en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐楠,男,1984年生。博士,讲师,硕士研究生导师,长期从事岩石学、成因矿物学方面研究。E-mail:2020059@aust.edu.cn。

通讯作者:

吴才来,男,1960年生。博士,研究员,博士生导师,长期从事岩石学、岩浆与成矿科研工作。E-mail:wucailai@126.com。

参考文献
Altherr R, Holl A, Hegner E, Larger C, Kreuzer H. 2000. High potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50: 51~73.
参考文献
Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 299: 252~255.
参考文献
Bartoli O, Cesare B, Poli S. 2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology, 41(2): 115~118.
参考文献
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43~55.
参考文献
Castillo P R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51: 257~68.
参考文献
Che Zicheng, Liu Liang, Liu Hongfu. 1995. Discovery and occurrence of high-pressure metapelitic rocks from Altyn Mountain areas. Chinese Science Bulletin, 40(14): 1298~1300 (in Chinese with English abstract).
参考文献
Colin G M, Scott T D, Matthew F T. 2005. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243: 581~593.
参考文献
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189~200.
参考文献
Diwu Chunrong, Sun Yong, Lin Ciluan, Liu Xiaoming, Wang Hongliang. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province, China. Acta Petrologica Sinica, 23(2): 253~262 (in Chinese with English abstract).
参考文献
Dong Jie, Wei Chunjing. 2021. Multi-stage metamorphism of the South Altyn ultrahigh-pressure metamorphic belt, West China: Insights into tectonic evolution from continental subduction to arc-backarc extension. Journal of Petrology, 62(11): egab082.
参考文献
Frost B R, Frost C D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49: 1955~1969.
参考文献
Gao Xiangyu, Yu Shengyao, Peng Yinbiao, Lü Pei, Wang Meng, Liu Yongjiang, Li Sanzhong, Jiang Xingzhou, Ji Wentao, Li Chuanzhi. 2021. Insights into OIB-like magmatism contemporaneous with oceanic subduction: Petrogenetic constraints on the Kendelong metagabbro in the North Qaidam. Lithos, 392-393: 106130.
参考文献
Gorton B R, Schandl E S. 2000. From continents to island arcs: A geochemical index of tectonics setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38: 1065~1073.
参考文献
Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347~359.
参考文献
Guo Jincheng, Xu Xuming, Chen Haiyan, Li Xian, Dong Hongkai, Ti Zhenhai. 2014. Zircon U-Pb age and geological implication of ultramafic rocks in Changshagou, Altun area, Xinjiang Province. Northwestern Geology, 47(4): 170~177 (in Chinese with English abstract).
参考文献
Guo Zhaojie, Zhang Zhicheng, Wang Jianjun. 1998. Sm-Nd isochron age of ophiolite zone in northern margin of Altun Mountains and its tectonic significance. Chinese Science Bulletion, 43(18): 1981~1984 (in Chinese with English abstract).
参考文献
Hawkesworth C J, Turner S P, Mcdermott F, Peate D W, van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.
参考文献
He Yongsheng, Li Shuguang, Hoefs J, Huang Fang, Liu Shengao, Hou Zhenhui. 2011. Post-collisional granitoids from the Dabie Orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815~3838.
参考文献
Hébert R, Guilmette C, Dostal J, Bezard R, Lesage G, Bédard é, Wang C. 2014. Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo suture zone southern Tibet: Geodynamic implications. Gondwana Research, 25: 1263~1271.
参考文献
Hong Tao, Zhai Mingguo, Xu Xingwang, Li Hang, Wu Chu, Ma Yince, Niu Lei, Ke Qiang, Wang Cheng. 2021. Tourmaline and quartz in the igneous and metamorphic rocks of the Tashisayi granitic batholith, Altyn Tagh, northwestern China: Geochemical variability constraints on metallogenesis. Lithos, 400-401: 106358.
参考文献
Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523~548.
参考文献
Janoušek V, Finger F, Roberts M, Fryda J, Pin C, Dolejš D. 2004. Deciphering the petrogenesis of deeply buried granites: Whole-rock geochemical constraints on the origin of largely underplated felsic granulites from the Moldanubian zone of the Bohemian massif. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 141~159.
参考文献
Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun. 2017. An overview of studies on shoshonitic rocks. Geological Review, 63(6): 1587~1601 (in Chinese with English abstract).
参考文献
Kaygusuz A, Siebel W, Sen C, Stair M. 2008. Petrochemistry and petrology of I-type granitoids in an arc setting: The composite Torul pluton, eastern Ponitdes, NE Turkey. International Journal of Earth Sciences, 97(4): 739~746.
参考文献
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371~391.
参考文献
Kirkland C L, Smithies R H, Taylor R J M, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212-215: 397~414.
参考文献
Li Shuguang, He Yongsheng, Wang Shuijiong. 2013. Process and mechanism of mountain-root removal of the Dabie Orogen: Constraints from geochronology and geochemistry of post-collisional igneous rocks. Chinese Science Bulletin, 58(23): 2316~2322 (in Chinese with English abstract).
参考文献
Li Xiangmin, Ma Zhongping, Sun Jiming, Xu Xueyi, Lei Yongxiao, Wang Lishe, Duan X X. 2009. Characteristics and age study about the Yuemakeqi mafic-ultramagic rock in the souhtern Altyn fault. Acta Petrologica Sinica, 25(4): 862~872 (in Chinese with English abstract).
参考文献
Li Xin, Liu Liang, Liao Xiaoying, Gai Yongsheng, Ma Tuo, Geng Guojian, Li Tong. 2021. Metamorphic evolution of mafic granulites in the Kuruksayi area of the South Altyn Orogen, West China: Insights from petrography, phase equilibria modeling and geochronology. Journal of Asian Earth Sciences, 213: 104766.
参考文献
Liu Liang, Che Zicheng, Wang Yan, Luo Jinhai, Wang Jianqi, Gao Zhangjian. 1998. The evidence of Sm-Nd isochron age for the Early Paleozoic ophiolite in Mangya area, Altun Mountains. Chinese Science Bulletin, 43(8): 880~883 (in Chinese with English abstract).
参考文献
Liu Liang, Chen Danling, Zhang Anda, Sun Yong, Wang Yan, Yang Jiaxi, Luo Jinhai. 2005. Ultrahigh pressure gneissic K-feldspar garnet clinopyroxenite in the Altun Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Science in China (Series D), 35 (2): 105~114 (in Chinese with English abstract).
参考文献
Liu Liang, Zhang Anda, Chen Danling, Yang Jiaxi, Luo Jinhai, Wang Chao. 2007. Implications based on LA-ICP-MS zircon U-Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh, China. Earth Science Frontiers, 14(1): 98~107.
参考文献
Liu Liang, Wang Chao, Cao Yuting, Chen Danling, Kang Lei, Yang Wenqiang, Zhu Xiaohui. 2012. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 136-139: 10~26.
参考文献
Liu Liang, Chen Danling, Zhang Junfeng, Kang Lei, Wang Chao, Yang Wenqiang, Liao Xiaoying, Ren Yunfei, Gai Yongsheng. 2019. New evidence of an ultra-deep continental subduction to mantle depth (~300 km) in stishovite stability field. Earth Science, 44(12): 3998~4003 (in Chinese with English abstract).
参考文献
Liu Yongshun, Yu Haifeng, Xiu Qunye. 2010. Tectonic units division and Precambrian significant geological envents in Altyn Tagh Mountain, China. Geological Bulletin of China, 29(2): 166~174 (in Chinese with English abstract).
参考文献
Lu Songnian, Yuan Guibang. 2003. Geochronology of early Precambrian magmatic activities in Aketashitage, eastern Altyn Tagh. Acta Geosicentia Sinica, 77(1): 12~16 (in Chinese with English abstract).
参考文献
Ma Zhongping, Li Xiangmin, Sun Jiming, Xu Xueyi, Lei Yongxiao, Wang Lishe, Duan Xingxing. 2009. Discovery of layered mafic-ultramafic intrusion in Changshagou, Altun Tagh, and its geological implication: A pilot study on its petrological and geochemical characteristics. Acta Petrologica Sinica, 25(4): 793~804 (in Chinese with English abstract).
参考文献
Ma Tuo, Liu Liang, Gai Yongsheng, Wang Chao, Liao Xiaoying, Cao Yuting. 2021. Multistage metamorphism of eclogite in the South Altyn HP-UHP belt, Northwest China: Deep subduction and exhumation process of continental crust. Journal of Metamorphic Geology, Doi: 10. 1111/jmg. 12645.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101: 635~643.
参考文献
Martin H, Smithies R H, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1~24.
参考文献
Müller D, Groves D I. 1995. Potassic Igneous Rocks and Associated Gold-copper Mineralization. Berlin Heidelberg: Springer, 249~225.
参考文献
Pearce J. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R S, ed. Andesites: Orogenic Andesites and Related Rocks. New York: John Wiley, 525~548.
参考文献
Pearce J A, Peate D W. 1995. Tectonic implication of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251~285.
参考文献
Qin Xiaofeng, Xia Bin, Li Jiang, Lu Jipu, Xu Hua, Zhou Fusheng, Hu Guiang, Li Qian. 2008. Geochemical characteristics and tectonic settings of the disbase dyke searms in the western segment of the southern Altun tectonic belt. Acta Petrologica et Mineralogica, 27(1): 14~22 (in Chinese with English abstract).
参考文献
Rainonodo T, Collins A S, Hand M, Walker-Hallam A, Smithies R H, Evins P M. 2010. The anatomy of a deep intracontinental orogen. Tectonics, 29(4): TC4024.
参考文献
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 832 kbar: Implications for continental growth and crust mantle recyling. Hournal of Petrology, 36(4): 891~931.
参考文献
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.
参考文献
Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184: 123~138.
参考文献
Sajona F G, Maury R C, Bellon H, Cotton J, Defant M. 1996. High field strength elements of Pliocene-Plestocene island-arc basalts Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37: 693~726.
参考文献
Schiano P, Clocchiatti R, Ottolini L, Sbrana A. 2004. The relationship between potassic and calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: A melt inclusion approach. Earth and Planetary Science Letters, 220: 121~137.
参考文献
Sun Jiming, Ma Zhongping, Tang Zhuo, Li Xiangmin. 2012. LA-ICP-MS zircon dating of the Yumuquan magma mixing granite in the southern Altyn Tagh and its tectonic significance. Acta Geologica Sinica, 86(2): 247~257 (in Chinese with English abstract).
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London, Special Publication, 42: 313~345.
参考文献
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29~44.
参考文献
Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 1~328.
参考文献
Teng Xia, Zhang Jianxin, Muller T, Mao Xiaohong, Lu Zenglong, Zhou Guisheng. 2021. Post-collisional extension of the South Altun subduction-collision belt, northern Tibetan Plateau: Insight from phase equilibria modeling and zircon geochronology of pelitic migmatites. Journal of Asian Earth Sciences, 225: 1~16.
参考文献
Turner S, Arnaud N, Liu J. 1996. Post-collisional, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37: 45~71.
参考文献
Wang Jian, Li Jianping, Wang Jianghai. 2003. Shoshonitic magmatism in Dali-Jianchuan area, western Yunnan: A geochemical study of arc magmatism in a post-collisional strike-slip extensional setting. Acta Petrologica Sinica, 19(1): 61~70 (in Chinese with English abstract).
参考文献
Wu Cailai, Gao Yuanhong, Lei Min, Qin Haipeng, Liu Chunhua, Li Mingze, Frost B R, Joseph L W. 2014. Zircon SHRIMP U-Pb dating, Lu-Hf isotopic characteristics and petrogenesis of the Palaeozoic granites in Mangya area, southern Altun, NW China. Acta Petrologica Sinica, 30(8): 2297~2323 (in Chinese with English abstract).
参考文献
Wu Cailai, Lei Min, Zhang Xin, Chen Hongjie, Wu Di, Li Tianxiao. 2016. Petrogenesis and zircon Lu-Hf isotopic characteristics of the granites from the southern Altun area, Northwest China. Geology in China, 43(6): 1853~1883 (in Chinese with English abstract).
参考文献
Wu Cailai, Chen Hongjie, Wu Di, Ernstc W G. 2018. Paleozoic granitic magmatism and tectonic evolution of the South Altun block, NW China: Constraints from zircon U-Pb dating and Lu-Hf isotope geochemistry. Journal of Asian Earth Sciences, 160: 168~199.
参考文献
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60: 1201~1219.
参考文献
Wu Jun, Li Jiliang, Lan Chaoli. 2001. New knowleges on Hongliugou phiolite along Altun fault, NW China. Chinese Journal of Geology, (3): 342~349 (in Chinese with English abstract).
参考文献
Xu Nan, Wu Cailai, Lei Min, Zhang Xin, Chen Hongjie, Guo Wenfeng, Zheng Kun, Gao Dong, Liu Junzhuang. 2018. Petrogenesis, zircon U-Pb chronology, and Lu-Hf isotopic characteristics of monzonitic granite from Mangya area. Earth Science, 43(S2): 60~80 (in Chinese with English abstract).
参考文献
Xu Nan, Wu Cailai, Gao Yuanhong, Lei Min, Zheng Kun, Gao Dong. 2020. Tectonic evolution of the South Altyn, NW China: Constraints by geochemical, zircon U-Pb and Lu-Hf isotopic analysis of the Palaeozoic granitic plutons in the Mangya area. Geological Magazine, 157(7): 1121~1143.
参考文献
Xu Nan, Wu Cailai, Zheng Kun, Gao Dong. 2020. Petrogenesis and tectonic implications of the Mangya A type alkali-feldspar granites in the South Altyn, Northwest China. Acta Geologica Sinica, 94(5): 1431~1449 (in Chinese with English abstract).
参考文献
Xu Zhigang, Sheng Jifu, Sun Shanping. 1999. A discussion on characteristics of shoshonite rock series (association) and some problems. Geological Review, 45(Sup): 43~62 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Yang Jingsui, Zhang Jianxin, Jiang Mei, Li Haibin, Cui Junwen. 1999. A comparison between the tectonic units on the two sides of the Altun sinistral strike fault and the mechanism of lithospheric shearing. Acta Geologica Sinica, 73(3): 193~205 (in Chinese with English abstract).
参考文献
Yang Wenqiang, Liu Liang, Ding Haibo, Xiao Peixi, Cao Yuting, Kang Lei. 2012. Geochemistry, geochronology and zircon Hf isotopes of the dimunalike granite in South Altyn Tagn and its geological significance. Acta Petrologica Sinica, 28(12): 4139~4150 (in Chinese with English abstract).
参考文献
Yu Shengyao, Li Sanzhong, Zhang Jianxin, Peng Yinbiao, Somerville Ian, Liu Yongjiang, Wang Zhengyi, Li Zhoufan, Yao Yong, Li Yan. 2019a. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP belt, NW China. Earth-Science Reviews, 191: 190~211.
参考文献
Yu Shengyao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Li Xiyao, Peng Yinbiao, Wang Zhengyi, Sun Deyou. 2019b. TTG-adakitic-like (tonalitic-trondhjemitic) magmas resulting from partial melting of metagabbro under high-pressure condition during continental collision in the North Qaidam UHP terrane, western China. Tectonics, 38(3): 791~822.
参考文献
Yu Shengyao, Peng Yinbiao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Gao Xiangyu, Ji Wentao, Lü Pei, Li Chuanzhi, Jiang Xingzhou, Qi Lili, Xie Weiming, Xu Liangjia. 2021. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean. Earth-Science Reviews, 215: 103547.
参考文献
Zhai Mingguo. 2017. Granites: Leading study issue for continental evolution. Acta Petrologica Sinica, 33(5): 1369~1380 (in Chinese with English abstract).
参考文献
Zhang Qi. 2012. Reappraisal of the origin of C-type adakitic rocks from East China. Acta Petrologica et Mineralogica, 30(4): 739~747 (in Chinese with English abstract).
参考文献
Zhang Jianxin, Zhang Zeming, Xu Zhiqin, Yang Jingsui, Cui Junwen. 1999. The age of U-Pb and Sm-Nd for eclogite from the western segment of the Altun Tagh tectonic belt. Chinese Science Bulletin, 44(10): 1109~1112 (in Chinese with English abstract).
参考文献
Zhang Jianxin, Lu Zenglong, Mao Xiaohong, Teng Xia, Zhou Guisheng, Wu Yawei. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74~94 (in Chinese with English abstract).
参考文献
Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science China Earth Sciences, 39(7): 833~848 (in Chinese with English abstract).
参考文献
车自成, 刘良, 刘洪福. 1995. 阿尔金山地区高压变泥质岩石的发现及其产出环境. 科学通报, 40(14): 1298~1300.
参考文献
第五春荣, 孙勇, 林慈銮, 柳小明, 王洪亮. 2007. 宜阳地区TTG片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, 23(2): 253~262.
参考文献
郭金城, 徐旭明, 陈海燕, 李先, 董洪凯, 提振海. 2014. 新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义. 西北地质, 47(4): 170~177.
参考文献
郭召杰, 张志诚, 王建君. 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43(18): 1981~1984.
参考文献
贾小辉, 王晓地, 杨文强, 牛志军. 2017. 钾玄质系列岩石的研究现状. 地质论评, 63(6): 1587~1601.
参考文献
康磊. 2015. 南阿尔金高压-超高压变质带多期花岗质岩浆作用及其地质意义. 西北大学博士学位论文, 1~119.
参考文献
李曙光, 何永胜, 王水炯. 2013. 大别造山带的去山根过程与机制: 碰撞后岩浆岩的年代学和地球化学制约. 科学通报, 58(23): 2316~2322.
参考文献
李向民, 马中平, 孙吉明, 徐学义, 雷永孝, 王立社, 段星星. 2009. 阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究. 岩石学报, 25(4): 862~872.
参考文献
刘永顺, 于海峰, 修群业. 2010. 南阿尔金地区榴辉岩特征及意义. 岩石矿物学杂志, 29(2): 166~174.
参考文献
刘良, 车自成, 王焰, 罗金海, 王建其, 高章鉴. 1998. 阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据. 科学通报, 43(8): 880~883.
参考文献
刘良, 陈丹玲, 张安达, 孙勇, 王焰, 杨家喜, 罗金海. 2005. 阿尔金超高压(>7 GPa)片麻状(含)钾长石榴辉石岩-石榴子石出溶单斜辉石的证据. 中国科学(D辑), 35(2): 105~114.
参考文献
刘良, 陈丹玲, 章军锋, 康磊, 王超, 杨文强, 廖小莹, 任云飞, 盖永升. 2019. 陆壳超深俯冲到斯石英稳定域地幔深度(~300 km)的新证据. 地球科学, 44(12): 3998~4003.
参考文献
陆松年, 袁桂邦. 2003. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据. 地质学报, 77(1): 12~16.
参考文献
马中平, 李向民, 孙吉明, 徐学义, 雷永孝, 王立社, 段星星. 2009. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义——岩石学和地球化学初步研究. 岩石学报, 25(4): 793~804.
参考文献
覃小锋, 夏斌, 李江, 陆济璞, 许华, 周府生, 胡贵昂, 李乾. 2008. 阿尔金南缘构造带西段辉绿岩墙群的地球化学特征及构造环境. 岩石矿物学杂志, 27(1): 14~22.
参考文献
孙吉明, 马中平, 唐卓, 李向民. 2012. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义. 地质学报, 86(2): 247~257.
参考文献
王建, 李建平, 王江海. 2003. 滇西大理—剑川地区钾玄质岩浆作用: 后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究. 岩石学报, 19(1): 61~70.
参考文献
吴才来, 郜源红, 雷敏, 秦海鹏, 刘春花, 李名则, Frost B R, Joseph L W. 2014. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因. 岩石学报, 30(8): 2297~2323.
参考文献
吴才来, 雷敏, 张昕, 陈红杰, 吴迪, 李天啸. 2016. 南阿尔金花岗岩锆石Lu-Hf同位素特征及岩石成因. 中国地质, 43(6): 1853~1883.
参考文献
吴福元, 葛文春, 孙德有. 2002. 埃达克岩的概念、识别标志及其地质意义. 见: 肖庆辉, 邓晋福, 马大铨, 等主编. 花岗岩研究思维与方法. 北京: 地质出版社, 172~189.
参考文献
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47: 745~765.
参考文献
吴峻, 李继亮, 兰朝利. 2001. 阿尔金红柳沟蛇绿岩研究进展. 地质科学, (3): 342~349.
参考文献
徐楠, 吴才来, 雷敏, 张昕, 陈红杰, 郭文峰, 郑坤, 高栋, 刘俊壮. 2018. 茫崖二长花岗岩锆石U-Pb 年代学、Lu-Hf 同位素特征及岩石成因. 地球科学, 43(S2): 60~80.
参考文献
徐楠, 吴才来, 郑坤, 高栋. 2020. 南阿尔金茫崖A型花岗岩的成因及构造意义. 地质学报, 94(5): 1431~1449.
参考文献
徐志刚, 盛继福, 孙善平. 1999. 关于“橄榄玄粗岩系列(组合)”特征及某些问题的讨论. 地质论评, 45(增刊) : 43~62.
参考文献
许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73 (3): 193~205.
参考文献
尹安. 2001. 喜马拉雅-青藏高原造山带构造演化——显生宙亚洲大陆生长. 地球学报, 22(3): 193~230.
参考文献
杨文强, 刘良, 丁海波, 校培喜, 曹玉亭, 康磊. 2012. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb 年代学与Hf同位素特征及其构造地质意义. 岩石学报, 28(12): 4139~4150.
参考文献
翟明国. 2017. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序. 岩石学报, 33(5): 1369~1380.
参考文献
张旗. 2012. 关于C型埃达克岩成因的再探讨. 岩石矿物学杂志, 30(4): 739~747.
参考文献
张建新, 张泽明, 许志琴, 杨经绥, 崔军文. 1999. 阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据. 科学通报, 44(10): 1109~1112.
参考文献
张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74~94.
参考文献
朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I 型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学: 地球科学, 39(7): 833~848.
目录contents

