en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴蔚,男,1990年生。博士生,主要研究青藏高原深部构造。E-mail:weiwu190@163.com。

通讯作者:

贺日政,男,1973年生。博士,研究员,主要从事青藏高原深部结构与资源探测研究。E-mail:herizheng@cags.ac.cn。

参考文献
Blisniuk P M, Hacker B R, Glodny J, Ratschbacher L, Bi Siwen, Wu Zhenhan, McWilliams M O, Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5 Myr ago. Nature, 412(6847): 628~632.
参考文献
Christensen N I. 1996. Poisson's ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139~3156.
参考文献
Chu Meifei, Chung Sunlin, Song Biao, Liu Dunyi, O'Reilly S, Pearson N, Ji Jianqiang, Wen Dajen. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745~748.
参考文献
DeMets C, Merkouriev S, Jade S. 2020. High-resolution reconstructions and GPS estimates of India-Eurasia and India-Somalia plate motions: 20 Ma to the present. Geophysical Journal International, 220(2): 1149~1171.
参考文献
Dewey J F, Burke K C A. 1973. Tibetan, Variscan, and Precambrian basement reactivation: Products of continental collision. The Journal of Geology, 81(6): 683~692.
参考文献
Dong Xingyu, Li Wenhui, Lu Zhanwu, Huang Xingfu, Gao Rui. 2020. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone. Tectonophysics, 780: 228395.
参考文献
Dupont-Nivet G, Lippert P C, Van Hinsbergen D J J, Meijers M J M, Kapp P. 2010. Palaeolatitude and age of the Indo-Asia collision: Palaeomagnetic constraints. Geophysical Journal International, 182(3): 1189~1198.
参考文献
Gao Rui, Lu Zhanwu, Li Qiusheng, Guan Ye, Zhang Jisheng, He Rizheng Huang Liyan. 2005. Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau. Episodes, 28(4): 263~273.
参考文献
Guo Xiaoyu, Li Wenhui, Gao Rui, Xu Xiao, Li Hongqiang, Huang Xingfu, Ye Zhuo, Lu Zhanwu, Klemperer S L. 2017. Nonuniform subduction of the Indian crust beneath the Himalayas. Scientific Reports, 7(1): 1~8.
参考文献
Guo Xiaoyu, Gao Rui, Zhao Junmeng, Xu Xiao, Lu Zhanwu, Klemperer S L, Liu Hongbin. 2018. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau. Earth-Science Reviews, 185: 751~762.
参考文献
Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science, 255(5052): 1663~1670.
参考文献
Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system: Far southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373~404.
参考文献
Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 98(4): 455~489.
参考文献
Hirn A, Lepine J C, Jobert G, Sapin M, Wittlinger G, Xu Zhongxin, Gao Enyuan, Wang Xiangjing, Teng Jiwen, Xiong Shaobai, Pandey M R, Tater J M. 1984. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23~25.
参考文献
Hou Zengqian, Gao Yongfeng, Qu Xiaoming, Rui Zongyao, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139~155.
参考文献
Hou Zengqian, Pan Xiaofei, Yang Zhiming, Qu Xiaoming. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings. Geoscience, (2): 332~351 (in Chinese with English abstract).
参考文献
Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhenqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25~51.
参考文献
Hou Zengqian, Yang Zhiming, Lu Yongjun, Kemp A, Zheng Yuanchuan, Li Qiuyun, Tang Juxing, Yang Zhusen, Duan Lianfeng. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247~250.
参考文献
Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu, Xu Bo, Wang Changming, Zhang Hongrui. 2020a. Growth, thickening and evolution of the thickened crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797~2815 (in Chinese with English abstract).
参考文献
Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020b. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland. Earth Science Frontiers, 27(2): 20~44 (in Chinese with English abstract).
参考文献
Ji Shaocheng, Wang Qian, Yang Wencai. 2009a. Correlation between crustal thickness and Poisson's Ratio in the North China craton and its implication for lithospheric thinning. Acta Geologica Sinica, 83 (3): 324~330 (in Chinese with English abstract).
参考文献
Ji Shaocheng, Wang Qian, Salisbury M H. 2009b. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics, 463(1-4): 15~30.
参考文献
Kind R, Kosarev G L, Petersen N V. 1995. Receiver functions at the stations of the German Regional Seismic Network(GRSN). Geophysical Journal International, 121(1): 191~202.
参考文献
Kind R, Yuan Xiaohui, Saul J, Nelson D, Sobolev S V, Mechie J, Zhao Wenjin, Kosarev G, Ni J, Achauer U, Jiang M. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 298(5596): 1219~1221.
参考文献
Langston C A. 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bulletin of the Seismological Society of America, 67(4): 1029~1050.
参考文献
Lee C T A, Anderson D L. 2015. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13): 1141~1156.
参考文献
Li Xueqin, Wei Dongping, Yuan Xiaohui, Kind R, Kumar P, Zhou Huilan. 2011. Details of the doublet Moho structure beneath Lhasa, Tibet, obtained by comparison of P and S receiver functions. Bulletin of the Seismological Society of America, 101(3): 1259~1269.
参考文献
Ligorria J, Ammon C. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395~1400.
参考文献
Liu Dong, Zhao Zhidan, Zhu Dicheng, Niu Yaoling, DePaolo D J, Harrison T M, Mo Xuanxue, Dong Guochen, Zhou Su, Sun Chenguang, Zhang Zhaochong, Liu Junlai. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207~231.
参考文献
Lu Zhanwu, Guo Xiaoyu, Gao Rui, Murphy M A, Huang Xingfu, Xu Xiao, Li Sanzhong, Li Wenhui, Zhao Junmeng, Li Chunsen, Xiang Bo. 2022. Active construction of southernmost Tibet revealed by deep seismic imaging. Nature Communications, 13(1): 1~8.
参考文献
Ma Yiming, Yang Tianshui, Bian Weiwei, Jin Jingjie, Wang Qiang, Zhang Shihong, Wu Huaichun, Li Haiyan, Cao Liwan. 2018. Astable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa-Qiangtang collision and the maximum width of the Neo-Tethys. Tectonics, 37(10): 3853~3876.
参考文献
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.
参考文献
Mo Xuanxue, Pan Guitang. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6) : 43~51 (in Chinese with English abstract).
参考文献
Nábělek J, Hetenyi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B S, Team H C. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946): 1371~1374.
参考文献
Owens T J, Zandt G, Taylor S R. 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P wave forms. Journal of Geophysical Research: Solid Earth, 89(B9): 7783~7795.
参考文献
Owens T J, Zandt G. 1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 387(6628): 37~43.
参考文献
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521~533 (in Chinese with English abstract).
参考文献
Qu Xiaoming, Hou Zengqian, Huang Wei. 2001. Is Gangdese porphyry copper belt the second “Yulong” copper belt? Mineral Deposits, (4): 355~366 (in Chinese with English abstract).
参考文献
Richards J P. 2003. Tectono-Magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515~1533.
参考文献
Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1~26.
参考文献
Richards J P, Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537~576.
参考文献
Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey M R, Wu F. 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435(7046): 1222~1225.
参考文献
Searle M P, Elliott J R, Phillips R J, Chung Sunlin. 2011. Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 168(3): 633~672.
参考文献
Şengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590~593.
参考文献
Shi Danian, Wu Zhenhan, Klemperer S L, Zhao Wenjin, Xue Guangqi, Su Heping. 2015. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone. Earth and Planetary Science Letters, 414: 6~15.
参考文献
Shi Danian, Zhao Wenjin, Klemperer S L, Wu Zhenhan, Mechie J, Shi Jianyu, Xue Guangqi, Su Heping. 2016. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles. Earth and Planetary Science Letters, 452: 171~177.
参考文献
Shi Danian, Klemperer S L, Shi Jianyu, Wu Zhenhan, Zhao Wenjin. 2020. Localized foundering of Indian lower crust in the India-Tibet collision zone. Proceedings of the National Academy of Sciences, 117(40): 24742~24747.
参考文献
Sillitoe R H. 2010. Porphyrycopper systems. Economic Geology, 105(1): 3~41.
参考文献
Spain M, Hirn A. 1997. Seismic structure and evidence for eclogitization during the Himalayan convergence. Tectonophysics, 273(1-2): 1~16.
参考文献
Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17~33.
参考文献
Tang Juxing, Yang Huanhuan, Song Yang, Wang Liqiang, Liu Zhibo, Li Baolong, Lin Bin, Peng Bo, Wang Genhou, Zeng Qinggao, Wang Qin, Chen Wei, Wang Nan, Li Zhijun, Li Yubin, Li Yanbo, Li Haifeng, Lei Chuanyang. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau. China Geology, 4(1): 1~16.
参考文献
Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors, 15(1): 39~45.
参考文献
Wang Gaochun, Thybo H, Artemieva I M. 2021. No mafic layer in 80 km thick Tibetan crust. Nature Communications, 12(1): 1~9.
参考文献
Wang Rui, Weinberg R F, Collins W J, Richards J P, Zhu Dicheng. 2018. Origin of post collisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 181: 122~143.
参考文献
Wang Zewei, Zhao Dapeng, Gao Rui, Hua Yuanyuan. 2019. Complex subduction beneath the Tibetan Plateau: A slab warping model. Physics of the Earth and Planetary Interiors, 292: 42~54.
参考文献
Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339~342.
参考文献
Wittlinger G, Farra V, Hetényi G, Vergne J, Nábělek J. 2009. Seismic velocities in Southern Tibet lower crust: A receiver function approach for eclogite detection. Geophysical Journal of the Royal Astronomical Society, 177(3): 1037~1049.
参考文献
Wu Song, Zheng Youye, Xu Bo, Jiang Guangwu, Yi Jianzhou, Liu Xiaofeng, Zheng Shunli, Li Lei. 2022. Heterogeneous mantle associated with asthenosphere and Indian slab metasomatism: Constraints on fertilization of porphyry Cu mineralization in Tibetan orogen. Ore Geology Reviews, 140: 104601.
参考文献
Xu Qiang, Zhao Junmeng, Pei Shunping, Liu Hongbing. 2013. Imaging lithospheric structure of the eastern Himalayan syntaxis: New insights from receiver function analysis. Journal of Geophysical Research: Solid Earth, 118(5): 2323~2332.
参考文献
Xu Qiang, Zhao Junmeng, Yuan Xiaohui, Liu Hongbing, Pei Shunping. 2015. Mapping crustal structure beneath southern Tibet: Seismic evidence for continental crustal underthrusting. Gondwana Research, 27(4): 1487~1493.
参考文献
Xu Qiang, Zhao Junmeng, Yuan Xiaohui, Liu Hongbing, Pei Shunping. 2017. Detailed configuration of the underthrusting Indian lithosphere beneath western Tibet revealed by receiver function images. Journal of Geophysical Research: Solid Earth, 122(10): 8257~8269.
参考文献
Xu Wei, Zhu Dicheng, Wang Qing, Weinberg R F, Wang Rui, Li Shimin, Zhang Liangliang, Zhao Zhidan. 2019. Constructing the Early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation. Journal of Petrology, 60(3): 515~552.
参考文献
Yan Maodu, Zhang Dawen, Fang Xiaomin, Ren Haidong, Zhang Weilin, Zan Jinbo, Song Chunhui, Zhang Tao. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292~316.
参考文献
Yang Zhiming, Hou Zengqian, White N, Chang Zhaoshan, Li Zhenqing, Song Yucai. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3): 133~159.
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
参考文献
Youssof M, Thybo H, Artemieva I M, Levander A, 2013. Moho depth and crustal composition in southern Africa. Tectonophysics, 609: 267~287.
参考文献
Yu Chunquan, Zheng Yingcai, Shang Xuefeng. 2017. Crazyseismic: A MATLAB GUI-based software package for passive seismic data preprocessing. Seismological Research Letters, 88(2A): 410~415.
参考文献
Zhang Gangyang, Zheng Youye, Gong Fuzhi, Gao Shunbao, Qu Wenjun, Pang Yingchun, Shi Yuruo, Yin Shiyan. 2008. Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit, Tibet, associated with continent-continent collisional process. Acta Petrologica sinica, 24(3): 473~479 (in Chinese with English abstract).
参考文献
Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2018. The Gangdese arc magmatism: From Neo-Tethyan subduction to Indo-Asian collision. Earth Science Frontiers, 25(6): 78~91(in Chinese with English abstract).
参考文献
Zheng Wenbao, Tang Juxing, Zhong Kanghui, Ying Lijuan, Leng Qiufeng, Ding Shuai, Lin Bin. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa Region, China. Ore Geology Reviews, 74: 151~169.
参考文献
Zheng Youye, Sun Xiang, Gao Shunbao, Wu Song, Xu Jing, Jiang Junsheng, Chen Xin, Zhao Zhongying, Liu Yan. 2015. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. Journal of Asian Earth Sciences, 103: 23~39.
参考文献
Zheng Youye, Wu Song, Ci Qiong, Chen Xin, Gao Shunbao, Liu Xiaofeng, Jiang Xiaowen, Zheng Shunli, Li Miao, Jiang Xiaojia. 2021. Cu-Mo-Au Metallogenesis and minerogenetic series during superimposed orogenesis process in Gangdese. Earth Science, 46(6): 1909~1940 (in Chinese with English abstract).
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.
参考文献
Zhu Dicheng, Wang Qing, Cawood P A, Zhao Zhidan, Mo Xuanxue. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214~223.
参考文献
Zhu Dicheng, Wang Qing, Chung Sunlin, Cawood P, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583~604.
参考文献
Zhu Lupei. 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183~190.
参考文献
Zhu Lupei, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969~2980.
参考文献
侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿. 现代地质, (2): 332~351.
参考文献
侯增谦, 郑远川, 卢占武, 许博, 王长明, 张洪瑞. 2020a. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797~2815.
参考文献
侯增谦, 杨志明, 王瑞, 郑远川. 2020b. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用. 地学前缘, 27(2): 20~44.
参考文献
嵇少丞, 王茜, 杨文采. 2009a. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义. 地质学报, 83(3): 324~330.
参考文献
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43~51.
参考文献
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.
参考文献
曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带: 西藏第二条“玉龙”铜矿带? 矿床地质, (4): 355~366.
参考文献
张刚阳, 郑有业, 龚福志, 高顺宝, 屈文俊, 庞迎春, 石玉若, 殷世艳. 2008. 西藏吉如斑岩铜矿: 与陆陆碰撞过程相关的斑岩成岩成矿时代约束. 岩石学报, 24(3): 473~479.
参考文献
张泽明, 丁慧霞, 董昕, 田作林. 2018. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞. 地学前缘, 25(6): 78~91.
参考文献
郑有业, 吴松, 次琼, 陈鑫, 高顺宝, 刘晓峰, 姜笑文, 郑顺利, 李淼, 姜晓佳. 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909~1940.
目录contents

