en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

潘蓓蓓,女,1997年生。博士研究生,矿物学、岩石学、矿床学专业。E-mail:pbbcugb@163.com。

通讯作者:

黄河,男,1986年生。博士,副研究员,从事岩石地球化学研究。E-mail:huanghe@cags.ac.cn。

参考文献
Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1~29.
参考文献
Bowring S A, Housh T. 1995. The Earth's early evolution. Science, 269(5230): 1535~1540.
参考文献
Brown P E, Becker S M. 1986. Fractionation hybridisation and magma-mixing in the Kialineq Centre, East Greenland. Contributions to Mineralogy and Petrology, 1(92): 57~70.
参考文献
Chai Fengmei, Zhang Zhaochong, Mao Jingwen, Dong Lianhui, Zhang Zuoheng, Wu Hua. 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences, 32(2-4): 218~235.
参考文献
Chen Bin, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5): 1307~1320.
参考文献
Chen Xijie, Shu Liangshu, Santosh M. 2011. Late Paleozoic post-collisional magmatism in the eastern Tianshan belt, Northwest China: New insights from geochemistry, geochronology and petrology of bimodal volcanic rocks. Lithos, 127(3-4): 581~598.
参考文献
Cornet J, Laurent O, Wotzlaw J F, Antonelli M A, Otamendi J, Bergantz G W, Bachmann O. 2022. Reworking subducted sediments in arc magmas and the isotopic diversity of the continental crust: The case of the Ordovician Famatinian crustal section, Argentina. Earth and Planetary Science Letters, 595: 117706.
参考文献
Deng Xiaohua, Chen Yanjing, Santosh M, Wang Jingbin, Li Chao, Yue Suwei, Zheng Zhen, Chen Hongjin, Tang Haoshu, Dong Lianhui, Qu Xun. 2017. U-Pb zircon, Re-Os molybdenite geochronology and Rb-Sr geochemistry from the Xiaobaishitou W(-Mo)deposit: Implications for Triassic tectonic setting in eastern Tianshan, NW China. Ore Geology Reviews, 80: 332~351.
参考文献
Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology(Boulder), 7(20): 641~644.
参考文献
Eiler J M. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in Mineralogy and Geochemistry, 43(1): 319~364.
参考文献
Ewart A. 1998. Etendekavolcanism of the Goboboseb mountains and messum igneous complex, Namibia. Part II: Voluminous quartz latite volcanism of the Awahab magma system. Journal of Petrology, 39(2): 227~253.
参考文献
Frost C D, Frost B R, Bell J M, Chamberlain K R. 2002. The relationship between A-type granites and residual magmas from anorthosite: Evidence from the northern Sherman Batholith, Laramie Mountains, Wyoming, USA. Precambrian Research, 119(1-4): 45~71.
参考文献
Gan Baoping. 2017. Neoproterozoic alkaline complex in the northern Yangtze Block, Micangshan Mountains area : Geochemical significances and geological implications. Master degree dissertation of Northwest University.
参考文献
Gao Zhiwu, Lü Changliang, Deng Mingguo, Guan Shenjin, Yang Fuqiang. 2021. Geochemical features and tectonic setting of the mesozoicintrusions in eastern Tianshan. Earth Science, 46(7): 2287~2298. (in Chinese with English abstract).
参考文献
Ge Rongfeng, Zhu Wenbin, Wu Hailin, Zheng Bihai, Zhu Xiaoqing, He Jinwen. 2012. The Paleozoic northern margin of the Tarim craton: Passive or active? Lithos, 142-143: 1~15.
参考文献
Grunsky Em Massey N. 1994. Using geochemical data: Evaluation, presentation, interpretation. Geochimica et Cosmochimica Acta, 59(3): 439~441.
参考文献
Gu Lianxing, Zhang Zunzhong, Wu Changzhi, Wang Yinxi, Tang Junhua, Wang Chuansheng, Xi Aihua, Zheng Yuanchuan. 2006. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrologica Sinica, 22(5): 1103~1120 (in Chinese with English abstract).
参考文献
Guo Ruiqing, Qin Qie, Zhang Xiaofan, Sun Baosheng, Guo Yin. 2013. Geochronology, petrogeochemistry of western Kuoktagh alkaline rocks in Quruqtagh area in Xinjiang and its geological implications. Journal of Jilin University(Earth Science Edition), 43(2): 457~468 (in Chinese with English abstract).
参考文献
Han Baofu, Wang Shiguang, Jahn B M, Hong Dawei, Kagamid H, Sun Yuanlin. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135~159.
参考文献
Han Chunming, Xiao Wenjiao, Su Benxun, Sakyi P A, Ao Songjian, Zhang Jien, Zhang Zhiyong, Wan Bo, Song Dongfang, Wang Zhongmei, Zhao Na. 2018. Geology, Re-Os and U-Pb geochronology and sulfur isotope of the Donggebi porphyry Mo deposit, Xinjiang, NW China, Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 165: 270~284.
参考文献
Han Yigui, Zhao Gunchun. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129~152.
参考文献
He Zhenyu, Klemd R, Yan Lili, Lu Tianyu, Zhang Zeming. 2018. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: Evidence from oxygen and hafnium isotopes in zircon. Scientific Reports, 8: 5054.
参考文献
Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219~229.
参考文献
Hong Dawei, Li Shiguang, Han Baofu, Jin Manyuan. 1995. Classification of tectonic environment of alkaline granite and its identification symbols. Science in China(Series B), 25(4): 418~426 (in Chinese without English abstract).
参考文献
Hong Dawei, Wang Shiguang, Xie Xilin, Zhang Jisheng, Wang Tao. 2003. Correlation between continental crustal growth and the Supercontinental Cycle: Evidence from the granites with positive εNd in the Central Asian Orogenic Belt. Acta Geologica Sinica, 77(2): 203~209.
参考文献
Huang He, Zhang Zhaochong, Kusky T, Zhang Dongyang, Hou Tong, Liu Junlai, Zhao Zhidan, 2012a. Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth. Lithos, 140-141: 65~84.
参考文献
Huang He, Zhang Zhaochong, Kusky T, Santosh M, Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan. 2012b. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.
参考文献
Huang He, Zhang Zhaochong, Santosh M, Zhang Dongyang, Wang Tao. 2015. Petrogenesis of the early Permian volcanic rocks in the Chinese South Tianshan: Implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 228-229: 23~42.
参考文献
Huang He, Wang Tao, Tong Yin, Qin Qie, Ma Xuxuan, Yin Jiyuan. 2020. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili block and adjacent regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 208: 103255.
参考文献
Huang W L, Wyllie P J. 1981. Phase relationships of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research: Solid Earth, B11(86): 10515~10529.
参考文献
Huang Wuuliang, Wyllie Petee J. 1975. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 Kilobars, dry and with excess water. The Journal of Geology, 6(83): 737~748.
参考文献
Huo Tengfei, Yang Debin, Shi Jiangpeng, Xu Wenliang, Yang Haotian. 2016. Petrogenesis of the Early Cretaceous alkali-rich intrusive rocks in the central North China Block: Constraints from zircon U-Pb chronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 32(3): 697~712
参考文献
Jahn B M, Wu Fuyuan, Chen Bin. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82~92.
参考文献
Jahn B M, Malpas J, Fletcher C J N, Ali J R, Aitchison J C. 2004. The Central Asian orogenic belt and growth of the continental crust in the Phanerozoic. Aspects of the Tectonic Evolution of China, 1(226): 73~100.
参考文献
James D E. 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. AnnualReview of Earth and Planetary Sciences, 1(9): 311~344.
参考文献
Jia Xiaoliang, Guo Ruiqing, Chai Fengmei, Nijiati Abuduxun, Qin Qie, Zhu Xin, Wang Kezhuo. 2013. Geochemistry and geochronology of monzogranites in Kuruktag of Xinjiang and their tectonic implications. Geological Bulletin of China, 32(2-3): 239~250 (in Chinese with English abstract).
参考文献
Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science(American Association for the Advancement of Science), 5814(315): 980~983.
参考文献
Lackey J, Valley J, Saleeby J. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: Evidence from high-δ18O zircon. Earth and Planetary Science Letters, 235(1-2): 315~330.
参考文献
Lassiter J C, DePaolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. Geophysical Monograph American Geophysical Union, 100: 335~356.
参考文献
Lei Ruxiong, Wu Changzhi, Zhang Zunzhong, Gu Lianxing, Tang Junhua, Li Guangrong. 2013. Geochronology, geochemistry and tectonic significances of the Yamansubei pluton in eastern Tianshan, North China. Acta Petrologica Sinica, 29(8): 2653~2664 (in Chinese with English abstract).
参考文献
Lei Ruxiong, Brzozowski M J, Feng Yonggang, Zhang Kai, Muhtar M N, Luo Xianglong, Wu Changzhi. 2021. Triassic crust-mantle interaction in the Eastern Tianshan, southern Altaids: Insights from microgranular enclaves and their host Tianhu granitoids. Lithos, 402-403: 105879.
参考文献
Li Ning, Yang Fuquan, Zhang Zhixin, Yang Chengdong. 2019. Geochemistry and chronology of the biotite granite in the Xiaobaishitou W-(Mo)deposit, eastern Tianshan, China: Petrogenesis and tectonic implications. Ore Geology Reviews, 107: 999~1019.
参考文献
Li Ning, Yang Fuquan, Zhang Zhixin, Li Chao. 2020. Dating the Xiaobaishitou skarn W-(Mo)deposit, Eastern Tianshan, NW China: Constraints from zircon U-Pb, muscovite 40Ar-39Ar, and molybdenite Re-Os system. Ore Geology Reviews, 124: 103637.
参考文献
Li Shan, Wang Tao, Tong Ying. 2010. Spatial-temporal distribution and tectonic settings of Early Mesozonic granitoids in the middle-south segment of the Central Asia Orogenic System. Acta Petrologica Et Mineralogica, 29(6): 642~662(in Chinese with English abstract).
参考文献
Li Shan, Wang Tao, Wilde S A, Tong Ying, Hong Dawei, Guo Qianqian. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 134-135: 123~145.
参考文献
Li Yang, Tang Guoqiang, Liu Yu, He Sheng, Chen Bo, Li Qiuli. 2021. Revisiting apatite SIMS oxygen isotope analysis and Qinghu-Ap reference material. Chemical Geology, 582: 120445.
参考文献
Litvinovsky B A, Steel I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41: 717~737.
参考文献
Litvinovsky B A, Jahn B M, Eyal M. 2015. Mantle-derived sources of syenites from the A-type igneous suites—New approach to the provenance of alkaline silicic magmas. Lithos, 242~265.
参考文献
Long Xiaoping, Yuan Chao, Sun Min, Zhao Guochun, Xiao Wenjiao, Wang Yujing, Yang Yueheng, Hu Aiqin. 2010. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180(3-4): 272~284.
参考文献
Lu Songnian, Li Huaikun, Zhang Chuanlin, Niu Guanghua. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments. Precambrian Research, 160: 94~107.
参考文献
Ma Yuan, Zhang Zhaochong, Huang He, Santosh M, Cheng Zhiguo. 2016. Petrogenesis of the Bashisuogong bimodal igneous complex in southwest Tianshan Mountains, China: Implications for the Tarim large igneous province. Lithos, 264: 509~523.
参考文献
Madhavan V, Rao J M, Srinivas M. 1999. Mid-Proterozoic Intraplate Alkaline Magmatism in the Eastern Dharwar Craton of India: The Cuddapab Province. Journal of the Geological Society of India, 53(2): 143~162.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society America Bulletin, 101(5): 635~643.
参考文献
Middlemost E A K. 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London: Longman.
参考文献
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 1(58): 63~81.
参考文献
Peng Touping, Fan Weiming, Zhao Guochun, Peng Bingxia, Xia Xiaoping, Mao Yongsheng. 2015. Petrogenesis of the early Paleozoic strongly peraluminous granites in the Western South China Block and its tectonic implications. Journal of Asian Earth Sciences, 98: 399~420.
参考文献
Qin Kezhang, Fang Tonghui, Wang Shulai, Zhu Baoqing, Feng Yimin, Yu Haifang, Xiu Qunyi. 2002. Plate tectonics division, evolution and metallogenic settings in Eastern Tianshan mountains, NW-China. Xinjiang Geology, 20(4): 302~307 (in Chinese with English abstract).
参考文献
Ren Kangxu. 2003. Studyprocess of the alkaline rocks: A review. Geology of Chemical Minerals, 25(3): 151~163 (in Chinese with English abstract).
参考文献
Riishuus M S, Peate D W, Tegner C, Wilson J R, Brooks C K, Waight T E. 2005. Petrogenesis of syenites at a rifted continental margin: Origin, contamination and interaction of alkaline mafic and felsic magmas in the Astrophyllite Bay complex, East Greenland. Contributions to Mineralogy and Petrology, 3(149): 350~371.
参考文献
Saibal G, Jagatbikas B, Sumit K M, Manasij S. 2005. Alkaline magmatism versus collision tectonics in the eastern Ghats belt, India: Constraints from structural studies in the Koraput complex. Gondwana Research, 8(3): 403~419.
参考文献
Shu L S, Deng X L, Zhu W B, Ma D S, Xiao W J. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences, 5(42): 774~790.
参考文献
Stepanov A, Mavrogenes J A, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 6(167): 1009.
参考文献
Su Benxun, Qin Kezhang, Sakyi P A, Tang Dongmei, Liu Pingping, Malaviarachchi S P K, Xiao Qinghua, Sun He. 2012. Geochronologic-petrochemical studies of the Hongshishan mafic-ultramafic intrusion, Beishan area, Xinjiang (NW)China: Petrogenesis and tectonic implications. International Geology Review, 54(3-4): 270~289.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.
参考文献
Tian Wei, Campbell I H, Allen C M, Guan Ping, Pan Wenqing, Chen Mimi, Yu Hongjiao, Zhu Wenping. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 3(160): 407~425.
参考文献
Tian Zhonghua, Xiao Wenjiao, Shan Yehua, Windley Brian, Han Chunming, Zhang Ji'en, Song Dongfang. 2013. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids. Journal of Structural Geology, 52: 119~135.
参考文献
Tu Guangzhi. 1989. On the alkali-rich intrusive rocks. Mineral Resources and Geology, 13(3): 1~4.
参考文献
Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Pathaway Ridge, South Australia. Lithos, 28: 151~179.
参考文献
Upadhyay D, Raith M M, Mezger K, Hammerschmidt K. 2006. Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos, 89(3-4): 447~477.
参考文献
Valley J W, Kinny P D, Schulze D J, Spicuzza M J. 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2): 1~11.
参考文献
Wang Kailei, Li Huikai, Zhang Xuemeng, Tian Zengbiao, Zhang Jiaxing, Xing Dongxue, Zheng Le, Dai Tao. 2021. Geochemistry, geochronology and Sr-Nd isotope of mafic dykes in the Yabulai area, northern margin of the Alxa Massif. Geology and Exploration, 57(5): 1017~1027 (in Chinese with English abstract).
参考文献
Wang Xiangsong, Cai Keda, Sun Min, Xiao Wenjiao, Xia Xiaoping, Wan Bo, Bao Zihe, Wang Yannan. 2018. Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis. Journal of Asian Earth Sciences, 153(3): 118~138.
参考文献
Wang Yinhong, Zhang Fangfang, Liu Jiajun, Xue Chunji, Wang Jianping, Liu Bin, Lu Weiwei. 2015. Petrogenesis of granites in Baishan molybdenum deposit, Eastern Tianshan, Xinjiang: Zircon U-Pb geochronology, geochemistry, and Hf isotope constraints. Acta Petrologica Sinica, 31(7): 1962~1976 (in Chinese with English abstract).
参考文献
Wang Yinhong, Zhang Fangfang, Liu Jiajun, Xue Chunji, Li Bochao, Xian Xuechen. 2018. Ore genesis and hydrothermal evolution of the Donggebi porphyry Mo deposit, Xinjiang, Northwest China: Evidence from isotopes (C, H, O, S, Pb), fluid inclusions, and molybdenite Re-Os dating. Economic Geology, 2(113): 463~488.
参考文献
Wei Xun, Xu Yigang. 2011. Petrogenesis of Xiaohaizi syenite complex from Bachu area, Tarim. Acta Petrologica Sinica, 27(10): 2984~3004.
参考文献
Wei Xun, Xu Yigang, He Bin, Zhang Le, Xia Xiaoping, Shi Xuefa. 2019. Zircon U-Pb age and Hf-O isotope insights into genesis of Permian Tarim felsic rocks, NW China: Implications for crustal melting in response to a mantle plume. Gondwana Research, 76: 290~302.
参考文献
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 4(95): 407~419.
参考文献
Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, FranchiI, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz-Dobrick B, Skr O, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y F. 2004. Further characterization of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9~39.
参考文献
Wright J B. 1969. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis. Geological Magazine, 106(4): 370~384.
参考文献
Wu Changzhi, Zhang Zunzhong, Gu Lianxing, Tang Junhua, Lei Ruxiong. 2010. Sr, Nd and O isotopic characters of quartz syenite in the Weiya magmatic complex from Eastern Tianshan in NW China: Melting of the thickened juvenile lower crust. Geochemical Journal, 44: 285~298.
参考文献
Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253~273.
参考文献
Xu Yigang, Wei Xun, Luo Zhenyu, Liu Haiquan, Cao Jun. 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204: 20~35.
参考文献
Yang Jinhui, Chung Sunlin, Wilde S A, Wu Fuyuan, Chu Meifei, Lo Chinghua, Fan Hongrui. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99~125.
参考文献
Yuan Chao, Sun Min, Wilde S, Xiao Wenjiao, Xu Yigang, Long Xiaoping, Zhao Guochun. 2010. Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos, 119(3-4): 269~288.
参考文献
Zeng Guangce, Qiu Jiaxiang. 1996. Conception of alkaline rocks and their nomenclature. Geological Science and Technology Information, 15(1): 31~37 (in Chinese with English abstract).
参考文献
Zhang Chuanlin, Li Xianhua, Li Zhengxiang, Ye Haimin, Li Changnian. 2008. A Permian layered intrusive complex in the Western Tarim Block, Northwestern China: Product of a Ca. 275-Ma mantle plume? The Journal of Geology, 3(116): 269~287.
参考文献
Zhang Chuanlin, Xu Yigang, Li Zhengxiang, Wang Hongyan, Ye Haimin. 2010. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume? Lithos, 119(3-4): 537~552.
参考文献
Zhang Chuanlin, Zou Haibo. 2013. Permian A-type granites in Tarim and western part of Central Asian Orogenic Belt (CAOB): Genetically related to a common Permian mantle plume? Lithos, 172-173: 47~60.
参考文献
Zhang Dongyang, Zhang Zhaochong, Mao Jingwen, Huang He, Cheng Zhiguo. 2016. Zircon U/Pb ages and Hf-O isotopic signatures of the Wajilitag and Puchang Fe-Ti oxide-bearing intrusive complexes: Constraints on their source characteristics and temporal-spatial evolution of the Tarim large igneous province. Gondwana Research, 37: 71~85.
参考文献
Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite: What is the essence?Acta Petrologica Et Mineralogica, 31(4): 621~626 (in Chinese with English abstract).
参考文献
Zhang Xiaoran, Zhao Guochun, Eizenhöfer P R, Sun Min, Han Yigui, Hou Wenzhu, Liu Dongxing, Wang Bo, Liu Qian, Xu Bing, Zhu Chloe Yanlin. 2016. Tectonic transition from Late Carboniferous subduction to Early Permian post-collisional extension in the eastern Tianshan, NW China: Insights from geochronology and geochemistry of mafic-intermediate intrusions. Lithos, 256-257: 269~281.
参考文献
Zhang Xiaoran, Zhao Guochun, Sun Min, Han Yigui, Liu Qian. 2017. Triassic magmatic reactivation in Eastern Tianshan, NW China: Evidence from geochemistry and zircon U-Pb-Hf isotopes of granites. Journal of Asian Earth Sciences, 145: 446~459.
参考文献
Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Li Weiqiang, Xi Aihua, Wang Shuo. 2005. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its geological implications. Acta Geologica Sinica(English edition), 79(4): 481~490.
参考文献
Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Zhai Jianping, Li Weiqiang, Tang Junhua. 2006. Weiya quartz syenite in early Indosinina from eastern Tianshan Mountains: Petrogenesis and tectonic implications. Acta Petrologica Sinica, 22(5): 1135~1149 (in Chinese with English abstract).
参考文献
Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Zhai Jianpin, Li Weiqiang, Tang Junhua. 2007. Early Indosinian Weiya gabbro in Eastern Tianshan, China: Elemental and Sr-Nd-O isotopic geochemistry and its tectonic implications. Acta Geologica Sinica(English edition), 81(3): 424~432.
参考文献
Zhao J X, Shiraishi K, Ellis D J, Sheraton J W. 1995. Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: Implications for the origin of syenitic magmas. Geochimica et Cosmochimica Acta, 7(59): 1363~1382.
参考文献
Zhao Zhenghua, Zhou lingli. 1994. REE geochemistry of some alkali rich intrusive rocks in China. Science in China(Series B), 24(10): 1109~1120 (in Chinese without English abstract).
参考文献
Zheng Jiahao, Mao Jingwen, Chai Fengmei, Yang Fuquan. 2016. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting. Lithos, 260: 371~383.
参考文献
Zhou Meifu, Michael L C, Yang Zhengxi, Li Jianwei, Sun Min. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE)sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233~257.
参考文献
Zhou Meifu, Zhao Junhong, Jiang Changyi, Gao Jianfeng, Wang Wei, Yang Shenghong. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583~594.
参考文献
Zhou Jianbo, Wilde S A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 4(23): 1365~1377.
参考文献
Zhu Jiang, Lü Xinbiao, Cao Xiaofeng, Mo Yalong, Chen Chao. 2012. U-Pb zircon geochronology, geochemistry and kinetics of the Huaniushan A-type granite in Northwest China. Chinese Journal of Geochemistry, 1(31): 85~94.
参考文献
Zhu Jiang, Lv Xinbiao, Chen Chao, Cao Xiaofeng, Hu Qincheng. 2013. Geological characteristics, metallogenic time and tectonic setting of the triassic molybdenum deposits in the east part of the East Tianshan and Beishan area, NW China. Xinjiang Geology, 31(1): 21~28 (in Chinese with English abstract).
参考文献
Zou Tianren, Xu Yu, Chen Weishi, Xia Fengrong. 2002. Rare and rare earth mineral deposits related to alkaline rocks on northern margin of Tarim Basin, Xinjiang, China. Mineral Deposits, 21(S1): 845~848 (in Chinese with English abstract).
参考文献
甘保平. 2017. 扬子北缘米仓山地区新元古代碱性杂岩地球化学特征及地质意义. 西北大学硕士学位论文.
参考文献
顾连兴, 张遵忠, 吴昌志, 王银喜, 唐俊华, 汪传胜, 郗爱华, 郑远川. 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识. 岩石学报, 22(5): 1103~1120.
参考文献
郭瑞清, 秦切, 张晓帆, 孙宝生, 郭寅. 2013. 新疆库鲁克塔格阔克塔格西碱性岩年代学、岩石地球化学特征及其地质意义. 吉林大学学报(地球科学版), 43(2): 457~468.
参考文献
高志武, 吕昶良, 邓明国, 管申进, 杨富强. 2021. 东天山早中生代侵入体地球化学特征及其构造意义. 地球科学, 46(7): 2287~2298.
参考文献
洪大卫, 王式洸, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B辑), 25(4): 418~426.
参考文献
洪大卫, 王式洸, 谢锡林, 张季生, 王涛. 2003. 从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系. 地质学报, 77(2): 203~209.
参考文献
霍腾飞, 杨德彬, 师江朋, 许文良, 杨浩田. 2016. 华北地块中部早白垩世富碱侵入岩的成因: 锆石U-Pb年代学和Sr-Nd-Hf同位素制约. 岩石学报, 32(3): 697~712.
参考文献
贾晓亮, 郭瑞清, 柴凤梅, 尼加提·阿布都逊, 秦切, 朱志新, 王克卓. 2013. 新疆库鲁克塔格西段泥盆纪二长花岗岩年龄、地球化学特征及其构造意义. 地质通报, 32(2-3): 239~250.
参考文献
雷如雄, 吴昌志, 张遵忠, 顾连兴, 唐俊华, 黎广荣. 2013. 东天山雅满苏北岩体的年代学、地球化学及其构造意义. 岩石学报, 29(8): 2653~2664.
参考文献
李舢, 王涛, 童英. 2010. 中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境. 岩石矿物学杂志, 29(6): 642~662.
参考文献
吕彪, 郭瑞清, 王克卓, 魏震, 郭羽, 何海伦, 胡雪原. 2016. 新疆库鲁克塔格西段三叠纪辉绿岩墙的发现及地质意义. 新疆地质, 34(3): 317~324.
参考文献
秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区演化与成矿地质背景研究. 新疆地质, 20(4): 302~307.
参考文献
任康绪. 2003. 碱性岩研究进展述评. 化工矿产地质, 25(3): 151~163.
参考文献
涂光炽. 1989. 关于富碱侵入岩. 矿产与地质, 13(3): 1~4.
参考文献
王凯垒, 李会恺, 张学萌, 田增彪, 张家兴, 邢东雪, 郑乐, 代涛. 2021. 阿拉善地块北缘雅布赖地区基性岩墙地球化学、年代学和Sr-Nd同位素特征. 地质与勘探, 57(5): 1017~1027.
参考文献
王银宏, 张方方, 刘家军, 薛春纪, 王建平, 刘彬, 路魏魏. 2015. 东天山白山钼矿区花岗岩的岩石成因: 锆石U-Pb年代学、地球化学及Hf同位素约束. 岩石学报, 31(7): 1962~1976.
参考文献
位荀, 徐义刚. 2011. 塔里木巴楚小海子正长岩杂岩体的岩石成因探讨. 岩石学报, 27(10): 2984~3004.
参考文献
曾广策, 邱家骧. 1996. 碱性岩的概念及其分类命名综述. 地质科技情报, 15(1): 31~37.
参考文献
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621~626.
参考文献
张遵忠, 顾连兴, 吴昌志, 翟建平, 李伟强, 唐俊华. 2006. 东天山印支早期尾亚石英正长岩: 成岩作用及成岩意义. 岩石学报, 22(5): 1135~1149.
参考文献
赵振华. 1992. 微量元素地球化学. 地球科学进展, 7(5): 65~66.
参考文献
赵振华, 周玲棣. 1994. 我国某些富碱侵入岩的稀土元素地球化学. 中国科学(B辑), 24(10): 1109~1120.
参考文献
朱江, 吕新彪, 陈超, 曹晓峰, 胡庆成. 2013. 东天山东段-北山地区三叠纪钼矿床地质特征、时空分布及含矿花岗岩成岩-成矿构造背景. 新疆地质, 31(1): 21~28.
参考文献
邹天人, 徐珏, 陈伟十, 夏凤荣. 2002. 塔里木盆地北缘碱性岩型稀有稀土矿床. 矿床地质, 21(S1): 845~848.
目录contents