    摘要

    南阿尔金造山带位于塔里木盆地和柴达木盆地之间,是中国西北地区重要的俯冲-碰撞杂岩带,其早古生代构造演化过程是近年来的研究热点之一,然而,洋壳俯冲的时限一直存在争议。本文对茫崖石英二长岩开展岩石学、地球化学、锆石U-Pb年代学和锆石Lu-Hf同位素地球化学研究,探讨其岩石成因及成岩时的构造环境。样品显示高碱、富钾、低钛、贫铁及Nd-Ta-Ti异常等与钾玄岩相似的地球化学特征,成岩年龄为511~495 Ma,εHf(t)主要为-3.51~-0.08,少量介于0.04~1.69之间。我们认为俯冲洋壳到达角闪岩相边界时释放大量水并上升进入地幔楔,导致地幔楔橄榄岩发生角闪石化交代作用,由于地幔楔沿俯冲带向下拖曳而温度升高,角闪石化橄榄岩熔融形成的熔体在上升过程诱发上地壳物质部分熔融,壳源岩浆混合少量幔源岩浆形成了石英二长岩,该期花岗岩是对造山带从大洋岛弧环境向活动大陆边缘过渡的岩石学响应。因此,南阿尔金洋壳可能在约517 Ma前已经开始俯冲。

    Abstract

    The South Altun orogenic belt is an important subduction-collision complex belt in northwest China, located between the Tarim and the Qaidam basins. Its early Paleozoic tectonic evolution has been one of the research hotspots in recent years. However, the timing of oceanic crust subduction has been controversial. In this paper, we study the petrology, geochemistry, zircon U-Pb chronology and zircon Lu-Hf isotope geochemistry of the Manya quartz monzonite, and discuss its petrogenesis and the tectonic environment. The samples show high alkali, potassium-rich, low-titanium, iron-poor and Nd-Ta-Ti anomalies similar to shoshonitic rocks. The quartz monzonites were generated between 511 Ma to 495 Ma, and the values of εHf(t) mainly range from -3.51 to -0.08, with some positive values ranging from 0.04 to 1.69. Based on our research, we infer that the subducting oceanic crust released large amounts of water when arriving at amphibolite facies boundaries, and triggered the mantle wedge peridotite hornblende metasomatism. Due to the dragging of the subducting oceanic crust, the temperature of the mantle wedge rose, causing the melting of the hornblende metasomatized peridotite, which triggered the partial melting of upper crust materials. Finally, crustal melts mixed with smaller mantle melts to form quartz monzonite. The ~500 Ma granites are petrological response to transition from oceanic island arc environment to active continental margin. Thus, the southern Altun oceanic crust may have begun subducting at around 517 Ma.

  • 岩浆是地球各圈层物质和能量交换的重要载体,岩浆岩及其所携带的深源岩石包体蕴含着地壳形成、生长、再造及壳幔相互作用的重要信息,是研究大地构造演化历史的岩石学探针。众所周知,活动大陆边缘陆壳的形成与演化、陆内环境下的大陆再造以伴随着大量花岗岩的形成为标志(Raimondo et al.,2010),花岗质岩浆的结晶分异是引起大陆地壳垂向成分变化的重要因素,而高分异花岗岩是大陆地壳高成熟度的重要岩石学标志(吴福元等,2017)。大陆花岗岩的地球动力学意义、花岗岩多样性的原因等是花岗岩研究的重要科学问题,只有从大陆形成演化的层面,才有可能真正认识作为陆壳标志的花岗岩类的成因(翟明国,2017)。

  • 阿尔金造山带是青藏高原北缘的一部分,位于青藏高原北缘,塔里木板块与柴达木微板块之间,是不同时期、不同构造层次和不同构造环境下形成的复合造山带(尹安,2001刘永顺等,2010),经历了太古宙—古元古代陆核和结晶基底的形成(车自成等,1995陆松年和袁桂邦,2003)、中元古代稳定大陆边缘沉积、新元古代末期—早古生代板块扩张(郭召杰等,1998)、加里东期板块俯冲-碰撞(刘良等,1998)、晚古生代剥露夷平和局部浅海沉积、印支期伸展作用和碱性岩侵位(尹安,2001)、以及晚燕山期大规模左行走滑作用。近年来,南阿尔金火成岩及HP-UHP变质岩研究极大推进了造山带早古生代洋陆俯冲极性的研究进展(吴才来等,20142016Wu Cailai et al.,2018刘良等,2019Yu Shengyao et al.,2019a2019b2021Dong Jie and Wei Chunjing,2021Hong Tao et al.,2021Li Xin et al.,2021Ma Tuo et al.,2021张建新等,2021Gao Xiangyu et al.,2021Teng Xia et al.,2021)。研究表明,南阿尔金造山带在早古生代经历了洋壳俯冲、陆壳俯冲、深俯冲及折返的构造事件,然而,不同构造演化阶段的时限仍未确定,尤其是~500 Ma中酸性火成岩的岩石成因仍存争议。因此,本文对茫崖石英二长岩开展岩相学、岩石地球化学、锆石U-Pb和Lu-Hf同位素研究,结合前人的研究成果,综合分析~500 Ma火成岩的岩石成因及其形成时的构造环境,探讨该期火成岩对造山带构造演化的指示意义。

