en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱训璋,男,1998年生。硕士研究生,构造地质学专业。E-mail:zhuxunzhang1998@163.com。

通讯作者:

刘栋梁,男,1978年生。博士,研究员,博士生导师,主要从事古地磁和热年代学等构造地质研究。E-mail:pillar131@163.com。

参考文献
Allègre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Scharer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariepy C, Gopel C, Li Tindong, Xiao Xuchang, Chang Chenfa, Li Guanqin, Lin Baoyu, Teng Jiwen, Wang Naiwen, Chen Guoming, Han Tonglin, Wang Xibin, Den Wanming, Sheng Huaibin, Cao Yougong, Zhou Ji, Qiu Hongrong, Bao Peisheng, Wang Songchan, Wang Bixiang, Zhou Yaoxiu, Xu R H. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.
参考文献
Benjamin M T, Johnson N M, Naeser C W. 1987. Recent rapid uplift in the Bolivian Andes: Evidence from fission-track dating. Geology, 15(7): 680~683.
参考文献
Bi Wenjun, Han Zhongpeng, Li Yalin, Li Chengming, Wang Chengshan, Zhang Jiawei, Han Jianyun, He Haiyang, Qian Xinyu, Xu Tiankun, Ma Zining. 2021. Deformation and cooling history of the Central Qiangtang terrane, Tibetan Plateau and its tectonic implications. International Geology Review, 63(15): 1821~1837.
参考文献
Braun J. 2002. Quantifying the effect of recent relief changes on age-elevation relationships. Earth and Planetary Science Letters, 200(3-4): 331~343.
参考文献
Braun J, Van Der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524: 128.
参考文献
Cao Xiaofeng, Lü Xinbiao, Yao Shuzhen, Mei Wei, Zou Xiaoyan, Chen Chao, Liu Shentai, Zhang Ping, Su Yuyun, Zhang Bin. 2011. LA-ICP-MS U-Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China. Ore Geology Reviews, 43(1): 120~131.
参考文献
Cao Kai, Wang Guocan, Liu Chao, Meng Yanning. 2009. Thermochronological evidence of the Cenozic differential uplift processes of the West Kunlun and its adjacent area. Earth Science-Journal of China University of Geosciences, 6: 895~906 (in Chinese with English abstract).
参考文献
Chen Lihao, Wang Yadong, He Pengju, Song Chunhui, Meng Qingquan, Feng Wei, Chen Wenqi, Wang Xinghong. 2022. Mesozoic-Cenozoic multistage tectonic deformation of the Qilian Shan constrained by detrital apatite fission track and zircon U-Pb geochronology in the Yumu Shan area. Tectonophysics, 822: 229151.
参考文献
Cogné N, Chew D M, Donelick R A, Ansberque C. 2020. LA-ICP-MS apatite fission track dating: A practical zeta-based approach. Chemical Geology, 531: 119302.
参考文献
Currie B S, Rowley D B, Tabor N J. 2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33(3): 181~184.
参考文献
Dewey J F, Shackleton R M, Chang Chengfa, Sun Yiyin. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 327(1594): 379~413.
参考文献
Ding Lin, Xu Qiang, Yue Yahui, Wang Houqi, Cai Fulong, Li Shun. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250~264.
参考文献
Ding Lin, Kapp P, Cai Fulong, Garzione C N, Xiong Zhongyu, Wang Houqi, Wang Chao. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3: 652~667.
参考文献
Donelick R A, O'Sullivan P B, Ketcham R A. 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58: 49~94.
参考文献
Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming, Peng Touping, Liu Haiyong. 2018. Material composition, age and significance of the Dong Co Melange in the Bangong Co-Nujiang suture zone. Geological Bulletin of China, 37(8): 1417~1427 (in Chinese with English abstract).
参考文献
Garzione C N, Dettman D L, Quade J, DeCelles P G, Butler R F. 2000. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal Geology, 28(4): 339~342.
参考文献
Gallagher K, Hawkesworth C J, Mantovani M S M. 1994. The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. Journal of Geophysical Research: Solid Earth, 99(B9): 18117~18145.
参考文献
Gallagher K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2).
参考文献
Girardeau J, Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamicn significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.
参考文献
Glotzbach C, van der Beek P A, Spiegel C. 2011. Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth and Planetary Science Letters, 304(3-4): 417~430.
参考文献
Green P F, Duddy I R, Gleadow A J W, Laslett G M. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59: 237~253.
参考文献
Gourbet L, Leloup P H, Paquette J L, Sorrel P, Maheo G, Wang Guocan, Xu Yadong, Cao Kai, Antoine P O, Eymard I, Liu Wei, Lu Haijian, Replumaz A, Chevalier M L, Zhang Kexin, Wu Jing, Shen Tianyi. 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics, 700: 162~179.
参考文献
Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.
参考文献
Guynn J H, Tropper P, Kapp P, Gehrels G E. 2013. Metamorphism of the Amdo metamorphic complex, Tibet: Implications for the Jurassic tectonic evolution of the Bangong suture zone. Geology, 31(7): 705~727.
参考文献
Haider V L, Dunkl I, Eynatten H, Ding Lin, Frei D, Zhang Liyun. 2013. Cretaceous to Cenozoic evolution of the northern Lhasa terrane and the early Paleogene development of peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70-71: 79~98.
参考文献
Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207(3-4): 135~145.
参考文献
He Shiping, Li Rongshe, Wang Chao, Gu Pingyang, Yu Pingyang, Shi Chao, Zha Xiaofeng. 2012. The formation age of Kaqiong Rock Group in the northern margin of Gangdese, the Qinghai-Tibet plateau. Geochimica, 3: 216~226 (in Chinese with English abstract).
参考文献
Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding Lin, Frei D. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39(10): 983~986.
参考文献
Hoke G D, Liu-Zeng Jing, Hren M T, Wissink G K, Garzione C N. 2014. Stable isotopes reveal high southeast Tibetan plateau margin since the Paleogene. Earth and Planetary Science Letters, 394: 270~278.
参考文献
Hoke G D. 2018. Geochronology transforms our view of how Tibet's southeast margin evolved. Geology, 46(1): 95~96.
参考文献
Huang Jiqin, Chen Guoming, Chen Binwei. 1984. A preliminary analysis of the Tethys-Himalayan tectonic domain. Acta Geologica Sinica, 58(1): 1~17 (in Chinese).
参考文献
Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics, 343: 111~134.
参考文献
Jian Xing, Guan Ping, Zhang Wei, Liang Hanghai, Feng Fan, Fu Ling. 2018. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam basin. Gondwana Research, 60: 94~104.
参考文献
Kang Wenjun, Xu Xiwei, Yu Guihua, Tan Xibin, Li Kang, Luo Jiahong, Zhang Weibin. 2019. Differential late-Cenozoic uplift across the Dongjiu-Milin fault zone in the eastern Himalayan Syntaxis revealed by low-temperature thermochronology. Journal of Asian Earth Sciences, 179: 189~199.
参考文献
Ketcham R A, Carter A, Hurford A J. 2015. Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. American Mineralogist, 100(7): 1452~1468.
参考文献
Li Cai, Xie Yaowu, Sha Shaoli, Dong Yongsheng. 2008. SHRIMP U-Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China. Geological Bulletin of China, 27(1): 64~68 (in Chinese with English abstract).
参考文献
Li Chao, Zhao Zhongbao, Lu Hanjian, Li Haibing. 2022. Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang suture, central Tibet. Tectonophysics, 827: 229268.
参考文献
Li Guangming, Feng Xiaoliang, Huang Zhiying, Gao Dafa. 2000. The multiple island arc-basin systems and their evolution in the Gangdise tectonic belt, Xizang. Sedimentary Geology and Tethyan Geology, 4: 38~46 (in Chinese with English abstract).
参考文献
Li Huaqi, Xu Zhiqin, Webb A A G, Li Tianfu, Ma Shiwei, Huang Xuemeng. 2017. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: Implications for an archipelago-accretion orogenic model. Tectonophysics, 702: 29~41.
参考文献
Li Shanying, Currie B S, Rowley D B, Inglls M. 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan plateau: Constraints on the tectonic evolution of the region. Earth and Planetary Science Letters, 432: 415~424.
参考文献
Li Shimin, Wang Qing, Zhu Dicheng, Cawood P A, Stern R J, Weinberg R, Zhao Zhidan, Mo Xuanxue. 2020. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic. Tectonics, 39(2): e2019TC005951.
参考文献
Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.
参考文献
Li Xiaorong, Zhang Bo, Zhang Jinjiang, Chen Siyu, Zhang Lei. 2022. Late Cenozoic exhumation history and its tectonic implication of the Yadong area in the Himalayan orogenic belt: evidence from apatite and zircon (U-Th)/He thermochronology. Acta Geologica Sinica, 96(4): 1143~1162 (in Chinese with English abstract).
参考文献
Liu Yongjiang, Genser J, Neubauer F, Jin Wei, Ge Xiaohong, Handler R, Takasu A. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398: 199~224.
参考文献
Liu Dongliang, Li Haibing, Sun Zhiming, Pan Jiawei, Wang Meng, Wang Huan, Chevalier M L. 2017. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages. Gondwana Research, 41: 438~450.
参考文献
Liu Dongliang, Li Haibing, Chevalier M L, Sun Zhiming, Pei Junling, Pan Jiawei, Ge Chenglong, Wang Ping, Wang Huan, Wu Chang. 2021. Activity of the Baiganhu fault of the Altyn Tagh fault system, northern Tibetan Plateau: Insights from zircon and apatite fission track analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 570: 110356.
参考文献
Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from Ar-40/Ar-39 thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary. Science Letters, 171: 107~122.
参考文献
Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.
参考文献
Pearce J A, Deng W M. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 215~238.
参考文献
Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288~299.
参考文献
Polissar P J, Freeman K H, Rowley D B, Mclnerney F A, Currie B S. 2009. Paleoaltimetry of the Tibetan plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters, 287: 64~76.
参考文献
Qian Xinyu, Li Yalin, Dai Jingen, Wang Chengshan, Han Zhongpeng, Zhang Jiawei, Li Han'ao. 2021. Apatite and zircon (U-Th)/He thermochronological evidence for Mesozoic exhumation of the Central Tibetan Mountain Range. Geological Journal, 56(1): 599~611.
参考文献
Quade J, Breecker D O, Daeron M, Eilter J. 2011. The paleoaltimetry of Tibet: An isotopic perspective. American Journal of Science, 311(2): 77~115.
参考文献
Ren Fei, Pan Guitang, Yin Fuguang, Xiao Qinhui. 2017. Oceanic plate stratigraphy and tectonic evolution of the Nujiang-Lancangjiang-Jinshajiang area in southwestern China. Sedimentary Geology and Tethyan Geology, 37(4): 9~16 (in Chinese with English abstract).
参考文献
Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding Lin, Heizler M. 2012. Thermochronologic evidence for plateau formation in Central Tibet by 45 Ma. Geology, 40(2): 187~190.
参考文献
Rowley D B, Pierrehumbert R T, Currie B S. 2001. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188: 253~268.
参考文献
Rowley D B, Currie B S. 2006. Paleo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature, 439(7077): 677~681.
参考文献
Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding Lin. 2009. The late Miocene through present paleoelevation history of southwestern Tibet. American Journal of Science, 309(1): 1~42.
参考文献
Şengör A M C. 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth-Science Reviews, 27(1-2): 1~201.
参考文献
Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo Shuangxing, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421(6923): 622~624.
参考文献
Tang Maoyun, Liu-Zeng Jing, Hoke G D, Xu Qiang, Wang Weitao, Li Zhanfei, Zhan Jinyun, Wang Wei. 2017. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo Basin, SE-central Tibet. Tectonophysics, 712: 170~181.
参考文献
Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671~1677.
参考文献
Tian Pengfei, Yuan Wangming, Yang Xiaoyong. 2020. The basics, essential concepts and geological applications of thermochronology. Geological Review, 66(4): 975~1004 (in Chinese with English abstract).
参考文献
Tian Yuntao, Kohn B P, Gleadow A J W, Hu Shengbiao. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(1): 676~698.
参考文献
Wagner G A, Haute P V. 1992. Fission-Track Dating Method[M]//Fission-Track Dating. Springer, Dordrecht, 59~94.
参考文献
Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Guangyin, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.
参考文献
Wang Chengshan, Zhao Xixi, Liu Zhifei, Lippert P C, Graham S A, Coe R S, Yi Haisheng, Zhu Lidong, Liu Shun, Li Yalin. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987~4992.
参考文献
Wang Kaiyuan. 1996. Precambrian basement groups and tectonic evolution of the Sanjiang tectonic belt in Southwest China and the western margin of Yangtze. Yunnan Geology, 15(2): 138~148 (in Chinese).
参考文献
Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.
参考文献
Wang Yu, Zhang Xuemin, Sun Lixin, Wan Jinglin. 2007. Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and apatite fission track thermochronology. Journal of Asian Earth Sciences, 29(2-3): 266~282.
参考文献
Xie Jincheng, Li Weikai, Dong Guochen, Mo Xuanxue, Zhao Zhidan, Yu Junchuan, Wang Tianci. 2013. Petrology, geochemistry and tectonic significance of the granites from Basu area, Tibet. Acta Petrologica Sinica, 29(11): 3779~3791 (in Chinese with English abstract).
参考文献
Xie Yaowu, Li Linqing, Qiangba ZhaXi, Wang Ming, Jiang Guangwu. 2009. Geochemical, geochronological features and tectonic significance of volcanic rocks of Zhucun Formation in Baxoi area, eastern Tibet, China. Geological Bulletin of China, 28(9): 1244~1252 (in Chinese with English abstract).
参考文献
Xiong Zhongyu, Ding Lin, Spicer R A, Farnsworth A, Wang Xu, Valdes P J, Su Tao, Zhang Qinghai, Zhang Liyun, Cai Fulong, Wang Houqi, Li Zhenyu, Song Peiping, Guo Xudong, Yue Yahui. 2020. The early Eocene rise of the Gonjo basin, SE Tibet: From low desert to high forest. Earth and Planetary Science Letters, 543: 116312.
参考文献
Xu Qiang, Ding Lin, Zhang Liyun, Cai Fulong, Lai Qingzhou, Yang Di, Liu-Zeng Jing. 2013. Paleogene high elevations in the Qiangtang Terrane, central Tibetan plateau. Earth and Planetary Science Letters, 362: 31~42.
参考文献
Xue Weiwei, Najman Yani, Hu Xiumian, Persano C, Stuart F M, Li Wei, Ma Anlin, Wang Ying. 2022. Late Cretaceous to late Eocene exhumation in the Nima area, central Tibet: Implications for development of low relief topography of the Tibetan Plateau. Tectonics, 41(3): e2021TC006989.
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.
参考文献
Yu F, Zhou T F, Yuan F, Qian C C, Lu S M, Cokke D R. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715~1724 (in Chinese with English abstract).
参考文献
Yuan W M, Zhang X T, Dong J Q, Tang Y H, Yu F S, Wang S C. 2003. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet plateau, China. Radiation Measurements, 36(1-6): 357~362.
参考文献
Yuan Wanming, Carter A, Dong Jinquan, Bao Zengkuan, An Yinchang, Guo Zhaojie. 2006. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data Tectonophysics, 412(3-4): 183~193.
参考文献
Zeng Min, Zhang Xiang, Cao Hui, Ettensohn F R, Cheng Wenbin, Lang Xinghai. 2016. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147~157.
参考文献
Zhang Hongfei. 2022. How did the subducted oceanic slab break-off take place? Earth Science, 47(10): 3798~3799.
参考文献
Zhang Jiawei, Li Yalin, Xu Ming, Dai Jingen, Qian Xinyu, Han Zhongpeng, Zhang Huiping, Pang Jianzhang. 2021. New apatite fission track evidence from the northern Qiangtang terrane reveal two-phase evolution of central Tibet. Terra Nova, 33(1): 95~108.
参考文献
Zhang Xiaoran, Shi Rendeng, Huang Qishuai, Liu Deliang, Gong Xiaohan, Chen Shengsheng, Wu Kang, Yi Guoding, Sun Yali, Ding Lin. 2014. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U-Pb geochronology of mafic granulites. Gondwana Research, 26(3-4): 975~985.
参考文献
Zhao Zhen, Lu Lu, Wu Zhenhan. 2019. Uplifting evolution of the central uplift belt, Qiangtang: Constrains from tectonothermochronology. Earth Science Frontiers, 26(2): 249~263 (in Chinese with English abstract).
参考文献
Zhao Zhongbao, Bons P D, Stubner K, Wang Genhou, Ehlers T A. 2017. Early Cretaceous exhumation of the Qiangtang Terrane during collision with the Lhasa Terrane, Central Tibet. 29: 382~391.
参考文献
Zhao Zhongbao, Bons P D, Li Chao, Wang Genhou, Ma Xuxuan, Li Guangwei. 2020. The Cretaceous crustal shortening and thickening of the South Qiangtang Terrane and implications for proto-Tibetan Plateau formation. Gondwana Research, 78: 141~155.
参考文献
Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science China Earth Science, 52(9): 1223~1239.
参考文献
Zhu Dicheng, Li Shiming, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.
参考文献
曹凯, 王国灿, 刘超, 孟艳宁. 2009 . 西昆仑及邻区新生代差异隆升的热年代学证据. 地球科学(中国地质大学学报), 6: 895~906.
参考文献
范建军, 李才, 王明, 解超明, 彭头平, 刘海永. 2018. 班公湖-怒江缝合带洞错混杂岩物质组成、时代及其意义. 地质通报, 37(8): 1417~1427.
参考文献
黄汲清, 陈国铭, 陈炳蔚. 1984. 特提斯-喜马拉雅构造域初步分析. 地质学报, 58(1): 1~17.
参考文献
何世平, 李荣社, 王超, 辜平阳, 于浦生, 时超, 查显锋. 2012. 青藏高原冈底斯北缘卡穷岩群形成时代的确定. 地球化学, 3: 216~226.
参考文献
李晓蓉, 张波, 张进江, 陈思雨, 张磊. 2022. 喜马拉雅造山带亚东地区晚新生代剥露历史及其构造意义: 来自磷灰石和锆石(U-Th)/He数据的约束. 地质学报, 96(4): 1143~1162.
参考文献
李光明, 冯孝良, 黄志英, 高大发. 2000. 西藏冈底斯构造带中段多岛弧-盆系及其演化. 沉积与特提斯地质, 4: 38~46.
参考文献
李才, 谢尧武, 沙绍礼, 董永胜. 2008. 藏东八宿地区泛非期花岗岩锆石 SHRIMP U-Pb 定年. 地质通报, 27(1): 64~68.
参考文献
任飞, 潘桂棠, 尹福光, 常梦瑶, 肖庆辉. 2017. 西南三江地区洋板块地层特征及构造演化. 沉积与特提斯地质, 37(4): 9~16.
参考文献
王国灿, 曹凯, 张克信, 王岸, 刘超, 孟艳宁, 徐亚东. 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 3: 332~349.
参考文献
王铠元. 1996. 西南三江构造带及扬子西缘前寒武纪基底岩群与构造演化. 云南地质, 15(2): 138~148.
参考文献
谢锦程, 李炜恺, 董国臣, 莫宣学, 赵志丹, 于峻川, 王天赐. 2013. 西藏八宿花岗岩岩石学、地球化学特征及其构造意义. 岩石学报, 29(11): 3779~3791.
参考文献
谢尧武, 李林庆, 强巴扎西, 王明, 蒋光武. 2009. 藏东八宿地区朱村组火山岩地球化学、同位素年代学及其构造意义. 地质通报, 28(9): 1244~1252.
参考文献
张宏飞. 2022. 俯冲大洋板片是如何发生断离的? 地球科学, 47(10): 3798~3799.
参考文献
赵珍, 陆露, 吴珍汉. 2019. 羌塘盆地中央隆起带的抬升演化: 构造-热年代学约束. 地学前缘, 26(2): 249~263.
参考文献
钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289~295.
参考文献
朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异 I 型花岗岩的成因: 锆石 U-Pb 年代学, 地球化学和 Sr-Nd-Hf 同位素约束. 中国科学: 地球科学, 39(7): 833~848.
目录contents

