 62(2): 451~465.

    • Wu Qin. 2006. A study on the prospecting direction and method of Chromium deposit in Xizang (Tibet). Shanghai Geology, 26: 58~63 (in Chinese with English abstract).

    • Wynn J C. 1981. Chromite geophysics; an example of synergistic geophysical exploration for industrial commodities. Open-File Report 81-964, USGS, 1~23.

    • Xi Xiaolu, Yang Haicheng, He Lanfang, Chen Rujun. 2013. Chromite mapping using induced polarization method based on spread spectrum technology. Symposium on the Application of Geophysics to Engineering and Environmental Problems 2013. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 13~19.

    • Xiang Biwen, Chen Rujun, Chun Shaoheng, Yao Hongchun, Wu Hong, Liu Weiqiang. 2015. A new method for removing EM-coupling in spread spectrum induced polarization based on exponential function fitting. Geophysical and Geochemical Exploration, 39(5): 1053~1058 (in Chinese with English abstract).

    • Xie Jiangtao. 2012. Tibet chromite for gravity and magnetic anomaly characteristics and distribution law research. Master's thesis of Chengdu Unversity of Technology.

    • Xu Xiangzhen, Yang Jingsui, Robinson P T, Xiong Fahui, Ba Dengzhu, Guo Guolin. 2015. Origin of ultrahigh pressure and highly reduced minerals in podiform chromites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 27: 686~700.

    • Yang Jingsui, Bai Wenji, Fang Qingsong, Yan Binggang, Shi Nicheng, Ma Zhesheng, Dai Mingquan, Xiong Ming. 2003. Silicon-rutile-an ultrahigh pressure (UHP) mineral from an ophiolite. Progress in Natural Science, 13: 528~531.

    • Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green H W. 2007. Diamond and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35: 875~878.

    • Yang Jingsui, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10: 27~130.

    • Yang Jingsui, Lian Dongyang, Wu Weiwei, Yang Yu, Rui Huichao, Shi Rendeng, Xiong Fahui. 2022. Chromitites in ophiolites: Questions and thoughts. Acta Geologica Sinica, 96 (5): 608~1634 (in Chinese with English abstract).

    • Yang Lunkai, Liu Hong, He Lanfang, Wang Rongtao, He Xiaohua. 2003. New approach for geothermal exploration: High-power controlled source magnetotelluric method (CSMT). Proceedings of the China Oil Field and Urban Geothermal Development and Utilization Conference. Beijing: Metallurgical Industry Press, 234~237 (in Chinese).

    • Yang Ruodi. 2017. Study on the distribution and application of tensor CSAMT electromagnetic field. Master's thesis of China Unversity of Mining and Technology.

    • Yu Pengliang, Qu Ting, He Rizheng, Liu Jianli, Wang Sufen, Chen Xiaolong. 2021. Application of tensor CSAMT with high-power orthogonal signal sources in Jiama copper polymetallic deposit, South Tibet. China Geology, 4(4): 1~13.

    • Yüngül S. 1956. Prospecting for chromite with gravimeter and magnetometer over rugged topography in east Turkey. Geophysics, 21: 433~454.

    • Zhang Chunmin, Mu Tingkui, Yan Tingyu, Chen Zeyu. 2018. Overview of hyperspectral remote sensing technology. Spacecraft Recovery and Remote Sensing, 39(3): 104~114 (in Chinese with English abstract).

    • Zhang Saizhen, Wang Qingyi, Luo Yanzhong. 1994. An overview on the development in the electrical methods of China. Acta Geoophisica Sinica, 37(A01): 408~424 (in Chinese with English abstract).

    • Zhang Zhengyu, Wang Gang, Hu Xiangyu, Li yongbo, Wang Dayong, Yao Dawei. 2017. Tensor CSAMT technical research and experiments. Oil Geophysical Prosepcting, 52(4): 869~874+630 (in Chinese with English abstract).

    • Zhou Meifu, Robinson P T, Malpas J W, Li Zijin. 1996. Podiform chromites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37: 3~21.

    • Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE geochemical constraints on the formation of Dunites in the Luobusa Ophiolite, southern Tibet. Journal of Petrology, 46: 615~639.

    • Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of contamination of asthenospheric melts in supersubduction zone environments. Gondwana Research, 26: 262~283.

    • Zonge K L, Hughes L J. 1991. Controlled source audio-frequency magnetotellurics. In: Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B. Society of Exploration Geophysicists, 713~810.

    • 曹绪宏. 1999. 祁连山地区铬铁矿和超基性岩体的地球物理特征及物探找矿方法. 地质与勘探, 26(2): 40~44.

    • 底青云, 王若, 王妙月. 2008. 可控源音频大地电磁数据正反演及方法应用. 北京: 科学出版社.

    • 何继善. 1990. 可控源音频大地电磁法. 长沙: 中南工业大学出版社.

