en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴锟言,女,1998年生。硕士研究生,主要从事矿物学与岩石地球化学等方面研究。E-mail:wukunyan@csu.edu.cn。

通讯作者:

刘飚,男,1989年生。博士,硕士生导师,主要从事矿床学、矿物微区分析等方面的研究。E-mail:biaoliu@csu.edu.cn。

参考文献
Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic modul. Nature, 372: 452~454.
参考文献
Bourhis L J, Dolomanov O V, Gildea R J, Howard J A K, Puschmann H. 2015. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallographica Section A Foundations and Advances, 71(1): 59~75.
参考文献
Brugger J, Bettiol A A, Costa S, Lahaye Y, Bateman R, Lambert D D, Jamieson D N. 2000a. Mapping REE distribution in scheelite using luminescence. Mineralogical Magazine, 64(5): 891~903.
参考文献
Brugger J, Lahaye Y, Costa S, Lambert D D, Bateman R. 2000b. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdalegold deposits, Western Australia). Contributions to Mineralogy and Petrology, 139(3): 251~264.
参考文献
Brugger J, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D. 2008. Oxidation state of europium in scheelite: Tracking fluid-rock interaction in gold deposits. Chemical Geology, 257(1-2): 26~33.
参考文献
Ding Teng, Ma Dongsheng, Lu Jianjun, Zhang Rongqing. 2018. Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China. Ore Geology Reviews, 94: 193~211.
参考文献
Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. 2009. OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2): 339~341.
参考文献
Dostal J, Kontak D J, Chatterjee A K. 2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineralogy and Petrology, 97(1-2): 95~109.
参考文献
Ghaderi M, Palin J M, Campbell I H, Sylvester P J. 1999. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Economic Geology and the Bulletin of the Society of Economic Geologists, 94(3): 423~437.
参考文献
Guo Chunli, Wang Rucheng, Yuan Shunda, Wu Shenghua, Yin Bing. 2015. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China. Mineralogy and Petrology, 109(2): 253~282.
参考文献
Guo Fuliang, Chen Xinyu, Zhao Zhongwei, He Lihua, Yang Kaihua, Yang Zhen. 2018. Behavior of accompanying rare earth during process of decomposing scheelite by sulfuric-phosphoric mixed acid. Journal of China Nonferrous Metals, 28 (2): 387~396 (in Chinese with English abstract).
参考文献
Han Jinsheng, Chen Huayong, Hong Wei, Hollings P, Chu Gaobin, Zhang Le, Sun Siquan. 2020. Texture and geochemistry of multi-stage hydrothermal scheelite in the Tongshankou porphyry-skarn Cu-Mo (-W) deposit, eastern China: Implications for ore-forming process and fluid metasomatism. American Mineralogist, 105(6): 945~954.
参考文献
Hsu L C, Galli P E. 1973. Origin of the Scheelite-Powellite Series of Minerals. Economic Geology, 68(5): 681~696.
参考文献
Huang Xudong. 2018. Mid-late Jurassic copper-lead-zinc and tungsten-bearing granites and their skarn mineralization in Nanling. Doctor dissertation of Nanjing University (in Chinese with English abstract).
参考文献
Jiang Hua, Liu Biao, Kong Hua, Wu Qianhong, Chen Shefa, Li Huan, Wu Jinhua. 2022. In situ geochemistry and Sr-O isotopic composition of wolframite and scheelite from the Yaogangxian quartz vein-type W (-Sn) deposit, South China. Ore Geology Reviews, 149: 105066.
参考文献
Liu Biao, Li Huan, Wu Qianhong, Evans N J, Cao Jingya, Jiang Jiangbo, Wu Jinhua. 2019. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos, 330-331: 1~15.
参考文献
Liu Biao, Kong Hua, Wu Qianhong, Chen Shefa, Li Huan, Xi Xiaoshuang, Wu Jinhua, Jiang Hua. 2022a. Origin and evolution of W mineralization in the Tongshanling Cu-polymetallic ore field, South China: Constraints from scheelite microstructure, geochemistry, and Nd-O isotope evidence. Ore Geology Reviews, 143: 104764.
参考文献
Liu Biao, Li Huan, Liu Yuguo, Algeo T J, Luo Xinyu, Girei M B, Wu Qianhong, Kong Hua, Zhang Dexian, Jiang Jiangbo. 2022b. Crystallization processes and genesis of scheelite in a quartz vein-type W deposit (Xianghuapu, South China). Chemical Geology, 613: 121142.
参考文献
Liu Xiong. 2006. Discussion on ore-controlling factors and metallogenic model of Tongshanling ore field in Hunan Province. Mineral Resources and Geology, (Z1): 442~445 (in Chinese with English abstract).
参考文献
Lu Huanzhang, Liu Yimao, Wang Changlie, Xu Youzhi, Li Huaqin. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology and the Bulletin of the Society of Economic Geologists, 98(5): 955~974.
参考文献
Mao Jingwen, Li Hongyan, Guy B, Raimbault L. 1996. Geology and mineralization of the skarn-dolomite W-Sn-Mo-Bi deposit in Shizhuyuan, Hunan Province. Mineral Deposits Geology, 15(1): 1~15 (in Chinese with English abstract).
参考文献
Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23 (10): 2329~2338 (in Chinese with English abstract).
参考文献
Meinert L D, Dipple G M, Nicolescu S. 2005. Worldskarn deposits. Economic Geology, 100th Anniversary Volume: 299~336.
参考文献
Miranda A C R, Beaudoin G, Rottier B. 2022. Scheelite chemistry from skarn systems: Implications for ore-forming processes and mineral exploration. Mineralium Deposita, 57: 1469~1497.
参考文献
Pan Zhaolu. 1994. Crystallography and Mineralogy Volume II (Third Edition). Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Peng Jiantang, Wang Chuan, Li Yukun, Hu Axiang, Lu Yulong, Chen Xianjia. 2021. Geochemical characteristics and Sm-Nd geochronology of scheelite in the Baojinshan ore district, central Hunan. Acta Petrologica Sinica, 37(3): 665~682 (in Chinese with English abstract).
参考文献
Poulin R S. 2016. A study of the crystal chemistry, cathodoluminescence, geochemistry and oxygen isotope in scheelite: Application towards discriminating among differing ore-deposit systems. Laurentian University, Ontario, Canada.
参考文献
Poulin R S, Kontak D J, Mcdonald A, Mcclenaghan M B. 2018. Assessingscheelite as an ore-deposit discriminator using its trace-element and REE chemistry. The Canadian Mineralogist, 56(3): 265~302.
参考文献
Rempel K U, Williams-Jones A E, Migdisov A A. 2009. The partitioning of molybdenum (VI) between aqueous liquid and vapour at temperatures up to 370 ℃. Geochimica et Cosmochimica Acta, 73(11): 3381~3392.
参考文献
Sciuba M, Beaudoin G, Grzela D, Makvandi S. 2020. Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita, 55(6): 1149~1172.
参考文献
Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.
参考文献
Sheldrick G M. 2015. Crystal structure refinement with SHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1): 3~8.
参考文献
Shelton K L, Taylor R P, So C. 1987. Stable isotope studies of the Dae Hwa tungsten-molybdenum mine, Republic of Korea; evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Economic Geology and the Bulletin of the Society of Economic Geologists, 82(2): 471~481.
参考文献
Shoji T, Sasaki N. 1978. Fluorescent color and X-ray powder data of synthesized scheelite-powellite series as guides to determine its composition. Mining Geology, 28(152): 397~404.
参考文献
Shu Jun. 2018. Micro-pulling-down growth and characterization of several single-crystal fibers with scheelite structure. Doctor dissertation of Shandong University (in Chinese with English abstract).
参考文献
Song Guoxue, Qin Kezhang, Li Guangming, Evans N J, Chen Lei. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China. American Mineralogist, 99(2-3): 303~317.
参考文献
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Tyson R M, Hemphill W R, Theisen A F. 1988. Effect of the W: Mo ratio on the shift of excitation and emission spectra in the scheelite-powellite series. American Mineralogist, 73: 1145~1154.
参考文献
Wei Wei, Song Chao, Hou Quanlin, Chen Yan, Faure M, Yan Quanren, Liu Qing, Sun Jinfeng, Zhu Haofeng. 2017. The Late Jurassic extensional event in the central part of the South China Block—evidence from the Laoshan'ao shear zone and Xiangdong tungsten deposit (Hunan, SE China). International Geology Review, 60(11-14): 1644~1664.
参考文献
Wu Kunyan, Liu Biao, Wu Qianhong, Chen Shefa, Kong Hua, Li Huan, Elatikpo S M. 2023. Trace element geochemistry, oxygen isotope and U-Pb geochronology of multistage scheelite: Implications for W-mineralization and fluid evolution of Shizhuyuan W-Sn deposit, South China. Journal of Geochemical Exploration, 248: 107192.
参考文献
Wu Shenghua, Dai Pan, Wang Xudong. 2016. C, H, O and Pbisotopic geochemistry of tungsten polymetallic skarn-dolomite and Pb-Zn-Ag vein in Shizhuyuan. Mineral Deposits, 35(3): 633~647 (in Chinese with English abstract).
参考文献
Zhang Dongliang, Peng Jiantang, Fu Yazhou, Peng Guangxiong. 2012. Rare-earth element geochemistry in Ca-bearing minerals from the Xianghuapu tungsten deposit, Hunan Province, China. Acta Petrologica Sinica, 28(1): 65~74 (in Chinese with English abstract).
参考文献
Zhu Xinyou, Wang Yanli, Cheng Xiyin, Tian Ye, Fu Qibin, Li Shunting, Yu Zhifeng. 2015. Metallogenic system of Yaogangxian quartz vein-type tungsten deposit, Hunan Province. Mineral Deposits, 34(5): 874~894 (in Chinese with English abstract).
参考文献
Zhu Xinyou, Wang Jingbin, Wang Liyan, Chen Xiyin, Fu Qibin. 2014. On the relative sealing property of quartz vein type tungsten metallogenic system: A case study of Yaogangxian vein type tungsten deposit in Hunan Province. Acta Geologica Sinica, 88(5): 825~835 (in Chinese with English abstract).
参考文献
Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, Fu Qibin. 2013. A study on the dissociation of dolomite and liquid differentiation of magma in Quartz vein tungsten deposit: A case study of Yaogangxian tungsten deposit, Hunan Province. Mineral Deposits, 2(3): 533~544 (in Chinese with English abstract).
参考文献
郭福亮, 陈星宇, 赵中伟, 何利华, 杨凯华, 杨珍. 2018. 硫磷混酸分解白钨矿过程中伴生稀土的行为. 中国有色金属学报, 28(2): 387~396.
参考文献
黄旭栋. 2018. 南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用. 南京大学博士学位论文.
参考文献
刘雄. 2006. 湖南铜山岭矿田控矿因素及成矿模式探讨. 矿产与地质, (Z1): 442~445.
参考文献
毛景文, 李红艳, Guy B, Raimbault L. 1996. 湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用. 矿床地质, 15(1): 1~15.
参考文献
毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329~2338.
参考文献
潘兆橹. 1994. 结晶学及矿物学下册 (第三版). 北京: 地质出版社.
参考文献
彭建堂, 王川, 李玉坤, 胡阿香, 鲁玉龙, 陈宪佳. 2021. 湖南包金山矿区白钨矿的地球化学特征及Sm-Nd同位素年代学. 岩石学报, 37(3): 665~682.
参考文献
舒骏. 2018. 白钨矿结构的几种单晶光纤的微下拉法生长及性能研究. 山东大学博士学位论文.
参考文献
吴胜华, 戴盼, 王旭东. 2016. 柿竹园钨多金属矽卡岩-云英岩与铅锌银矿脉C、H、O、Pb同位素地球化学研究. 矿床地质, 35(3): 633~647.
参考文献
张东亮, 彭建堂, 符亚洲, 彭光雄. 2012. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学. 岩石学报, 28(1): 65~74.
参考文献
祝新友, 王艳丽, 程细音, 田野, 傅其斌, 李顺庭, 于志峰. 2015. 湖南瑶岗仙石英脉型钨矿床成矿系统. 矿床地质, 34(5): 874~894.
参考文献
祝新友, 王京彬, 王艳丽, 程细音, 傅其斌. 2014. 论石英脉型钨矿成矿系统的相对封闭性——以湖南瑶岗仙脉型钨矿床为例. 地质学报, 88(5): 825~835.
参考文献
祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2013. 石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例. 矿床地质, 2(3): 533~544.
目录contents

