en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

韩彦超,男,1998年生。硕士研究生,资源与环境(地质工程)专业。E-mail:15032152751@163.com。

通讯作者:

董昕,女,1982年生。博士,研究员,岩石学专业。E-mail:dongxin5811935@163.com。

参考文献
Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865): 738~742.
参考文献
Bhadra S, Bhattacharya A. 2007. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491~502.
参考文献
Chakungal J, Dostal J, Grujic D, Duchêne S, Ghalley K S. 2010. Provenance of the Greater Himalayan sequence: Evidence from mafic granulites and amphibolites in NW Bhutan. Tectonophysics, 480(1-4): 198~212.
参考文献
Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.
参考文献
Corrie S L, Kohn M J, Vervoort J D. 2010. Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth and Planetary Science Letters, 289(3-4): 406~416.
参考文献
Cottle J M, Jessup M J, Newell D L, Searle M P, Law R D, Horstwood M S A. 2007. Structural insights into the early stages of exhumation along an orogen-scale detachment: The South Tibetan Detachment System, Dzakaa Chu section, Eastern Himalaya. Journal of Structural Geology, 29(11): 1781~1797.
参考文献
Cottle J M, Jessup M J, Newell D L, Horstwood M S A, Noble S R, Parrish R R, Waters D J, Searle M P. 2009. Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics, 28: TC1002.
参考文献
Cruciani G, Franceschelli M, Puxeddu M. 2017. U-, Pb-enrichment, Sr-depletion produced by water-rock interaction processes within the eclogitic oceanic crust of ordovician age in NE Sardinia. Procedia Earth and Planetary Science, 17: 508~511.
参考文献
Dale J, Holland T J B, Powell R. 2000. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology, 140(3): 353~362.
参考文献
Dong Xin, Zhang Zeming, Tian Zuolin, Niu Yaoling, Zhang Liangliang. 2022. Protoliths and metamorphism of the central Himalayan eclogites: Zircon/titanite U-Pb geochronology, Hf isotope and geochemistry. Gondwana Research, 104: 39~53.
参考文献
Faak K, Chakraborty S, Dasgupta S. 2012. Petrology and tectonic significance of metabasite slivers in the Lesser and Higher Himalayan domains of Sikkim, India. Journal of Metamorphic Geology, 30(6): 599~622.
参考文献
Goscombe B, Gray D, Hand M. 2006. Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Research, 10(3-4): 232~255.
参考文献
Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845~869.
参考文献
Grujic D, Warren C J, Wooden J L. 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 3(5): 346~366.
参考文献
Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451(1-4): 225~241.
参考文献
Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks usingimmobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341~2357.
参考文献
Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from twoperspectives. Geological Society of America Bulletin, 112(3): 324~350.
参考文献
Holland T J B, Blundy J D. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433~447.
参考文献
Holland T J B, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4): 492~501.
参考文献
Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333~383.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53(1): 27~62.
参考文献
Jamieson R A, Beaumont C, Medvedev S, Nguyen M H. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. Journal of Geophysical Research: Solid Earth, 109: B06407.
参考文献
Ji Jianqing, Zhong Daben, Song Biao, Zhu Meifei, Wen Daren. 2004. Metamorphism, geochemistry and U-Pb zircon SHRIMP geochronology of the high-pressure granulites in the central Greater Himalayas. Acta Petrologica Sinica, 20(5): 1283~1300(in Chinese with English abstract).
参考文献
Kang Dongyan, Zhang Zeming, Palin R M, Tian Zuolin, Dong Xin. 2020. Prolonged partial melting of garnet amphibolite from the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of large hot orogens. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019119.
参考文献
Kellett D A, Grujic D, Coutand I, Cottle J, Mukul M. 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics, 32(2): 252~270.
参考文献
Kellett D A, Cottle J M, Smit M. 2014. Eocene deep crust at Ama Drime, Tibet: Early evolution of the Himalayan orogen. Lithosphere, 6(4): 220~229.
参考文献
Kohn M J. 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 120(3-4): 259~273.
参考文献
Kohn M J. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42(1): 381~419.
参考文献
Kohn M J, Wieland M S, Parkinson C D, Upreti B N. 2004. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters, 228(3): 299~310.
参考文献
Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Youzhi. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35: 219~246.
参考文献
Li Qinyun, Zhang Lifei, Fu Bin, Bader T, Yu Huanglu. 2019. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in central Himalaya and their tectonic implications. Journal of Metamorphic Geology, 37(2): 203~226.
参考文献
Li Wangchao, Zhang Zeming, Xiang Hua, Gou Zhengbin, Ding Huixia. 2015. Metamorphism and anataxis of the Himalayan orogen: Petrology and geochronology of HP pelitic granulites from the Yadong area, Southern Tibet. Acta Petrologica Sinica, 31(5): 1219~1234 (in Chinese with English abstract).
参考文献
Liu Wencan, Wan Xiaojiao, Liang Dingyi, Li Guobiao, Zhou Zhiguang. 2004. New achievements and main progress in geological survey of the Gyangze and Yadong sheets. Geological Bulletin of China, 23(5-6): 444~450(in Chinese with English abstract).
参考文献
Liu Yan, Siebel W, Massonne H J, Xiao Xuchang. 2007. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet. The Journal of geology, 115(2): 215~230.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
参考文献
Lombardo B, Rolfo F. 2000. Two contrasting eclogite types in the Himalayas: Implications for the Himalayan orogeny. Journal of Geodynamics, 30(1-2): 37~60.
参考文献
Ludwig K R. 2012. Isoplot 4. 15: A geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 5.
参考文献
Messiga B, Bettini E. 1990. Reactions behaviour during kelyphite and symplectite formation: A case study of mafic granulites and eclogites from the Bohemian Massif. European Journal of Mineralogy, 2(1): 125~144.
参考文献
MorimotoN, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman J, Aoki K, Gottardi G. 1988. Nomenclature of pyroxenes. American Mineralogist, 73(9-10): 1123~1133.
参考文献
Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han Jingtai, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115: B12416.
参考文献
O'Brien P J. 2019. Eclogites and other high-pressure rocks in the Himalaya: A review. Geological Society, London, Special Publications, 483(1): 183~213.
参考文献
Pearce J A. 1996. A user's guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12: 79~113.
参考文献
Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123~138.
参考文献
Rubatto D, Scambelluri M. 2003. U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltrimassif, western Alps). Contributions to Mineralogy and Petrology, 146(3): 341~355.
参考文献
Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165(2): 349~372.
参考文献
Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2): 304~310.
参考文献
Searle M P, Simpson R L, Law R D, Parrish R R, Waters D J. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 160(3): 345~366.
参考文献
Spear F S. 2004. Fast cooling and exhumation of the Valhalla metamorphic core complex, southeastern British Columbia. International Geology Review, 46(3): 193~209.
参考文献
Spencer C, Harris R, Dorais M. 2012. The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics, 31: TC1007.
参考文献
ŠtÍpská P, Powell R. 2005. Constraining the P-T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: An example from the Bohemian Massif. Journal of Metamorphic Geology, 23(8): 725~743.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.
参考文献
Taylor S R, McLennan S M. 1985. TheContinental Crust: Its composition and Evolution. London: Blackwell Scientific Publications.
参考文献
Tinkham D K, Ghent E D. 2005. Estimating P-T conditions of garnet growth with isochemical phase diagram sections and the problem of effective bulk composition. The Canadian Mineralogist, 43(1): 35~50.
参考文献
Wang Jiamin, Lanari P, Wu Fuyuan, Zhang Jinjiang, Khanal G P, Yang Lei. 2021. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters, 558: 116760.
参考文献
Wang Yuhua, Zhang Lifei, Zhang Jinjiang, Wei Chunjing. 2017. The youngest eclogite in central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188~206.
参考文献
White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497~511.
参考文献
White R W, Powell R, Holland T J B, Johnson T E, Green E C R. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.
参考文献
Whitney D L, Evans B W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185~187.
参考文献
Winter J D. 2001. Anintroduction to igneous and metamorphic petrology. New York: Prentice Hall.
参考文献
Wu Chenguang, Zhang Lifei, Li Qinyun, Bader T, Wang Yang, Fu Bin. 2022. Tectonothermal transition from continental collision to post-collision: insights from eclogites overprinted in the ultrahigh-temperature granulite facies (Yadong region, central Himalaya). Journal of Metamorphic Geology, 40(5): 955~981.
参考文献
Wu Chunming, Pan Yusheng, Wang Kaiyi. 1999. Ref inement of the biotite-orthopyroxene geothermometer with applications. Acta Petrologica Sinica, 15(3): 463~468(in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese with English abstract).
参考文献
Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modeling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.
参考文献
Xu Zhiqin, Yang Jingsui, Liang Fenghua, Qi Xuexiang, Liu Fulai, Zeng Lingsen, Liu Dunyi, Li Haibing, Wu Cailai, Shi Rendeng, Chen Songyong. 2005. Pan-African and early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21(1): 1~21(in Chinese with English abstract).
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
参考文献
Zeng Lingsen, Liu Jing, Gao Lie, Xie Kejia, Wen Li. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104~112.
参考文献
Zhang Guibin, Wang Jiaxing, Webb A A G, Zhang Lifei, Liu Shuaiqi, Fu Bin, Wu Chenguang, Wang Shuzhen. 2022. The protoliths of central Himalayan eclogites. Geological Society of America Bulletin, 134(7-8): 1949~1966.
参考文献
Zhang Xiangxin, Liu Wencan, Zhou Zhiguang, Zhao Xingguo, Liang Dingyi. 2005. The foundation of the Precambrian Yadong rock group and its characteristics in the Yadong area, Southern Tibet. Geoscience, 19(3): 341~347(in Chinese with English abstract).
参考文献
Zhang Zeming, Xiang Hua, Dong Xin, Li Wangchao, Ding Huixia, Gou Zhengbin, Tian Zuolin. 2017. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Research, 41: 173~187.
参考文献
Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zuolin, Kong Dongyan, Jiang Yuanyuan, Qin Shengkai, Li Wentan. 2022. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104: 4~22.
参考文献
Zhang Zhi, Li Guangming, Zhang Linkui, Cao Huawen, Yang Chao, Huang Yong, Liang Wei, Fu Jiangang, Dong Suiliang, Xia Xiangbiao, Dai Zuowen. 2021. Neoproterozoic bimodal magmatism in the eastern Himalayan orogen: Tectonic implications for the Rodinia supercontinent evolution. Gondwana Research, 94: 87~105.
参考文献
Zheng Yongfei, Wu Fuyuan. 2018. The timing of continental collision between India and Asia. Science Bulletin, 63(24): 1649~1654.
参考文献
季建清, 钟大赉, 宋彪, 朱美妃, 温大任. 2004. 喜马拉雅中段高压麻粒岩变质作用, 地球化学与年代学. 岩石学报, 20(5): 1283~1300.
参考文献
李旺超, 张泽明, 向华, 苟正彬, 丁慧霞. 2015. 喜马拉雅造山带核部的变质作用与部分熔融: 亚东地区高压泥质麻粒岩的岩石学与年代学研究. 岩石学报, 31(5): 1219~1234.
参考文献
刘文灿, 万晓樵, 梁定益, 李国彪, 周志广. 2004. 江孜县幅、亚东县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 444~450.
参考文献
吴春明, 潘裕生, 王凯怡. 1999. 黑云母-斜方辉石温度计的重新标度及其应用. 岩石学报, 15(3): 463~468.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21(1): 1~21.
参考文献
张祥信, 刘文灿, 周志广, 赵兴国, 梁定益. 2005. 藏南亚东地区前寒武纪亚东岩群的建立及其特征. 现代地质, 19(3): 341~347.
目录contents