    摘要

    南拉萨地体位于印度大陆与亚欧板块陆陆碰撞的前缘,发育有大型的铜、钼、金等多金属斑岩型矿床,其地壳深部结构对于研究成矿构造背景和动力学模式有重要的约束作用。基于甲玛-驱龙矿集区及周边布置的33个宽频带地震台站资料,使用远震P波接收函数方法获得了矿集区的地壳结构和属性信息。地壳厚度和波速比扫描(H-κ扫描)发现矿集区平均地壳厚度为66 km,地壳平均波速比与地壳厚度呈负相关的关系,指示偏长英质物质的相对增加是地壳增厚的主要原因;共转换点叠加(CCP)结果发现矿集区下方没有双层Moho现象,推测矿集区缺失高速的基性下地壳,这也导致了地壳平均属性更偏向于长英质,推测矿集区地壳底部的基性下地壳发生过拆沉作用。新生下地壳是碰撞造山带斑岩铜钼金成矿的重要条件。本研究结果指示新生下地壳的重熔不仅破坏了陆陆碰撞形成的双莫霍面,还使得南拉萨地体地壳进一步分异,下部地壳发生镁铁质矿物堆晶而更偏基性,莫霍面增厚。

    Abstract

    As the main area where the Indian plate collides with the Eurasian plate, the southern Lhasa terrane has abundant mineral resources. The deep structure of the deposit has an important effect on the dynamic mode and mineralization structure. The P-wave receiver functions obtained by 33 broad band seismographs in Jiama-Qulong deposits were used to obtain the deep structures in the study area by H-κ superposition and common conversion spot (CCP) stacking technique. The average Moho depth in the region is 66 km, and the Moho depth is inversely proportional to vP/vS, indicating the thickened felsic crust in the region. According to the CCP results, it is speculated that there is no Moho doublet under the deposits, indicating the removal of the lithospheric mantle. The results of this study indicate that the remelting of the juvenile crust under the deposit not only destroyed the Moho doublet formed by the collision of the Indian plate but also made the crust of Lhasa further fractionated, the lower crust was more mafic, the Moho phase was thickened.

  • 斑岩铜矿系统提供了世界约75%的铜、50%的钼、20%的银及其他矿产资源,主要分布在环太平洋成矿带和特提斯成矿带(Sillitoe,2010)。环太平洋成矿带的斑岩铜矿成矿过程简单描述如下:大洋板块俯冲过程发生了脱水变质,提供大量成矿物质,成矿物质从俯冲带处经历了包含熔融、同化、存储、均一等(MASH)过程(Hildreth et al.,1988)以及构造作用向上迁移,在局部富集成矿(Hedenquist et al.,1998; Richards,2003; Sillitoe,2010)。而在陆陆碰撞环境下青藏高原斑岩多金属矿的成矿岩浆起源于加厚的镁铁质新生下地壳的部分熔融,水和氧逸度控制了铜元素的富集过程,在适合的条件下成矿(侯增谦等,2020a)。因此,陆陆碰撞环境下的新生下地壳对于碰撞型斑岩成矿有重要意义(侯增谦等,2007)。为此,通过地壳结构和属性来研究新生下地壳的演化对于探索其成矿机制有重要意义。

  • 青藏高原是目前地球上面积最大、平均海拔最高的高原。自早古生代以来,青藏高原经历了多期次的地体拼贴过程(Yin An et al.,2000)。特别是,晚白垩世后印度板块向北持续运动、俯冲至亚洲大陆南缘之下、印度-欧亚板块最终发生陆陆碰撞(Dewey et al.,1973)。如图1所示,位于碰撞前缘的南拉萨地体,又称冈底斯构造带(潘桂棠等,2006)是这一系列过程中活动最为强烈的区域,通过多期岩浆作用过程(侯增谦等,2020b),如新特提斯洋俯冲引起的弧岩浆底垫作用、岛弧岩浆的注入、新特提斯洋板片断离造成的软流圈上涌和幔源超钾质岩浆注入等,形成了巨厚的地壳(Hou Zengqian et al.,2020b)。因此,南拉萨地体的巨厚地壳不仅记录了新特提斯洋消亡和陆陆碰撞过程,活跃的岩浆活动也产生了大量斑岩铜矿矿床(Harrison et al.,1992; 曲晓明等,2001; Zheng Youye et al.,2015; Zhu Dicheng et al.,2017; 张泽明等,2018; 郑有业等,2021),即冈底斯斑岩型多金属成矿带(图1;Zheng Youye et al.,2021)。而甲玛和驱龙大型—超大型斑岩铜等多金属矿集区(Hou Zengqian et al.,2015; Tang Juxing et al.,2021; Zheng Youye et al.,2021)是研究陆-陆碰撞型斑岩型铜矿成矿机制的理想位置。

