en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

高岗,男,1966年生。博士,教授,从事油气地质与勘探的科研与教学工作。E-mail:gaogang2819@sina.com。

参考文献
Aitken C M, Jones D M, Larter S R. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431(7006).
参考文献
Cao Jian, Xia Liuwei, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2021. An alkaline lacustrine in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleo-environment and petroleum geology. Earth-Science Reviews, 202(1): 103091.
参考文献
Cao Zhe, Liu Guangdi, Kong Yuhua, Wang Chengyun, Niu Zicheng, Zhang Jingya, Geng Changbo, Shan Xiang, Wei Zhipeng. 2016a. Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer sag, Junggar basin. International Journal of Coal Geology, 153: 37~51.
参考文献
Cao Zhe, Liu Guangdi, Xiang Baoli, Wang Peng, Niu Geng, Niu Zicheng, Li Chaozheng, Wang Chengyun. 2016b. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar sag, Junggar basin. AAPG Bulletin, 101: 39~72.
参考文献
Chen Jianping, Wang Xulong, Deng Chunping, Liang Digang, Zhang Yueqian, Zhao Zhe, Ni Yunyan, Zhi Dongming, Yang Haibo, Wang Yutao. 2016. Oil and gas source, occurrence and petroleum system in Junggar basin, Northwest China. Acta Geological Sinica, 90(3): 421~450 (in Chinese with English abstract).
参考文献
Connan J. 1984. Biodegradation of crude oils in reservoirs. In: Books J, Welte D, eds. Advances in Petroleum Geochemistry. London: Acdemic Press.
参考文献
Gao Gang, Xiang Baoli, Wang Xuan, Wang Yi, Zhou Ranran, Ma Wanyun, Ren Jiangling, Zhao Ke. 2016. Stylolite occurrence and organic matter enrichment of the mixed sediments in the Lucaogou Formation of the Jimusaer sag in Junggar basin. Natural Gas Geoscience, 27(11): 1963~1969 (in Chinese with English abstract).
参考文献
Gao Gang, Xiang Baoli, Li Taotao, Ren Jiangling, Kong Yuhua. 2017. Tight oil system particularity of Lucaogou Formation in Jimsar sag, Junggar basin. Journal of Sedimentology, 35(4): 824~833 (in Chinese with English abstract).
参考文献
Gao Gang, Yang Shangru, Ren Jiangling, Zhang Weiwei, Xiang Baoli. 2018. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: A case study from the Early Permian Fengcheng Formation of well FN7 in the northwestern Junggar basin. Journal of Petroleum Science and Engineering, 162: 407~418.
参考文献
Gao Gang, Xu Xinde, Qu Tong, Gan Jun, Dang Wenlong, Zhou Xiaoxiao, Liu Fengyan. 2020. Petroleum origins and accumulation patterns in the Weixinan sag in the Beibu Gulf basin, using Subsag B as an example. Acta Geologica Sinica (English Edition), 94(5): 1515~1530.
参考文献
Gong Deyu, Wang Xulong, Zhou Chuanmin, Zheng Menglin, Jiang Wenlong, Wu Wei'an. 2021. Discovery of large-scale Carboniferous source rocks and natural gas exploration potential in the southeast of Junggar basin. Acta Petrolei Sinica, 42(7): 836~852 (in Chinese with English abstract).
参考文献
Hall P B, Douglas A G. 1981. The distribution of cyclic alkanes in two lacustrine deposits. In: Hjoray M, Albrecht C, Cornford C, et al. , eds. Advances in Organic Geochemistry. Chichester, UK: John Wiley & Sons, 576~587.
参考文献
He Wenjun, Fei Liying, Ablimiti Yiming, Yang Haibo, Lan Wenfang, Ding Jing, Bao Haijuan, Guo Wenjian. 2019. Accumulation conditions of deep hydrocarbon and exploration potential analysis in Junggar basin, NW China. Geoscience Frontiers, 26(1): 189~201 (in Chinese with English abstract).
参考文献
Hou Lianhua, Ma Weijiao, Luo Xia, Liu Jinzhong, Liu Senhu, Zhao Zhongying. 2020. Hydrocarbon generation-retention-expulsion mechanism and shale oil producibility of the Permian Lucaogou shale in the Junggar basin as simulated by semi-open pyrolysis experiments. Marine and Petroleum Geology, 125: 104880.
参考文献
Hu Jianyi, Xu Shubao, Cheng Keming. 1989. Geology and geochemical genesis of heavy oil reservoirs in China. Acta Petrolei Sinica, (1): 1~11 (in Chinese with English abstract).
参考文献
Huang Haiping, Larter S R, Bowler B F J, Oldenburg T B P. 2003. A dynamic biodegradation model suggested by petroleum compositional gradients within reservoir columns from the Liaohe basin, NE China. Organic Geochemistry, 35(3): 299~316.
参考文献
Hunt J M. 1979. Petroleum Geochemistry and Geology. San Francisco: Freeman.
参考文献
Júnior Sousa G R, Santos A L S, Lima S G, Lopes J A D, Reis F A M, Santos Neto E V, Chang H K. 2013. Evidence for euphotic zone anoxia during the deposition of Aptian source rocks based on aryl isoprenoids in petroleum, Sergipe-Alagoas basin, northeastern Brazil. Organic Geochemistry, 63: 94~104.
参考文献
Kang Jilun, Wang Jiahao, Ma Qiang, Li Chunquan, Chen Xinxin. 2022. Fine-grained sublacustrine fan deposits and their significance of shale oil reservoirs in the Lucaogou Formation in Jimsar sag, Junggar basin. Bulletin of Geological Science and Technology, 1~12 (in Chinese with English abstract).
参考文献
Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ouyang Min, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 39(6): 657~667 (in Chinese with English abstract).
参考文献
Leythaeuser D, Schaefer R G, Radke M. 1988. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. I: Gross composition of C15+-soluble organic matter and molecular composition of C15+-saturated hydrocarbons. Geochimica et Cosmochimica Acta, 52(3): 701~713.
参考文献
Li Erting, Xiang Baoli, Liu Xiangjun, Zhou Ni, Pan Changchun, Dilidar Rouzi, Mi Julei. 2020. Study on the genesis of shale oil thickening in Lucaogou Formation in Jimsar sag, Junggar basin. Natural Gas Geoscience, 31(2): 250~257 (in Chinese with English abstract).
参考文献
Li Sumei, Pang Xiongqi, Gao Xianzhi, Liu Keyu, Li Xiaoguang, Chen Zhenyan, Liu Baohong. 2008. Genesis mechanism of heavy oil in western Liaohe River depression. Science in China (Series D: Earth Sciences), (S1): 138~149 (in Chinese with English abstract).
参考文献
Lin Jingwen, Xie Xiaomin, Wen Zhigang, Wu Fenting, Xu Jin, Ma Zhongliang, Zhang Lei. 2022. A comparative study on the geochemical characteristic of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale I: Fraction and isotopic compositions. Petroleum Geology & Experiment, 44(1): 150~159 (in Chinese with English abstract).
参考文献
Liu Guangdi. 2018. Petroleum Geology. Beijing: Petroleum Industry Press (in Chinese with English abstract).
参考文献
Liu Shiju, Gao Gang, Gang Wenzhe, Qu Tong, Dang Wenlong, Zhang Weiwei, Yang Shangru, Zhu Kangle. 2020. Implications of organic matter source and fluid migration from geochemical characteristics of stylolites and matrix in carbonate rocks: A case study from the Carboniferous and the Ordovician in the Sichuan basin, SW China. Journal of Petroleum Science and Engineering, 186: 106606.
参考文献
Liu Shiju, Gao Gang, Jin Jun, Gang Wenzhe, Xiang Baoli. 2021. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: Biogenic source, depositional environment and hydrocarbon generation potential in Junggar basin, China. Journal of Petroleum Science and Engineering, 208 (Part D): 109670.
参考文献
Liu Shiju, Gao Gang, Gang Wenzhe, Xiang Baoli, Wang Ming, Wang Chengyun. 2022a. Comparison of formation conditions of source rocks of Fengcheng and Lucaogou Formations in the Junggar basin, NW China: Implications for organic matter enrichment and hydrocarbon potential. Journal of Earth Science, 1~34. http: //kns. cnki. net/kcms/detail/42. 1788. P. 20211021. 1507. 004. html.
参考文献
Liu Shiju, Gao Gang, Jin Jun, Misch David, Wu Xinsong, Gang Wenzhe, Wang Ming, Xiang Baoli, Ma Wanyun. 2022b. Mechanism of differential enrichment of shale oils in the upper and lower members of the Lucaogou Formation in the Jimusaer sag, Junggar basin. Marine and Petroleum Geology, 142: 105747.
参考文献
Moldowan J M, Sundararaman P, Schoell M. 1986. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of S. W. Germany. Organic Geochemistry, 10: 915~926.
参考文献
Peters K E, Moldowan J M. 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs: Prentice-Hall.
参考文献
Peters K E, Walters C C, Moldowan J M. 2005. The biomarker guide. In: Biomarkers and Isotopes in Petroleum Exploration and Earth History, second ed. vol. 2. Cambridge: Cambridge University Press, 475e1155.
参考文献
Seifert W K, Moldowan J M. 1981. Palaeoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 45: 783~794.
参考文献
Shanmugam G. 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland basin, Australia. AAPG Bulletin, 69: 1241~1254.
参考文献
Song Yong, Yang Zhifeng, He Wenjun, Gan Renzhong, Zhang Rong, Huang Liliang, Xu Pei, Zhao Xinfei, Chen Zhixiang. 2022. Exploration progress of alkaline lake type shale oil of the Permian Fengcheng Formation of Mahu sag, Junggar basin. China Petroleum Exploration, 27(1): 60~72 (in Chinese with English abstract).
参考文献
Summons R E, Bradley A S, Jahnke L L, Waldbauer J R. 2006. Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 361: 951~968.
参考文献
Tang Yong, Zheng Menglin, Wang Xiatian, Wang Tao, Xie Zaibo, Qin Zhen, Hei Chenlu, Cheng Hu, Gao Yuan, Tao Huifei. 2022. Sendimentary palaeoenvironment of source rocks of Fengcheng Formation in Mahu sag, Junggar basin. Natural Gas Geoscience, 33(5): 677~692 (in Chinese with English abstract).
参考文献
Tissot B P, Welte D H. 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Berlin: Springer-Verlag.
参考文献
Wang Xiaojun, Liang Lixi, Zhao Long, Liu Xiangjun, Qin Zhijun, Li Wei. 2019. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer sag, Junggar basin. Oil & Gas Geology, 40(3): 661~668 (in Chinese with English abstract).
参考文献
Wang Xueyong, Bian Baoli, Liu Hailei, Jiang Zhongfa, Zhou Lu, Zhu Yongcai. 2022. Seismic facies characteristics and distribution of sedimentary facies of Permian Fengcheng Formation in Mahu area, Junggar basin. Natural Gas Geoscience, 33(5): 693~707 (in Chinese with English abstract).
参考文献
Wang Xulong, Gao Gang, Yang Haibo, Liu Guangdi, Huang Zhilong, Wei Hengye. 2008. Research on relation between oil properties and petroleum pool formation of Permian in the 5th & 8th districts, northwestern margin of Junggar basin. Geological Journal of China Universities, (2): 256~261 (in Chinese with English abstract).
参考文献
Wang Youping, Wang Yiwei, Meng Xianglong, Su Jianzheng, Li Fengxia, Li Zongtian. 2013. Enlightenment of American's oil shale in-situ retorting technology. Oil Drilling & Production Technology, 35(6): 55~59 (in Chinese with English abstract).
参考文献
Waples D, Machihara T. 1991. Biomarkers for Geologists, a Practical Guide to the Application of Steranes and Triterpanes in Petroleum Geology. American Association of Petroleum Geologists Methods in Exploration Series 9, Tulsa.
参考文献
Xu Lin, Chang Qiusheng, Feng Lingli, Zhang Ni, Liu Huan. 2019. The reservoir characteristics and control factors of shale oil reservoirs in Permian Fengcheng Formation of Mahu sag, Junggar basin. China Petroleum Exploration, 24(5): 649~660 (in Chinese with English abstract).
参考文献
Yang Fan, Song Yong, Chen Hong, Gong Deyu, Bian Baoli, Liu Hailei. 2019. Evaluation of Carboniferous Songkaersu Formation source rocks and gas-source correlation in the Fukang sag of eastern Junggar basin. Natural Gas Geoscience, 30(7): 1018~1026 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, He Dengfa. 1999. Introduction to Comprehensive Research on Petroleum Geology. Beijing: Petroleum Industry Press (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Hu Suyun, Hou Lianhua. 2018. Connotation and strategic role of in-situ conversion processing underground in the onshore China. Petroleum Exploration and Development, 45(4): 537~545 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Hu Suyun, Hou Lianhua, Yang Tao, Li Xin, Guo Bincheng, Yang Zhi. 2020a. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 47(1): 1~10 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Jia Ailin, Yi Yunsheng, Wang Junlei, Zhu Hanqing. 2020b. Progress in shale exploration in China and prospects for future development. China Petroleum Exploration, 25(1): 31~44 (in Chinese with English abstract).
参考文献
Zhi Dongming, Song Yong, He Wenjun, Jia Xiyu, Zou Yang, Huang Liliang. 2019a. Geological characteristics, resource potential and exploration direction of shale oil in Middle-Lower Permian, Junggar basin. Xinjiang Petroleum Geology, 40(4): 389~401 (in Chinese with English abstract).
参考文献
Zhi Dongming, Tang Yong, Zheng Menglin, Xu Yang, Cao Jian, Ding Jing, Zhao Changyong. 2019b. Geological characteristics and accumulation control factors of shale reservoir in the Fengcheng Formation, Mahu sag, Junggar basin. China Petroleum Exploration, 24(5): 615~623 (in Chinese with English abstract).
参考文献
Zhi Dongming, Tang Yong, He Wenjun, Guo Xuguang, Zheng Menglin, Huang Liliang. 2021. Orderly coexistence and accumulation modes of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar basin. Petroleum Exploration and Development, 48(1): 38~51 (in Chinese with English abstract).
参考文献
陈建平, 王绪龙, 邓春萍, 梁狄刚, 张越迁, 赵喆, 倪云燕, 支东明, 杨海波, 王屿涛. 2016. 准噶尔盆地油气源、油气分布与油气系统. 地质学报, 90(3): 421~450.
参考文献
高岗, 向宝力, 王轩, 王熠, 周然然, 马万云, 任江铃, 赵克. 2016. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究. 天然气地球科学, 27(11): 1963~1969.
参考文献
高岗, 向宝力, 李涛涛, 任江玲, 孔玉华. 2017. 吉木萨尔凹陷芦草沟组致密油系统的成藏特殊性. 沉积学报, 35(4): 824~833.
参考文献
龚德瑜, 王绪龙, 周川闽, 郑孟林, 蒋文龙, 吴卫安. 2021. 准噶尔盆地东南部石炭系规模烃源岩的发现及天然气勘探潜力. 石油学报, 42(7): 836~852.
参考文献
何文军, 费李莹, 阿布力米提·依明, 杨海波, 蓝文芳, 丁靖, 鲍海娟, 郭文建. 2019. 准噶尔盆地深层油气成藏条件与勘探潜力分析. 地学前缘, 26(1): 189~201.
参考文献
胡见义, 徐树宝, 程克明. 1989. 中国重质油藏的地质和地球化学成因. 石油学报, (1): 1~11.
参考文献
康积伦, 王家豪, 马强, 李纯泉, 陈鑫鑫. 2022. 准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义. 地质科技通报, 1~12.
参考文献
匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.
参考文献
李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜, 米巨磊. 2020. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析. 天然气地球科学, 31(2): 250~257.
参考文献
李素梅, 庞雄奇, 高先志, 刘可禹, 李小光, 陈振岩, 刘宝鸿. 2008. 辽河西部凹陷稠油成因机制. 中国科学(D辑: 地球科学), (S1): 138~149.
参考文献
林静文, 谢小敏, 文志刚, 吴芬婷, 许锦, 马中良, 张雷. 2022. 塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅰ: 族组分及同位素组成. 石油实验地质, 44(1): 150~159.
参考文献
柳广弟. 2018. 石油地质学. 北京: 石油工业出版社.
参考文献
宋永, 杨智峰, 何文军, 甘仁忠, 张融, 黄立良, 徐佩, 赵辛楣, 陈志祥. 2022. 准噶尔盆地玛湖凹陷二叠系风城组碱湖型页岩油勘探进展. 中国石油勘探, 27(1): 60~72.
参考文献
唐勇, 郑孟林, 王霞田, 王韬, 谢再波, 秦臻, 黑晨露, 成虎, 高远, 陶辉飞. 2022. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境. 天然气地球科学, 33(5): 677~692.
参考文献
汪友平, 王益维, 孟祥龙, 苏建政, 李凤霞, 李宗田. 2013. 美国油页岩原位开采技术与启示. 石油钻采工艺, 35(6): 55~59.
参考文献
王小军, 梁利喜, 赵龙, 刘向君, 秦志军, 李玮. 2019. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价. 石油与天然气地质, 40(3): 661~668.
参考文献
王绪龙, 高岗, 杨海波, 柳广弟, 黄志龙, 韦恒叶. 2008. 准噶尔盆地西北缘五八开发区二叠系原油特征与成藏关系探讨. 高校地质学报, (2): 256~261.
参考文献
王学勇, 卞保力, 刘海磊, 蒋中发, 周路, 朱永才. 2022. 准噶尔盆地玛湖地区二叠系风城组地震相特征及沉积相分布. 天然气地球科学, 33(5): 693~707.
参考文献
许琳, 常秋生, 冯玲丽, 张妮, 刘欢. 2019. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素. 中国石油勘探, 24(5): 649~660.
参考文献
杨帆, 宋永, 陈洪, 龚德瑜, 卞保力, 刘海磊. 2019. 准噶尔盆地阜东地区石炭系松喀尔苏组烃源岩评价及气源对比. 天然气地球科学, 30(7): 1018~1026.
参考文献
赵文智, 何登发. 1999. 石油地质综合研究导论. 北京: 石油工业出版社.
参考文献
赵文智, 胡素云, 侯连华. 2018. 页岩油地下原位转化的内涵与战略地位. 石油勘探与开发, 45(4): 537~545.
参考文献
赵文智, 胡素云, 侯连华, 杨涛, 李欣, 郭彬程, 杨智. 2020a. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1~10.
参考文献
赵文智, 贾爱林, 位云生, 王军磊, 朱汉卿. 2020b. 中国页岩气勘探开发进展及发展展望. 中国石油勘探, 25(1): 31~44.
参考文献
支东明, 宋永, 何文军, 贾希玉, 邹阳, 黄立良. 2019a. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389~401.
参考文献
支东明, 唐勇, 郑孟林, 徐洋, 曹剑, 丁靖, 赵长永. 2019b. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素. 中国石油勘探, 24(5): 615~623.
参考文献
支东明, 唐勇, 何文军, 郭旭光, 郑孟林, 黄立良. 2021. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 38~51.
目录contents