    摘要

    喜马拉雅造山带中段出露的基性麻粒岩是理解印度大陆前喜马拉雅期演化历史和新生代碰撞造山作用的理想研究对象。本文对亚东多庆湖地区的石榴角闪岩进行了岩石学、全岩主微量元素地球化学和锆石U-Pb年代学研究,揭示了其原岩类型和新生代的变质作用过程。石榴角闪岩的原岩很可能为新元古代(~890 Ma)的玄武岩,具有E-MORB型岩石的地球化学特征。石榴角闪岩具有三期矿物组合:① 进变质矿物组合可能为石榴子石+角闪石+斜长石+钛铁矿+石英,即石榴子石核部及其中包裹体;② 峰期矿物组合为石榴子石+角闪石+斜长石+黑云母+石英,即石榴子石边部和基质矿物;③ 退变质矿物组合为角闪石+斜方辉石+斜长石+黑云母+石英,包括退变质域和石榴子石边部的后成合晶矿物。矿物温压计和相平衡模拟表明,石榴角闪岩进变质、峰期和退变质条件分别为609~621℃和0.59~0.65 GPa、805~845℃和0.91~1.04 GPa、825~840℃和0.61~0.68 GPa,经历了峰期高压麻粒岩相的变质作用。锆石U-Pb年代学研究表明,石榴角闪岩的峰期变质时间为34.8~20.3 Ma,退变质时间为18.1~17.7 Ma,可能经历了一个较长期的部分熔融过程。本文研究认为,亚东石榴角闪岩是印度板块向欧亚板块长期俯冲、地壳增厚成因的基性麻粒岩,原岩可能与Rodinia超大陆拼合相关;其以加热埋藏、近等温降压为特征的顺时针P-T轨迹指示了喜马拉雅造山带中段的大喜马拉雅岩系上部构造层位经历了长期持续的地壳增厚和高温麻粒岩相变质作用,以及早中新世(21~17 Ma)相对快速的减压抬升和随后(17 Ma之后)相对缓慢的折返至地表的演化过程。

    Abstract

    The basic granulites in the central Himalaya provide insights into the tectonic evolutionary history of both the pre-Himalayan of the Indian continent and the Himalayan collisional orogeny in the Cenozoic. Here, we conduct a petrological, bulk rock major-trace geochemical and zircon U-Pb geochronological study on the garnet amphibolites in the Duoqinghu of Yadong area, revealing their protoliths and Cenozoic metamorphism. The protoliths of the garnet amphibolites are probably the Neoproterozoic (~890 Ma) basalt with E-MORB geochemical characteristics. The garnet amphibolites have three-stage mineral assemblages. The early prograde metamorphic mineral assemblage is garnet+amphibole+plagioclase+ilmenite+quartz, which includes the core of garnet and inclusions within the core of garnet porphyroclast. The peak metamorphic mineral assemblage is garnet+amphibole+plagioclase+biotite+quartz, including the garnet rim and matrix minerals. The retrograde metamorphic mineral assemblage is amphibole+orthopyroxene+plagioclase+biotite+quartz, which is represented by the symplectitic minerals surrounding the garnet rim and retrograde domain. Conventional thermobarometry and phase equilibria modeling show that the prograde, peak and retrograde metamorphic conditions of garnet amphibolites are 609~621℃ and 0.59~0.65 GPa, 805~845℃ and 0.91~1.04 GPa, and 825~840℃ and 0.61~0.68 GPa, indicating that the garnet amphibolites have experienced peak high pressure and high temperature granulite-facies metamorphism. The zircon U-Pb geochronology shows that the peak and retrograde metamorphic ages of garnet amphibolites are 34.8~20.3 Ma and 18.1~17.7 Ma, indicating a prolonged melting episode. These results show that the garnet amphibolites are products formed during the long-lived subduction and crustal thickening of the Indian continental crust beneath the Euro-Asian plate, and their protoliths may be related to the Rodinia supercontinent convergence event. The clockwise P-T path of garnet amphibolites characterized by the burial heating and then near isothermal decompression indicates that the upper structural level of the Greater Himalayan Sequence (GHS) in the central Himalaya experienced long-lived crustal thickening and high-temperature granulite-facies metamorphism. Moreover, the upper structural level of the GHS uplifted at a relatively rapid rate (3.0~4.5 mm/a) in the early Miocene at ca. 21~17 Ma, but a relatively slower rate (1.1~1.3 mm/a) after 17 Ma.

  • 印度和欧亚板块~55 Ma的碰撞造山作用完成了青藏高原的最终拼合,形成了宏伟的喜马拉雅造山带(Hodges,2000; Yin An et al.,2000; Zheng Yongfei et al.,2018)。喜马拉雅造山带核部的大喜马拉雅岩系是印度大陆地壳经历高级变质作用折返到地表的产物,记录了喜马拉雅造山作用的关键信息。作为大喜马拉雅岩系的重要组成部分,变质基性岩富含的镁铁成分致使其熔融温度和能干性高于长英质和泥质围岩,剥蚀抬升过程中经历的变形、重结晶比其围岩要少得多(O'Brien,2019),很可能保存了相对更多喜马拉雅造山作用早期的演化历史。因此,喜马拉雅造山带中段的榴辉岩、基性麻粒岩受到了广泛关注,也取得了丰硕的研究成果(例如,Lombardo et al.,2000; 季建清等,2004; Chakungal et al.,2010; Corrie et al.,2010; Grujic et al.,2011; Faak et al.,2012; Wang Yuhua et al.,2017; Li Qingyun et al.,2019; O'Brien,2019; Wang Jiamin et al.,2021; Zhang Guibin et al.,2022; Dong Xin et al.,2022; Wu Chenguang et al.,2022)。

  • 然而,相对变泥质岩,喜马拉雅造山带中段亚东地区变质基性岩的研究依然很有限,而且已有的研究结果存在较大差异。刘文灿等(2004)最早报道了亚东地区大喜马拉雅岩系中包体状产出的基性麻粒岩、石榴斜长角闪岩和石榴角闪岩,并获得其三期Ar-Ar同位素年龄,但并未解释其确切的构造热事件意义。季建清等(2004)根据矿物温压计获得亚东基性麻粒岩的峰期P-T条件为780~850℃和1.2~1.5 GPa,峰期变质年龄未知;随后减压冷却至730~760℃和0.4~0.6 GPa,退变质年龄为17 Ma;顺时针P-T轨迹以加热埋藏进变质(推测)、冷却减压退变质为特征。Wu Chenguang et al.(2022)最近的研究报道了亚东地区的退变质榴辉岩,其压力峰期变质条件为750~770℃和2.1 GPa,峰期变质年龄为17.7~16.8 Ma;顺时针P-T轨迹记录了早期进变质升温升压,此后为降压升温(950~1000℃),接着等压降温的退变质过程。因此,亚东地区变质基性岩的峰期变质条件、峰期变质年龄和退变质过程以及是否所有变质基性岩都经历了榴辉岩相变质作用均存在争议。此外,这些变质基性岩的原岩年龄、构造背景和物质源区等原岩性质也并未解决,确定其原岩性质有助于我们对印度大陆早期演化历史的理解。

  • 因此,本文对喜马拉雅造山带中段亚东多庆湖地区大喜马拉雅岩系中的石榴角闪岩开展了岩石学、全岩主微量元素地球化学、锆石U-Pb年代学和相平衡模拟研究,揭示了其原岩类型和变质作用P-T轨迹。结合前人研究成果,探讨了印度大陆前喜马拉雅的演化历史和新生代喜马拉雅造山作用的构造演化过程。

  • 1 区域地质背景

  • 喜马拉雅造山带位于青藏高原南缘,沿近东西向弧形展布约2500 km。新生代(~55 Ma)印度与欧亚板块的汇聚碰撞形成了世界上最大且仍在活动的碰撞造山带(Hodges,2000; 许志琴等,2005; Najman et al.,2010; Zheng Yongfei et al.,2018)。喜马拉雅造山带自北向南可分为特提斯喜马拉雅岩系(THS)、大喜马拉雅岩系(GHS)和小喜马拉雅岩系(LHS)三个构造单元,它们之间分别被藏南拆离断层系(STDS)和主中央逆冲断裂(MCT)隔开(图1a;Yin An et al.,2000; Guillot et al.,2008; Kohn,2014)。

  • 特提斯喜马拉雅岩系由未变质到低角闪岩相变质的新元古代—中生代沉积岩系组成,中部发育有一系列片麻岩穹隆和淡色花岗岩,其北界为新特提斯洋残留的印度-雅鲁藏布江缝合带,南界为一系列剪切带和断层组成的藏南拆离断层系(Cottle et al.,2007)。大喜马拉雅岩系是喜马拉雅造山带的核心部分,由元古宙—早古生代沉积岩和岩浆岩组成,普遍经历麻粒岩相、甚至榴辉岩相变质作用,并发生了不同程度的部分熔融和混合岩化(Searle et al.,2003; Goscombe et al.,2006; Kohn,2008)。位于主中央逆冲断裂之下的小喜马拉雅岩系主要由经历绿片岩相到角闪岩相变质作用的元古宙沉积岩系组成,夹杂少量同时代岩浆岩(图1a)。

  • 亚东地区位于喜马拉雅造山带中部,出露特提斯喜马拉雅岩系、大喜马拉雅岩系和淡色花岗岩(图1b)。特提斯喜马拉雅岩系包括寒武系至古近系的全部地层(刘文灿等,2004)。1∶25万江孜县幅、亚东县幅(中国地质大学(北京)地质调查研究院,2005)将大喜马拉雅岩系根据岩石组合、变质及变形特征分为上部的聂拉木岩群和下部的亚东岩群,聂拉木岩群主要由片麻岩、片岩、变粒岩、大理岩和少量石英岩组成,亚东岩群主要由片麻岩、混合岩和变粒岩组成。亚东岩群中的片麻岩、混合岩内部可见少量辉石岩、角闪岩和基性麻粒岩包体(张祥信等,2005)。其中,泥质岩普遍经历了高温麻粒岩相变质和部分熔融作用(例如,李旺超等,2015; Zhang Zeming et al.,2017)。刘文灿等(2004)通过Ar-Ar同位素定年结果认为,变质基性岩分别遭受了新生代44~32 Ma、15~11 Ma的变质和构造事件的影响。