  • 图1 冈底斯斑岩铜矿带构造简图(改编自郑有业等,2021

  • Fig.1 Tectonic map of the Gangdese porphyry copper belt (after Zheng Youye et al., 2021)

  • (a)—青藏高原地形图,红色虚线框代表图1b位置;(b)—冈底斯斑岩铜矿带内主要矿集区(修改自郑有业等,2021),蓝色虚线方框为本文研究区域,黑色折线为测线位置; SNMZ—狮泉河-纳木错蛇绿混杂岩带; LMF—洛巴堆-米拉山断裂; IYS—印度河-雅鲁藏布缝合带; SL—南拉萨地体; CL—中拉萨地体; NL—北拉萨地体; TH—特提斯喜马拉雅

  • (a) —topographic map of Tibet; red box denotes the location of Fig.1b; (b) —major deposits in Gangdese porphyry copper belt (adapted from Zheng Youye et al., 2021) ; the blue dotted box denotes the study area of Fig.2; the black broken line locates the main cross-section of Fig.5; SNMZ—Shiquan River-Nam Tso mélange zone; LMF—Luobadui-Milashan fault; IYS—Indus-Yarlung Zangbo suture zone; SL—Southern Lhasa terrane; CL—Central Lhasa terrane; NL—Northern Lhasa terrane; TH—Tethyan Himalayan terrane

  • 在青藏高原内开展了大量的地球探测,特别是在拉萨地体内部地球物理探测程度最高(Gao Rui et al.,2005)。青藏高原有着巨厚的地壳(Nábělek et al.,2009)和复杂的壳幔结构(Owens et al.,1997)。深地震反射探测揭示了印度板块与亚洲板块碰撞角度自西向东由陡变缓(Guo Xiaoyu et al.,2018; Dong Xingyu et al.,2020),在中新世前南拉萨地体地壳内发生大规模形变(Lu Zhanwu et al.,2022)。由被动源地震观测到的壳内存在双莫霍面现象(Kind et al.,2002; Schulte-Pelkum et al.,2005; Li Xueqin et al.,2011; Shi Danian et al.,201520162020; Xu Qiang et al.,2015)常被解释为其由快速俯冲的印度下地壳的榴辉岩化所导致(Schulte-Pelkum et al.,2005; Wittlinger et al.,2009)。然而,南北穿越南拉萨地体的多条深地震反射剖面(Guo Xiaoyu et al.,2018Dong Xingyu et al.,2020; Lu Zhanwu et al.,2022)不仅并未探测到双莫霍面(Kind et al.,2002; Schulte-Pelkum et al.,2005; Li Xueqin et al.,2011; Shi Danian et al.,201520162020; Xu Qiang et al.,2015),而且印度板块地壳前缘仅有限且局部越过雅鲁藏布江缝合带(Guo Xiaoyu et al.,2017; Dong Xingyu et al.,2020),更甚至南拉萨地体的下地壳几乎透明,即无反射波组(Lu Zhuanwu et al.,2022)。显然,这种特殊的壳幔结构特征,对认识特有的陆陆碰撞环境下所形成的巨型冈底斯斑岩成矿带成矿机制尤为重要。所以,为探究双莫霍面现象与斑岩铜矿形成的关系,本文利用在甲玛-驱龙矿集区及周边布设的宽频带地震台阵(图1)观测到的被动源地震信息研究该矿集区深部构造,有助于揭示这一复杂的壳幔结构特征,进而深入认识冈底斯斑岩成矿带成矿机制。

  • 1 构造背景

  • 拉萨地体位于羌塘地体和特提斯喜马拉雅之间,分别被班公湖-怒江缝合带(BNS)和印度河-雅鲁藏布缝合带(IYS)分隔(Zhu Dicheng et al.,2011)。拉萨地体在早古生代属于冈瓦纳大陆(Metcalfe,2013)。二叠纪早期,拉萨地体从冈瓦纳北部开始裂解,新特提斯洋打开(Şengör,1979; Stampfli et al.,2002)。早白垩世拉萨地体与欧亚大陆发生碰撞(Yan Maodu et al.,2016; Ma Yiming et al.,2018)。早始新世,印度板块与欧亚大陆碰撞,形成了IYS(Chu Meifei et al.,2006; 莫宣学等,2006)。拉萨地体分为北、中和南三个区域,依次被狮泉河-纳木错蛇绿混杂岩带(SNMZ)和洛巴堆-米拉山断裂带(LMF)分隔(Zhu Dicheng et al.,2011)。本文研究区域属于南拉萨地体,位于冈底斯斑岩成矿带东部。在碰撞作用的影响下,南拉萨地体在中新世依次经历快速抬升(Harrison et al.,1992)、东西向伸展(Williams et al.,2001),南北向裂谷形成(Blisniuk et al.,2001)。

  • 新生代碰撞以来,南拉萨地体经历两次大规模岩浆活动,分别是印度-亚洲大陆同碰撞时期(65~40 Ma)和后碰撞时期(40~8 Ma)( 张泽明等,2018)。同碰撞时期岩浆活动对应拉萨地体广泛分布的林子宗群火山岩和同时期花岗岩(Zhu Dicheng et al.,2018),其化学成分随着新特提斯洋板片俯冲的回转、断离也发生变化。同碰撞时期斑岩铜矿的典型代表是吉如斑岩铜矿(张刚阳等,2008)。区域内大多数的斑岩铜矿形成于后碰撞时期(Zheng Youye et al.,2021),与钾质超钾质火山岩和埃达克质侵入岩的形成时代相当(Liu Dong et al.,2014),成矿斑岩与埃达克质侵入岩关系密切(Richards et al.,2007)。甲玛、驱龙矿集区都属于与碰撞造山后期伸展背景花岗质斑岩有关Cu-Mo-Au 矿床(Yang Zhiming et al.,2009; Zheng Wenbao et al.,2016)。

  • 2 数据与方法

  • 2.1 数据

  • 本文所用的数据来自于布设在甲玛-驱龙矿集区及其周围的原位探测的宽频带地震观测台阵,由33个观测点组成,分布范围在91°E~92.5°E和28.8°N~30.2°N之间的范围内,平均台间距约8 km(图2a)。每个观测点由 Nanometrics-Horizon 系列的宽频带三分量数字地震仪观测,频带范围0.02~120 s。从2019年10月到2021年5月连续观测,记录了305个震中距30°~90°且MS震级大于5.5级的远震地震事件(图2b)。

  • P波接收函数(PRF)是一种对界面边界敏感的远震处理方法,其利用台站接收到的远震P波信号在界面处形成的多种转换波(包括Ps、PpPs、PpSs和PsPs)与原P波震相的到时差进行地下界面信息分析。在直达P波之后的转换Ps震相的延时能够反映界面厚度与平均波速,转换震相的振幅信息与转换界面的波阻抗成正比(Langston,1977; Vinnik,1977)。接收函数方法通过将地震事件的径向记录和垂向记录进行反褶积运算,通过消除震源效应及仪器响应,保留了射线路径上介质结构的响应信息(Langston,1977; Vinnik,1977)。最后,利用多种分析方法对台站下方记录到的接收函数开展分析。

  • 本研究提取接收函数流程如下:① 将原始仪器记录的Miniseed格式文件转换成SAC格式,依据美国地质调查局网站(http://www.usgs.gov)的地震目录截取MS震级大于5.5级,震中距30°~90°之间的地震事件;② 对截取的原始100 Hz采样频率的三分量地震波形数据以20 Hz重采样,截取P波初至前20 s到后80 s的波形;③ 去均值、去线性趋势和尖灭,在频率0.05~5 Hz范围带通滤波;④ 将三分量地震数据从Z-N-E(垂向、北向和东向)旋转到Z-R-T(垂向、径向和切向)坐标系;⑤ 采用时间域迭代反褶积方法(Kind et al.,1995; Ligorria et al.,1999)计算接收函数,其中高斯系数选取2.5;⑥ 使用CrazySeismic软件包(Yu Chunquan et al.,2017)挑选高信噪比的接收函数。最终,共得到2475条高质量的接收函数。

  • 2.2 H-κ 叠加

  • 单个台站下方的地壳厚度(H)和地壳平均波速比(vP/vS)可以通过H-κ扫描方法(Zhu Lupei et al.,2000)获得。原理是使用一次的Ps转换震相和壳内多次转换震相PpPs和PpSs+PsPs利用公式(1)计算地壳厚度和vP/vS(P波与S波速度比)。

  • H=tPs1vS2-p2-1vP2-p2=tPpPs1vS2-p2+1vP2-p2=tPpSs+PsPs21vS2-p2
    (1)
  • 图2 甲玛-驱龙矿集区宽频带地震台站分布图(a)(研究区位置见图1中蓝色虚线框所示)、记录到的远震事件分布(b)及提取到台站下方的接收函数数量(c)

  • Fig.2 Distribution of broadband seismic stations in Jiama-Qulong deposits (a) , location of teleseismic events used in this study (b) , and the number of receiver functions recorded by each broadband station (c)

  • 黑色三角代表宽频带地震观测台站位置;红色三角代表台站XZ16位置(图3);红色折线代表CCP剖面位置(图5b);蓝色三角代表台站XZ45位置(图5c),灰色圆点代表Pms转换震相在65 km处转换点位置; LMF—洛巴堆-米拉山断裂; IYS—印度河-雅鲁藏布缝合带; SL—南拉萨地体; CL—中拉萨地体; TH—特提斯喜马拉雅

  • The black triangle denotes the broadband seismographs stations (the study area show in Fig.1 as the blue dotted box) ; the red triangle is the Station XZ16 shown in Fig.3; the red broken line denotes the CCP profile shown in Fig.5 blue triangle represents the location of the Station XZ45; the gray dots denote the pierce points at 65 km depth of each receiver function; LMF—Luobadui-Milashan fault; IYS—Indus-Yarlung Zangbo suture zone; SL—Southern Lhasa terrane; CL—Central Lhasa terrane; TH—Tethyan Himalayan terrane