    • 何兰芳. 2014. 罗布莎超基性岩与上扬子黑色页岩岩石电磁学. 南京大学博士学位论文.

    • 符宏如, 姜加贵. 1986. 井中无线电波法在西藏香嘎山铬铁矿区的试验结果. 物探与化探, 10: 57~60.

    • 姜枚, 杨经绥, 张聿文, 谭捍东, 彭淼, 吴良士, 许乐红, 张立树, 李庆庆. 2013. 西藏泽当岩体含铬超镁铁岩体的深部构造特征与找矿前景探讨. 中国地质, 40(3): 780~789.

    • 姜枚, 杨经绥, 张立树, 张聿文, 彭淼, 李庆庆. 2016. 沿雅鲁藏布江缝合带东坡、日喀则等蛇绿岩体磁异常特征及其找矿标志. 中国地质, 43(5): 1666~1678.

    • 靳力. 2015. 高精度重磁勘探在铬铁矿勘查中的研究及应用. 成都理工大学硕士学位论文.

    • 鞠星, 韩松, 郭华, 肖梦楚, 牛海波. 2020. 彩虹4无人机在航空物探领域的安全应用. 中国矿业, 29(S2): 159~162.

    • 李泽林. 2014. 强剩磁条件下磁数据三维反演研究. 中国地质大学(北京)硕士学位论文.

    • 梁凤华, 许志琴, 巴登珠, 徐向珍, 刘飞, 熊发挥, 贾毅. 2011. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨. 岩石学报, 27(11): 3255~3268.

    • 林丽萍. 2013. 西藏-江两河中部重磁推断地质构造及其找矿意义. 成都理工大学硕士学位论文.

    • 刘天佑, 杨宇山, 刘建雄, 苟金昌, 苏保华. 2012. 西藏朗县秀沟铬铁矿高精度重磁勘探效果. 物探与化探, 36(3): 325~331.

    • 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社.

    • 柳建新, 曾礼, 曾凡勇, 张翔宇, 邱杰. 2020. 地面高精度磁测在地质填图中的应用研究——以缅甸马圭省额佩铬铁矿区为例. 工程地球物理学报, 17(4): 441~446.

    • 刘玲. 2021. 重力数据处理解释技术在藏南区域地质构造解译及矿产预测中的应用. 中国地质大学 (北京)博士学位论文.

    • 牛作亮. 2013. 物探方法在外蒙地区铬铁矿勘探中的应用研究. 中国地质大学(北京)硕士学位论文.

    • 邱礼泉. 2013. 西藏罗布莎铬铁矿区电磁波CT应用效果. 物探与化探, 37: 59~62.

    • 屈大祥. 1978. 激电场变特性方法寻找铬铁矿床. 西北地质, 15 (1): 93~99.

    • 石昆法. 1999. 可控源音频大地电磁法理论与应用. 北京: 科学出版社.

    • 孙尧鑫. 2019. 张量可控源音频大地电磁法二维各向异性正反演研究. 中国地质大学(北京)硕士学位论文.

    • 汤井田, 何继善. 2005. 可控源音频大地电磁法及其应用. 长沙: 中南大学出版社.

    • 童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(5): 689~707.

    • 王希斌, 周详, 郝梓国. 2010. 西藏罗布莎铬铁矿床的进一步找矿意见和建议. 地质通报, 29(1): 105~114.

    • 王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65: 3825~3838.

    • 吴钦. 1997. 用物探方法在西藏找到隐伏铬铁矿. 地球物理与中国建设. 北京: 地质出版社.

    • 吴钦. 2006. 西藏铬铁矿找矿方向和找矿方法问题探讨——兼论铬矿物探效果. 上海地质, 26: 58~63.

    • 西北地质科学研究所第六室情报组. 1976. 苏联肯皮尔赛岩体找铬矿工作的一些情况. 西北地质, (3): 59~60.

    • 向毕文, 陈儒军, 淳少恒, 姚红春, 吴宏, 刘卫强. 2015. 利用指数函数拟合去除扩频激电信号中的电磁耦合感应. 物探与化探, 39(5): 1053~1058.

    • 谢江涛. 2012. 西藏铬铁矿重磁异常特征及分布规律研究. 成都理工大学硕士学位论文.

    • 謝苗諾夫A C, 寜正. 1960. 苏联的金属矿地球物理勘探. 物探与化探, 4~11+30.

    • 杨经绥, 连东洋, 吴魏伟, 杨彧, 蔡鹏捷, 芮会超, 史仁灯, 熊发挥. 2022. 蛇绿岩中铬铁矿研究的问题与思考. 地质学报, 96(5): 1608~1634.

    • 杨轮凯, 刘宏, 何兰芳, 王永涛, 何小华. 2003. 地热勘探新技术——大功率可控源大地电磁测深法. 全国油区城镇地热开发利用经验交流会论文集(全国油区城镇地热开发利用经验交流会. 中国石油学会;中国能源研究会). 北京: 冶金工业出版社, 234~237.