  • 本文研究的样品采自多庆湖东南方向约20 km处(图1b),该地区出露岩石为大喜马拉雅岩系中的含石榴子石黑云斜长片麻岩、含石榴子石黑云二长片麻岩以及少量石榴斜长角闪岩、石榴角闪岩。石榴斜长角闪岩和石榴角闪岩多呈包体状、似层状产出于片麻岩内部(图2a),长30~80 cm不等。片麻岩围岩和变质基性岩均发生较强烈的变形,变质基性岩中可见少量熔体。

  • 2 测试方法

  • 全岩主、微量元素化学分析在国家地质实验测试中心完成。主量元素分析采用X射线荧光光谱法(XRF),仪器型号为Rigaku 3080,分析精度优于0.5%,其中FeO含量采用滴定法测定。微量元素采用ICP-MS方法测得,当元素含量高于10-6时,分析精度优于5%,当元素含量低于10-6时,分析精度优于10%。

  • 矿物化学成分分析在中国地质科学院地质研究所利用日本电子JEOL公司生产的JEOL.JXA 8900电子探针显微分析仪完成,加速电压15 kV,电子电流20 nA,峰值和背景的采集时间均为10 s。电子束斑直径一般设定为5 μm,石榴子石核部矿物包裹体采用1 μm束斑进行测试。采用天然和合成标准矿物以及ZAF法校正。

  • 图1 喜马拉雅造山带(a,据Yin An et al.,2000; Guillot et al.,2008; Kohn,2014修改)和亚东地区(b,据张祥信等,2005修改)地质简图

  • Fig.1 Sketch geological maps of the Himalaya orogeny (a, modified after Yin An et al., 2000; Guillot et al., 2008; Kohn, 2014) and Yadong area (b, modified after Zhang Xiangxin et al., 2005)

  • STDS—藏南拆离断层系;MCT—主中央逆冲断裂;MBT—主边界逆冲断裂;MFT—主前缘逆冲断裂

  • STDS—South Tibet Detachment Sequence; MCT—Main Central Thrust; MBT—Main Boundary Thrust; MFT—Main Frontal Thrust

  • 锆石阴极发光成像和薄片的背散射图像在中国地质科学院地质研究所集成矿物分析仪实验室拍摄,仪器型号为TIMA3-X LMH。锆石U-Pb定年测试在武汉上谱分析科技有限责任公司实验室完成,测试仪器为LA-ICP-MS,激光剥蚀系统为GeolasPro 2005。本次所用激光剥蚀束斑包括32 μm(样品TT20-43-7)和24 μm(样品TT20-43-8、TT20-44-1),频率5 Hz,分析仪器输出的分析数据包含15 s左右的空白背景区间和40~50 s左右的信号区间,仪器相关操作流程可见Liu Yongsheng et al.(2010)。本次测试采用锆石标样91500进行U-Th-Pb同位素含量校正,NIST610为外标进行锆石微量元素含量校正。分析数据的后期离线处理工作(U-Pb同位素比值计算、年龄计算和微量元素含量计算)均利用ICPMSDataCal9.0软件完成。U-Pb年龄谐和图和加权平均年龄图的绘制利用Isoplot 4.15完成(Ludwig,2012)。

  • 图2 亚东多庆湖地区石榴角闪岩的野外照片(a)及显微照片(b~h)

  • Fig.2 Outcrop photos (a) and photomicrographs (b~h) of the garnet amphibolites from the Yadong Duoqinghu area

  • (a)—包体状、似层状石榴角闪岩;(b)—石榴子石为变斑晶,石榴子石边部被石英、斜长石替代;(c~d)—样品TT20-43-8中石榴子石核部的斜长石、石英、角闪石和钛铁矿包裹体;(e)—样品TT20-43-8基质中的角闪石、斜长石、黑云母和石英;(f)—样品TT20-44-1基质中的角闪石、斜长石、黑云母和石英;(g)—样品TT20-44-1的石榴子石边部被黑云母、角闪石、斜方辉石、长石、石英组成的后成合晶替代;(h)—样品TT20-44-1退变质域中的黑云母、角闪石、斜方辉石、斜长石和石英,可能代表石榴子石变斑晶完全退变质分解

  • (a) —garnet amphibolites show lense and stratoid forms; (b) —garnet is porphyroblast, and the garnet rim is replaced by plagioclase and quartz; (c~d) —garnet porphyroblast core of sample TT20-43-8 includes amphibole, plagioclase, ilmenite, and quartz; (e) —the matrix of sample TT20-43-8 consists of amphibole, plagioclase, biotite, and quartz; (f) —the matrix of sample TT20-44-1 consists of amphibole, plagioclase, biotite, and quartz; (g) —within sample TT20-44-1, garnet porphyroblast edge is replaced by the symplectitic minerals of biotite, amphibole, orthopyroxene, plagioclase, and quartz; (h) —garnet porphyroblast is completely replaced by an aggregate of biotite, amphibole, orthopyroxene, plagioclase and quartz within sample TT20-44-1

  • 3 岩相学和矿物化学

  • 3.1 岩相学

  • 本次研究选择了三件代表性样品TT20-43-7、TT20-43-8和TT20-44-1,岩性均为石榴角闪岩。石榴角闪岩具斑状变晶结构,由石榴子石(Grt)、角闪石(Amp)、斜长石(Pl)、石英(Qz)、黑云母(Bt)、斜方辉石(Opx)以及少量副矿物锆石、钛铁矿(Ilm)、磷灰石和榍石组成(Whitney et al.,2010)。

  • 样品TT20-43-8中变斑晶为石榴子石(5%),粒径5~8 mm,核部含有角闪石、斜长石、石英和钛铁矿包裹体,边部呈不规则港湾状,被石英、长石替代。基质由角闪石(~60%)、斜长石(~15%)、石英(~15%)和少量黑云母组成(图2b~e)。样品TT20-43-8可见两期矿物组合:① 进变质M1矿物组合为石榴子石核部及其所含的矿物包裹体,即Grt+Amp+Pl+Ilm+Qz;② 峰期M2矿物组合为石榴子石边部和基质矿物,即Grt+Amp+Bt+Pl+Qz。样品TT20-44-1中变斑晶为石榴子石(2%),粒径3~4 mm,半自形晶,核部仅含石英包裹体,边缘被斜方辉石、斜长石、角闪石、黑云母和石英组成的后成合晶替代(图2g)。基质主要由角闪石(~65%)、斜长石(~15%)、石英(~10%)和黑云母(~5%)组成(图2f)。此外,基质中保留退变质域(图2h),由角闪石、斜方辉石、黑云母、斜长石和少量石英组成,推测为石榴子石完全退变质的产物。根据显微镜下结构特征,样品TT20-44-1具有两期矿物组合:① 峰期M2矿物组合为Grt+Amp+Bt+Pl+Qz,即石榴子石变斑晶边部和基质斜长石、角闪石、黑云母和石英;② 退变质M3矿物组合为Amp+Opx+Bt+Pl+Qz,包括石榴子石变斑晶边缘和退变质域中共生的斜方辉石、角闪石、斜长石、黑云母和石英(图2g、h),退变质反应为Grt+Qz→Pl+Opx。

  • 综上所述,多庆湖地区的石榴角闪岩保存了三期矿物组合,早期进变质矿物组合M1为石榴子石核部及核部包裹体矿物,即Grt+Amp+Pl+Ilm+Qz;峰期矿物组合M2为石榴子石边部和基质矿物,即Grt+Amp+Bt+Pl+Qz;晚期退变质矿物组合M3为石榴子石边缘和退变质域中共生的后成合晶矿物,即Amp+Opx+Bt+Pl+Qz,说明岩石可能经历了麻粒岩相变质作用。

  • 3.2 矿物化学

  • 本文对样品TT20-43-8和TT20-44-1中的代表性矿物石榴子石、黑云母、斜方辉石、斜长石和角闪石开展了电子探针分析工作,分析结果见附表1~5。

  • 石榴子石:样品TT20-43-8中的石榴子石具有较高的铁铝榴石(Alm=0.478~0.548)和钙铝榴石(Gro=0.173~0.240)组分,以及较低的镁铝榴石(Pyr=0.150~0.192)和锰铝榴石(Spe=0.043~0.066)组分(附表1)。石榴子石不具有明显的成分环带,但是从核部到边部,铁铝榴石和镁铝榴石组分略有增高,钙铝榴石和锰铝榴石组分略有降低。样品TT20-44-1中的石榴子石富含铁铝榴石(Alm=0.447~0.501)和镁铝榴石(Pyr=0.214~0.233)组分,具有较低的钙铝榴石(Gro=0.144~0.172)和锰铝榴石(Spe=0.066~0.074)组分(附表1)。从核部到边部,铁铝榴石组分略有降低,钙铝榴石和镁铝榴石组分略有增高,锰铝榴石组分几乎不变。

  • 表1 亚东多庆湖地区石榴角闪岩的全岩主量元素(%)和微量元素(×10-6)分析结果

  • Table1 Whole rock major (%) and trace (×10-6) element composition of the garnet amphibolites from the Yadong Duoqinghu area

  • 注: Mg#=(MgO/40.3044)/(MgO/40.3044+(FeO+Fe2O3×0.8998)/71.844)×100;∑REE为稀土元素含量的总和; Eu/Eu*=2×Eu/(Sm+Gd);(La/Yb)N为球粒陨石标准化之后的La/Yb比值(标准化数值引自Taylor et al.,1985)。

  • 图3 亚东多庆湖地区石榴角闪岩的黑云母(a)和角闪石(b,据Leake et al.,1997)矿物成分分类图

  • Fig.3 Classification diagrams of biotite (a) and amphibole (b, modified after Leake et al., 1997) of the garnet amphibolites from the Yadong Duoqinghu area

  • 黑云母:样品TT20-43-8基质中的黑云母具有较高的TiO2含量(3.68%~3.74%)和Fe2+/(Mg+Fe2+)值(0.35~0.37)(附表2,图3a)。样品TT20-44-1基质中的黑云母具有较低的Fe2+/(Mg+Fe2+)值(0.27~0.28)和TiO2含量(3.06%~3.24%);石榴子石边缘和退变质域后成合晶中的黑云母则具有较高的Fe2+/(Mg+Fe2+)值(0.32~0.34)和TiO2含量(3.79%~4.08%)(附表2,图3a)。