  • 1 地质背景

  • 阿尔金造山带位于中国西北部、青藏高原北缘、以及塔里木盆地、柴达木盆地和祁连-昆仑造山带之间,是一条重要的俯冲-碰撞杂岩带。由北至南划分为5个次级构造单元:北阿尔金地块、北阿尔金蛇绿混杂岩带、中阿尔金陆块、南阿尔金高压—超高压变质带和南阿尔金蛇绿混杂岩带(图1a)(刘良等,1998许志琴等,1999刘永顺等,2010)。

  • 北阿尔金地块主要由太古宇米兰岩群和TTG岩系组成,包括基性麻粒岩、紫苏斜长片麻岩、斜长角闪片麻岩、石榴斜长角闪岩、黑云角闪斜长片麻岩、变粒岩、大理岩、含石墨石英片岩、碎屑岩、碳酸盐岩、少量基性火山岩,以及少量未变质—弱变质的基性火山岩、硅质岩、灰岩、基性超基性侵入岩和高压变质泥质岩(车自成等,1995吴峻等,2001)。

  • 中阿尔金陆块包括中元古界长城系巴什库尔干群和蓟县系塔昔达坂群浅变质沉积岩系,南部分布少量新元古界青白口系索尔库里群,3套地层呈断裂构造接触,均以碎屑岩、碳酸盐岩建造为主,塔昔达坂群中夹有少量基性火山岩,变质程度最高可达绿片岩相。

  • 图1 阿尔金地区花岗岩分布图(a)和茫崖区域地质图(b)

  • Fig.1 Distribution of granitic rocks in the South Altun (a) and geological map of the Mangya area (b)

  • 南阿尔金高压—超高压变质带由表壳岩、花岗质岩石和榴辉岩组成,其中的变质基性火山岩和变质基性岩墙的原岩成分以大洋拉斑玄武岩为主,少数为大陆拉斑玄武岩或钙碱性、碱性玄武岩,主要形成于M型洋中脊环境,其次为岛弧环境,代表了岛弧背景下的一套火山岩组合(覃小锋等,2008)。南阿尔金江格萨依榴辉岩的峰期变质年龄为504~500 Ma(Sm-Nd和U-Pb;张建新等,1999),被认为是陆壳深俯冲的产物,俯冲深度可达200~300 km(刘良等,2005Liu Liang et al.,20072012)。

  • 南阿尔金早古生代蛇绿混杂岩带是分割阿尔金造山带与祁漫塔格、柴南缘的构造边界,主要包括大量与基性火山岩伴生的基性—超基性岩岩块及花岗岩类,超基性岩主要为蛇纹石化橄榄岩,基性岩主要为角闪辉长岩和拉斑玄武岩,与硅质岩、黑云斜长片麻岩、石英片岩、白云质大理岩等构成了蛇绿岩组合(马中平等,2009)。茫崖地区出露新元古界、侏罗系、更新统和全新统,奥陶系出露较少,岩性主要为滩间山群灰绿色凝灰质砂岩(徐楠等,20182020)。早古生代岩浆岩出露广泛,多呈条带状,走向与区域构造线一致,岩石组合为二长花岗岩、花岗闪长岩、正长花岗岩、碱长花岗岩和闪长岩类等(图1b),局部可见少量玄武岩、辉长岩、辉绿岩、辉石角闪岩、英安岩、流纹岩等(吴才来等,20142016)。

  • 2 岩体地质及岩相学特征

  • 本文研究的石英二长岩岩体位于阿尔金左行走滑断裂南侧的南阿尔金蛇绿混杂岩带上(图1b),带中主要发育奥陶系海相火山-沉积岩和石炭系、二叠系海相沉积岩和侏罗系陆相碎屑岩。石英二长岩岩体呈条带状,走向与区域构造一致,沿北东向延伸大于20 km,宽0.5~1 km,侵位于滩间山群,北侧为上侏罗统,南侧为碱长花岗岩岩体(419~403 Ma;徐楠等,2020),石英二长岩与碱长花岗岩的接触部位被上更新统—全新统覆盖,推测二者接触关系为侵入接触,碱长花岗岩侵入石英二长岩(图1b)。石英二长岩岩体北部边缘见灰白色闪长岩岩脉,脉宽2~5 m,延伸大于500 m,二者走向一致,闪长岩侵入石英二长岩。

  • 岩石风化面呈灰白色、浅肉红色,新鲜面灰黑色—浅肉红色,似斑状结构,不等粒结构,块状构造(图2a、b),主要矿物包括斜长石(35%~40%)、钾长石(35%~40%)、角闪石(10%~15%)和石英(5%~10%),副矿物常见磁铁矿、锆石和磷灰石等。斑晶为钾长石,斜长石、角闪石和石英组成基质。钾长石他形粒状—半自形板状,可见卡式双晶,斜长石呈半自形板状,可见聚片双晶,角闪石和石英多为他形粒状。钾长石裂隙中常发育斜长石和角闪石(图2c、d),表明后者的结晶时间较晚。

  • 3 分析方法

  • 地球化学全分析在国家地质实验测试中心完成。氧化物分析利用X荧光光谱仪(仪器型号3080E),Na2O、MgO、Al2O3、SiO2、P2O5、K2O、CaO、TiO2、MnO、Fe2O3、FeO的执行标准为GB/T14506.28—1993;H2O+的标准为GB/T14506.2—1993;CO2的标准为GB 9835—1988;LOI的标准为LY/T1253—1999。稀土元素和微量元素 Cu、Pb、Th、U、Hf、Ta、Sc、Cs、V、Co、Ni 利用等离子体质谱测试,执行标准为 DZ/T0223—2001;Sr、Ba、Zn、Rb、Nb、Zr、Ga 利用 X 荧光光谱仪测试,执行标准为JY/T016—1996。

  • 锆石U-Pb年代学测试在中国地质科学院地质研究所大陆构造与动力学实验室完成。LA-ICP-MS为Neptune Plus型多接收等离子体质谱仪;LA-MC-ICP-MS为GeoLasPro193 nm;剥蚀物质的载气为氦气;束斑直径为32 μm;能量密度为10 J/cm2;频率为8 Hz;气体背景采集时间为4 s;信号采集时间为23 s;标样选择锆石标样91500,调试仪器达到最大灵敏度、最小氧化物产率(ThO+/Th+<2%)和最低的背景值;利用辅助标样GJ-1验证数据的准确性;每测5~10件样品,测定一组标样;利用ICPMS DataCal和Isoplot处理数据;年龄计算过程以91500为外标进行同位素比值分馏。

  • 锆石Hf同位素分析在中国地质科学院地质研究所大陆构造与动力学实验室完成。仪器型号为Neptunep Plus多接收等离子体质谱和Compex Pro193nm激光剥蚀系统;剥蚀物质的载气为氦气;剥蚀直径为44 μm;测定过程的参考物质为锆石标样GJ-1;GJ-1在分析过程中的176Hf/177Hf测试加权平均值为0.282007±0.000025(2σ),计算Lu衰变常数时采用的初始176Hf/177Hf值为1.865×10-11 a-1;计算εHft)时采用的球粒陨石Hf同位素值为176Lu/177Hf=0.0336和176Hf/177Hf=0.282785。

  • 图2 茫崖石英二长岩岩体野外照片(a、b)及偏光显微照片(c)和正交偏光显微照片(d)

  • Fig.2 Outcrops pictures (a, b) , polarizing microscope (c) and orthogonal polarizing microscope (d) of the Mangya quartz monzonites

  • Hbl—角闪石;Kfs—钾长石;Pl—斜长石;Qtz—石英

  • Hbl—hornblende; Kfs—potassium feldspa; Pl—plagioclase; Qtz—quartz

  • 4 分析结果

  • 4.1 全岩地球化学

  • 石英二长岩的SiO2和Al2O3含量分别为55.68%~64.64%和14.77%~16.67%,K2O+Na2O=6.85%~9.14%,K2O/Na2O=1.07~1.93,Fe2O3/FeO=0.76~1.45(表1)。样品在硅碱图、A/NK-A/CNK、硅钾图和SiO2-Fe*图解中分别落在碱性、铝质、钾玄岩系列和Mg质范围(图3)。

  • 石英二长岩的微量元素配分型式与上地壳相似(图4a),样品亏损Nb、Ta、Ti、P、HREEs等高场强元素,同时亏损Ba、Sr等大离子亲石元素。Sr含量为337×10-6~399×10-6(平均值370.37×10-6)与上地壳(350×10-6)接近。Th/U比值为5.99~7.69(平均值6.26),高于上地壳平均值(≈4.2);Nb/Ta比值为12.93~20.09(平均值15.39),高于上地壳平均值(≈12),而小于地幔平均值(≈17.5);Zr/Hf和Nd/Th比值分别为33.76~36.10(平均值35.05)和1.17~3.18(平均值2.55),分别低于地壳平均值(≈37)和上地壳平均值(≈3)(表1)。

  • 石英二长岩的稀土总量为267×10-6~339×10-6,LREE/HREE为11.31~12.43,(La/Yb)N为14.61~18.03(表1),样品轻重稀土分馏较强烈,δEu为0.76~0.85,显示弱Eu负异常,配分型式与上地壳相似(图4b)。Sm/Nd为0.17~0.18,接近地壳初始值(≈0.208),与壳源花岗岩相似(0.10~0.31)(Collins et al.,1982)。

  • 4.2 锆石U-Pb年代学

  • 本文选择样品C01、C06、C07和C08进行LA-ICP-MS锆石U-Pb测年,分析结果见附表1。

  • 锆石的成因不同,其微量元素组成通常差异很大。根据晶体化学原理,虽然大于理想离子半径的元素更容易进入受热膨胀的矿物晶格,但是与理想离子半径相近的元素最容易进入晶格,因此,相对于长英质熔体,镁铁质熔体结晶形成的锆石更容易同时吸收Th和U进入晶格,而前者进入锆石结构中的Th相对更多,从而导致二者的Th/U比值存在差异(分别为1∶3和1∶7)(Kirkland et al.,2015)。然而,高温变质作用与部分熔融形成的锆石具有相似的化学组分,例如富集U、Y、Hf和P,稀土元素配分型式斜率很大,Ce正异常和Eu负异常等,Th/U比值是唯一可以区分高温变质锆石(<0.07)和岩浆锆石(>0.14)的化学特征(Rubatto,2002; Kirkland et al.,2015)。石英二长岩样品中锆石的结晶程度较好,多呈短柱状—长柱状,显示清晰的振荡环带(图5),Th/U比值为0.24~2.75,显示岩浆锆石的矿物学和地球化学特征。

  • 表1 茫崖石英二长岩主量元素(%)和微量元素(×10-6)分析结果表

  • Table1 Results of major (%) , trace and rare earth elements (×10-6) of the Mangya quartz monzonites

  • 注:Fe*=TFeO/(TFeO+MgO),TFeO=FeO+0.8998Fe2O3

  • 样品C01测定了40颗锆石,Th和U的含量分别为69×10-6~1304×10-6和68×10-6~845×10-6,Th/U比值为0.76~1.91,U-Pb年龄为584~468 Ma,除去偏离谐和线的锆石年龄,该样品的加权平均年龄为510.7±3.2 Ma(MSWD=0.80,n=24),与锆石谐和年龄511.2±3.3 Ma(MSWD=0.82)在误差范围内基本一致(图5a)。样品C08测定了40颗锆石,Th和U的含量分别为182×10-6~2518×10-6和241×10-6~660×10-6,Th/U比值为0.73~1.26,U-Pb年龄为539~472 Ma,除去偏离谐和线的锆石年龄,该样品的加权平均年龄为501.3±4.6 Ma(MSWD=0.31,n=15),与锆石谐和年龄503.6±9.4 Ma(MSWD=0.32)在误差范围内基本一致(图5b)。样品C06测定了40颗锆石,Th和U的含量分别为203×10-6~1077×10-6和203×10-6~888×10-6,Th/U比值为0.51~2.12,U-Pb年龄为530~487 Ma,除去偏离谐和线的锆石年龄,该样品的加权平均年龄为500.3±2.6 Ma(MSWD=0.42,n=25),与锆石谐和年龄499.7±3.0 Ma(MSWD=0.41)在误差范围内基本一致(图5c)。样品C07测定了40颗锆石,Th和U的含量分别为167×10-6~2518×10-6和90×10-6~1238×10-6,Th/U比值为0.24~2.75,U-Pb年龄为530~487 Ma,除去偏离谐和线的锆石年龄,该样品的加权平均年龄为494.8±2.6 Ma(MSWD=0.71,n=19),与锆石谐和年龄497.6±3.1 Ma(MSWD=0.65)在误差范围内基本一致(图5d)。因此,4组样品的锆石U-Pb年龄可以代表石英二长岩的结晶年龄,岩体的结晶年龄为511~495 Ma。

  • 4.3 锆石Lu-Hf同位素

  • 在对样品C01、C06、C07、C08进行锆石U-Pb年代学测试的基础上,对其进行锆石Lu-Hf同位素分析,分析结果见附表2。

  • 图3 茫崖石英二长岩硅碱图(a,据Irvine et al.,1971; Maniar et al.,1989),A/CNK-A/NK图解(b,据Rickwood,1989), SiO2-K2O图解(c,据Maniar et al.,1989)和SiO2-Fe*图解(d,据Frost et al.,2008