    摘要

    班公湖-怒江缝合带为青藏高原内部分隔羌塘和拉萨两地块的构造边界,是研究青藏高原构造演化的重要窗口之一。该缝合带自西向东分为西段(班公湖至改则)、中段(安多至东巧)和东段(丁青至怒江),其中东段的研究程度较低。本次以东段八宿县郭庆乡一条花岗岩高程剖面为研究对象,采用激光剥蚀电感耦合等离子体质谱仪(LA-ICPMS)法对锆石和磷灰石开展裂变径迹测试。花岗岩锆石U-Pb年龄为~180 Ma,指示其结晶时代为早侏罗世。锆石和磷灰石裂变径迹年龄分别为180~130 Ma、86~61 Ma,对应的年龄-海拔曲线分别为负斜率和正斜率。QTQt模拟显示花岗岩高程剖面顶部在130~60 Ma时剥蚀冷却速率快,中部在130~40 Ma时剥蚀冷却速率居中,而底部在~130 Ma之后一直保持最低的剥蚀冷却速率。这种差异性隆升源自班公湖-怒江缝合带东段的南向俯冲板片断离早于北向俯冲板片断离。

    Abstract

    The Bangonghu-Nujiang suture zone is an important tectonic boundary, separating the Qiangtang and Lhasa blocks within the Tibetan Plateau (TP). This suture zone is one of the important geological windows for deciphering the growth history of TP. It can be divided into three parts: the western (from Banggong Lake to Gaze), middle (from Anduo to Dongqiao) and eastern (from Dingqing to Nujiang) sections. Few studies were undertaken in the eastern section. In this study, a vertical profile of granite near Guoqing Village of Basu County is considered for the fission track dating research, including zircon fission track (ZFT) and apatite fission track (AFT) with laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The zircon U-Pb ages are centered at ~180 Ma, indicating that its crystallization age is the Early Jurassic. The ages of ZFT and AFT range at 180~130 Ma and 86~61 Ma, respectively. The Age-Elevation Relations (AER) of ZFT and AFT have a negative and positive slope, respectively. The QTQt simulation shows that the upper sample had experienced a fast-rate erosion during about 130~60 Ma, the middle had undergone a middle-rate erosion during 130~40 Ma, and the lower had maintained the slowest erosion since ~130 Ma. This differential uplift was caused by the earlier time of slab break-off in southward subduction than that in the northward subduction.