    摘要

    富碱侵入岩具有深源浅成的属性,是示踪地幔组成的窗口。位于东天山与塔里木克拉通北缘交界处的阔克塔格以西出露一处以正长岩为主体、包含少量中—基性岩石单元的富碱侵入岩。LA-ICP-MS锆石U-Pb测年显示其侵位于227~224 Ma之间,为印支期岩浆作用产物。该岩体具有富碱(Na2O+K2O=7.93%~ 12.28%)、富铝(Al2O3=15.62%~18.67%)、贫镁(MgO=0.12%~4.01%)、贫钛(TiO2=0.14%~1.63%)的特征,属于准铝质的(A/CNK=0.78~1.00)高钾钙碱性—钾玄岩系列。微量元素表现出高场强元素Nb、Ta、Th、U、Zr、Hf的富集,不相容元素Sr、P、Ti的亏损特征;轻重稀土分馏明显((La/Yb)N=15.09~34.90),表现为轻稀土强烈富集的右倾型曲线,Eu异常变化较大(δEu=0.12~1.72)。在同位素组成上,富碱侵入岩呈现相对宽泛但总体富集的全岩Sr-Nd和锆石Hf同位素特征,(87Sr/86Sr)i=0.70489~0.70581,εNd(t)=-14.56~-6.74,εHf(t)=-11.48~+3.06,锆石δ18O值(5.49‰~6.87‰)略高于地幔值(5.3‰±0.6‰)。阔克塔格西富碱侵入岩具A1型花岗岩特征,形成于板内伸展构造环境中。基于主、微量元素及Sr-Nd-Hf-O同位素特征,笔者认为该杂岩体为同源岩浆演化产物,源于富集岩石圈地幔的原始岩浆上升并经历AFC(同化混染-分离结晶)过程。晚三叠世塔里木克拉通北缘—东天山—北山地区处于板内构造体制,A1型花岗岩和正长岩差异化的时空分布特征很可能记录了古亚洲洋自西到东 “剪刀式”的闭合过程。

    Abstract

    Derived from the deep lithospheric source and emplaced at shallow crustal levels, alkali-rich intrusive rocks are regarded as a window for deciphering the nature of the mantle. An alkaline composite pluton composed of predominant syenite and subordinate intermediate-mafic rocks is exposed in the Kuoktagh area, the transition region between the eastern Tianshan Belt and the north margin of Tarim craton. New LA-ICP-MS zircon ages range from ~227 to ~224 Ma, indicating Indosinian emplacement. Samples from the pluton are enriched in total alkali (Na2O+K2O=7.93%~12.28%), Al (Al2O3=15.62%~18.67%), and poor in Mg (MgO=0.12%~4.01%), Ti (TiO2=0.14%~1.63%). They exhibit a metaluminous affinity (A/CNK=0.78~1.00) and belong to high-K calc-alkaline to shoshonitic series. In terms of trace element patterns, the studied rocks are characterized by the enrichment in high-field-strength element (HFSE), such as Nb, Ta, Th, U, Zr, and Hf, and depletion in Sr, P, and Ti. The studied samples possess strong enrichment in light rare earth elements (LREE) relative to heavy rare earth elements (HREE), with variable Eu anomalies (δEu=0.12~1.72). Samples from the pluton show variable but overall “ancient”(enriched)whole-rock Sr-Nd and zircon Hf isotopic results ((87Sr/86Sr)i=0.70489~0.70581, εNdt)=-14.56~-6.74, εHft)=-11.48~3.06), and have zircon δ18O values (5.49‰~6.87‰) slightly higher than that of the mantle (5.3‰±0.6‰). Considering petrological and geochemical features of the studied pluton, combined with other geological evidence, we suggest that the studied alkaline rocks are of A1-type granite and were formed in an intra-plate extensional setting. Taking into account the characteristics of major elements, trace elements and Sr-Nd-Hf-O isotopes, we propose that the composite pluton is the product of assimilation and fractional crystallization (AFC), and the primary magma was derived from an enriched lithosphere mantle. North margin of Tarim craton, eastern Tianshan Belt and Beishan region were likely together in an intra-plate, anorogenic tectonic framework. The temporospatial distribution of A-type granites in these regions might record the closure history of the Paleo-Asian Ocean from west to east via a ‘scissor-like’ model.