    • 杨若迪. 2017. 张量 CSAMT 电磁场分布规律和应用技术研究. 中国矿业大学硕士学位论文.

    • 杨辟元. 1957. 在锡林郭勒盟以物探方法寻找铬铁矿的若干问题. 地球物理勘探, 6(5): 15~20.

    • 张淳民, 穆廷魁, 颜廷昱, 陈泽宇. 2018. 高光谱遥感技术发展与展望. 航天返回与遥感, 39(3): 104~114.

    • 张赛珍, 王庆乙, 罗延钟. 1994. 中国电法勘探发展概况. 地球物理学报, 37(A01): 408~424.

    • 张浩勇, 巴登珠, 郭铁鹰, 莫宣学, 薛君治, 阮桂甫, 王志宜. 1996. 西藏自治区曲松县罗布莎铬铁矿床研究. 拉萨: 西藏人民出版社.

    • 张振宇, 王刚, 胡祥云, 李永博, 王大勇, 姚大为. 2017. 张量CSAMT方法及对比实验. 石油地球物理勘探, 52(4): 869~874+630.

  • 参考文献

    • Aleksander K C. 2018. Military use of unmanned aerial vehicles—A historical study. Safety & Defense, 4: 17~21.

    • Andreev B A. 1937. Application of geophysical methods for exploration of chromite deposits. Transactions Scientific Geology Institute, Leningrad.

    • Bao Peisheng, Su Li, Wang Jun, Zhai Qingguo. 2014. Origin of the Zedang and Luobusa ophiolites, Tibet. Acta Geologica Sinica (English Edition), 88: 669~698.

    • Bedini E. 2017. The use of hyperspectral remote sensing for mineral exploration: A review. Journal of Hyperspectral Remote Sensing, 7(4): 189~211.

    • Bioucas-Dias J M, Plaza A, Camps-Valls G, Scheunders P, Nasrabadi N, Chanussot J. 2013. Hyperspectral remote sensing data analysis and future challenges. IEEE Geoscience and Remote Sensing Magazine, 1(2): 6~36.

    • Boerner D E, Kurtz R D, Jones A G. 1993a. Orthogonality in CSAMT and MT measurements. Geophysics, 58(7): 924~934.

    • Boerner D E, Wright J A, Thurlow J G, Reed L E. 1993b. Tensor CSAMT studies at the Buchansmine in central Newfoundland. Geophysics, 58(1): 12~19.

    • Boschetto N B, Hohmann G W. 1991. Controlled-source audio-frequency magnetotelluric responses of three-dimensional bodies. Geophysics, 56(2): 255~264.

    • Cagniard L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18: 605~635.

    • Cao Hui, Wang Kunpeng, Wang Xuben, Duan Changsheng, Lan Xing, Luo Wei, Zhang Zhiyong. 2021. Tipper data forward modeling and inversion of three-dimensional tensor CSAMT. Journal of Applied Geophysics, 193: 104432.

    • Cao Xuhong. 1999. Geophysical characteristics of chromites and ultrabasic rocks in Qilian moutain district and their prospecting methods. Geology and Prospecting, 26(2): 40~44 (in Chinese with English abstract).

    • Christensen N I. 1978. Ophiolites, seismic velocities and oceanic crustal structure. Tectonophysics, 47: 131~157.

    • Coleman C, Li Yaoguo. 2018. Quantifying the error level in computed magnetic amplitude data for 3D magnetization inversion error in magnetic amplitude data. Geophysics, 83(5): J75~J84.

    • Cuerno-Rejado C, Garcia-Hernandez L, Sanchez-Carmona A, Carrio A, Sanchez Lopez J L, Campoy P. 2016. Historical evolution of the unmanned aerial vehicles to the present. Dyna, 91(3): 282~288.

    • Davis W E, Jackson W H, Richter D H. 1957. Gravity prospecting for chromite deposits in Camaguey Province, Cuba. Geophysics, 22: 848~869.

    • del Cerro J, Cruz Ulloa C, Barrientos A, de León Rivas J. 2021. Unmanned aerial vehicles in agriculture: A survey. Agronomy, 11(2): 203.

    • Di Qingyun, Wang Ruo, Wang Miaoyue. 2008. Modeling and Inversion Method of Controlled Source Audio Magnetotelluric Data and Their Application. Beijing: Science Press(in Chinese).

    • Eshaghzadeh A, Sahbari S S, Dehghanpour A. 2020. 2D inverse modeling of the gravity field due to a chromite deposit using the Marquardt's algorithm and forced neural network. Bulletin of the Mineral Research and Exploration, 161(161): 33~47.

    • Essa K S, Munschy M. 2019. Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration. Journal of Earth System Science, 128(5): 1~16.