  • 斜方辉石:样品TT20-44-1的石榴子石边部和退变质域后成合晶(图2g、h)中可见少量斜方辉石,依据其端元组分En(0.491~0.508)、Fs(0.459~0.488)、Wo(0.027~0.034)归类为紫苏辉石(Morimoto et al.,1988),其Al原子数(a.p.f.u)为0.076~0.079(附表3)。

  • 斜长石:样品TT20-43-8中石榴子石核部斜长石包裹体的牌号An=0.425~0.448,为中长石;基质斜长石的An=0.432~0.597,为中长石和拉长石。样品TT20-44-1基质中的斜长石为中长石和拉长石(An=0.415~0.548);后成合晶中的斜长石(An=0.622~0.826)为拉长石和倍长石(附表4)。

  • 角闪石:样品TT20-43-8中石榴子石核部的角闪石包裹体以低TiO2(0.57%~0.75%)和Al2O3(7.08%~7.53%)为特征,为镁闪石;基质中角闪石则含有较高的TiO2(1.41%~1.86%)和Al2O3(10.0%~12.87%)含量,为镁闪石和镁钙闪石(图3b,Leake et al.,1997)。样品TT20-44-1的基质角闪石同样具有高TiO2(0.9%~1.2%)和Al2O3(9.8%~12.35%)含量,为镁闪石和镁钙闪石;后成合晶中的角闪石则以低TiO2(0.74%)和Al2O3(9.6%)(附表5)为特征,为镁闪石和阳起石(图3b; Leake et al.,1997)。

  • 4 全岩主量和微量元素地球化学

  • 多庆湖地区石榴角闪岩的全岩主、微量元素分析结果见表1。样品的SiO2含量为48.19%~50.05%,MgO含量为6.80%~9.16%,FeO含量为10.87%~8.89%,Mg#值分别为49.3、50.4和62.2。样品TT20-43-7和TT20-43-8的TiO2含量相对较高,为2.27%和2.19%;样品TT20-44-1的TiO2含量为0.77%。在火山岩不活动元素分类图解上,三个样品均落于钙碱性玄武岩区域(图4a、b)。

  • 稀土元素球粒陨石标准化配分模式图中,样品TT20-43-7和TT20-43-8的稀土元素总量(∑REE)相对较高(∑REE=109.99×10-6~113.96×10-6),轻稀土元素相较于重稀土元素略富集,(La/Yb)N分别为2.08和2.13,配分曲线较为平坦相似于E-MORB岩石;样品TT20-44-1的稀土元素总量较低(∑REE=35.33×10-6),轻稀土元素相对重稀土元素亏损,(La/Yb)N为0.64。原始地幔标准化微量元素标准化图解上,石榴角闪岩均具有大离子亲石元素Rb、Ba和U元素的正异常,Sr的负异常(图5b)。

  • 5 锆石U-Pb定年

  • 本文对TT20-43-7、TT20-43-8、TT20-44-1三个样品均开展了LA-ICP-MS锆石U-Pb定年分析工作,分析结果见附表6、7。

  • 图4 亚东多庆湖地区石榴角闪岩的Zr/Ti-Nb/Y图解(a,据Pearce,1996)和Th-Co图解(b,据Hastie et al.,2007

  • Fig.4 Zr/Ti vs. Nb/Y diagram (a, after Pearce, 1996) and Th vs. Co diagram (b, after Hastie et al., 2007) of the garnet amphibolites from the Yadong Duoqinghu area

  • 东喜马拉雅~826 Ma的钙碱性岛弧玄武岩样品数据引自Zhang Zhi et al.(2021)

  • The data of~826 Ma calc-alkaline island arc basic rocks in the Eastern Himalaya are from Zhang Zhi et al. (2021)

  • 图5 亚东多庆湖地区石榴角闪岩的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素配分图(b)

  • Fig.5 Chondrite-normalized REE (a) and primitive mantle-normalized trace element (b) patterns of the garnet amphibolites from the Yadong Duoqinghu area

  • 球粒陨石标准值引自Taylor et al.(1985);原始地幔、OIB、E-MORB和N-MORB标准值引自Sun et al.(1989);东喜马拉雅~826 Ma的钙碱性岛弧玄武岩样品数据引自Zhang Zhi et al.(2021)

  • Chondrite normalization values are from Taylor et al. (1985) ; primitive mantle, OIB, E-MORB, and N-MORB normalization values are from Sun et al. (1989) ; the data of~826 Ma calc-alkaline island arc basic rocks in the eastern Himalaya are from Zhang Zhi et al. (2021)

  • 样品TT20-43-7中的锆石呈半自形—自形长柱状,粒径80~120 μm,阴极发光图像显示锆石无环带结构(图6)。锆石206Pb/238U年龄范围为23.9~20.3 Ma,加权平均年龄为21.3±0.6 Ma(图7a),具有较低的Th/U比值(0.03~0.09,附表6)。稀土元素球粒陨石标准化配分模式表现为轻稀土元素亏损、重稀土元素(HREE)富集,具弱的Eu元素负异常(图7b),为典型的变质成因锆石(Rubatto,2002; 吴元保等,2004)。

  • 样品TT20-43-8中的锆石多呈半自形柱状,粒径50~110 μm。阴极发光图像显示这些锆石分为两类:一类具有核-边结构,由发育振荡环带的核部和无环带的边部组成;一类具弱分带结构(图6)。具核-边结构的锆石核部以及弱分带锆石获得了774.8~66.9 Ma分散的206Pb/238U年龄,上交点年龄为893±91 Ma,其稀土元素配分表现为明显的HREE富集、Ce正异常和Eu负异常(图7d红线),以及较高的Th/U比值(0.15~2.02),为岩浆成因锆石(Rubatto et al.,2003)。锆石边部206Pb/238U年龄为28.9~20.9 Ma(图7c插图中绿色分析点,由于锆石边部较窄分析数据有限),其稀土元素配分表现为HREE平坦富集,以及较低的Th/U比值(0.01~0.05),为变质成因锆石。

  • 图6 亚东多庆湖地区石榴角闪岩中典型锆石阴极发光图像

  • Fig.6 Cathodoluminescence images of representative zircons from the garnet amphibolites in the Yadong Duoqinghu area

  • 图中白色圆圈代表锆石U-Pb定年测试位置,数字代表定年结果(单位为Ma)

  • The white circles represent zircon U-Pb dating plots and the numbers represent ages (Ma)

  • 样品TT20-44-1中的锆石多呈半自形柱状,少量呈浑圆状,粒径自50~120 μm不等。阴极发光图像显示这些锆石可以分为两类:一类具有核-边结构,由发育振荡环带的核部和无环带的边部组成;一类呈自形柱状,无环带结构(图6)。具核-边结构的锆石核部获得了自872.2~169.2 Ma的206Pb/238U年龄,上交点年龄为884±25 Ma,其稀土元素球粒陨石标准化配分模式表现为明显的HREE富集、Ce正异常和Eu负异常(图7f红线),以及高的Th/U比值(0.10~1.65),为岩浆成因锆石(Rubatto et al.,2003)。自形无环带锆石获得的206Pb/238U年龄为34.8~17.7 Ma,Th/U比值(0.01~0.07)较低,为变质成因锆石。自形无环带锆石根据稀土元素特征,可分为两组:① 年龄为34.8~23.0 Ma:锆石具相对平坦型HREE配分模式、弱Eu负异常至Eu正异常和低于岩浆锆石核部的HREE含量(图7e绿线);② 年龄为18.1~17.7 Ma:锆石HREE配分模式呈陡峭式上升,具强Eu负异常和高于岩浆锆石核部的HREE含量(图7e蓝线)。

  • 6 变质作用P-T条件

  • 6.1 传统温压计

  • 对于样品TT20-43-8的进变质矿物组合,选择石榴子石核部的角闪石和斜长石包裹体成分,利用角闪石-斜长石-石英(HPQ)压力计(Bhadra et al.,2007)和角闪石-斜长石(HP)温度计(Holland et al.,1994)估算进变质P-T条件。对于样品TT20-43-8和TT20-44-1的峰期矿物组合,选择石榴子石边部、基质角闪石和基质斜长石成分,利用角闪石-斜长石-石英压力计、石榴子石-角闪石-斜长石-石英(GHPQ)压力计(Dale et al.,2000)和角闪石-斜长石温度计估算峰期P-T条件,其平均误差分别为±0.2 GPa、±0.11 GPa和±40℃(Holland et al.,1994; Dale et al.,2000; Bhadra et al.,2007)。样品TT20-44-1的退变质矿物组合由石榴子石边缘和退变质域中的斜方辉石、黑云母、角闪石、斜长石和石英组成。因此,选择石榴子石边缘与退变质域中的斜方辉石、黑云母和角闪石成分,利用斜方辉石-黑云母温度计(吴春明等,1999)、角闪石AlTotal压力计(Schmidt,1992)估算退变质P-T条件。计算结果见表2。传统温压计计算结果得到,多庆湖地区石榴角闪岩的进变质条件可能为609~621℃和0.59~0.65 GPa,峰期变质条件为706~819℃和0.79~1.16 GPa,以及退变质条件为708~825℃和0.49 GPa,说明岩石经历了峰期高压麻粒岩相的变质作用。

  • 6.2 相平衡模拟

  • 相平衡模拟使用GeoPS v3.0.1软件完成(Xiang Hua et al.,2021),内部一致性热力学数据库采用Holland et al.(2011)的HP62,选定的成分体系为Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O+-TiO2-O(NCKFMASHTO)。涉及的矿物固熔体模型如下:钛铁矿(White et al.,2000);长石(Holland et al.,2003);绿帘石(Holland et al.,2011);石榴子石、黑云母和斜方辉石(White et al.,2014);角闪石、普通辉石和熔体(Green et al.,2016)。流体组分假定为纯H2O。采用样品TT20-44-1实测全岩成分(Na2O=1.48%,CaO=5.48%,K2O=2.9%,FeO=8.89%,MgO=9.16%,Al2O3=16.55%,SiO2=50.05%,H2O+=1.58%,TiO2=0.77%,O=0.113%)进行模拟,计算的P-T条件区间为600~900℃和0.3~1.2 GPa。

  • 图7 亚东多庆湖地区石榴角闪岩中锆石的U-Pb谐和图和稀土元素配分曲线(球粒陨石标准值据Taylor et al.,1985

  • Fig.7 Zircon U-Pb age concordia diagrams and chondrite-normalized REE patterns of the garnet amphibolites from the Yadong Duoqinghu area (chondrite values after Taylor et al., 1985)

  • 图中红色曲线代表岩浆锆石的年龄和稀土配分曲线,绿色曲线代表34.8~20.3 Ma的具弱负Eu异常变质锆石的年龄和稀土配分曲线,蓝色曲线代表18.1~17.7 Ma具强负Eu异常变质锆石的年龄和稀土配分曲线