  • 班公湖-怒江缝合带位于青藏高原内羌塘地块和拉萨地块之间,自西向东分为西段(班公湖至改则)、中段(安多至东巧)和东段(丁青至怒江),其延伸超过2000 km(图1; Girardeau et al.,1984; Dewey et al.,1988; Pearce and Deng,1988; Yin and Harrison,2000)。该缝合带是中生代班公湖-怒江新特提斯洋经历扩张、俯冲消减、地体拼合后残留的大洋岩石圈残片,也是一个规模巨大、地质构造复杂的构造带,其在重建青藏高原变形隆升历史等方面具有重要地质意义。

  • 近二十多年研究表明青藏高原内各相对独立块体的变形隆升起始时间、隆升过程及到达现今高度的时间存在一定差异(Tapponnier et al.,2001; Wang Chengshan et al.,2008; Ding Lin et al.,20142022)。前人研究大都集中在高原中—南部(Garzione et al.,2000; Rowley et al.,20012006; Spicer et al.,2003; Currie et al.,2005; Polissar et al.,2009; Saylor et al.,2009; Xu Qiang et al.,2013; Ding Lin et al.,2014),近年来高原东南缘出现一系列隆升历史研究成果( 如Hoke et al.,2014; Li Shanying et al.,2015; Gourbet et al.,2017; Tang Maoyun et al.,2017; Hoke,2018; Xiong Zhongyu et al.,2020李晓蓉等,2022),但目前缺乏高原东南缘班公湖-怒江缝合带东段八宿地区中新生代构造隆升研究。本次以郭庆乡的一条花岗岩高程剖面为研究对象,采集样品进行锆石和磷灰石LA-ICPMS裂变径迹测试分析,以期获得该岩体冷却历史,探讨其构造隆升过程。

  • 图1 青藏高原主要活动断层及缝合带位置图(修改自Tapponnier et al.,2001; Yin et al.,2010; Pan Guitang et al.,2012

  • Fig.1 The map of major active faults and suture zones in the Tibetan Plateau (modified after Tapponnier et al., 2001; Yin et al., 2010; Pan Guitang et al., 2012)

  • 1 地质概况

  • 青藏高原从北向南依次由昆仑-柴达木-秦岭地体、松潘-甘孜地体、北羌塘地体、南羌塘地体、拉萨地体和喜马拉雅拼合而成,各部分之间以阿尔玛沁-昆仑缝合带、金沙江缝合带、龙木错-双湖缝合带、班公湖-怒江缝合带和印度-雅鲁藏布江缝合带为界(图1; Allègre et al.,1984; Dewey et al.,1988; Sengör,1990; Yin and Harrison,2000)。位于南羌塘和拉萨地体之间班公湖-怒江缝合带是宽200~300 km的中特提斯洋遗迹(Pan Guitang et al.,2012),由一系列不同时代、不同物质成分和不同来源的岩石混杂组成,如:蛇绿岩、次深海复理石、放射虫硅质岩、洋岛型玄武岩和灰岩等(范建军等,2018)。

  • 本次研究区位于八宿县境内,研究区有两条重要的断裂带——怒江断裂带和洛隆-八宿断裂带(图2)。研究区属于班公湖-怒江缝合带东段,处于冈底斯-念青唐古拉板块北东缘以及印度板块、藏滇板块和华南板块的结合部位,是板块多次打开、拼合形成的特提斯构造域重要而复杂的拼合地带(黄汲清等,1984; 王铠元等,1996; 李光明等,2000; 任飞等,2017)。八宿地区同时位于冈底斯岩浆岩带的东段,而整个冈底斯岩浆岩带南北宽150~300 km,东西长约2500 km,面积达49.3×104 km2朱弟成等,2009)。前人研究发现该地区存在早古生代岩浆活动,如同卡地区507±10 Ma的花岗片麻岩(李才等,2008)和549±18 Ma的片麻状二长花岗岩(何世平等,2012)等。整个冈底斯岩浆岩带是高原岩浆作用最为发育的地区,仅中生代的岩浆岩面积就达到 10.2×104 km2朱弟成等,2009)。八宿地区出露地层呈北西-南东向展布,包括侏罗纪—白垩纪火山沉积地层和相关侵入岩,如花岗闪长岩和黑云母二长花岗岩等(谢锦程等,2013)。

  • 2 样品采集及研究方法

  • 2.1 样品采集

  • 八宿地区花岗岩岩基构造上属于八宿混杂岩体同卡单元,其为怒江断裂带和洛隆-八宿断裂带之间最大岩体。采样地点位于郭庆乡南部约18 km(图2),建设中的川藏铁路拟从该岩体穿过。本文共采集了7件花岗岩样品,从上至下分别为NJ-01、NJ-02、NJ-03、NJ-04、NJ-05、NJ-06和NJ-07。最高点样品的海拔为5195 m,最低点样品的海拔为4544 m,样品海拔跨度约650 m,水平距离跨度约2000 m,海拔高处6个样品位于沟的西侧,最底部样品位于沟的东侧(表1,图3)。

  • 图2 八宿县地质图(修改自西藏自治区地质调查院,2006;黑色星号代表文献中采样点位置,据谢尧武等,2009; Li Huaqi et al.,2017;蓝色方框为本次采样地点)

  • Fig.2 Geological map of Basu County (modified after Tibetan Autonomous Region Geological Survey, 2006; black stars represent the sampling locations of previous publications from Xie Yaowu et al., 2009 and Li Huaqi et al., 2017; blue box means the sampling site of this study)

  • 表1 八宿地区郭庆乡裂变径迹样品采样信息表

  • Table1 Summary of apatite and zircon fission-track analysis samples from Guoqing Village,Basu area

  • 2.2 LA-ICP MS裂变径迹实验

  • 裂变径迹法(FT)是低温热年代学的重要方法之一,能够有效揭示上地壳低温热历史演化、造山带隆升剥露和地貌演化等过程(Green et al.,1986; Gallagher et al.,1994)。自然界中富U晶体矿物(主要包括磷灰石、锆石等)在低于封闭温度之后,矿物内放射性元素238U通过自发裂变形成两个质量相近的粒子。两个粒子向相反方向运动,其在矿物晶体内产生一条长达约20 μm、宽约3~6 nm的辐射损伤。损伤痕迹经化学蚀刻后可在光学显微镜下观察,观察到的痕迹即称为裂变径迹。裂变径迹随着温度升高长度变短、密度减小,直到完全消失,这一现象被称为退火过程。锆石裂变径迹的封闭温度为250±40℃,磷灰石裂变径迹的封闭温度为100±20℃(Wagner and Haute,1992)。

  • 现今的裂变径迹研究方法包括两种:传统外探测器法和激光剥蚀(LA-ICPMS)法。传统外探测器法通过白云母片外探测器间接测试矿物颗粒中238U含量来计算裂变径迹年龄,而LA-ICPMS法通过直接测定矿物颗粒中238U含量来计算裂变径迹年龄(Hasebe et al.,2004)。LA-ICPMS法省去了云母片安装、样品辐照、云母片蚀刻及诱发径迹统计等传统238U 含量测量过程,极大地缩短了分析周期,避免了放射性废物的处理,且节约成本、操作简便,已成为目前裂变径迹的主流方法。同时,LA-ICPMS法能获得矿物的U-Pb年龄。

  • 图3 八宿地区详细采样位置与样品野外照片

  • Fig.3 Detailed sampling locations and field photos in the Basu region

  • (a)—卫星影像图展示详细采样位置;(b~g)—花岗岩样品野外照片

  • (a) —satellite image showing the detailed sampling locations; (b~g) —field photos of granite samples

  • 花岗岩样品利用传统方法进行粗选、磁悬浮、重液分选等标准流程分离出所需要的磷灰石和锆石单颗粒矿物。磷灰石和锆石裂变径迹测试在美国Apatite to Zircon公司完成。将筛选和分离出单矿物颗粒分别用环氧基树脂和聚四氟乙丙烯透明塑料片将磷灰石和锆石矿粒固定,制作成光薄片,并研磨抛光揭示矿物颗粒内表面。磷灰石颗粒在恒温21℃的5.5 mol/L HNO3溶液中蚀刻20 s以揭示自发径迹。锆石颗粒在225℃下的KOH+NaOH熔融物内蚀刻20~35 h揭示自发径迹(Yuan Wanming et al.,20032006)。然后,使用 AUTOSCAN系统显微镜,挑选出大小合适(一般大于80 μm)、径迹分布均匀、表面干净的单颗粒磷灰石和锆石进行自发径迹数量、计数面积、围限径迹长度等统计,同时记录对应单颗粒径迹的统计区域。本次实验的每件样品均至少测试36个以上有效单颗粒磷灰石和锆石。然后采用NWR UP-213 213 nm激光剥蚀系统(LA)和Agilent 7700型四极杆电感耦合等离子体质谱仪(Q-ICPMS)联机对上述单颗粒磷灰石和锆石裂变径迹记录区进行238U浓度微区测试。使用Donelick et al.(2005)Cogné et al.(2020)的方程式计算了裂变径迹年龄。

  • 2.3 裂变径迹热史模拟

  • 现今裂变径迹热史模拟方法主要有QTQt、HeFTy和Pecube等。QTQt软件是基于多维 Markov Chain Monte-Carlo(MCMC)迭代方法,对垂向上或空间上的多个样品、多封闭系统热年代学结果进行插值反演得到连续剖面的温度-时间(T-t)热史(Gallagher,2012; Ketcham,2015)。该方法的热史模拟初始条件可以根据区域构造地质特征(如:样品地层沉积初始年龄与地表温度、区域构造事件等)进行正演限定,或进行无边界条件正演获得最大的插值范围。垂直连续剖面的顶底样品温度差值或变量受区域地温场和浅表作用影响,故模拟过程中使用动态温度差值(Temp.offset)或定量的最大(与最小)温度差值算法进行有效限定,结合随机选择和迭代算法(约100000次)得到与观测数据限定的样品热史相似的可能模型热史(Gallagher,2012)。一般模拟最终的时间与温度差值评价参数约0.2~0.5,裂变径迹退火约0.8~0.95,表明所得到的模型热史结果较佳。