    摘要

    白钨矿是钨矿床中主要的载钨矿物,其独特的晶体结构使其富含微量元素,被广泛用于示踪钨成矿过程与流体源区。本文对南岭地区氧化型矽卡岩、还原型矽卡岩、黑钨矿-石英脉型、白钨矿-石英脉型、(矽卡岩-)云英岩型、(石英脉-)云英岩型钨矿床中白钨矿开展矿物组合和X-射线单晶衍射分析,实验结果显示:① 白钨矿晶体结构存在一定差异,矽卡岩型钨矿中白钨矿Ca-O键长变化较大(0.0043 nm),石英脉型钨矿中白钨矿次之(0.0035 nm),云英岩型钨矿中白钨矿最小(0.0034 nm);② Ca-O键长的差异对最优替代稀土元素影响较大,氧化型矽卡岩钨矿中白钨矿从成矿早期到晚期,最优替代稀土元素从Pr-Nd(进变质阶段)、Pr-Sm(退变质阶段)转变为Nd-Sm(石英-方解石-萤石阶段),而(石英脉-)云英岩型钨矿中白钨矿呈现以Sm3+为中心(Nd-Gd)的最优替代元素;③ 矽卡岩型和云英岩型钨矿中白钨矿,稀土元素主要通过Nb5+耦合替代和空位替代进入白钨矿晶格,石英脉型钨矿的白钨矿中,稀土元素主要通过空位替代和Na+耦合替代进入白钨矿晶格。此外,岩浆流体中稀土特征、共生矿物沉淀、氧化还原环境、外来流体加入、水岩交代作用等对白钨矿中微量元素替代与稀土元素配分型式也具有较大影响。综合分析认为,矽卡岩型钨矿中白钨矿稀土元素配分型式主要受石榴子石等共生矿物沉淀控制,(矽卡岩-)云英岩型钨矿中白钨矿主要继承了岩浆流体的稀土元素配分型式,(石英脉-)云英岩型钨矿中白钨矿稀土元素配分型式主要受晶体结构影响,石英脉型钨矿中白钨矿经历了多阶段流体演化,稀土元素配分型式显示凸起—平坦—凹陷的变化。

    Abstract

    Scheelite is the main W-bearing mineral in tungsten deposits. Its unique crystal structure is enriched in trace elements, and it is widely used to implicate mineralization processes and fluid sources. In this research, the mineral assemblage and single-crystal X-ray diffraction analysis of scheelite from oxidized skarn, reduced skarn, wolframite-quartz vein, scheelite-quartz vein, greisen (-skarn) and greisen (-quartz vein) types W deposits related to granite intrusions in Nanling metallogenic belt are presented. The experimental results show that: ① there are some differences in the scheelite crystal structure. The difference in Ca-O bond length data of scheelite in skarn (0.0043 nm) is greater than that of scheelite in quartz vein (0.0035 nm) and greisen (0.0034 nm); ② the difference in Ca-O bond length has little influence on trace elements substitution, but has a great influence on the optimal substitution of REEs. The scheelite in oxidized skarn is developed in multiple stages, and there is a transition from Pr-Nd (prograde skarn stage) to Pr-Sm (retrograde skarn stage) to Nd-Sm (quartz-calcite-fluorite stage) as the optimal substitution of REEs from early to late. The scheelite in greisen (-quartz vein) type deposit presents the REE distribution pattern of the optimal (Nd-Gd) substitution element centered on Sm3+; ③ in scheelite from skarn type and greisen type deposits, REEs enter scheelite lattice mainly through Nb5+ coupling substitution and vacancy substitution mechanism. In scheelite from quartz vein type deposit, REEs enter scheelite lattice mainly through vacancy substitution and Na+ coupling substitution mechanism. In addition, the characteristics of REEs in the parent fluid, the precipitation of associated minerals, the redox environment, the addition of foreign fluids, and the fluid-rock interaction also have a great impact on the substitution of trace elements in scheelite. After all, the scheelite in skarn type deposit is mainly controlled by the precipitation of garnet and other associated minerals. The scheelite in greisen (-skarn) mainly inherits the REE distribution pattern of magmatic fluid. The crystal structure of scheelite in greisen (-quartz vein) has the greatest impact on REEs. However, the scheelite in quartz vein type deposit underwent the multi-phase hydrothermal fluid evolution, showing the changes of bulge-flat-depression MREE types REE distribution pattern.

  • 南岭地区是我国乃至世界最重要的钨锡成矿带之一,主要矿床类型可分为氧化型矽卡岩、还原型矽卡岩、黑钨矿-石英脉型、白钨矿-石英脉型、(矽卡岩-)云英岩型、(石英脉-)云英岩型,白钨矿广泛结晶于不同类型钨成矿的多个阶段(Poulin,2016Miranda et al.,2022)。由于白钨矿特殊的晶体结构,富集大量稀土元素,不仅可以示踪钨成矿过程与流体源区,也具有回收伴生稀土元素的潜力(郭福亮等,2018)。多类型多阶段白钨矿原位微量元素分析显示不同类型白钨矿的微量元素特征之间存在显著差异,同一矿床不同阶段白钨矿的微量元素特征也存在一定差异。理论计算及数值模拟均表明晶体结构是影响微量元素替换机理的重要因素(Brugger et al.,2000bDing Teng et al.,2018Poulin et al.,2018彭建堂等,2021),但目前主要通过X-射线衍射分析晶胞参数,尚未获得不同类型白钨矿的晶体结构。因此本文利用X-射线单晶衍射分析,精细解剖白钨矿晶体结构,测量不同白钨矿颗粒的晶胞参数及键长,结合白钨矿原位主、微量元素分析结果,探讨白钨矿晶体结构与微量元素替代机理的关系。