    • Essa K S, Abo-Ezz E R, Géraud Y. 2021. Utilizing the analytical signal method in prospecting gravity anomaly profiles. Environmental Earth Sciences, 80(17): 1~21.

    • Flint D E, de AlbearJ F, Guild P W. 1948. Geology and chromite deposits of the Camagüey district, Camagüey Province, Cuba. Geologic Investigations in the American Republics. US Government Printing Office, 39~63.

    • Frasheri A I. 2009. The peculiarities of geophysical methods in exploration for chrome deposits. SEG Expanded Abstracts 2009, 1310~1314.

    • Fu Hongru, Jiang Jiagui. 1986. Test result of borehole radiowave penetration method in the Xianggeshan chromite ore district, Tibet. Geophysical and Geochemical Exploration, 10: 57~60 (in Chinese with English abstract).

    • Garcia X, Boerner D, Pedersen L B. 2003. Electric and magnetic galvanic distortion decomposition of tensor CSAMT data. Application to data from the Buchans Mine (Newfoundland, Canada). Geophysical Journal International, 154(3): 957~969.

    • Goldstein M A. 1971. Magnetotelluric experiments employing an artificial dipole source. Doctoral dissertation of University of Toronto, Canada.

    • Goldstein M A, Strangway D W. 1975. Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics, 40(4): 669~683.

    • Guha A. 2020. Mineral exploration using hyperspectral data. Hyperspectral Remote Sensing. Elsevier.

    • Hammer S. 1945. Estimating ore masses in gravity prospecting. Geophysics, 10: 50~62.

    • Hammer S, Nettleton L L, Hastings W K. 1945. Gravimeter prospecting for chromite in Cuba. Geophysics, 10: 34~49.

    • Hawkes H E. 1951. Magnetic exploration for chromite. Geological Suevey Bulletin (No. 973). US Government Printing Office, 1~21.

    • He Jishan. 1990. Controlled Source Audio Magnetotelluric Method. Changsha: Press of Central South University (in Chinese).

    • He Lanfang. 2014. Petro-electricity and its origin: Examples from Luobusha ultramafic rock and Upper Yangtze black shale. Doctoral dissertation of Nanjing University(in Chinese with English abstract).

    • He Lanfang, Chen Ling, Dorji, He Zhanxiang, Wang Xuben, Xiao Bayi, Xu Ligui, Xi Xiaolu, Yao Hongchun, Chen Rujun. 2018. Mapping chromite deposits with audio magnetotellurics in the Luobusa ophiolite of southern Tibet. Geophysics, 83(2): B47~B57.

    • Hornicka E, Targosz P, Loska M, Wojdyła M. 2020. Complex geophysical investigation in search of chromite deposits at Ljuboten greenfield site. Proceedings of NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining (Vol. 2020, No. 1, 1~5). European Association of Geoscientists & Engineers.

    • Horen H, Zamora M, Dubuisson G. 1996. Seismic waves velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge. Geophysical Research Letters, 23: 9~12.

    • Hu Xiangyun, Peng Ronghua, Wu Guiju, Wang Weiping, Huo Guangpu, Han Bo. 2013. Mineral exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China. Geophysics, 78(3): B111~B119.

    • Hunt C P, Moskowitz B M, Banerjee S K. 1995. Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants, 3: 189~204.

    • Jacobs J A, Testa S M. 2005. Overview of chromium (VI) in the environment: Background and history. In: Chromium (VI) Handbook, 1~21.

    • Jiang Mei, Peng Miao, Yang Jingsui, Tan Handong, Qian Rongyi, Zhang Yuwen, Xu Lehong, Zhang Lishu, Li Qingqing. 2015. Seismic reflection and magnetotelluric profiles across the Luobusa ophiolite: Evidence for the deep structure of the Yarlung Zangbo suture zone, southern Tibet. Journal of Asian Earth Sciences, 110: 4~9.

    • Jiang Mei, Yang Jingsui, Zhang Yuwen, Tan Handong, Peng Miao, Wu Liangshi, Xu Lehong, Zhang Lishu, Li Qinqin. 2013. Deep tectonic characteristics and ore-prospecting potential of the Zetang Crbearing ultramafic rock mass in Tibet. Geology in China, 40(3): 780~789(in Chinese with English abstract).

    • Jiang Mei, Yang Jingsui, Zhang Lishu, Zhang Liwen, Peng Miao, Li Qingqing. 2016. The magnetic anomaly characteristics of Dongpo, Xigaze and some other ophiolite rock masses along the Yarlung Zangbo suture zone and their ore prospecting significance. Geology in China, 43(5): 1666~1678(in Chinese with Englishabstract).

    • Jin Li. 2015. High-precision gravity and magnetic exploration in the research and application of chromite exploration. Master's thesis of Chengdu Unversity of Technology.