    摘要

    针对烃源岩生成的原油物性随热演化如何变化的问题,本文基于对准噶尔盆地玛湖凹陷下二叠统风城组和吉木萨尔凹陷中二叠统芦草沟组下段源储紧邻自生自储页岩油物性、地化特征、成藏特征及原油物性与烃源岩热演化关系的分析,综合烃源岩生烃热模拟实验结果与国内外相关文献资料,首次确认了咸化湖相烃源岩生成的原油物性与烃源岩热演化程度之间的变化规律。认为页岩油源岩生成的原油密度和黏度具有随热演化程度增强先增加而后降低的规律,其中生油高峰附近生成的原油非烃相对含量、密度和黏度最高。该认识不仅是对已有的石油地质学中原油物性随热演化规律认识的进一步厘定和修正,而且对页岩油甜点段、甜点区的选择以及页岩油原位转化等都有极为重要和现实的指导作用。

    Abstract

    The Fengcheng Formation in Mahu sag and the Lower Lucaogou Formation in which crude oil is accumulated in the oil layers of closely interbedded source and reservoir combination with self-generated and self-contained model, are considered as case studies to discover the transformation law of crude oil physical properties with thermal evolution degree of source rock.The transition law of crude oil physical properties with increased thermal evolution degree is determined based on (i) the analysis of physical properties, organic geochemistry and enrichment characteristics of crude oil; (ii) the relationship between physical properties of crude oil and thermal evolution degree of source rock; and (iii) comprehensively considering thermal simulation experiment results of source rock and domestic and foreign relevant literature materials. The density and viscosity of crude oil from a source rock has the characteristic of first increasing and then decreasing with increasing thermal maturity, with the highest value at the oil peak depth. This understanding is not only a further clarification and revision of the existing understanding of the evolution law of crude oil physical properties with thermal evolution in petroleum geology, but also a very important and realistic guidance for the selection of sweet layer and sweet spot of shale oil and the in-situ transformation of shale oil.