  • 1 地质背景

  • 本文研究的钨矿床位于南岭成矿带,包括柿竹园、铜山岭、瑶岗仙、湘东钨矿和香花铺(图1)。柿竹园矿床位于南岭成矿带中部,主要出露地层为震旦系、寒武系、泥盆系及第四系,其中泥盆系灰岩为主要赋矿围岩。矿区断层发育,其中SN向和NW向断层控制了岩体侵入,NE向和NW向断层控制了网脉状裂隙走向。矿区花岗岩分三期岩体,从早至晚为似斑状黑云母花岗岩、等粒黑云母花岗岩和花岗斑岩脉,其中等粒黑云母花岗岩为柿竹园矿床的主要成矿岩体(Lu Huanzhang et al.,2003)。铜山岭矿区位于南岭成矿带西部,主要出露地层为泥盆系、石炭系、二叠系和侏罗系,其中泥盆系—石炭系灰岩为主要赋矿围岩。矿床内以NE和NNE向褶皱、断层为主要的导矿构造,NEE和NWW向裂隙为主要的容矿构造(刘雄,2006)。花岗闪长岩斑岩为铜山岭矿床的主要成矿岩体,出露面积约12 km2,呈东西向带状分布(Liu Biao et al.,2022a)。

  • 瑶岗仙矿床位于南岭成矿带中部,主要出露地层为寒武系、泥盆系和侏罗系,其中寒武系和泥盆系砂岩为石英脉型矿体主要赋矿围岩,矿体主要受NE向与NW向断裂控制。矿区内发育多期花岗岩,其中碱长花岗岩为瑶岗仙钨矿床的主要成矿岩体(祝新友等,201320142015)。湘东钨矿位于南岭成矿带北部,主要出露地层为寒武系、奥陶系、泥盆系、石炭系、二叠系、三叠系、白垩系及第四系。矿体主要受茶汉断层及其分支老山坳断层控制(Wei Wei et al.,2017),矿区内发育印支期与燕山期花岗岩,其中燕山期白云母花岗岩为湘东钨矿的主要成矿岩体,矿体赋存于印支期黑云母花岗岩和燕山期二云母花岗岩体中。香花铺矿床位于南岭成矿带中部,主要出露地层为寒武系、泥盆系、石炭系,其中泥盆系白云岩为主要赋矿围岩,NNE向断层为主要的控矿构造,尖峰岭黑云母花岗岩为香花铺矿床的主要成矿岩体(张东亮等,2012)。

  • 研究区钨矿床类型可分为矽卡岩型、石英脉型和云英岩型三类,其中矽卡岩型根据岩体侵位深度、矿物组合进一步分为氧化型矽卡岩和还原型矽卡岩(Meinert et al.,2005),石英脉型钨矿根据主要的载钨矿物类型进一步分为黑钨矿-石英脉型和白钨矿-石英脉型,云英岩型根据与其相关的矿化类型,进一步分为与矽卡岩体相关的(矽卡岩-)云英岩型和与石英脉体相关的(石英脉-)云英岩型。

  • 柿竹园进变质阶段矽卡岩中发育大规模的钙铝-钙铁榴石,可见少量透辉石矽卡岩,退变质阶段矽卡岩发育绿泥石化和绿帘石化,部分退变质矽卡岩叠加于进变质矽卡岩之上,富含黄铁矿和黄铜矿的硫化物细脉,可见磁铁矿呈团块状分布(毛景文等,1996Lu Huanzhang et al.,2003吴胜华等,2016),成矿岩体侵位较浅,为氧化型矽卡岩,白钨矿呈浸染状或细脉状分布于矽卡岩中。云英岩阶段矿体分为块状云英岩和脉状云英岩,脉状云英岩穿切矽卡岩体,部分叠加于大理岩上,块状云英岩体位于花岗岩和矽卡岩之间,为交代花岗岩体形成(毛景文等,1996)。石英-萤石-方解石阶段矿体呈脉状穿切云英岩、矽卡岩和大理岩,脉体主要由石英、萤石、方解石和少量白钨矿组成。铜山岭矽卡岩中透辉石较发育,金属硫化物主要为磁黄铁矿及黄铜矿,少见绿泥石和绿帘石(黄旭栋,2018Liu Biao et al.,2022a),成矿岩体侵位较深,为还原型矽卡岩。白钨矿呈浸染状分布在矽卡岩中。

  • 图1 南岭地区位置图(a)和南岭地区主要钨矿床分布图(b)(据毛景文等,2007修改)

  • Fig.1 Location of the Nanling metallogenic belt (a) and distribution of major tungsten deposits in the Nanling metallogenic belt (b) (modified from Mao Jingwen et al., 2007)

  • 瑶岗仙矿床中发育有石英脉与云英岩型矿体,石英脉型矿体呈NE向分布,部分呈NW向分布,主要的载钨矿物为黑钨矿与白钨矿,云英岩型矿体位于花岗岩顶部与石英脉型矿体之间,呈团块状、块状及脉状分布,为岩浆演化晚期的产物,部分仍保留花岗结构(祝新友等,20142015)。湘东钨矿主要发育石英脉型矿体,矿脉走向主要为NEE向,主要的载钨矿物为黑钨矿与白钨矿。香花铺白钨矿-石英脉沿着NEE向断层分布,脉体主要由石英、萤石、方解石和白钨矿组成,白钨矿呈浸染状分布,可见中粗粒—伟晶白钨矿(张东亮等,2012Liu Biao et al.,2022b)。

  • 2 样品与分析

  • 白钨矿样品分别采集于柿竹园矿床、铜山岭矿床、湘东钨矿、瑶岗仙矿床和香花铺矿床,其中柿竹园为氧化型矽卡岩矿床,同时发育云英岩型矿体(Lu Huanzhang et al.,2003),铜山岭为还原型矽卡岩矿床(Liu Biao et al.,2022a),瑶岗仙为黑钨矿-石英脉型矿床,同时发育云英岩型矿体(祝新友等,2015),湘东钨矿为黑钨矿-石英脉型矿床(Liu Biao et al.,2019),香花铺矿床为白钨矿-石英脉型矿床(张东亮等,2012Liu Biao et al.,2022b),具体采样信息见表1。

  • 白钨矿多呈淡色,透明—半透明,为灰白色—浅黄色条痕,多为中细粒结构,在石英脉矿床中可见粗粒—伟晶结构,在紫外光灯下显示蓝白色荧光,部分呈黄白色荧光,白钨矿不同颜色主要与晶体结构和元素组成有关(Hsu and Galli,1973; Shoji and Sasaki,1978)。单偏光镜下白钨矿呈无色,自形—他形粒状结构,等轴粒状或不规则状,显示中高突起—正极高突起,多色性不明显,正交偏光下干涉色级序较高,以黄、蓝为主,反射率较低,反射色为灰色(图2)。

  • 表1 南岭地区不同类型钨矿床中白钨矿样品信息

  • Table1 Scheelite samples information from different types of tungsten deposits in Nanling Range

  • 不同类型白钨矿的共生矿物组合有区别。柿竹园矿床的矽卡岩和云英岩中均发育白钨矿,其中进变质阶段白钨矿主要与石榴子石共生,呈浸染状,粒径较大,1~3 mm(图2a),在紫外光灯下显示黄白色荧光;退变质阶段白钨矿主要与绿帘石和石英共生,呈浸染状,粒径普遍较小,300~800 μm(图2b),紫外光灯下显示蓝白色荧光;石英-萤石-方解石阶段的白钨矿主要与萤石和石英共生,呈浸染状,粒径为200~800 μm(图2c),紫外光灯下显示蓝白色荧光;块状云英岩中白钨矿主要与辉钼矿和石英共生,呈浸染状,粒径较大,1~3 mm(图2e),紫外光灯下显示蓝白色荧光。铜山岭矿床中白钨矿主要与透辉石共生,呈浸染状,粒径普遍较大,0.5~5.0 mm(图2d),紫外光灯下显示蓝白色荧光。瑶岗仙矿床中云英岩白钨矿含量较少,呈浸染状分布,粒径较小,100~800 μm(图2f),紫外光灯下显示蓝白色荧光。湘东钨矿中白钨矿与黑钨矿、石英共生,晶形不清晰,呈浸染状分布,粒径较大,2~6 mm(图2g),紫外光灯下显示蓝白色荧光。香花铺矿床中白钨矿主要与萤石和石英共生,常见粗粒—伟晶白钨矿(图2h),紫外光灯下显示蓝白色荧光。

  • 在北京中科矿研检测技术有限公司进行CL成像测试,使用Tescan MIRA 3场发射扫描电子显微镜(SEM)用于拍摄单个白钨矿晶粒的详细CL图像,成像条件为7.0~10.0 kV和70~85 μA电流。

  • X-射线单晶衍射(SC-XRD)晶体结构分析在中南大学教育部重点实验室完成。X-射线单晶衍射仪型号Rigaku XtaLab Synergy,配备Cu/Mo双激发源,管电压为50 kV,最大管电流为1 mA,最大功率50 W,探测器到样品距离范围为35~240 mm,数据收集完成后,应用CryAlisPro软件对数据进行还原和矫正,然后使用配备Shelxt(Sheldrick,2015)和Shelxl程序的Olex2软件(Bourhis et al.,2015Dolomanov et al.,2009)分别对结构进行解析和精修,得到R因子小于10%的结构参数后,计算结构式、键长、键角和占位率,晶体结构展示使用vesta软件成图。

  • 图2 南岭地区不同类型钨矿体中白钨矿照片

  • Fig.2 Images of scheelite grains from different types of tungsten ores in Nanling Range