  • 3 测试结果

  • 3.1 锆石U-Pb测年结果

  • NJ-01样品46个锆石测试结果表明有36个锆石数据点较集中分布在谐和线上,其206Pb/238U年龄加权平均值为186.29±12.25 Ma(MSWD=2.1)(图4)。NJ-02样品46个锆石测试结果表明有41个锆石数据点较集中分布在谐和线上,其206Pb/238U年龄加权平均值为180.13±7.25 Ma(MSWD=1.18)。NJ-03样品46个锆石测试结果表明有43个锆石数据点较集中分布在谐和线上,其206Pb/238U年龄加权平均值为175.24±6.43 Ma(MSWD=1.18)。NJ-04样品47个锆石测试结果表明有41个锆石数据点较集中分布在谐和线上,其206Pb/238U年龄加权平均值为181.95±10.33 Ma(MSWD=2.4)。NJ-05样品43个锆石测试结果表明有36个锆石数据点较集中分布在谐和线上,其206Pb/238U年龄加权平均值为181.14±11.52 Ma(MSWD=2.7)。NJ-06样品42个锆石测试结果表明有38个锆石数据点较集中分布在谐和线上,其206Pb/238U年龄加权平均值为179.25±7.02 Ma(MSWD=7.9)。NJ-07样品43个锆石测试结果表明有31个锆石数据点较集中分布在谐和线上,其206Pb/238U年龄加权平均值为187.13±12.47 Ma(MSWD=3.8)。综上所述,本剖面样品的锆石U-Pb年龄均集中在~180 Ma,为中侏罗世侵入花岗岩岩体。

  • 3.2 锆石裂变径迹实验结果

  • 本次LA-ICPMS锆石裂变径迹测试中每个样品分析了42~48单颗粒锆石,自发裂变径迹数为1325~2217条(表2)。海拔从高到低,锆石裂变径迹池年龄分别为136.58 Ma、130.68 Ma、137.30 Ma、134.40 Ma、176.12 Ma、180.18 Ma和171.77 Ma。本剖面顶部4个样品约处于137~130 Ma,而底部3个样品约处于180~172 Ma。使用Matlab代码(Glotzbach et al.,2011)制作该剖面年龄-海拔关系图,分别对应1个、2个和3个斜率的年龄-海拔关系图(图5)。其中1个斜率的年龄-海拔关系图对应的斜率为-0.01 km/Ma,相关系数为-0.82,为最佳拟合结果。

  • 表2 郭庆乡 LA-ICPMS锆石裂变径迹分析结果

  • Table2 LA-ICPMS zircon fission track data of Guoqing Village

  • 注:NNS 分别代表锆石单颗粒数量、自发径迹数; 95%+Cl、95%-Cl为池年龄误差。

  • 3.3 磷灰石裂变径迹实验结果

  • 本次LA-ICPMS磷灰石裂变径迹测试中大部分样品分析了超过50个颗粒,只有NJ-06测试了36个颗粒。样品的平均年龄年龄为86~61 Ma,平均围限径迹长度约为13~13.78 μm,Dpar约为1.58~1.72 μm。详细结果见表3,从高到低分别为86.10 Ma、80.27 Ma、67.05 Ma、73.74 Ma、75.43 Ma、61.21 Ma和70.52 Ma。使用Matlab代码(Glotzbach et al.,2011)进行年龄-海拔关系成图,获得1个和2个斜率的年龄-海拔关系图(图6)。其中1个斜率的年龄-海拔关系图对应斜率为0.05 km/Ma,相关系数为0.59,拟合结果最佳。

  • 3.4 热史模拟结果

  • 郭庆乡花岗岩样品锆石和磷灰石裂变径迹QTQt模拟结果显示:高程剖面最顶部样品NJ-01在约130~60 Ma冷却速率较快(平均冷却速率约为2.71℃/Ma),在约60 Ma之后进入缓慢的冷却阶段(平均冷却速率为0.33℃/Ma);中部样品NJ-03和NJ-04的热史模拟结果类似,在约130~40 Ma保持一个较快的冷却速率(平均冷却速率约为2.11℃/Ma),而在约40 Ma之后冷却速率变缓慢(平均冷却速率为0.5℃/Ma);底部样品NJ-06则一直保持均匀的冷却速率,约为1.31℃/Ma(图7)。

  • 图4 郭庆乡花岗岩样品锆石U-Pb年龄谐和图

  • Fig.4 Zircon U-Pb condordia of granite samples from Guoqing Village

  • 表3 郭庆乡LA-ICPMS磷灰石裂变径迹分析结果

  • Table3 LA-ICPMS apatite fission track data of Guoqing Village

  • 注: N表示磷灰石单颗粒数量;95%+Cl、95%-Cl为池年龄误差;NS表示自发径迹数; n表示测量径迹长度的数量;ML代表平均围限径迹长度;Std Dev是围限径迹长度标准差;Dpar为与矿物结晶C轴平行的、与抛光面相交的裂变径迹蚀刻象的最大直径。

  • 图5 郭庆乡锆石裂变径迹ZFT年龄和海拔关系图

  • Fig.5 Zircon fission track (ZFT) age and elevation relation of Guoqing Village

  • 本图给出了年龄和海拔关系图的线性相关性(实线)、95%置信区间(虚线)、相关系数(R2)、对数似然性(lnL)和贝叶斯信息准则(BIC)对应值等,方框表示最佳拟合(由最低BIC值表示)

  • The figure shows the age-elevation relationship with the linear correlations (solid line) , 95% confidence intervals (dash line) , correlation coefficients (R2) , log-likelihood (lnL) and Bayesian Information Criterion (BIC) ; box indicates best fit with the lowest BIC value

  • 4 讨论

  • 4.1 八宿地区郭庆乡花岗岩热年代学结果对应的热事件

  • 本次研究的7个样品锆石U-Pb年龄为~180 Ma(图4),采样点北部未变形的花岗岩锆石U-Pb年龄为186~174 Ma(图2;Li Huaqi et al.,2017)。通常花岗岩锆石U-Pb年龄代表花岗岩结晶年龄(Pidgeon et al.,1998; Yu et al.,2008; Cao Xiaofeng et al.,2011),故郭庆乡及北部花岗岩岩基结晶时代为早侏罗世。同时,在班公湖-怒江缝合带广泛存在185~170 Ma的花岗岩侵入体(Guynn et al.,2006; Li Shun et al.,2019)和187~167 Ma同构造辉长岩(Wang Baodi et al.,2016)。这些均表明班公湖-怒江缝合带在~180 Ma时存在强烈岩浆活动。

  • 图6 郭庆乡磷灰石裂变径迹年龄和海拔关系图

  • Fig.6 Apatite fission track age and elevation relation of Guoqing Village

  • 本图给出了年龄和海拔关系图的线性相关性(实线)、95%置信区间(虚线)、相关系数(R2)、对数似然性(lnL)和贝叶斯信息准则(BIC)对应值等

  • This figure shows the age-elevation relationship with the linear correlations (solid line) , 95% confidence intervals (dash line) , correlation coefficients (R2) , log-likelihood (lnL) and Bayesian Information Criterion (BIC)

  • 图7 郭庆乡花岗岩磷灰石和锆石裂变径迹QTQt热史模拟结果(最期望的和最可能的热史曲线分别用黑色和红色线表示)

  • Fig.7 The QTQt thermal history simulation results of the apatite and zircon fission track data to the Guoqing Village granite (the expected, most probable thermal histories are indicated by black and red lines)

  • 7 个样品锆石裂变径迹年龄为180~130 Ma(表2),前人在研究区的副片麻岩黑云母40Ar/39Ar年龄为~165 Ma (Li Huaqi et al.,2017),代表八宿地区存在侏罗纪—白垩纪的冷却事件。同时,此次冷却事件广泛出现于青藏高原及其周边,如来自东昆仑花岗岩黑云母和钾长石的40Ar/39Ar年龄(Mock et al.,1999; Liu Yongjiang et al.,2005)、祁漫塔格地区花岗岩锆石和磷灰石裂变径迹(Liu Dongliang et al.,2017; Wang Yadong et al.,2018; Liu Dongliang et al.,2021)、阿尔金山脉多种热年代学(Jolivet et al.,2001)、祁连山北缘热年代学(Chen Lihao et al.,2022)、青藏高原东南部的热年代学(Tian Yuntao et al.,2014)及拉萨和羌塘多种热年代学(Wang Yu et al.,2007; Zhao Zhongbao et al.,2017; Bi Wenjun et al.,2021; Zhang Jiawei et al.,2021)等证据。

  • 7 个样品磷灰石裂变径迹年龄主要集中在约86~61 Ma之间(表3),表明八宿地区存在晚白垩世—早古新世冷却事件。同时,在班怒带的改则(Li Chao et al.,2022)、尼玛(Zhao Zhongbao et al.,2020; Xue Weiwei et al.,2022)和班戈(Hetzel et al.,2011; Rohrmann et al.,2012; Haider et al.,2013)均报道指示此时期冷却事件的热年代学证据。另外,此次冷却事件在远离班怒带的地区也广泛存在,如羌塘中部荣玛—双湖一带(赵珍等,2019; Qian Xinyu et al.,2021)和柴达木盆地北缘(Jian Xing et al.,2018)等。

  • 4.2 八宿地区郭庆乡花岗岩体差异性隆升

  • 热年代学研究中年龄-海拔关系图可显示剥露速率而具有一定地质意义(Braun et al.,2012)。正常的年龄-海拔关系图为正的剥露速率,即高海拔样品比低海拔样品的裂变径迹年龄大(Benjamin et al.,1987; Braun,2002; Braun et al.,2012)。如果采样点处于非均匀隆升场,可能会出现高海拔样品比低海拔样品的裂变径迹年龄小的现象(Braun et al.,2012; Kang Wenjun et al.,2019)。本次研究的锆石裂变径迹年龄-海拔关系图中出现斜率为-0.01 km/Ma的负值剥露速率(图5),但磷灰石裂变径迹年龄-海拔关系图中出现斜率为0.05 km/Ma的正值剥露速率(图6)。锆石裂变径迹年龄倒置是否受非均匀隆升影响,本次以QTQt热史模拟来探讨该现象。

  • QTQt热史模拟出该剖面非均匀性隆升过程(图7):高程剖面顶部在约130~60 Ma时快速冷却,中部在约130~40 Ma时保持中速冷却,底部在~130 Ma之后一直保持低速冷却。~130 Ma之前该岩体锆石裂变径迹年龄与海拔图应当为正常的关系图,~130 Ma之后因差异性隆升使其发生倒置(图5)。推测现今剖面顶部对应原剖面底部,而现今剖面底部对应原剖面顶部,当岩体剥蚀冷却抬升至磷灰石裂变径迹封闭温度后,磷灰石裂变径迹记录了正常的年龄-海拔关系(图6)。

  • 差异性隆升是现今青藏高原基础地质问题之一(Tapponnier et al.,2001; Wang Chengshang et al.,2008; Ding Lin et al.,20142022),体现在高原西北部(曹凯等,2009)、东北部(Liu Dongliang et al.,2017)、中部(Rowley and Currie,2006; Quade et al.,2011; Hetzel et al.,2011; Rohrmann et al.,2012)、南部(Ding Lin et al.,2014)和东南部(钟大赉等,1996; 王国灿等,2011; Xiong Zhongyu et al.,2020)等地区。往往差异性隆升是不同地区之间的隆升历史差异,而本次在不到2 km的范围内发现的差异性隆升是很少报道的现象,其也可能会是今后热年代学精细化研究方向之一。