  • The red curves are ages and REE patterns of magmatic zircons, green curves are ages and REE patterns of the 34.8~20.3 Ma metamorphic zircons with a weak negative Eu anomaly, and blue curves represent ages and REE patterns of the 18.1~17.7 Ma metamorphic zircons with an obvious negative Eu anomaly

  • 表2 亚东多庆湖地区石榴角闪岩不同变质阶段矿物组合P-T计算结果

  • Table2 P-T estimates for the different metamorphic stages of the garnet amphibolites from the Yadong Duoqinghu area

  • P-T视剖面图中,角闪石稳定在所计算的整个P-T区域内;黑云母在温度大于880℃和1.05~1.2 GPa条件下消失;斜长石在820~900℃和1.05~1.2 GPa的高温高压区域消失,其他区域稳定存在;石榴子石稳定在压力大于0.5~0.8 GPa的中高压区域;斜方辉石在600~765℃和0.3~0.5 GPa、600~880℃和0.6~1.2 GPa区域消失,其他区域稳定存在。体系固相线位于740~800℃之间,熔体含量随温度升高而增加。结合野外和显微镜下观察,多庆湖地区石榴角闪岩的峰期矿物组合Amp+Bt+Grt+Melt+Pl+Qz稳定在P-T视剖面图785~845℃和0.79~1.14 GPa的区域内;退变质矿物组合Amp+Bt+Melt+Opx+Pl+Qz稳定在770~860℃和0.3~0.82 GPa的区域(图8)。

  • 本文利用石榴子石的端元组分XAlmXGro,限定岩石峰期的变质P-T条件(Tinkham et al.,2005)。如上文所述,石榴子石变斑晶的成分较为均匀,这可能是高温变质作用下其成分发生扩散均一化的结果(Kohn et al.,2004; Spencer et al.,2012)。石榴子石斑晶的铁铝榴石组分(XAlm)为0.447~0.501,钙铝榴石组分(XGro)为0.144~0.172,在视剖面图中它们交叉给出的峰期变质P-T条件为805~845℃和0.91~1.04 GPa。石榴子石边缘和退变质域中的后成合晶,记录了岩石的退变质条件,其斜方辉石的Al原子数(0.076~0.079 a.p.f.u)与黑云母的Ti原子数(0.187~0.233 a.p.f.u)等值线交叉获得退变质P-T条件为825~840℃和0.61~0.68 GPa。

  • 7 讨论

  • 7.1 多庆湖地区石榴角闪岩的原岩

  • 多庆湖地区石榴角闪岩中锆石的核部具有岩浆锆石的典型特征,包括阴极发光图像(CL)中显示的振荡环带、较高的Th/U比值(>0.1)和明显的Eu负异常(图6、7,附表6、7)。因此,锆石获得的上交点年龄893±91 Ma和884±25 Ma可能代表了石榴角闪岩的原岩结晶年龄。新元古代的基性岩浆作用在喜马拉雅造山带中东段的大喜马拉雅结晶岩系中已有部分报道,如亚东、定日和定结地区榴辉岩的原岩(846~802 Ma,Wu Chenguang et al.,2022;931~840 Ma,Li Qingyun et al.,2019;982~910 Ma,Kellett et al.,2014;971 Ma,Liu Yan et al.,2007;986.6 Ma,Cottle et al.,2009;1017.5 Ma,Wang Yuhua et al.,2017),以及错那地区~826 Ma的钙碱性玄武岩(Zhang Zhi et al.,2021),结合这些,多庆湖地区石榴角闪岩的原岩很可能为新元古代的基性岩浆岩。

  • 由于岩石发生了高级变质作用,本文通过相对不活动元素,例如高场强元素和过渡族元素讨论石榴角闪岩的原岩类型。石榴角闪岩具有相对较低的SiO2含量(48.19%~50.05%),在Zr/Ti-Nb/Y火山岩分类图解上落入玄武岩区域,相对中等的Th含量和较高的Co含量表明石榴角闪岩的原岩可能为钙碱性玄武岩(图4)。此外,石榴角闪岩的原岩具略分异的轻、重稀土元素配分模式((La/Yb)N=0.64~2.13),无明显Nb、Ta元素负异常(图5),活动元素Rb、Ba、U的正异常和Sr的负异常可能与变质流体有关(Cruciani et al.,2017),因此其原岩具有E-MORB型岩石的地球化学特征。

  • 本文样品与东喜马拉雅错那地区的新元古代(~826 Ma)钙碱性玄武岩具有相似的形成年龄和地球化学特征(图4、5;Zhang Zhi et al.,2021)。Zhang Zhi et al.(2021)认为这些新元古代玄武岩形成在成熟的弧后盆地,是Rodinia超大陆西北缘安第斯型造山作用的产物。但是,Wang Yuhua et al.(2017)认为定日地区高压榴辉岩的原岩(~1000 Ma玄武岩)为大陆溢流拉斑玄武岩,形成在拉张环境。由于有限的数据量,本文认为亚东多庆湖地区的石榴角闪岩的原岩很可能为形成在新元古代(~890 Ma),具有E-MORB型地球化学特征的玄武岩,可能与Rodinia超大陆的拼合事件有关,其原岩的形成背景还有待进一步的深入研究。

  • 图8 亚东多庆湖地区石榴角闪岩的P-T视剖面图

  • Fig.8 P-T pseudosections of the garnet amphibolites from the Yadong Duoqinghu area

  • 蓝色虚线代表石榴子石Alm组分等值线,红色虚线代表石榴子石Gro组分等值线,黄色虚线代表斜方辉石的Al原子数(a.p.f.u)等值线,棕色虚线代表黑云母的Ti原子数(a.p.f.u)等值线;红色实线代表固相线;图中粉色区域代表峰期和退变质P-T条件范围;矿物缩写: Amp—角闪石; Ath—直闪石; Bt—黑云母; Grt—石榴子石; Ilm—钛铁矿; Kfs—钾长石; Ky—蓝晶石; Opx—斜方辉石; Pl—斜长石; Qz—石英; Rt—金红石; Melt—熔体

  • The blue dotted lines represent the Alm component isopleths of garnet, the red dotted lines represent the Gro component isopleths of garnet, the yellow dotted lines represent the Al atom number (a.p.f.u) isopleths of orthopyroxene, and the brown dotted lines represent the Ti atom number (a.p.f.u) isopleths of biotite; the red thick solid line represents the solidus of the system; the pink areas in the diagram represent the peak and retrograde metamorphic P-T conditions. Mineral abbreviations: Amp—amphibole; Ath—anthophyllite; Bt—Biotite; Grt—garnet; Ilm—ilmentite; Kfs—K-feldspar; Ky—kyanite; Opx—orthopyroxene; Pl—plagioclase; Qz—quartz; Rt—rutile; Melt—melt

  • 7.2 多庆湖地区石榴角闪岩的变质作用P-T条件

  • 如上所述,亚东地区变质基性岩的变质条件和变质P-T轨迹依然存在较大差异,如峰期为高压麻粒岩相,顺时针P-T轨迹以减压降温退变质为特征的基性麻粒岩(季建清等,2004)和峰期为榴辉岩相,顺时针P-T轨迹以降压升温为特征的退变榴辉岩(Wu Chenguang et al.,2022)。这些不同的结论阻碍了我们对新生代喜马拉雅造山作用的认识。

  • 基于岩相学观察,通过传统温压计和相平衡模拟,本文计算了亚东多庆湖地区石榴角闪岩变质作用各个阶段的温压条件,获得了一条顺时针的P-T轨迹。进变质阶段M1的矿物组合为Grt(核部)+Amp+Pl+Ilm+Qz,传统温压计得出温压条件为609~621℃和0.59~0.65 GPa;峰期阶段M2的矿物组合为Grt(边部)+Amp+Bt+Pl+Qz,本文采用相平衡模拟结果限定的峰期变质温压条件为805~845℃和0.91~1.04 GPa;退变质阶段M3的矿物组合为Amp+Opx+Bt+Pl+Qz,相平衡模拟结果限定出退变质温压条件为825~840℃和0.61~0.68 GPa。Spear et al.(2004)的研究表明,含有石榴子石和熔体的混合岩中常见的熔体-固体逆反应可以改变矿物成分,从而可能导致传统温压计获得虚假的退变质条件。因此,本文采用相平衡模拟中多种矿物的成分等值线结果来限定的石榴角闪岩的峰期M2和退变质M3阶段的温压条件,可能更接近岩石的真实变质条件。此外,相平衡模拟结果与岩相学观察一致,石榴子石边部斜方辉石和斜长石组成的后成合晶,通常是等温乃至升温减压退变质过程中石榴子石分解的产物(Messiga et al.,1990; ŠtÍpská et al.,2005)。因此,亚东多庆湖地区石榴角闪岩记录的P-T轨迹以进变质升压升温、峰期达到高压麻粒岩相,接着近等温降压至中压麻粒岩相为特征(图9)。

  • 尽管亚东地区和喜马拉雅造山带中段其他地区有麻粒岩相退变榴辉岩的报道(图9),但是本次研究的样品并没有榴辉岩相相关矿物组合和结构的记录,结合野外露头较低的熔体含量,本次研究认为位于大喜马拉雅上部亚东多庆湖地区的石榴角闪岩经历的峰期变质作用为高压麻粒岩相。相似的,位于研究区西南部乃堆拉地区(图1b)的泥质麻粒岩同样经历了峰期高压-高温麻粒岩相的变质作用(825~845℃和~1.2 GPa),区别在于由于岩性差异乃堆拉地区的变泥质岩发生了强烈的部分熔融,产生了大量的熔体(体积含量为20%~30 %,Zhang Zeming et al.,2017)。因此,喜马拉雅中段GHS中的基性岩可能并没有经历相同的榴辉岩相变质作用,GHS中的岩石普遍经历的是高压麻粒岩相变质作用。

  • 图9 喜马拉雅造山带中段变质基性岩的P-T轨迹示意图(变质相边界引自Winter,2001

  • Fig.9 Integrated P-T paths for metabasic rocks in the central Himalaya (the metamorphic facies boundaries are modified after Winter, 2001)

  • 7.3 多庆湖地区石榴角闪岩的变质作用时间

  • 年代学研究表明多庆湖地区石榴角闪岩中锆石的边部和部分锆石是变质成因锆石。这些锆石无环带,具有较低的Th/U比值(< 0.1)(Corfu et al.,2003; Hoskin et al.,2003; Rubatto et al.,2003; Rubatto et al.,2013)。根据稀土元素配分模式特征,获得的变质年龄可以分为两组:① 34.8~20.3 Ma:锆石具有低于岩浆锆石核部的HREE含量,弱负Eu异常至正Eu异常(图7b、d、e中绿线);② 18.1~17.7 Ma:锆石的MREE-HREE含量高于岩浆锆石核部,具有强负Eu异常(图7e中蓝线)。