  • (a)—柿竹园矽卡岩-进变质阶段白钨矿,与石榴子石共生,单偏光;(b)—柿竹园矽卡岩-退变质阶段白钨矿,与绿帘石共生,单偏光;(c)—柿竹园矿床石英-萤石-方解石阶段白钨矿,与萤石和石英共生,单偏光;(d)—铜山岭矽卡岩中白钨矿,与辉石共生,反光;(e)—柿竹园(矽卡岩-)云英岩中白钨矿,与辉钼矿、石英共生,反光;(f)—瑶岗仙(石英脉-)云英岩中白钨矿,CL图像;(g)—湘东钨矿黑钨矿-石英脉中白钨矿,与石英共生,反光;(h)—香花铺白钨矿-石英脉中白钨矿,包裹石英,与萤石共生,正交光

  • (a) —scheelite developed in strongly altered garnet during the prograde skarn stage from Shizhuyuan deposit, under plane-polarized light; (b) —scheelite developed in epidote during the retrograde skarn stage from Shizhuyuan deposit, under plane-polarized light; (c) —scheelite developed in quartz and fluorite during the quartz-fluorite-calcite stage from Shizhuyuan deposit, under plane-polarized light; (d) —scheelite intergrown with pyroxene from Tongshanling deposit, under reflect light; (e) —scheelite developed in quartz and contact with molybdenite from Shizhuyuan greisen (-skarn) , under reflect light; (f) —CL image of scheelite grain from Yaogangxian greisen (-quartz vein) ; (g) —scheelite developed in quartz from Xiangdongwukuang wolframite-quartz vein, under reflect light; (h) —scheelite developed in fluorite with quartz inclusion from Xianghuapu scheelite-quartz vein, under cross-polarized light

  • 对不同类型钨矿床中白钨矿单晶颗粒进行X-射线单晶衍射分析,分析结果见表2,从表中数据可知,不同类型白钨矿晶体结构存在一定差异,晶胞参数a=b,为0.52446~0.52605 nm,c为1.1348~1.1406 nm,还原型矽卡岩中白钨矿存在最大的Ca-O键长差异,Ca-OMax=0.2484 nm,Ca-OMin=0.2441 nm,同一晶胞内Ca-O键长可相差0.0043 nm。不同类型白钨矿晶体中W-O键长可相差 0.0009 nm,其中氧化型矽卡岩-退变质阶段最短(W-O=0.1781 nm),还原型矽卡岩最长(0.1790 nm)。

  • 3 讨论

  • 3.1 元素替代机理

  • 白钨矿(CaWO4)属于四方晶系,对称型为4/m,空间群为I41/a型,自然产出的白钨矿单晶常呈四方双锥状,也有呈板状,板面为(001)面。在CaWO4晶体中,[WO4]2+为四面体形态,四面体的一个棱平行于c(001),一个面平行于(101)面,W位于四面体中心,Ca2+连接周围八个O2-c轴为四次旋转轴,Ca2+和[WO4]2+相间分布(舒骏等,2018)。晶格中有两个独特的阳离子位置,可以被稀土元素和碱金属离子取代的Ca2+八次配位(Na+、REE3+、Sr2+、Ba2+等),和可以容纳高价态阳离子的W6+四次配位(Mo6+、As5+、Nb5+)(Rempel et al.,2009)。

  • Mo-W替换在白钨矿中较常见,白钨矿(CaWO4)和钼钙矿(CaMoO4)为完全固溶体,Mo6+可以通过类质同象替换实现Mo-W替代(Hsu and Galli,1973Tyson et al.,1988Poulin,2016),当白钨矿中Mo的原子数超过W的原子数时,则为钼钙矿(CaMoO4)。对柿竹园氧化型矽卡岩进变质阶段(样品0606-5s1;Wu Kunyan et al.,2023)、退变质阶段(样品0606-9s1-1;Wu Kunyan et al.,2023)、石英-方解石-萤石阶段(样品0606-2s2-2;Wu Kunyan et al.,2023),铜山岭还原型矽卡岩(样品0602-8S2;Liu Biao et al.,2022a),柿竹园(矽卡岩-)云英岩(样品0606-4s2-2;Wu Kunyan et al.,2023),瑶岗仙(石英脉-)云英岩(样品YGX-4;Jiang Hua et al.,2022),湘东钨矿黑钨矿-石英脉(样品0401-1s1;Liu Biao et al.,2019)和香花铺白钨矿-石英脉(样品XHP-1幔部;Liu Biao et al.,2022b)中白钨矿W-Mo替代进行WO3-MoO3作图,经过线性回归方程拟合后认为W-Mo普遍存在负相关线性关系(图3),已有元素W-Mo替代的研究表明,Mo4+通常存在于硫化物晶体(如MoS2)中,稳定Mo6+的存在需要更氧化的条件(Hsu and Galli,1973Rempel et al.,2009),在多阶段成矿过程中,Mo-W替代主要发生在较氧化的成矿阶段,白钨矿的较高MoO3含量表明它们形成于较高的fO2环境下(Poulin et al.,2018)。因此,对于同一矿床不同成矿阶段中白钨矿的W-Mo替代程度可以指示结晶时氧化还原环境的变化(Ghaderi et al.,1999Song Guoxue et al.,2014Poulin et al.,2018Han Jinsheng et al.,2020)。其中石英脉型钨矿中部分白钨矿样品MoO3含量低于检测限,难以判断WO3-MoO3替代关系。

  • 表2 南岭地区不同类型钨矿体中白钨矿单晶衍射结果

  • Table2 Crystal data and details of structure determination of scheelite from different types of tungsten ores in Nanling Range

  • 不同类型钨矿床中白钨矿X-射线单晶衍射结果显示晶体结构特征存在差异(图4),其中矽卡岩型钨矿中白钨矿W的位置可见不同比例Mo的替代(图4a~d);云英岩型钨矿中白钨矿(图4e、f)与纯净白钨矿较相似,W占位大于99%;石英脉型钨矿中白钨矿(图4g、h)Ca2+位置普遍存在晶格空位,可能是成矿晚阶段产物,结晶时成矿流体中没有充足的Ca2+。不同含量的元素替代导致Ca-O键长发生明显变化,引起不同程度的晶胞畸变(潘兆橹等,1993),而W-O键长由于W6+与Mo6+离子半径相同,尽管可能存在比例较大的W-Mo替代现象,但基于相同的电荷数和离子半径,W-O键长基本相同。O2-稳定存在于晶格中,几乎不存在微量元素替代,通过已知的O2-离子半径(Shannon,1976)可进行Ca2+离子半径计算(Ca2+半径:0.1081~0.1124 nm,表2)。

  • 图3 南岭地区不同类型钨矿体中白钨矿WO3-MoO3散点图

  • Fig.3 Plots of WO3 versus MoO3 contents of scheelite from different types of tungsten ores in Nanling Range

  • 数据来源:Liu Biao et al.,20192022a2022b; Jiang Hua et al.,2022; Wu Kunyan et al.,2023;深红色线代表WO3 + MoO3的线性回归线

  • Data from Liu Biao et al., 2019, 2022a, 2022b; Jiang Hua et al., 2022; Wu Kunyan et al., 2023; the dark red line indicates a perfect connection of WO3 + MoO3

  • 稀土元素常常取代白钨矿中的Ca2+进入晶格中,稀土元素主要为+3价,由于相差一个电荷,所以常通过以下三种机理进行取代:① 2Ca2+↔Na+ + REE3+;② Ca2+ + W6+↔REE3+ + Nb5+;③ 3Ca2+↔2REE3+ + □(□为晶体空位)(Ghaderi et al.,1999Brugger et al.,2000b)。前人分析结果显示,这些样品中只有黑钨矿-石英脉钨矿中白钨矿样品的Na含量高于检测限,其余类型矿体中白钨矿的Na含量均显示低于检测限(Liu Biao et al.,20192022a2022b; Jiang Hua et al.,2022; Wu Kunyan et al.,2023)。氧化型矽卡岩钨矿中白钨矿Nb与稀土元素存在较明显的正相关关系(图5a),指示稀土元素通过Nb5+耦合替代进入晶格,方解石-萤石-石英阶段和还原型矽卡岩中白钨矿Nb与稀土元素显示不明显的线性关系,且Nb含量低(Liu Biao et al.,2022aWu Kunyan et al.,2023),指示稀土元素不存在通过Na+和Nb5+耦合替代进入白钨矿晶格,稀土元素可能主要通过空穴替代进入晶格。对于云英岩型钨矿中白钨矿(图5b),Nb与稀土元素显示较明显的线性关系,同时由于稀土元素原子数普遍多于Nb原子数,指示稀土元素除了通过Nb5+耦合替代外,还通过空穴替代进入白钨矿晶格。对于石英脉型钨矿中白钨矿, Nb与稀土元素普遍呈非线性关系(图5c、d),在黑钨矿-石英脉型钨矿中白钨矿Na与稀土元素呈线性关系,同时X-射线单晶衍射结果显示,石英脉型钨矿中白钨矿普遍存在晶格空位(图4g、h),指示石英脉型钨矿白钨矿中稀土元素主要通过空穴替代和Na+耦合替代进入白钨矿晶格。

  • Eu和Ce是较特殊的稀土元素,它们除了+3价,还分别存在Eu2+和Ce4+,均可通过替换Ca2+进入白钨矿晶格(Blundy and Wood,1994;Ghaderi et al.,1999)。基于电荷平衡约束,尽管Eu3+半径与Ca2+半径相似,但Eu2+具有更高的兼容性([8]-rCa2+=0.112 nm,[8]-rEu3+=0.1066 nm,[8]-rEu2+=0.125 nm;Shannon,1976)。此外,Eu异常还会受到pH值、流体中Eu2+/Eu3+的初始比值、流体-岩石相互作用、氧化还原环境变化以及白钨矿结构中Eu2+和Eu3+取代位点的相对丰度的影响(Brugger et al.,2000b2008Poulin et al.,2018)。