  • 原油密度和黏度作为一种重要的原油物理性质已成为衡量原油质量的重要指标,其值的高低对于原油运移、聚集和开发均有极为重要的影响,尤其在页岩油和致密油开发过程中与原油产量有密切关系(王绪龙等,2008; 柳广弟,2018; 赵文智等,2020a2020b)。有关原油物性的影响因素,许多学者都进行过研究(Tissot and Welte,1978; 胡见义等,1989; Peters and Moldowan,1993)。已有的研究表明烃源岩母质特征、地层层析作用、生物降解、水洗、氧化、轻烃散失、温度等都对原油的物性有影响(赵文智等,1999; Gao Gang et al.,2020)。一般认为,层析作用、温度升高主要导致原油密度、黏度等降低(Tissot and Welte,1978; 柳广弟,2018); 水洗、氧化、生物降解、轻烃散失等主要导致原油密度、黏度增加(Connan,1984; Huang Haiping et al.,2003; Aitken et al.,2004); 原油密度和黏度随烃源岩的热演化程度增加而降低(Connan,1984; 李素梅,2008; 柳广弟,2018; 李二庭等,2020)。这些认识在实践中已被广泛认可。然而,笔者在研究准噶尔盆地西北缘玛湖凹陷下二叠统风城组和东部吉木萨尔凹陷中二叠统芦草沟组下段咸化湖相页岩油时,首次发现源储紧邻型页岩油的密度和黏度随埋深即热演化程度的升高有一定规律,但并不像普遍所认为的随深度增加而降低,这显然与已有的认识不符。本文将基于准噶尔盆地上述两个层段的页岩油物性、分子地球化学特征、油源对比和生烃热模拟实验相结合的方法,同时充分参考国内外相关文献,探讨烃源岩热演化过程对原油密度、黏度的影响。该研究成果应该是对传统石油地质学中经典认识的重新厘定,有助于对其他含油气盆地原油密度、黏度的分布特征进行更为客观的认识,具有重要的理论和应用价值,对页岩油勘探和开发以及页岩油原位转化也将会有重要的指导作用。

  • 1 地质特征

  • 准噶尔盆地位于中国新疆北部,面积约13×104 km2(图1a、c)。盆内发育了从石炭纪到第四纪等不同地质时代的地层,从石炭系到古近系均不同程度地发育有烃源岩(陈建平等,2016; 支东明等,2019a; 杨帆等,2019; 何文军等,2019; 龚德瑜等,2021; Liu Shiju et al.,20212022b; 唐勇等,2022)。其中的二叠系烃源岩主要分布在下二叠统风城组(P1f)和中二叠统芦草沟组(P2l),这两套烃源岩也是该盆地的主力烃源岩(Liu Shiju et al.,2022a)。露头和井下钻遇的风城组主要分布在盆地西北部玛湖凹陷周缘(图1b),是我国陆上优质的咸水湖相烃源岩之一。风城组形成于扇三角洲-湖泊沉积体系(许琳等,2019; 王学勇等,2022)。岩石沉积颗粒由火山碎屑、陆源碎屑、深部热液和内沉积碳酸盐等多元混合而成,具有典型的混合沉积特点(支东明等,2019a; 唐勇等,2022)。风城组烃源岩主要形成于干旱气候背景下的咸水湖相沉积环境,不仅通过深大断裂、不整合、砂体等输导层为源外石炭系—新近系储集层提供了大量油气,而且在风城组内部还形成了大量自生自储的不同类型的油气资源(支东明等,2019b; 许琳等,2019)。研究发现该烃源岩残余有机质丰度并不很高,但是在高盐度背景下沉积的有机母质生烃潜力非常大(唐勇等,2022)。源岩层系内部发育有泥质白云岩和凝灰岩储层,其与泥质岩成纹层状或层状互层,具备源储紧邻和源储一体的页岩油成藏条件(许琳等,2019; 支东明等,2021)。随着页岩油勘探的进行,发现风城组内部具有页岩油勘探和开发的潜力(支东明等,2019b2021; 宋永等,2022)。本次研究主要采集风城组烃源岩层系内部源储紧邻的近源自生自储的原油和烃源岩样品进行原油物性与烃源岩特征分析,不考虑风城组源外长距离运移聚集的油藏原油。

  • 露头和井下钻遇的芦草沟组烃源岩主要分布在盆地东部的吉木萨尔凹陷(图1d)、石树沟凹陷、石钱滩凹陷及盆地南缘等部位。其中的吉木萨尔凹陷芦草沟组是我国第一个页岩油勘探和开发示范区(王小军等,2019),芦草沟组烃源岩也主要形成于干旱—半干旱气候背景下的咸水湖相沉积环境(康积伦等,2022),具有明显的咸水混合沉积特点(匡立春等,2012; 高岗等,2016)。有机地化分析表明芦草沟组有机质丰度要明显高于风城组,但它们具有相近的生烃潜力(Liu Shiju et al.,2022a)。根据芦草沟组岩性及其组合变化特征,将其划分为上(P2l2)、下(P2l1)两个甜点段,其油气各自形成独立的含油气系统(Cao Zhe et al.,2016a2016b; 高岗等,2017)。上甜点发育单层厚度较大的砂体,并且分布范围广,所以,其原油具有较明显的二次运移特征(Liu Shiju et al.,2022b),而下甜点单砂体厚度总体比上段要薄,平面非均质性强,油气侧向运移作用微弱,表现为典型的近源自生自储特征(高岗等,2017; Liu Shiju et al.,2022b)。故本次在吉木萨尔凹陷主要针对芦草沟组下甜点段采集原油与烃源岩样品进行原油物性与烃源岩特征分析。

  • 图1 准噶尔盆地玛湖和吉木萨尔凹陷构造位置与井位分布图

  • Fig.1 The structural position and borehole location of the Mahu and Jimusar sags in Junggar basin

  • 2 样品与实验

  • 风城组的原油与烃源岩样品主要采集于玛湖凹陷风城组烃源岩中心所在的风城地区,该区风城组源、储紧密互层,以自生自储特征为主; 吉木萨尔凹陷芦草沟组原油与烃源岩样品主要采集于芦草沟组下甜点段,也同样具有近源自生自储特征。对采集的烃源岩进行可溶有机质抽提,对抽提的可溶有机质和原油样品进行族组成分离和定量。采用安捷伦7890-5975c气相色谱(GC)-质谱(MS)联用仪对烃源岩可溶有机质和原油的饱和烃组分进行气相色谱-质谱(GC-MS)分析。氦气(纯度99.999%)作为载气; 注射口温度为300℃; 传输线温度为300℃; HP-5MS弹性石英毛细柱(30 m×0.25 mm×0.25 μm); GC烘箱程序设置为50℃保温1 min,20℃/min升温至120℃,以4℃/min升至250℃,再以3℃/min升至310℃保持30 min; 载气流速为1 mL/min。质谱仪在1047 V电压下工作。

  • 对含典型生烃母质的烃源岩进行生烃热模拟实验,以观察热演化过程中产物特征与生标物分子组成的演化特征。热模拟实验采用高温高压密闭容器加水热模拟法,实验时间为24 h。实验样品粉碎成块样,大小约为2 mm×2 mm×1 mm,用量为30 g,加水量25 mL。实验温度依次为300℃、335℃和370℃。实验产物主要有液态和气态两种,其中在样品表面、高压釜壁和管道收集的液态产物视为排出油,样品粉碎后有机质溶剂抽提得到的产物为残余油。

  • 收集于新疆油田公司的风城组和芦草沟组下段的部分烃源岩TOC、热解(Rock-Eval)分析数据以及原油密度、黏度等以及部分参考文献的数据也用于该论文的研究中。

  • 3 原油物性与地球化学特征

  • 3.1 原油物性特征

  • 对原油物性数据的整理和分析发现,风城组原油物性数值分布范围明显较宽,密度主要在0.8263~0.9313 g/cm3之间,属于轻质油—中质油范畴,主要为中质油; 黏度介于3.76~1357.44 mPa·s之间,属于高黏油—稠油范畴; 芦草沟组物性数值分布范围相对较窄,密度主要分布在0.8861~0.9308 g/cm3之间,全部属于中质油; 黏度在25.64~988.08 mPa·s之间,主要属于稠油,少量为高黏油(表1,图2)。两个层段的原油密度和黏度之间均存在极好的指数相关关系,并且相关趋势吻合(图2)。两个层位的原油密度、黏度与胶质+沥青质含量均具有好的正相关性(图3),表明了原油密度和黏度主要与极性杂原子化合物含量有关(Tissot and Welte,1978; 李素梅,2008)。上述原油密度、黏度及其与族组分含量的分布特征表明,这两个形成于咸水湖相的不同烃源岩层系的原油物性与组成均有较大的变化范围,并且其密度和黏度值总体明显较高。

  • 图2 准噶尔盆地风城组和芦草沟组下段原油密度与黏度关系图

  • Fig.2 The relationship of density vs. viscosity of crude oil from the Fengcheng Formation and the lower Lucaogou Formation in Junggar basin

  • 表1 准噶尔盆地玛湖凹陷风城组和吉木萨尔凹陷芦草沟组下段试油、原油物性与族组成数据表

  • Table1 Data of oil testing, physical properties and group composition of crude oil in the lower Lucaogou Formation of Jimusaer sag and Fengcheng Formation of Mahu sag in Junggar basin

  • 续表1

  • 图3 准噶尔盆地风城组和芦草沟组下段原油密度(a)-黏度(b)与非烃含量关系图

  • Fig.3 Relationship of density (a) and viscosity (b) vs. non-hydrocarbon content of the crude oil from the Fengcheng Formation and the lower Lucaogou Formation in Junggar basin

  • 3.2 原油分子地球化学特征

  • 生标物分子组成能够较好地反映原油生烃母质的形成环境条件与母质来源差异(Seifert and Moldowan,1981; Peters et al.,2005)。风城组和芦草沟组下段原油在生物标志化合物组成上有许多相似之处,具体表现在等离子流图(TIC)中,均富含β-胡萝卜烷,且随成熟度增加,β-胡萝卜烷均呈现降低的趋势,同时植烷优势明显(图4)。这均反映了风城组和芦草沟组沉积水体的盐度较高(Hall and Douglas,1981; Shanmugam,1985)。风城组原油的甾烷类化合物含量明显较高,而芦草沟组则具有明显高的藿烷含量,这说明了风城组原油真核生物的贡献较高,细菌贡献不明显,而芦草沟组细菌贡献相对较多(Peters et al.,2005; Summons et al.,2006)。

  • m/z=191质谱图(图4)中,风城组三环萜烷中的C23含量明显高于C20和C21,而芦草沟组C23三环萜烷优势不明显,证实了风城组沉积盐度要高于芦草沟组下段(Waples and Machihara,1991)。另外,风城组原油的三环萜烷相对含量明显要高于芦草沟组,这主要与藻类来源有关,如塔斯马尼亚藻(绿藻门)就是三环萜烷的主要生源,而有的研究者对风城组生源研究中也发现了其烃源岩富含绿藻门(杜氏藻)(Cao Jian et al.,2021)。C30重排藿烷含量在两个层段的原油中均很低,指示了风城组和芦草沟组都沉积于缺黏土的沉积环境中(Seifert and Moldowan,1981),这与盐度较高的特征是极为吻合的。风城组的伽马蜡烷含量明显很高,芦草沟组的伽马蜡烷含量中等,这指示了风城组的水体分层性更显著,盐度更高,而芦草沟组下段的水体分层性较显著,盐度相对低一些(Moldowan et al.,1986; Júnior Sousa et al.,2013)。