  • 前人通过弧岩浆岩、蛇绿岩和变质岩时代等限定了班怒洋的俯冲时代(Zeng Min et al.,2016; Li Shun et al.,2019),如安多地区约185~170 Ma的弧岩浆岩年龄(Guynn et al.,2006; Li Shun et al.,2019)及约191~178 Ma的变质年龄(Guynn et al.,20062013; Zhang Xiaoran et al.,2014)和江错地区约166~160 Ma的弧岩浆年龄(Li Shimin et al.,2020)。八宿郭庆乡出现~180 Ma弧岩浆岩(Li Huaqi et al.,2017;本次研究),其应为班怒带东段洋壳北向俯冲的的产物。在180~130 Ma时,岩体经剥蚀冷却记录了锆石裂变径迹年龄,样品NJ-07对应原剖面的顶部,而NJ-01对应原剖面的底部。另外,前人在八宿地区发现洋壳南向俯冲证据,如~128 Ma的角闪英安岩(图2;谢尧武等,2009)和~120 Ma的花岗闪长岩-石英闪长岩(谢锦程等,2013)。这与其他地区洋壳南向俯冲时代相近,如班怒带两侧140~120 Ma “岩浆弧”岩浆岩带(Zhu Dicheng et al.,2016)和缝合带内部120~110 Ma板片断离造成地幔来源的去申拉组(Zhu Dicheng et al.,2016)。之后(130~60 Ma)八宿地区班怒带洋壳经历双向俯冲、板片断离和磷灰石记录剥蚀冷却事件。板片俯冲断离时形成断离窗,断离窗上部物质发生迅速折返及引起造山带地壳快速隆升(张宏飞,2022)。最先发生断离的南向俯冲板片造成岩体南西侧的剥蚀冷却速率快且总剥蚀量大,南西侧样品从底部经快速抬升最先进入磷灰石裂变径迹封闭温度。晚发生断离的北向俯冲板片对该岩体剥蚀抬升贡献相对较少。这种南北向俯冲板片非同时性断离可能是造成该区差异性隆升的关键因素。

  • 5 结论

  • 本次研究采用LA ICPMS方法对班公湖-怒江缝合带东部八宿郭庆乡一条花岗岩剖面进行了磷灰石和锆石裂变径迹分析,同时进行了QTQt热演化历史模拟,结果表明:

  • (1)研究区花岗岩锆石U-Pb年龄大致为~180 Ma,代表花岗岩结晶年龄,其是班公湖-怒江洋洋壳北向俯冲碰撞的产物。

  • (2)锆石裂变径迹年龄为180~130 Ma,磷灰石裂变径迹年龄为86~61 Ma。锆石与磷灰石裂变径迹的年龄-海拔关系图不同,前者为倒置的负斜率,后者为正斜率。

  • (3)QTQt模拟显示剖面顶部、中部和底部经历不同的热历史,顶部在130~60 Ma时剥蚀冷却速率快,中部在130~40 Ma时剥蚀冷却速率居中,底部在~130 Ma之后一直保持较低的剥蚀冷却速率。班公湖-怒江缝合带南向俯冲板片断离早于北向俯冲板片断离,其可能是这种差异性隆升的关键因素。

  • 注释

  • ❶ 西藏自治区地质调查院.2006. 西藏1∶25万八宿县地质图H47C002001.

  • 参考文献

    • Allègre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Scharer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariepy C, Gopel C, Li Tindong, Xiao Xuchang, Chang Chenfa, Li Guanqin, Lin Baoyu, Teng Jiwen, Wang Naiwen, Chen Guoming, Han Tonglin, Wang Xibin, Den Wanming, Sheng Huaibin, Cao Yougong, Zhou Ji, Qiu Hongrong, Bao Peisheng, Wang Songchan, Wang Bixiang, Zhou Yaoxiu, Xu R H. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.

    • Benjamin M T, Johnson N M, Naeser C W. 1987. Recent rapid uplift in the Bolivian Andes: Evidence from fission-track dating. Geology, 15(7): 680~683.

    • Bi Wenjun, Han Zhongpeng, Li Yalin, Li Chengming, Wang Chengshan, Zhang Jiawei, Han Jianyun, He Haiyang, Qian Xinyu, Xu Tiankun, Ma Zining. 2021. Deformation and cooling history of the Central Qiangtang terrane, Tibetan Plateau and its tectonic implications. International Geology Review, 63(15): 1821~1837.

    • Braun J. 2002. Quantifying the effect of recent relief changes on age-elevation relationships. Earth and Planetary Science Letters, 200(3-4): 331~343.

    • Braun J, Van Der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524: 128.

    • Cao Xiaofeng, Lü Xinbiao, Yao Shuzhen, Mei Wei, Zou Xiaoyan, Chen Chao, Liu Shentai, Zhang Ping, Su Yuyun, Zhang Bin. 2011. LA-ICP-MS U-Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China. Ore Geology Reviews, 43(1): 120~131.

    • Cao Kai, Wang Guocan, Liu Chao, Meng Yanning. 2009. Thermochronological evidence of the Cenozic differential uplift processes of the West Kunlun and its adjacent area. Earth Science-Journal of China University of Geosciences, 6: 895~906 (in Chinese with English abstract).

    • Chen Lihao, Wang Yadong, He Pengju, Song Chunhui, Meng Qingquan, Feng Wei, Chen Wenqi, Wang Xinghong. 2022. Mesozoic-Cenozoic multistage tectonic deformation of the Qilian Shan constrained by detrital apatite fission track and zircon U-Pb geochronology in the Yumu Shan area. Tectonophysics, 822: 229151.

    • Cogné N, Chew D M, Donelick R A, Ansberque C. 2020. LA-ICP-MS apatite fission track dating: A practical zeta-based approach. Chemical Geology, 531: 119302.

    • Currie B S, Rowley D B, Tabor N J. 2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33(3): 181~184.

    • Dewey J F, Shackleton R M, Chang Chengfa, Sun Yiyin. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 327(1594): 379~413.

    • Ding Lin, Xu Qiang, Yue Yahui, Wang Houqi, Cai Fulong, Li Shun. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250~264.

    • Ding Lin, Kapp P, Cai Fulong, Garzione C N, Xiong Zhongyu, Wang Houqi, Wang Chao. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3: 652~667.

    • Donelick R A, O'Sullivan P B, Ketcham R A. 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58: 49~94.

    • Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming, Peng Touping, Liu Haiyong. 2018. Material composition, age and significance of the Dong Co Melange in the Bangong Co-Nujiang suture zone. Geological Bulletin of China, 37(8): 1417~1427 (in Chinese with English abstract).

    • Garzione C N, Dettman D L, Quade J, DeCelles P G, Butler R F. 2000. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal Geology, 28(4): 339~342.

    • Gallagher K, Hawkesworth C J, Mantovani M S M. 1994. The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. Journal of Geophysical Research: Solid Earth, 99(B9): 18117~18145.

    • Gallagher K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2).

    • Girardeau J, Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamicn significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.

    • Glotzbach C, van der Beek P A, Spiegel C. 2011. Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth and Planetary Science Letters, 304(3-4): 417~430.

    • Green P F, Duddy I R, Gleadow A J W, Laslett G M. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59: 237~253.

    • Gourbet L, Leloup P H, Paquette J L, Sorrel P, Maheo G, Wang Guocan, Xu Yadong, Cao Kai, Antoine P O, Eymard I, Liu Wei, Lu Haijian, Replumaz A, Chevalier M L, Zhang Kexin, Wu Jing, Shen Tianyi. 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics, 700: 162~179.

    • Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.

    • Guynn J H, Tropper P, Kapp P, Gehrels G E. 2013. Metamorphism of the Amdo metamorphic complex, Tibet: Implications for the Jurassic tectonic evolution of the Bangong suture zone. Geology, 31(7): 705~727.

    • Haider V L, Dunkl I, Eynatten H, Ding Lin, Frei D, Zhang Liyun. 2013. Cretaceous to Cenozoic evolution of the northern Lhasa terrane and the early Paleogene development of peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70-71: 79~98.

    • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207(3-4): 135~145.

    • He Shiping, Li Rongshe, Wang Chao, Gu Pingyang, Yu Pingyang, Shi Chao, Zha Xiaofeng. 2012. The formation age of Kaqiong Rock Group in the northern margin of Gangdese, the Qinghai-Tibet plateau. Geochimica, 3: 216~226 (in Chinese with English abstract).

    • Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding Lin, Frei D. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39(10): 983~986.

    • Hoke G D, Liu-Zeng Jing, Hren M T, Wissink G K, Garzione C N. 2014. Stable isotopes reveal high southeast Tibetan plateau margin since the Paleogene. Earth and Planetary Science Letters, 394: 270~278.

    • Hoke G D. 2018. Geochronology transforms our view of how Tibet's southeast margin evolved. Geology, 46(1): 95~96.

    • Huang Jiqin, Chen Guoming, Chen Binwei. 1984. A preliminary analysis of the Tethys-Himalayan tectonic domain. Acta Geologica Sinica, 58(1): 1~17 (in Chinese).

    • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics, 343: 111~134.

    • Jian Xing, Guan Ping, Zhang Wei, Liang Hanghai, Feng Fan, Fu Ling. 2018. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam basin. Gondwana Research, 60: 94~104.

    • Kang Wenjun, Xu Xiwei, Yu Guihua, Tan Xibin, Li Kang, Luo Jiahong, Zhang Weibin. 2019. Differential late-Cenozoic uplift across the Dongjiu-Milin fault zone in the eastern Himalayan Syntaxis revealed by low-temperature thermochronology. Journal of Asian Earth Sciences, 179: 189~199.

    • Ketcham R A, Carter A, Hurford A J. 2015. Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. American Mineralogist, 100(7): 1452~1468.

    • Li Cai, Xie Yaowu, Sha Shaoli, Dong Yongsheng. 2008. SHRIMP U-Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China. Geological Bulletin of China, 27(1): 64~68 (in Chinese with English abstract).

    • Li Chao, Zhao Zhongbao, Lu Hanjian, Li Haibing. 2022. Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang suture, central Tibet. Tectonophysics, 827: 229268.

    • Li Guangming, Feng Xiaoliang, Huang Zhiying, Gao Dafa. 2000. The multiple island arc-basin systems and their evolution in the Gangdise tectonic belt, Xizang. Sedimentary Geology and Tethyan Geology, 4: 38~46 (in Chinese with English abstract).

    • Li Huaqi, Xu Zhiqin, Webb A A G, Li Tianfu, Ma Shiwei, Huang Xuemeng. 2017. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: Implications for an archipelago-accretion orogenic model. Tectonophysics, 702: 29~41.