  • 图4 南岭地区不同类型钨矿体中白钨矿颗粒晶体结构示意图

  • Fig.4 Crystal structure of scheelite from different types of tungsten ores in Nanling Range

  • 3.2 晶体结构差异

  • 白钨矿的微量元素分析表明其能容纳大量的稀土元素(Brugger et al.,2000a),轻稀土元素(La-Nd)比重稀土元素(Ho-Lu)与Ca2+有更相近的离子半径,对白钨矿有更高的分配系数,因此更容易进入白钨矿晶格(La3+=0.116 nm,Ce3+=0.1143 nm,Pr3+=0.1126 nm,Nd3+=0.1109 nm,Ho3+= 0.1015 nm,Er3+=0.1004 nm,Tm3+=0.0994 nm,Yb3+=0.0985 nm,Lu3+=0.0977 nm;Shannon,1976Brugger et al.,2000b)。但是实际上白钨矿的稀土配分曲线中富集元素可以从LREE到HREE任何一个部位(Ghaderi et al.,1999Brugger et al.,2000a2000bDostal et al.,2009)。对于一些矽卡岩型矿床,不同阶段白钨矿的稀土元素配分型式可以从LREE富集转变为MREE富集模式(Ding Teng et al.,2018)。对于石英脉型钨矿中白钨矿自核部到边部的稀土元素配分型式可以从MREE富集转变为MREE亏损模式(Shelton et al.,1987Brugger et al.,2000a2008)。研究认为稀土元素配分型式与热液体系中的络合物稳定性无关,主要与白钨矿中Ca位置大小相关,受晶体化学因素的制约(彭建堂等,2021)。

  • 基于X-射线单晶衍射结果计算得出的Ca2+离子半径(Ca2+位置上的离子半径,综合Ca2+及替代元素影响)与不同稀土元素的替代半径进行对比,受到氧化还原环境影响较明显的Eu和Ce不参与比较。氧化型矽卡岩-进变质阶段的Ca2+半径为0.1121 nm和0.1095 nm,稀土元素配分型式中最优替代元素与理论最优替代元素一致,为Pr-Nd(图6a;Wu Kunyan et al.,2023);氧化型矽卡岩-退变质阶段的Ca2+半径为0.1108 nm和0.1091 nm,稀土元素最优替代的是Pr-Sm(图6b;Wu Kunyan et al.,2023),理论最优替代稀土元素为Nd;方解石-萤石-石英阶段的Ca2+半径为0.1115 nm和0.1085 nm,最优替代元素与理论最优替代元素一致,为Nd-Sm(图6c;Wu Kunyan et al.,2023);还原型矽卡岩钨矿中白钨矿的Ca2+半径为0.1124 nm和0.1081 nm,稀土元素最优替代不明显,部分数据显示轻微的Nd-Sm拱起(图6d;Liu Biao et al.,2022a),理论最优替代元素为Pr-Sm。通过对比认为矽卡岩型钨矿中白钨矿实际测得最优替代稀土元素与通过晶体结构计算得出的最优替代的元素重合,认为在相似的成矿环境下,白钨矿晶格的细微变化,会影响白钨矿中稀土元素的替代,表现在不同的最优替代稀土元素。

  • 图5 南岭地区不同类型钨矿体中白钨矿的Na/Nb原子数-稀土原子数散点图

  • Fig.5 Na/Nb (atom) versus ΣREE+Y-Eu (atom) plots for scheelite from different types of tungsten ores in Nanling Range

  • (a)—矽卡岩型钨矿中白钨矿Nb原子数-稀土原子数散点图(据Liu Biao et al.,2022aWu Kunyan et al.,2023);(b)—云英岩型钨矿中白钨矿Nb原子数-稀土原子数散点图(据Jiang Hua et al.,2022Wu Kunyan et al.,2023);(c)—黑钨矿-石英脉型钨矿中白钨矿Na、Nb原子数-稀土原子数散点图(据Liu Biao et al.,2019);(d)—白钨矿-石英脉型钨矿中白钨矿Nb原子数-稀土原子数散点图(据Liu Biao et al.,2022b);原子数=m/M

  • (a) —Nb (atom) versus ΣREE+Y-Eu (atom) plots for scheelite from skarn (including oxidized skarn and reduced skarn; data from Liu Biao et al., 2022aWu Kunyan et al., 2023) ; (b) —Nb (atom) versus ΣREE+Y-Eu (atom) plots for scheelite from greisen (including greisen (-skarn) and greisen (-quartz vein) ; data from Jiang Hua et al., 2022Wu Kunyan et al., 2023) ; (c) —Na/Nb (atom) versus ΣREE+Y-Eu (atom) plots for scheelite from wolframite-quartz vein (data from Liu Biao et al., 2019) ; (d) —Nb (atom) versus ΣREE+Y-Eu (atom) plots for scheelite from scheelite-quartz vein (data from Liu Biao et al., 2022b) . The dotted gray line indicates a perfect substitute. Atom number=m/M (m=mass, M=Molar mass)

  • (矽卡岩-)云英岩型钨矿中白钨矿的Ca2+半径为0.1119 nm和0.1085 nm,稀土元素显示为平坦型(图6e;Wu Kunyan et al.,2023),理论最优替代元素为Pr-Sm,表明(矽卡岩-)云英岩型钨矿中白钨矿的最优稀土元素替代受晶体结构影响较小,与成矿花岗岩全岩的稀土元素配分型式一致(Guo Chunli et al.,2015),指示(矽卡岩-)云英岩型钨矿中白钨矿继承了成矿岩体特征。(石英脉-)云英岩型钨矿中白钨矿的Ca2+半径为0.1116 nm和0.1085 nm,稀土元素最优替代的是Nd-Gd(图6f;Jiang Hua et al.,2022),理论最优替代元素为Nd-Sm,与成矿花岗岩全岩稀土元素配分型式明显不同(祝新友等,2015),表明(石英脉-)云英岩型钨矿中白钨矿的最优稀土元素替代受晶体结构影响较大。

  • 黑钨矿-石英脉型钨矿中白钨矿的Ca2+半径为0.1119 nm和0.1084 nm,稀土元素显示为MREE亏损型(图6g;Liu Biao et al.,2019),理论最优替代元素为Pr-Sm。白钨矿-石英脉型钨矿中白钨矿的Ca2+半径为0.1116 nm和0.1088 nm,稀土元素显示为MREE平坦型(图6h;Liu Biao et al.,2022b),理论最优替代元素为Nd-Sm。石英脉型钨矿中白钨矿不同部位稀土元素配分型式变化较大,不能确定是否受晶体结构影响,要结合稀土元素配分型式变化规律判别。

  • 3.3 稀土模式演化

  • 不同类型矿床中白钨矿稀土元素配分型式受到多种因素影响,如岩浆流体中稀土特征、共生矿物沉淀、氧化还原环境、外来流体加入、水岩交代作用等(Ghaderi et al.,1999;Brugger at al.,2000b;Poulin et al.,2018Sciuba et al.,2020)。结合X-射线单晶衍射分析结果和稀土元素配分型式,显示不同类型白钨矿中稀土元素的替代由不同机制主导。

  • 矽卡岩型白钨矿稀土元素普遍存在HREE亏损现象(图6a~d),是由于与早期白钨矿共生的石榴子石、辉石等矿物,富集重稀土,导致流体中HREE亏损,因此稀土模式展示不同程度的HREE亏损(Poulin,2016)。其不同阶段白钨矿晶体结构的差异体现在最优替代稀土元素的变化,但是并没有改变其整体的稀土元素配分型式。

  • 两种类型的云英岩型矿床中白钨矿稀土元素配分型式存在较大差异,柿竹园矿床中与矽卡岩相关的云英岩被认为是交代花岗岩形成(毛景文等,1996),云英岩中的白钨矿的稀土元素配分型式继承了成矿花岗岩的特征(图6e)。瑶岗仙矿床中与石英脉相关的云英岩形成于岩浆演化晚期,为岩浆-热液过渡态,位于成矿花岗岩顶端或以云英岩化析离体出现于花岗岩体内(祝新友等,2013),白钨矿晶体结构对最优替代稀土元素的影响明显,存在最优替代稀土元素的稀土元素配分型式,与成矿岩体的稀土元素配分型式存在明显差异(图6f)。

  • 图6 南岭地区不同类型钨矿体中白钨矿稀土元素配分曲线图(球粒陨石据Sun and McDonough,1989

  • Fig.6 Chondrite-normalized REE patterns of scheelite from different types of tungsten ores in Nanling Range (chondrite values after Sun and McDonough, 1989)

  • (a)—氧化型矽卡岩-进变质阶段白钨矿(据Wu Kunyan et al.,2023);(b)—氧化型矽卡岩-退变质阶段白钨矿(据Wu Kunyan et al.,2023);(c)—氧化型矽卡岩-方解石-萤石-石英阶段白钨矿(据Wu Kunyan et al.,2023);(d)—还原型矽卡岩钨矿中白钨矿(据Liu Biao et al.,2022a);(e)—(矽卡岩-)云英岩型钨矿中白钨矿(据Wu Kunyan et al.,2023)和千里山等粒黑云母花岗岩(据Guo Chunli et al.,2015);(f)—(石英脉-)云英岩型钨矿中白钨矿(据Jiang Hua et al.,2022)和瑶岗仙碱长花岗岩(据祝新友等,2015);(g)—黑钨矿-石英脉型钨矿中白钨矿(据Liu Biao et al.,2019);(h)—白钨矿-石英脉型钨矿中白钨矿(据Liu Biao et al.,2022b