  • Fig.3 Diagrams of SiO2- (Na2O+K2O) (a, after Irvine et al., 1971; Maniar et al., 1989) , A/CNK vs. A/NK (b, after Rickwood, 1989) , SiO2-K2O (c, after Maniar et al., 1989) and SiO2-Fe* (d, after Frost et al., 2008) for the Mangya quartz monzonites

  • 黄土泉岩体和长沙沟岩体数据引自康磊,2015;鱼目泉岩体数据引自孙吉明等,2012;Fe*=TFeO/(TFeO+MgO),TFeO=FeO+0.8998Fe2O3

  • Data of Huangtuquan and Changshagou granite is after Kang Lei, 2015; data of Yumuquan granite is after Sun Jiming et al., 2012; Fe*=TFeO/ (TFeO+MgO) ,TFeO=FeO+0.8998Fe2O3

  • 样品C01的Lu/Hf比值为0.0008~0.0012;176Hf/177Hf比值为0.2824~0.2825;176Yb/177Hf比值为0.0287~0.0564; εHft)为-1.88~-0.08,tDM2为1601~1476 Ma,2个εHft)正值,分别为0.19和1.19,tDM2分别为1466 Ma和1400 Ma;fLu/Hf(s)为-0.98~-0.96。

  • 样品C08的Lu/Hf比值为0.0006~0.0015;176Hf/177Hf比值为0.2824~0.2825; 176Yb/177Hf比值为0.0153~0.0471;εHft)为-3.51~-0.35,tDM2为1679~1490 Ma,1个εHft)正值(0.06),tDM2为1464 Ma;fLu/Hf(s)为-0.98~-0.95。

  • 样品C06的Lu/Hf比值为0.0007~0.0016;176Hf/177Hf比值为0.2824~0.2825;176Yb/177Hf比值为0.0240~0.0577; εHft)为-3.21~-0.57,tDM2为1674~1473 Ma,4个εHft)正值(0.04~1.69),tDM2为1462~1363 Ma;fLu/Hf(s)为-0.98~-0.95。

  • 样品C07的Lu/Hf比值为0.0004~0.0023;176Hf/177Hf比值为0.2824~0.2825;176Yb/177Hf比值为0.0146~0.0923; εHft)为-3.40~-0.36,tDM2为1684~1493 Ma,6个εHft)正值(0.06~0.91),tDM2为1459~1410 Ma;fLu/Hf(s)为-0.99~-0.93。

  • 图4 茫崖石英二长岩及南阿尔金早古生代花岗岩原始地幔标准化微量元素蛛网图(a、c、e、g)和球粒陨石标准化稀土元素配分图(b、d、f、h)(标准化数据引自Sun et al.,1989

  • Fig.4 Primitive mantle normalized trace element spider diagrams (a, c, e, g) and chondrite normalized rare earth element patterns (b, d, f, h) for Mangya quartz monzonites and South Altun granites (normalized data after Sun et al., 1989

  • 黄土泉岩体和长沙沟岩体数据引自康磊,2015;鱼目泉岩体数据引自孙吉明等,2012

  • Data of Huangtuquan and Changshagou granite is after Kang Lei, 2015; data of Yumuquan granite is after Sun Jiming et al., 2012

  • tDM2通常根据铁镁质地壳(fLu/Hf=-0.34)和硅铝质地壳(fLu/Hf=-0.72)的Lu/Hf计算(Amelin et al.,1999),而花岗岩类的tDM2用硅铝质陆壳的Lu/Hf计算更为合理。本文中所测锆石的fLu/Hf(s)小于陆壳,因此,tDM2可以反映源区物质从亏损地幔被抽取的时间(或源区物质在地壳的平均存留时间)(第五春荣等,2007)。石英二长岩的εHft)为-3.51~-0.08(图6),tDM2为1684~1473 Ma,少量正值介于0.04~1.69,tDM2为1466~1363 Ma,表明岩体的物质来源以中元古代(1684~1473 Ma)古老地壳物质为主,混合少量中元古代(1466~1363 Ma)新生地壳物质,同时指示南阿尔金在中元古代(1466~1363 Ma)经历了地壳增生事件。

  • 图5 茫崖石英二长岩LA-ICP-MS锆石U-Pb年龄谐和图(a~d)

  • Fig.5 U-Pb concordia diagram (a~d) for the zircon grains of the Mangya quartz monzonite

  • 5 讨论

  • 5.1 岩石成因及岩浆源区

  • 钾玄岩系列岩石指Al2O3=14%~19%,TiO2<1.3%,K2O+Na2O>5%,当SiO2含量为50%和55%时,K2O/Na2O分别大于0.6和1.0,强烈富集大离子亲石元素和轻稀土元素的火成岩岩石系列(Müller and Groves,1995),通常以高碱、富钾、低钛和贫铁(Fe2O3/FeO>0.5)为特征(徐志刚等,1999)。茫崖石英二长岩显示与钾玄质系列岩石相似的地球化学特征:SiO2=55.68%~64.64%;K2O+Na2O=6.85%~9.14%;K2O/Na2O=1.07~1.93;TiO2=0.51%~0.94%;Al2O3=14.77%~16.67%;Fe2O3/FeO=0.76~1.45;强烈富集轻稀土元素(LREE/HREE=11.31~12.43)(图4b)。同时,石英二长岩全部落在钾玄质岩石范围(图7a、b),并且与大多数钾玄质系列岩石一样,明显亏损Nb、Ta和Ti。钾玄质岩石具有多种成因模式:幔源玄武质岩浆不同程度被壳源物质混染或与壳源岩浆混合(Hébert et al.,2014)、富集地幔橄榄岩(含金云母)高压部分熔融(Turner et al.,1996)、岩浆源区受富集LILE和LREE的交代组分混染(交代组分来源于俯冲的岩石圈,包括俯冲沉积物,尤其是随俯冲进入地幔的大洋沉积物)(Schiano et al.,2004)、石榴子石橄榄岩地幔部分熔融的玄武质岩浆经历高度结晶分异(王建等,2003)等,低硅钾玄质岩(SiO2<56%)主要源于地幔,高硅钾玄质岩(SiO2>63%)主要源于地壳,更多情况下是二者的混合,钾玄质岩石的源区强调其幔源性质或至少幔源组分的参与(贾小辉等,2017)。利用全岩分析Zr含量代表锆石在熔体中的含量,计算得到石英二长岩的结晶温度为939~996℃,高于高分异I型花岗岩的结晶温度(764℃)(King et al.,1997),因此,该岩体不是高分异岩浆的产物。在图8a中,石英二长岩数据点分布于变质中基性岩部分熔融和变质杂砂岩部分熔融区域,在图8c和d中,数据点靠近玄武岩派生的岩浆范围,而在图8e中,数据点主要分布在变杂砂岩熔体范围,同时,石英二长岩的εHft)以负值为主,包含少量正值(图6),且在图8f中,数据分布于上地壳和下地壳源区之间,表明岩体母岩浆有玄武质组分的参与,可能是源自镁铁质下地壳的熔体在上升过程导致上地壳物质部分熔融,二者混合形成的岩浆在合适位置就位形成了这一期石英二长岩。

  • 图6 茫崖石英二长岩Hf同位素演化图

  • Fig.6 Zircon εHf (t) values versus age (Ma) diagram of the Mangya quartz monzonite

  • 茫崖二长花岗岩和碱长花岗岩数据引自徐楠等,20182020;茫崖闪长岩数据引自Xu Nan et al.,2020;茫崖石英二长闪长岩数据引自吴才来等,2016;黄土泉岩体和长沙沟岩体数据引自康磊,2015

  • Data of Mangya monzonitic granite and alkali-feldspar granite is after Xu Nan et al., 2018, 2020; data of Mangya diorite is after Xu Nan et al., 2020; data of Mangya quartz monzodiorite is after Wu Cailai et al., 2016; data of Huangtuquan and Changshagou granites is after Kang Lei, 2015

  • 石英二长岩的分异指数较大(DI=54.38~76.27),且显著亏损Ba、Nb、Ta、Sr、P 和Ti 等元素(图4a),说明岩体母岩浆经历了一定程度的分离结晶作用(朱弟成等,2009)。如图9a、b所示,样品数据与黑云母和/或白云母的分离结晶趋势相似,说明岩浆可能经历了黑云母/白云母的分离结晶。样品强烈亏损Ti(图4a),且TiO2与SiO2呈显著的负相关性(图10a),说明熔体发生了强烈的含Ti副矿物的分离结晶(如钛铁矿等)。P2O5与SiO2呈显著负相关性(图10b),且强烈亏损P及Dy、Ho等重稀土元素(图4a),说明熔体发生了磷灰石的结晶分异。Al2O3与SiO2呈负相关性(图10c),且Eu显示弱负异常(δEu=0.76~0.85),说明熔体可能发生了微弱的斜长石分离结晶。角闪石的分离结晶可能导致熔体Y/Yb比值升高(Yb在角闪石的分配系数高于Y),样品的Y/Yb比值集中(9.96~10.69),说明熔体未发生明显的角闪石分离结晶。样品CIPW标准矿物计算中出现钛铁矿、磁铁矿、锆石和磷灰石等副矿物,因此,石英二长岩母岩浆可能主要经历了黑云母和/白云母、钛铁矿、磷灰石的分离结晶作用。花岗岩的Yb含量主要与源岩成分、副矿物、部分熔融程度及熔融残留相有关,石榴子石可能是导致花岗岩REE强烈分离的最重要的矿物相(Martin et al.,2005)。石榴子石强烈富集HREE,而角闪石强烈富集MREE(吴福元等,2002),因此,石英二长岩亏损HREE(LREE/HREE=11.31~12.43),HREE呈平坦型分布(图4b),Y含量(23.20×10-6~32.01×10-6)为Yb含量(2.13×10-6~3.13×10-6)的10~14倍,指示岩浆源区可能存在石榴子石残留。在图9c、d中,(La/Yb)N 与(Dy/Yb)N 和(La/Yb)N与Nb/Ta 呈正相关性,说明样品源岩部分熔融的残留体中可能存在石榴子石残留相,同时,(La/Yb)N 与(Dy/Yb)N的正相关性及弱Eu负异常和Sr负异常(图4a、b)指示岩浆演化过程不存在角闪石和斜长石残留(有石榴子石)(He Yongsheng et al.,2011李曙光等,2013)。

  • 图7 茫崖石英二长岩Ta/Yb与Ce/Yb关系图(a)和Ta/Yb与Th/Yb关系图(b)(据Pearce,1982

  • Fig.7 Diagrams of Ta/Yb vs. Ce/Yb (a) and Ta/Yb vs. Th/Yb (b) for the Mangya quartz monzonite (after Pearce, 1982)

  • 黄土泉岩体和长沙沟岩体数据引自康磊,2015;鱼目泉岩体数据引自孙吉明等,2012

  • Data of Huangtuquan and Changshagou granites is after Kang Lei, 2015; data of Yumuquan granite is after Sun Jiming et al., 2012

  • 图8 茫崖石英二长岩CaO/(MgO+TFeO)-Al2O3/(MgO+TFeO)图解(a,据Altherr et al.,2000)、(Na2O+K2O+ MgO+TFeO+TiO2)-(Na2O+K2O)/(MgO+TFeO)图解(b,据Kaygusuz et al.,2008)、Rb/Sr-Rb/Ba图解 (c,据Sylvester,1998)、Al2O3/TiO2-CaO/Na2O图解(d,据Sylvester,1998)、CaO/(MgO+TFeO)-K2O/Na2O 图解(e)和Ta/Yb-Th/Yb图解(f,据Kaygusuz et al.,2008

  • Fig.8 Plots of CaO/ (MgO+TFeO) -Al2O3/ (MgO+TFeO) (a, after Altherr et al., 2000) , (Na2O+K2O+MgO+ TFeO+TiO2) - (Na2O+K2O) / (MgO+TFeO) (b, after Kaygusuz et al., 2008) , Rb/Sr-Rb/Ba (c, after Sylvester, 1998) , Al2O3/TiO2-CaO/Na2O (d, after Sylvester, 1998) , CaO/ (MgO+TFeO) -K2O/Na2O (e) and Ta/Yb-Th/Yb (f, after Kaygusuz et al., 2008) for Mangya quartz monzonites

  • 黄土泉岩体和长沙沟岩体数据引自康磊,2015;鱼目泉岩体数据引自孙吉明等,2012

  • Data of Huangtuquan and Changshagou granites is after Kang Lei, 2015; data of Yumuquan granite is after Sun Jiming et al., 2012