  • 其中p是入射的射线参数,tPs是Ps转换震相和直达P波的到时,单位为s, tPpPstPpSs+PsPs分别是PpPs 和PpSs+PsPs 震相和直达P波的到时,单位为s。H-κ计算过程见公式(2)。

  • S(H,κ)=ω1AtPs+ω2AtPpPs-ω3AtPpSs+PsPs
    (2)
  • 其中ω1ω2ω3分别代表三个震相的权重,At)代表t时刻接收函数的幅值,将三个震相的幅值叠加,H为地壳厚度,单位为km;κ为P波速度与S波速度比(vP/vS),最大处代表该台站下方的H-κ值。H-κ结果的误差估计由函数SHκ)在最大值处的泰勒展开进行估计(Zhu Lupei et al.,2000)。参考南拉萨地体的宽角反射结果(Wang Gaochun et al.,2021),设定地壳平均纵波速度vP为6.2 km/s,地壳厚度范围50~80 km,地壳vP/vS的范围 1.5~2.0,三个震相权重依次为0.5、0.3和0.2。将计算得到的地壳厚度减去台站高程,得到台站下方莫霍面深度。图3展示XZ16台站单台接收函数记录及H-κ扫描结果。图3a中接收函数Ps震相明显(约8 s)。H-κ扫描结果显示(图3b)该台站下方莫霍厚度74.1 km,κ值在1.65。所有33个观测点下的H-κ扫描结果,编制成图4。

  • 图3 甲玛-驱龙矿集区台站XZ16记录到的接收函数分析

  • Fig.3 Analysis of the receiver functions recorded by Station XZ16 deployed in Jiama-Qulong deposits

  • (a)—台站XZ16(位置见图2)接收函数按后方位角排列图;(b)—XZ16台站接收函数叠加结果图;(c)—计算台站XZ16接收函数使用地震分布(红点);(d)—台站XZ16的H-κ扫描结果,图中灰色阴影代表叠加能量,颜色越深能量越高,黑色椭圆代表地壳厚度和vP/vS的误差,Hκ的误差分别为1.899 km和0.035

  • (a) —all receiver functions recorded by Station XZ16 shown in Fig.2; (b) —the slant-stack overlay below Station XZ16; (c) —the earthquakes distribution (red dots) is used in receiver function analysis in Fig.3a; (d) —H-κ stacking analysis of Station XZ16; gray shade in the figure represents the superposition energy, the darker the color, the higher the energy, the black ellipse indicates the optimal trade-off between the crustal thickness and the vP/vS, the estimated variance of H and κ are1.899 km and 0.035, respectively

  • 2.3 共转换点叠加

  • 为了得到研究区域下方的界面结构,我们使用基于射线理论的共转换点叠加(CCP)方法(Zhu Lupei,2000),即将Ps震相依据速度模型从时间域转换到深度域,获取深部结构特征。剖面范围北纬28.7°~30.4°,深度从海平面到地下100 km。由于矿集区附近台站分布密集,因此网格划分为南北向5 km,东西向50 km,深度1 km,将每个网格内时深转换后的接收函数幅值求平均。时深转换使用的速度模型是改进的IASP91模型。由于剖面是条折线(图2),将CCP剖面从北纬29.7°分为两段分别叠加,结果如图5b所示。

  • 2.4 莫霍锐度

  • 接收函数直接反映的是界面两侧的速度差(Youssof et al.,2013)。为了进一步刻画莫霍面的性质,采用莫霍锐度(Moho sharpness)来衡量。除了莫霍面上下界面速度差,莫霍面厚度、区域壳幔密度差异都会影响莫霍锐度。量化莫霍锐度方法是求得所有台站叠加后的Ps震相幅值,取平均值后,再将每个台站的Ps震相幅值与平均值做比(Owens et al.,1984),具体步骤见公式(3)。

  • K(i)=A(i)/A-
    (3)
  • 式中,Ki)代表第i个台站的量化莫霍锐度,Ai)代表第i个台站的接收函数的平均Ps震相幅值,A-代表全部台站记录到的接收函数Ps震相幅值的平均值。计算结果如图5d所示。

  • 3 结果与分析

  • 研究区33个宽频带仪器的径向接收函数进行H-κ扫描计算,去除异常的(如扫描范围位于边界)扫描结果,获得29个台站下方的莫霍面深度和vP/vS分布(图4)。结果表明研究区域台站莫霍面深度在53~73 km,平均值在63 km,最大和最小误差范围分别是1.9 km和0.2 km(图4a);波速比值κ范围为1.56~1.92,平均值为1.73,最大和最小误差范围分别是0.053和0.004(图4b)。莫霍面深度最浅的区域位于研究区域南部,而其较深的位置集中在甲玛矿集区附近。区域内整体H-κ变化随莫霍面深度增加而vP/vS减小(图4c),符合造山带内H-κ特点(给出参考文献),进而表明在甲玛-驱龙矿集区小范围内,莫霍面深度和波速比的负相关可能与青藏高原下地壳拆沉模式对应(嵇少丞等,2009a; Ji Shaocheng et al.,2009b)。在地壳成岩矿物中大部分矿物的波速比大于1.7,而少数低于1.7的矿物中含量最多的是石英(1.498)(Christensen,1996)。

  • 图4 通过H-κ扫描获得的甲玛-驱龙矿集区下的莫霍面深度(a),vP/vS变化(b),及其二者的关系(c)

  • Fig.4 Moho topography (a) , the variation of the vP/vS (b) from H-κ stackings and its corresponding relationship features (c) beneath Jiama-Qulong deposits

  • 红色虚线为数据拟合线; LMF—洛巴堆-米拉山断裂; IYS—印度河-雅鲁藏布缝合带; SL—南拉萨地体; CL—中拉萨地体; TH—特提斯喜马拉雅

  • The red dash line is the trend of H-κ; LMF—Luobadui-Milashan fault; IYS—Indus-Yarlung Zangbo suture zone; SL—Southern Lhasa terrane; CL—Central Lhasa terrane; TH—Tethyan Himalayan terrane

  • 图5 甲玛-驱龙矿集区接收函数分析结果

  • Fig.5 Analysis of receiver functions in Jiama-Qulong deposits

  • (a)—剖面地形图及构造划分;(b)—剖面CCP叠加图像,图中紫色虚线代表H-κ扫描的莫霍面深度,黑色虚线代表深地震反射线条图(据Dong Xingyu et al.,2020);(c)—所有台站接收函数动校正后叠加结果,按纬度均匀排列;(d)—研究区域莫霍锐度变化特征; LMF—洛巴堆-米拉山断裂; IYS—印度河-雅鲁藏布缝合带; SL—南拉萨地体; CL—中拉萨地体; TH—特提斯喜马拉雅

  • (a) —section topography and tectonic division; (b) —CCP profile result the purple dash line denotes the Moho depth from the H-κ; the black dash line comes from deep seismic reflective (after Dong Xingyu et al., 2020) ; (c) —the moveout corrected summation trace of each station, sorted by latitude; (d) —variation for the Moho sharpness beneath the study area; LMF—Luobadui-Milashan fault; IYS—Indus-Yarlung Zangbo suture zone; SL—Southern Lhasa terrane; CL—Central Lhasa terrane; TH—Tethyan Himalayan terrane

  • 沿剖面(图2中的红色折线)的CCP图像(图5b)显示壳内以29.6°N为界,南北两侧图像差异明显,南部区域海平面处负震相,北部区域是正震相。南部壳内存在大量正幅值,分别在10 km、30 km和40 km左右,北部只有20 km左右的一个弱震相。整个区域内莫霍面震相在60 km附近,震相清晰、连续并且较厚,范围大约为60~75 km。紫色虚线所表示的是来自H-κ扫描的莫霍面深度(图4a)整体上分布在CCP叠加获得的莫霍面震相范围内;剖面中部(29.5°N~29.8°N)莫霍面最深,向南北两侧变浅。南部区域H-κ扫描莫霍面深度与CCP的莫霍面震相较一致,且与深地震反射揭示的印度板块俯冲形态样式一致(Dong Xingyu et al.,2020);而剖面北部H-κ扫描莫霍面加深,CCP的莫霍面震相变化不大,产生差异,且在矿集区下方莫霍面最深。莫霍面之下的80~100 km区间南部(IYS以南区域)存在少量正震相,北部(以29.6°N以北区域)几乎不存在震相。

  • 为验证CCP结果,图5c展示单台动校正后叠加接收函数,即台站位置按台站纬度排列。所有台站记录到的接收函数中,Ps震相在8s左右且存在起伏,而在26~29 s之间的PpPs震相较明显。矿集区附近台站(XZ02~X10)Ps震相峰值偏小,形态偏宽。莫霍锐度(图5d)显示台站XZ16下方具有最大的莫霍锐度,矿集区附近台站(XZ02~XZ10)下方的莫霍锐度值较小。这表明矿集区下方的莫霍面增厚(图5b)或者壳幔速度及密度差异小,也有可能这几种情况共存。

  • 4 讨论

  • 冈底斯成矿带是典型的陆-陆碰撞环境下形成的斑岩型铜多金属成矿带(曲晓明等,2001)。斑岩型多金属矿床带下的深部结构对于其成矿岩浆热液源区的构造环境影响巨大(Richards,2011),因此研究该甲玛-驱龙矿集区下的深部构造特征对于认识陆-陆碰撞环境下斑岩型铜多金属矿床带之成矿背景具有重要意义。