  • 图4 准噶尔盆地部分风城组和芦草沟组原油饱和烃GC-MS图

  • Fig.4 GC-MS characteristics of saturated fractions from the typical Fengcheng Formation and the lower Lucaogou Formation crude oil in Junggar basin

  • 通过m/z=217质谱图(图4)对比可以发现,风城组和芦草沟组原油的C27、C28、C29规则甾烷分布均为上升型(图4)。揭示了风城组和芦草沟组具有相同的主要生物来源(Liu Shiju et al.,2022a)。风城组和芦草沟组原油中较低的重排甾烷含量则说明了原油来源于缺黏土的沉积环境形成的源岩,这与上述萜烷反映的认识一致。此外,从ααα-20S、αββ-20R、αββ-20S与ααα-20R-C29规则甾烷相对含量对比(图4)来看,风城组原油显示的母质成熟度从较低到较高均有分布,而芦草沟组原油的母质成熟度则总体要低于风城组。

  • 4 原油来源与成藏特征

  • 风城组和芦草沟组下段原油的自生自储特征及其来源已没有争议(高岗等,2017; Gao Gang et al.,2018; Liu Shiju et al.,2022a2022b),其原油生标物组成特征都与邻近的烃源岩具有相似性(图5)。根据试油资料发现,风城组油藏原油可以划分为两类:含气油藏原油(试油结果中含气)和纯油藏原油(试油结果中只含油)。其中含气油藏并没有分布在风城组最深部位,而是在不同深度均存在,这在一定程度上暗示了这部分原油经历了一定的纵向运移作用。从原油和源岩甾烷异构化参数随深度变化图(图6)可以发现,风城组中纯油藏原油的甾烷异构化参数与邻近的源岩吻合得很好(图5; 图6a、b),说明纯油藏原油与邻近源岩的成熟度一致,表明风城组纯油藏原油来源于邻近的源岩(图5),直接指示了纯油藏原油具有源储紧邻、近源运移的特点。含气油藏的原油甾烷成熟度参数ββ/(αα+ββ)C29甾烷和ααα20S/(20S+20R)C29甾烷则要明显高于邻近源岩(图6a、b),反映了其原油经历了一定的垂向运移作用,来自更深部的、成熟度更高的烃源岩。芦草沟组下段原油均为纯油藏原油,其原油甾烷异构化参数ββ/(αα+ββ)C29甾烷和ααα20S/(20S+20R)C29甾烷与邻近源岩的变化完全吻合(图5; 图6c、d),这也直接表明了芦草沟组下段原油也具有近源运移、自生自储的成藏特点。

  • 图5 准噶尔盆地风城组与芦草沟组下段原油与邻近烃源岩饱和烃GC-MS谱图对比

  • Fig.5 GC-MS characteristics of saturated fractions of typical crude oil and source rock from the Fengcheng Formation and lower Lucaogou Formation in Junggar basin

  • 此外,原油发生运移作用往往也会引起原油轻、重分子分异作用,从而分子含量比值发生变化(Tissot and Welte,1978; Leythaeuser,1988; Peters and Moldowan,1993; Liu Shiju et al.,2020)。n-C21-/n-C22+比值和(C20+C21+C23TT)/(C29藿烷+C30藿烷+伽马蜡烷)比值等常用来反映正构烷烃和萜烷类化合物的轻重比。根据风城组原油和源岩轻重比参数与深度关系图(图7)可知,风城组纯油藏中原油的轻重比参数与邻近的源岩一致,说明近源运移发生的运移分馏现象不明显,而含气油藏的轻重比要明显高于邻近源岩,说明了含气油藏的原油经历了运移作用,且随着运移方向(深度降低),运移分馏效应更加明显(图7)。

  • 5 原油物性与热演化关系

  • 图8展示了风城组和芦草沟组下段原油物性和烃源岩热演化参数[HCI=100×S1/TOC; S1/(S1+S2)]随深度的变化,可见风城组和芦草沟组下段烃源岩的生油高峰深度分别大致在4000 m和3300 m左右,推测其生油高峰深度之下深部位一些较高值数据点应该受到了残留烃和运移作用的影响(图8a、b、e、f)。仔细观察可以发现,风城组含气油藏和纯油油藏的原油密度、黏度均呈现随深度增加先增大后降低的趋势,原油密度和黏度高值与烃源岩生油高峰有极好的对应关系,但在生油高峰深度附近及生油高峰深度之下,含气油藏的原油密度、黏度总体低于相近深度的纯油藏原油,而在生油高峰深度之上,两类油藏原油的密度和黏度接近(图8c、d)。如前所述,含气油藏原油母质成熟度高于纯油藏原油母质成熟度,所以含气油藏原油应该来自更深部的风城组烃源岩,具有垂向运移过程,然后聚集成藏,其烃源岩深度更大,成熟度更高,因而含气更多,纯油藏原油就近运移聚集,含气少或不含气。在生油高峰深度之下,因保存条件好,来自深部原油中保存了较多的天然气,到了浅部保存条件变差,天然气散失,含气油藏与纯油藏原油组成接近,因而密度和黏度接近。相比于风城组,芦草沟组下段主要为纯油藏,其原油密度和黏度随深度增加也同样呈现先增加后降低的规律,密度和黏度最高值也对应于生油高峰(图8g、h)。油源对比结果也表明了风城组和芦草沟组下段的纯油藏原油均来源于其邻近的烃源岩,因源储紧邻而近源初次运移产生的运移分馏效应不明显。这反映了生油窗范围内原油密度、黏度的变化与烃源岩热演化之间的对应关系应该具有一定普遍性,即随烃源岩热成熟度的增加,原油密度、黏度先增加后降低,原油密度、黏度最高值对应于烃源岩生油高峰。

  • 图6 准噶尔盆地风城组和芦草沟组下段原油与烃源岩规则甾烷C29成熟度参数与深度关系图

  • Fig.6 The relationship diagram of C29 regular sterane maturity parameters vs. depth of crude oil and source rocks from the Fengcheng Formation and the lower Lucaogou Formation in Junggar basin

  • 图7 准噶尔盆地风城组原油与源岩n-C21-/n-C22+比值和(C20+C21+C23TT)/(C29藿烷+C30藿烷+伽马蜡烷)比值与深度关系图(TT代表三环萜烷)

  • Fig.7 Relationship diagram of the n-C21-/n-C22+ ratio and the (C20+C21+C23TT) / (C29hopane+C30hopane+Gammacerane) ratio vs. depth of the Fengcheng Formation crude oil and source rock samples in Junggar basin (TT represents tricyclic terpanes)

  • 烃源岩的生烃热模拟实验结果也佐证了上述认识。选取芦草沟组下段典型源岩(研究区常见的烃源岩岩性样品)样品进行了密闭容器加水热模拟生烃实验。实验样品的基础信息见表2。热模拟实验结果表明了烃源岩生油能力强,且排烃效率较高(图9a)。液态烃产物的族组成特征表明,无论是排出油还是残余油,都在335℃(大量生油阶段)时非烃和沥青质含量最高(图9b)。更为明显的特征是随着模拟温度的增加,原油的颜色由浅变深再变浅(图9b),而颜色深表明了非烃和胶质含量高,对应密度和黏度也高,也就直接佐证了烃源岩生成的原油密度、黏度在生油高峰时最高,生油高峰之前和之后均较低。

  • 图8 准噶尔盆地风城组和芦草沟组下段烃源岩HCI(a、e),S1/(S1+S2)(b、f),原油密度(c、g)和黏度(d、h)深度关系图

  • Fig.8 The relationship of the HCI (a, e) , S1/ (S1+S2) ratio (b, f) , density (c, g) and viscosity (d, h) vs. depth of crude oil samples from the lower Lucaogou Formation and the Fengcheng Formation in Junggar basin

  • 表2 准噶尔盆地芦草沟组下段烃源岩热模拟实验样品的基础地球化学数据表

  • Table2 Basic geochemical data of thermal simulation samples from the lower Lucaogou Formation in Junggar basin

  • 注:EOM为可溶有机质。

  • 前人有关烃源岩的生烃模拟实验也进行了较多的工作,这些实验数据也有力地支撑了上述认识。从Hou Lianhua et al.(2020)对博格达山前芦草沟组露头的低成熟烃源岩样品的热模拟实验结果来看,随着成熟度增加,总液态产物中的胶质与沥青质相对含量先增加后降低,饱和烃相对含量变化相反(图10)。由于原油密度和黏度与非烃含量的良好线性相关性(图3),这种族组分相对含量的变化特征自然反映了总液态产物密度和黏度随成熟度增加先升高后降低的特征。应该指出的是由于芳香烃相对含量较低且变化幅度较小,所以,其对密度和黏度的变化规律没有明显影响(图10)。

  • 图9 准噶尔盆地芦草沟组下段烃源岩液态产物产率(a)和排出油与残余油族组成参数-产物颜色特征(b)与模拟温度关系图

  • Fig.9 Relationship between gas and liquid product yield of organic carbon per unit mass and simulated temperature of source rock (a) ; relationship between (Polar+Asph) / (Sat+Arom) and simulated temperature of the oil discharged from the simulated product and the remaining oil, and color characteristics of simulated products (b) in the lower member of Lucaogou Formation, Jimusaer sag, Junggar basin

  • 图10 准噶尔盆地芦草沟组烃源岩热模拟实验总液态产物族组分相对含量与热演化程度关系图(数据来源于 Hou Lianhua et al.,2020

  • Fig.10 Relationship between fraction contents of total simulated liquid procduct and vitrnite reflection from thermal simulation experiment of source rocks of the Lucaogou Formation in Junggar basin (data from Hou Lianhua et al., 2020)

  • 澳大利亚塔斯马尼亚下二叠统富含有机质油页岩有机质主要为相对单一的塔斯马尼亚藻组成,成熟度较低。林静文等(2022)对该油页岩进行的生烃热模拟实验分析结果(图11)显示,无论是热解油还是残留油,均表现为胶质+沥青质相对含量随模拟温度升高先增加后降低,芳香烃与饱和烃相对含量先降低后增加。可见同样显示了非烃含量变化有高值存在,该高值自然也对应于最高的原油密度和黏度,其高值对应的模拟温度为340℃,而该温度对应的热解油、热解沥青与总液态产物产率也最高。这也证实了本文上述认识的正确性。此外,其他许多学者的生烃热模拟实验结果也都能验证上述认识,在此不一一赘述。

  • 除烃源岩热模拟实验外,大量的自然演化剖面中烃源岩可溶有机质的族组分含量的变化特征也具有上述规律。北非喀麦隆杜阿拉盆地的石炭系烃源岩可溶有机质中烃类与杂原子化合物含量与深度的变化被大量文献(Hunt,1979; 柳广弟,2018)引用,一般主要以此说明烃源岩可溶有机质以及族组分含量随热演化的变化特点,未有研究者据此变化特征认识到烃源岩生成的原油密度和黏度的变化规律。仔细观察可以发现,烃与非烃产率均随深度(热演化程度)增加先增加,达到最高值后又同时降低,但非烃与烃产率的差异最大部位对应于产量最高值(图12),这即说明了产率高峰即生油高峰时非烃相对含量是最高的。根据前面的分析可见,产率高峰对应的原油密度和黏度也应是最高的。