    • Ju Xing, Han Song, Guo Hua, Xiao Mengchu. 2020. The safe application of CH4 unmanned aerial vehicle in aerogeophysics. China Mining Magazine, 29(S2): 159~162 (in Chinese with Englishabstract).

    • Koleli N, Demir A. 2016. Chromite. In: Environmental Materials and Waste. London: Academic Press, 245~263.

    • Kospiri A, Kosho P, Vuksaj N. 1999. Case histories of the application of geophysical methods to chromite exploration in the Balkans. Second Balkan Geophysical Congress and Exhibition (Extended Abstract), Istanbul, Jul. 5~9, O7~3.

    • Kumar A, Bhalla M S. 1984. Source of stable remanence in chromite ores. Geophysical Research Letters, 11(3): 177~180.

    • Kumar D, Satyanarayanan M, Kumar K S, Raju P V. 2022. Electrical resistivity tomography of Mesoarchaean chromitite bands from Katpal in Sukinda Ultramafic Complex, Odisha. Journal of Earth System Science, 131(1): 1~15.

    • Lee F W. 1939. Part I—History and activities of the section of geophysics of the United States Geological Survey. Eos, Transactions American Geophysical Union, 20(3): 280~291.

    • Li Yaoguo, Shearer S E, Haney M M, Dannemiller N. 2010. Comprehensive approaches to 3D inversion of magnetic data affected by remanent magnetization. Geophysics, 75(1): L1~L11.

    • Li Yaoguo, He Zhanxiang, Liu Yunxiang. 2012. Application of magnetic amplitude inversion in exploration for volcanic units in a basin environment. Geophysics, 77(5): B219~B225.

    • Li Zelin. 2014. Research on 3-D inversion of magnetic data in the presence of strong remanence. Master's thesis of China Unversity of Geosciences (Beijing).

    • Liang Fenghua, Xu Zhiqing, Ba Dengzhu, Liu Fei, Xiong Fahui, Jia Yi. 2011. Tectonic occurrence and emplacement mechanism of ophiolites from Luobusa-Zedang, Tibet. Acta Petrologica Sinica, 27(11): 3255~3268 (in Chinese with English abstract).

    • Lin Liping. 2013. The inferred structure by gravity and magnetic data and its prospecting significance in the central region of Yarlung Zangbo River and Two Other rivers. Master's thesis of Chengdu Unversity of Technology.

    • Liu Jianxin, Li Zeng, Zeng Fanyong, Zhang Yuxiang, Qiu Jie. 2020. Application research of ground high-precision magnetic measurement in geological mapping: Taking the chromite ore disctrict of Ngape, Magwe Province, Myanmar as an example. Chinese Journal of Engineering Geophysics, 17(4): 441~446 (in Chinese with English abstract).

    • Liu Ling. 2021. Application of gravity data processing and interpretation technology in geological structure interpretation and mineral prediction in southern Tibet. Doctoral dissertation of China University of Geosciences (Beijing).

    • Liu Tianyou, Yang Jingsui, Liu Jianxiong, Gou Jingchang, Su Baohua. 2012. The effects of using high-precision gravity and magnetic methods to explore chromite in the Xiugou iron deposit, Langxian County, Tibet. Geophysical and Geochemical Exploration, 36(3): 325~331 (in Chinese with English abstract).

    • Liu Yingjun, Cao Liming, Li Zhaoling, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Element Geochemistry. Beijing: Science Press (in Chinese).

    • Lunk H J. 2015. Discovery, properties and applications of chromium and its compounds. ChemTexts, 1(1): 1~17.

    • Mohanty W K, Mandal A, Sharma S P, Gupta S, Misra S. 2011. Integrated geological and geophysical studies for delineation of chromite deposits: A case study from Tangarparha, Orissa, India. Geophysics, 76(5): B173~B185.

    • Mondal S, Guha A, Pal S K. 2022. Support vector machine-based integration of AVIRISNG hyperspectral and ground geophysical data for identifying potential zones for chromite exploration—A study in Tamil Nadu, India. Advances in Space Research, https: //doi. org/10. 1016/j. asr. 2022. 04. 048.

    • Niu Zuoliang. 2013. Geopgysical exploration methods in the exploration of chromite in Mongolian research and application. Master's thesis of China University of Geosciences (Beijing).

    • Park S, Choi Y. 2020. Applications of unmanned aerial vehicles in mining from exploration to reclamation: A review. Minerals, 10(8): 663.

    • Parvar K, Braun A, Layton-Matthews D, Burns M. 2017. UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman. Journal of Unmanned Vehicle Systems, 6(1): 57~69.

    • Qasim M, Khan S D, Haider R. 2022. Integration of multispectral and hyperspectral remote sensing data for lithological mapping in Zhob Ophiolite, western Pakistan. Arabian Journal of Geosciences, 15(7): 1~19.

    • Qiu Liquan. 2013. The effect of appling the electromagnetic wave CT to the exploration of the Norbusa (Luobusa) chromite ore district in Tibet. Geophysical & Geochemical Exploration, 37: 59~62 (in Chinese with English abstract).