  • 4.1 研究区域莫霍面特征

  • 如图4c所示,最明显的一个特征是研究区域内莫霍深度与vP/vS二者成反比关系,即在29.7°N附近的甲玛-驱龙矿集区该特征更加明显(图4),这也是藏东南整体区域内特点(Xu Qiang et al.,2013)。拉萨地体整体上有着巨厚的长英质化的陆壳(Wang Gaochun et al.,2021),而研究区域内下地壳不存在高速层,表明榴辉岩相下地壳发生拆沉,导致巨厚的地壳发生长英质化(Lee et al.,2015),其可能的构造成因为镁铁质新生下地壳的大规模重熔与长英质岩浆大量侵位(侯增谦等,2020b),大规模熔融残余物质转变为地幔或壳幔过渡层(Xu Wei et al.,2019)。因此,高速下地壳的拆沉导致地壳的长英质化造成莫霍深度和vP/vS的负相关关系(Ji Shaocheng et al.,2009b)。

  • 研究区域莫霍面的另一个特点在CCP剖面显示莫霍面明显增厚,表现为Pms震相较宽。这种现象在青藏高原内广泛存在,如穿越特提斯喜马拉雅的广角反射剖面展示了10 km厚的莫霍面过渡层(Spain et al.,1997),而沿东经92.5°剖面下的接收函数CCP图像也是如此(Shi Danian et al.,2015)。这种巨厚的Moho面表明后碰撞以来拉萨地体地壳增厚,在地壳物质分异过程中,镁铁质的下地壳部分熔融后更基性且密度更接近上地幔,而侵位的酸性岩浆使得中上地壳更长英质(Hou Zengqian et al.,2020b)。镁铁质矿物在下地壳底部发生堆晶使得原有的莫霍面增厚(Xu Wei et al.,2019)。这一过程造成矿集区下方莫霍锐度减小(图5d)。

  • 4.2 研究区域下的新生下地壳特征

  • 在接收函数方法的观测中,拉萨地体部分地区下地壳存在强震相,这一震相在莫霍面震相之上约20 km被称为“双莫霍面”(Kind et al.,2002; Nábělek et al.,2009; Li Xueqin et al.,2011; Xu Qiang et al.,2015,2016,2017)。早在1984年的中法合作实施深地震测深探测中发现了特提斯喜马拉雅下地壳高速层的存在(Hirn et al.,1984)。而大致沿朋曲—申扎裂谷(即E88.5°剖面)实施的深地震测深探测也发现了南拉萨地体下地壳速度明显高于中拉萨地体(Wang Gaochun et al.,2021)。而深地震反射剖面法并未探测到拉萨地体下地壳的“双莫霍面”(Kind et al.,2002; Nábělek et al.,2009; Li Xueqin et al.,2011; Xu Qiang et al.,2015,2016,2017)且为无反射波组特征的透明下地壳(Guo Xiaoyu et al.,2018Dong Xingyu et al.,2020; Lu Zhanwu et al.,2022),也与同位置的深地震测深结果(Wang Gaochun et al.,2021)具有显著差异。这表明,南拉萨地体下地壳结构横向变化较大,进而推测南拉萨地体下的所谓“双莫霍面”(Kind et al.,2002; Nábělek et al.,2009; Li Xueqin et al.,2011; Xu Qiang et al.,2015,2016,2017)具有较强的不均匀分布特征。“双莫霍面”的成因常被解释为印度板块碰撞后,壳幔解耦,部分下地壳插入到拉萨下地壳,这一过程中发生榴辉岩化,形成高速界面(Nábělek et al.,2009; Wittlinger et al.,2009)。然而,不同位置的深地震反射剖面(Guo Xiaoyu et al.,2018Dong Xingyu et al.,2020; Lu Zhanwu et al.,2022)探测到印度下地壳与其下的岩石圈地幔解耦俯冲在南拉萨地体之下,即其前缘滞留在IYS南北两侧不远的区域范围。如图5b所示的CCP剖面特征显示,甲玛-驱龙矿集区下基本没有双莫霍面存在,而仅在位于LMF北部的中拉萨地体的中部(如对应图5b台站XZ45)下的40 km存在强的双莫霍面震相(Li Xueqin et al.,2011),也与Shi Danian et al.(2015)接收函数CCP剖面在该位置下的“双莫霍面”结构特征一致。

  • 假设在陆陆碰撞过程中在甲玛-驱龙矿集区下形成了双莫霍面(双莫霍面间的下地壳即为新生下地壳),后期强烈的印度岩石圈地幔北向俯冲过程破坏了已形成的“双莫霍面”:如包括洋壳俯冲时大量成矿物质在下地壳富集,再经过榴辉岩化的下地壳局部(如图5b所示的在甲玛-驱龙矿集区下)拆沉,使得被印度岩石圈地幔所围限的南拉萨地体下的软流圈局部(如图5b所示)上涌,聚集在下地壳的成矿物质活化,向上运移成矿(Hou Zengqian et al.,200420092015; Wang Rui et al.,2018; Tang Juxing et al.,2021; Wu Song et al.,2022)。这个过程使得“双莫霍面”现象消失。已知甲玛-驱龙成矿时代在大约15 Ma(Yang Zhiming et al.,2009; Zheng Wenbao et al.,2016)。与斑岩铜矿成因密切相关的埃达克质岩浆部分成分来源于下地壳榴辉岩(Hou Zengqian et al.,2004)。因此南拉萨地体下地壳双莫霍面现象的形成时间应早于甲玛、驱龙斑岩铜矿的形成时代,即由于成矿作用发生而被破坏。印度板块汇聚速率从大约10 Ma以来逐渐趋近平稳(DeMets et al.,2020)指示了印度岩石圈受力趋近平衡,没有足够北向应力使得解耦的印度下地壳继续插入拉萨下地壳,在深地震反射剖面(Guo Xiaoyu et al.,2017)和层析成像(Wang Zewei et al.,2019)中表现为与印度下地壳解耦后的印度岩石圈地幔独自北东向俯冲。

  • 4.3 新生下地壳及其演化的地球物理约束

  • 基于图4及图5所揭示的地球物理结构特征,并结合区域内斑岩型成矿演化认识(Hou Zengqian et al.,2004; 嵇少丞等,2009a; Ji Shaocheng et al.,2009b郑有业等,2021),构建了如图6所示的甲玛-驱龙矿集区下地壳内物质演化过程。古新世,印度大陆与欧亚大陆同碰撞时期,印度下地壳和岩石圈地幔解耦,导致滞留在南拉萨地体之下的“新生下地壳”沿青藏高原莫霍面运动,而印度岩石圈地幔北向快速向下俯冲。在印度岩石圈地幔快速俯冲的过程中“新生下地壳”发生榴辉岩化,与原有的青藏高原莫霍面共同形成双莫霍面现象(图6a;Kind et al.,2002; Nábělek et al.,2009; Xu Qiang et al.,20152017; Shi Danian et al.,2016)。中新世,增厚的岩石圈地幔拆沉导致软流圈上涌,使得大量的钾质/超钾质岩浆在西部喷发,东部则底垫到莫霍面附近或在侵位过程中将原有的榴辉岩化的下地壳破坏,并且将新生下地壳中含铜的硫化物向上运移,形成斑岩铜矿(图6b;Wu Song et al.,2022)。10 Ma以来,由于结晶分异过程,镁铁质下地壳更加基性,可能转换为上地幔组成,因此观测到的莫霍面增厚(Hou Zengqian et al.,2020b;图6c)。

  • 5 结论

  • 在甲玛-驱龙矿集区及其周缘直接开展宽频带地震观测,获取了其下的壳幔结构特征。结合区域内已有相关研究成果,综合分析,结论如下:

  • (1)甲玛-驱龙矿集区壳内波速比偏低,下地壳不存在高速层,莫霍面震相增厚。

  • (2)甲玛-驱龙矿集区的形成与新生下地壳的活动过程关系密切。

  • (3)通过对壳内结构的精细研究能够对大型斑岩铜矿的形成机制起到约束作用。

  • 图6 甲玛-驱龙矿集区下的成矿机制示意图

  • Fig.6 Schematic diagram of the metallogenic mechanism under the Jiama-Qulong deposits

  • (a)—双莫霍面形成;(b)—矿集区形成;(c)—现今结构; LMF—洛巴堆-米拉山断裂; IYS—印度河-雅鲁藏布缝合带; SL—南拉萨地体; CL—中拉萨地体; TH—特提斯喜马拉雅

  • (a) —the doublet Moho generation; (b) —the formation of deposits; (c) —present structure; LMF—Luobadui-Milashan fault; IYS—Indus-Yarlung Zangbo suture zone; SL—Southern Lhasa terrane; CL—Central Lhasa terrane; TH—Tethyan Himalayan terrane

  • 致谢:感谢靳中原博士和陕西地矿工作人员在野外数据采集工作的艰苦付出,并感谢魏运浩博士、冀磊博士对数据处理及解释方面的帮助。

  • 参考文献

    • Blisniuk P M, Hacker B R, Glodny J, Ratschbacher L, Bi Siwen, Wu Zhenhan, McWilliams M O, Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5 Myr ago. Nature, 412(6847): 628~632.

    • Christensen N I. 1996. Poisson's ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139~3156.

    • Chu Meifei, Chung Sunlin, Song Biao, Liu Dunyi, O'Reilly S, Pearson N, Ji Jianqiang, Wen Dajen. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745~748.

    • DeMets C, Merkouriev S, Jade S. 2020. High-resolution reconstructions and GPS estimates of India-Eurasia and India-Somalia plate motions: 20 Ma to the present. Geophysical Journal International, 220(2): 1149~1171.

    • Dewey J F, Burke K C A. 1973. Tibetan, Variscan, and Precambrian basement reactivation: Products of continental collision. The Journal of Geology, 81(6): 683~692.

    • Dong Xingyu, Li Wenhui, Lu Zhanwu, Huang Xingfu, Gao Rui. 2020. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone. Tectonophysics, 780: 228395.