  • 富碱侵入岩一般被认为来源于上地幔,具有深源浅成的属性,因而一直被地质学家视作探测地幔组成的窗口(涂光帜,1989;赵振华,1994)。富碱侵入岩的分布通常受深大断裂控制,可指示某些特殊构造环境。除少部分产出于大洋环境(Bonin,2007),大部分富碱侵入岩分布于大陆内部(Saibal et al.,2005)、板内裂谷(Madhavan et al.,1999Upadhyay et al.,2006)及与地幔柱活动相关的大火成岩省(Ewart et al.,1998)等非造山环境。对于富碱侵入岩的深入研究可约束限制造山带的构造演化历史(洪大卫等,1995任康绪,2003Bonin,2007),特别是对一些带状分布且形成时代接近的富碱侵入岩带的研究,可进一步约束大区域范围内的构造演化历史(曾广策等,1996)。

  • 中亚造山带是全球最大规模的增生造山带,显生宙发生了显著的地壳生长(Han Baofu et al.,1997;Jahn et al.,2000a,2000b;Chen and Arakawa,2005)。一般认为,在中亚造山带西段,即中国北疆地区及邻区,地壳生长主要与古亚洲洋闭合过程中的俯冲-增生、及其后的陆陆碰撞密切相关,主要发生在显生宙(Huang He et al.,2020)。除了与增生造山作用相关的岩石组合,北疆地区还局部发育富碱岩浆岩带。从造山带和地壳演化的角度考虑,北疆地区富碱岩石可能代表了非造山环境的地壳生长,主要出露于克拉通边缘及邻区。在塔里木克拉通北缘—东天山—北山地区发育大量的富碱岩石(图1a、b),包括A型花岗岩、正长岩等,在区域上表现为一个近东西向展布、长条形的富碱岩浆岩带(图1c)。尽管前人对这些岩石开展了大量研究工作(Zhang Zunzhong et al.,2006Zhang Chuanlin et al.,2010Wei Xun et al.,2011Huang He et al.,2012bLi Shan et al.,2012雷如雄等,2013Ma Yuan et al.,2016Zhang Xiaoran et al.,2016Li Ning et al.,2019Lei Ruxiong et al.,2021),但仍有一些关键问题尚未得到解答。例如,该岩带的形成是否记录着显著的壳幔相互作用和地壳生长过程?该岩带的形成明显具有穿时性的特征,即西段形成早、东段形成晚,这反映了怎样的构造演化历史?塔里木地幔柱活动与该富碱岩浆岩带是否具有成因联系?上述问题的解答,对全面认识中亚造山带和塔里木克拉通构造演化与岩石圈生长/改造历史都具有重大意义。

  • 库鲁克塔格处于塔里木克拉通北缘与东天山造山带的交汇地带,是研究东天山与塔里木克拉通构造演化关系的关键区域。本文以库鲁克塔格东段的阔克塔格西富碱侵入岩体为研究对象,在岩相学基础上,结合全岩地球化学、锆石U-Pb定年及Sr-Nd-Hf-O同位素示踪研究,探讨其岩浆源区、岩浆演化及形成的构造背景。结合区域资料的对比,进一步约束塔里木克拉通北缘-东天山-北山碱性岩带的时空格架和区域构造演化。

  • 1 区域地质背景

  • 塔里木克拉通为中国三大古老克拉通之一,由世界最大的内陆盆地之一——塔里木盆地及其附近构造带构成。塔里木克拉通位于中亚造山带南侧(图1b),该区北部面积广大的前寒武纪基底暴露在库鲁克塔格隆起区,辛格尔断裂将其与古生代南天山增生杂岩分开(Lu Songnian et al.,2008Long Xiaoping et al.,2010; Shu Liangshu et al.,2011)。塔里木地区岩浆活动的重要阶段包括:新元古代—寒武纪、奥陶纪和二叠纪早期(Lu Songnian et al.,2008Tian Wei et al.,2010Zhang Chuanlin et al.,2010Ge Rongfeng et al.,2012)。早古生代晚期(~420 Ma)的岩浆来源于古元古代陆壳的部分熔融,并与同时代的亏损地幔物质混合(Ge Rongfeng et al.,2012)。二叠纪(300~270 Ma)塔里木地幔柱活动活跃,该区形成大面积的镁铁质岩石,构成了塔里木大火成岩省事件(Zhang Chuanlin et al.,20082010Zhou Meifu et al.,2009Tian Wei et al.,2010)。

  • 东天山通常指东经88°以东的天山地区,位于中亚造山带南端,毗邻塔里木盆地与准噶尔盆地(图1a)。由博格达-哈尔里克带、觉罗塔格带、中天山地块和北山裂谷带四个构造单元组成,是古亚洲洋发展演化的产物。该区保存有完整的俯冲碰撞-板内的构造-岩浆演化记录。学术界目前普遍接受的观点是该区于石炭纪晚期发生主碰撞(Qin Kezhang et al.,2002),二叠纪处于碰撞隆起上升阶段(Zhou Meifu et al.,2004)。

  • 从早二叠世开始,塔里木克拉通北缘、东天山及其邻区渐次进入陆内伸展环境,发生了区域性的富碱岩浆事件,并持续至晚三叠世(邹天人等,2002Wu Changzhi et al.,2010Zhang Chuanlin et al.,2013Xu Yigang et al.,2014Deng Xiaohua et al.,2017),形成一条近东西向展布的碱性岩浆岩带(图1b)。该富碱侵入岩带长约1100 km,位于39°~43°N,76°~94°E之间。在大地构造上,处于南天山中南缘和塔里木克拉通北缘交界地带,主体产出于板内、板边和活动陆缘3种构造背景,受东西向、相互平行的板内深断裂带、板边深断裂带和活动陆缘深断裂带控制。带内碱性岩体呈NE走向零星分布,可划分为板内型碱性岩、板边型碱性岩和活动陆缘碱性岩。早二叠世的碱性花岗岩和正长岩都具A1型花岗岩特征(Huang He et al.,2012a),岩石类型广泛,以正长岩类(石英正长岩、霓霞正长岩、霓辉正长岩等)和碱性花岗岩类为代表,构成一条东起尉犁,经库尔勒、库车、拜城、阿合奇,西至阿图什的碱性侵入岩带(邹天人等,2002Chai Fengmei et al.,2008)。三叠纪富碱岩浆活动主要发生在东天山及邻区(图1b;Lei Ruxiong et al.,2021),代表性岩体包括尾亚石英正长岩(246 Ma)(张遵忠等,2006)、天湖花岗岩体(247±2 Ma)(Lei Ruxiong et al.,2021)、雅满苏北钾长花岗岩(228 Ma)(雷如雄等,2013)等。此外,东天山印支期还发育许多板内伸展环境下形成的典型钼矿床(Han Chunming et al.,2018Wang Yinhong et al.,2018),构成了东天山-北山三叠纪钨钼成矿带(Zhu Jiang et al.,2012朱江等,2013Li Ning et al.,2020)。

  • 库鲁克塔格位于塔里木克拉通北缘隆起带,地处塔里木北缘和中亚造山带南缘天山造山带的结合部位,南以孔雀河断裂与塔里木盆地相接,北以辛格尔断裂为界与南天山相连(贾晓亮等,2013)。该区经历了多期次、多阶段的复杂地质构造活动,是研究塔里木克拉通与中亚造山带关系的关键地区。本文研究的阔克塔格西富碱侵入岩位于库鲁克塔格东段。

  • 图1 塔里木克拉通及邻区主要构造单元(a)(改自Jahn et al.,2000)、塔里木克拉通北缘—东天山地区碱性花岗岩时空分布简图(b)(改自Tian Wei et al.,2010)和库鲁克塔格地区地质简图(c)(改自郭瑞清等,2013

  • Fig.1 Schematic map of major tectonic units of the Tarim craton and its adjacent areas (a) (modified after Jahn et al., 2000) , temporal and spatial distribution of alkaline granites in the northern margin of Tarim craton and eastern Tianshan Belt (b) (modified after Tian Wei et al., 2010) , and the simplified geological map of Kuoktagh area (c) (modified after Guo Ruiqing et al., 2013)

  • 2 岩体地质及岩相学

  • 阔克塔格西富碱侵入岩地处新疆尉犁县,位于库鲁克塔格东段。岩体呈北西西向延伸出露,面积约20 km2(图2)。岩体分布于NWW向延伸的兴地深断裂南侧,呈近椭圆状侵位于一套新元古代大理岩、片麻岩及花岗岩中。该岩体主体岩性为肉红色中酸性富碱岩石系列(图3),可进一步细分为正长岩(包括霓辉正长岩、辉石正长岩、角闪正长岩)、石英正长岩以及石英二长岩等。局部出露少量基性-中性岩石单元(辉长岩、辉石闪长岩、黑云角闪二长岩、二长闪长岩等),野外接触关系显示基性-中性岩石的侵位早于主体正长岩。围岩中石英岩、灰白色中厚层大理岩及黑云母石英片岩经历了不同程度的矽卡岩化和硅灰石化。在对富碱侵入岩开展系统的野外考察的基础上,采取了代表性样品开展岩石学、年代学和地球化学研究。具体岩性描述如下。

  • 图2 阔克塔格西富碱侵入岩地质简图(据新疆地质矿产勘查开发局第三地质大队,2004修改)

  • Fig.2 Simplified geological map of western Kuoktagh alkali-rich intrusive rocks (modified after the Third Geological Team of the Xinjiang Bureau of Geology and Mineral Resources Exploration, 2004

  • 1 —第四系; 2—辉绿岩-闪长玢岩脉; 3—霓辉石正长斑岩脉; 4—石英正长岩; 5—正长岩; 6—石英二长岩; 7—二长闪长岩; 8—黑云角闪二长岩; 9—新元古代片麻岩; 10—大理岩;11—采样点

  • 1 —Quaternary; 2—diabase-diorite porphyrite dikes; 3—aegirine-augite syenite porphyry dikes; 4—quartz syenite; 5—syenite; 6—quartz monzonite; 7—monzodiorite; 8—biotite hornblende monzonite; 9—Neoproterozoic gneiss; 10—marble; 11—sample location

  • 二长闪长岩:浅肉红色,中粗粒—似斑状结构,块状构造。主要造岩矿物包括斜长石(45%~50%)、碱性长石(35%~40%)、黑云母(8%)及普通角闪石(5%)。斜长石呈长柱状,发育聚片双晶、贯穿双晶(图3b、c),偶见环带结构(图3b)。碱性长石包括正长石及微斜长石。其中正长石普遍发育卡斯巴双晶。微斜长石常见格子双晶;普通角闪石自形到半自形短柱状,黑云母呈黑褐色薄片状,二者常共生,局部较富集。副矿物(~2%)主要为针柱状磷灰石、锆石等。霓辉正长岩:浅肉红色,中粗粒结构,块状构造。主要造岩矿物组成为碱性长石,包括正长石(60%)、微斜长石(15%),微斜长石具格子双晶。斜长石(7%)发育钠长石双晶。暗色矿物主要为霓辉石(9%)、普通角闪石(4%)及黑云母(3%)。副矿物(~2%)为锆石、榍石等。

  • 角闪正长岩:灰白色—浅肉红色,中粗粒结构,块状构造。主要造岩矿物组成为碱性长石,包括条纹长石(60%)、正长石(15%)及少量微斜长石(7%);微斜长石常见格子双晶,充填于网状、细脉状及纺锤状条纹长石之间(图2i)。斜长石(6%)为长柱状,发育钠长石双晶。暗色矿物主要为钠铁闪石(图2h)(5%)及普通角闪石(2%)、黑云母(2%)及辉石(2%)。副矿物(~2%)为锆石、磷灰石、榍石等。

  • 石英二长岩:浅肉红色,似斑状结构,斑晶(30%~35%)主要为正长石及斜长石。正长石斑晶呈半自形柱状,发育卡斯巴双晶,伴有斜长石的增生边(图3k)。斜长石斑晶自形程度较好,聚片双晶及钠长石双晶发育,偶见贯穿双晶;主要矿物为斜长石 (35%~40%)、正长石(20%~35%)、石英(8%~12%),次要矿物为黑云母(4%~5%)、角闪石(<4%)及少量辉石(2%)。石英呈他形粒状充填于正长石格架内,可见文象结构,具波状消光。黑云母与角闪石伴生,呈团块状分布于长石之间。副矿物见磷灰石(3%)呈针柱状散布于岩石之中(图3l);次生矿物包括高岭石、绿泥石和绢云母等。

  • 图3 阔克塔格西富碱侵入岩野外及镜下特征

  • Fig.3 Field and microscopic photos of western Kuoktagh alkali-rich intrusive rocks

  • (a)—二长闪长岩手标本; (b)—发育环带结构及贯穿双晶的斜长石斑晶(正交光); (c)—发育聚片双晶的斜长石及呈团块状分布的角闪石和黑云母(正交光); (d)—霓辉正长岩手标本; (e)—霓辉正长岩中长柱状的霓辉石(正交光);( f)—霓辉正长岩中的正长石斑晶(正交光); (g)—角闪正长岩手标本; (h)—角闪正长岩中的钠铁闪石(正交光); (i)—填隙状微斜长石及半自形角闪石(正交光); (j)—石英二长岩手标本; (k)—石英二长岩中发育斜长石增生边的正长石斑晶(正交光); (l)—石英二长岩中的大量针柱状磷灰石(单偏光); Agt—霓辉石; Amp—角闪石;Ap—磷灰石; Arf—钠铁闪石; Bt—黑云母; Hbl—普通角闪石; Mt—微斜长石;Or—正长石; Per—条纹长石; Pl—斜长石; Qtz—石英

  • (a)—photo of monzodiorite; (b)—plagioclase phenocrysts with zoned and interpenetrate twin structure (orthogonal light) ; (c)—plagioclase with polysynthetic twin and amphibole and biotite with crumby structure (orthogonal light) ; (d)—photo of aegirine-augite syenite; (e)—long columnar aegirine-augite in aegirine-augite syenite (orthogonal light) ; (f)—orthoclase phenocryst in aegirine-augite syenite (orthogonal light) ; (g)—photo of hornblende syenite; (h)—arfvedsonite in hornblende syenite (orthogonal light) ; (i)—Interstitial microcline and subhedral hornblende (orthogonal light) ; (j)—photo of quartz monzonite; (k)—orthoclase phenocryst with plagioclase accretionary rim in quartz monzonite (orthogonal light) ; (l)—abundant needle-like apatite scattered in quartz monzonite (unipolar light) ; Agt—aegirine-augite; Amp—amphibole; Ap—apatite; Arf—arfvedsonite; Bt—biotite; Hbl—hornblende; Mt—microcline; Or—orthoclase; Per—perthite; Pl—plagioclase; Qtz—quartz

  • 3 测试方法

  • 全岩主微量元素测试在广州澳实矿物实验室完成,仪器为利用ICP-AES和ICP-MS。样品加入Li2B4O7-LiBO2助熔物煅烧到1000℃以上熔融后使用X荧光光谱仪进行主量元素分析,应用电感耦合等离子体发射光谱与质谱测定微量元素及稀土元素含量。

  • LA-ICP-MS锆石U-Pb定年在中国地质调查局天津地质调查中心实验室完成,该测试系统由激光剥蚀和质谱检测两部分组成,激光剥蚀系统仪器型号为RESOlution LR,本次测试采用29 μm的束斑。质谱检测系统是型号为Agilent 7900的电感耦合等离子体质谱仪(ICP-MS)。采用了91500标样和SRM610来做锆石U-Pb测年的校正标准,用PLV样品做监控标样。利用ICPMS DataCal软件对所得到的测试数据进行处理完成。对处理好的数据通过Isoplot软件完成锆石U-Pb的谐和图以及加权平均年龄图。

  • 锆石Hf同位素测试在中国地质调查局西安地质调查中心实验室完成。测试系统由Geolas Pro型激光剥蚀系统与Neptune型多接收等离子体质谱仪组成,激光剥蚀束斑为32 μm,测试点位置在已测的锆石U-Pb定年的点位上或者附近处,采用GJ作为监控标样,每10个测试点测一次标样,监控标样GJ的测试精准度为0.282032±0.000018(2σ)。具体测试过程可参照Wang Xiangsong et al.(2018)

  • 锆石微区原位O同位素分析在核工业北京地质研究院利用CAMECA IMS-1280完成,将做过LA-ICP-MS锆石U-Pb定年的样品靶磨去~5 μm,以消除前期在U-Pb定年时造成的氧污染,详细的分析流程见Li Yang et al.(2021)。仪器质量分馏校正采用91500锆石标准,其中91500标准锆石的δ18O=9.9‰(Wiedenbeck et al.,2004),测量的18O/16O比值通过V-SMOW值(18O/16O=0.0020052)校正后,加上仪器质量分馏校正因子IMF即为该点的δ18O值:δ18O样品=(δ18O)样品测量值+IMF,(δ18Ο)样品测量值=((18O/16O)样品测量值/0.00200521)×1000(‰),IMF=(δ18O)标样测量值(δ18O)V-SMOW

  • 全岩Sr-Nd同位素分析测试在贵州同微测试有限公司完成,实验仪器为Neptune Plus MC-ICP-MS,采用法拉第杯接收,每组样品采集60个数据,每点积分时间为4.096 s;在测试过程中,采用两组5%以及一组亚沸蒸馏2% HNO3三步清洗进样系统,以防样品相互混染。其中Sr同位素组成分析利用88Sr/86Sr=8.375209校正Sr同位素的质量歧视效应。Nd同位素组成分析利用146Nd/144Nd=0.7219进行质量歧视效应校正。

  • 4 测试结果

  • 4.1 锆石U-Pb测年

  • 为确定阔克塔格西富碱侵入岩侵位时代,本文选取不同岩性的四个代表性样品进行LA-ICP-MS锆石U-Pb测年,测试结果列于表1。四个样品的锆石多呈浅褐色或浅黄色,透明至半透明,颗粒大小为50~120 μm,多数振荡环带中等发育(图4),锆石Th/U比值均大于0.1,具有典型岩浆锆石特点。四个样品的U-Pb年龄谐和度较好,均分布于谐和线附近,表明锆石形成后U-Pb体系封闭,基本未发生U 或 Pb元素的加入或丢失现象(图5)。具体测试结果如下:二长闪长岩:对KKTG18-05样品进行了26个U-Pb测点分析,锆石中Th含量53×10-6~905×10-6,U含量64×10-6~623×10-6,Th/U比值为0.58~1.58(均值为0.86),获得的206Pb/238U年龄介于230~221 Ma之间,加权平均年龄为224±1 Ma(95%置信度,MSWD=0.67)。角闪正长岩:对KKTG18-11样品进行了28个U-Pb测点分析,锆石中Th含量9×10-6~541×10-6,U含量37×10-6~422×10-6,Th/U比值为0.24~1.86(均值为0.76),获得的206Pb/238U年龄介于233~221 Ma之间,加权平均年龄为226±1 Ma(95%置信度,MSWD=0.65)。石英二长岩:对KKTG18-02样品进行了24个U-Pb测点分析,锆石中Th含量73×10-6~2097×10-6,U含量114×10-6~2773×10-6,Th/U比值为0.50~1.19(均值0.78)。获得的206Pb/238U年龄介于230~220 Ma之间,加权平均年龄为226±1 Ma(95%置信度,MSWD=0.72)。对KKTG18-07样品进行了24个U-Pb测点分析,锆石中Th含量180×10-6~1147×10-6,U含量226×10-6~1227×10-6,Th/U比值为0.26~1.47(均值为0.79)。获得的206Pb/238U年龄介于231~221 Ma之间,加权平均年龄为227±1 Ma(95%置信度,MSWD=0.72)。四件样品的形成时代为227~224 Ma之间,在误差范围之内基本一致,说明阔克塔格西杂岩体中所有类型的岩石基本形成于同一期岩浆事件之中。