    • Li Shanying, Currie B S, Rowley D B, Inglls M. 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan plateau: Constraints on the tectonic evolution of the region. Earth and Planetary Science Letters, 432: 415~424.

    • Li Shimin, Wang Qing, Zhu Dicheng, Cawood P A, Stern R J, Weinberg R, Zhao Zhidan, Mo Xuanxue. 2020. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic. Tectonics, 39(2): e2019TC005951.

    • Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.

    • Li Xiaorong, Zhang Bo, Zhang Jinjiang, Chen Siyu, Zhang Lei. 2022. Late Cenozoic exhumation history and its tectonic implication of the Yadong area in the Himalayan orogenic belt: evidence from apatite and zircon (U-Th)/He thermochronology. Acta Geologica Sinica, 96(4): 1143~1162 (in Chinese with English abstract).

    • Liu Yongjiang, Genser J, Neubauer F, Jin Wei, Ge Xiaohong, Handler R, Takasu A. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398: 199~224.

    • Liu Dongliang, Li Haibing, Sun Zhiming, Pan Jiawei, Wang Meng, Wang Huan, Chevalier M L. 2017. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages. Gondwana Research, 41: 438~450.

    • Liu Dongliang, Li Haibing, Chevalier M L, Sun Zhiming, Pei Junling, Pan Jiawei, Ge Chenglong, Wang Ping, Wang Huan, Wu Chang. 2021. Activity of the Baiganhu fault of the Altyn Tagh fault system, northern Tibetan Plateau: Insights from zircon and apatite fission track analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 570: 110356.

    • Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from Ar-40/Ar-39 thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary. Science Letters, 171: 107~122.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pearce J A, Deng W M. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 215~238.

    • Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288~299.

    • Polissar P J, Freeman K H, Rowley D B, Mclnerney F A, Currie B S. 2009. Paleoaltimetry of the Tibetan plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters, 287: 64~76.

    • Qian Xinyu, Li Yalin, Dai Jingen, Wang Chengshan, Han Zhongpeng, Zhang Jiawei, Li Han'ao. 2021. Apatite and zircon (U-Th)/He thermochronological evidence for Mesozoic exhumation of the Central Tibetan Mountain Range. Geological Journal, 56(1): 599~611.

    • Quade J, Breecker D O, Daeron M, Eilter J. 2011. The paleoaltimetry of Tibet: An isotopic perspective. American Journal of Science, 311(2): 77~115.

    • Ren Fei, Pan Guitang, Yin Fuguang, Xiao Qinhui. 2017. Oceanic plate stratigraphy and tectonic evolution of the Nujiang-Lancangjiang-Jinshajiang area in southwestern China. Sedimentary Geology and Tethyan Geology, 37(4): 9~16 (in Chinese with English abstract).

    • Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding Lin, Heizler M. 2012. Thermochronologic evidence for plateau formation in Central Tibet by 45 Ma. Geology, 40(2): 187~190.

    • Rowley D B, Pierrehumbert R T, Currie B S. 2001. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188: 253~268.

    • Rowley D B, Currie B S. 2006. Paleo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature, 439(7077): 677~681.

    • Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding Lin. 2009. The late Miocene through present paleoelevation history of southwestern Tibet. American Journal of Science, 309(1): 1~42.

    • Şengör A M C. 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth-Science Reviews, 27(1-2): 1~201.

    • Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo Shuangxing, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421(6923): 622~624.

    • Tang Maoyun, Liu-Zeng Jing, Hoke G D, Xu Qiang, Wang Weitao, Li Zhanfei, Zhan Jinyun, Wang Wei. 2017. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo Basin, SE-central Tibet. Tectonophysics, 712: 170~181.

    • Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671~1677.

    • Tian Pengfei, Yuan Wangming, Yang Xiaoyong. 2020. The basics, essential concepts and geological applications of thermochronology. Geological Review, 66(4): 975~1004 (in Chinese with English abstract).

    • Tian Yuntao, Kohn B P, Gleadow A J W, Hu Shengbiao. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(1): 676~698.

    • Wagner G A, Haute P V. 1992. Fission-Track Dating Method[M]//Fission-Track Dating. Springer, Dordrecht, 59~94.

    • Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Guangyin, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.

    • Wang Chengshan, Zhao Xixi, Liu Zhifei, Lippert P C, Graham S A, Coe R S, Yi Haisheng, Zhu Lidong, Liu Shun, Li Yalin. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987~4992.

    • Wang Kaiyuan. 1996. Precambrian basement groups and tectonic evolution of the Sanjiang tectonic belt in Southwest China and the western margin of Yangtze. Yunnan Geology, 15(2): 138~148 (in Chinese).

    • Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.

    • Wang Yu, Zhang Xuemin, Sun Lixin, Wan Jinglin. 2007. Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and apatite fission track thermochronology. Journal of Asian Earth Sciences, 29(2-3): 266~282.

    • Xie Jincheng, Li Weikai, Dong Guochen, Mo Xuanxue, Zhao Zhidan, Yu Junchuan, Wang Tianci. 2013. Petrology, geochemistry and tectonic significance of the granites from Basu area, Tibet. Acta Petrologica Sinica, 29(11): 3779~3791 (in Chinese with English abstract).

    • Xie Yaowu, Li Linqing, Qiangba ZhaXi, Wang Ming, Jiang Guangwu. 2009. Geochemical, geochronological features and tectonic significance of volcanic rocks of Zhucun Formation in Baxoi area, eastern Tibet, China. Geological Bulletin of China, 28(9): 1244~1252 (in Chinese with English abstract).

    • Xiong Zhongyu, Ding Lin, Spicer R A, Farnsworth A, Wang Xu, Valdes P J, Su Tao, Zhang Qinghai, Zhang Liyun, Cai Fulong, Wang Houqi, Li Zhenyu, Song Peiping, Guo Xudong, Yue Yahui. 2020. The early Eocene rise of the Gonjo basin, SE Tibet: From low desert to high forest. Earth and Planetary Science Letters, 543: 116312.

    • Xu Qiang, Ding Lin, Zhang Liyun, Cai Fulong, Lai Qingzhou, Yang Di, Liu-Zeng Jing. 2013. Paleogene high elevations in the Qiangtang Terrane, central Tibetan plateau. Earth and Planetary Science Letters, 362: 31~42.

    • Xue Weiwei, Najman Yani, Hu Xiumian, Persano C, Stuart F M, Li Wei, Ma Anlin, Wang Ying. 2022. Late Cretaceous to late Eocene exhumation in the Nima area, central Tibet: Implications for development of low relief topography of the Tibetan Plateau. Tectonics, 41(3): e2021TC006989.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Yu F, Zhou T F, Yuan F, Qian C C, Lu S M, Cokke D R. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715~1724 (in Chinese with English abstract).

    • Yuan W M, Zhang X T, Dong J Q, Tang Y H, Yu F S, Wang S C. 2003. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet plateau, China. Radiation Measurements, 36(1-6): 357~362.

    • Yuan Wanming, Carter A, Dong Jinquan, Bao Zengkuan, An Yinchang, Guo Zhaojie. 2006. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data Tectonophysics, 412(3-4): 183~193.

    • Zeng Min, Zhang Xiang, Cao Hui, Ettensohn F R, Cheng Wenbin, Lang Xinghai. 2016. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147~157.

    • Zhang Hongfei. 2022. How did the subducted oceanic slab break-off take place? Earth Science, 47(10): 3798~3799.

    • Zhang Jiawei, Li Yalin, Xu Ming, Dai Jingen, Qian Xinyu, Han Zhongpeng, Zhang Huiping, Pang Jianzhang. 2021. New apatite fission track evidence from the northern Qiangtang terrane reveal two-phase evolution of central Tibet. Terra Nova, 33(1): 95~108.

    • Zhang Xiaoran, Shi Rendeng, Huang Qishuai, Liu Deliang, Gong Xiaohan, Chen Shengsheng, Wu Kang, Yi Guoding, Sun Yali, Ding Lin. 2014. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U-Pb geochronology of mafic granulites. Gondwana Research, 26(3-4): 975~985.

    • Zhao Zhen, Lu Lu, Wu Zhenhan. 2019. Uplifting evolution of the central uplift belt, Qiangtang: Constrains from tectonothermochronology. Earth Science Frontiers, 26(2): 249~263 (in Chinese with English abstract).

    • Zhao Zhongbao, Bons P D, Stubner K, Wang Genhou, Ehlers T A. 2017. Early Cretaceous exhumation of the Qiangtang Terrane during collision with the Lhasa Terrane, Central Tibet. 29: 382~391.

    • Zhao Zhongbao, Bons P D, Li Chao, Wang Genhou, Ma Xuxuan, Li Guangwei. 2020. The Cretaceous crustal shortening and thickening of the South Qiangtang Terrane and implications for proto-Tibetan Plateau formation. Gondwana Research, 78: 141~155.

    • Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science China Earth Science, 52(9): 1223~1239.

    • Zhu Dicheng, Li Shiming, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • 曹凯, 王国灿, 刘超, 孟艳宁. 2009 . 西昆仑及邻区新生代差异隆升的热年代学证据. 地球科学(中国地质大学学报), 6: 895~906.

    • 范建军, 李才, 王明, 解超明, 彭头平, 刘海永. 2018. 班公湖-怒江缝合带洞错混杂岩物质组成、时代及其意义. 地质通报, 37(8): 1417~1427.

    • 黄汲清, 陈国铭, 陈炳蔚. 1984. 特提斯-喜马拉雅构造域初步分析. 地质学报, 58(1): 1~17.

    • 何世平, 李荣社, 王超, 辜平阳, 于浦生, 时超, 查显锋. 2012. 青藏高原冈底斯北缘卡穷岩群形成时代的确定. 地球化学, 3: 216~226.

    • 李晓蓉, 张波, 张进江, 陈思雨, 张磊. 2022. 喜马拉雅造山带亚东地区晚新生代剥露历史及其构造意义: 来自磷灰石和锆石(U-Th)/He数据的约束. 地质学报, 96(4): 1143~1162.

    • 李光明, 冯孝良, 黄志英, 高大发. 2000. 西藏冈底斯构造带中段多岛弧-盆系及其演化. 沉积与特提斯地质, 4: 38~46.

    • 李才, 谢尧武, 沙绍礼, 董永胜. 2008. 藏东八宿地区泛非期花岗岩锆石 SHRIMP U-Pb 定年. 地质通报, 27(1): 64~68.

    • 任飞, 潘桂棠, 尹福光, 常梦瑶, 肖庆辉. 2017. 西南三江地区洋板块地层特征及构造演化. 沉积与特提斯地质, 37(4): 9~16.

    • 王国灿, 曹凯, 张克信, 王岸, 刘超, 孟艳宁, 徐亚东. 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 3: 332~349.

    • 王铠元. 1996. 西南三江构造带及扬子西缘前寒武纪基底岩群与构造演化. 云南地质, 15(2): 138~148.

    • 谢锦程, 李炜恺, 董国臣, 莫宣学, 赵志丹, 于峻川, 王天赐. 2013. 西藏八宿花岗岩岩石学、地球化学特征及其构造意义. 岩石学报, 29(11): 3779~3791.