    • Dupont-Nivet G, Lippert P C, Van Hinsbergen D J J, Meijers M J M, Kapp P. 2010. Palaeolatitude and age of the Indo-Asia collision: Palaeomagnetic constraints. Geophysical Journal International, 182(3): 1189~1198.

    • Gao Rui, Lu Zhanwu, Li Qiusheng, Guan Ye, Zhang Jisheng, He Rizheng Huang Liyan. 2005. Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau. Episodes, 28(4): 263~273.

    • Guo Xiaoyu, Li Wenhui, Gao Rui, Xu Xiao, Li Hongqiang, Huang Xingfu, Ye Zhuo, Lu Zhanwu, Klemperer S L. 2017. Nonuniform subduction of the Indian crust beneath the Himalayas. Scientific Reports, 7(1): 1~8.

    • Guo Xiaoyu, Gao Rui, Zhao Junmeng, Xu Xiao, Lu Zhanwu, Klemperer S L, Liu Hongbin. 2018. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau. Earth-Science Reviews, 185: 751~762.

    • Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science, 255(5052): 1663~1670.

    • Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system: Far southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373~404.

    • Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 98(4): 455~489.

    • Hirn A, Lepine J C, Jobert G, Sapin M, Wittlinger G, Xu Zhongxin, Gao Enyuan, Wang Xiangjing, Teng Jiwen, Xiong Shaobai, Pandey M R, Tater J M. 1984. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23~25.

    • Hou Zengqian, Gao Yongfeng, Qu Xiaoming, Rui Zongyao, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139~155.

    • Hou Zengqian, Pan Xiaofei, Yang Zhiming, Qu Xiaoming. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings. Geoscience, (2): 332~351 (in Chinese with English abstract).

    • Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhenqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25~51.

    • Hou Zengqian, Yang Zhiming, Lu Yongjun, Kemp A, Zheng Yuanchuan, Li Qiuyun, Tang Juxing, Yang Zhusen, Duan Lianfeng. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247~250.

    • Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu, Xu Bo, Wang Changming, Zhang Hongrui. 2020a. Growth, thickening and evolution of the thickened crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797~2815 (in Chinese with English abstract).

    • Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020b. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland. Earth Science Frontiers, 27(2): 20~44 (in Chinese with English abstract).

    • Ji Shaocheng, Wang Qian, Yang Wencai. 2009a. Correlation between crustal thickness and Poisson's Ratio in the North China craton and its implication for lithospheric thinning. Acta Geologica Sinica, 83 (3): 324~330 (in Chinese with English abstract).

    • Ji Shaocheng, Wang Qian, Salisbury M H. 2009b. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics, 463(1-4): 15~30.

    • Kind R, Kosarev G L, Petersen N V. 1995. Receiver functions at the stations of the German Regional Seismic Network(GRSN). Geophysical Journal International, 121(1): 191~202.

    • Kind R, Yuan Xiaohui, Saul J, Nelson D, Sobolev S V, Mechie J, Zhao Wenjin, Kosarev G, Ni J, Achauer U, Jiang M. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 298(5596): 1219~1221.

    • Langston C A. 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bulletin of the Seismological Society of America, 67(4): 1029~1050.

    • Lee C T A, Anderson D L. 2015. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13): 1141~1156.

    • Li Xueqin, Wei Dongping, Yuan Xiaohui, Kind R, Kumar P, Zhou Huilan. 2011. Details of the doublet Moho structure beneath Lhasa, Tibet, obtained by comparison of P and S receiver functions. Bulletin of the Seismological Society of America, 101(3): 1259~1269.

    • Ligorria J, Ammon C. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395~1400.

    • Liu Dong, Zhao Zhidan, Zhu Dicheng, Niu Yaoling, DePaolo D J, Harrison T M, Mo Xuanxue, Dong Guochen, Zhou Su, Sun Chenguang, Zhang Zhaochong, Liu Junlai. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207~231.

    • Lu Zhanwu, Guo Xiaoyu, Gao Rui, Murphy M A, Huang Xingfu, Xu Xiao, Li Sanzhong, Li Wenhui, Zhao Junmeng, Li Chunsen, Xiang Bo. 2022. Active construction of southernmost Tibet revealed by deep seismic imaging. Nature Communications, 13(1): 1~8.

    • Ma Yiming, Yang Tianshui, Bian Weiwei, Jin Jingjie, Wang Qiang, Zhang Shihong, Wu Huaichun, Li Haiyan, Cao Liwan. 2018. Astable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa-Qiangtang collision and the maximum width of the Neo-Tethys. Tectonics, 37(10): 3853~3876.

    • Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.

    • Mo Xuanxue, Pan Guitang. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6) : 43~51 (in Chinese with English abstract).

    • Nábělek J, Hetenyi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B S, Team H C. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946): 1371~1374.

    • Owens T J, Zandt G, Taylor S R. 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P wave forms. Journal of Geophysical Research: Solid Earth, 89(B9): 7783~7795.

    • Owens T J, Zandt G. 1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 387(6628): 37~43.

    • Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521~533 (in Chinese with English abstract).

    • Qu Xiaoming, Hou Zengqian, Huang Wei. 2001. Is Gangdese porphyry copper belt the second “Yulong” copper belt? Mineral Deposits, (4): 355~366 (in Chinese with English abstract).

    • Richards J P. 2003. Tectono-Magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515~1533.

    • Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1~26.

    • Richards J P, Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537~576.

    • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey M R, Wu F. 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435(7046): 1222~1225.

    • Searle M P, Elliott J R, Phillips R J, Chung Sunlin. 2011. Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 168(3): 633~672.

    • Şengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590~593.

    • Shi Danian, Wu Zhenhan, Klemperer S L, Zhao Wenjin, Xue Guangqi, Su Heping. 2015. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone. Earth and Planetary Science Letters, 414: 6~15.

    • Shi Danian, Zhao Wenjin, Klemperer S L, Wu Zhenhan, Mechie J, Shi Jianyu, Xue Guangqi, Su Heping. 2016. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles. Earth and Planetary Science Letters, 452: 171~177.

    • Shi Danian, Klemperer S L, Shi Jianyu, Wu Zhenhan, Zhao Wenjin. 2020. Localized foundering of Indian lower crust in the India-Tibet collision zone. Proceedings of the National Academy of Sciences, 117(40): 24742~24747.

    • Sillitoe R H. 2010. Porphyrycopper systems. Economic Geology, 105(1): 3~41.

    • Spain M, Hirn A. 1997. Seismic structure and evidence for eclogitization during the Himalayan convergence. Tectonophysics, 273(1-2): 1~16.

    • Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17~33.

    • Tang Juxing, Yang Huanhuan, Song Yang, Wang Liqiang, Liu Zhibo, Li Baolong, Lin Bin, Peng Bo, Wang Genhou, Zeng Qinggao, Wang Qin, Chen Wei, Wang Nan, Li Zhijun, Li Yubin, Li Yanbo, Li Haifeng, Lei Chuanyang. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau. China Geology, 4(1): 1~16.

    • Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors, 15(1): 39~45.

    • Wang Gaochun, Thybo H, Artemieva I M. 2021. No mafic layer in 80 km thick Tibetan crust. Nature Communications, 12(1): 1~9.

    • Wang Rui, Weinberg R F, Collins W J, Richards J P, Zhu Dicheng. 2018. Origin of post collisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 181: 122~143.

    • Wang Zewei, Zhao Dapeng, Gao Rui, Hua Yuanyuan. 2019. Complex subduction beneath the Tibetan Plateau: A slab warping model. Physics of the Earth and Planetary Interiors, 292: 42~54.

    • Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339~342.

    • Wittlinger G, Farra V, Hetényi G, Vergne J, Nábělek J. 2009. Seismic velocities in Southern Tibet lower crust: A receiver function approach for eclogite detection. Geophysical Journal of the Royal Astronomical Society, 177(3): 1037~1049.

    • Wu Song, Zheng Youye, Xu Bo, Jiang Guangwu, Yi Jianzhou, Liu Xiaofeng, Zheng Shunli, Li Lei. 2022. Heterogeneous mantle associated with asthenosphere and Indian slab metasomatism: Constraints on fertilization of porphyry Cu mineralization in Tibetan orogen. Ore Geology Reviews, 140: 104601.

    • Xu Qiang, Zhao Junmeng, Pei Shunping, Liu Hongbing. 2013. Imaging lithospheric structure of the eastern Himalayan syntaxis: New insights from receiver function analysis. Journal of Geophysical Research: Solid Earth, 118(5): 2323~2332.

    • Xu Qiang, Zhao Junmeng, Yuan Xiaohui, Liu Hongbing, Pei Shunping. 2015. Mapping crustal structure beneath southern Tibet: Seismic evidence for continental crustal underthrusting. Gondwana Research, 27(4): 1487~1493.

    • Xu Qiang, Zhao Junmeng, Yuan Xiaohui, Liu Hongbing, Pei Shunping. 2017. Detailed configuration of the underthrusting Indian lithosphere beneath western Tibet revealed by receiver function images. Journal of Geophysical Research: Solid Earth, 122(10): 8257~8269.

    • Xu Wei, Zhu Dicheng, Wang Qing, Weinberg R F, Wang Rui, Li Shimin, Zhang Liangliang, Zhao Zhidan. 2019. Constructing the Early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation. Journal of Petrology, 60(3): 515~552.

    • Yan Maodu, Zhang Dawen, Fang Xiaomin, Ren Haidong, Zhang Weilin, Zan Jinbo, Song Chunhui, Zhang Tao. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292~316.

    • Yang Zhiming, Hou Zengqian, White N, Chang Zhaoshan, Li Zhenqing, Song Yucai. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3): 133~159.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Youssof M, Thybo H, Artemieva I M, Levander A, 2013. Moho depth and crustal composition in southern Africa. Tectonophysics, 609: 267~287.

    • Yu Chunquan, Zheng Yingcai, Shang Xuefeng. 2017. Crazyseismic: A MATLAB GUI-based software package for passive seismic data preprocessing. Seismological Research Letters, 88(2A): 410~415.