  • 图4 阔克塔格西富碱侵入岩代表性锆石阴极发光图像及206Pb/238U年龄

  • Fig.4 Cathodoluminescence images and 206Pb/238U ages of representative zircons in alkali-rich intrusive rocks from the western Kuoktagh area

  • 4.2 锆石Hf-O同位素特征

  • 在U-Pb测试的基础上开展了Hf-O同位素测试,结果列于表2。二长闪长岩KKTG18-05样品的锆石原位Hf-O同位素测定(n=26)结果显示:176Hf/177Hf=0.282335~0.282518,平均为0.282422,对应的εHft)=-6.97~-0.14,平均为-3.45,tDM2=1937~1530 Ma,平均为1742 Ma。锆石δ18O值为6.34‰~6.86‰,均值为6.58‰。角闪正长岩KKTG18-11样品的锆石原位Hf-O同位素测定(n=28)结果显示:176Hf/177Hf=0.282394~0.282611,平均为0.282484,对应的εHft)=-4.33~3.06,平均为-1.09,二阶段模式年龄tDM2=1816~1328 Ma,平均为1608 Ma。锆石δ18O值为6.07‰~6.67‰,均值为 6.47‰。石英二长岩KKTG18-02、KKTG18-07样品的锆石原位Hf-O同位素测定(n=48)结果显示:176Hf/177Hf=0.282304~0.282518,平均为0.282394,对应的εHft)=-11.48~-0.13,平均为-5.02,二阶段模式年龄tDM2=2001~1536 Ma,平均为1803 Ma,锆石δ18O值为5.49‰~6.87‰,均值为6.43‰。

  • 4.3 全岩Sr-Nd同位素特征

  • Sr-Nd同位素测试结果列于表3。二长闪长岩:87Sr/86Sr值为0.705719~0.705684,143Nd/ 144Nd值为0.512107~0.512131,以获得的二长闪长岩(225.9 Ma)年龄进行校正,得到(87Sr/86Sr)i值为0.70494~0.70497,εNdt)为-8.70~-8.20,二阶段Nd模式年龄为1708~1667 Ma。霓辉正长岩:87Sr/86Sr值为0.711589,143Nd/144Nd值为0.511946,以获得的角闪正长岩(227.7 Ma)年龄进行校正,得到(87Sr/86Sr)i值为0.70581,εNdt)为-14.56,二阶段Nd模式年龄为2258 Ma。角闪正长岩:87Sr/86Sr值为0.721859~0.727920,143Nd/ 144Nd值为0.5120955~0.512104,以获得的角闪正长岩(227.7 Ma)年龄进行校正,得到(87Sr/86Sr)i值为0.70489~0.70567,εNdt)为-6.84~-6.74,二阶段Nd模式年龄为1559~1551 Ma。石英二长岩:87Sr/86Sr值为0.709024~0.710266,143Nd/ 144Nd值为0.511942~0.511964,以获得的石英二长岩(226.1 Ma)年龄进行校正,(87Sr/86Sr)i值为0.70530~0.70538,εNdt)为-13.31~-11.40,二阶段Nd模式年龄为2004~1926 Ma。

  • 表1 阔克塔格西富碱侵入岩锆石U-Pb测年结果

  • Table1 Zircon U-Pb dating results of samples from the western Kuoktagh alkali-rich intrusive rocks

  • 续表1

  • 表2 阔克塔格西富碱侵入岩锆石Hf-O同位素特征

  • Table2 Zircon Hf-O isotopic results of samples from western Kuoktagh alkali-rich intrusive rocks

  • 续表2

  • 表3 阔克塔格西富碱侵入岩全岩Sr-Nd同位素特征

  • Table3 Whole-rock Sr-Nd isotopic results of samples from the western Kuoktagh alkali-rich intrusive rocks

  • 表4 阔克塔格西富碱侵入岩主量(%)和微量(×10-6)元素分析结果

  • Table4 Major elements (%) and trace elements (×10-6) compositions of the western Kuoktagh alkali-rich intrusive rocks

  • 续表4

  • 图5 阔克塔格西富碱侵入岩锆石U-Pb谐和图

  • Fig.5 Zircon U-Pb concordia diagrams of the western Kuoktagh alkali-rich intrusive rocks

  • 4.4 全岩主量、微量元素地球化学

  • 12 件样品全岩主微量测试数据见表4。

  • 测试结果显示二长闪长岩样品的SiO2含量(54.57%~58.23%)低于正长岩(59.63%~63.76%)及石英二长岩(65.74%~70.06%)。AR-SiO2碱度关系图中,岩体整体落于碱性区域(图6a),仅一个角闪正长岩样品落于过碱性区域,同时AR与SiO2有较明显的正相关关系。所有样品K2O+Na2O含量均较高(7.93%~12.28%),指示该岩体整体富碱。其中角闪正长岩为低Mg#(8.78~9.78)正长岩,具有较高的全碱含量(Na2O+K2O=11.98%~12.28%)及Na2O含量(7.12%~7.17%),霓辉正长岩为高Mg#(31.28)正长岩,全碱含量(Na2O+K2O=10.78%)及Na2O含量(6.3%)均较低。杂岩体K2O/Na2O比值为0.53~1.17(多数小于1),表现出相对富钠的特征;里特曼指数σ=4.37~7.69,均大于3.3,指示相对富碱的岩石特征;K2O-SiO2图解中霓辉正长岩、角闪正长岩、石英二长岩均落于钾玄岩系列,两个二长闪长岩样品落于高钾钙碱性系列区域(图6c),指示该岩体为钾玄岩-高钾钙碱性系列碱性岩。铝饱和指数A/CNK=0.78~1.00,多数小于1,A/NK=0.95~1.42,A/CNK-A/NK图解中岩体主要落于准铝质区域(图6b)。

  • 所有样品均具有较低的CaO、MgO、TiO2含量。相比于其他两类岩石,石英二长岩具相对更低的CaO(0.60%~1.44%)、MgO(0.12%~0.72%)及TiO2(0.14%~0.51%)含量。Harker图解中,SiO2与TiO2、Al2O3、MgO、TFe2O3、CaO和P2O5 呈现明显的负相关关系;SiO2与K2O为明显正相关,SiO2与Na2O相关性则不明显(图7)。

  • 阔克塔格西富碱侵入岩具有较高的稀土总含量(ΣREE=106.3×10-6~679.9×10-6),稀土元素球粒陨石标准化配分曲线呈现出轻稀土分馏明显、重稀土相对平坦的右倾型曲线(图8)。不同岩性样品Eu异常变化较大(δEu=0.12~1.72),其中二长闪长岩基本不具Eu异常,石英二长岩具弱至中等的负Eu异常,霓辉正长岩具弱到中等的Eu正异常,角闪正长岩具有明显的Eu负异常。微量元素蛛网图解中,杂岩体配分曲线呈板内碱性玄武岩特征的“双隆起”型式,表现出高场强元素Nb、Ta、Th、U、Zr及Hf的富集,不相容元素Sr、P、Ti的亏损特征(图9)。

  • 5 讨论

  • 5.1 源区特征

  • 学界关于富碱岩浆岩的物质来源主要有以下几种观点:① 长英质下地壳物质在高压条件下的部分熔融作用(Huang and Wyllie,1975,1981);② 富集岩石圈地幔低程度部分熔融产生的碱性玄武质岩浆经历结晶分异的结果(Brown et al.,1986Yang Jinhui et al.,2005);③ 幔源玄武质岩浆与壳源酸性岩浆混合,或受到壳源物质混染形成(Zhao Jianxin et al.,1995;Riishuus et al.,2005)。

  • 阔克塔格西岩体不同岩石单元形成时代基本一致,稀土元素球粒陨石标准化配分曲线均呈现出轻稀土强烈富集的右倾型曲线,同时富集高场强元素,亏损不相容元素(图8、9)。Harker图解中不同元素呈现相似的线性关系和分异演化趋势(图7)。AR-SiO2图解中,样品均位于碱性岩范围内,且AR与SiO2呈明显的正相关关系(图6a)。这些特征均指示不同岩石单元很可能起源于相同源区。此外,富碱侵入岩不同岩相的锆石氧同位素组成较为均一,没有随Hf同位素变化的趋势,εNdt)-年龄及εNdt)-(87Sr/86Sr)i图解上所有样品均具有富集的Sr-Nd同位素特征,进一步指示了其成因上的关联性。

  • 从主量、微量元素和Nd-Hf同位素特征来看,该岩体不太可能是地壳物质熔融形成的花岗质岩浆演化晚期形成的残余熔体,后者往往具有高硅(72%~73%)及亏损的同位素组成(Litvinovsky et al.,2000霍腾飞等,2016)。εHft)-年龄图解中阔克塔格西富碱侵入岩位于球粒陨石与下地壳之间(图10),相较于库鲁克塔格地区的前寒武纪基底岩石的Hf同位素组成,阔克塔格西岩体具有略亏损的特征,三类富碱岩石Hf同位素二阶段模式年龄为(1994~1320 Ma)(Long Xiaoping et al.,2010)。因此,区内的古老地壳物质也不太可能是阔克塔格西岩体母岩浆的主要源区。

  • 岩体的Zr/Nb比值(3.81~14.58)、La/Nb比值(0.52~1.67)及Rb/Nb比值(0.69~2.32)均接近EMI型富集地幔,εNdt)-(87Sr/86Sr)i图解中岩体分布于第 IV象限地幔趋势演化线左侧。上述特征与具亏损地幔特征的东天山小海子正长岩、雅满苏花岗岩及来自壳源的尾亚石英正长岩及小白石头黑云母花岗岩有较大差异(图10、11; Zhang Zunzhong et al.,2006Wei Xun et al.,2011Zhang Xiaoran et al.,2016Li Ning et al.,2019)。样品具有低负的εNdt)值(-14.56~-6.74)以及较低的Cr含量(<10×10-6~100×10-6),进一步暗示富集的岩石圈地幔是杂岩体母岩浆最主要的源区(Bowring and Housh,1995洪大卫等,2003)。

  • 图6 阔克塔格西富碱侵入岩K2O-SiO2(a)(据Peccerillo and Taylor,1976Middlemost,1985)、SiO2-AR(碱度率)(b)(据 Wright,1969)和A/NK-A/CNK(c)(据 Maniar and Piccoli,1989)化学分类图解

  • Fig.6 Chemical classification diagrams of K2O vs. SiO2 (a) (after Peccerillo and Taylor,1976Middlemost,1985) , SiO2 vs. AR (alkalinity ratio) (b) (after Wright,1969), and A/NK vs. A/CNK (c) (after Maniar and Piccoli, 1989) for the western Kuoktagh alkali-rich intrusive rocks

  • 参考数据引自Zhang Zunzhong et al.,2006Zhang Chuanlin et al.,2010;位旬等,2011;Huang He et al.,2012bLi Shan et al.,2012雷如雄等,2013Ma Yuan et al.,2016Zhang Xiaoran et al.,2016Li Ning et al.,2019Lei Ruxiong et al.,2021

  • Reference data from Zhang Zunzhong et al.,2006Zhang Chuanlin et al.,2010Wei Xun et al.,2011Huang He et al.,2012bLi Shan et al.,2012Lei Ruxiong et al.,2013Ma Yuan et al.,2016Zhang Xiaoran et al.,2016Li Ning et al.,2019Lei Ruxiong et al.,2021

  • 单纯由富集岩石圈地幔部分熔融产生的硅饱和钾玄质正长岩成分上以贫Fe、富Mg、Ca,富集大离子亲石元素Sr、Pb为特征(张遵忠,2006),与阔克塔格西富碱侵入岩地球化学特征并不相符。研究区富碱侵入岩Ce/Pb值(1.03~22.2)和Nb/U值(5.50~28.35)落于壳幔(分别为4~15、25±5;Hofmann,1997)之间,且εHft)具有较大范围(-11.48~3.06;图10)。这些特征指示除了富集的地幔源区,地壳物质的加入很可能是引起上述类似“壳源”的元素地球化学与同位素信息的原因。

  • 综上,本文认为阔克塔格西富碱侵入岩为同源岩浆演化产物,原始岩浆起源于富集岩石圈地幔并经历了与壳源长英质岩浆的混合作用,或上升侵位过程中受到了壳源物质的混染(详见后述)。

  • 5.2 岩浆演化

  • 5.2.1 分离结晶还是陆壳混染?

  • 前已述及,阔克塔格富碱侵入岩起源于同一源区,但不同岩石类型在主量元素和微量元素含量等方面的相似性表明它们可能代表同一母岩浆演化程度不同的产物。由于结晶分异过程中元素相容性的差异,Nb/Ta、Zr/Hf比值通常随岩浆演化过程系统性降低,而Rb/Sr比值则显著增加,故这些元素比值被视为岩浆演化的指示剂(Stepanov et al.,2014)。从二长闪长岩到正长岩、石英二长岩的演化序列中,Nb/Ta 比值从 21.03下降至7.87,Zr/Hf比值从57.40降至28.23,Rb/Sr 比值则从0.06上升到 2.48。Harker图解中SiO2与TiO2、Al2O3、TFe2O3、MgO、CaO、P2O5的负相关关系以及富碱侵入岩轻重稀土分馏明显、亏损Sr、P、Ti、Ba、Cr等元素的地球化学特征指示阔克塔格西富碱侵入岩很可能经历了同源岩浆分离结晶作用,岩体演化过程中发生了长石类矿物、铁镁矿物(如角闪石及黑云母)、钛铁氧化物(如钛铁矿)和富磷矿物(如磷灰石)的早期分离结晶。SiO2与Sr含量的线性关系(图12a)表明斜长石和钾长石的显著结晶分异(Grunsky et al.,1994;Peng Touping et al.,2015)。Sr-Ba图解(图12b)指示钾长石的分离结晶相较于斜长石更为显著。这些证据记录了分离结晶作用在阔克塔格西富碱侵入岩演化过程中的作用。

  • 图7 阔克塔格西富碱侵入岩Harker图解(图例同图6)

  • Fig.7 Harker diagrams of the western Kuoktagh alkali-rich intrusive rocks (legend same as Fig.6)

  • 图8 阔克塔格西富碱侵入岩(a)及东天山邻近花岗岩体稀土元素球粒陨石标准化配分图(b) (球粒陨石数据来自Sun and McDonough,1989;参考数据同图6)

  • Fig.8 Chondrite-normalized REE patterns for the western Kuoktagh alkali-rich intrusive rocks (a) and adjacent granitic plutons in the eastern Tianshan belt (b) (data of chondrite are from Sun and McDonough,1989;the reference data same as Fig.6)

  • 图9 阔克塔格西富碱侵入岩(a)及东天山邻近花岗岩体(b)微量元素原始地幔标准化蛛网图 (原始地幔数据来自Sun and McDonough,1989;参考数据同图6)

  • Fig.9 Primitive mantle-normalized trace elements spidergrams for the western Kuoktagh alkali-rich intrusive rocks (a) and adjacent granitic plutons in the eastern Tianshan belt (b) (data of primitive mantle are from Sun and McDonough,1989;the reference data same as Fig.6)

  • 然而,岩浆过程判别图解指示岩体的岩浆演化过程并非由单一的分离结晶作用主导(图12c、d)。εNdt)-1000Nd和εNdt)与SiO2的线性关系同样反映了原始岩浆演化过程中壳源物质的加入。同时,地幔橄榄岩熔融形成的碱性岩浆通过深部结晶分异形成的岩浆轻稀土含量较低并且具有亏损的同位素特征(霍腾飞等,2016),与阔克塔格较高的轻稀土丰度及富集的同位素组成并不相符。结合富碱侵入岩变化范围较大的εHft)值、略高于地幔值的锆石氧同位素(δ18O‰=5.49‰~6.87‰)特征以及介于壳幔之间的Ce/Pb、Nb/U值,本文认为研究区富碱侵入岩岩浆成分的演化受到分离结晶作用的影响,但更多受到壳源物质的混染,抑或与壳源长英质岩浆的混合作用有关。

  • 图10 阔克塔格西富碱侵入岩εHft)-U/Pb 年龄图解(底图据He Zhenyu et al.,2018;图例同图6)

  • Fig.10 Plots of εHft) vs. U-Pb age for western Kuoktagh alkali-rich intrusive rocks (after He Zhenyu et al.,2018;legend after Fig.6)

  • 图11 阔克塔格西富碱侵入岩εNdt)-U/Pb年龄(a)(底图据Zhang Dongyang et al.,2016)及εNdt)-(87Sr/86Sr)i图解(b)(底图据王凯垒等,2021)(图例同图6)