    • 谢尧武, 李林庆, 强巴扎西, 王明, 蒋光武. 2009. 藏东八宿地区朱村组火山岩地球化学、同位素年代学及其构造意义. 地质通报, 28(9): 1244~1252.

    • 张宏飞. 2022. 俯冲大洋板片是如何发生断离的? 地球科学, 47(10): 3798~3799.

    • 赵珍, 陆露, 吴珍汉. 2019. 羌塘盆地中央隆起带的抬升演化: 构造-热年代学约束. 地学前缘, 26(2): 249~263.

    • 钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289~295.

    • 朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异 I 型花岗岩的成因: 锆石 U-Pb 年代学, 地球化学和 Sr-Nd-Hf 同位素约束. 中国科学: 地球科学, 39(7): 833~848.

  • 参考文献

    • Allègre C J, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger J J, Achache J, Scharer U, Marcoux J, Burg J P, Girardeau J, Armijo R, Gariepy C, Gopel C, Li Tindong, Xiao Xuchang, Chang Chenfa, Li Guanqin, Lin Baoyu, Teng Jiwen, Wang Naiwen, Chen Guoming, Han Tonglin, Wang Xibin, Den Wanming, Sheng Huaibin, Cao Yougong, Zhou Ji, Qiu Hongrong, Bao Peisheng, Wang Songchan, Wang Bixiang, Zhou Yaoxiu, Xu R H. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17~22.

    • Benjamin M T, Johnson N M, Naeser C W. 1987. Recent rapid uplift in the Bolivian Andes: Evidence from fission-track dating. Geology, 15(7): 680~683.

    • Bi Wenjun, Han Zhongpeng, Li Yalin, Li Chengming, Wang Chengshan, Zhang Jiawei, Han Jianyun, He Haiyang, Qian Xinyu, Xu Tiankun, Ma Zining. 2021. Deformation and cooling history of the Central Qiangtang terrane, Tibetan Plateau and its tectonic implications. International Geology Review, 63(15): 1821~1837.

    • Braun J. 2002. Quantifying the effect of recent relief changes on age-elevation relationships. Earth and Planetary Science Letters, 200(3-4): 331~343.

    • Braun J, Van Der Beek P, Valla P, Robert X, Herman F, Glotzbach C, Pedersen V, Perry C, Simon-Labric T, Prigent C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, 524: 128.

    • Cao Xiaofeng, Lü Xinbiao, Yao Shuzhen, Mei Wei, Zou Xiaoyan, Chen Chao, Liu Shentai, Zhang Ping, Su Yuyun, Zhang Bin. 2011. LA-ICP-MS U-Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China. Ore Geology Reviews, 43(1): 120~131.

    • Cao Kai, Wang Guocan, Liu Chao, Meng Yanning. 2009. Thermochronological evidence of the Cenozic differential uplift processes of the West Kunlun and its adjacent area. Earth Science-Journal of China University of Geosciences, 6: 895~906 (in Chinese with English abstract).

    • Chen Lihao, Wang Yadong, He Pengju, Song Chunhui, Meng Qingquan, Feng Wei, Chen Wenqi, Wang Xinghong. 2022. Mesozoic-Cenozoic multistage tectonic deformation of the Qilian Shan constrained by detrital apatite fission track and zircon U-Pb geochronology in the Yumu Shan area. Tectonophysics, 822: 229151.

    • Cogné N, Chew D M, Donelick R A, Ansberque C. 2020. LA-ICP-MS apatite fission track dating: A practical zeta-based approach. Chemical Geology, 531: 119302.

    • Currie B S, Rowley D B, Tabor N J. 2005. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 33(3): 181~184.

    • Dewey J F, Shackleton R M, Chang Chengfa, Sun Yiyin. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 327(1594): 379~413.

    • Ding Lin, Xu Qiang, Yue Yahui, Wang Houqi, Cai Fulong, Li Shun. 2014. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250~264.

    • Ding Lin, Kapp P, Cai Fulong, Garzione C N, Xiong Zhongyu, Wang Houqi, Wang Chao. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nature Reviews Earth & Environment, 3: 652~667.

    • Donelick R A, O'Sullivan P B, Ketcham R A. 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry, 58: 49~94.

    • Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming, Peng Touping, Liu Haiyong. 2018. Material composition, age and significance of the Dong Co Melange in the Bangong Co-Nujiang suture zone. Geological Bulletin of China, 37(8): 1417~1427 (in Chinese with English abstract).

    • Garzione C N, Dettman D L, Quade J, DeCelles P G, Butler R F. 2000. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal Geology, 28(4): 339~342.

    • Gallagher K, Hawkesworth C J, Mantovani M S M. 1994. The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. Journal of Geophysical Research: Solid Earth, 99(B9): 18117~18145.

    • Gallagher K. 2012. Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal of Geophysical Research: Solid Earth, 117(B2).

    • Girardeau J, Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamicn significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.

    • Glotzbach C, van der Beek P A, Spiegel C. 2011. Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth and Planetary Science Letters, 304(3-4): 417~430.

    • Green P F, Duddy I R, Gleadow A J W, Laslett G M. 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59: 237~253.

    • Gourbet L, Leloup P H, Paquette J L, Sorrel P, Maheo G, Wang Guocan, Xu Yadong, Cao Kai, Antoine P O, Eymard I, Liu Wei, Lu Haijian, Replumaz A, Chevalier M L, Zhang Kexin, Wu Jing, Shen Tianyi. 2017. Reappraisal of the Jianchuan Cenozoic basin stratigraphy and its implications on the SE Tibetan plateau evolution. Tectonophysics, 700: 162~179.

    • Guynn J H, Kapp P, Pullen A, Heizler M, Gehrels G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.

    • Guynn J H, Tropper P, Kapp P, Gehrels G E. 2013. Metamorphism of the Amdo metamorphic complex, Tibet: Implications for the Jurassic tectonic evolution of the Bangong suture zone. Geology, 31(7): 705~727.

    • Haider V L, Dunkl I, Eynatten H, Ding Lin, Frei D, Zhang Liyun. 2013. Cretaceous to Cenozoic evolution of the northern Lhasa terrane and the early Paleogene development of peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70-71: 79~98.

    • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207(3-4): 135~145.

    • He Shiping, Li Rongshe, Wang Chao, Gu Pingyang, Yu Pingyang, Shi Chao, Zha Xiaofeng. 2012. The formation age of Kaqiong Rock Group in the northern margin of Gangdese, the Qinghai-Tibet plateau. Geochimica, 3: 216~226 (in Chinese with English abstract).

    • Hetzel R, Dunkl I, Haider V, Strobl M, von Eynatten H, Ding Lin, Frei D. 2011. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift. Geology, 39(10): 983~986.

    • Hoke G D, Liu-Zeng Jing, Hren M T, Wissink G K, Garzione C N. 2014. Stable isotopes reveal high southeast Tibetan plateau margin since the Paleogene. Earth and Planetary Science Letters, 394: 270~278.

    • Hoke G D. 2018. Geochronology transforms our view of how Tibet's southeast margin evolved. Geology, 46(1): 95~96.

    • Huang Jiqin, Chen Guoming, Chen Binwei. 1984. A preliminary analysis of the Tethys-Himalayan tectonic domain. Acta Geologica Sinica, 58(1): 1~17 (in Chinese).

    • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics, 343: 111~134.

    • Jian Xing, Guan Ping, Zhang Wei, Liang Hanghai, Feng Fan, Fu Ling. 2018. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam basin. Gondwana Research, 60: 94~104.

    • Kang Wenjun, Xu Xiwei, Yu Guihua, Tan Xibin, Li Kang, Luo Jiahong, Zhang Weibin. 2019. Differential late-Cenozoic uplift across the Dongjiu-Milin fault zone in the eastern Himalayan Syntaxis revealed by low-temperature thermochronology. Journal of Asian Earth Sciences, 179: 189~199.

    • Ketcham R A, Carter A, Hurford A J. 2015. Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. American Mineralogist, 100(7): 1452~1468.

    • Li Cai, Xie Yaowu, Sha Shaoli, Dong Yongsheng. 2008. SHRIMP U-Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China. Geological Bulletin of China, 27(1): 64~68 (in Chinese with English abstract).

    • Li Chao, Zhao Zhongbao, Lu Hanjian, Li Haibing. 2022. Late Mesozoic-Cenozoic multistage exhumation of the central Bangong-Nujiang suture, central Tibet. Tectonophysics, 827: 229268.

    • Li Guangming, Feng Xiaoliang, Huang Zhiying, Gao Dafa. 2000. The multiple island arc-basin systems and their evolution in the Gangdise tectonic belt, Xizang. Sedimentary Geology and Tethyan Geology, 4: 38~46 (in Chinese with English abstract).

    • Li Huaqi, Xu Zhiqin, Webb A A G, Li Tianfu, Ma Shiwei, Huang Xuemeng. 2017. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: Implications for an archipelago-accretion orogenic model. Tectonophysics, 702: 29~41.

    • Li Shanying, Currie B S, Rowley D B, Inglls M. 2015. Cenozoic paleoaltimetry of the SE margin of the Tibetan plateau: Constraints on the tectonic evolution of the region. Earth and Planetary Science Letters, 432: 415~424.

    • Li Shimin, Wang Qing, Zhu Dicheng, Cawood P A, Stern R J, Weinberg R, Zhao Zhidan, Mo Xuanxue. 2020. Reconciling orogenic drivers for the evolution of the Bangong-Nujiang Tethys during Middle-Late Jurassic. Tectonics, 39(2): e2019TC005951.

    • Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.

    • Li Xiaorong, Zhang Bo, Zhang Jinjiang, Chen Siyu, Zhang Lei. 2022. Late Cenozoic exhumation history and its tectonic implication of the Yadong area in the Himalayan orogenic belt: evidence from apatite and zircon (U-Th)/He thermochronology. Acta Geologica Sinica, 96(4): 1143~1162 (in Chinese with English abstract).

    • Liu Yongjiang, Genser J, Neubauer F, Jin Wei, Ge Xiaohong, Handler R, Takasu A. 2005. 40Ar/39Ar mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics, 398: 199~224.

    • Liu Dongliang, Li Haibing, Sun Zhiming, Pan Jiawei, Wang Meng, Wang Huan, Chevalier M L. 2017. AFT dating constrains the Cenozoic uplift of the Qimen Tagh Mountains, Northeast Tibetan Plateau, comparison with LA-ICPMS Zircon U-Pb ages. Gondwana Research, 41: 438~450.

    • Liu Dongliang, Li Haibing, Chevalier M L, Sun Zhiming, Pei Junling, Pan Jiawei, Ge Chenglong, Wang Ping, Wang Huan, Wu Chang. 2021. Activity of the Baiganhu fault of the Altyn Tagh fault system, northern Tibetan Plateau: Insights from zircon and apatite fission track analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 570: 110356.

    • Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from Ar-40/Ar-39 thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planetary. Science Letters, 171: 107~122.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pearce J A, Deng W M. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 327(1594): 215~238.