  • 由上述分析可见,无论是热模拟实验结果,还是自然演化剖面,都说明了烃源岩热演化过程中,液态产物非烃组成含量具有随热演化程度增加先增大后降低的特征。这说明该特征具有普遍性,由此来看,不同烃源岩生成的原油密度和黏度随热演化程度增大先增加后降低的规律也是普遍的。

  • 6 原油物性变化对页岩油勘探的启示

  • 页岩油作为目前重要的非常规油气勘探和开发领域,其烃源岩热演化特征与产能等都与原油物性有极为密切的关系。风城组和芦草沟组下段咸化湖相源储紧邻型页岩油的富集程度与烃源岩热演化密切相关。一般认为,随着源岩成熟度的增加,生排烃量增加,邻近烃源岩的储层原油越富集。但从图13可见,原油日产能(t/d)和产能指数(t/(m·d))随深度增加先降低后升高。最为显著的特征是在烃源岩生油高峰深度段,原油的日产量、产能指数最低,开发效益显示最差(图13),这应主要与该深度邻近烃源岩生油高峰生成的原油密度、黏度大有关。

  • 图11 澳大利亚塔斯马尼亚下二叠统富含有机质油页岩热模拟液态产物族组分相对含量与热演化程度关系图(数据来源于林文静等,2022)

  • Fig.11 Relationship between relative content and thermal evolution of components of thermos simulated liquid product families in organic-rich oil shale in the Lower Permian of Tasmania, Australia (data from Lin Wenjing et al., 2022)

  • 图12 喀麦隆杜阿拉盆地上白垩统劳格巴巴组烃源岩可溶有机质转化率(a)、CPI(b)和Ro(c)-深度关系图(据Hunt,1979

  • Fig.12 Relationship between soluble organic matter conversion rate (a) , CPI (b) and Ro (c) -depth of source rocks of the Upper Cretaceous Laogebaba Formation in the Douala basin, Cameroon (after Hunt, 1979)

  • 上述研究区原油物性与热演化的关系可以给源储紧密互层型的页岩油勘探和开发、页岩油原位转化等以重要启示,推测其他地区的页岩油层系原油物性演化也应具有类似特征。生油高峰之前虽然烃源岩产油相对较少,但其原油密度较低,储集层物性相对要好,这在一定程度上弥补了生烃量的不足,只要合理地选择有效储集层发育段以及优质源储品质耦合发育段也可以找到页岩油甜点段。生油高峰阶段并不是最有利的层段,该阶段虽然烃源岩生成的原油多,但密度和黏度明显较高,此时可以发育有甜点段,但应充分考虑原油密度和黏度较高给开发带来的影响。生油高峰之后的更高演化阶段,烃源岩有较高的生油量,并且有部分天然气的生成,原油密度和黏度较低,这有利于页岩油的开发,但此时在选取甜点段与有利区时应重点考虑储集层的厚度、规模与物性特征。

  • 图13 准噶尔盆地风城组和芦草沟组下段试油成果与深度关系图

  • Fig.13 The depth trend of the oil test results of the Fengcheng Formation and the lower Lucaogou Formation in Junggar basin

  • 页岩油地下原位转化自20世纪80年代以来国内外许多石油公司就开始研究和发展的油页岩原位开采技术(汪友平等,2013),作为目前一种重要的人工转化地下富有机质页岩石油进行工业利用的手段已成为实现页岩油规模开发利用的最优选项之一(赵文智等,2018)。根据本文前述原油物性与热演化关系的认识,在地下人工转化液态石油时,究竟将烃源岩生油转化到何种演化程度是应该要考虑的基本问题。针对不同母质的油源岩应先通过自然演化剖面或热模拟实验等方法明确其生油高峰,进而确定生成的原油密度、黏度与热演化程度的关系,综合烃源岩残余烃转化潜力与热演化关系确定最佳的加热温度,以最大限度地转化液态石油,同时又尽量节省加热所消耗的能源成本。

  • 7 结论

  • (1)风城组中含气油藏原油成熟度远高于邻近源岩成熟度,揭示其原油具有由深部烃源岩生成通过断裂调整、输导层运移的过程,不属于近源运聚特征。风城组与芦草沟组下段纯油藏页岩油均具有源储紧密互层就近自生自储特征,其页岩油就在油源岩附近,油源关系明确,其原油密度和黏度随烃源岩热演化程度增强先增后降,且最大值出现于生油高峰附近的特征是烃源岩生成的原油特征变化规律的客观反映。

  • (2)页岩油甜点段与甜点区的选择应充分考虑原油密度、黏度随热演化变化的规律。生油高峰之前烃源岩的生油量相对少,但其原油密度、黏度较低,储集层物性相对较好,弥补了生油量的不足,利于页岩油的富集; 生油高峰附近烃源岩虽大量生油,但原油密度与黏度高,实际开采难度增大; 生油高峰深度之下生成的油量大,还伴有天然气生成,原油密度与黏度降低,更利于页岩油气富集,砂体发育是关键。

  • (3)页岩油源岩原位转化时应保证源岩热演化程度超过生油高峰,从而保证原油密度和黏度降低而利于开采,具体的最高演化程度应综合考虑烃源岩母质类型、热演化程度以及残余生烃潜力与热演化程度之间的关系。

  • 参考文献

    • Aitken C M, Jones D M, Larter S R. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431(7006).

    • Cao Jian, Xia Liuwei, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2021. An alkaline lacustrine in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleo-environment and petroleum geology. Earth-Science Reviews, 202(1): 103091.

    • Cao Zhe, Liu Guangdi, Kong Yuhua, Wang Chengyun, Niu Zicheng, Zhang Jingya, Geng Changbo, Shan Xiang, Wei Zhipeng. 2016a. Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer sag, Junggar basin. International Journal of Coal Geology, 153: 37~51.

    • Cao Zhe, Liu Guangdi, Xiang Baoli, Wang Peng, Niu Geng, Niu Zicheng, Li Chaozheng, Wang Chengyun. 2016b. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar sag, Junggar basin. AAPG Bulletin, 101: 39~72.

    • Chen Jianping, Wang Xulong, Deng Chunping, Liang Digang, Zhang Yueqian, Zhao Zhe, Ni Yunyan, Zhi Dongming, Yang Haibo, Wang Yutao. 2016. Oil and gas source, occurrence and petroleum system in Junggar basin, Northwest China. Acta Geological Sinica, 90(3): 421~450 (in Chinese with English abstract).

    • Connan J. 1984. Biodegradation of crude oils in reservoirs. In: Books J, Welte D, eds. Advances in Petroleum Geochemistry. London: Acdemic Press.

    • Gao Gang, Xiang Baoli, Wang Xuan, Wang Yi, Zhou Ranran, Ma Wanyun, Ren Jiangling, Zhao Ke. 2016. Stylolite occurrence and organic matter enrichment of the mixed sediments in the Lucaogou Formation of the Jimusaer sag in Junggar basin. Natural Gas Geoscience, 27(11): 1963~1969 (in Chinese with English abstract).

    • Gao Gang, Xiang Baoli, Li Taotao, Ren Jiangling, Kong Yuhua. 2017. Tight oil system particularity of Lucaogou Formation in Jimsar sag, Junggar basin. Journal of Sedimentology, 35(4): 824~833 (in Chinese with English abstract).

    • Gao Gang, Yang Shangru, Ren Jiangling, Zhang Weiwei, Xiang Baoli. 2018. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: A case study from the Early Permian Fengcheng Formation of well FN7 in the northwestern Junggar basin. Journal of Petroleum Science and Engineering, 162: 407~418.

    • Gao Gang, Xu Xinde, Qu Tong, Gan Jun, Dang Wenlong, Zhou Xiaoxiao, Liu Fengyan. 2020. Petroleum origins and accumulation patterns in the Weixinan sag in the Beibu Gulf basin, using Subsag B as an example. Acta Geologica Sinica (English Edition), 94(5): 1515~1530.

    • Gong Deyu, Wang Xulong, Zhou Chuanmin, Zheng Menglin, Jiang Wenlong, Wu Wei'an. 2021. Discovery of large-scale Carboniferous source rocks and natural gas exploration potential in the southeast of Junggar basin. Acta Petrolei Sinica, 42(7): 836~852 (in Chinese with English abstract).

    • Hall P B, Douglas A G. 1981. The distribution of cyclic alkanes in two lacustrine deposits. In: Hjoray M, Albrecht C, Cornford C, et al. , eds. Advances in Organic Geochemistry. Chichester, UK: John Wiley & Sons, 576~587.

    • He Wenjun, Fei Liying, Ablimiti Yiming, Yang Haibo, Lan Wenfang, Ding Jing, Bao Haijuan, Guo Wenjian. 2019. Accumulation conditions of deep hydrocarbon and exploration potential analysis in Junggar basin, NW China. Geoscience Frontiers, 26(1): 189~201 (in Chinese with English abstract).

    • Hou Lianhua, Ma Weijiao, Luo Xia, Liu Jinzhong, Liu Senhu, Zhao Zhongying. 2020. Hydrocarbon generation-retention-expulsion mechanism and shale oil producibility of the Permian Lucaogou shale in the Junggar basin as simulated by semi-open pyrolysis experiments. Marine and Petroleum Geology, 125: 104880.

    • Hu Jianyi, Xu Shubao, Cheng Keming. 1989. Geology and geochemical genesis of heavy oil reservoirs in China. Acta Petrolei Sinica, (1): 1~11 (in Chinese with English abstract).

    • Huang Haiping, Larter S R, Bowler B F J, Oldenburg T B P. 2003. A dynamic biodegradation model suggested by petroleum compositional gradients within reservoir columns from the Liaohe basin, NE China. Organic Geochemistry, 35(3): 299~316.

    • Hunt J M. 1979. Petroleum Geochemistry and Geology. San Francisco: Freeman.

    • Júnior Sousa G R, Santos A L S, Lima S G, Lopes J A D, Reis F A M, Santos Neto E V, Chang H K. 2013. Evidence for euphotic zone anoxia during the deposition of Aptian source rocks based on aryl isoprenoids in petroleum, Sergipe-Alagoas basin, northeastern Brazil. Organic Geochemistry, 63: 94~104.

    • Kang Jilun, Wang Jiahao, Ma Qiang, Li Chunquan, Chen Xinxin. 2022. Fine-grained sublacustrine fan deposits and their significance of shale oil reservoirs in the Lucaogou Formation in Jimsar sag, Junggar basin. Bulletin of Geological Science and Technology, 1~12 (in Chinese with English abstract).

    • Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ouyang Min, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 39(6): 657~667 (in Chinese with English abstract).