  • Fig.11 Plots of εNdt) vs.U-Pb age (a) (after Zhang Dongyang et al.,2016) and εNdt) vs.(87Sr/86Sr)i(b) (after Wang Kailei et al.,2021) for the western Kuoktagh alkali-rich intrusive rocks (legend same as Fig.6)

  • 5.2.2 壳幔相互作用:同化混染-分离结晶过程

  • 岩浆演化过程中的混合作用意义重大,然而简单地说混合作用较笼统,应经过仔细分析是源区混合(source contamination)还是岩浆上升侵位过程中发生了陆壳混染(path contamination)(Cornet et al.,2022)。壳源物质相比幔源物质具有较高的Nd含量及(87Sr/86Sr)i比值,地壳混染时εNdt)-(87Sr/86Sr)i同位素关系图上形成下凹曲线,阔克塔格西碱性岩体在εNdt)-(87Sr/86Sr)i图中投影点落于地壳混染区域(图13b),暗示幔源的原始岩浆上升侵位过程中受到了壳源物质的混染作用,而非源区混合。

  • 锆石Hf-O同位素模拟结果同样支持上述观点。地幔来源锆石δ18O值为5.3‰±0.6‰,地壳来源锆石δ18O值>6.0‰(Valley et al.,1998)。幔源岩浆中混入地壳物质或岩体遭受低温热液蚀变将表现出锆石δ18O值升高的特征(Eiler,2001)。本文所采集的阔克塔格西富碱侵入岩样品新鲜,烧失量LOI值较低(<1.5%),无明显的热液蚀变特征。锆石δ18O值介于5.49‰~6.87‰,均值为6.48‰,比典型地幔锆石δ18O值略高(图13b)。锆石δ18O值与全岩δ18O值高度相关,前人总结的经验公式为:Δδ18O(锆石-全岩)=δ18O(锆石)-δ18O(全岩)≈-0.0612SiO2(%)+2.5(Lackey et al.,2005)。计算得出阔克塔格西富碱岩体母岩浆δ18O值为6.33‰~8.65‰,具有壳幔混源的特征。

  • 图12 阔克塔格西富碱侵入岩SiO2-Sr(a)、Sr-Ba(b)、1000Nd-εNdt)(c)、SiO2Ndt)(d)图解(图例同图6)

  • Fig.12 SiO2 vs. Sr (a) , Sr vs. Ba (b) , 1000Nd-εNdt) (c) , SiO2 vs. εNdt) (d) diagrams for the western Kuoktagh alkali-rich intrusive rocks (legend same as Fig.6)

  • 位于塔里木克拉通西北缘的皮羌辉长岩形成于塔里木地幔柱活跃时期,其锆石δ18O值略高的特征被认为是基性母岩浆经历分离结晶AFC结果(Wei Xun et al.,2019)。鉴于阔克塔格西富碱侵入岩与皮羌辉长岩具有相似的锆石δ18O值,其母岩浆可能具有相似程度的壳源物质混染。εHft)-δ18O曲线图可直观展现岩体的同化混染过程,岩体的曲率取决于末端成分的相对Hf浓度(Kemp et al.,2007)。阔克塔格西富碱岩体与经历AFC过程的皮羌辉长岩地球化学特征相似,εHft)-δ18O图中二者曲线曲率大致相同(图14a)。模拟计算结果表明,10%左右的地壳混染可使阔克塔格西富碱侵入岩δ18O值从5.49‰增至6.87‰。

  • 综上所述,笔者认为阔克塔格西富碱侵入岩δ18O值升高是遭受较大程度(>10%)地壳混染造成的。该岩体可能经历了AFC过程,即同化混染-分离结晶同时进行。这一结论也与一系列地球化学特征相一致:① 仅发生分离结晶作用的岩浆,La/Sm比值通常集中于5;若岩浆上升过程中经历了壳源物质的混染,则La/Sm比值增高(Lassiter and DePaolo,1997)。阔克塔格西富碱侵入岩La/Sm比值变化范围较大(7.86~21.37),同时Ce/Pb值(1.03~22.2)和Nb/U值(5.50~28.35) 落于壳幔(分别为4~15和25±5;Hofmann,1997)之间,暗示其经历了显著的同化混染作用。② 幔源岩浆形成酸性岩浆岩的过程中,若仅由玄武质岩浆持续分离结晶形成花岗质岩石,则会在地表形成大量的基性岩(Turner et al.,1992Frost et al.,2002Huang He et al.,2012b)。野外观察确有辉长岩、辉石闪长岩等基性岩浆岩出露,但长英质岩石体积明显远高于镁铁质—超镁铁质岩石。杂岩体似乎不太可能仅由分离结晶作用形成。③ 低Mg#的角闪正长岩与高Mg#霓辉正长岩具有不同程度的Eu异常,可能由于镁铁质矿物在样品中的含量差异引起(甘保平,2017)。④ 三类碱性岩εHft)(-11.48~3.06)及εNdt)(-14.56~-6.74)值变化范围均较大,对应的Hf、Nd二阶段模式年龄分别为1994~1320 Ma和2258~1551 Ma,反映开放系统下的岩浆演化过程。

  • 图13 阔克塔格西富碱侵入岩εNdt)-(87Sr/86Sr)i (据James,1981)壳源混染作用判别图解(图例同图6)

  • Fig.13 εNd (t) vs. (87Sr/86Sr)i (after James, 1981) discriminant diagrams of crust assimiliation for western Kuoktagh alkali-rich intrusive rocks (legend same as Fig.6)

  • 5.3 构造意义

  • 前已述及,在塔里木克拉通北缘—东天山—北山地区发育大量的富碱侵入岩,包括碱性花岗岩、正长岩等。在上述富碱岩浆岩带的西段,塔里木克拉通西北缘发育大量A1型富碱侵入体,形成时代在275 Ma前后(Huang He et al.,2012bZhang Chuanlin and Zou Haibo,2013),同时期还发育具洋岛玄武岩(OIB)特征的镁铁质—超镁铁质侵入岩。上述岩石组合均属于地幔柱背景下塔里木克拉通北缘大火成岩省的组成部分,暗示塔里木大火成岩省事件在~275 Ma左右达到顶峰。而东天山地区未发现形成于这一时期的A1型花岗岩和正长岩,我们认为可能有以下两个原因:① 东天山地区并未受到塔里木地幔柱的波及影响;② 其碰撞后-板内构造体制的转变晚于塔里木克拉通北缘西段地区。前人研究表明,早二叠世东天山仍处于造山阶段晚期的后碰撞演化阶段(Qin Kezhang et al.,2002Wang Yinhong et al.,2015Li Ning et al.,2019),发育大量镁铁质—超镁铁质岩和钙碱性—高钾钙碱性花岗岩(Chen Xijie et al.,2011Su Benxun et al.,2012),且经历了一次幔源岩浆的底侵和内侵诱发的地壳垂向增生事件(顾连兴,2006王银宏等,2015)。到早三叠世东天山及邻近的北山地区产出伸展环境下的高钾钙碱性-钾玄岩系列花岗岩(李舢等,2010Li Shan et al.,2012Zhang Xiaoran et al.,2017),具有从I型向A2型过渡的特征。直至晚三叠世,A1型花岗岩才开始出现在东天山地区。

  • 图14 阔克塔格西富碱侵入岩δ18O-εHft)图解(a)(底图据Wei Xun et al.,2019)、锆石O同位素统计直方图(b)和锆石Hf同位素统计直方图(c)

  • Fig.14 δ18O vs. εHft)diagram(a) (after Wei Xun et al.,2019), statistical histogram of zircon O isotope (b) and statistical histogram of zircon Hf isotopic composition (c) for the western Kuoktagh alkali-rich intrusive rocks

  • A型花岗岩判别图上,研究区富碱侵入岩投点主体落于A型花岗岩区域,而在Nb-Y-Ce和 Nb-Y-3Ga三组分图上,均位于A1区(图14)。就产出位置而言,阔克塔格地区处于塔里木克拉通边缘到中亚造山带的过渡地带,也位于西天山—塔里木克拉通西北缘向东天山—北山—塔里木克拉通东北缘过渡的区域。阔克塔格地区缺乏地幔柱相关大火成岩省岩浆事件的记录,且该岩体产于晚三叠世印支期,同时表现出板内岩浆特征(图15),表明其产于板内伸展环境 (张旗等,2012Litvinovsky et al.,2015)。综合考察,我们认为阔克塔格地区晚古生代—中生代的岩浆活动与东天山—北山地区具有同步性。

  • 图15 阔克塔格西富碱侵入岩A型花岗岩判别图解(a、b据Whalen et al.,1987;c、d据Eby et al.,1992;图例同图6)

  • Fig.15 Discrimination diagrams of A-type granite forwestern Kuoktagh alkali-rich intrusive rocks (a,b after Whalen et al.,1987; c,d after Eby et al.,1992; legend same as Fig.6)

  • 前人研究表明,东天山晚古生代主碰撞期后形成的花岗岩主要形成于三个阶段:① 挤压—伸展阶段 (300~285 Ma);② 碰撞后伸展阶段(285~250 Ma);③ 板内阶段(250~208 Ma)(顾连兴等,2006)。二叠纪碰撞后双峰式火山岩和超镁铁质-长英质侵入岩(Yuan Chao et al.,2010Chen Xijie et al.,2011Zhang Xiaoran et al.,2016)、294~266 Ma的A2型花岗岩类(Zheng Jiahao et al.,2016)表明东天山经历了一段碰撞后伸展阶段。该区产于250 Ma之后的岩体,如246±6~233±8 Ma(Zhang Zunzhong et al.,20052007)的尾亚碱性杂岩体,236±3 Ma的百灵山西辉长岩(高志武等,2011)以及雅满苏、星星峡地区250~223 Ma的花岗岩(Lei Ruxiong et al.,2013Zhang Xiaoran et al.,2017)均具有板内岩浆岩的特征。前人推测该区碰撞后伸展阶段可能于250~240 Ma结束,此后东天山地区进入板内演化阶段(顾连兴等,2006)。与研究区相邻的北山地区也发现大量三叠纪A型花岗岩且同样被认为形成于造山后板内伸展背景(Li Shan et al.,2012)。

  • 古生代南天山洋的最终闭合被认为是穿时性的,塔里木克拉通与伊犁-中天山地体的合并时间显示自西向东的年轻化特征(Huang He et al.,2015)。在西天山部分,南天山洋的闭合不晚于晚石炭世(Han Yigui and Zhao Guochun,2018)。而在东天山,古亚洲洋的闭合发生在晚石炭世—早二叠世(Chen Xijie et al.,2011Zhang Xiaoran et al.,2016Wang Yinhong et al.,2018)。北山地区古亚洲洋的闭合发生在二叠纪—中三叠世的较晚阶段(Xiao Wenjiao et al.,2010Tian Zhonghua et al.,2013;Zhou Jianbo and Wilde,2013)。我们认为晚三叠世塔里木克拉通北缘—东天山—北山地区处于相同的板内构造体制,A1型花岗岩和正长岩等富碱岩石出露的时空差异性,可能记录了古亚洲洋自西到东 “剪刀式”的闭合过程(图16)。

  • 6 结论

  • (1)阔克塔格西岩体具有富碱、富铝、贫镁、贫钛及准铝质的特征,为钾玄岩-高钾钙碱性系列碱性岩;富集高场强元素Nb、Ta、Th、U、Zr及Hf,亏损不相容元素Sr、P、Ti;轻重稀土分馏明显,Eu异常变化较大。岩体形成于板内伸展环境,具A1型花岗岩特征。

  • 图16 塔里木克拉通北缘—东天山—北山A和I型花岗岩时空分布简图

  • Fig.16 Temporal and spatial distribution of A-type and I-type granites in the north margin of Tarim craton, eastern Tianshan belt and Beishan region

  • 年龄数据引自Zhang Zunzhong et al.,2006Zhang Chuanlin et al.,2010;位旬等,2011;Huang He et al.,2012bLi Shan et al.,2012雷如雄等,2013Ma Yuan et al.,2016Zhang Xiaoran et al.,2016Li Ning et al.,2019Lei Ruxiong et al.,2021

  • Age data from Zhang Zunzhong et al.,2006Zhang Chuanlin et al.,2010Wei Xun et al.,2011Huang He et al.,2012bLi Shan et al.,2012Lei Ruxiong et al.,2013Ma Yuan et al.,2016Zhang Xiaoran et al.,2016Li Ning et al.,2019Lei Ruxiong et al.,2021

  • (2)锆石U-Pb同位素测年结果显示阔克塔格西富碱侵入岩形成于227~224 Ma,为印支期侵位。岩相学观察结合地球化学特征及Sr-Nd-Hf-O同位素分析表明阔克塔格西杂岩体为同源岩浆演化而来,成分演变受到分离结晶作用及壳源物质的混染作用(AFC)控制。

  • (3)晚三叠世塔里木克拉通北缘—东天山—北山地区处于相同的板内构造体制,A1型花岗岩和正长岩等富碱岩石出露的时空差异性,可能记录了古亚洲洋自西到东“剪刀式”的闭合过程。

  • 注释

  • ❶ 新疆地质矿产勘查开发局第三地质大队.2004. 新疆尉犁县阔克塔格铌钽矿地质普查报告.

  • 参考文献

    • Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1~29.

    • Bowring S A, Housh T. 1995. The Earth's early evolution. Science, 269(5230): 1535~1540.

    • Brown P E, Becker S M. 1986. Fractionation hybridisation and magma-mixing in the Kialineq Centre, East Greenland. Contributions to Mineralogy and Petrology, 1(92): 57~70.

    • Chai Fengmei, Zhang Zhaochong, Mao Jingwen, Dong Lianhui, Zhang Zuoheng, Wu Hua. 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences, 32(2-4): 218~235.

    • Chen Bin, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5): 1307~1320.

    • Chen Xijie, Shu Liangshu, Santosh M. 2011. Late Paleozoic post-collisional magmatism in the eastern Tianshan belt, Northwest China: New insights from geochemistry, geochronology and petrology of bimodal volcanic rocks. Lithos, 127(3-4): 581~598.

    • Cornet J, Laurent O, Wotzlaw J F, Antonelli M A, Otamendi J, Bergantz G W, Bachmann O. 2022. Reworking subducted sediments in arc magmas and the isotopic diversity of the continental crust: The case of the Ordovician Famatinian crustal section, Argentina. Earth and Planetary Science Letters, 595: 117706.

    • Deng Xiaohua, Chen Yanjing, Santosh M, Wang Jingbin, Li Chao, Yue Suwei, Zheng Zhen, Chen Hongjin, Tang Haoshu, Dong Lianhui, Qu Xun. 2017. U-Pb zircon, Re-Os molybdenite geochronology and Rb-Sr geochemistry from the Xiaobaishitou W(-Mo)deposit: Implications for Triassic tectonic setting in eastern Tianshan, NW China. Ore Geology Reviews, 80: 332~351.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology(Boulder), 7(20): 641~644.

    • Eiler J M. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in Mineralogy and Geochemistry, 43(1): 319~364.

    • Ewart A. 1998. Etendekavolcanism of the Goboboseb mountains and messum igneous complex, Namibia. Part II: Voluminous quartz latite volcanism of the Awahab magma system. Journal of Petrology, 39(2): 227~253.

    • Frost C D, Frost B R, Bell J M, Chamberlain K R. 2002. The relationship between A-type granites and residual magmas from anorthosite: Evidence from the northern Sherman Batholith, Laramie Mountains, Wyoming, USA. Precambrian Research, 119(1-4): 45~71.

    • Gan Baoping. 2017. Neoproterozoic alkaline complex in the northern Yangtze Block, Micangshan Mountains area : Geochemical significances and geological implications. Master degree dissertation of Northwest University.

    • Gao Zhiwu, Lü Changliang, Deng Mingguo, Guan Shenjin, Yang Fuqiang. 2021. Geochemical features and tectonic setting of the mesozoicintrusions in eastern Tianshan. Earth Science, 46(7): 2287~2298. (in Chinese with English abstract).

    • Ge Rongfeng, Zhu Wenbin, Wu Hailin, Zheng Bihai, Zhu Xiaoqing, He Jinwen. 2012. The Paleozoic northern margin of the Tarim craton: Passive or active? Lithos, 142-143: 1~15.

    • Grunsky Em Massey N. 1994. Using geochemical data: Evaluation, presentation, interpretation. Geochimica et Cosmochimica Acta, 59(3): 439~441.

    • Gu Lianxing, Zhang Zunzhong, Wu Changzhi, Wang Yinxi, Tang Junhua, Wang Chuansheng, Xi Aihua, Zheng Yuanchuan. 2006. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrologica Sinica, 22(5): 1103~1120 (in Chinese with English abstract).

    • Guo Ruiqing, Qin Qie, Zhang Xiaofan, Sun Baosheng, Guo Yin. 2013. Geochronology, petrogeochemistry of western Kuoktagh alkaline rocks in Quruqtagh area in Xinjiang and its geological implications. Journal of Jilin University(Earth Science Edition), 43(2): 457~468 (in Chinese with English abstract).