    • Qu Daxiang. 1978. Chromite exploration using induced polarization. Northwestern Geology, 15(1): 93~99 (in Chinese with English abstract).

    • Rajendran S, Al-Khirbash S, Pracejus B, Nasir S, Al-AbriA H, Kusky T M, Ghulam A. 2012. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44: 121~135.

    • Refai E, Wassif N A, Shoaib A. 1989. Stability of remanence and paleomagnetic studies of some chromite ores from Barramiya and Allawi occurrences, Eastern Desert, Egypt. Earth and Planetary Science Letters, 94(1-2): 151~159.

    • Rong Zhihao, Liu Yunhe. 2022. 3D joint inversion of controlled-source audio-frequency magnetotelluric and magnetotelluric data. Global Geology, 25(1): 26~33.

    • Sherendo T A, Vdovin A G, Martyshko P S, Mitrofanov V Y, Alekseev A V, Zamyatin D A, Vazhenin V A, Pamyatnykh L A. 2015. The nature of geomagnetic anomalies in metamorphosed chromite-bearing dunites: A case study of the southern Klyuchevskoy complex, Central Urals. Russian Geology and Geophysics, 56(3): 476~486.

    • Shi Kunfa. 1999. Theory and Application of Controlled Source Audio Magnetotelluric Method. Beijing: Science Press (in Chinese).

    • Streich R. 2016. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37(1): 47~80.

    • Sueker J K. 2006. Chromium. Environmental Forensics, Contaminant Specific Guide. Burlington: Academic Press.

    • Sun Raoxin. 2019. Two dimensional forward modeling and inversion of tensor CSAMT data for anisotropic medium. Master's thesis of China University of Geosciences (Beijing).

    • Tang Jingtian, He Jishan. 2005. Controlled Source Audio Magnetotelluric Method and Its Application. Changsha: Press of Central South University (in Chinese).

    • Tikhonov A N. 1950. On determining electric characteristics of the deep layers of the Earth′scrust. Dolk. Acad. Nauk. SSSR, 73(2): 295~297.

    • Tong Qingxi, Zhang Bing, Zhang Lifu. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5): 689~707 (in Chinese with English abstract).

    • Valavanis K P. 2008. Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Dordrecht : Springer.

    • Wang Gang, Lei Da, Zhang Zhenyu, Hu Xiangyun, Li Yongbo, Wang Dayong, Zhu Wei. 2018. Tensor CSAMT and AMT studies of the Xiarihamu Ni-Cu sulfide deposit in Qinghai, China. Journal of Applied Geophysics, 159: 795~802.

    • Wang Kunpeng, Tan Handong, Zhang Zhiyong, Li Zhiqiang, Cao Meng. 2017. Divergence correction schemes in finite difference method for 3D tensor CSAMT in axial anisotropic media. Exploration Geophysics, 48(4): 363~373.

    • Wang Tao, Wang Kunpeng, Tan Handong. 2017. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media. Applied Geophysics, 14(4): 590~605.

    • Wang Xibing, Zhou Xiang, Hao Zigauo. 2010. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China. Geological Bulletin of China, 29(1): 105~114 (in Chinese with English abstract).

    • Wang Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review. Chinese Science Bulletin, 65: 3825~3838(in Chinese with English abstract).

    • Wannamaker P E. 1997. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, United States of America, Part I: Implications for structure of the western caldera. Geophysics, 62(2): 451~465.

    • Wu Qin. 2006. A study on the prospecting direction and method of Chromium deposit in Xizang (Tibet). Shanghai Geology, 26: 58~63 (in Chinese with English abstract).

    • Wynn J C. 1981. Chromite geophysics; an example of synergistic geophysical exploration for industrial commodities. Open-File Report 81-964, USGS, 1~23.

    • Xi Xiaolu, Yang Haicheng, He Lanfang, Chen Rujun. 2013. Chromite mapping using induced polarization method based on spread spectrum technology. Symposium on the Application of Geophysics to Engineering and Environmental Problems 2013. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 13~19.

    • Xiang Biwen, Chen Rujun, Chun Shaoheng, Yao Hongchun, Wu Hong, Liu Weiqiang. 2015. A new method for removing EM-coupling in spread spectrum induced polarization based on exponential function fitting. Geophysical and Geochemical Exploration, 39(5): 1053~1058 (in Chinese with English abstract).

    • Xie Jiangtao. 2012. Tibet chromite for gravity and magnetic anomaly characteristics and distribution law research. Master's thesis of Chengdu Unversity of Technology.

    • Xu Xiangzhen, Yang Jingsui, Robinson P T, Xiong Fahui, Ba Dengzhu, Guo Guolin. 2015. Origin of ultrahigh pressure and highly reduced minerals in podiform chromites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Research, 27: 686~700.