  • (a) —scheelite in prograde stage from oxidized skarn (data from Wu Kunyan et al., 2023) ; (b) —scheelite in retrograde stage from oxidized skarn (data from Wu Kunyan et al., 2023) ; (c) —scheelite in calcite-fluorite-quartz stage from oxidized skarn (data from Wu Kunyan et al., 2023) ; (d) —scheelite from reduced skarn (data from Liu Biao et al., 2022a) ; (e) —scheelite from greisen (-skarn) and bulk-rock of the Qianlishan equigranular biotite granite (scheelite data from Wu Kunyan et al., 2023, bulk-rock data from Guo Chunli et al., 2015) ; (f) —scheelite from greisen (-quartz vein) and bulk-rock of the Yaogangxian alkali feldspar granite (scheelite data from Jiang Hua et al., 2022, bulk-rock data from Zhu Xinyou et al., 2015) ; (g) —scheelite from wolframite-quartz vein (data from Liu Biao et al., 2019) ; (h) —scheelite from scheelite-quartz vein (data from Liu Biao et al., 2022b)

  • 石英脉型钨矿中白钨矿的稀土元素配分型式可以存在MREE富集—亏损的各个曲线型式(图6g~h),由于石英脉型钨矿中白钨矿与多阶段成矿流体演化有关,随着矿物不断结晶,热液流体中的MREE逐渐亏损,早期白钨矿的稀土元素配分型式中最优替代元素与理论最优替代元素重合(Liu Biao et al.,2022b),主要受晶体结构影响,晚期白钨矿呈MREE亏损型式,主要控制因素为成矿流体的演化程度。

  • 因此,认为由于晶体结构变化导致的Ca2+位置大小的差异,在一定程度上可以影响稀土元素配分曲线中最优替代元素的选择,对于氧化型矽卡岩、还原型矽卡岩、(矽卡岩-)云英岩型、黑钨矿-石英脉型和白钨矿-石英脉型钨矿中的白钨矿来说并非影响稀土元素配分型式的主要因素,只有结晶于岩浆演化晚期的石英脉-云英岩型钨矿中白钨矿的稀土元素配分型式主要受晶体结构特征影响。

  • 4 结论

  • (1)白钨矿晶体结构解析结合主、微量元素特征分析,认为白钨矿晶格中主量元素主要通过类质同象(W-Mo)替代,微量元素通过Na+耦合替代、Nb5+耦合替代以及空位替代机制进入,其中不同类型白钨矿的微量元素替代方式不同,矽卡岩和云英岩型钨矿中白钨矿主要与Nb5+耦合和空穴替代有关,石英脉型钨矿中白钨矿与空穴和Na+耦合替代有关。

  • (2)Ca-O键长的差异对最优替代稀土元素影响较大,氧化型矽卡岩中白钨矿Ca-O键长数据变化为0.0043 nm,引起了最优替代稀土元素从Pr-Nd(进变质阶段)到Pr-Sm(退变质阶段)转变为Nd-Sm(石英-方解石-萤石阶段)。白钨矿的晶体结构特征在一定程度上会反映出白钨矿的最优稀土元素替代,如矽卡岩型矿体中白钨矿和(石英脉-)云英岩型矿体中的白钨矿。

  • (3)白钨矿的稀土元素配分型式受到晶体结构、岩浆流体的性质、共生矿物的沉淀、流体演化以及流体中元素的富集程度等因素协同影响。

  • 致谢:感谢中南大学有色金属成矿预测与地质环境监测教育部重点实验室的谷湘平教授和沈灿博士提供了X-射线单晶衍射分析的帮助,感谢三位审稿人为本文提出的建设性修改意见。

  • 参考文献

    • Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic modul. Nature, 372: 452~454.

    • Bourhis L J, Dolomanov O V, Gildea R J, Howard J A K, Puschmann H. 2015. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallographica Section A Foundations and Advances, 71(1): 59~75.

    • Brugger J, Bettiol A A, Costa S, Lahaye Y, Bateman R, Lambert D D, Jamieson D N. 2000a. Mapping REE distribution in scheelite using luminescence. Mineralogical Magazine, 64(5): 891~903.

    • Brugger J, Lahaye Y, Costa S, Lambert D D, Bateman R. 2000b. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdalegold deposits, Western Australia). Contributions to Mineralogy and Petrology, 139(3): 251~264.

    • Brugger J, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D. 2008. Oxidation state of europium in scheelite: Tracking fluid-rock interaction in gold deposits. Chemical Geology, 257(1-2): 26~33.

    • Ding Teng, Ma Dongsheng, Lu Jianjun, Zhang Rongqing. 2018. Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China. Ore Geology Reviews, 94: 193~211.

    • Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. 2009. OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2): 339~341.

    • Dostal J, Kontak D J, Chatterjee A K. 2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineralogy and Petrology, 97(1-2): 95~109.

    • Ghaderi M, Palin J M, Campbell I H, Sylvester P J. 1999. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Economic Geology and the Bulletin of the Society of Economic Geologists, 94(3): 423~437.

    • Guo Chunli, Wang Rucheng, Yuan Shunda, Wu Shenghua, Yin Bing. 2015. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China. Mineralogy and Petrology, 109(2): 253~282.

    • Guo Fuliang, Chen Xinyu, Zhao Zhongwei, He Lihua, Yang Kaihua, Yang Zhen. 2018. Behavior of accompanying rare earth during process of decomposing scheelite by sulfuric-phosphoric mixed acid. Journal of China Nonferrous Metals, 28 (2): 387~396 (in Chinese with English abstract).

    • Han Jinsheng, Chen Huayong, Hong Wei, Hollings P, Chu Gaobin, Zhang Le, Sun Siquan. 2020. Texture and geochemistry of multi-stage hydrothermal scheelite in the Tongshankou porphyry-skarn Cu-Mo (-W) deposit, eastern China: Implications for ore-forming process and fluid metasomatism. American Mineralogist, 105(6): 945~954.

    • Hsu L C, Galli P E. 1973. Origin of the Scheelite-Powellite Series of Minerals. Economic Geology, 68(5): 681~696.

    • Huang Xudong. 2018. Mid-late Jurassic copper-lead-zinc and tungsten-bearing granites and their skarn mineralization in Nanling. Doctor dissertation of Nanjing University (in Chinese with English abstract).

    • Jiang Hua, Liu Biao, Kong Hua, Wu Qianhong, Chen Shefa, Li Huan, Wu Jinhua. 2022. In situ geochemistry and Sr-O isotopic composition of wolframite and scheelite from the Yaogangxian quartz vein-type W (-Sn) deposit, South China. Ore Geology Reviews, 149: 105066.

    • Liu Biao, Li Huan, Wu Qianhong, Evans N J, Cao Jingya, Jiang Jiangbo, Wu Jinhua. 2019. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos, 330-331: 1~15.

    • Liu Biao, Kong Hua, Wu Qianhong, Chen Shefa, Li Huan, Xi Xiaoshuang, Wu Jinhua, Jiang Hua. 2022a. Origin and evolution of W mineralization in the Tongshanling Cu-polymetallic ore field, South China: Constraints from scheelite microstructure, geochemistry, and Nd-O isotope evidence. Ore Geology Reviews, 143: 104764.

    • Liu Biao, Li Huan, Liu Yuguo, Algeo T J, Luo Xinyu, Girei M B, Wu Qianhong, Kong Hua, Zhang Dexian, Jiang Jiangbo. 2022b. Crystallization processes and genesis of scheelite in a quartz vein-type W deposit (Xianghuapu, South China). Chemical Geology, 613: 121142.

    • Liu Xiong. 2006. Discussion on ore-controlling factors and metallogenic model of Tongshanling ore field in Hunan Province. Mineral Resources and Geology, (Z1): 442~445 (in Chinese with English abstract).

    • Lu Huanzhang, Liu Yimao, Wang Changlie, Xu Youzhi, Li Huaqin. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology and the Bulletin of the Society of Economic Geologists, 98(5): 955~974.

    • Mao Jingwen, Li Hongyan, Guy B, Raimbault L. 1996. Geology and mineralization of the skarn-dolomite W-Sn-Mo-Bi deposit in Shizhuyuan, Hunan Province. Mineral Deposits Geology, 15(1): 1~15 (in Chinese with English abstract).

    • Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23 (10): 2329~2338 (in Chinese with English abstract).

    • Meinert L D, Dipple G M, Nicolescu S. 2005. Worldskarn deposits. Economic Geology, 100th Anniversary Volume: 299~336.

    • Miranda A C R, Beaudoin G, Rottier B. 2022. Scheelite chemistry from skarn systems: Implications for ore-forming processes and mineral exploration. Mineralium Deposita, 57: 1469~1497.

    • Pan Zhaolu. 1994. Crystallography and Mineralogy Volume II (Third Edition). Beijing: Geological Publishing House (in Chinese with English abstract).

    • Peng Jiantang, Wang Chuan, Li Yukun, Hu Axiang, Lu Yulong, Chen Xianjia. 2021. Geochemical characteristics and Sm-Nd geochronology of scheelite in the Baojinshan ore district, central Hunan. Acta Petrologica Sinica, 37(3): 665~682 (in Chinese with English abstract).