    • Zhang Gangyang, Zheng Youye, Gong Fuzhi, Gao Shunbao, Qu Wenjun, Pang Yingchun, Shi Yuruo, Yin Shiyan. 2008. Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit, Tibet, associated with continent-continent collisional process. Acta Petrologica sinica, 24(3): 473~479 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2018. The Gangdese arc magmatism: From Neo-Tethyan subduction to Indo-Asian collision. Earth Science Frontiers, 25(6): 78~91(in Chinese with English abstract).

    • Zheng Wenbao, Tang Juxing, Zhong Kanghui, Ying Lijuan, Leng Qiufeng, Ding Shuai, Lin Bin. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa Region, China. Ore Geology Reviews, 74: 151~169.

    • Zheng Youye, Sun Xiang, Gao Shunbao, Wu Song, Xu Jing, Jiang Junsheng, Chen Xin, Zhao Zhongying, Liu Yan. 2015. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. Journal of Asian Earth Sciences, 103: 23~39.

    • Zheng Youye, Wu Song, Ci Qiong, Chen Xin, Gao Shunbao, Liu Xiaofeng, Jiang Xiaowen, Zheng Shunli, Li Miao, Jiang Xiaojia. 2021. Cu-Mo-Au Metallogenesis and minerogenetic series during superimposed orogenesis process in Gangdese. Earth Science, 46(6): 1909~1940 (in Chinese with English abstract).

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.

    • Zhu Dicheng, Wang Qing, Cawood P A, Zhao Zhidan, Mo Xuanxue. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214~223.

    • Zhu Dicheng, Wang Qing, Chung Sunlin, Cawood P, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583~604.

    • Zhu Lupei. 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183~190.

    • Zhu Lupei, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969~2980.

    • 侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿. 现代地质, (2): 332~351.

    • 侯增谦, 郑远川, 卢占武, 许博, 王长明, 张洪瑞. 2020a. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797~2815.

    • 侯增谦, 杨志明, 王瑞, 郑远川. 2020b. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用. 地学前缘, 27(2): 20~44.

    • 嵇少丞, 王茜, 杨文采. 2009a. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义. 地质学报, 83(3): 324~330.

    • 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43~51.

    • 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.

    • 曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带: 西藏第二条“玉龙”铜矿带? 矿床地质, (4): 355~366.

    • 张刚阳, 郑有业, 龚福志, 高顺宝, 屈文俊, 庞迎春, 石玉若, 殷世艳. 2008. 西藏吉如斑岩铜矿: 与陆陆碰撞过程相关的斑岩成岩成矿时代约束. 岩石学报, 24(3): 473~479.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2018. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞. 地学前缘, 25(6): 78~91.

    • 郑有业, 吴松, 次琼, 陈鑫, 高顺宝, 刘晓峰, 姜笑文, 郑顺利, 李淼, 姜晓佳. 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909~1940.

  • 参考文献

    • Blisniuk P M, Hacker B R, Glodny J, Ratschbacher L, Bi Siwen, Wu Zhenhan, McWilliams M O, Calvert A. 2001. Normal faulting in central Tibet since at least 13. 5 Myr ago. Nature, 412(6847): 628~632.

    • Christensen N I. 1996. Poisson's ratio and crustal seismology. Journal of Geophysical Research: Solid Earth, 101(B2): 3139~3156.

    • Chu Meifei, Chung Sunlin, Song Biao, Liu Dunyi, O'Reilly S, Pearson N, Ji Jianqiang, Wen Dajen. 2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 34(9): 745~748.

    • DeMets C, Merkouriev S, Jade S. 2020. High-resolution reconstructions and GPS estimates of India-Eurasia and India-Somalia plate motions: 20 Ma to the present. Geophysical Journal International, 220(2): 1149~1171.

    • Dewey J F, Burke K C A. 1973. Tibetan, Variscan, and Precambrian basement reactivation: Products of continental collision. The Journal of Geology, 81(6): 683~692.

    • Dong Xingyu, Li Wenhui, Lu Zhanwu, Huang Xingfu, Gao Rui. 2020. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone. Tectonophysics, 780: 228395.

    • Dupont-Nivet G, Lippert P C, Van Hinsbergen D J J, Meijers M J M, Kapp P. 2010. Palaeolatitude and age of the Indo-Asia collision: Palaeomagnetic constraints. Geophysical Journal International, 182(3): 1189~1198.

    • Gao Rui, Lu Zhanwu, Li Qiusheng, Guan Ye, Zhang Jisheng, He Rizheng Huang Liyan. 2005. Geophysical survey and geodynamic study of crust and upper mantle in the Qinghai-Tibet Plateau. Episodes, 28(4): 263~273.

    • Guo Xiaoyu, Li Wenhui, Gao Rui, Xu Xiao, Li Hongqiang, Huang Xingfu, Ye Zhuo, Lu Zhanwu, Klemperer S L. 2017. Nonuniform subduction of the Indian crust beneath the Himalayas. Scientific Reports, 7(1): 1~8.

    • Guo Xiaoyu, Gao Rui, Zhao Junmeng, Xu Xiao, Lu Zhanwu, Klemperer S L, Liu Hongbin. 2018. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau. Earth-Science Reviews, 185: 751~762.

    • Harrison T M, Copeland P, Kidd W S F, Yin An. 1992. Raising Tibet. Science, 255(5052): 1663~1670.

    • Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system: Far southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373~404.

    • Hildreth W, Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology, 98(4): 455~489.

    • Hirn A, Lepine J C, Jobert G, Sapin M, Wittlinger G, Xu Zhongxin, Gao Enyuan, Wang Xiangjing, Teng Jiwen, Xiong Shaobai, Pandey M R, Tater J M. 1984. Crustal structure and variability of the Himalayan border of Tibet. Nature, 307(5946): 23~25.

    • Hou Zengqian, Gao Yongfeng, Qu Xiaoming, Rui Zongyao, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139~155.

    • Hou Zengqian, Pan Xiaofei, Yang Zhiming, Qu Xiaoming. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: Examples from Chinese porphyry deposits in continental settings. Geoscience, (2): 332~351 (in Chinese with English abstract).

    • Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhenqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1-3): 25~51.

    • Hou Zengqian, Yang Zhiming, Lu Yongjun, Kemp A, Zheng Yuanchuan, Li Qiuyun, Tang Juxing, Yang Zhusen, Duan Lianfeng. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247~250.

    • Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu, Xu Bo, Wang Changming, Zhang Hongrui. 2020a. Growth, thickening and evolution of the thickened crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797~2815 (in Chinese with English abstract).

    • Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020b. Further discussion on porphyry Cu-Mo-Au deposit formation in Chinese mainland. Earth Science Frontiers, 27(2): 20~44 (in Chinese with English abstract).

    • Ji Shaocheng, Wang Qian, Yang Wencai. 2009a. Correlation between crustal thickness and Poisson's Ratio in the North China craton and its implication for lithospheric thinning. Acta Geologica Sinica, 83 (3): 324~330 (in Chinese with English abstract).

    • Ji Shaocheng, Wang Qian, Salisbury M H. 2009b. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics, 463(1-4): 15~30.

    • Kind R, Kosarev G L, Petersen N V. 1995. Receiver functions at the stations of the German Regional Seismic Network(GRSN). Geophysical Journal International, 121(1): 191~202.

    • Kind R, Yuan Xiaohui, Saul J, Nelson D, Sobolev S V, Mechie J, Zhao Wenjin, Kosarev G, Ni J, Achauer U, Jiang M. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 298(5596): 1219~1221.

    • Langston C A. 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bulletin of the Seismological Society of America, 67(4): 1029~1050.

    • Lee C T A, Anderson D L. 2015. Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13): 1141~1156.

    • Li Xueqin, Wei Dongping, Yuan Xiaohui, Kind R, Kumar P, Zhou Huilan. 2011. Details of the doublet Moho structure beneath Lhasa, Tibet, obtained by comparison of P and S receiver functions. Bulletin of the Seismological Society of America, 101(3): 1259~1269.

    • Ligorria J, Ammon C. 1999. Iterative deconvolution and receiver-function estimation. Bulletin of the Seismological Society of America, 89(5): 1395~1400.

    • Liu Dong, Zhao Zhidan, Zhu Dicheng, Niu Yaoling, DePaolo D J, Harrison T M, Mo Xuanxue, Dong Guochen, Zhou Su, Sun Chenguang, Zhang Zhaochong, Liu Junlai. 2014. Postcollisional potassic and ultrapotassic rocks in southern Tibet: Mantle and crustal origins in response to India-Asia collision and convergence. Geochimica et Cosmochimica Acta, 143: 207~231.

    • Lu Zhanwu, Guo Xiaoyu, Gao Rui, Murphy M A, Huang Xingfu, Xu Xiao, Li Sanzhong, Li Wenhui, Zhao Junmeng, Li Chunsen, Xiang Bo. 2022. Active construction of southernmost Tibet revealed by deep seismic imaging. Nature Communications, 13(1): 1~8.

    • Ma Yiming, Yang Tianshui, Bian Weiwei, Jin Jingjie, Wang Qiang, Zhang Shihong, Wu Huaichun, Li Haiyan, Cao Liwan. 2018. Astable southern margin of Asia during the Cretaceous: Paleomagnetic constraints on the Lhasa-Qiangtang collision and the maximum width of the Neo-Tethys. Tectonics, 37(10): 3853~3876.

    • Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.

    • Mo Xuanxue, Pan Guitang. 2006. From the Tethys to the formation of the Qinghai-Tibet Plateau: Constrained by tectono-magmatic events. Earth Science Frontiers, 13(6) : 43~51 (in Chinese with English abstract).

    • Nábělek J, Hetenyi G, Vergne J, Sapkota S, Kafle B, Jiang M, Su H, Chen J, Huang B S, Team H C. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946): 1371~1374.