    • Leythaeuser D, Schaefer R G, Radke M. 1988. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. I: Gross composition of C15+-soluble organic matter and molecular composition of C15+-saturated hydrocarbons. Geochimica et Cosmochimica Acta, 52(3): 701~713.

    • Li Erting, Xiang Baoli, Liu Xiangjun, Zhou Ni, Pan Changchun, Dilidar Rouzi, Mi Julei. 2020. Study on the genesis of shale oil thickening in Lucaogou Formation in Jimsar sag, Junggar basin. Natural Gas Geoscience, 31(2): 250~257 (in Chinese with English abstract).

    • Li Sumei, Pang Xiongqi, Gao Xianzhi, Liu Keyu, Li Xiaoguang, Chen Zhenyan, Liu Baohong. 2008. Genesis mechanism of heavy oil in western Liaohe River depression. Science in China (Series D: Earth Sciences), (S1): 138~149 (in Chinese with English abstract).

    • Lin Jingwen, Xie Xiaomin, Wen Zhigang, Wu Fenting, Xu Jin, Ma Zhongliang, Zhang Lei. 2022. A comparative study on the geochemical characteristic of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale I: Fraction and isotopic compositions. Petroleum Geology & Experiment, 44(1): 150~159 (in Chinese with English abstract).

    • Liu Guangdi. 2018. Petroleum Geology. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Liu Shiju, Gao Gang, Gang Wenzhe, Qu Tong, Dang Wenlong, Zhang Weiwei, Yang Shangru, Zhu Kangle. 2020. Implications of organic matter source and fluid migration from geochemical characteristics of stylolites and matrix in carbonate rocks: A case study from the Carboniferous and the Ordovician in the Sichuan basin, SW China. Journal of Petroleum Science and Engineering, 186: 106606.

    • Liu Shiju, Gao Gang, Jin Jun, Gang Wenzhe, Xiang Baoli. 2021. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: Biogenic source, depositional environment and hydrocarbon generation potential in Junggar basin, China. Journal of Petroleum Science and Engineering, 208 (Part D): 109670.

    • Liu Shiju, Gao Gang, Gang Wenzhe, Xiang Baoli, Wang Ming, Wang Chengyun. 2022a. Comparison of formation conditions of source rocks of Fengcheng and Lucaogou Formations in the Junggar basin, NW China: Implications for organic matter enrichment and hydrocarbon potential. Journal of Earth Science, 1~34. http: //kns. cnki. net/kcms/detail/42. 1788. P. 20211021. 1507. 004. html.

    • Liu Shiju, Gao Gang, Jin Jun, Misch David, Wu Xinsong, Gang Wenzhe, Wang Ming, Xiang Baoli, Ma Wanyun. 2022b. Mechanism of differential enrichment of shale oils in the upper and lower members of the Lucaogou Formation in the Jimusaer sag, Junggar basin. Marine and Petroleum Geology, 142: 105747.

    • Moldowan J M, Sundararaman P, Schoell M. 1986. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of S. W. Germany. Organic Geochemistry, 10: 915~926.

    • Peters K E, Moldowan J M. 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs: Prentice-Hall.

    • Peters K E, Walters C C, Moldowan J M. 2005. The biomarker guide. In: Biomarkers and Isotopes in Petroleum Exploration and Earth History, second ed. vol. 2. Cambridge: Cambridge University Press, 475e1155.

    • Seifert W K, Moldowan J M. 1981. Palaeoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 45: 783~794.

    • Shanmugam G. 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland basin, Australia. AAPG Bulletin, 69: 1241~1254.

    • Song Yong, Yang Zhifeng, He Wenjun, Gan Renzhong, Zhang Rong, Huang Liliang, Xu Pei, Zhao Xinfei, Chen Zhixiang. 2022. Exploration progress of alkaline lake type shale oil of the Permian Fengcheng Formation of Mahu sag, Junggar basin. China Petroleum Exploration, 27(1): 60~72 (in Chinese with English abstract).

    • Summons R E, Bradley A S, Jahnke L L, Waldbauer J R. 2006. Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 361: 951~968.

    • Tang Yong, Zheng Menglin, Wang Xiatian, Wang Tao, Xie Zaibo, Qin Zhen, Hei Chenlu, Cheng Hu, Gao Yuan, Tao Huifei. 2022. Sendimentary palaeoenvironment of source rocks of Fengcheng Formation in Mahu sag, Junggar basin. Natural Gas Geoscience, 33(5): 677~692 (in Chinese with English abstract).

    • Tissot B P, Welte D H. 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Berlin: Springer-Verlag.

    • Wang Xiaojun, Liang Lixi, Zhao Long, Liu Xiangjun, Qin Zhijun, Li Wei. 2019. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer sag, Junggar basin. Oil & Gas Geology, 40(3): 661~668 (in Chinese with English abstract).

    • Wang Xueyong, Bian Baoli, Liu Hailei, Jiang Zhongfa, Zhou Lu, Zhu Yongcai. 2022. Seismic facies characteristics and distribution of sedimentary facies of Permian Fengcheng Formation in Mahu area, Junggar basin. Natural Gas Geoscience, 33(5): 693~707 (in Chinese with English abstract).

    • Wang Xulong, Gao Gang, Yang Haibo, Liu Guangdi, Huang Zhilong, Wei Hengye. 2008. Research on relation between oil properties and petroleum pool formation of Permian in the 5th & 8th districts, northwestern margin of Junggar basin. Geological Journal of China Universities, (2): 256~261 (in Chinese with English abstract).

    • Wang Youping, Wang Yiwei, Meng Xianglong, Su Jianzheng, Li Fengxia, Li Zongtian. 2013. Enlightenment of American's oil shale in-situ retorting technology. Oil Drilling & Production Technology, 35(6): 55~59 (in Chinese with English abstract).

    • Waples D, Machihara T. 1991. Biomarkers for Geologists, a Practical Guide to the Application of Steranes and Triterpanes in Petroleum Geology. American Association of Petroleum Geologists Methods in Exploration Series 9, Tulsa.

    • Xu Lin, Chang Qiusheng, Feng Lingli, Zhang Ni, Liu Huan. 2019. The reservoir characteristics and control factors of shale oil reservoirs in Permian Fengcheng Formation of Mahu sag, Junggar basin. China Petroleum Exploration, 24(5): 649~660 (in Chinese with English abstract).

    • Yang Fan, Song Yong, Chen Hong, Gong Deyu, Bian Baoli, Liu Hailei. 2019. Evaluation of Carboniferous Songkaersu Formation source rocks and gas-source correlation in the Fukang sag of eastern Junggar basin. Natural Gas Geoscience, 30(7): 1018~1026 (in Chinese with English abstract).

    • Zhao Wenzhi, He Dengfa. 1999. Introduction to Comprehensive Research on Petroleum Geology. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Hou Lianhua. 2018. Connotation and strategic role of in-situ conversion processing underground in the onshore China. Petroleum Exploration and Development, 45(4): 537~545 (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Hou Lianhua, Yang Tao, Li Xin, Guo Bincheng, Yang Zhi. 2020a. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 47(1): 1~10 (in Chinese with English abstract).

    • Zhao Wenzhi, Jia Ailin, Yi Yunsheng, Wang Junlei, Zhu Hanqing. 2020b. Progress in shale exploration in China and prospects for future development. China Petroleum Exploration, 25(1): 31~44 (in Chinese with English abstract).

    • Zhi Dongming, Song Yong, He Wenjun, Jia Xiyu, Zou Yang, Huang Liliang. 2019a. Geological characteristics, resource potential and exploration direction of shale oil in Middle-Lower Permian, Junggar basin. Xinjiang Petroleum Geology, 40(4): 389~401 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, Zheng Menglin, Xu Yang, Cao Jian, Ding Jing, Zhao Changyong. 2019b. Geological characteristics and accumulation control factors of shale reservoir in the Fengcheng Formation, Mahu sag, Junggar basin. China Petroleum Exploration, 24(5): 615~623 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, He Wenjun, Guo Xuguang, Zheng Menglin, Huang Liliang. 2021. Orderly coexistence and accumulation modes of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar basin. Petroleum Exploration and Development, 48(1): 38~51 (in Chinese with English abstract).

    • 陈建平, 王绪龙, 邓春萍, 梁狄刚, 张越迁, 赵喆, 倪云燕, 支东明, 杨海波, 王屿涛. 2016. 准噶尔盆地油气源、油气分布与油气系统. 地质学报, 90(3): 421~450.

    • 高岗, 向宝力, 王轩, 王熠, 周然然, 马万云, 任江铃, 赵克. 2016. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究. 天然气地球科学, 27(11): 1963~1969.

    • 高岗, 向宝力, 李涛涛, 任江玲, 孔玉华. 2017. 吉木萨尔凹陷芦草沟组致密油系统的成藏特殊性. 沉积学报, 35(4): 824~833.

    • 龚德瑜, 王绪龙, 周川闽, 郑孟林, 蒋文龙, 吴卫安. 2021. 准噶尔盆地东南部石炭系规模烃源岩的发现及天然气勘探潜力. 石油学报, 42(7): 836~852.

    • 何文军, 费李莹, 阿布力米提·依明, 杨海波, 蓝文芳, 丁靖, 鲍海娟, 郭文建. 2019. 准噶尔盆地深层油气成藏条件与勘探潜力分析. 地学前缘, 26(1): 189~201.

    • 胡见义, 徐树宝, 程克明. 1989. 中国重质油藏的地质和地球化学成因. 石油学报, (1): 1~11.

    • 康积伦, 王家豪, 马强, 李纯泉, 陈鑫鑫. 2022. 准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义. 地质科技通报, 1~12.

    • 匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.

    • 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜, 米巨磊. 2020. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析. 天然气地球科学, 31(2): 250~257.

    • 李素梅, 庞雄奇, 高先志, 刘可禹, 李小光, 陈振岩, 刘宝鸿. 2008. 辽河西部凹陷稠油成因机制. 中国科学(D辑: 地球科学), (S1): 138~149.

    • 林静文, 谢小敏, 文志刚, 吴芬婷, 许锦, 马中良, 张雷. 2022. 塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅰ: 族组分及同位素组成. 石油实验地质, 44(1): 150~159.

    • 柳广弟. 2018. 石油地质学. 北京: 石油工业出版社.

    • 宋永, 杨智峰, 何文军, 甘仁忠, 张融, 黄立良, 徐佩, 赵辛楣, 陈志祥. 2022. 准噶尔盆地玛湖凹陷二叠系风城组碱湖型页岩油勘探进展. 中国石油勘探, 27(1): 60~72.

    • 唐勇, 郑孟林, 王霞田, 王韬, 谢再波, 秦臻, 黑晨露, 成虎, 高远, 陶辉飞. 2022. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境. 天然气地球科学, 33(5): 677~692.

    • 汪友平, 王益维, 孟祥龙, 苏建政, 李凤霞, 李宗田. 2013. 美国油页岩原位开采技术与启示. 石油钻采工艺, 35(6): 55~59.