  • 南阿尔金地区已报道的~500 Ma花岗岩包括鱼目泉混合花岗岩(497 Ma)、长沙沟花岗闪长岩(503 Ma)和黄土泉花岗闪长岩(517 Ma),这些岩体均具有岩浆混合特征,显示高Sr、低Y、低Yb等“埃达克质”特征。有学者认为鱼目泉岩体和长沙沟岩体是深俯冲陆壳断离诱发加厚下地壳部分熔融的产物(C型埃达克岩;孙吉明等,2012康磊,2015),黄土泉岩体是洋壳在俯冲过程部分熔融形成的熔体与上覆地幔楔发生交代混染的产物(O型埃达克岩;康磊,2015)。现有研究表明,埃达克岩并不能作为板片俯冲的直接证据,因为岩石地球化学属性与地球动力学并没有直接的联系(Castillo,2006)。埃达克岩的成因模式,如消减板片MORB的部分熔融(Castillo,2006)、与岛弧或活动陆缘下地壳底部玄武质岩浆底侵有关的非板片部分熔融(张旗,2012)、含石榴子石玄武质岩浆的同化混染或分离结晶(Colin et al.,2005),以及高Sr/Y和La/Yb源区在低压条件下的部分熔融(Colin et al.,2005)等,都指示该类岩石源自玄武质组分的部分熔融。黄土泉岩体的εHft)全部为较大的正值,明显与长沙沟岩体和茫崖岩体(图6)不同,指示其不同的物质来源。如图8b、e,数据分别落在角闪岩派生的岩浆和变玄武岩熔体范围,黄土泉岩体源自玄武岩派生的岩浆的比例分布于>90%和10%~50%,鱼目泉岩体的变化范围较大,分布于60%~90%和10%~50%之间,长沙沟岩体分布于>90%和10%(图8c、d),黄土泉岩体和鱼目泉岩体数据接近上地壳,长沙沟岩体数据接近下地壳(图8f),说明3个岩体的源区可能与玄武质组分熔融形成的熔体有关,且不同程度受到壳源物质的混染(孙吉明等,2012康磊,2015)。Mg#值可以反映岩浆熔体的物质来源,当Mg#值较低(<40)时,熔体来自壳源物质的熔融,当Mg#值较高时指示幔源物质的参与(Rapp and Watson,1995)。茫崖、鱼目泉、黄土泉和长沙沟岩体的Mg#值分别为40~51、46~56、69~74及56~59,表明形成这些岩体的熔体均有幔源物质的参与。茫崖岩体的Nb/Ta值(13~20)高于地壳值(~11; Green,1995),鱼目泉岩体的Nb/Ta值变化范围较大(7~53),黄土泉(6~8)和长沙沟岩体(10~12)Nb/Ta值与地壳相似,同时,茫崖、黄土泉和长沙沟岩体的Zr/Hf值分别为34~36、30~34及37~39,基本上与地壳值相似(33~36.3; Taylor and Mc Lennan,1985),说明形成4个岩体的岩浆均有幔源物质的参与。现有研究表明,茫崖—约马克其具有蛇绿岩性质的变基性火山岩(493~481 Ma;刘良等,1998)和镁铁—超镁铁岩(501 Ma;马中平等,2009)的形成时代,及HP-UHP变质岩榴辉岩相峰期变质年龄(504~475 Ma;张建新等,1999刘良等,2005)指示南阿尔金洋可能在约500 Ma前已经开始俯冲。黄土泉岩体的锆石U-Pb年龄主要为517 Ma(核部),代表岩体的结晶年龄,少量为497 Ma(边缘),代表后期岩浆活动过程锆石的重结晶年龄(康磊,2015)。因此,我们推测俯冲洋壳到达角闪岩相边界时释放大量水并上升进入地幔楔,诱导地幔楔橄榄岩发生角闪石化交代作用,随着俯冲的进行,地幔楔沿俯冲带向下拖曳而温度升高,角闪石化橄榄岩熔融形成的熔体在上升过程诱发上地壳物质部分熔融,二者混合形成的母岩浆在合适位置就位形成了黄土泉岩体,随着角闪石交代橄榄岩部分熔融形成的熔体的减少,源自上地壳的熔体在混合岩浆中逐渐占主导地位,以壳源熔体为主的岩浆混合少量幔源岩浆形成了茫崖石英二长岩,随后,幔源岩浆再次上涌,在下地壳和上地壳形成了岩浆房,随着壳源物质部分熔融形成的熔体的不断加入,壳源岩浆和幔源岩浆混合而成的岩浆上升侵位,形成了长沙沟花岗闪长岩和鱼目泉混合花岗岩。

  • 图9 茫崖石英二长岩Ba-Sr(a,据Janoušek et al.,2004)、Rb-Sr(b)、(Dy/Yb)N-(La/Yb)N(c)及Nb/Ta-(La/Yb)N(d)关系图

  • Fig.9 Diagrams of Ba-Sr (a, after Janoušek et al., 2004) , Rb-Sr (b) , (Dy/Yb) N- (La/Yb) N (c) and Nb/Ta- (La/Yb) N (d) for Mangya quartz monzonites

  • 黄土泉岩体和长沙沟岩体数据引自康磊,2015;鱼目泉岩体数据引自孙吉明等,2012

  • Data of Huangtuquan and Changshagou granites is after Kang Lei, 2015; data of Yumuquan granite is after Sun Jiming et al., 2012

  • 图10 茫崖石英二长岩哈克图解(a~h)

  • Fig.10 Harker diagrams (a~h) for Mangya quartz monzonite

  • 5.2 成岩构造环境

  • 南阿尔金造山带是中国西北部重要的俯冲-碰撞杂岩带,在早古生代经历了洋壳俯冲、陆壳深俯冲及其折返、陆陆碰撞等构造过程。研究表明,迪木那里克火山角砾岩及其上部浅海相沉积地层指示南阿尔金洋在约623 Ma已经发育成为年轻的有限洋盆(杨文强等,2012)。茫崖—约马克其—长沙沟一带蛇绿岩中的变基性火山岩(481±53 Ma;刘良等,1998)、镁铁—超镁铁岩(501±1.9 Ma;李向民等,2009)和辉石橄榄岩(511±1.4 Ma;郭金城等,2014)指示南阿尔金洋在约511 Ma已经开始俯冲。南阿尔金HP-UHP带榴辉岩相峰期变质年龄(504~475 Ma)和麻粒岩相退变质年龄(455 Ma)分别代表了陆壳深俯冲及其折返作用的时代(Liu Liang et al.,2012),指示造山带早古生代陆壳俯冲-碰撞事件的发生。近年来,在HP-UHP变质岩、花岗岩及蛇绿岩带的研究基础上,南阿尔金早古生代构造演化主要形成了两种观点:① 622~517 Ma,洋盆发育扩张阶段;517~500 Ma,洋壳俯冲阶段,以黄土泉O型埃达克岩为标志;陆壳深俯冲阶段,在俯冲洋壳的拖曳作用下,南阿尔金陆壳发生深俯冲作用,在504~487 Ma达到>300 km的地幔深度(刘良等,2019),形成一系列HP-UHP变质岩及少量C型埃达克岩;460~451 Ma,俯冲陆壳断离折返阶段,构造环境由碰撞挤压转换为后碰撞伸展环境,HP-UHP变质岩发生麻粒岩相退变质作用,产生大量过铝质S型花岗岩和裂谷型镁铁—超镁铁质岩类(类似于双峰式火山岩);426~385 Ma,碰撞后伸展阶段,形成大规模A型花岗岩,HP-UHP变质岩发生角闪岩相退变质作用(康磊,2015)。② 约490 Ma,大洋扩张阶段;488~458 Ma,大洋俯冲阶段,形成了大规模岛弧I型花岗岩;450~433 Ma,陆陆碰撞阶段,南阿尔金洋闭合,柴达木地块与南阿尔金陆块发生陆陆碰撞,俯冲洋壳断离,形成一系列S型和I-S过渡型同碰撞花岗岩;424~404 Ma,造山后伸展阶段,形成大规模A型花岗岩(Wu Cailai et al.,2018; Xu Nan et al.,2020)。因此,大规模A2型花岗岩的出现标志造山带进入造山后伸展环境(徐楠等,2020),但是洋壳俯冲及陆壳深俯冲的时限仍存争议。

  • 众所周知,俯冲带火成岩的地球化学属性可以反映不同源区的贡献,例如地幔楔、洋壳、俯冲过程形成的流体等(Bartoli et al.,2013),由于俯冲作用形成的流体进入地幔楔后导致其发生交代作用,从而导致弧岩浆岩比其他构造环境形成的火成岩具有更高的LREE/HFSE和LILE/HFSE比值(Hawkesworth et al.,1997)。一般来说,HFSE和HREE不易受到俯冲过程流体活动的影响,通常保留在俯冲带的副矿物中,而LILE和LREE活动性较强,常通过熔融或脱水作用进入俯冲过程形成的熔体中(Pearce and Peate,1995)。但是,Th在弧环境中表现出较强的活动性,且与弧岩浆中Ta的关系密切,从而导致弧岩浆岩中Th/Ta比值随弧成分的增加而增大,弧岩浆岩比板内岩浆岩的Th/Ta比值更高(Hawkesworth et al.,1997)。茫崖、鱼目泉、长沙沟和黄土泉岩体的Th/Ta比值分别为12~15、7、2~7和19~26,其中茫崖岩体和鱼目泉岩体的Th/Ta比值与活动大陆边缘一致(6~20;Gorton et al.,2000),长沙沟岩体与板内火山带相似(1~6),极少量数据介于活动大陆边缘范围,黄土泉岩体与大洋岛弧一致(>20~90),这4个岩体的Th/Ta比值反映了岩浆活动的构造环境从大洋岛弧向活动大陆边缘过渡的特征。茫崖石英二长岩富集K、Rb、Th(图4a),且具有钾玄岩的特征,说明该岩体的形成与俯冲作用有关(Sajona et al.,1996)。在图11a中,4个岩体基本上全部分布在弧花岗岩范围,在R1-R2图解(图11b)中,鱼目泉、长沙沟和黄土泉岩体基本上全部分布在板块俯冲/碰撞前范围。因此,我们推测这期岩浆活动形成于南阿尔金洋壳俯冲的构造环境,南阿尔金洋可能在约517 Ma已经开始俯冲。

  • 图11 茫崖石英二长岩Rb-(Y+Nb)判别图(a,据Pearce et al.,1982)和 R1-R2 判别图(b,据Batchelor and Bowden,1985)

  • Fig.11 Plots of Rb vs. (Y+Nb) (a, after Pearce et al., 1982) and R1 vs. R2 (b, after Batchelor and Bowden, 1985) for Mangya quartz monzonites

  • 茫崖二长花岗岩和碱长花岗岩数据引自徐楠等,20182020;黄土泉岩体和长沙沟岩体数据引自康磊,2015;鱼目泉岩体数据引自孙吉明等,2012

  • Data of Mangya monzonitic granite and alkali-feldspar granite is after Xu Nan et al., 2018, 2020; data of Huangtuquan and Changshagou granites is after Kang Lei, 2015; data of Yumuquan granite is after Sun Jiming et al., 2012

  • 6 结论

  • (1)南阿尔金茫崖石英二长岩显示钾玄质岩石的特征,成岩年龄为511~495 Ma,εHft)主要为-3.51~-0.08,少量正值介于0.04~1.69之间。

  • (2)茫崖石英二长岩形成于洋壳俯冲的构造环境,俯冲洋壳脱水导致地幔楔橄榄岩发生角闪石化交代作用,角闪石化橄榄岩熔融形成的熔体上升并诱发上地壳物质部分熔融,壳源岩浆混合少量幔源岩浆形成了这一期花岗岩。

  • (2)南阿尔金~500 Ma花岗岩形成于南阿尔金洋壳俯冲阶段,这一期花岗岩形成时的构造环境是对造山带从大洋岛弧环境向活动大陆边缘过渡的响应,洋壳在约517 Ma已经开始俯冲。

  • 致谢:非常感谢审稿专家的宝贵意见和建议!

  • 附件:本文附件(附表1、2)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202312093?

  • 参考文献

    • Altherr R, Holl A, Hegner E, Larger C, Kreuzer H. 2000. High potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50: 51~73.

    • Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 299: 252~255.

    • Bartoli O, Cesare B, Poli S. 2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology, 41(2): 115~118.

    • Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43~55.

    • Castillo P R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51: 257~68.

    • Che Zicheng, Liu Liang, Liu Hongfu. 1995. Discovery and occurrence of high-pressure metapelitic rocks from Altyn Mountain areas. Chinese Science Bulletin, 40(14): 1298~1300 (in Chinese with English abstract).

    • Colin G M, Scott T D, Matthew F T. 2005. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243: 581~593.

    • Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189~200.

    • Diwu Chunrong, Sun Yong, Lin Ciluan, Liu Xiaoming, Wang Hongliang. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province, China. Acta Petrologica Sinica, 23(2): 253~262 (in Chinese with English abstract).

    • Dong Jie, Wei Chunjing. 2021. Multi-stage metamorphism of the South Altyn ultrahigh-pressure metamorphic belt, West China: Insights into tectonic evolution from continental subduction to arc-backarc extension. Journal of Petrology, 62(11): egab082.

    • Frost B R, Frost C D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49: 1955~1969.

    • Gao Xiangyu, Yu Shengyao, Peng Yinbiao, Lü Pei, Wang Meng, Liu Yongjiang, Li Sanzhong, Jiang Xingzhou, Ji Wentao, Li Chuanzhi. 2021. Insights into OIB-like magmatism contemporaneous with oceanic subduction: Petrogenetic constraints on the Kendelong metagabbro in the North Qaidam. Lithos, 392-393: 106130.

    • Gorton B R, Schandl E S. 2000. From continents to island arcs: A geochemical index of tectonics setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38: 1065~1073.

    • Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347~359.

    • Guo Jincheng, Xu Xuming, Chen Haiyan, Li Xian, Dong Hongkai, Ti Zhenhai. 2014. Zircon U-Pb age and geological implication of ultramafic rocks in Changshagou, Altun area, Xinjiang Province. Northwestern Geology, 47(4): 170~177 (in Chinese with English abstract).

    • Guo Zhaojie, Zhang Zhicheng, Wang Jianjun. 1998. Sm-Nd isochron age of ophiolite zone in northern margin of Altun Mountains and its tectonic significance. Chinese Science Bulletion, 43(18): 1981~1984 (in Chinese with English abstract).

    • Hawkesworth C J, Turner S P, Mcdermott F, Peate D W, van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.