    • Owens T J, Zandt G, Taylor S R. 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P wave forms. Journal of Geophysical Research: Solid Earth, 89(B9): 7783~7795.

    • Owens T J, Zandt G. 1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 387(6628): 37~43.

    • Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521~533 (in Chinese with English abstract).

    • Qu Xiaoming, Hou Zengqian, Huang Wei. 2001. Is Gangdese porphyry copper belt the second “Yulong” copper belt? Mineral Deposits, (4): 355~366 (in Chinese with English abstract).

    • Richards J P. 2003. Tectono-Magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515~1533.

    • Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1~26.

    • Richards J P, Kerrich R. 2007. Special paper: Adakite-like rocks: Their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537~576.

    • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey M R, Wu F. 2005. Imaging the Indian subcontinent beneath the Himalaya. Nature, 435(7046): 1222~1225.

    • Searle M P, Elliott J R, Phillips R J, Chung Sunlin. 2011. Crustal-lithospheric structure and continental extrusion of Tibet. Journal of the Geological Society, 168(3): 633~672.

    • Şengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications. Nature, 279(5714): 590~593.

    • Shi Danian, Wu Zhenhan, Klemperer S L, Zhao Wenjin, Xue Guangqi, Su Heping. 2015. Receiver function imaging of crustal suture, steep subduction, and mantle wedge in the eastern India-Tibet continental collision zone. Earth and Planetary Science Letters, 414: 6~15.

    • Shi Danian, Zhao Wenjin, Klemperer S L, Wu Zhenhan, Mechie J, Shi Jianyu, Xue Guangqi, Su Heping. 2016. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles. Earth and Planetary Science Letters, 452: 171~177.

    • Shi Danian, Klemperer S L, Shi Jianyu, Wu Zhenhan, Zhao Wenjin. 2020. Localized foundering of Indian lower crust in the India-Tibet collision zone. Proceedings of the National Academy of Sciences, 117(40): 24742~24747.

    • Sillitoe R H. 2010. Porphyrycopper systems. Economic Geology, 105(1): 3~41.

    • Spain M, Hirn A. 1997. Seismic structure and evidence for eclogitization during the Himalayan convergence. Tectonophysics, 273(1-2): 1~16.

    • Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17~33.

    • Tang Juxing, Yang Huanhuan, Song Yang, Wang Liqiang, Liu Zhibo, Li Baolong, Lin Bin, Peng Bo, Wang Genhou, Zeng Qinggao, Wang Qin, Chen Wei, Wang Nan, Li Zhijun, Li Yubin, Li Yanbo, Li Haifeng, Lei Chuanyang. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau. China Geology, 4(1): 1~16.

    • Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle. Physics of the Earth and Planetary Interiors, 15(1): 39~45.

    • Wang Gaochun, Thybo H, Artemieva I M. 2021. No mafic layer in 80 km thick Tibetan crust. Nature Communications, 12(1): 1~9.

    • Wang Rui, Weinberg R F, Collins W J, Richards J P, Zhu Dicheng. 2018. Origin of post collisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 181: 122~143.

    • Wang Zewei, Zhao Dapeng, Gao Rui, Hua Yuanyuan. 2019. Complex subduction beneath the Tibetan Plateau: A slab warping model. Physics of the Earth and Planetary Interiors, 292: 42~54.

    • Williams H, Turner S, Kelley S, Harris N. 2001. Age and composition of dikes in Southern Tibet: New constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology, 29(4): 339~342.

    • Wittlinger G, Farra V, Hetényi G, Vergne J, Nábělek J. 2009. Seismic velocities in Southern Tibet lower crust: A receiver function approach for eclogite detection. Geophysical Journal of the Royal Astronomical Society, 177(3): 1037~1049.

    • Wu Song, Zheng Youye, Xu Bo, Jiang Guangwu, Yi Jianzhou, Liu Xiaofeng, Zheng Shunli, Li Lei. 2022. Heterogeneous mantle associated with asthenosphere and Indian slab metasomatism: Constraints on fertilization of porphyry Cu mineralization in Tibetan orogen. Ore Geology Reviews, 140: 104601.

    • Xu Qiang, Zhao Junmeng, Pei Shunping, Liu Hongbing. 2013. Imaging lithospheric structure of the eastern Himalayan syntaxis: New insights from receiver function analysis. Journal of Geophysical Research: Solid Earth, 118(5): 2323~2332.

    • Xu Qiang, Zhao Junmeng, Yuan Xiaohui, Liu Hongbing, Pei Shunping. 2015. Mapping crustal structure beneath southern Tibet: Seismic evidence for continental crustal underthrusting. Gondwana Research, 27(4): 1487~1493.

    • Xu Qiang, Zhao Junmeng, Yuan Xiaohui, Liu Hongbing, Pei Shunping. 2017. Detailed configuration of the underthrusting Indian lithosphere beneath western Tibet revealed by receiver function images. Journal of Geophysical Research: Solid Earth, 122(10): 8257~8269.

    • Xu Wei, Zhu Dicheng, Wang Qing, Weinberg R F, Wang Rui, Li Shimin, Zhang Liangliang, Zhao Zhidan. 2019. Constructing the Early Mesozoic Gangdese crust in southern Tibet by hornblende-dominated magmatic differentiation. Journal of Petrology, 60(3): 515~552.

    • Yan Maodu, Zhang Dawen, Fang Xiaomin, Ren Haidong, Zhang Weilin, Zan Jinbo, Song Chunhui, Zhang Tao. 2016. Paleomagnetic data bearing on the Mesozoic deformation of the Qiangtang Block: Implications for the evolution of the Paleo- and Meso-Tethys. Gondwana Research, 39: 292~316.

    • Yang Zhiming, Hou Zengqian, White N, Chang Zhaoshan, Li Zhenqing, Song Yucai. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 36(1-3): 133~159.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Youssof M, Thybo H, Artemieva I M, Levander A, 2013. Moho depth and crustal composition in southern Africa. Tectonophysics, 609: 267~287.

    • Yu Chunquan, Zheng Yingcai, Shang Xuefeng. 2017. Crazyseismic: A MATLAB GUI-based software package for passive seismic data preprocessing. Seismological Research Letters, 88(2A): 410~415.

    • Zhang Gangyang, Zheng Youye, Gong Fuzhi, Gao Shunbao, Qu Wenjun, Pang Yingchun, Shi Yuruo, Yin Shiyan. 2008. Geochronologic constraints on magmatic intrusions and mineralization of the Jiru porphyry copper deposit, Tibet, associated with continent-continent collisional process. Acta Petrologica sinica, 24(3): 473~479 (in Chinese with English abstract).

    • Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2018. The Gangdese arc magmatism: From Neo-Tethyan subduction to Indo-Asian collision. Earth Science Frontiers, 25(6): 78~91(in Chinese with English abstract).

    • Zheng Wenbao, Tang Juxing, Zhong Kanghui, Ying Lijuan, Leng Qiufeng, Ding Shuai, Lin Bin. 2016. Geology of the Jiama porphyry copper-polymetallic system, Lhasa Region, China. Ore Geology Reviews, 74: 151~169.

    • Zheng Youye, Sun Xiang, Gao Shunbao, Wu Song, Xu Jing, Jiang Junsheng, Chen Xin, Zhao Zhongying, Liu Yan. 2015. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. Journal of Asian Earth Sciences, 103: 23~39.

    • Zheng Youye, Wu Song, Ci Qiong, Chen Xin, Gao Shunbao, Liu Xiaofeng, Jiang Xiaowen, Zheng Shunli, Li Miao, Jiang Xiaojia. 2021. Cu-Mo-Au Metallogenesis and minerogenetic series during superimposed orogenesis process in Gangdese. Earth Science, 46(6): 1909~1940 (in Chinese with English abstract).

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241~255.

    • Zhu Dicheng, Wang Qing, Cawood P A, Zhao Zhidan, Mo Xuanxue. 2017. Raising the Gangdese Mountains in southern Tibet. Journal of Geophysical Research: Solid Earth, 122(1): 214~223.

    • Zhu Dicheng, Wang Qing, Chung Sunlin, Cawood P, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483(1): 583~604.

    • Zhu Lupei. 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth and Planetary Science Letters, 179(1): 183~190.

    • Zhu Lupei, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 105(B2): 2969~2980.

    • 侯增谦, 潘小菲, 杨志明, 曲晓明. 2007. 初论大陆环境斑岩铜矿. 现代地质, (2): 332~351.

    • 侯增谦, 郑远川, 卢占武, 许博, 王长明, 张洪瑞. 2020a. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797~2815.

    • 侯增谦, 杨志明, 王瑞, 郑远川. 2020b. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用. 地学前缘, 27(2): 20~44.

    • 嵇少丞, 王茜, 杨文采. 2009a. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义. 地质学报, 83(3): 324~330.

    • 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43~51.

    • 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.

    • 曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带: 西藏第二条“玉龙”铜矿带? 矿床地质, (4): 355~366.

    • 张刚阳, 郑有业, 龚福志, 高顺宝, 屈文俊, 庞迎春, 石玉若, 殷世艳. 2008. 西藏吉如斑岩铜矿: 与陆陆碰撞过程相关的斑岩成岩成矿时代约束. 岩石学报, 24(3): 473~479.

    • 张泽明, 丁慧霞, 董昕, 田作林. 2018. 冈底斯弧的岩浆作用: 从新特提斯俯冲到印度-亚洲碰撞. 地学前缘, 25(6): 78~91.

    • 郑有业, 吴松, 次琼, 陈鑫, 高顺宝, 刘晓峰, 姜笑文, 郑顺利, 李淼, 姜晓佳. 2021. 冈底斯复合造山带铜钼金多金属成矿作用与成矿系列. 地球科学, 46(6): 1909~1940.