    • 王小军, 梁利喜, 赵龙, 刘向君, 秦志军, 李玮. 2019. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价. 石油与天然气地质, 40(3): 661~668.

    • 王绪龙, 高岗, 杨海波, 柳广弟, 黄志龙, 韦恒叶. 2008. 准噶尔盆地西北缘五八开发区二叠系原油特征与成藏关系探讨. 高校地质学报, (2): 256~261.

    • 王学勇, 卞保力, 刘海磊, 蒋中发, 周路, 朱永才. 2022. 准噶尔盆地玛湖地区二叠系风城组地震相特征及沉积相分布. 天然气地球科学, 33(5): 693~707.

    • 许琳, 常秋生, 冯玲丽, 张妮, 刘欢. 2019. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素. 中国石油勘探, 24(5): 649~660.

    • 杨帆, 宋永, 陈洪, 龚德瑜, 卞保力, 刘海磊. 2019. 准噶尔盆地阜东地区石炭系松喀尔苏组烃源岩评价及气源对比. 天然气地球科学, 30(7): 1018~1026.

    • 赵文智, 何登发. 1999. 石油地质综合研究导论. 北京: 石油工业出版社.

    • 赵文智, 胡素云, 侯连华. 2018. 页岩油地下原位转化的内涵与战略地位. 石油勘探与开发, 45(4): 537~545.

    • 赵文智, 胡素云, 侯连华, 杨涛, 李欣, 郭彬程, 杨智. 2020a. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1~10.

    • 赵文智, 贾爱林, 位云生, 王军磊, 朱汉卿. 2020b. 中国页岩气勘探开发进展及发展展望. 中国石油勘探, 25(1): 31~44.

    • 支东明, 宋永, 何文军, 贾希玉, 邹阳, 黄立良. 2019a. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389~401.

    • 支东明, 唐勇, 郑孟林, 徐洋, 曹剑, 丁靖, 赵长永. 2019b. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素. 中国石油勘探, 24(5): 615~623.

    • 支东明, 唐勇, 何文军, 郭旭光, 郑孟林, 黄立良. 2021. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 38~51.

  • 参考文献

    • Aitken C M, Jones D M, Larter S R. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 431(7006).

    • Cao Jian, Xia Liuwei, Wang Tingting, Zhi Dongming, Tang Yong, Li Wenwen. 2021. An alkaline lacustrine in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleo-environment and petroleum geology. Earth-Science Reviews, 202(1): 103091.

    • Cao Zhe, Liu Guangdi, Kong Yuhua, Wang Chengyun, Niu Zicheng, Zhang Jingya, Geng Changbo, Shan Xiang, Wei Zhipeng. 2016a. Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer sag, Junggar basin. International Journal of Coal Geology, 153: 37~51.

    • Cao Zhe, Liu Guangdi, Xiang Baoli, Wang Peng, Niu Geng, Niu Zicheng, Li Chaozheng, Wang Chengyun. 2016b. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar sag, Junggar basin. AAPG Bulletin, 101: 39~72.

    • Chen Jianping, Wang Xulong, Deng Chunping, Liang Digang, Zhang Yueqian, Zhao Zhe, Ni Yunyan, Zhi Dongming, Yang Haibo, Wang Yutao. 2016. Oil and gas source, occurrence and petroleum system in Junggar basin, Northwest China. Acta Geological Sinica, 90(3): 421~450 (in Chinese with English abstract).

    • Connan J. 1984. Biodegradation of crude oils in reservoirs. In: Books J, Welte D, eds. Advances in Petroleum Geochemistry. London: Acdemic Press.

    • Gao Gang, Xiang Baoli, Wang Xuan, Wang Yi, Zhou Ranran, Ma Wanyun, Ren Jiangling, Zhao Ke. 2016. Stylolite occurrence and organic matter enrichment of the mixed sediments in the Lucaogou Formation of the Jimusaer sag in Junggar basin. Natural Gas Geoscience, 27(11): 1963~1969 (in Chinese with English abstract).

    • Gao Gang, Xiang Baoli, Li Taotao, Ren Jiangling, Kong Yuhua. 2017. Tight oil system particularity of Lucaogou Formation in Jimsar sag, Junggar basin. Journal of Sedimentology, 35(4): 824~833 (in Chinese with English abstract).

    • Gao Gang, Yang Shangru, Ren Jiangling, Zhang Weiwei, Xiang Baoli. 2018. Geochemistry and depositional conditions of the carbonate-bearing lacustrine source rocks: A case study from the Early Permian Fengcheng Formation of well FN7 in the northwestern Junggar basin. Journal of Petroleum Science and Engineering, 162: 407~418.

    • Gao Gang, Xu Xinde, Qu Tong, Gan Jun, Dang Wenlong, Zhou Xiaoxiao, Liu Fengyan. 2020. Petroleum origins and accumulation patterns in the Weixinan sag in the Beibu Gulf basin, using Subsag B as an example. Acta Geologica Sinica (English Edition), 94(5): 1515~1530.

    • Gong Deyu, Wang Xulong, Zhou Chuanmin, Zheng Menglin, Jiang Wenlong, Wu Wei'an. 2021. Discovery of large-scale Carboniferous source rocks and natural gas exploration potential in the southeast of Junggar basin. Acta Petrolei Sinica, 42(7): 836~852 (in Chinese with English abstract).

    • Hall P B, Douglas A G. 1981. The distribution of cyclic alkanes in two lacustrine deposits. In: Hjoray M, Albrecht C, Cornford C, et al. , eds. Advances in Organic Geochemistry. Chichester, UK: John Wiley & Sons, 576~587.

    • He Wenjun, Fei Liying, Ablimiti Yiming, Yang Haibo, Lan Wenfang, Ding Jing, Bao Haijuan, Guo Wenjian. 2019. Accumulation conditions of deep hydrocarbon and exploration potential analysis in Junggar basin, NW China. Geoscience Frontiers, 26(1): 189~201 (in Chinese with English abstract).

    • Hou Lianhua, Ma Weijiao, Luo Xia, Liu Jinzhong, Liu Senhu, Zhao Zhongying. 2020. Hydrocarbon generation-retention-expulsion mechanism and shale oil producibility of the Permian Lucaogou shale in the Junggar basin as simulated by semi-open pyrolysis experiments. Marine and Petroleum Geology, 125: 104880.

    • Hu Jianyi, Xu Shubao, Cheng Keming. 1989. Geology and geochemical genesis of heavy oil reservoirs in China. Acta Petrolei Sinica, (1): 1~11 (in Chinese with English abstract).

    • Huang Haiping, Larter S R, Bowler B F J, Oldenburg T B P. 2003. A dynamic biodegradation model suggested by petroleum compositional gradients within reservoir columns from the Liaohe basin, NE China. Organic Geochemistry, 35(3): 299~316.

    • Hunt J M. 1979. Petroleum Geochemistry and Geology. San Francisco: Freeman.

    • Júnior Sousa G R, Santos A L S, Lima S G, Lopes J A D, Reis F A M, Santos Neto E V, Chang H K. 2013. Evidence for euphotic zone anoxia during the deposition of Aptian source rocks based on aryl isoprenoids in petroleum, Sergipe-Alagoas basin, northeastern Brazil. Organic Geochemistry, 63: 94~104.

    • Kang Jilun, Wang Jiahao, Ma Qiang, Li Chunquan, Chen Xinxin. 2022. Fine-grained sublacustrine fan deposits and their significance of shale oil reservoirs in the Lucaogou Formation in Jimsar sag, Junggar basin. Bulletin of Geological Science and Technology, 1~12 (in Chinese with English abstract).

    • Kuang Lichun, Tang Yong, Lei Dewen, Chang Qiusheng, Ouyang Min, Hou Lianhua, Liu Deguang. 2012. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar basin, NW China. Petroleum Exploration and Development, 39(6): 657~667 (in Chinese with English abstract).

    • Leythaeuser D, Schaefer R G, Radke M. 1988. Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. I: Gross composition of C15+-soluble organic matter and molecular composition of C15+-saturated hydrocarbons. Geochimica et Cosmochimica Acta, 52(3): 701~713.

    • Li Erting, Xiang Baoli, Liu Xiangjun, Zhou Ni, Pan Changchun, Dilidar Rouzi, Mi Julei. 2020. Study on the genesis of shale oil thickening in Lucaogou Formation in Jimsar sag, Junggar basin. Natural Gas Geoscience, 31(2): 250~257 (in Chinese with English abstract).

    • Li Sumei, Pang Xiongqi, Gao Xianzhi, Liu Keyu, Li Xiaoguang, Chen Zhenyan, Liu Baohong. 2008. Genesis mechanism of heavy oil in western Liaohe River depression. Science in China (Series D: Earth Sciences), (S1): 138~149 (in Chinese with English abstract).

    • Lin Jingwen, Xie Xiaomin, Wen Zhigang, Wu Fenting, Xu Jin, Ma Zhongliang, Zhang Lei. 2022. A comparative study on the geochemical characteristic of expelled and retained oil from hydrocarbon generation simulation of Australian Tasmanian oil shale I: Fraction and isotopic compositions. Petroleum Geology & Experiment, 44(1): 150~159 (in Chinese with English abstract).

    • Liu Guangdi. 2018. Petroleum Geology. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Liu Shiju, Gao Gang, Gang Wenzhe, Qu Tong, Dang Wenlong, Zhang Weiwei, Yang Shangru, Zhu Kangle. 2020. Implications of organic matter source and fluid migration from geochemical characteristics of stylolites and matrix in carbonate rocks: A case study from the Carboniferous and the Ordovician in the Sichuan basin, SW China. Journal of Petroleum Science and Engineering, 186: 106606.

    • Liu Shiju, Gao Gang, Jin Jun, Gang Wenzhe, Xiang Baoli. 2021. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: Biogenic source, depositional environment and hydrocarbon generation potential in Junggar basin, China. Journal of Petroleum Science and Engineering, 208 (Part D): 109670.

    • Liu Shiju, Gao Gang, Gang Wenzhe, Xiang Baoli, Wang Ming, Wang Chengyun. 2022a. Comparison of formation conditions of source rocks of Fengcheng and Lucaogou Formations in the Junggar basin, NW China: Implications for organic matter enrichment and hydrocarbon potential. Journal of Earth Science, 1~34. http: //kns. cnki. net/kcms/detail/42. 1788. P. 20211021. 1507. 004. html.

    • Liu Shiju, Gao Gang, Jin Jun, Misch David, Wu Xinsong, Gang Wenzhe, Wang Ming, Xiang Baoli, Ma Wanyun. 2022b. Mechanism of differential enrichment of shale oils in the upper and lower members of the Lucaogou Formation in the Jimusaer sag, Junggar basin. Marine and Petroleum Geology, 142: 105747.

    • Moldowan J M, Sundararaman P, Schoell M. 1986. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of S. W. Germany. Organic Geochemistry, 10: 915~926.

    • Peters K E, Moldowan J M. 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs: Prentice-Hall.