  • Rubatto et al.(2013)研究表明熔体存在过程中锆石的HREE和Eu异常分别与寄主岩石中石榴子石和长石的生长或分解有关,此外在高温持续熔融过程中,锆石的溶解和生长可以随时发生,因此获得的锆石年龄具有分散的特点。多庆湖地区石榴角闪岩的显微观察表明,石榴子石边部被斜方辉石和斜长石组成的后成和晶替代,这一观察与相平衡模拟结果一致,即岩石发生了减压退变质过程反应Grt+Qz→Opx+Pl。此时,体系中赋存HREE的石榴子石分解,导致与其共生的锆石HREE含量增加;相似地,随着温度的降低,熔体发生结晶作用,长石大量生长,导致共生的锆石具有明显的Eu负异常,因此第二组年龄18.1~17.7 Ma代表了退变质减压时间。在减压之前的进变质和峰期阶段,由于石榴子石的稳定存在,占据了体系中主要的HREE,与之共生的锆石具有较平坦且低的HREE特征,获得的第一组年龄34.8~20.3 Ma代表了石榴角闪岩的近峰期年龄。因此,亚东多庆湖地区石榴角闪岩的高压高温麻粒岩相峰期变质时间发生在34.8~20.3 Ma,中压麻粒岩相退变质时间为18.1~17.7 Ma。

  • 本文所获得的晚始新世—早中新世(34.8~17.7 Ma)的持续变质年龄在喜马拉雅造山带中部亚东及临近地区的GHS中也有部分报道,如刘文灿等(2004)在亚东变质基性岩(包体)中获得的44~11 Ma的变质年龄、Zhang Zeming et al.(2017)在亚东泥质麻粒岩中获得的31~20 Ma的变质年龄,以及亚东邻近锡金地区泥质麻粒岩31~17 Ma的变质年龄(Rubatto et al.,2013)、珠穆朗玛峰东部榴辉岩30~15 Ma的变质年龄(Wang Jiamin et al.,2021)和定结地区榴辉岩38~13 Ma的变质年龄(Kellett et al.,2014)。因此,喜马拉雅造山带中段GHS中的各类岩石均经历了晚始新世至早中新世长期持续的高温麻粒岩相变质作用和部分熔融过程。

  • 7.4 构造意义

  • 喜马拉雅造山带的变质基性岩以西构造结的超高压榴辉岩、中段的麻粒岩化榴辉岩(例如,Wang Yuhua et al.,2017; Li Qingyun et al.,2019; Dong Xin et al.,2022)和东构造结的高压基性麻粒岩(例如,Kang Dongyan et al.,2020; Zhang Zeming et al.,2022)为代表。此前的研究表明,印度板块的快速陡俯冲形成了西构造结的超高压榴辉岩(例如,O'Brien,2019),中段麻粒岩化榴辉岩的形成则与印度板块缓俯冲(例如,Corrie et al.,2010; Li Qingyun et al.,2019)或印度与欧亚板块碰撞导致的地壳增厚有关(例如,Grujic et al.,2011; Kellett et al.,2014)。

  • 本文认为亚东多庆湖地区的石榴角闪岩是地壳碰撞增厚的产物。主要证据如下:① 地球化学和年代学研究表明(图4、5、7),喜马拉雅造山带中段GHS中变质基性岩的原岩更可能是印度大陆边缘元古宙或古生代的玄武岩(本次研究;Wang Yuhua et al.,2017; Li Qingyun et al.,2019; Zhang Zhi et al.,2021; Zhang Guibin et al.,2022; Dong Xin et al.,2022),远离缝合带(约200 km);② 石榴角闪岩的进变质作用以地壳增厚的升温升压为特征,其峰期高压麻粒岩相变质作用发生在约35 Ma,最大埋深约为35 km,并在中下地壳停留大于17 Ma,与研究区泥质麻粒岩研究结果近一致(Zhang Zeming et al.,2017);③ 石榴角闪岩与研究区南部乃堆拉地区地壳增厚成因的泥质麻粒岩具有相似的峰期变质作用条件和顺时针P-T轨迹(Zhang Zeming et al.,2017),表明石榴角闪岩可能是原位产出的,它们共同经历了地壳增厚过程中的高压麻粒岩相变质作用。此外,喜马拉雅造山带中段增厚地壳深熔成因的渐新世—中新世淡色花岗岩同样表明印度和欧亚大陆碰撞期间发生了长期的地壳加厚作用(Cottle et al.,20072009; Zeng Lingsen et al.,2009)。因此,石榴角闪岩是印度板块向欧亚板块持续俯冲过程中,地壳增厚作用的产物,其代表的喜马拉雅造山带中段GHS的上部构造层位经历了长期持续的地壳增厚和高温麻粒岩相变质作用。

  • 亚东多庆湖地区石榴角闪岩以近等温降压为特征的退变质P-T轨迹指示了喜马拉雅造山带中段GHS的折返过程。石榴角闪岩自峰期(M2,34.8~20.3 Ma)的805~845℃和0.91~1.04 GPa(地热梯度约为25℃/km);到退变质(M3,18.1~17.7 Ma)的825~840℃和0.61~0.68 GPa(地热梯度约为40℃/km),记录了快速的中下地壳折返阶段。该阶段的折返机制可能与GHS加厚部分熔融中下地壳的流变行为,以及大喜马拉雅岩系北、南两侧的STDS、MCT活动有关(例如,Beaumont et al.,2001; Searle et al.,2003; Jamieson et al.,2004)。根据计算获得的变质温压条件、变质时间可以估算:石榴角闪岩在20.3~17.7 Ma的折返速率为3.0~4.5 mm/a(0.1 GPa相当于3.3 km,折返速率为折返高度/折返时间),17.7 Ma之后折返速率为1.1~1.3 mm/a,折返速率大幅降低。因而,在17 Ma左右喜马拉雅造山带中段的构造机制可能再次发生了转变。Kellett et al.(2013,2014)认为GHS中下地壳的晚期抬升与早中新世起始(17 Ma)的东西向伸展有关,区内亚东-谷露裂谷的活动可能导致了石榴角闪岩的最终剥露(Wu Chenguang et al.,2022)。因此,喜马拉雅造山带中段GHS的上部构造层位在早中新世较快速(折返速率3.0~4.5 mm/a)减压抬升至中地壳,此后(约17 Ma)从中地壳缓慢(折返速率1.1~1.3 mm/a)折返至地表,折返速率的降低可能与喜马拉雅造山带构造体制由南北向转换为东西向伸展相关。

  • 8 结论

  • (1)亚东多庆湖地区石榴角闪岩的原岩为印度大陆起源、形成在~890 Ma的钙碱性玄武岩,具有E-MORB型岩石的地球化学特征。这期岩浆作用可能与Rodinia超大陆的形成有关。

  • (2)亚东多庆湖地区石榴角闪岩的变质作用演化经历了三个阶段:早期M1角闪岩相进变质条件为609~621℃和0.59~0.65 GPa;峰期M2高压麻粒岩相变质条件为805~845℃和0.91~1.04 GPa,变质时间为34.8~20.3 Ma;晚期M3中压麻粒岩相退变质条件为825~840℃和0.61~0.68 GPa,变质时间为18.1~17.7 Ma。石榴角闪岩记录的顺时针P-T轨迹以进变质加热埋藏、峰期达到高压麻粒岩相,此后近等温降压为特征。

  • (3)石榴角闪岩为新生代印度板块俯冲、地壳增厚作用形成的基性麻粒岩;其以加热埋藏、近等温降压为特征的P-T轨迹指示了喜马拉雅造山带中段的GHS上部构造层位经历的长期持续的地壳增厚和高温麻粒岩相变质作用,以及早中新世(21~17 Ma)相对快速(3.0~4.5 mm/a)的减压抬升和约17 Ma之后相对缓慢(1.1~1.3 mm/a)的折返至地表的演化过程。

  • 致谢:感谢评审专家的意见和建议、中国地质科学院地质研究所毛小红博士在实验中的帮助、中国地质大学(北京)博士研究生李文坛在野外样品采集过程中的帮助!

  • 附件:本文附件(附表1~7)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202308095?st=article_issue。

  • 注释

  • ❶ 中国地质大学(北京)地质调查研究院.2005.1/25万江孜县幅(H45C004004)、亚东县幅(G45C001004)(中国部分)区域地质调查报告.

  • 参考文献

    • Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865): 738~742.

    • Bhadra S, Bhattacharya A. 2007. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491~502.

    • Chakungal J, Dostal J, Grujic D, Duchêne S, Ghalley K S. 2010. Provenance of the Greater Himalayan sequence: Evidence from mafic granulites and amphibolites in NW Bhutan. Tectonophysics, 480(1-4): 198~212.

    • Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Corrie S L, Kohn M J, Vervoort J D. 2010. Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth and Planetary Science Letters, 289(3-4): 406~416.

    • Cottle J M, Jessup M J, Newell D L, Searle M P, Law R D, Horstwood M S A. 2007. Structural insights into the early stages of exhumation along an orogen-scale detachment: The South Tibetan Detachment System, Dzakaa Chu section, Eastern Himalaya. Journal of Structural Geology, 29(11): 1781~1797.

    • Cottle J M, Jessup M J, Newell D L, Horstwood M S A, Noble S R, Parrish R R, Waters D J, Searle M P. 2009. Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics, 28: TC1002.

    • Cruciani G, Franceschelli M, Puxeddu M. 2017. U-, Pb-enrichment, Sr-depletion produced by water-rock interaction processes within the eclogitic oceanic crust of ordovician age in NE Sardinia. Procedia Earth and Planetary Science, 17: 508~511.

    • Dale J, Holland T J B, Powell R. 2000. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology, 140(3): 353~362.

    • Dong Xin, Zhang Zeming, Tian Zuolin, Niu Yaoling, Zhang Liangliang. 2022. Protoliths and metamorphism of the central Himalayan eclogites: Zircon/titanite U-Pb geochronology, Hf isotope and geochemistry. Gondwana Research, 104: 39~53.

    • Faak K, Chakraborty S, Dasgupta S. 2012. Petrology and tectonic significance of metabasite slivers in the Lesser and Higher Himalayan domains of Sikkim, India. Journal of Metamorphic Geology, 30(6): 599~622.

    • Goscombe B, Gray D, Hand M. 2006. Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Research, 10(3-4): 232~255.

    • Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845~869.

    • Grujic D, Warren C J, Wooden J L. 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 3(5): 346~366.

    • Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451(1-4): 225~241.

    • Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks usingimmobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341~2357.

    • Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from twoperspectives. Geological Society of America Bulletin, 112(3): 324~350.

    • Holland T J B, Blundy J D. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433~447.

    • Holland T J B, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4): 492~501.

    • Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333~383.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53(1): 27~62.

    • Jamieson R A, Beaumont C, Medvedev S, Nguyen M H. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. Journal of Geophysical Research: Solid Earth, 109: B06407.