    • Han Baofu, Wang Shiguang, Jahn B M, Hong Dawei, Kagamid H, Sun Yuanlin. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135~159.

    • Han Chunming, Xiao Wenjiao, Su Benxun, Sakyi P A, Ao Songjian, Zhang Jien, Zhang Zhiyong, Wan Bo, Song Dongfang, Wang Zhongmei, Zhao Na. 2018. Geology, Re-Os and U-Pb geochronology and sulfur isotope of the Donggebi porphyry Mo deposit, Xinjiang, NW China, Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 165: 270~284.

    • Han Yigui, Zhao Gunchun. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129~152.

    • He Zhenyu, Klemd R, Yan Lili, Lu Tianyu, Zhang Zeming. 2018. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: Evidence from oxygen and hafnium isotopes in zircon. Scientific Reports, 8: 5054.

    • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219~229.

    • Hong Dawei, Li Shiguang, Han Baofu, Jin Manyuan. 1995. Classification of tectonic environment of alkaline granite and its identification symbols. Science in China(Series B), 25(4): 418~426 (in Chinese without English abstract).

    • Hong Dawei, Wang Shiguang, Xie Xilin, Zhang Jisheng, Wang Tao. 2003. Correlation between continental crustal growth and the Supercontinental Cycle: Evidence from the granites with positive εNd in the Central Asian Orogenic Belt. Acta Geologica Sinica, 77(2): 203~209.

    • Huang He, Zhang Zhaochong, Kusky T, Zhang Dongyang, Hou Tong, Liu Junlai, Zhao Zhidan, 2012a. Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth. Lithos, 140-141: 65~84.

    • Huang He, Zhang Zhaochong, Kusky T, Santosh M, Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan. 2012b. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.

    • Huang He, Zhang Zhaochong, Santosh M, Zhang Dongyang, Wang Tao. 2015. Petrogenesis of the early Permian volcanic rocks in the Chinese South Tianshan: Implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 228-229: 23~42.

    • Huang He, Wang Tao, Tong Yin, Qin Qie, Ma Xuxuan, Yin Jiyuan. 2020. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili block and adjacent regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 208: 103255.

    • Huang W L, Wyllie P J. 1981. Phase relationships of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research: Solid Earth, B11(86): 10515~10529.

    • Huang Wuuliang, Wyllie Petee J. 1975. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 Kilobars, dry and with excess water. The Journal of Geology, 6(83): 737~748.

    • Huo Tengfei, Yang Debin, Shi Jiangpeng, Xu Wenliang, Yang Haotian. 2016. Petrogenesis of the Early Cretaceous alkali-rich intrusive rocks in the central North China Block: Constraints from zircon U-Pb chronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 32(3): 697~712

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82~92.

    • Jahn B M, Malpas J, Fletcher C J N, Ali J R, Aitchison J C. 2004. The Central Asian orogenic belt and growth of the continental crust in the Phanerozoic. Aspects of the Tectonic Evolution of China, 1(226): 73~100.

    • James D E. 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. AnnualReview of Earth and Planetary Sciences, 1(9): 311~344.

    • Jia Xiaoliang, Guo Ruiqing, Chai Fengmei, Nijiati Abuduxun, Qin Qie, Zhu Xin, Wang Kezhuo. 2013. Geochemistry and geochronology of monzogranites in Kuruktag of Xinjiang and their tectonic implications. Geological Bulletin of China, 32(2-3): 239~250 (in Chinese with English abstract).

    • Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science(American Association for the Advancement of Science), 5814(315): 980~983.

    • Lackey J, Valley J, Saleeby J. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: Evidence from high-δ18O zircon. Earth and Planetary Science Letters, 235(1-2): 315~330.

    • Lassiter J C, DePaolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. Geophysical Monograph American Geophysical Union, 100: 335~356.

    • Lei Ruxiong, Wu Changzhi, Zhang Zunzhong, Gu Lianxing, Tang Junhua, Li Guangrong. 2013. Geochronology, geochemistry and tectonic significances of the Yamansubei pluton in eastern Tianshan, North China. Acta Petrologica Sinica, 29(8): 2653~2664 (in Chinese with English abstract).

    • Lei Ruxiong, Brzozowski M J, Feng Yonggang, Zhang Kai, Muhtar M N, Luo Xianglong, Wu Changzhi. 2021. Triassic crust-mantle interaction in the Eastern Tianshan, southern Altaids: Insights from microgranular enclaves and their host Tianhu granitoids. Lithos, 402-403: 105879.

    • Li Ning, Yang Fuquan, Zhang Zhixin, Yang Chengdong. 2019. Geochemistry and chronology of the biotite granite in the Xiaobaishitou W-(Mo)deposit, eastern Tianshan, China: Petrogenesis and tectonic implications. Ore Geology Reviews, 107: 999~1019.

    • Li Ning, Yang Fuquan, Zhang Zhixin, Li Chao. 2020. Dating the Xiaobaishitou skarn W-(Mo)deposit, Eastern Tianshan, NW China: Constraints from zircon U-Pb, muscovite 40Ar-39Ar, and molybdenite Re-Os system. Ore Geology Reviews, 124: 103637.

    • Li Shan, Wang Tao, Tong Ying. 2010. Spatial-temporal distribution and tectonic settings of Early Mesozonic granitoids in the middle-south segment of the Central Asia Orogenic System. Acta Petrologica Et Mineralogica, 29(6): 642~662(in Chinese with English abstract).

    • Li Shan, Wang Tao, Wilde S A, Tong Ying, Hong Dawei, Guo Qianqian. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 134-135: 123~145.

    • Li Yang, Tang Guoqiang, Liu Yu, He Sheng, Chen Bo, Li Qiuli. 2021. Revisiting apatite SIMS oxygen isotope analysis and Qinghu-Ap reference material. Chemical Geology, 582: 120445.

    • Litvinovsky B A, Steel I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41: 717~737.

    • Litvinovsky B A, Jahn B M, Eyal M. 2015. Mantle-derived sources of syenites from the A-type igneous suites—New approach to the provenance of alkaline silicic magmas. Lithos, 242~265.

    • Long Xiaoping, Yuan Chao, Sun Min, Zhao Guochun, Xiao Wenjiao, Wang Yujing, Yang Yueheng, Hu Aiqin. 2010. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180(3-4): 272~284.

    • Lu Songnian, Li Huaikun, Zhang Chuanlin, Niu Guanghua. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments. Precambrian Research, 160: 94~107.

    • Ma Yuan, Zhang Zhaochong, Huang He, Santosh M, Cheng Zhiguo. 2016. Petrogenesis of the Bashisuogong bimodal igneous complex in southwest Tianshan Mountains, China: Implications for the Tarim large igneous province. Lithos, 264: 509~523.

    • Madhavan V, Rao J M, Srinivas M. 1999. Mid-Proterozoic Intraplate Alkaline Magmatism in the Eastern Dharwar Craton of India: The Cuddapab Province. Journal of the Geological Society of India, 53(2): 143~162.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society America Bulletin, 101(5): 635~643.

    • Middlemost E A K. 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London: Longman.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 1(58): 63~81.

    • Peng Touping, Fan Weiming, Zhao Guochun, Peng Bingxia, Xia Xiaoping, Mao Yongsheng. 2015. Petrogenesis of the early Paleozoic strongly peraluminous granites in the Western South China Block and its tectonic implications. Journal of Asian Earth Sciences, 98: 399~420.

    • Qin Kezhang, Fang Tonghui, Wang Shulai, Zhu Baoqing, Feng Yimin, Yu Haifang, Xiu Qunyi. 2002. Plate tectonics division, evolution and metallogenic settings in Eastern Tianshan mountains, NW-China. Xinjiang Geology, 20(4): 302~307 (in Chinese with English abstract).

    • Ren Kangxu. 2003. Studyprocess of the alkaline rocks: A review. Geology of Chemical Minerals, 25(3): 151~163 (in Chinese with English abstract).

    • Riishuus M S, Peate D W, Tegner C, Wilson J R, Brooks C K, Waight T E. 2005. Petrogenesis of syenites at a rifted continental margin: Origin, contamination and interaction of alkaline mafic and felsic magmas in the Astrophyllite Bay complex, East Greenland. Contributions to Mineralogy and Petrology, 3(149): 350~371.

    • Saibal G, Jagatbikas B, Sumit K M, Manasij S. 2005. Alkaline magmatism versus collision tectonics in the eastern Ghats belt, India: Constraints from structural studies in the Koraput complex. Gondwana Research, 8(3): 403~419.

    • Shu L S, Deng X L, Zhu W B, Ma D S, Xiao W J. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences, 5(42): 774~790.

    • Stepanov A, Mavrogenes J A, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 6(167): 1009.

    • Su Benxun, Qin Kezhang, Sakyi P A, Tang Dongmei, Liu Pingping, Malaviarachchi S P K, Xiao Qinghua, Sun He. 2012. Geochronologic-petrochemical studies of the Hongshishan mafic-ultramafic intrusion, Beishan area, Xinjiang (NW)China: Petrogenesis and tectonic implications. International Geology Review, 54(3-4): 270~289.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.

    • Tian Wei, Campbell I H, Allen C M, Guan Ping, Pan Wenqing, Chen Mimi, Yu Hongjiao, Zhu Wenping. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 3(160): 407~425.

    • Tian Zhonghua, Xiao Wenjiao, Shan Yehua, Windley Brian, Han Chunming, Zhang Ji'en, Song Dongfang. 2013. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids. Journal of Structural Geology, 52: 119~135.

    • Tu Guangzhi. 1989. On the alkali-rich intrusive rocks. Mineral Resources and Geology, 13(3): 1~4.

    • Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Pathaway Ridge, South Australia. Lithos, 28: 151~179.

    • Upadhyay D, Raith M M, Mezger K, Hammerschmidt K. 2006. Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos, 89(3-4): 447~477.

    • Valley J W, Kinny P D, Schulze D J, Spicuzza M J. 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2): 1~11.

    • Wang Kailei, Li Huikai, Zhang Xuemeng, Tian Zengbiao, Zhang Jiaxing, Xing Dongxue, Zheng Le, Dai Tao. 2021. Geochemistry, geochronology and Sr-Nd isotope of mafic dykes in the Yabulai area, northern margin of the Alxa Massif. Geology and Exploration, 57(5): 1017~1027 (in Chinese with English abstract).

    • Wang Xiangsong, Cai Keda, Sun Min, Xiao Wenjiao, Xia Xiaoping, Wan Bo, Bao Zihe, Wang Yannan. 2018. Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis. Journal of Asian Earth Sciences, 153(3): 118~138.

    • Wang Yinhong, Zhang Fangfang, Liu Jiajun, Xue Chunji, Wang Jianping, Liu Bin, Lu Weiwei. 2015. Petrogenesis of granites in Baishan molybdenum deposit, Eastern Tianshan, Xinjiang: Zircon U-Pb geochronology, geochemistry, and Hf isotope constraints. Acta Petrologica Sinica, 31(7): 1962~1976 (in Chinese with English abstract).

    • Wang Yinhong, Zhang Fangfang, Liu Jiajun, Xue Chunji, Li Bochao, Xian Xuechen. 2018. Ore genesis and hydrothermal evolution of the Donggebi porphyry Mo deposit, Xinjiang, Northwest China: Evidence from isotopes (C, H, O, S, Pb), fluid inclusions, and molybdenite Re-Os dating. Economic Geology, 2(113): 463~488.

    • Wei Xun, Xu Yigang. 2011. Petrogenesis of Xiaohaizi syenite complex from Bachu area, Tarim. Acta Petrologica Sinica, 27(10): 2984~3004.

    • Wei Xun, Xu Yigang, He Bin, Zhang Le, Xia Xiaoping, Shi Xuefa. 2019. Zircon U-Pb age and Hf-O isotope insights into genesis of Permian Tarim felsic rocks, NW China: Implications for crustal melting in response to a mantle plume. Gondwana Research, 76: 290~302.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 4(95): 407~419.

    • Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, FranchiI, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz-Dobrick B, Skr O, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y F. 2004. Further characterization of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9~39.

    • Wright J B. 1969. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis. Geological Magazine, 106(4): 370~384.

    • Wu Changzhi, Zhang Zunzhong, Gu Lianxing, Tang Junhua, Lei Ruxiong. 2010. Sr, Nd and O isotopic characters of quartz syenite in the Weiya magmatic complex from Eastern Tianshan in NW China: Melting of the thickened juvenile lower crust. Geochemical Journal, 44: 285~298.

    • Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253~273.

    • Xu Yigang, Wei Xun, Luo Zhenyu, Liu Haiquan, Cao Jun. 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204: 20~35.

    • Yang Jinhui, Chung Sunlin, Wilde S A, Wu Fuyuan, Chu Meifei, Lo Chinghua, Fan Hongrui. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99~125.

    • Yuan Chao, Sun Min, Wilde S, Xiao Wenjiao, Xu Yigang, Long Xiaoping, Zhao Guochun. 2010. Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos, 119(3-4): 269~288.

    • Zeng Guangce, Qiu Jiaxiang. 1996. Conception of alkaline rocks and their nomenclature. Geological Science and Technology Information, 15(1): 31~37 (in Chinese with English abstract).

    • Zhang Chuanlin, Li Xianhua, Li Zhengxiang, Ye Haimin, Li Changnian. 2008. A Permian layered intrusive complex in the Western Tarim Block, Northwestern China: Product of a Ca. 275-Ma mantle plume? The Journal of Geology, 3(116): 269~287.

    • Zhang Chuanlin, Xu Yigang, Li Zhengxiang, Wang Hongyan, Ye Haimin. 2010. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume? Lithos, 119(3-4): 537~552.

    • Zhang Chuanlin, Zou Haibo. 2013. Permian A-type granites in Tarim and western part of Central Asian Orogenic Belt (CAOB): Genetically related to a common Permian mantle plume? Lithos, 172-173: 47~60.

    • Zhang Dongyang, Zhang Zhaochong, Mao Jingwen, Huang He, Cheng Zhiguo. 2016. Zircon U/Pb ages and Hf-O isotopic signatures of the Wajilitag and Puchang Fe-Ti oxide-bearing intrusive complexes: Constraints on their source characteristics and temporal-spatial evolution of the Tarim large igneous province. Gondwana Research, 37: 71~85.

    • Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite: What is the essence?Acta Petrologica Et Mineralogica, 31(4): 621~626 (in Chinese with English abstract).

    • Zhang Xiaoran, Zhao Guochun, Eizenhöfer P R, Sun Min, Han Yigui, Hou Wenzhu, Liu Dongxing, Wang Bo, Liu Qian, Xu Bing, Zhu Chloe Yanlin. 2016. Tectonic transition from Late Carboniferous subduction to Early Permian post-collisional extension in the eastern Tianshan, NW China: Insights from geochronology and geochemistry of mafic-intermediate intrusions. Lithos, 256-257: 269~281.

    • Zhang Xiaoran, Zhao Guochun, Sun Min, Han Yigui, Liu Qian. 2017. Triassic magmatic reactivation in Eastern Tianshan, NW China: Evidence from geochemistry and zircon U-Pb-Hf isotopes of granites. Journal of Asian Earth Sciences, 145: 446~459.

    • Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Li Weiqiang, Xi Aihua, Wang Shuo. 2005. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its geological implications. Acta Geologica Sinica(English edition), 79(4): 481~490.

    • Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Zhai Jianping, Li Weiqiang, Tang Junhua. 2006. Weiya quartz syenite in early Indosinina from eastern Tianshan Mountains: Petrogenesis and tectonic implications. Acta Petrologica Sinica, 22(5): 1135~1149 (in Chinese with English abstract).

    • Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Zhai Jianpin, Li Weiqiang, Tang Junhua. 2007. Early Indosinian Weiya gabbro in Eastern Tianshan, China: Elemental and Sr-Nd-O isotopic geochemistry and its tectonic implications. Acta Geologica Sinica(English edition), 81(3): 424~432.

    • Zhao J X, Shiraishi K, Ellis D J, Sheraton J W. 1995. Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: Implications for the origin of syenitic magmas. Geochimica et Cosmochimica Acta, 7(59): 1363~1382.

    • Zhao Zhenghua, Zhou lingli. 1994. REE geochemistry of some alkali rich intrusive rocks in China. Science in China(Series B), 24(10): 1109~1120 (in Chinese without English abstract).

    • Zheng Jiahao, Mao Jingwen, Chai Fengmei, Yang Fuquan. 2016. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting. Lithos, 260: 371~383.

    • Zhou Meifu, Michael L C, Yang Zhengxi, Li Jianwei, Sun Min. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE)sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233~257.

    • Zhou Meifu, Zhao Junhong, Jiang Changyi, Gao Jianfeng, Wang Wei, Yang Shenghong. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583~594.

    • Zhou Jianbo, Wilde S A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 4(23): 1365~1377.