    • Poulin R S. 2016. A study of the crystal chemistry, cathodoluminescence, geochemistry and oxygen isotope in scheelite: Application towards discriminating among differing ore-deposit systems. Laurentian University, Ontario, Canada.

    • Poulin R S, Kontak D J, Mcdonald A, Mcclenaghan M B. 2018. Assessingscheelite as an ore-deposit discriminator using its trace-element and REE chemistry. The Canadian Mineralogist, 56(3): 265~302.

    • Rempel K U, Williams-Jones A E, Migdisov A A. 2009. The partitioning of molybdenum (VI) between aqueous liquid and vapour at temperatures up to 370 ℃. Geochimica et Cosmochimica Acta, 73(11): 3381~3392.

    • Sciuba M, Beaudoin G, Grzela D, Makvandi S. 2020. Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita, 55(6): 1149~1172.

    • Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.

    • Sheldrick G M. 2015. Crystal structure refinement with SHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1): 3~8.

    • Shelton K L, Taylor R P, So C. 1987. Stable isotope studies of the Dae Hwa tungsten-molybdenum mine, Republic of Korea; evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Economic Geology and the Bulletin of the Society of Economic Geologists, 82(2): 471~481.

    • Shoji T, Sasaki N. 1978. Fluorescent color and X-ray powder data of synthesized scheelite-powellite series as guides to determine its composition. Mining Geology, 28(152): 397~404.

    • Shu Jun. 2018. Micro-pulling-down growth and characterization of several single-crystal fibers with scheelite structure. Doctor dissertation of Shandong University (in Chinese with English abstract).

    • Song Guoxue, Qin Kezhang, Li Guangming, Evans N J, Chen Lei. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China. American Mineralogist, 99(2-3): 303~317.

    • Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tyson R M, Hemphill W R, Theisen A F. 1988. Effect of the W: Mo ratio on the shift of excitation and emission spectra in the scheelite-powellite series. American Mineralogist, 73: 1145~1154.

    • Wei Wei, Song Chao, Hou Quanlin, Chen Yan, Faure M, Yan Quanren, Liu Qing, Sun Jinfeng, Zhu Haofeng. 2017. The Late Jurassic extensional event in the central part of the South China Block—evidence from the Laoshan'ao shear zone and Xiangdong tungsten deposit (Hunan, SE China). International Geology Review, 60(11-14): 1644~1664.

    • Wu Kunyan, Liu Biao, Wu Qianhong, Chen Shefa, Kong Hua, Li Huan, Elatikpo S M. 2023. Trace element geochemistry, oxygen isotope and U-Pb geochronology of multistage scheelite: Implications for W-mineralization and fluid evolution of Shizhuyuan W-Sn deposit, South China. Journal of Geochemical Exploration, 248: 107192.

    • Wu Shenghua, Dai Pan, Wang Xudong. 2016. C, H, O and Pbisotopic geochemistry of tungsten polymetallic skarn-dolomite and Pb-Zn-Ag vein in Shizhuyuan. Mineral Deposits, 35(3): 633~647 (in Chinese with English abstract).

    • Zhang Dongliang, Peng Jiantang, Fu Yazhou, Peng Guangxiong. 2012. Rare-earth element geochemistry in Ca-bearing minerals from the Xianghuapu tungsten deposit, Hunan Province, China. Acta Petrologica Sinica, 28(1): 65~74 (in Chinese with English abstract).

    • Zhu Xinyou, Wang Yanli, Cheng Xiyin, Tian Ye, Fu Qibin, Li Shunting, Yu Zhifeng. 2015. Metallogenic system of Yaogangxian quartz vein-type tungsten deposit, Hunan Province. Mineral Deposits, 34(5): 874~894 (in Chinese with English abstract).

    • Zhu Xinyou, Wang Jingbin, Wang Liyan, Chen Xiyin, Fu Qibin. 2014. On the relative sealing property of quartz vein type tungsten metallogenic system: A case study of Yaogangxian vein type tungsten deposit in Hunan Province. Acta Geologica Sinica, 88(5): 825~835 (in Chinese with English abstract).

    • Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, Fu Qibin. 2013. A study on the dissociation of dolomite and liquid differentiation of magma in Quartz vein tungsten deposit: A case study of Yaogangxian tungsten deposit, Hunan Province. Mineral Deposits, 2(3): 533~544 (in Chinese with English abstract).

    • 郭福亮, 陈星宇, 赵中伟, 何利华, 杨凯华, 杨珍. 2018. 硫磷混酸分解白钨矿过程中伴生稀土的行为. 中国有色金属学报, 28(2): 387~396.

    • 黄旭栋. 2018. 南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用. 南京大学博士学位论文.

    • 刘雄. 2006. 湖南铜山岭矿田控矿因素及成矿模式探讨. 矿产与地质, (Z1): 442~445.

    • 毛景文, 李红艳, Guy B, Raimbault L. 1996. 湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用. 矿床地质, 15(1): 1~15.

    • 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329~2338.

    • 潘兆橹. 1994. 结晶学及矿物学下册 (第三版). 北京: 地质出版社.

    • 彭建堂, 王川, 李玉坤, 胡阿香, 鲁玉龙, 陈宪佳. 2021. 湖南包金山矿区白钨矿的地球化学特征及Sm-Nd同位素年代学. 岩石学报, 37(3): 665~682.

    • 舒骏. 2018. 白钨矿结构的几种单晶光纤的微下拉法生长及性能研究. 山东大学博士学位论文.

    • 吴胜华, 戴盼, 王旭东. 2016. 柿竹园钨多金属矽卡岩-云英岩与铅锌银矿脉C、H、O、Pb同位素地球化学研究. 矿床地质, 35(3): 633~647.

    • 张东亮, 彭建堂, 符亚洲, 彭光雄. 2012. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学. 岩石学报, 28(1): 65~74.

    • 祝新友, 王艳丽, 程细音, 田野, 傅其斌, 李顺庭, 于志峰. 2015. 湖南瑶岗仙石英脉型钨矿床成矿系统. 矿床地质, 34(5): 874~894.

    • 祝新友, 王京彬, 王艳丽, 程细音, 傅其斌. 2014. 论石英脉型钨矿成矿系统的相对封闭性——以湖南瑶岗仙脉型钨矿床为例. 地质学报, 88(5): 825~835.

    • 祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2013. 石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例. 矿床地质, 2(3): 533~544.

  • 参考文献

    • Blundy J, Wood B. 1994. Prediction of crystal-melt partition coefficients from elastic modul. Nature, 372: 452~454.

    • Bourhis L J, Dolomanov O V, Gildea R J, Howard J A K, Puschmann H. 2015. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallographica Section A Foundations and Advances, 71(1): 59~75.

    • Brugger J, Bettiol A A, Costa S, Lahaye Y, Bateman R, Lambert D D, Jamieson D N. 2000a. Mapping REE distribution in scheelite using luminescence. Mineralogical Magazine, 64(5): 891~903.

    • Brugger J, Lahaye Y, Costa S, Lambert D D, Bateman R. 2000b. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdalegold deposits, Western Australia). Contributions to Mineralogy and Petrology, 139(3): 251~264.

    • Brugger J, Etschmann B, Pownceby M, Liu W, Grundler P, Brewe D. 2008. Oxidation state of europium in scheelite: Tracking fluid-rock interaction in gold deposits. Chemical Geology, 257(1-2): 26~33.

    • Ding Teng, Ma Dongsheng, Lu Jianjun, Zhang Rongqing. 2018. Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan Province, China. Ore Geology Reviews, 94: 193~211.

    • Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. 2009. OLEX2: A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2): 339~341.

    • Dostal J, Kontak D J, Chatterjee A K. 2009. Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: Genetic implications. Mineralogy and Petrology, 97(1-2): 95~109.

    • Ghaderi M, Palin J M, Campbell I H, Sylvester P J. 1999. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Economic Geology and the Bulletin of the Society of Economic Geologists, 94(3): 423~437.

    • Guo Chunli, Wang Rucheng, Yuan Shunda, Wu Shenghua, Yin Bing. 2015. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China. Mineralogy and Petrology, 109(2): 253~282.

    • Guo Fuliang, Chen Xinyu, Zhao Zhongwei, He Lihua, Yang Kaihua, Yang Zhen. 2018. Behavior of accompanying rare earth during process of decomposing scheelite by sulfuric-phosphoric mixed acid. Journal of China Nonferrous Metals, 28 (2): 387~396 (in Chinese with English abstract).

    • Han Jinsheng, Chen Huayong, Hong Wei, Hollings P, Chu Gaobin, Zhang Le, Sun Siquan. 2020. Texture and geochemistry of multi-stage hydrothermal scheelite in the Tongshankou porphyry-skarn Cu-Mo (-W) deposit, eastern China: Implications for ore-forming process and fluid metasomatism. American Mineralogist, 105(6): 945~954.

    • Hsu L C, Galli P E. 1973. Origin of the Scheelite-Powellite Series of Minerals. Economic Geology, 68(5): 681~696.

    • Huang Xudong. 2018. Mid-late Jurassic copper-lead-zinc and tungsten-bearing granites and their skarn mineralization in Nanling. Doctor dissertation of Nanjing University (in Chinese with English abstract).