    • He Yongsheng, Li Shuguang, Hoefs J, Huang Fang, Liu Shengao, Hou Zhenhui. 2011. Post-collisional granitoids from the Dabie Orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815~3838.

    • Hébert R, Guilmette C, Dostal J, Bezard R, Lesage G, Bédard é, Wang C. 2014. Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo suture zone southern Tibet: Geodynamic implications. Gondwana Research, 25: 1263~1271.

    • Hong Tao, Zhai Mingguo, Xu Xingwang, Li Hang, Wu Chu, Ma Yince, Niu Lei, Ke Qiang, Wang Cheng. 2021. Tourmaline and quartz in the igneous and metamorphic rocks of the Tashisayi granitic batholith, Altyn Tagh, northwestern China: Geochemical variability constraints on metallogenesis. Lithos, 400-401: 106358.

    • Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523~548.

    • Janoušek V, Finger F, Roberts M, Fryda J, Pin C, Dolejš D. 2004. Deciphering the petrogenesis of deeply buried granites: Whole-rock geochemical constraints on the origin of largely underplated felsic granulites from the Moldanubian zone of the Bohemian massif. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 141~159.

    • Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun. 2017. An overview of studies on shoshonitic rocks. Geological Review, 63(6): 1587~1601 (in Chinese with English abstract).

    • Kaygusuz A, Siebel W, Sen C, Stair M. 2008. Petrochemistry and petrology of I-type granitoids in an arc setting: The composite Torul pluton, eastern Ponitdes, NE Turkey. International Journal of Earth Sciences, 97(4): 739~746.

    • King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371~391.

    • Kirkland C L, Smithies R H, Taylor R J M, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212-215: 397~414.

    • Li Shuguang, He Yongsheng, Wang Shuijiong. 2013. Process and mechanism of mountain-root removal of the Dabie Orogen: Constraints from geochronology and geochemistry of post-collisional igneous rocks. Chinese Science Bulletin, 58(23): 2316~2322 (in Chinese with English abstract).

    • Li Xiangmin, Ma Zhongping, Sun Jiming, Xu Xueyi, Lei Yongxiao, Wang Lishe, Duan X X. 2009. Characteristics and age study about the Yuemakeqi mafic-ultramagic rock in the souhtern Altyn fault. Acta Petrologica Sinica, 25(4): 862~872 (in Chinese with English abstract).

    • Li Xin, Liu Liang, Liao Xiaoying, Gai Yongsheng, Ma Tuo, Geng Guojian, Li Tong. 2021. Metamorphic evolution of mafic granulites in the Kuruksayi area of the South Altyn Orogen, West China: Insights from petrography, phase equilibria modeling and geochronology. Journal of Asian Earth Sciences, 213: 104766.

    • Liu Liang, Che Zicheng, Wang Yan, Luo Jinhai, Wang Jianqi, Gao Zhangjian. 1998. The evidence of Sm-Nd isochron age for the Early Paleozoic ophiolite in Mangya area, Altun Mountains. Chinese Science Bulletin, 43(8): 880~883 (in Chinese with English abstract).

    • Liu Liang, Chen Danling, Zhang Anda, Sun Yong, Wang Yan, Yang Jiaxi, Luo Jinhai. 2005. Ultrahigh pressure gneissic K-feldspar garnet clinopyroxenite in the Altun Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Science in China (Series D), 35 (2): 105~114 (in Chinese with English abstract).

    • Liu Liang, Zhang Anda, Chen Danling, Yang Jiaxi, Luo Jinhai, Wang Chao. 2007. Implications based on LA-ICP-MS zircon U-Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh, China. Earth Science Frontiers, 14(1): 98~107.

    • Liu Liang, Wang Chao, Cao Yuting, Chen Danling, Kang Lei, Yang Wenqiang, Zhu Xiaohui. 2012. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 136-139: 10~26.

    • Liu Liang, Chen Danling, Zhang Junfeng, Kang Lei, Wang Chao, Yang Wenqiang, Liao Xiaoying, Ren Yunfei, Gai Yongsheng. 2019. New evidence of an ultra-deep continental subduction to mantle depth (~300 km) in stishovite stability field. Earth Science, 44(12): 3998~4003 (in Chinese with English abstract).

    • Liu Yongshun, Yu Haifeng, Xiu Qunye. 2010. Tectonic units division and Precambrian significant geological envents in Altyn Tagh Mountain, China. Geological Bulletin of China, 29(2): 166~174 (in Chinese with English abstract).

    • Lu Songnian, Yuan Guibang. 2003. Geochronology of early Precambrian magmatic activities in Aketashitage, eastern Altyn Tagh. Acta Geosicentia Sinica, 77(1): 12~16 (in Chinese with English abstract).

    • Ma Zhongping, Li Xiangmin, Sun Jiming, Xu Xueyi, Lei Yongxiao, Wang Lishe, Duan Xingxing. 2009. Discovery of layered mafic-ultramafic intrusion in Changshagou, Altun Tagh, and its geological implication: A pilot study on its petrological and geochemical characteristics. Acta Petrologica Sinica, 25(4): 793~804 (in Chinese with English abstract).

    • Ma Tuo, Liu Liang, Gai Yongsheng, Wang Chao, Liao Xiaoying, Cao Yuting. 2021. Multistage metamorphism of eclogite in the South Altyn HP-UHP belt, Northwest China: Deep subduction and exhumation process of continental crust. Journal of Metamorphic Geology, Doi: 10. 1111/jmg. 12645.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101: 635~643.

    • Martin H, Smithies R H, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1~24.

    • Müller D, Groves D I. 1995. Potassic Igneous Rocks and Associated Gold-copper Mineralization. Berlin Heidelberg: Springer, 249~225.

    • Pearce J. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R S, ed. Andesites: Orogenic Andesites and Related Rocks. New York: John Wiley, 525~548.

    • Pearce J A, Peate D W. 1995. Tectonic implication of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251~285.

    • Qin Xiaofeng, Xia Bin, Li Jiang, Lu Jipu, Xu Hua, Zhou Fusheng, Hu Guiang, Li Qian. 2008. Geochemical characteristics and tectonic settings of the disbase dyke searms in the western segment of the southern Altun tectonic belt. Acta Petrologica et Mineralogica, 27(1): 14~22 (in Chinese with English abstract).

    • Rainonodo T, Collins A S, Hand M, Walker-Hallam A, Smithies R H, Evins P M. 2010. The anatomy of a deep intracontinental orogen. Tectonics, 29(4): TC4024.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 832 kbar: Implications for continental growth and crust mantle recyling. Hournal of Petrology, 36(4): 891~931.

    • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.

    • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184: 123~138.

    • Sajona F G, Maury R C, Bellon H, Cotton J, Defant M. 1996. High field strength elements of Pliocene-Plestocene island-arc basalts Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37: 693~726.

    • Schiano P, Clocchiatti R, Ottolini L, Sbrana A. 2004. The relationship between potassic and calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: A melt inclusion approach. Earth and Planetary Science Letters, 220: 121~137.

    • Sun Jiming, Ma Zhongping, Tang Zhuo, Li Xiangmin. 2012. LA-ICP-MS zircon dating of the Yumuquan magma mixing granite in the southern Altyn Tagh and its tectonic significance. Acta Geologica Sinica, 86(2): 247~257 (in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London, Special Publication, 42: 313~345.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29~44.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 1~328.

    • Teng Xia, Zhang Jianxin, Muller T, Mao Xiaohong, Lu Zenglong, Zhou Guisheng. 2021. Post-collisional extension of the South Altun subduction-collision belt, northern Tibetan Plateau: Insight from phase equilibria modeling and zircon geochronology of pelitic migmatites. Journal of Asian Earth Sciences, 225: 1~16.

    • Turner S, Arnaud N, Liu J. 1996. Post-collisional, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37: 45~71.

    • Wang Jian, Li Jianping, Wang Jianghai. 2003. Shoshonitic magmatism in Dali-Jianchuan area, western Yunnan: A geochemical study of arc magmatism in a post-collisional strike-slip extensional setting. Acta Petrologica Sinica, 19(1): 61~70 (in Chinese with English abstract).

    • Wu Cailai, Gao Yuanhong, Lei Min, Qin Haipeng, Liu Chunhua, Li Mingze, Frost B R, Joseph L W. 2014. Zircon SHRIMP U-Pb dating, Lu-Hf isotopic characteristics and petrogenesis of the Palaeozoic granites in Mangya area, southern Altun, NW China. Acta Petrologica Sinica, 30(8): 2297~2323 (in Chinese with English abstract).

    • Wu Cailai, Lei Min, Zhang Xin, Chen Hongjie, Wu Di, Li Tianxiao. 2016. Petrogenesis and zircon Lu-Hf isotopic characteristics of the granites from the southern Altun area, Northwest China. Geology in China, 43(6): 1853~1883 (in Chinese with English abstract).

    • Wu Cailai, Chen Hongjie, Wu Di, Ernstc W G. 2018. Paleozoic granitic magmatism and tectonic evolution of the South Altun block, NW China: Constraints from zircon U-Pb dating and Lu-Hf isotope geochemistry. Journal of Asian Earth Sciences, 160: 168~199.

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60: 1201~1219.

    • Wu Jun, Li Jiliang, Lan Chaoli. 2001. New knowleges on Hongliugou phiolite along Altun fault, NW China. Chinese Journal of Geology, (3): 342~349 (in Chinese with English abstract).

    • Xu Nan, Wu Cailai, Lei Min, Zhang Xin, Chen Hongjie, Guo Wenfeng, Zheng Kun, Gao Dong, Liu Junzhuang. 2018. Petrogenesis, zircon U-Pb chronology, and Lu-Hf isotopic characteristics of monzonitic granite from Mangya area. Earth Science, 43(S2): 60~80 (in Chinese with English abstract).

    • Xu Nan, Wu Cailai, Gao Yuanhong, Lei Min, Zheng Kun, Gao Dong. 2020. Tectonic evolution of the South Altyn, NW China: Constraints by geochemical, zircon U-Pb and Lu-Hf isotopic analysis of the Palaeozoic granitic plutons in the Mangya area. Geological Magazine, 157(7): 1121~1143.

    • Xu Nan, Wu Cailai, Zheng Kun, Gao Dong. 2020. Petrogenesis and tectonic implications of the Mangya A type alkali-feldspar granites in the South Altyn, Northwest China. Acta Geologica Sinica, 94(5): 1431~1449 (in Chinese with English abstract).

    • Xu Zhigang, Sheng Jifu, Sun Shanping. 1999. A discussion on characteristics of shoshonite rock series (association) and some problems. Geological Review, 45(Sup): 43~62 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Zhang Jianxin, Jiang Mei, Li Haibin, Cui Junwen. 1999. A comparison between the tectonic units on the two sides of the Altun sinistral strike fault and the mechanism of lithospheric shearing. Acta Geologica Sinica, 73(3): 193~205 (in Chinese with English abstract).

    • Yang Wenqiang, Liu Liang, Ding Haibo, Xiao Peixi, Cao Yuting, Kang Lei. 2012. Geochemistry, geochronology and zircon Hf isotopes of the dimunalike granite in South Altyn Tagn and its geological significance. Acta Petrologica Sinica, 28(12): 4139~4150 (in Chinese with English abstract).

    • Yu Shengyao, Li Sanzhong, Zhang Jianxin, Peng Yinbiao, Somerville Ian, Liu Yongjiang, Wang Zhengyi, Li Zhoufan, Yao Yong, Li Yan. 2019a. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP belt, NW China. Earth-Science Reviews, 191: 190~211.

    • Yu Shengyao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Li Xiyao, Peng Yinbiao, Wang Zhengyi, Sun Deyou. 2019b. TTG-adakitic-like (tonalitic-trondhjemitic) magmas resulting from partial melting of metagabbro under high-pressure condition during continental collision in the North Qaidam UHP terrane, western China. Tectonics, 38(3): 791~822.

    • Yu Shengyao, Peng Yinbiao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Gao Xiangyu, Ji Wentao, Lü Pei, Li Chuanzhi, Jiang Xingzhou, Qi Lili, Xie Weiming, Xu Liangjia. 2021. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean. Earth-Science Reviews, 215: 103547.

    • Zhai Mingguo. 2017. Granites: Leading study issue for continental evolution. Acta Petrologica Sinica, 33(5): 1369~1380 (in Chinese with English abstract).

    • Zhang Qi. 2012. Reappraisal of the origin of C-type adakitic rocks from East China. Acta Petrologica et Mineralogica, 30(4): 739~747 (in Chinese with English abstract).

    • Zhang Jianxin, Zhang Zeming, Xu Zhiqin, Yang Jingsui, Cui Junwen. 1999. The age of U-Pb and Sm-Nd for eclogite from the western segment of the Altun Tagh tectonic belt. Chinese Science Bulletin, 44(10): 1109~1112 (in Chinese with English abstract).

    • Zhang Jianxin, Lu Zenglong, Mao Xiaohong, Teng Xia, Zhou Guisheng, Wu Yawei. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74~94 (in Chinese with English abstract).

    • Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science China Earth Sciences, 39(7): 833~848 (in Chinese with English abstract).

    • 车自成, 刘良, 刘洪福. 1995. 阿尔金山地区高压变泥质岩石的发现及其产出环境. 科学通报, 40(14): 1298~1300.

    • 第五春荣, 孙勇, 林慈銮, 柳小明, 王洪亮. 2007. 宜阳地区TTG片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, 23(2): 253~262.

    • 郭金城, 徐旭明, 陈海燕, 李先, 董洪凯, 提振海. 2014. 新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义. 西北地质, 47(4): 170~177.