    • Ji Jianqing, Zhong Daben, Song Biao, Zhu Meifei, Wen Daren. 2004. Metamorphism, geochemistry and U-Pb zircon SHRIMP geochronology of the high-pressure granulites in the central Greater Himalayas. Acta Petrologica Sinica, 20(5): 1283~1300(in Chinese with English abstract).

    • Kang Dongyan, Zhang Zeming, Palin R M, Tian Zuolin, Dong Xin. 2020. Prolonged partial melting of garnet amphibolite from the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of large hot orogens. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019119.

    • Kellett D A, Grujic D, Coutand I, Cottle J, Mukul M. 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics, 32(2): 252~270.

    • Kellett D A, Cottle J M, Smit M. 2014. Eocene deep crust at Ama Drime, Tibet: Early evolution of the Himalayan orogen. Lithosphere, 6(4): 220~229.

    • Kohn M J. 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 120(3-4): 259~273.

    • Kohn M J. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42(1): 381~419.

    • Kohn M J, Wieland M S, Parkinson C D, Upreti B N. 2004. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters, 228(3): 299~310.

    • Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Youzhi. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35: 219~246.

    • Li Qinyun, Zhang Lifei, Fu Bin, Bader T, Yu Huanglu. 2019. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in central Himalaya and their tectonic implications. Journal of Metamorphic Geology, 37(2): 203~226.

    • Li Wangchao, Zhang Zeming, Xiang Hua, Gou Zhengbin, Ding Huixia. 2015. Metamorphism and anataxis of the Himalayan orogen: Petrology and geochronology of HP pelitic granulites from the Yadong area, Southern Tibet. Acta Petrologica Sinica, 31(5): 1219~1234 (in Chinese with English abstract).

    • Liu Wencan, Wan Xiaojiao, Liang Dingyi, Li Guobiao, Zhou Zhiguang. 2004. New achievements and main progress in geological survey of the Gyangze and Yadong sheets. Geological Bulletin of China, 23(5-6): 444~450(in Chinese with English abstract).

    • Liu Yan, Siebel W, Massonne H J, Xiao Xuchang. 2007. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet. The Journal of geology, 115(2): 215~230.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Lombardo B, Rolfo F. 2000. Two contrasting eclogite types in the Himalayas: Implications for the Himalayan orogeny. Journal of Geodynamics, 30(1-2): 37~60.

    • Ludwig K R. 2012. Isoplot 4. 15: A geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 5.

    • Messiga B, Bettini E. 1990. Reactions behaviour during kelyphite and symplectite formation: A case study of mafic granulites and eclogites from the Bohemian Massif. European Journal of Mineralogy, 2(1): 125~144.

    • MorimotoN, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman J, Aoki K, Gottardi G. 1988. Nomenclature of pyroxenes. American Mineralogist, 73(9-10): 1123~1133.

    • Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han Jingtai, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115: B12416.

    • O'Brien P J. 2019. Eclogites and other high-pressure rocks in the Himalaya: A review. Geological Society, London, Special Publications, 483(1): 183~213.

    • Pearce J A. 1996. A user's guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12: 79~113.

    • Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123~138.

    • Rubatto D, Scambelluri M. 2003. U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltrimassif, western Alps). Contributions to Mineralogy and Petrology, 146(3): 341~355.

    • Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165(2): 349~372.

    • Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2): 304~310.

    • Searle M P, Simpson R L, Law R D, Parrish R R, Waters D J. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 160(3): 345~366.

    • Spear F S. 2004. Fast cooling and exhumation of the Valhalla metamorphic core complex, southeastern British Columbia. International Geology Review, 46(3): 193~209.

    • Spencer C, Harris R, Dorais M. 2012. The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics, 31: TC1007.

    • ŠtÍpská P, Powell R. 2005. Constraining the P-T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: An example from the Bohemian Massif. Journal of Metamorphic Geology, 23(8): 725~743.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Taylor S R, McLennan S M. 1985. TheContinental Crust: Its composition and Evolution. London: Blackwell Scientific Publications.

    • Tinkham D K, Ghent E D. 2005. Estimating P-T conditions of garnet growth with isochemical phase diagram sections and the problem of effective bulk composition. The Canadian Mineralogist, 43(1): 35~50.

    • Wang Jiamin, Lanari P, Wu Fuyuan, Zhang Jinjiang, Khanal G P, Yang Lei. 2021. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters, 558: 116760.

    • Wang Yuhua, Zhang Lifei, Zhang Jinjiang, Wei Chunjing. 2017. The youngest eclogite in central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188~206.

    • White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497~511.

    • White R W, Powell R, Holland T J B, Johnson T E, Green E C R. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.

    • Whitney D L, Evans B W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185~187.

    • Winter J D. 2001. Anintroduction to igneous and metamorphic petrology. New York: Prentice Hall.

    • Wu Chenguang, Zhang Lifei, Li Qinyun, Bader T, Wang Yang, Fu Bin. 2022. Tectonothermal transition from continental collision to post-collision: insights from eclogites overprinted in the ultrahigh-temperature granulite facies (Yadong region, central Himalaya). Journal of Metamorphic Geology, 40(5): 955~981.

    • Wu Chunming, Pan Yusheng, Wang Kaiyi. 1999. Ref inement of the biotite-orthopyroxene geothermometer with applications. Acta Petrologica Sinica, 15(3): 463~468(in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese with English abstract).

    • Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modeling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.

    • Xu Zhiqin, Yang Jingsui, Liang Fenghua, Qi Xuexiang, Liu Fulai, Zeng Lingsen, Liu Dunyi, Li Haibing, Wu Cailai, Shi Rendeng, Chen Songyong. 2005. Pan-African and early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21(1): 1~21(in Chinese with English abstract).

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Zeng Lingsen, Liu Jing, Gao Lie, Xie Kejia, Wen Li. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104~112.

    • Zhang Guibin, Wang Jiaxing, Webb A A G, Zhang Lifei, Liu Shuaiqi, Fu Bin, Wu Chenguang, Wang Shuzhen. 2022. The protoliths of central Himalayan eclogites. Geological Society of America Bulletin, 134(7-8): 1949~1966.

    • Zhang Xiangxin, Liu Wencan, Zhou Zhiguang, Zhao Xingguo, Liang Dingyi. 2005. The foundation of the Precambrian Yadong rock group and its characteristics in the Yadong area, Southern Tibet. Geoscience, 19(3): 341~347(in Chinese with English abstract).

    • Zhang Zeming, Xiang Hua, Dong Xin, Li Wangchao, Ding Huixia, Gou Zhengbin, Tian Zuolin. 2017. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Research, 41: 173~187.

    • Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zuolin, Kong Dongyan, Jiang Yuanyuan, Qin Shengkai, Li Wentan. 2022. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104: 4~22.

    • Zhang Zhi, Li Guangming, Zhang Linkui, Cao Huawen, Yang Chao, Huang Yong, Liang Wei, Fu Jiangang, Dong Suiliang, Xia Xiangbiao, Dai Zuowen. 2021. Neoproterozoic bimodal magmatism in the eastern Himalayan orogen: Tectonic implications for the Rodinia supercontinent evolution. Gondwana Research, 94: 87~105.

    • Zheng Yongfei, Wu Fuyuan. 2018. The timing of continental collision between India and Asia. Science Bulletin, 63(24): 1649~1654.

    • 季建清, 钟大赉, 宋彪, 朱美妃, 温大任. 2004. 喜马拉雅中段高压麻粒岩变质作用, 地球化学与年代学. 岩石学报, 20(5): 1283~1300.

    • 李旺超, 张泽明, 向华, 苟正彬, 丁慧霞. 2015. 喜马拉雅造山带核部的变质作用与部分熔融: 亚东地区高压泥质麻粒岩的岩石学与年代学研究. 岩石学报, 31(5): 1219~1234.

    • 刘文灿, 万晓樵, 梁定益, 李国彪, 周志广. 2004. 江孜县幅、亚东县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 444~450.

    • 吴春明, 潘裕生, 王凯怡. 1999. 黑云母-斜方辉石温度计的重新标度及其应用. 岩石学报, 15(3): 463~468.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21(1): 1~21.

    • 张祥信, 刘文灿, 周志广, 赵兴国, 梁定益. 2005. 藏南亚东地区前寒武纪亚东岩群的建立及其特征. 现代地质, 19(3): 341~347.

  • 参考文献

    • Beaumont C, Jamieson R A, Nguyen M H, Lee B. 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, 414(6865): 738~742.

    • Bhadra S, Bhattacharya A. 2007. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491~502.

    • Chakungal J, Dostal J, Grujic D, Duchêne S, Ghalley K S. 2010. Provenance of the Greater Himalayan sequence: Evidence from mafic granulites and amphibolites in NW Bhutan. Tectonophysics, 480(1-4): 198~212.

    • Corfu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1): 469~500.

    • Corrie S L, Kohn M J, Vervoort J D. 2010. Young eclogite from the Greater Himalayan Sequence, Arun Valley, eastern Nepal: P-T-t path and tectonic implications. Earth and Planetary Science Letters, 289(3-4): 406~416.

    • Cottle J M, Jessup M J, Newell D L, Searle M P, Law R D, Horstwood M S A. 2007. Structural insights into the early stages of exhumation along an orogen-scale detachment: The South Tibetan Detachment System, Dzakaa Chu section, Eastern Himalaya. Journal of Structural Geology, 29(11): 1781~1797.

    • Cottle J M, Jessup M J, Newell D L, Horstwood M S A, Noble S R, Parrish R R, Waters D J, Searle M P. 2009. Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics, 28: TC1002.

    • Cruciani G, Franceschelli M, Puxeddu M. 2017. U-, Pb-enrichment, Sr-depletion produced by water-rock interaction processes within the eclogitic oceanic crust of ordovician age in NE Sardinia. Procedia Earth and Planetary Science, 17: 508~511.

    • Dale J, Holland T J B, Powell R. 2000. Hornblende-garnet-plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology, 140(3): 353~362.

    • Dong Xin, Zhang Zeming, Tian Zuolin, Niu Yaoling, Zhang Liangliang. 2022. Protoliths and metamorphism of the central Himalayan eclogites: Zircon/titanite U-Pb geochronology, Hf isotope and geochemistry. Gondwana Research, 104: 39~53.

    • Faak K, Chakraborty S, Dasgupta S. 2012. Petrology and tectonic significance of metabasite slivers in the Lesser and Higher Himalayan domains of Sikkim, India. Journal of Metamorphic Geology, 30(6): 599~622.

    • Goscombe B, Gray D, Hand M. 2006. Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Research, 10(3-4): 232~255.

    • Green E C R, White R W, Diener J F A, Powell R, Holland T J B, Palin R M. 2016. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9): 845~869.