    • Jiang Hua, Liu Biao, Kong Hua, Wu Qianhong, Chen Shefa, Li Huan, Wu Jinhua. 2022. In situ geochemistry and Sr-O isotopic composition of wolframite and scheelite from the Yaogangxian quartz vein-type W (-Sn) deposit, South China. Ore Geology Reviews, 149: 105066.

    • Liu Biao, Li Huan, Wu Qianhong, Evans N J, Cao Jingya, Jiang Jiangbo, Wu Jinhua. 2019. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry. Lithos, 330-331: 1~15.

    • Liu Biao, Kong Hua, Wu Qianhong, Chen Shefa, Li Huan, Xi Xiaoshuang, Wu Jinhua, Jiang Hua. 2022a. Origin and evolution of W mineralization in the Tongshanling Cu-polymetallic ore field, South China: Constraints from scheelite microstructure, geochemistry, and Nd-O isotope evidence. Ore Geology Reviews, 143: 104764.

    • Liu Biao, Li Huan, Liu Yuguo, Algeo T J, Luo Xinyu, Girei M B, Wu Qianhong, Kong Hua, Zhang Dexian, Jiang Jiangbo. 2022b. Crystallization processes and genesis of scheelite in a quartz vein-type W deposit (Xianghuapu, South China). Chemical Geology, 613: 121142.

    • Liu Xiong. 2006. Discussion on ore-controlling factors and metallogenic model of Tongshanling ore field in Hunan Province. Mineral Resources and Geology, (Z1): 442~445 (in Chinese with English abstract).

    • Lu Huanzhang, Liu Yimao, Wang Changlie, Xu Youzhi, Li Huaqin. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology and the Bulletin of the Society of Economic Geologists, 98(5): 955~974.

    • Mao Jingwen, Li Hongyan, Guy B, Raimbault L. 1996. Geology and mineralization of the skarn-dolomite W-Sn-Mo-Bi deposit in Shizhuyuan, Hunan Province. Mineral Deposits Geology, 15(1): 1~15 (in Chinese with English abstract).

    • Mao Jingwen, Xie Guiqing, Guo Chunli, Chen Yuchuan. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23 (10): 2329~2338 (in Chinese with English abstract).

    • Meinert L D, Dipple G M, Nicolescu S. 2005. Worldskarn deposits. Economic Geology, 100th Anniversary Volume: 299~336.

    • Miranda A C R, Beaudoin G, Rottier B. 2022. Scheelite chemistry from skarn systems: Implications for ore-forming processes and mineral exploration. Mineralium Deposita, 57: 1469~1497.

    • Pan Zhaolu. 1994. Crystallography and Mineralogy Volume II (Third Edition). Beijing: Geological Publishing House (in Chinese with English abstract).

    • Peng Jiantang, Wang Chuan, Li Yukun, Hu Axiang, Lu Yulong, Chen Xianjia. 2021. Geochemical characteristics and Sm-Nd geochronology of scheelite in the Baojinshan ore district, central Hunan. Acta Petrologica Sinica, 37(3): 665~682 (in Chinese with English abstract).

    • Poulin R S. 2016. A study of the crystal chemistry, cathodoluminescence, geochemistry and oxygen isotope in scheelite: Application towards discriminating among differing ore-deposit systems. Laurentian University, Ontario, Canada.

    • Poulin R S, Kontak D J, Mcdonald A, Mcclenaghan M B. 2018. Assessingscheelite as an ore-deposit discriminator using its trace-element and REE chemistry. The Canadian Mineralogist, 56(3): 265~302.

    • Rempel K U, Williams-Jones A E, Migdisov A A. 2009. The partitioning of molybdenum (VI) between aqueous liquid and vapour at temperatures up to 370 ℃. Geochimica et Cosmochimica Acta, 73(11): 3381~3392.

    • Sciuba M, Beaudoin G, Grzela D, Makvandi S. 2020. Trace element composition of scheelite in orogenic gold deposits. Mineralium Deposita, 55(6): 1149~1172.

    • Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751~767.

    • Sheldrick G M. 2015. Crystal structure refinement with SHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1): 3~8.

    • Shelton K L, Taylor R P, So C. 1987. Stable isotope studies of the Dae Hwa tungsten-molybdenum mine, Republic of Korea; evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Economic Geology and the Bulletin of the Society of Economic Geologists, 82(2): 471~481.

    • Shoji T, Sasaki N. 1978. Fluorescent color and X-ray powder data of synthesized scheelite-powellite series as guides to determine its composition. Mining Geology, 28(152): 397~404.

    • Shu Jun. 2018. Micro-pulling-down growth and characterization of several single-crystal fibers with scheelite structure. Doctor dissertation of Shandong University (in Chinese with English abstract).

    • Song Guoxue, Qin Kezhang, Li Guangming, Evans N J, Chen Lei. 2014. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China. American Mineralogist, 99(2-3): 303~317.

    • Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Tyson R M, Hemphill W R, Theisen A F. 1988. Effect of the W: Mo ratio on the shift of excitation and emission spectra in the scheelite-powellite series. American Mineralogist, 73: 1145~1154.

    • Wei Wei, Song Chao, Hou Quanlin, Chen Yan, Faure M, Yan Quanren, Liu Qing, Sun Jinfeng, Zhu Haofeng. 2017. The Late Jurassic extensional event in the central part of the South China Block—evidence from the Laoshan'ao shear zone and Xiangdong tungsten deposit (Hunan, SE China). International Geology Review, 60(11-14): 1644~1664.

    • Wu Kunyan, Liu Biao, Wu Qianhong, Chen Shefa, Kong Hua, Li Huan, Elatikpo S M. 2023. Trace element geochemistry, oxygen isotope and U-Pb geochronology of multistage scheelite: Implications for W-mineralization and fluid evolution of Shizhuyuan W-Sn deposit, South China. Journal of Geochemical Exploration, 248: 107192.

    • Wu Shenghua, Dai Pan, Wang Xudong. 2016. C, H, O and Pbisotopic geochemistry of tungsten polymetallic skarn-dolomite and Pb-Zn-Ag vein in Shizhuyuan. Mineral Deposits, 35(3): 633~647 (in Chinese with English abstract).

    • Zhang Dongliang, Peng Jiantang, Fu Yazhou, Peng Guangxiong. 2012. Rare-earth element geochemistry in Ca-bearing minerals from the Xianghuapu tungsten deposit, Hunan Province, China. Acta Petrologica Sinica, 28(1): 65~74 (in Chinese with English abstract).

    • Zhu Xinyou, Wang Yanli, Cheng Xiyin, Tian Ye, Fu Qibin, Li Shunting, Yu Zhifeng. 2015. Metallogenic system of Yaogangxian quartz vein-type tungsten deposit, Hunan Province. Mineral Deposits, 34(5): 874~894 (in Chinese with English abstract).

    • Zhu Xinyou, Wang Jingbin, Wang Liyan, Chen Xiyin, Fu Qibin. 2014. On the relative sealing property of quartz vein type tungsten metallogenic system: A case study of Yaogangxian vein type tungsten deposit in Hunan Province. Acta Geologica Sinica, 88(5): 825~835 (in Chinese with English abstract).

    • Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, Fu Qibin. 2013. A study on the dissociation of dolomite and liquid differentiation of magma in Quartz vein tungsten deposit: A case study of Yaogangxian tungsten deposit, Hunan Province. Mineral Deposits, 2(3): 533~544 (in Chinese with English abstract).

    • 郭福亮, 陈星宇, 赵中伟, 何利华, 杨凯华, 杨珍. 2018. 硫磷混酸分解白钨矿过程中伴生稀土的行为. 中国有色金属学报, 28(2): 387~396.

    • 黄旭栋. 2018. 南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用. 南京大学博士学位论文.

    • 刘雄. 2006. 湖南铜山岭矿田控矿因素及成矿模式探讨. 矿产与地质, (Z1): 442~445.

    • 毛景文, 李红艳, Guy B, Raimbault L. 1996. 湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用. 矿床地质, 15(1): 1~15.

    • 毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329~2338.

    • 潘兆橹. 1994. 结晶学及矿物学下册 (第三版). 北京: 地质出版社.

    • 彭建堂, 王川, 李玉坤, 胡阿香, 鲁玉龙, 陈宪佳. 2021. 湖南包金山矿区白钨矿的地球化学特征及Sm-Nd同位素年代学. 岩石学报, 37(3): 665~682.

    • 舒骏. 2018. 白钨矿结构的几种单晶光纤的微下拉法生长及性能研究. 山东大学博士学位论文.

    • 吴胜华, 戴盼, 王旭东. 2016. 柿竹园钨多金属矽卡岩-云英岩与铅锌银矿脉C、H、O、Pb同位素地球化学研究. 矿床地质, 35(3): 633~647.

    • 张东亮, 彭建堂, 符亚洲, 彭光雄. 2012. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学. 岩石学报, 28(1): 65~74.

    • 祝新友, 王艳丽, 程细音, 田野, 傅其斌, 李顺庭, 于志峰. 2015. 湖南瑶岗仙石英脉型钨矿床成矿系统. 矿床地质, 34(5): 874~894.

    • 祝新友, 王京彬, 王艳丽, 程细音, 傅其斌. 2014. 论石英脉型钨矿成矿系统的相对封闭性——以湖南瑶岗仙脉型钨矿床为例. 地质学报, 88(5): 825~835.

    • 祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2013. 石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例. 矿床地质, 2(3): 533~544.