    • 郭召杰, 张志诚, 王建君. 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43(18): 1981~1984.

    • 贾小辉, 王晓地, 杨文强, 牛志军. 2017. 钾玄质系列岩石的研究现状. 地质论评, 63(6): 1587~1601.

    • 康磊. 2015. 南阿尔金高压-超高压变质带多期花岗质岩浆作用及其地质意义. 西北大学博士学位论文, 1~119.

    • 李曙光, 何永胜, 王水炯. 2013. 大别造山带的去山根过程与机制: 碰撞后岩浆岩的年代学和地球化学制约. 科学通报, 58(23): 2316~2322.

    • 李向民, 马中平, 孙吉明, 徐学义, 雷永孝, 王立社, 段星星. 2009. 阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究. 岩石学报, 25(4): 862~872.

    • 刘永顺, 于海峰, 修群业. 2010. 南阿尔金地区榴辉岩特征及意义. 岩石矿物学杂志, 29(2): 166~174.

    • 刘良, 车自成, 王焰, 罗金海, 王建其, 高章鉴. 1998. 阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据. 科学通报, 43(8): 880~883.

    • 刘良, 陈丹玲, 张安达, 孙勇, 王焰, 杨家喜, 罗金海. 2005. 阿尔金超高压(>7 GPa)片麻状(含)钾长石榴辉石岩-石榴子石出溶单斜辉石的证据. 中国科学(D辑), 35(2): 105~114.

    • 刘良, 陈丹玲, 章军锋, 康磊, 王超, 杨文强, 廖小莹, 任云飞, 盖永升. 2019. 陆壳超深俯冲到斯石英稳定域地幔深度(~300 km)的新证据. 地球科学, 44(12): 3998~4003.

    • 陆松年, 袁桂邦. 2003. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据. 地质学报, 77(1): 12~16.

    • 马中平, 李向民, 孙吉明, 徐学义, 雷永孝, 王立社, 段星星. 2009. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义——岩石学和地球化学初步研究. 岩石学报, 25(4): 793~804.

    • 覃小锋, 夏斌, 李江, 陆济璞, 许华, 周府生, 胡贵昂, 李乾. 2008. 阿尔金南缘构造带西段辉绿岩墙群的地球化学特征及构造环境. 岩石矿物学杂志, 27(1): 14~22.

    • 孙吉明, 马中平, 唐卓, 李向民. 2012. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义. 地质学报, 86(2): 247~257.

    • 王建, 李建平, 王江海. 2003. 滇西大理—剑川地区钾玄质岩浆作用: 后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究. 岩石学报, 19(1): 61~70.

    • 吴才来, 郜源红, 雷敏, 秦海鹏, 刘春花, 李名则, Frost B R, Joseph L W. 2014. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因. 岩石学报, 30(8): 2297~2323.

    • 吴才来, 雷敏, 张昕, 陈红杰, 吴迪, 李天啸. 2016. 南阿尔金花岗岩锆石Lu-Hf同位素特征及岩石成因. 中国地质, 43(6): 1853~1883.

    • 吴福元, 葛文春, 孙德有. 2002. 埃达克岩的概念、识别标志及其地质意义. 见: 肖庆辉, 邓晋福, 马大铨, 等主编. 花岗岩研究思维与方法. 北京: 地质出版社, 172~189.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47: 745~765.

    • 吴峻, 李继亮, 兰朝利. 2001. 阿尔金红柳沟蛇绿岩研究进展. 地质科学, (3): 342~349.

    • 徐楠, 吴才来, 雷敏, 张昕, 陈红杰, 郭文峰, 郑坤, 高栋, 刘俊壮. 2018. 茫崖二长花岗岩锆石U-Pb 年代学、Lu-Hf 同位素特征及岩石成因. 地球科学, 43(S2): 60~80.

    • 徐楠, 吴才来, 郑坤, 高栋. 2020. 南阿尔金茫崖A型花岗岩的成因及构造意义. 地质学报, 94(5): 1431~1449.

    • 徐志刚, 盛继福, 孙善平. 1999. 关于“橄榄玄粗岩系列(组合)”特征及某些问题的讨论. 地质论评, 45(增刊) : 43~62.

    • 许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73 (3): 193~205.

    • 尹安. 2001. 喜马拉雅-青藏高原造山带构造演化——显生宙亚洲大陆生长. 地球学报, 22(3): 193~230.

    • 杨文强, 刘良, 丁海波, 校培喜, 曹玉亭, 康磊. 2012. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb 年代学与Hf同位素特征及其构造地质意义. 岩石学报, 28(12): 4139~4150.

    • 翟明国. 2017. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序. 岩石学报, 33(5): 1369~1380.

    • 张旗. 2012. 关于C型埃达克岩成因的再探讨. 岩石矿物学杂志, 30(4): 739~747.

    • 张建新, 张泽明, 许志琴, 杨经绥, 崔军文. 1999. 阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据. 科学通报, 44(10): 1109~1112.

    • 张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74~94.

    • 朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I 型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学: 地球科学, 39(7): 833~848.

  • 参考文献

    • Altherr R, Holl A, Hegner E, Larger C, Kreuzer H. 2000. High potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50: 51~73.

    • Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 299: 252~255.

    • Bartoli O, Cesare B, Poli S. 2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology, 41(2): 115~118.

    • Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48: 43~55.

    • Castillo P R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51: 257~68.

    • Che Zicheng, Liu Liang, Liu Hongfu. 1995. Discovery and occurrence of high-pressure metapelitic rocks from Altyn Mountain areas. Chinese Science Bulletin, 40(14): 1298~1300 (in Chinese with English abstract).

    • Colin G M, Scott T D, Matthew F T. 2005. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 243: 581~593.

    • Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189~200.

    • Diwu Chunrong, Sun Yong, Lin Ciluan, Liu Xiaoming, Wang Hongliang. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province, China. Acta Petrologica Sinica, 23(2): 253~262 (in Chinese with English abstract).

    • Dong Jie, Wei Chunjing. 2021. Multi-stage metamorphism of the South Altyn ultrahigh-pressure metamorphic belt, West China: Insights into tectonic evolution from continental subduction to arc-backarc extension. Journal of Petrology, 62(11): egab082.

    • Frost B R, Frost C D. 2008. A geochemical classification for feldspathic igneous rocks. Journal of Petrology, 49: 1955~1969.

    • Gao Xiangyu, Yu Shengyao, Peng Yinbiao, Lü Pei, Wang Meng, Liu Yongjiang, Li Sanzhong, Jiang Xingzhou, Ji Wentao, Li Chuanzhi. 2021. Insights into OIB-like magmatism contemporaneous with oceanic subduction: Petrogenetic constraints on the Kendelong metagabbro in the North Qaidam. Lithos, 392-393: 106130.

    • Gorton B R, Schandl E S. 2000. From continents to island arcs: A geochemical index of tectonics setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38: 1065~1073.

    • Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347~359.

    • Guo Jincheng, Xu Xuming, Chen Haiyan, Li Xian, Dong Hongkai, Ti Zhenhai. 2014. Zircon U-Pb age and geological implication of ultramafic rocks in Changshagou, Altun area, Xinjiang Province. Northwestern Geology, 47(4): 170~177 (in Chinese with English abstract).

    • Guo Zhaojie, Zhang Zhicheng, Wang Jianjun. 1998. Sm-Nd isochron age of ophiolite zone in northern margin of Altun Mountains and its tectonic significance. Chinese Science Bulletion, 43(18): 1981~1984 (in Chinese with English abstract).

    • Hawkesworth C J, Turner S P, Mcdermott F, Peate D W, van Calsteren P. 1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science, 276: 551~555.

    • He Yongsheng, Li Shuguang, Hoefs J, Huang Fang, Liu Shengao, Hou Zhenhui. 2011. Post-collisional granitoids from the Dabie Orogen: New evidence for partial melting of a thickened continental crust. Geochimica et Cosmochimica Acta, 75(13): 3815~3838.

    • Hébert R, Guilmette C, Dostal J, Bezard R, Lesage G, Bédard é, Wang C. 2014. Miocene post-collisional shoshonites and their crustal xenoliths, Yarlung Zangbo suture zone southern Tibet: Geodynamic implications. Gondwana Research, 25: 1263~1271.

    • Hong Tao, Zhai Mingguo, Xu Xingwang, Li Hang, Wu Chu, Ma Yince, Niu Lei, Ke Qiang, Wang Cheng. 2021. Tourmaline and quartz in the igneous and metamorphic rocks of the Tashisayi granitic batholith, Altyn Tagh, northwestern China: Geochemical variability constraints on metallogenesis. Lithos, 400-401: 106358.

    • Irvine T N, Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8: 523~548.

    • Janoušek V, Finger F, Roberts M, Fryda J, Pin C, Dolejš D. 2004. Deciphering the petrogenesis of deeply buried granites: Whole-rock geochemical constraints on the origin of largely underplated felsic granulites from the Moldanubian zone of the Bohemian massif. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 141~159.

    • Jia Xiaohui, Wang Xiaodi, Yang Wenqiang, Niu Zhijun. 2017. An overview of studies on shoshonitic rocks. Geological Review, 63(6): 1587~1601 (in Chinese with English abstract).

    • Kaygusuz A, Siebel W, Sen C, Stair M. 2008. Petrochemistry and petrology of I-type granitoids in an arc setting: The composite Torul pluton, eastern Ponitdes, NE Turkey. International Journal of Earth Sciences, 97(4): 739~746.

    • King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371~391.

    • Kirkland C L, Smithies R H, Taylor R J M, Evans N, McDonald B. 2015. Zircon Th/U ratios in magmatic environs. Lithos, 212-215: 397~414.

    • Li Shuguang, He Yongsheng, Wang Shuijiong. 2013. Process and mechanism of mountain-root removal of the Dabie Orogen: Constraints from geochronology and geochemistry of post-collisional igneous rocks. Chinese Science Bulletin, 58(23): 2316~2322 (in Chinese with English abstract).

    • Li Xiangmin, Ma Zhongping, Sun Jiming, Xu Xueyi, Lei Yongxiao, Wang Lishe, Duan X X. 2009. Characteristics and age study about the Yuemakeqi mafic-ultramagic rock in the souhtern Altyn fault. Acta Petrologica Sinica, 25(4): 862~872 (in Chinese with English abstract).

    • Li Xin, Liu Liang, Liao Xiaoying, Gai Yongsheng, Ma Tuo, Geng Guojian, Li Tong. 2021. Metamorphic evolution of mafic granulites in the Kuruksayi area of the South Altyn Orogen, West China: Insights from petrography, phase equilibria modeling and geochronology. Journal of Asian Earth Sciences, 213: 104766.

    • Liu Liang, Che Zicheng, Wang Yan, Luo Jinhai, Wang Jianqi, Gao Zhangjian. 1998. The evidence of Sm-Nd isochron age for the Early Paleozoic ophiolite in Mangya area, Altun Mountains. Chinese Science Bulletin, 43(8): 880~883 (in Chinese with English abstract).

    • Liu Liang, Chen Danling, Zhang Anda, Sun Yong, Wang Yan, Yang Jiaxi, Luo Jinhai. 2005. Ultrahigh pressure gneissic K-feldspar garnet clinopyroxenite in the Altun Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Science in China (Series D), 35 (2): 105~114 (in Chinese with English abstract).

    • Liu Liang, Zhang Anda, Chen Danling, Yang Jiaxi, Luo Jinhai, Wang Chao. 2007. Implications based on LA-ICP-MS zircon U-Pb ages of eclogite and its country rock from Jianggalesayi area, Altyn Tagh, China. Earth Science Frontiers, 14(1): 98~107.

    • Liu Liang, Wang Chao, Cao Yuting, Chen Danling, Kang Lei, Yang Wenqiang, Zhu Xiaohui. 2012. Geochronology of multi-stage metamorphic events: Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos, 136-139: 10~26.

    • Liu Liang, Chen Danling, Zhang Junfeng, Kang Lei, Wang Chao, Yang Wenqiang, Liao Xiaoying, Ren Yunfei, Gai Yongsheng. 2019. New evidence of an ultra-deep continental subduction to mantle depth (~300 km) in stishovite stability field. Earth Science, 44(12): 3998~4003 (in Chinese with English abstract).

    • Liu Yongshun, Yu Haifeng, Xiu Qunye. 2010. Tectonic units division and Precambrian significant geological envents in Altyn Tagh Mountain, China. Geological Bulletin of China, 29(2): 166~174 (in Chinese with English abstract).

    • Lu Songnian, Yuan Guibang. 2003. Geochronology of early Precambrian magmatic activities in Aketashitage, eastern Altyn Tagh. Acta Geosicentia Sinica, 77(1): 12~16 (in Chinese with English abstract).

    • Ma Zhongping, Li Xiangmin, Sun Jiming, Xu Xueyi, Lei Yongxiao, Wang Lishe, Duan Xingxing. 2009. Discovery of layered mafic-ultramafic intrusion in Changshagou, Altun Tagh, and its geological implication: A pilot study on its petrological and geochemical characteristics. Acta Petrologica Sinica, 25(4): 793~804 (in Chinese with English abstract).

    • Ma Tuo, Liu Liang, Gai Yongsheng, Wang Chao, Liao Xiaoying, Cao Yuting. 2021. Multistage metamorphism of eclogite in the South Altyn HP-UHP belt, Northwest China: Deep subduction and exhumation process of continental crust. Journal of Metamorphic Geology, Doi: 10. 1111/jmg. 12645.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. GSA Bulletin, 101: 635~643.

    • Martin H, Smithies R H, Moyen J F, Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1~24.