    • Zhu Jiang, Lü Xinbiao, Cao Xiaofeng, Mo Yalong, Chen Chao. 2012. U-Pb zircon geochronology, geochemistry and kinetics of the Huaniushan A-type granite in Northwest China. Chinese Journal of Geochemistry, 1(31): 85~94.

    • Zhu Jiang, Lv Xinbiao, Chen Chao, Cao Xiaofeng, Hu Qincheng. 2013. Geological characteristics, metallogenic time and tectonic setting of the triassic molybdenum deposits in the east part of the East Tianshan and Beishan area, NW China. Xinjiang Geology, 31(1): 21~28 (in Chinese with English abstract).

    • Zou Tianren, Xu Yu, Chen Weishi, Xia Fengrong. 2002. Rare and rare earth mineral deposits related to alkaline rocks on northern margin of Tarim Basin, Xinjiang, China. Mineral Deposits, 21(S1): 845~848 (in Chinese with English abstract).

    • 甘保平. 2017. 扬子北缘米仓山地区新元古代碱性杂岩地球化学特征及地质意义. 西北大学硕士学位论文.

    • 顾连兴, 张遵忠, 吴昌志, 王银喜, 唐俊华, 汪传胜, 郗爱华, 郑远川. 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识. 岩石学报, 22(5): 1103~1120.

    • 郭瑞清, 秦切, 张晓帆, 孙宝生, 郭寅. 2013. 新疆库鲁克塔格阔克塔格西碱性岩年代学、岩石地球化学特征及其地质意义. 吉林大学学报(地球科学版), 43(2): 457~468.

    • 高志武, 吕昶良, 邓明国, 管申进, 杨富强. 2021. 东天山早中生代侵入体地球化学特征及其构造意义. 地球科学, 46(7): 2287~2298.

    • 洪大卫, 王式洸, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B辑), 25(4): 418~426.

    • 洪大卫, 王式洸, 谢锡林, 张季生, 王涛. 2003. 从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系. 地质学报, 77(2): 203~209.

    • 霍腾飞, 杨德彬, 师江朋, 许文良, 杨浩田. 2016. 华北地块中部早白垩世富碱侵入岩的成因: 锆石U-Pb年代学和Sr-Nd-Hf同位素制约. 岩石学报, 32(3): 697~712.

    • 贾晓亮, 郭瑞清, 柴凤梅, 尼加提·阿布都逊, 秦切, 朱志新, 王克卓. 2013. 新疆库鲁克塔格西段泥盆纪二长花岗岩年龄、地球化学特征及其构造意义. 地质通报, 32(2-3): 239~250.

    • 雷如雄, 吴昌志, 张遵忠, 顾连兴, 唐俊华, 黎广荣. 2013. 东天山雅满苏北岩体的年代学、地球化学及其构造意义. 岩石学报, 29(8): 2653~2664.

    • 李舢, 王涛, 童英. 2010. 中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境. 岩石矿物学杂志, 29(6): 642~662.

    • 吕彪, 郭瑞清, 王克卓, 魏震, 郭羽, 何海伦, 胡雪原. 2016. 新疆库鲁克塔格西段三叠纪辉绿岩墙的发现及地质意义. 新疆地质, 34(3): 317~324.

    • 秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区演化与成矿地质背景研究. 新疆地质, 20(4): 302~307.

    • 任康绪. 2003. 碱性岩研究进展述评. 化工矿产地质, 25(3): 151~163.

    • 涂光炽. 1989. 关于富碱侵入岩. 矿产与地质, 13(3): 1~4.

    • 王凯垒, 李会恺, 张学萌, 田增彪, 张家兴, 邢东雪, 郑乐, 代涛. 2021. 阿拉善地块北缘雅布赖地区基性岩墙地球化学、年代学和Sr-Nd同位素特征. 地质与勘探, 57(5): 1017~1027.

    • 王银宏, 张方方, 刘家军, 薛春纪, 王建平, 刘彬, 路魏魏. 2015. 东天山白山钼矿区花岗岩的岩石成因: 锆石U-Pb年代学、地球化学及Hf同位素约束. 岩石学报, 31(7): 1962~1976.

    • 位荀, 徐义刚. 2011. 塔里木巴楚小海子正长岩杂岩体的岩石成因探讨. 岩石学报, 27(10): 2984~3004.

    • 曾广策, 邱家骧. 1996. 碱性岩的概念及其分类命名综述. 地质科技情报, 15(1): 31~37.

    • 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621~626.

    • 张遵忠, 顾连兴, 吴昌志, 翟建平, 李伟强, 唐俊华. 2006. 东天山印支早期尾亚石英正长岩: 成岩作用及成岩意义. 岩石学报, 22(5): 1135~1149.

    • 赵振华. 1992. 微量元素地球化学. 地球科学进展, 7(5): 65~66.

    • 赵振华, 周玲棣. 1994. 我国某些富碱侵入岩的稀土元素地球化学. 中国科学(B辑), 24(10): 1109~1120.

    • 朱江, 吕新彪, 陈超, 曹晓峰, 胡庆成. 2013. 东天山东段-北山地区三叠纪钼矿床地质特征、时空分布及含矿花岗岩成岩-成矿构造背景. 新疆地质, 31(1): 21~28.

    • 邹天人, 徐珏, 陈伟十, 夏凤荣. 2002. 塔里木盆地北缘碱性岩型稀有稀土矿床. 矿床地质, 21(S1): 845~848.

  • 参考文献

    • Bonin B. 2007. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, 97: 1~29.

    • Bowring S A, Housh T. 1995. The Earth's early evolution. Science, 269(5230): 1535~1540.

    • Brown P E, Becker S M. 1986. Fractionation hybridisation and magma-mixing in the Kialineq Centre, East Greenland. Contributions to Mineralogy and Petrology, 1(92): 57~70.

    • Chai Fengmei, Zhang Zhaochong, Mao Jingwen, Dong Lianhui, Zhang Zuoheng, Wu Hua. 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences, 32(2-4): 218~235.

    • Chen Bin, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar fold belt (NW China), with implications for Phanerozoic continental growth. Geochimica et Cosmochimica Acta, 69(5): 1307~1320.

    • Chen Xijie, Shu Liangshu, Santosh M. 2011. Late Paleozoic post-collisional magmatism in the eastern Tianshan belt, Northwest China: New insights from geochemistry, geochronology and petrology of bimodal volcanic rocks. Lithos, 127(3-4): 581~598.

    • Cornet J, Laurent O, Wotzlaw J F, Antonelli M A, Otamendi J, Bergantz G W, Bachmann O. 2022. Reworking subducted sediments in arc magmas and the isotopic diversity of the continental crust: The case of the Ordovician Famatinian crustal section, Argentina. Earth and Planetary Science Letters, 595: 117706.

    • Deng Xiaohua, Chen Yanjing, Santosh M, Wang Jingbin, Li Chao, Yue Suwei, Zheng Zhen, Chen Hongjin, Tang Haoshu, Dong Lianhui, Qu Xun. 2017. U-Pb zircon, Re-Os molybdenite geochronology and Rb-Sr geochemistry from the Xiaobaishitou W(-Mo)deposit: Implications for Triassic tectonic setting in eastern Tianshan, NW China. Ore Geology Reviews, 80: 332~351.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology(Boulder), 7(20): 641~644.

    • Eiler J M. 2001. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Reviews in Mineralogy and Geochemistry, 43(1): 319~364.

    • Ewart A. 1998. Etendekavolcanism of the Goboboseb mountains and messum igneous complex, Namibia. Part II: Voluminous quartz latite volcanism of the Awahab magma system. Journal of Petrology, 39(2): 227~253.

    • Frost C D, Frost B R, Bell J M, Chamberlain K R. 2002. The relationship between A-type granites and residual magmas from anorthosite: Evidence from the northern Sherman Batholith, Laramie Mountains, Wyoming, USA. Precambrian Research, 119(1-4): 45~71.

    • Gan Baoping. 2017. Neoproterozoic alkaline complex in the northern Yangtze Block, Micangshan Mountains area : Geochemical significances and geological implications. Master degree dissertation of Northwest University.

    • Gao Zhiwu, Lü Changliang, Deng Mingguo, Guan Shenjin, Yang Fuqiang. 2021. Geochemical features and tectonic setting of the mesozoicintrusions in eastern Tianshan. Earth Science, 46(7): 2287~2298. (in Chinese with English abstract).

    • Ge Rongfeng, Zhu Wenbin, Wu Hailin, Zheng Bihai, Zhu Xiaoqing, He Jinwen. 2012. The Paleozoic northern margin of the Tarim craton: Passive or active? Lithos, 142-143: 1~15.

    • Grunsky Em Massey N. 1994. Using geochemical data: Evaluation, presentation, interpretation. Geochimica et Cosmochimica Acta, 59(3): 439~441.

    • Gu Lianxing, Zhang Zunzhong, Wu Changzhi, Wang Yinxi, Tang Junhua, Wang Chuansheng, Xi Aihua, Zheng Yuanchuan. 2006. Some problems on granites and vertical growth of the continental crust in the eastern Tianshan Mountains, NW China. Acta Petrologica Sinica, 22(5): 1103~1120 (in Chinese with English abstract).

    • Guo Ruiqing, Qin Qie, Zhang Xiaofan, Sun Baosheng, Guo Yin. 2013. Geochronology, petrogeochemistry of western Kuoktagh alkaline rocks in Quruqtagh area in Xinjiang and its geological implications. Journal of Jilin University(Earth Science Edition), 43(2): 457~468 (in Chinese with English abstract).

    • Han Baofu, Wang Shiguang, Jahn B M, Hong Dawei, Kagamid H, Sun Yuanlin. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd-Sr isotopic evidence and implications for Phanerozoic crustal growth. Chemical Geology, 138(3-4): 135~159.

    • Han Chunming, Xiao Wenjiao, Su Benxun, Sakyi P A, Ao Songjian, Zhang Jien, Zhang Zhiyong, Wan Bo, Song Dongfang, Wang Zhongmei, Zhao Na. 2018. Geology, Re-Os and U-Pb geochronology and sulfur isotope of the Donggebi porphyry Mo deposit, Xinjiang, NW China, Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 165: 270~284.

    • Han Yigui, Zhao Gunchun. 2018. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129~152.

    • He Zhenyu, Klemd R, Yan Lili, Lu Tianyu, Zhang Zeming. 2018. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: Evidence from oxygen and hafnium isotopes in zircon. Scientific Reports, 8: 5054.

    • Hofmann A W. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385(6613): 219~229.

    • Hong Dawei, Li Shiguang, Han Baofu, Jin Manyuan. 1995. Classification of tectonic environment of alkaline granite and its identification symbols. Science in China(Series B), 25(4): 418~426 (in Chinese without English abstract).

    • Hong Dawei, Wang Shiguang, Xie Xilin, Zhang Jisheng, Wang Tao. 2003. Correlation between continental crustal growth and the Supercontinental Cycle: Evidence from the granites with positive εNd in the Central Asian Orogenic Belt. Acta Geologica Sinica, 77(2): 203~209.

    • Huang He, Zhang Zhaochong, Kusky T, Zhang Dongyang, Hou Tong, Liu Junlai, Zhao Zhidan, 2012a. Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth. Lithos, 140-141: 65~84.

    • Huang He, Zhang Zhaochong, Kusky T, Santosh M, Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan. 2012b. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.

    • Huang He, Zhang Zhaochong, Santosh M, Zhang Dongyang, Wang Tao. 2015. Petrogenesis of the early Permian volcanic rocks in the Chinese South Tianshan: Implications for crustal growth in the Central Asian Orogenic Belt. Lithos, 228-229: 23~42.

    • Huang He, Wang Tao, Tong Yin, Qin Qie, Ma Xuxuan, Yin Jiyuan. 2020. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili block and adjacent regions of the SW Central Asian Orogenic Belt. Earth-Science Reviews, 208: 103255.

    • Huang W L, Wyllie P J. 1981. Phase relationships of S-type granite with H2O to 35 kbar: Muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research: Solid Earth, B11(86): 10515~10529.

    • Huang Wuuliang, Wyllie Petee J. 1975. Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 Kilobars, dry and with excess water. The Journal of Geology, 6(83): 737~748.

    • Huo Tengfei, Yang Debin, Shi Jiangpeng, Xu Wenliang, Yang Haotian. 2016. Petrogenesis of the Early Cretaceous alkali-rich intrusive rocks in the central North China Block: Constraints from zircon U-Pb chronology and Sr-Nd-Hf isotopes. Acta Petrologica Sinica, 32(3): 697~712

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes, 23(2): 82~92.

    • Jahn B M, Malpas J, Fletcher C J N, Ali J R, Aitchison J C. 2004. The Central Asian orogenic belt and growth of the continental crust in the Phanerozoic. Aspects of the Tectonic Evolution of China, 1(226): 73~100.

    • James D E. 1981. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. AnnualReview of Earth and Planetary Sciences, 1(9): 311~344.

    • Jia Xiaoliang, Guo Ruiqing, Chai Fengmei, Nijiati Abuduxun, Qin Qie, Zhu Xin, Wang Kezhuo. 2013. Geochemistry and geochronology of monzogranites in Kuruktag of Xinjiang and their tectonic implications. Geological Bulletin of China, 32(2-3): 239~250 (in Chinese with English abstract).

    • Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science(American Association for the Advancement of Science), 5814(315): 980~983.

    • Lackey J, Valley J, Saleeby J. 2005. Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: Evidence from high-δ18O zircon. Earth and Planetary Science Letters, 235(1-2): 315~330.

    • Lassiter J C, DePaolo D J. 1997. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopic constraints. Geophysical Monograph American Geophysical Union, 100: 335~356.

    • Lei Ruxiong, Wu Changzhi, Zhang Zunzhong, Gu Lianxing, Tang Junhua, Li Guangrong. 2013. Geochronology, geochemistry and tectonic significances of the Yamansubei pluton in eastern Tianshan, North China. Acta Petrologica Sinica, 29(8): 2653~2664 (in Chinese with English abstract).

    • Lei Ruxiong, Brzozowski M J, Feng Yonggang, Zhang Kai, Muhtar M N, Luo Xianglong, Wu Changzhi. 2021. Triassic crust-mantle interaction in the Eastern Tianshan, southern Altaids: Insights from microgranular enclaves and their host Tianhu granitoids. Lithos, 402-403: 105879.

    • Li Ning, Yang Fuquan, Zhang Zhixin, Yang Chengdong. 2019. Geochemistry and chronology of the biotite granite in the Xiaobaishitou W-(Mo)deposit, eastern Tianshan, China: Petrogenesis and tectonic implications. Ore Geology Reviews, 107: 999~1019.

    • Li Ning, Yang Fuquan, Zhang Zhixin, Li Chao. 2020. Dating the Xiaobaishitou skarn W-(Mo)deposit, Eastern Tianshan, NW China: Constraints from zircon U-Pb, muscovite 40Ar-39Ar, and molybdenite Re-Os system. Ore Geology Reviews, 124: 103637.

    • Li Shan, Wang Tao, Tong Ying. 2010. Spatial-temporal distribution and tectonic settings of Early Mesozonic granitoids in the middle-south segment of the Central Asia Orogenic System. Acta Petrologica Et Mineralogica, 29(6): 642~662(in Chinese with English abstract).

    • Li Shan, Wang Tao, Wilde S A, Tong Ying, Hong Dawei, Guo Qianqian. 2012. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos, 134-135: 123~145.

    • Li Yang, Tang Guoqiang, Liu Yu, He Sheng, Chen Bo, Li Qiuli. 2021. Revisiting apatite SIMS oxygen isotope analysis and Qinghu-Ap reference material. Chemical Geology, 582: 120445.

    • Litvinovsky B A, Steel I M, Wickham S M. 2000. Silicic magma formation in overthickened crust: Melting of charnockite and leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41: 717~737.

    • Litvinovsky B A, Jahn B M, Eyal M. 2015. Mantle-derived sources of syenites from the A-type igneous suites—New approach to the provenance of alkaline silicic magmas. Lithos, 242~265.

    • Long Xiaoping, Yuan Chao, Sun Min, Zhao Guochun, Xiao Wenjiao, Wang Yujing, Yang Yueheng, Hu Aiqin. 2010. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U-Pb and Hf isotopic constraints. Precambrian Research, 180(3-4): 272~284.

    • Lu Songnian, Li Huaikun, Zhang Chuanlin, Niu Guanghua. 2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments. Precambrian Research, 160: 94~107.

    • Ma Yuan, Zhang Zhaochong, Huang He, Santosh M, Cheng Zhiguo. 2016. Petrogenesis of the Bashisuogong bimodal igneous complex in southwest Tianshan Mountains, China: Implications for the Tarim large igneous province. Lithos, 264: 509~523.

    • Madhavan V, Rao J M, Srinivas M. 1999. Mid-Proterozoic Intraplate Alkaline Magmatism in the Eastern Dharwar Craton of India: The Cuddapab Province. Journal of the Geological Society of India, 53(2): 143~162.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society America Bulletin, 101(5): 635~643.

    • Middlemost E A K. 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. London: Longman.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 1(58): 63~81.