    • Yang Jingsui, Bai Wenji, Fang Qingsong, Yan Binggang, Shi Nicheng, Ma Zhesheng, Dai Mingquan, Xiong Ming. 2003. Silicon-rutile-an ultrahigh pressure (UHP) mineral from an ophiolite. Progress in Natural Science, 13: 528~531.

    • Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green H W. 2007. Diamond and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35: 875~878.

    • Yang Jingsui, Robinson P T, Dilek Y. 2014. Diamonds in ophiolites. Elements, 10: 27~130.

    • Yang Jingsui, Lian Dongyang, Wu Weiwei, Yang Yu, Rui Huichao, Shi Rendeng, Xiong Fahui. 2022. Chromitites in ophiolites: Questions and thoughts. Acta Geologica Sinica, 96 (5): 608~1634 (in Chinese with English abstract).

    • Yang Lunkai, Liu Hong, He Lanfang, Wang Rongtao, He Xiaohua. 2003. New approach for geothermal exploration: High-power controlled source magnetotelluric method (CSMT). Proceedings of the China Oil Field and Urban Geothermal Development and Utilization Conference. Beijing: Metallurgical Industry Press, 234~237 (in Chinese).

    • Yang Ruodi. 2017. Study on the distribution and application of tensor CSAMT electromagnetic field. Master's thesis of China Unversity of Mining and Technology.

    • Yu Pengliang, Qu Ting, He Rizheng, Liu Jianli, Wang Sufen, Chen Xiaolong. 2021. Application of tensor CSAMT with high-power orthogonal signal sources in Jiama copper polymetallic deposit, South Tibet. China Geology, 4(4): 1~13.

    • Yüngül S. 1956. Prospecting for chromite with gravimeter and magnetometer over rugged topography in east Turkey. Geophysics, 21: 433~454.

    • Zhang Chunmin, Mu Tingkui, Yan Tingyu, Chen Zeyu. 2018. Overview of hyperspectral remote sensing technology. Spacecraft Recovery and Remote Sensing, 39(3): 104~114 (in Chinese with English abstract).

    • Zhang Saizhen, Wang Qingyi, Luo Yanzhong. 1994. An overview on the development in the electrical methods of China. Acta Geoophisica Sinica, 37(A01): 408~424 (in Chinese with English abstract).

    • Zhang Zhengyu, Wang Gang, Hu Xiangyu, Li yongbo, Wang Dayong, Yao Dawei. 2017. Tensor CSAMT technical research and experiments. Oil Geophysical Prosepcting, 52(4): 869~874+630 (in Chinese with English abstract).

    • Zhou Meifu, Robinson P T, Malpas J W, Li Zijin. 1996. Podiform chromites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37: 3~21.

    • Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE geochemical constraints on the formation of Dunites in the Luobusa Ophiolite, southern Tibet. Journal of Petrology, 46: 615~639.

    • Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of contamination of asthenospheric melts in supersubduction zone environments. Gondwana Research, 26: 262~283.

    • Zonge K L, Hughes L J. 1991. Controlled source audio-frequency magnetotellurics. In: Electromagnetic Methods in Applied Geophysics: Volume 2, Application, Parts A and B. Society of Exploration Geophysicists, 713~810.

    • 曹绪宏. 1999. 祁连山地区铬铁矿和超基性岩体的地球物理特征及物探找矿方法. 地质与勘探, 26(2): 40~44.

    • 底青云, 王若, 王妙月. 2008. 可控源音频大地电磁数据正反演及方法应用. 北京: 科学出版社.

    • 何继善. 1990. 可控源音频大地电磁法. 长沙: 中南工业大学出版社.

    • 何兰芳. 2014. 罗布莎超基性岩与上扬子黑色页岩岩石电磁学. 南京大学博士学位论文.

    • 符宏如, 姜加贵. 1986. 井中无线电波法在西藏香嘎山铬铁矿区的试验结果. 物探与化探, 10: 57~60.

    • 姜枚, 杨经绥, 张聿文, 谭捍东, 彭淼, 吴良士, 许乐红, 张立树, 李庆庆. 2013. 西藏泽当岩体含铬超镁铁岩体的深部构造特征与找矿前景探讨. 中国地质, 40(3): 780~789.

    • 姜枚, 杨经绥, 张立树, 张聿文, 彭淼, 李庆庆. 2016. 沿雅鲁藏布江缝合带东坡、日喀则等蛇绿岩体磁异常特征及其找矿标志. 中国地质, 43(5): 1666~1678.

    • 靳力. 2015. 高精度重磁勘探在铬铁矿勘查中的研究及应用. 成都理工大学硕士学位论文.

    • 鞠星, 韩松, 郭华, 肖梦楚, 牛海波. 2020. 彩虹4无人机在航空物探领域的安全应用. 中国矿业, 29(S2): 159~162.