    • Müller D, Groves D I. 1995. Potassic Igneous Rocks and Associated Gold-copper Mineralization. Berlin Heidelberg: Springer, 249~225.

    • Pearce J. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R S, ed. Andesites: Orogenic Andesites and Related Rocks. New York: John Wiley, 525~548.

    • Pearce J A, Peate D W. 1995. Tectonic implication of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251~285.

    • Qin Xiaofeng, Xia Bin, Li Jiang, Lu Jipu, Xu Hua, Zhou Fusheng, Hu Guiang, Li Qian. 2008. Geochemical characteristics and tectonic settings of the disbase dyke searms in the western segment of the southern Altun tectonic belt. Acta Petrologica et Mineralogica, 27(1): 14~22 (in Chinese with English abstract).

    • Rainonodo T, Collins A S, Hand M, Walker-Hallam A, Smithies R H, Evins P M. 2010. The anatomy of a deep intracontinental orogen. Tectonics, 29(4): TC4024.

    • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 832 kbar: Implications for continental growth and crust mantle recyling. Hournal of Petrology, 36(4): 891~931.

    • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.

    • Rubatto D. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184: 123~138.

    • Sajona F G, Maury R C, Bellon H, Cotton J, Defant M. 1996. High field strength elements of Pliocene-Plestocene island-arc basalts Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37: 693~726.

    • Schiano P, Clocchiatti R, Ottolini L, Sbrana A. 2004. The relationship between potassic and calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: A melt inclusion approach. Earth and Planetary Science Letters, 220: 121~137.

    • Sun Jiming, Ma Zhongping, Tang Zhuo, Li Xiangmin. 2012. LA-ICP-MS zircon dating of the Yumuquan magma mixing granite in the southern Altyn Tagh and its tectonic significance. Acta Geologica Sinica, 86(2): 247~257 (in Chinese with English abstract).

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society of London, Special Publication, 42: 313~345.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29~44.

    • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 1~328.

    • Teng Xia, Zhang Jianxin, Muller T, Mao Xiaohong, Lu Zenglong, Zhou Guisheng. 2021. Post-collisional extension of the South Altun subduction-collision belt, northern Tibetan Plateau: Insight from phase equilibria modeling and zircon geochronology of pelitic migmatites. Journal of Asian Earth Sciences, 225: 1~16.

    • Turner S, Arnaud N, Liu J. 1996. Post-collisional, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. Journal of Petrology, 37: 45~71.

    • Wang Jian, Li Jianping, Wang Jianghai. 2003. Shoshonitic magmatism in Dali-Jianchuan area, western Yunnan: A geochemical study of arc magmatism in a post-collisional strike-slip extensional setting. Acta Petrologica Sinica, 19(1): 61~70 (in Chinese with English abstract).

    • Wu Cailai, Gao Yuanhong, Lei Min, Qin Haipeng, Liu Chunhua, Li Mingze, Frost B R, Joseph L W. 2014. Zircon SHRIMP U-Pb dating, Lu-Hf isotopic characteristics and petrogenesis of the Palaeozoic granites in Mangya area, southern Altun, NW China. Acta Petrologica Sinica, 30(8): 2297~2323 (in Chinese with English abstract).

    • Wu Cailai, Lei Min, Zhang Xin, Chen Hongjie, Wu Di, Li Tianxiao. 2016. Petrogenesis and zircon Lu-Hf isotopic characteristics of the granites from the southern Altun area, Northwest China. Geology in China, 43(6): 1853~1883 (in Chinese with English abstract).

    • Wu Cailai, Chen Hongjie, Wu Di, Ernstc W G. 2018. Paleozoic granitic magmatism and tectonic evolution of the South Altun block, NW China: Constraints from zircon U-Pb dating and Lu-Hf isotope geochemistry. Journal of Asian Earth Sciences, 160: 168~199.

    • Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60: 1201~1219.

    • Wu Jun, Li Jiliang, Lan Chaoli. 2001. New knowleges on Hongliugou phiolite along Altun fault, NW China. Chinese Journal of Geology, (3): 342~349 (in Chinese with English abstract).

    • Xu Nan, Wu Cailai, Lei Min, Zhang Xin, Chen Hongjie, Guo Wenfeng, Zheng Kun, Gao Dong, Liu Junzhuang. 2018. Petrogenesis, zircon U-Pb chronology, and Lu-Hf isotopic characteristics of monzonitic granite from Mangya area. Earth Science, 43(S2): 60~80 (in Chinese with English abstract).

    • Xu Nan, Wu Cailai, Gao Yuanhong, Lei Min, Zheng Kun, Gao Dong. 2020. Tectonic evolution of the South Altyn, NW China: Constraints by geochemical, zircon U-Pb and Lu-Hf isotopic analysis of the Palaeozoic granitic plutons in the Mangya area. Geological Magazine, 157(7): 1121~1143.

    • Xu Nan, Wu Cailai, Zheng Kun, Gao Dong. 2020. Petrogenesis and tectonic implications of the Mangya A type alkali-feldspar granites in the South Altyn, Northwest China. Acta Geologica Sinica, 94(5): 1431~1449 (in Chinese with English abstract).

    • Xu Zhigang, Sheng Jifu, Sun Shanping. 1999. A discussion on characteristics of shoshonite rock series (association) and some problems. Geological Review, 45(Sup): 43~62 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Zhang Jianxin, Jiang Mei, Li Haibin, Cui Junwen. 1999. A comparison between the tectonic units on the two sides of the Altun sinistral strike fault and the mechanism of lithospheric shearing. Acta Geologica Sinica, 73(3): 193~205 (in Chinese with English abstract).

    • Yang Wenqiang, Liu Liang, Ding Haibo, Xiao Peixi, Cao Yuting, Kang Lei. 2012. Geochemistry, geochronology and zircon Hf isotopes of the dimunalike granite in South Altyn Tagn and its geological significance. Acta Petrologica Sinica, 28(12): 4139~4150 (in Chinese with English abstract).

    • Yu Shengyao, Li Sanzhong, Zhang Jianxin, Peng Yinbiao, Somerville Ian, Liu Yongjiang, Wang Zhengyi, Li Zhoufan, Yao Yong, Li Yan. 2019a. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP belt, NW China. Earth-Science Reviews, 191: 190~211.

    • Yu Shengyao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Li Xiyao, Peng Yinbiao, Wang Zhengyi, Sun Deyou. 2019b. TTG-adakitic-like (tonalitic-trondhjemitic) magmas resulting from partial melting of metagabbro under high-pressure condition during continental collision in the North Qaidam UHP terrane, western China. Tectonics, 38(3): 791~822.

    • Yu Shengyao, Peng Yinbiao, Zhang Jianxin, Li Sanzhong, Santosh M, Li Yunshuai, Liu Yongjiang, Gao Xiangyu, Ji Wentao, Lü Pei, Li Chuanzhi, Jiang Xingzhou, Qi Lili, Xie Weiming, Xu Liangjia. 2021. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean. Earth-Science Reviews, 215: 103547.

    • Zhai Mingguo. 2017. Granites: Leading study issue for continental evolution. Acta Petrologica Sinica, 33(5): 1369~1380 (in Chinese with English abstract).

    • Zhang Qi. 2012. Reappraisal of the origin of C-type adakitic rocks from East China. Acta Petrologica et Mineralogica, 30(4): 739~747 (in Chinese with English abstract).

    • Zhang Jianxin, Zhang Zeming, Xu Zhiqin, Yang Jingsui, Cui Junwen. 1999. The age of U-Pb and Sm-Nd for eclogite from the western segment of the Altun Tagh tectonic belt. Chinese Science Bulletin, 44(10): 1109~1112 (in Chinese with English abstract).

    • Zhang Jianxin, Lu Zenglong, Mao Xiaohong, Teng Xia, Zhou Guisheng, Wu Yawei. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74~94 (in Chinese with English abstract).

    • Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science China Earth Sciences, 39(7): 833~848 (in Chinese with English abstract).

    • 车自成, 刘良, 刘洪福. 1995. 阿尔金山地区高压变泥质岩石的发现及其产出环境. 科学通报, 40(14): 1298~1300.

    • 第五春荣, 孙勇, 林慈銮, 柳小明, 王洪亮. 2007. 宜阳地区TTG片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, 23(2): 253~262.

    • 郭金城, 徐旭明, 陈海燕, 李先, 董洪凯, 提振海. 2014. 新疆阿尔金长沙沟超镁铁质岩锆石U-Pb年龄及其地质意义. 西北地质, 47(4): 170~177.

    • 郭召杰, 张志诚, 王建君. 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43(18): 1981~1984.

    • 贾小辉, 王晓地, 杨文强, 牛志军. 2017. 钾玄质系列岩石的研究现状. 地质论评, 63(6): 1587~1601.

    • 康磊. 2015. 南阿尔金高压-超高压变质带多期花岗质岩浆作用及其地质意义. 西北大学博士学位论文, 1~119.

    • 李曙光, 何永胜, 王水炯. 2013. 大别造山带的去山根过程与机制: 碰撞后岩浆岩的年代学和地球化学制约. 科学通报, 58(23): 2316~2322.

    • 李向民, 马中平, 孙吉明, 徐学义, 雷永孝, 王立社, 段星星. 2009. 阿尔金断裂南缘约马克其镁铁-超镁铁岩的性质和年代学研究. 岩石学报, 25(4): 862~872.

    • 刘永顺, 于海峰, 修群业. 2010. 南阿尔金地区榴辉岩特征及意义. 岩石矿物学杂志, 29(2): 166~174.

    • 刘良, 车自成, 王焰, 罗金海, 王建其, 高章鉴. 1998. 阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据. 科学通报, 43(8): 880~883.

    • 刘良, 陈丹玲, 张安达, 孙勇, 王焰, 杨家喜, 罗金海. 2005. 阿尔金超高压(>7 GPa)片麻状(含)钾长石榴辉石岩-石榴子石出溶单斜辉石的证据. 中国科学(D辑), 35(2): 105~114.

    • 刘良, 陈丹玲, 章军锋, 康磊, 王超, 杨文强, 廖小莹, 任云飞, 盖永升. 2019. 陆壳超深俯冲到斯石英稳定域地幔深度(~300 km)的新证据. 地球科学, 44(12): 3998~4003.

    • 陆松年, 袁桂邦. 2003. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据. 地质学报, 77(1): 12~16.

    • 马中平, 李向民, 孙吉明, 徐学义, 雷永孝, 王立社, 段星星. 2009. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义——岩石学和地球化学初步研究. 岩石学报, 25(4): 793~804.

    • 覃小锋, 夏斌, 李江, 陆济璞, 许华, 周府生, 胡贵昂, 李乾. 2008. 阿尔金南缘构造带西段辉绿岩墙群的地球化学特征及构造环境. 岩石矿物学杂志, 27(1): 14~22.

    • 孙吉明, 马中平, 唐卓, 李向民. 2012. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义. 地质学报, 86(2): 247~257.

    • 王建, 李建平, 王江海. 2003. 滇西大理—剑川地区钾玄质岩浆作用: 后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究. 岩石学报, 19(1): 61~70.

    • 吴才来, 郜源红, 雷敏, 秦海鹏, 刘春花, 李名则, Frost B R, Joseph L W. 2014. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因. 岩石学报, 30(8): 2297~2323.

    • 吴才来, 雷敏, 张昕, 陈红杰, 吴迪, 李天啸. 2016. 南阿尔金花岗岩锆石Lu-Hf同位素特征及岩石成因. 中国地质, 43(6): 1853~1883.

    • 吴福元, 葛文春, 孙德有. 2002. 埃达克岩的概念、识别标志及其地质意义. 见: 肖庆辉, 邓晋福, 马大铨, 等主编. 花岗岩研究思维与方法. 北京: 地质出版社, 172~189.

    • 吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47: 745~765.

    • 吴峻, 李继亮, 兰朝利. 2001. 阿尔金红柳沟蛇绿岩研究进展. 地质科学, (3): 342~349.

    • 徐楠, 吴才来, 雷敏, 张昕, 陈红杰, 郭文峰, 郑坤, 高栋, 刘俊壮. 2018. 茫崖二长花岗岩锆石U-Pb 年代学、Lu-Hf 同位素特征及岩石成因. 地球科学, 43(S2): 60~80.

    • 徐楠, 吴才来, 郑坤, 高栋. 2020. 南阿尔金茫崖A型花岗岩的成因及构造意义. 地质学报, 94(5): 1431~1449.

    • 徐志刚, 盛继福, 孙善平. 1999. 关于“橄榄玄粗岩系列(组合)”特征及某些问题的讨论. 地质论评, 45(增刊) : 43~62.

    • 许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73 (3): 193~205.

    • 尹安. 2001. 喜马拉雅-青藏高原造山带构造演化——显生宙亚洲大陆生长. 地球学报, 22(3): 193~230.

    • 杨文强, 刘良, 丁海波, 校培喜, 曹玉亭, 康磊. 2012. 南阿尔金迪木那里克花岗岩地球化学、锆石U-Pb 年代学与Hf同位素特征及其构造地质意义. 岩石学报, 28(12): 4139~4150.

    • 翟明国. 2017. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序. 岩石学报, 33(5): 1369~1380.

    • 张旗. 2012. 关于C型埃达克岩成因的再探讨. 岩石矿物学杂志, 30(4): 739~747.

    • 张建新, 张泽明, 许志琴, 杨经绥, 崔军文. 1999. 阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据. 科学通报, 44(10): 1109~1112.

    • 张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74~94.

    • 朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异I 型花岗岩的成因: 锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束. 中国科学: 地球科学, 39(7): 833~848.