    • Peng Touping, Fan Weiming, Zhao Guochun, Peng Bingxia, Xia Xiaoping, Mao Yongsheng. 2015. Petrogenesis of the early Paleozoic strongly peraluminous granites in the Western South China Block and its tectonic implications. Journal of Asian Earth Sciences, 98: 399~420.

    • Qin Kezhang, Fang Tonghui, Wang Shulai, Zhu Baoqing, Feng Yimin, Yu Haifang, Xiu Qunyi. 2002. Plate tectonics division, evolution and metallogenic settings in Eastern Tianshan mountains, NW-China. Xinjiang Geology, 20(4): 302~307 (in Chinese with English abstract).

    • Ren Kangxu. 2003. Studyprocess of the alkaline rocks: A review. Geology of Chemical Minerals, 25(3): 151~163 (in Chinese with English abstract).

    • Riishuus M S, Peate D W, Tegner C, Wilson J R, Brooks C K, Waight T E. 2005. Petrogenesis of syenites at a rifted continental margin: Origin, contamination and interaction of alkaline mafic and felsic magmas in the Astrophyllite Bay complex, East Greenland. Contributions to Mineralogy and Petrology, 3(149): 350~371.

    • Saibal G, Jagatbikas B, Sumit K M, Manasij S. 2005. Alkaline magmatism versus collision tectonics in the eastern Ghats belt, India: Constraints from structural studies in the Koraput complex. Gondwana Research, 8(3): 403~419.

    • Shu L S, Deng X L, Zhu W B, Ma D S, Xiao W J. 2011. Precambrian tectonic evolution of the Tarim Block, NW China: New geochronological insights from the Quruqtagh domain. Journal of Asian Earth Sciences, 5(42): 774~790.

    • Stepanov A, Mavrogenes J A, Meffre S, Davidson P. 2014. The key role of mica during igneous concentration of tantalum. Contributions to Mineralogy and Petrology, 6(167): 1009.

    • Su Benxun, Qin Kezhang, Sakyi P A, Tang Dongmei, Liu Pingping, Malaviarachchi S P K, Xiao Qinghua, Sun He. 2012. Geochronologic-petrochemical studies of the Hongshishan mafic-ultramafic intrusion, Beishan area, Xinjiang (NW)China: Petrogenesis and tectonic implications. International Geology Review, 54(3-4): 270~289.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313~345.

    • Tian Wei, Campbell I H, Allen C M, Guan Ping, Pan Wenqing, Chen Mimi, Yu Hongjiao, Zhu Wenping. 2010. The Tarim picrite-basalt-rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions to Mineralogy and Petrology, 3(160): 407~425.

    • Tian Zhonghua, Xiao Wenjiao, Shan Yehua, Windley Brian, Han Chunming, Zhang Ji'en, Song Dongfang. 2013. Mega-fold interference patterns in the Beishan orogen (NW China) created by change in plate configuration during Permo-Triassic termination of the Altaids. Journal of Structural Geology, 52: 119~135.

    • Tu Guangzhi. 1989. On the alkali-rich intrusive rocks. Mineral Resources and Geology, 13(3): 1~4.

    • Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Pathaway Ridge, South Australia. Lithos, 28: 151~179.

    • Upadhyay D, Raith M M, Mezger K, Hammerschmidt K. 2006. Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam alkaline province, SE India. Lithos, 89(3-4): 447~477.

    • Valley J W, Kinny P D, Schulze D J, Spicuzza M J. 1998. Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133(1-2): 1~11.

    • Wang Kailei, Li Huikai, Zhang Xuemeng, Tian Zengbiao, Zhang Jiaxing, Xing Dongxue, Zheng Le, Dai Tao. 2021. Geochemistry, geochronology and Sr-Nd isotope of mafic dykes in the Yabulai area, northern margin of the Alxa Massif. Geology and Exploration, 57(5): 1017~1027 (in Chinese with English abstract).

    • Wang Xiangsong, Cai Keda, Sun Min, Xiao Wenjiao, Xia Xiaoping, Wan Bo, Bao Zihe, Wang Yannan. 2018. Two contrasting late Paleozoic magmatic episodes in the northwestern Chinese Tianshan Belt, NW China: Implication for tectonic transition from plate convergence to intra-plate adjustment during accretionary orogenesis. Journal of Asian Earth Sciences, 153(3): 118~138.

    • Wang Yinhong, Zhang Fangfang, Liu Jiajun, Xue Chunji, Wang Jianping, Liu Bin, Lu Weiwei. 2015. Petrogenesis of granites in Baishan molybdenum deposit, Eastern Tianshan, Xinjiang: Zircon U-Pb geochronology, geochemistry, and Hf isotope constraints. Acta Petrologica Sinica, 31(7): 1962~1976 (in Chinese with English abstract).

    • Wang Yinhong, Zhang Fangfang, Liu Jiajun, Xue Chunji, Li Bochao, Xian Xuechen. 2018. Ore genesis and hydrothermal evolution of the Donggebi porphyry Mo deposit, Xinjiang, Northwest China: Evidence from isotopes (C, H, O, S, Pb), fluid inclusions, and molybdenite Re-Os dating. Economic Geology, 2(113): 463~488.

    • Wei Xun, Xu Yigang. 2011. Petrogenesis of Xiaohaizi syenite complex from Bachu area, Tarim. Acta Petrologica Sinica, 27(10): 2984~3004.

    • Wei Xun, Xu Yigang, He Bin, Zhang Le, Xia Xiaoping, Shi Xuefa. 2019. Zircon U-Pb age and Hf-O isotope insights into genesis of Permian Tarim felsic rocks, NW China: Implications for crustal melting in response to a mantle plume. Gondwana Research, 76: 290~302.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 4(95): 407~419.

    • Wiedenbeck M, Hanchar J M, Peck W H, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, FranchiI, Girard J P, Greenwood R C, Hinton R, Kita N, Mason P R D, Norman M, Ogasawara M, Piccoli P M, Rhede D, Satoh H, Schulz-Dobrick B, Skr O, Spicuzza M J, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y F. 2004. Further characterization of the 91500 zircon crystal. Geostandards and Geoanalytical Research, 28(1): 9~39.

    • Wright J B. 1969. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis. Geological Magazine, 106(4): 370~384.

    • Wu Changzhi, Zhang Zunzhong, Gu Lianxing, Tang Junhua, Lei Ruxiong. 2010. Sr, Nd and O isotopic characters of quartz syenite in the Weiya magmatic complex from Eastern Tianshan in NW China: Melting of the thickened juvenile lower crust. Geochemical Journal, 44: 285~298.

    • Xiao Wenjiao, Huang Baochun, Han Chunming, Sun Shu, Li Jiliang. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18(2-3): 253~273.

    • Xu Yigang, Wei Xun, Luo Zhenyu, Liu Haiquan, Cao Jun. 2014. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model. Lithos, 204: 20~35.

    • Yang Jinhui, Chung Sunlin, Wilde S A, Wu Fuyuan, Chu Meifei, Lo Chinghua, Fan Hongrui. 2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence. Chemical Geology, 214(1-2): 99~125.

    • Yuan Chao, Sun Min, Wilde S, Xiao Wenjiao, Xu Yigang, Long Xiaoping, Zhao Guochun. 2010. Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos, 119(3-4): 269~288.

    • Zeng Guangce, Qiu Jiaxiang. 1996. Conception of alkaline rocks and their nomenclature. Geological Science and Technology Information, 15(1): 31~37 (in Chinese with English abstract).

    • Zhang Chuanlin, Li Xianhua, Li Zhengxiang, Ye Haimin, Li Changnian. 2008. A Permian layered intrusive complex in the Western Tarim Block, Northwestern China: Product of a Ca. 275-Ma mantle plume? The Journal of Geology, 3(116): 269~287.

    • Zhang Chuanlin, Xu Yigang, Li Zhengxiang, Wang Hongyan, Ye Haimin. 2010. Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume? Lithos, 119(3-4): 537~552.

    • Zhang Chuanlin, Zou Haibo. 2013. Permian A-type granites in Tarim and western part of Central Asian Orogenic Belt (CAOB): Genetically related to a common Permian mantle plume? Lithos, 172-173: 47~60.

    • Zhang Dongyang, Zhang Zhaochong, Mao Jingwen, Huang He, Cheng Zhiguo. 2016. Zircon U/Pb ages and Hf-O isotopic signatures of the Wajilitag and Puchang Fe-Ti oxide-bearing intrusive complexes: Constraints on their source characteristics and temporal-spatial evolution of the Tarim large igneous province. Gondwana Research, 37: 71~85.

    • Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite: What is the essence?Acta Petrologica Et Mineralogica, 31(4): 621~626 (in Chinese with English abstract).

    • Zhang Xiaoran, Zhao Guochun, Eizenhöfer P R, Sun Min, Han Yigui, Hou Wenzhu, Liu Dongxing, Wang Bo, Liu Qian, Xu Bing, Zhu Chloe Yanlin. 2016. Tectonic transition from Late Carboniferous subduction to Early Permian post-collisional extension in the eastern Tianshan, NW China: Insights from geochronology and geochemistry of mafic-intermediate intrusions. Lithos, 256-257: 269~281.

    • Zhang Xiaoran, Zhao Guochun, Sun Min, Han Yigui, Liu Qian. 2017. Triassic magmatic reactivation in Eastern Tianshan, NW China: Evidence from geochemistry and zircon U-Pb-Hf isotopes of granites. Journal of Asian Earth Sciences, 145: 446~459.

    • Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Li Weiqiang, Xi Aihua, Wang Shuo. 2005. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its geological implications. Acta Geologica Sinica(English edition), 79(4): 481~490.

    • Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Zhai Jianping, Li Weiqiang, Tang Junhua. 2006. Weiya quartz syenite in early Indosinina from eastern Tianshan Mountains: Petrogenesis and tectonic implications. Acta Petrologica Sinica, 22(5): 1135~1149 (in Chinese with English abstract).

    • Zhang Zunzhong, Gu Lianxing, Wu Changzhi, Zhai Jianpin, Li Weiqiang, Tang Junhua. 2007. Early Indosinian Weiya gabbro in Eastern Tianshan, China: Elemental and Sr-Nd-O isotopic geochemistry and its tectonic implications. Acta Geologica Sinica(English edition), 81(3): 424~432.

    • Zhao J X, Shiraishi K, Ellis D J, Sheraton J W. 1995. Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: Implications for the origin of syenitic magmas. Geochimica et Cosmochimica Acta, 7(59): 1363~1382.

    • Zhao Zhenghua, Zhou lingli. 1994. REE geochemistry of some alkali rich intrusive rocks in China. Science in China(Series B), 24(10): 1109~1120 (in Chinese without English abstract).

    • Zheng Jiahao, Mao Jingwen, Chai Fengmei, Yang Fuquan. 2016. Petrogenesis of Permian A-type granitoids in the Cihai iron ore district, Eastern Tianshan, NW China: Constraints on the timing of iron mineralization and implications for a non-plume tectonic setting. Lithos, 260: 371~383.

    • Zhou Meifu, Michael L C, Yang Zhengxi, Li Jianwei, Sun Min. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE)sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233~257.

    • Zhou Meifu, Zhao Junhong, Jiang Changyi, Gao Jianfeng, Wang Wei, Yang Shenghong. 2009. OIB-like, heterogeneous mantle sources of Permian basaltic magmatism in the western Tarim Basin, NW China: Implications for a possible Permian large igneous province. Lithos, 113(3-4): 583~594.

    • Zhou Jianbo, Wilde S A. 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research, 4(23): 1365~1377.

    • Zhu Jiang, Lü Xinbiao, Cao Xiaofeng, Mo Yalong, Chen Chao. 2012. U-Pb zircon geochronology, geochemistry and kinetics of the Huaniushan A-type granite in Northwest China. Chinese Journal of Geochemistry, 1(31): 85~94.

    • Zhu Jiang, Lv Xinbiao, Chen Chao, Cao Xiaofeng, Hu Qincheng. 2013. Geological characteristics, metallogenic time and tectonic setting of the triassic molybdenum deposits in the east part of the East Tianshan and Beishan area, NW China. Xinjiang Geology, 31(1): 21~28 (in Chinese with English abstract).

    • Zou Tianren, Xu Yu, Chen Weishi, Xia Fengrong. 2002. Rare and rare earth mineral deposits related to alkaline rocks on northern margin of Tarim Basin, Xinjiang, China. Mineral Deposits, 21(S1): 845~848 (in Chinese with English abstract).

    • 甘保平. 2017. 扬子北缘米仓山地区新元古代碱性杂岩地球化学特征及地质意义. 西北大学硕士学位论文.

    • 顾连兴, 张遵忠, 吴昌志, 王银喜, 唐俊华, 汪传胜, 郗爱华, 郑远川. 2006. 关于东天山花岗岩与陆壳垂向增生的若干认识. 岩石学报, 22(5): 1103~1120.

    • 郭瑞清, 秦切, 张晓帆, 孙宝生, 郭寅. 2013. 新疆库鲁克塔格阔克塔格西碱性岩年代学、岩石地球化学特征及其地质意义. 吉林大学学报(地球科学版), 43(2): 457~468.

    • 高志武, 吕昶良, 邓明国, 管申进, 杨富强. 2021. 东天山早中生代侵入体地球化学特征及其构造意义. 地球科学, 46(7): 2287~2298.

    • 洪大卫, 王式洸, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志. 中国科学(B辑), 25(4): 418~426.

    • 洪大卫, 王式洸, 谢锡林, 张季生, 王涛. 2003. 从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系. 地质学报, 77(2): 203~209.

    • 霍腾飞, 杨德彬, 师江朋, 许文良, 杨浩田. 2016. 华北地块中部早白垩世富碱侵入岩的成因: 锆石U-Pb年代学和Sr-Nd-Hf同位素制约. 岩石学报, 32(3): 697~712.

    • 贾晓亮, 郭瑞清, 柴凤梅, 尼加提·阿布都逊, 秦切, 朱志新, 王克卓. 2013. 新疆库鲁克塔格西段泥盆纪二长花岗岩年龄、地球化学特征及其构造意义. 地质通报, 32(2-3): 239~250.

    • 雷如雄, 吴昌志, 张遵忠, 顾连兴, 唐俊华, 黎广荣. 2013. 东天山雅满苏北岩体的年代学、地球化学及其构造意义. 岩石学报, 29(8): 2653~2664.

    • 李舢, 王涛, 童英. 2010. 中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境. 岩石矿物学杂志, 29(6): 642~662.

    • 吕彪, 郭瑞清, 王克卓, 魏震, 郭羽, 何海伦, 胡雪原. 2016. 新疆库鲁克塔格西段三叠纪辉绿岩墙的发现及地质意义. 新疆地质, 34(3): 317~324.

    • 秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区演化与成矿地质背景研究. 新疆地质, 20(4): 302~307.

    • 任康绪. 2003. 碱性岩研究进展述评. 化工矿产地质, 25(3): 151~163.

    • 涂光炽. 1989. 关于富碱侵入岩. 矿产与地质, 13(3): 1~4.

    • 王凯垒, 李会恺, 张学萌, 田增彪, 张家兴, 邢东雪, 郑乐, 代涛. 2021. 阿拉善地块北缘雅布赖地区基性岩墙地球化学、年代学和Sr-Nd同位素特征. 地质与勘探, 57(5): 1017~1027.

    • 王银宏, 张方方, 刘家军, 薛春纪, 王建平, 刘彬, 路魏魏. 2015. 东天山白山钼矿区花岗岩的岩石成因: 锆石U-Pb年代学、地球化学及Hf同位素约束. 岩石学报, 31(7): 1962~1976.

    • 位荀, 徐义刚. 2011. 塔里木巴楚小海子正长岩杂岩体的岩石成因探讨. 岩石学报, 27(10): 2984~3004.

    • 曾广策, 邱家骧. 1996. 碱性岩的概念及其分类命名综述. 地质科技情报, 15(1): 31~37.

    • 张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么? 岩石矿物学杂志, 31(4): 621~626.

    • 张遵忠, 顾连兴, 吴昌志, 翟建平, 李伟强, 唐俊华. 2006. 东天山印支早期尾亚石英正长岩: 成岩作用及成岩意义. 岩石学报, 22(5): 1135~1149.

    • 赵振华. 1992. 微量元素地球化学. 地球科学进展, 7(5): 65~66.

    • 赵振华, 周玲棣. 1994. 我国某些富碱侵入岩的稀土元素地球化学. 中国科学(B辑), 24(10): 1109~1120.

    • 朱江, 吕新彪, 陈超, 曹晓峰, 胡庆成. 2013. 东天山东段-北山地区三叠纪钼矿床地质特征、时空分布及含矿花岗岩成岩-成矿构造背景. 新疆地质, 31(1): 21~28.

    • 邹天人, 徐珏, 陈伟十, 夏凤荣. 2002. 塔里木盆地北缘碱性岩型稀有稀土矿床. 矿床地质, 21(S1): 845~848.