    • Peters K E, Walters C C, Moldowan J M. 2005. The biomarker guide. In: Biomarkers and Isotopes in Petroleum Exploration and Earth History, second ed. vol. 2. Cambridge: Cambridge University Press, 475e1155.

    • Seifert W K, Moldowan J M. 1981. Palaeoreconstruction by biological markers. Geochimica et Cosmochimica Acta, 45: 783~794.

    • Shanmugam G. 1985. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland basin, Australia. AAPG Bulletin, 69: 1241~1254.

    • Song Yong, Yang Zhifeng, He Wenjun, Gan Renzhong, Zhang Rong, Huang Liliang, Xu Pei, Zhao Xinfei, Chen Zhixiang. 2022. Exploration progress of alkaline lake type shale oil of the Permian Fengcheng Formation of Mahu sag, Junggar basin. China Petroleum Exploration, 27(1): 60~72 (in Chinese with English abstract).

    • Summons R E, Bradley A S, Jahnke L L, Waldbauer J R. 2006. Steroids, triterpenoids and molecular oxygen. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 361: 951~968.

    • Tang Yong, Zheng Menglin, Wang Xiatian, Wang Tao, Xie Zaibo, Qin Zhen, Hei Chenlu, Cheng Hu, Gao Yuan, Tao Huifei. 2022. Sendimentary palaeoenvironment of source rocks of Fengcheng Formation in Mahu sag, Junggar basin. Natural Gas Geoscience, 33(5): 677~692 (in Chinese with English abstract).

    • Tissot B P, Welte D H. 1978. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration. Berlin: Springer-Verlag.

    • Wang Xiaojun, Liang Lixi, Zhao Long, Liu Xiangjun, Qin Zhijun, Li Wei. 2019. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer sag, Junggar basin. Oil & Gas Geology, 40(3): 661~668 (in Chinese with English abstract).

    • Wang Xueyong, Bian Baoli, Liu Hailei, Jiang Zhongfa, Zhou Lu, Zhu Yongcai. 2022. Seismic facies characteristics and distribution of sedimentary facies of Permian Fengcheng Formation in Mahu area, Junggar basin. Natural Gas Geoscience, 33(5): 693~707 (in Chinese with English abstract).

    • Wang Xulong, Gao Gang, Yang Haibo, Liu Guangdi, Huang Zhilong, Wei Hengye. 2008. Research on relation between oil properties and petroleum pool formation of Permian in the 5th & 8th districts, northwestern margin of Junggar basin. Geological Journal of China Universities, (2): 256~261 (in Chinese with English abstract).

    • Wang Youping, Wang Yiwei, Meng Xianglong, Su Jianzheng, Li Fengxia, Li Zongtian. 2013. Enlightenment of American's oil shale in-situ retorting technology. Oil Drilling & Production Technology, 35(6): 55~59 (in Chinese with English abstract).

    • Waples D, Machihara T. 1991. Biomarkers for Geologists, a Practical Guide to the Application of Steranes and Triterpanes in Petroleum Geology. American Association of Petroleum Geologists Methods in Exploration Series 9, Tulsa.

    • Xu Lin, Chang Qiusheng, Feng Lingli, Zhang Ni, Liu Huan. 2019. The reservoir characteristics and control factors of shale oil reservoirs in Permian Fengcheng Formation of Mahu sag, Junggar basin. China Petroleum Exploration, 24(5): 649~660 (in Chinese with English abstract).

    • Yang Fan, Song Yong, Chen Hong, Gong Deyu, Bian Baoli, Liu Hailei. 2019. Evaluation of Carboniferous Songkaersu Formation source rocks and gas-source correlation in the Fukang sag of eastern Junggar basin. Natural Gas Geoscience, 30(7): 1018~1026 (in Chinese with English abstract).

    • Zhao Wenzhi, He Dengfa. 1999. Introduction to Comprehensive Research on Petroleum Geology. Beijing: Petroleum Industry Press (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Hou Lianhua. 2018. Connotation and strategic role of in-situ conversion processing underground in the onshore China. Petroleum Exploration and Development, 45(4): 537~545 (in Chinese with English abstract).

    • Zhao Wenzhi, Hu Suyun, Hou Lianhua, Yang Tao, Li Xin, Guo Bincheng, Yang Zhi. 2020a. Types and resource potential of continental shale oil in China and its boundary with tight oil. Petroleum Exploration and Development, 47(1): 1~10 (in Chinese with English abstract).

    • Zhao Wenzhi, Jia Ailin, Yi Yunsheng, Wang Junlei, Zhu Hanqing. 2020b. Progress in shale exploration in China and prospects for future development. China Petroleum Exploration, 25(1): 31~44 (in Chinese with English abstract).

    • Zhi Dongming, Song Yong, He Wenjun, Jia Xiyu, Zou Yang, Huang Liliang. 2019a. Geological characteristics, resource potential and exploration direction of shale oil in Middle-Lower Permian, Junggar basin. Xinjiang Petroleum Geology, 40(4): 389~401 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, Zheng Menglin, Xu Yang, Cao Jian, Ding Jing, Zhao Changyong. 2019b. Geological characteristics and accumulation control factors of shale reservoir in the Fengcheng Formation, Mahu sag, Junggar basin. China Petroleum Exploration, 24(5): 615~623 (in Chinese with English abstract).

    • Zhi Dongming, Tang Yong, He Wenjun, Guo Xuguang, Zheng Menglin, Huang Liliang. 2021. Orderly coexistence and accumulation modes of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu sag, Junggar basin. Petroleum Exploration and Development, 48(1): 38~51 (in Chinese with English abstract).

    • 陈建平, 王绪龙, 邓春萍, 梁狄刚, 张越迁, 赵喆, 倪云燕, 支东明, 杨海波, 王屿涛. 2016. 准噶尔盆地油气源、油气分布与油气系统. 地质学报, 90(3): 421~450.

    • 高岗, 向宝力, 王轩, 王熠, 周然然, 马万云, 任江铃, 赵克. 2016. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究. 天然气地球科学, 27(11): 1963~1969.

    • 高岗, 向宝力, 李涛涛, 任江玲, 孔玉华. 2017. 吉木萨尔凹陷芦草沟组致密油系统的成藏特殊性. 沉积学报, 35(4): 824~833.

    • 龚德瑜, 王绪龙, 周川闽, 郑孟林, 蒋文龙, 吴卫安. 2021. 准噶尔盆地东南部石炭系规模烃源岩的发现及天然气勘探潜力. 石油学报, 42(7): 836~852.

    • 何文军, 费李莹, 阿布力米提·依明, 杨海波, 蓝文芳, 丁靖, 鲍海娟, 郭文建. 2019. 准噶尔盆地深层油气成藏条件与勘探潜力分析. 地学前缘, 26(1): 189~201.

    • 胡见义, 徐树宝, 程克明. 1989. 中国重质油藏的地质和地球化学成因. 石油学报, (1): 1~11.

    • 康积伦, 王家豪, 马强, 李纯泉, 陈鑫鑫. 2022. 准噶尔盆地吉木萨尔凹陷芦草沟组细粒湖底扇沉积及其页岩油储层意义. 地质科技通报, 1~12.

    • 匡立春, 唐勇, 雷德文, 常秋生, 欧阳敏, 侯连华, 刘得光. 2012. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 39(6): 657~667.

    • 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜, 米巨磊. 2020. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析. 天然气地球科学, 31(2): 250~257.

    • 李素梅, 庞雄奇, 高先志, 刘可禹, 李小光, 陈振岩, 刘宝鸿. 2008. 辽河西部凹陷稠油成因机制. 中国科学(D辑: 地球科学), (S1): 138~149.

    • 林静文, 谢小敏, 文志刚, 吴芬婷, 许锦, 马中良, 张雷. 2022. 塔斯马尼亚油页岩生烃模拟排出油与滞留油地球化学对比Ⅰ: 族组分及同位素组成. 石油实验地质, 44(1): 150~159.

    • 柳广弟. 2018. 石油地质学. 北京: 石油工业出版社.

    • 宋永, 杨智峰, 何文军, 甘仁忠, 张融, 黄立良, 徐佩, 赵辛楣, 陈志祥. 2022. 准噶尔盆地玛湖凹陷二叠系风城组碱湖型页岩油勘探进展. 中国石油勘探, 27(1): 60~72.

    • 唐勇, 郑孟林, 王霞田, 王韬, 谢再波, 秦臻, 黑晨露, 成虎, 高远, 陶辉飞. 2022. 准噶尔盆地玛湖凹陷风城组烃源岩沉积古环境. 天然气地球科学, 33(5): 677~692.

    • 汪友平, 王益维, 孟祥龙, 苏建政, 李凤霞, 李宗田. 2013. 美国油页岩原位开采技术与启示. 石油钻采工艺, 35(6): 55~59.

    • 王小军, 梁利喜, 赵龙, 刘向君, 秦志军, 李玮. 2019. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价. 石油与天然气地质, 40(3): 661~668.

    • 王绪龙, 高岗, 杨海波, 柳广弟, 黄志龙, 韦恒叶. 2008. 准噶尔盆地西北缘五八开发区二叠系原油特征与成藏关系探讨. 高校地质学报, (2): 256~261.

    • 王学勇, 卞保力, 刘海磊, 蒋中发, 周路, 朱永才. 2022. 准噶尔盆地玛湖地区二叠系风城组地震相特征及沉积相分布. 天然气地球科学, 33(5): 693~707.

    • 许琳, 常秋生, 冯玲丽, 张妮, 刘欢. 2019. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素. 中国石油勘探, 24(5): 649~660.

    • 杨帆, 宋永, 陈洪, 龚德瑜, 卞保力, 刘海磊. 2019. 准噶尔盆地阜东地区石炭系松喀尔苏组烃源岩评价及气源对比. 天然气地球科学, 30(7): 1018~1026.

    • 赵文智, 何登发. 1999. 石油地质综合研究导论. 北京: 石油工业出版社.

    • 赵文智, 胡素云, 侯连华. 2018. 页岩油地下原位转化的内涵与战略地位. 石油勘探与开发, 45(4): 537~545.

    • 赵文智, 胡素云, 侯连华, 杨涛, 李欣, 郭彬程, 杨智. 2020a. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1~10.

    • 赵文智, 贾爱林, 位云生, 王军磊, 朱汉卿. 2020b. 中国页岩气勘探开发进展及发展展望. 中国石油勘探, 25(1): 31~44.

    • 支东明, 宋永, 何文军, 贾希玉, 邹阳, 黄立良. 2019a. 准噶尔盆地中—下二叠统页岩油地质特征、资源潜力及勘探方向. 新疆石油地质, 40(4): 389~401.

    • 支东明, 唐勇, 郑孟林, 徐洋, 曹剑, 丁靖, 赵长永. 2019b. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素. 中国石油勘探, 24(5): 615~623.

    • 支东明, 唐勇, 何文军, 郭旭光, 郑孟林, 黄立良. 2021. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式. 石油勘探与开发, 48(1): 38~51.