    • Grujic D, Warren C J, Wooden J L. 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 3(5): 346~366.

    • Guillot S, Mahéo G, de Sigoyer J, Hattori K H, Pêcher A. 2008. Tethyan and Indian subduction viewed from the Himalayan high-to ultrahigh-pressure metamorphic rocks. Tectonophysics, 451(1-4): 225~241.

    • Hastie A R, Kerr A C, Pearce J A, Mitchell S F. 2007. Classification of altered volcanic island arc rocks usingimmobile trace elements: Development of the Th-Co discrimination diagram. Journal of Petrology, 48(12): 2341~2357.

    • Hodges K V. 2000. Tectonics of the Himalaya and southern Tibet from twoperspectives. Geological Society of America Bulletin, 112(3): 324~350.

    • Holland T J B, Blundy J D. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433~447.

    • Holland T J B, Powell R. 2003. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology, 145(4): 492~501.

    • Holland T J B, Powell R. 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29(3): 333~383.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in mineralogy and geochemistry, 53(1): 27~62.

    • Jamieson R A, Beaumont C, Medvedev S, Nguyen M H. 2004. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. Journal of Geophysical Research: Solid Earth, 109: B06407.

    • Ji Jianqing, Zhong Daben, Song Biao, Zhu Meifei, Wen Daren. 2004. Metamorphism, geochemistry and U-Pb zircon SHRIMP geochronology of the high-pressure granulites in the central Greater Himalayas. Acta Petrologica Sinica, 20(5): 1283~1300(in Chinese with English abstract).

    • Kang Dongyan, Zhang Zeming, Palin R M, Tian Zuolin, Dong Xin. 2020. Prolonged partial melting of garnet amphibolite from the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of large hot orogens. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019119.

    • Kellett D A, Grujic D, Coutand I, Cottle J, Mukul M. 2013. The South Tibetan detachment system facilitates ultra rapid cooling of granulite-facies rocks in Sikkim Himalaya. Tectonics, 32(2): 252~270.

    • Kellett D A, Cottle J M, Smit M. 2014. Eocene deep crust at Ama Drime, Tibet: Early evolution of the Himalayan orogen. Lithosphere, 6(4): 220~229.

    • Kohn M J. 2008. P-T-t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 120(3-4): 259~273.

    • Kohn M J. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42(1): 381~419.

    • Kohn M J, Wieland M S, Parkinson C D, Upreti B N. 2004. Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth and Planetary Science Letters, 228(3): 299~310.

    • Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Guo Youzhi. 1997. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 35: 219~246.

    • Li Qinyun, Zhang Lifei, Fu Bin, Bader T, Yu Huanglu. 2019. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in central Himalaya and their tectonic implications. Journal of Metamorphic Geology, 37(2): 203~226.

    • Li Wangchao, Zhang Zeming, Xiang Hua, Gou Zhengbin, Ding Huixia. 2015. Metamorphism and anataxis of the Himalayan orogen: Petrology and geochronology of HP pelitic granulites from the Yadong area, Southern Tibet. Acta Petrologica Sinica, 31(5): 1219~1234 (in Chinese with English abstract).

    • Liu Wencan, Wan Xiaojiao, Liang Dingyi, Li Guobiao, Zhou Zhiguang. 2004. New achievements and main progress in geological survey of the Gyangze and Yadong sheets. Geological Bulletin of China, 23(5-6): 444~450(in Chinese with English abstract).

    • Liu Yan, Siebel W, Massonne H J, Xiao Xuchang. 2007. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet. The Journal of geology, 115(2): 215~230.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Lombardo B, Rolfo F. 2000. Two contrasting eclogite types in the Himalayas: Implications for the Himalayan orogeny. Journal of Geodynamics, 30(1-2): 37~60.

    • Ludwig K R. 2012. Isoplot 4. 15: A geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, 5.

    • Messiga B, Bettini E. 1990. Reactions behaviour during kelyphite and symplectite formation: A case study of mafic granulites and eclogites from the Bohemian Massif. European Journal of Mineralogy, 2(1): 125~144.

    • MorimotoN, Fabries J, Ferguson A K, Ginzburg I V, Ross M, Seifert F A, Zussman J, Aoki K, Gottardi G. 1988. Nomenclature of pyroxenes. American Mineralogist, 73(9-10): 1123~1133.

    • Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han Jingtai, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research: Solid Earth, 115: B12416.

    • O'Brien P J. 2019. Eclogites and other high-pressure rocks in the Himalaya: A review. Geological Society, London, Special Publications, 483(1): 183~213.

    • Pearce J A. 1996. A user's guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, 12: 79~113.

    • Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2): 123~138.

    • Rubatto D, Scambelluri M. 2003. U-Pb dating of magmatic zircon and metamorphic baddeleyite in the Ligurian eclogites (Voltrimassif, western Alps). Contributions to Mineralogy and Petrology, 146(3): 341~355.

    • Rubatto D, Chakraborty S, Dasgupta S. 2013. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contributions to Mineralogy and Petrology, 165(2): 349~372.

    • Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2): 304~310.

    • Searle M P, Simpson R L, Law R D, Parrish R R, Waters D J. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 160(3): 345~366.

    • Spear F S. 2004. Fast cooling and exhumation of the Valhalla metamorphic core complex, southeastern British Columbia. International Geology Review, 46(3): 193~209.

    • Spencer C, Harris R, Dorais M. 2012. The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India. Tectonics, 31: TC1007.

    • ŠtÍpská P, Powell R. 2005. Constraining the P-T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: An example from the Bohemian Massif. Journal of Metamorphic Geology, 23(8): 725~743.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1): 313~345.

    • Taylor S R, McLennan S M. 1985. TheContinental Crust: Its composition and Evolution. London: Blackwell Scientific Publications.

    • Tinkham D K, Ghent E D. 2005. Estimating P-T conditions of garnet growth with isochemical phase diagram sections and the problem of effective bulk composition. The Canadian Mineralogist, 43(1): 35~50.

    • Wang Jiamin, Lanari P, Wu Fuyuan, Zhang Jinjiang, Khanal G P, Yang Lei. 2021. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters, 558: 116760.

    • Wang Yuhua, Zhang Lifei, Zhang Jinjiang, Wei Chunjing. 2017. The youngest eclogite in central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188~206.

    • White R W, Powell R, Holland T J B, Worley B A. 2000. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 18(5): 497~511.

    • White R W, Powell R, Holland T J B, Johnson T E, Green E C R. 2014. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3): 261~286.

    • Whitney D L, Evans B W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185~187.

    • Winter J D. 2001. Anintroduction to igneous and metamorphic petrology. New York: Prentice Hall.

    • Wu Chenguang, Zhang Lifei, Li Qinyun, Bader T, Wang Yang, Fu Bin. 2022. Tectonothermal transition from continental collision to post-collision: insights from eclogites overprinted in the ultrahigh-temperature granulite facies (Yadong region, central Himalaya). Journal of Metamorphic Geology, 40(5): 955~981.

    • Wu Chunming, Pan Yusheng, Wang Kaiyi. 1999. Ref inement of the biotite-orthopyroxene geothermometer with applications. Acta Petrologica Sinica, 15(3): 463~468(in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese with English abstract).

    • Xiang Hua, Connolly J A D. 2021. GeoPS: An interactive visual computing tool for thermodynamic modeling of phase equilibria. Journal of Metamorphic Geology, 40(2): 243~255.

    • Xu Zhiqin, Yang Jingsui, Liang Fenghua, Qi Xuexiang, Liu Fulai, Zeng Lingsen, Liu Dunyi, Li Haibing, Wu Cailai, Shi Rendeng, Chen Songyong. 2005. Pan-African and early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica, 21(1): 1~21(in Chinese with English abstract).

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Zeng Lingsen, Liu Jing, Gao Lie, Xie Kejia, Wen Li. 2009. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chinese Science Bulletin, 54(1): 104~112.

    • Zhang Guibin, Wang Jiaxing, Webb A A G, Zhang Lifei, Liu Shuaiqi, Fu Bin, Wu Chenguang, Wang Shuzhen. 2022. The protoliths of central Himalayan eclogites. Geological Society of America Bulletin, 134(7-8): 1949~1966.

    • Zhang Xiangxin, Liu Wencan, Zhou Zhiguang, Zhao Xingguo, Liang Dingyi. 2005. The foundation of the Precambrian Yadong rock group and its characteristics in the Yadong area, Southern Tibet. Geoscience, 19(3): 341~347(in Chinese with English abstract).

    • Zhang Zeming, Xiang Hua, Dong Xin, Li Wangchao, Ding Huixia, Gou Zhengbin, Tian Zuolin. 2017. Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Research, 41: 173~187.

    • Zhang Zeming, Ding Huixia, Palin R M, Dong Xin, Tian Zuolin, Kong Dongyan, Jiang Yuanyuan, Qin Shengkai, Li Wentan. 2022. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research, 104: 4~22.

    • Zhang Zhi, Li Guangming, Zhang Linkui, Cao Huawen, Yang Chao, Huang Yong, Liang Wei, Fu Jiangang, Dong Suiliang, Xia Xiangbiao, Dai Zuowen. 2021. Neoproterozoic bimodal magmatism in the eastern Himalayan orogen: Tectonic implications for the Rodinia supercontinent evolution. Gondwana Research, 94: 87~105.

    • Zheng Yongfei, Wu Fuyuan. 2018. The timing of continental collision between India and Asia. Science Bulletin, 63(24): 1649~1654.

    • 季建清, 钟大赉, 宋彪, 朱美妃, 温大任. 2004. 喜马拉雅中段高压麻粒岩变质作用, 地球化学与年代学. 岩石学报, 20(5): 1283~1300.

    • 李旺超, 张泽明, 向华, 苟正彬, 丁慧霞. 2015. 喜马拉雅造山带核部的变质作用与部分熔融: 亚东地区高压泥质麻粒岩的岩石学与年代学研究. 岩石学报, 31(5): 1219~1234.

    • 刘文灿, 万晓樵, 梁定益, 李国彪, 周志广. 2004. 江孜县幅、亚东县幅地质调查新成果及主要进展. 地质通报, 23(5-6): 444~450.

    • 吴春明, 潘裕生, 王凯怡. 1999. 黑云母-斜方辉石温度计的重新标度及其应用. 岩石学报, 15(3): 463~468.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 许志琴, 杨经绥, 梁凤华, 戚学祥, 刘福来, 曾令森, 刘敦一, 李海兵, 吴才来, 史仁灯, 陈松永. 2005. 喜马拉雅地体的泛非-早古生代造山事件年龄记录. 岩石学报, 21(1): 1~21.

    • 张祥信, 刘文灿, 周志广, 赵兴国, 梁定益. 2005. 藏南亚东地区前寒武纪亚东岩群的建立及其特征. 现代地质, 19(3): 341~347.