    • 李泽林. 2014. 强剩磁条件下磁数据三维反演研究. 中国地质大学(北京)硕士学位论文.

    • 梁凤华, 许志琴, 巴登珠, 徐向珍, 刘飞, 熊发挥, 贾毅. 2011. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨. 岩石学报, 27(11): 3255~3268.

    • 林丽萍. 2013. 西藏-江两河中部重磁推断地质构造及其找矿意义. 成都理工大学硕士学位论文.

    • 刘天佑, 杨宇山, 刘建雄, 苟金昌, 苏保华. 2012. 西藏朗县秀沟铬铁矿高精度重磁勘探效果. 物探与化探, 36(3): 325~331.

    • 刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学. 北京: 科学出版社.

    • 柳建新, 曾礼, 曾凡勇, 张翔宇, 邱杰. 2020. 地面高精度磁测在地质填图中的应用研究——以缅甸马圭省额佩铬铁矿区为例. 工程地球物理学报, 17(4): 441~446.

    • 刘玲. 2021. 重力数据处理解释技术在藏南区域地质构造解译及矿产预测中的应用. 中国地质大学 (北京)博士学位论文.

    • 牛作亮. 2013. 物探方法在外蒙地区铬铁矿勘探中的应用研究. 中国地质大学(北京)硕士学位论文.

    • 邱礼泉. 2013. 西藏罗布莎铬铁矿区电磁波CT应用效果. 物探与化探, 37: 59~62.

    • 屈大祥. 1978. 激电场变特性方法寻找铬铁矿床. 西北地质, 15 (1): 93~99.

    • 石昆法. 1999. 可控源音频大地电磁法理论与应用. 北京: 科学出版社.

    • 孙尧鑫. 2019. 张量可控源音频大地电磁法二维各向异性正反演研究. 中国地质大学(北京)硕士学位论文.

    • 汤井田, 何继善. 2005. 可控源音频大地电磁法及其应用. 长沙: 中南大学出版社.

    • 童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(5): 689~707.

    • 王希斌, 周详, 郝梓国. 2010. 西藏罗布莎铬铁矿床的进一步找矿意见和建议. 地质通报, 29(1): 105~114.

    • 王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制. 科学通报, 65: 3825~3838.

    • 吴钦. 1997. 用物探方法在西藏找到隐伏铬铁矿. 地球物理与中国建设. 北京: 地质出版社.

    • 吴钦. 2006. 西藏铬铁矿找矿方向和找矿方法问题探讨——兼论铬矿物探效果. 上海地质, 26: 58~63.

    • 西北地质科学研究所第六室情报组. 1976. 苏联肯皮尔赛岩体找铬矿工作的一些情况. 西北地质, (3): 59~60.

    • 向毕文, 陈儒军, 淳少恒, 姚红春, 吴宏, 刘卫强. 2015. 利用指数函数拟合去除扩频激电信号中的电磁耦合感应. 物探与化探, 39(5): 1053~1058.

    • 谢江涛. 2012. 西藏铬铁矿重磁异常特征及分布规律研究. 成都理工大学硕士学位论文.

    • 謝苗諾夫A C, 寜正. 1960. 苏联的金属矿地球物理勘探. 物探与化探, 4~11+30.

    • 杨经绥, 连东洋, 吴魏伟, 杨彧, 蔡鹏捷, 芮会超, 史仁灯, 熊发挥. 2022. 蛇绿岩中铬铁矿研究的问题与思考. 地质学报, 96(5): 1608~1634.

    • 杨轮凯, 刘宏, 何兰芳, 王永涛, 何小华. 2003. 地热勘探新技术——大功率可控源大地电磁测深法. 全国油区城镇地热开发利用经验交流会论文集(全国油区城镇地热开发利用经验交流会. 中国石油学会;中国能源研究会). 北京: 冶金工业出版社, 234~237.

    • 杨若迪. 2017. 张量 CSAMT 电磁场分布规律和应用技术研究. 中国矿业大学硕士学位论文.

    • 杨辟元. 1957. 在锡林郭勒盟以物探方法寻找铬铁矿的若干问题. 地球物理勘探, 6(5): 15~20.

    • 张淳民, 穆廷魁, 颜廷昱, 陈泽宇. 2018. 高光谱遥感技术发展与展望. 航天返回与遥感, 39(3): 104~114.

    • 张赛珍, 王庆乙, 罗延钟. 1994. 中国电法勘探发展概况. 地球物理学报, 37(A01): 408~424.

    • 张浩勇, 巴登珠, 郭铁鹰, 莫宣学, 薛君治, 阮桂甫, 王志宜. 1996. 西藏自治区曲松县罗布莎铬铁矿床研究. 拉萨: 西藏人民出版社.

    • 张振宇, 王刚, 胡祥云, 李永博, 王大勇, 姚大为. 2017. 张量CSAMT方法及对比实验. 石油地球物理勘探, 52(4): 869~874+630.