    • Pidgeon R T, Nemchin A A, Hitchen G J. 1998. Internal structures of zircons from Archaean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages. Contributions to Mineralogy and Petrology, 132(3): 288~299.

    • Polissar P J, Freeman K H, Rowley D B, Mclnerney F A, Currie B S. 2009. Paleoaltimetry of the Tibetan plateau from D/H ratios of lipid biomarkers. Earth and Planetary Science Letters, 287: 64~76.

    • Qian Xinyu, Li Yalin, Dai Jingen, Wang Chengshan, Han Zhongpeng, Zhang Jiawei, Li Han'ao. 2021. Apatite and zircon (U-Th)/He thermochronological evidence for Mesozoic exhumation of the Central Tibetan Mountain Range. Geological Journal, 56(1): 599~611.

    • Quade J, Breecker D O, Daeron M, Eilter J. 2011. The paleoaltimetry of Tibet: An isotopic perspective. American Journal of Science, 311(2): 77~115.

    • Ren Fei, Pan Guitang, Yin Fuguang, Xiao Qinhui. 2017. Oceanic plate stratigraphy and tectonic evolution of the Nujiang-Lancangjiang-Jinshajiang area in southwestern China. Sedimentary Geology and Tethyan Geology, 37(4): 9~16 (in Chinese with English abstract).

    • Rohrmann A, Kapp P, Carrapa B, Reiners P W, Guynn J, Ding Lin, Heizler M. 2012. Thermochronologic evidence for plateau formation in Central Tibet by 45 Ma. Geology, 40(2): 187~190.

    • Rowley D B, Pierrehumbert R T, Currie B S. 2001. A new approach to stable isotope-based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188: 253~268.

    • Rowley D B, Currie B S. 2006. Paleo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet. Nature, 439(7077): 677~681.

    • Saylor J E, Quade J, Dettman D L, DeCelles P G, Kapp P A, Ding Lin. 2009. The late Miocene through present paleoelevation history of southwestern Tibet. American Journal of Science, 309(1): 1~42.

    • Şengör A M C. 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth-Science Reviews, 27(1-2): 1~201.

    • Spicer R A, Harris N B W, Widdowson M, Herman A B, Guo Shuangxing, Valdes P J, Wolfe J A, Kelley S P. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature, 421(6923): 622~624.

    • Tang Maoyun, Liu-Zeng Jing, Hoke G D, Xu Qiang, Wang Weitao, Li Zhanfei, Zhan Jinyun, Wang Wei. 2017. Paleoelevation reconstruction of the Paleocene-Eocene Gonjo Basin, SE-central Tibet. Tectonophysics, 712: 170~181.

    • Tapponnier P, Xu Zhiqin, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang Jingsui. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671~1677.

    • Tian Pengfei, Yuan Wangming, Yang Xiaoyong. 2020. The basics, essential concepts and geological applications of thermochronology. Geological Review, 66(4): 975~1004 (in Chinese with English abstract).

    • Tian Yuntao, Kohn B P, Gleadow A J W, Hu Shengbiao. 2014. A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 119(1): 676~698.

    • Wagner G A, Haute P V. 1992. Fission-Track Dating Method[M]//Fission-Track Dating. Springer, Dordrecht, 59~94.

    • Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Guangyin, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.

    • Wang Chengshan, Zhao Xixi, Liu Zhifei, Lippert P C, Graham S A, Coe R S, Yi Haisheng, Zhu Lidong, Liu Shun, Li Yalin. 2008. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987~4992.

    • Wang Kaiyuan. 1996. Precambrian basement groups and tectonic evolution of the Sanjiang tectonic belt in Southwest China and the western margin of Yangtze. Yunnan Geology, 15(2): 138~148 (in Chinese).

    • Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.

    • Wang Yu, Zhang Xuemin, Sun Lixin, Wan Jinglin. 2007. Cooling history and tectonic exhumation stages of the south-central Tibetan Plateau (China): Constrained by 40Ar/39Ar and apatite fission track thermochronology. Journal of Asian Earth Sciences, 29(2-3): 266~282.

    • Xie Jincheng, Li Weikai, Dong Guochen, Mo Xuanxue, Zhao Zhidan, Yu Junchuan, Wang Tianci. 2013. Petrology, geochemistry and tectonic significance of the granites from Basu area, Tibet. Acta Petrologica Sinica, 29(11): 3779~3791 (in Chinese with English abstract).

    • Xie Yaowu, Li Linqing, Qiangba ZhaXi, Wang Ming, Jiang Guangwu. 2009. Geochemical, geochronological features and tectonic significance of volcanic rocks of Zhucun Formation in Baxoi area, eastern Tibet, China. Geological Bulletin of China, 28(9): 1244~1252 (in Chinese with English abstract).

    • Xiong Zhongyu, Ding Lin, Spicer R A, Farnsworth A, Wang Xu, Valdes P J, Su Tao, Zhang Qinghai, Zhang Liyun, Cai Fulong, Wang Houqi, Li Zhenyu, Song Peiping, Guo Xudong, Yue Yahui. 2020. The early Eocene rise of the Gonjo basin, SE Tibet: From low desert to high forest. Earth and Planetary Science Letters, 543: 116312.

    • Xu Qiang, Ding Lin, Zhang Liyun, Cai Fulong, Lai Qingzhou, Yang Di, Liu-Zeng Jing. 2013. Paleogene high elevations in the Qiangtang Terrane, central Tibetan plateau. Earth and Planetary Science Letters, 362: 31~42.

    • Xue Weiwei, Najman Yani, Hu Xiumian, Persano C, Stuart F M, Li Wei, Ma Anlin, Wang Ying. 2022. Late Cretaceous to late Eocene exhumation in the Nima area, central Tibet: Implications for development of low relief topography of the Tibetan Plateau. Tectonics, 41(3): e2021TC006989.

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211~280.

    • Yu F, Zhou T F, Yuan F, Qian C C, Lu S M, Cokke D R. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715~1724 (in Chinese with English abstract).

    • Yuan W M, Zhang X T, Dong J Q, Tang Y H, Yu F S, Wang S C. 2003. A new vision of the intracontinental evolution of the eastern Kunlun Mountains, Northern Qinghai-Tibet plateau, China. Radiation Measurements, 36(1-6): 357~362.

    • Yuan Wanming, Carter A, Dong Jinquan, Bao Zengkuan, An Yinchang, Guo Zhaojie. 2006. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data Tectonophysics, 412(3-4): 183~193.

    • Zeng Min, Zhang Xiang, Cao Hui, Ettensohn F R, Cheng Wenbin, Lang Xinghai. 2016. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Research, 28(1): 147~157.

    • Zhang Hongfei. 2022. How did the subducted oceanic slab break-off take place? Earth Science, 47(10): 3798~3799.

    • Zhang Jiawei, Li Yalin, Xu Ming, Dai Jingen, Qian Xinyu, Han Zhongpeng, Zhang Huiping, Pang Jianzhang. 2021. New apatite fission track evidence from the northern Qiangtang terrane reveal two-phase evolution of central Tibet. Terra Nova, 33(1): 95~108.

    • Zhang Xiaoran, Shi Rendeng, Huang Qishuai, Liu Deliang, Gong Xiaohan, Chen Shengsheng, Wu Kang, Yi Guoding, Sun Yali, Ding Lin. 2014. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U-Pb geochronology of mafic granulites. Gondwana Research, 26(3-4): 975~985.

    • Zhao Zhen, Lu Lu, Wu Zhenhan. 2019. Uplifting evolution of the central uplift belt, Qiangtang: Constrains from tectonothermochronology. Earth Science Frontiers, 26(2): 249~263 (in Chinese with English abstract).

    • Zhao Zhongbao, Bons P D, Stubner K, Wang Genhou, Ehlers T A. 2017. Early Cretaceous exhumation of the Qiangtang Terrane during collision with the Lhasa Terrane, Central Tibet. 29: 382~391.

    • Zhao Zhongbao, Bons P D, Li Chao, Wang Genhou, Ma Xuxuan, Li Guangwei. 2020. The Cretaceous crustal shortening and thickening of the South Qiangtang Terrane and implications for proto-Tibetan Plateau formation. Gondwana Research, 78: 141~155.

    • Zhu Dicheng, Mo Xuanxue, Wang Liquan, Zhao Zhidan, Niu Yaoling, Zhou Changyong, Yang Yueheng. 2009. Petrogenesis of highly fractionated I-type granites in the Chayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science China Earth Science, 52(9): 1223~1239.

    • Zhu Dicheng, Li Shiming, Cawood P A, Wang Qing, Zhao Zhidan, Liu Shengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • 曹凯, 王国灿, 刘超, 孟艳宁. 2009 . 西昆仑及邻区新生代差异隆升的热年代学证据. 地球科学(中国地质大学学报), 6: 895~906.

    • 范建军, 李才, 王明, 解超明, 彭头平, 刘海永. 2018. 班公湖-怒江缝合带洞错混杂岩物质组成、时代及其意义. 地质通报, 37(8): 1417~1427.

    • 黄汲清, 陈国铭, 陈炳蔚. 1984. 特提斯-喜马拉雅构造域初步分析. 地质学报, 58(1): 1~17.

    • 何世平, 李荣社, 王超, 辜平阳, 于浦生, 时超, 查显锋. 2012. 青藏高原冈底斯北缘卡穷岩群形成时代的确定. 地球化学, 3: 216~226.

    • 李晓蓉, 张波, 张进江, 陈思雨, 张磊. 2022. 喜马拉雅造山带亚东地区晚新生代剥露历史及其构造意义: 来自磷灰石和锆石(U-Th)/He数据的约束. 地质学报, 96(4): 1143~1162.

    • 李光明, 冯孝良, 黄志英, 高大发. 2000. 西藏冈底斯构造带中段多岛弧-盆系及其演化. 沉积与特提斯地质, 4: 38~46.

    • 李才, 谢尧武, 沙绍礼, 董永胜. 2008. 藏东八宿地区泛非期花岗岩锆石 SHRIMP U-Pb 定年. 地质通报, 27(1): 64~68.

    • 任飞, 潘桂棠, 尹福光, 常梦瑶, 肖庆辉. 2017. 西南三江地区洋板块地层特征及构造演化. 沉积与特提斯地质, 37(4): 9~16.

    • 王国灿, 曹凯, 张克信, 王岸, 刘超, 孟艳宁, 徐亚东. 2011. 青藏高原新生代构造隆升阶段的时空格局. 中国科学: 地球科学, 3: 332~349.

    • 王铠元. 1996. 西南三江构造带及扬子西缘前寒武纪基底岩群与构造演化. 云南地质, 15(2): 138~148.

    • 谢锦程, 李炜恺, 董国臣, 莫宣学, 赵志丹, 于峻川, 王天赐. 2013. 西藏八宿花岗岩岩石学、地球化学特征及其构造意义. 岩石学报, 29(11): 3779~3791.

    • 谢尧武, 李林庆, 强巴扎西, 王明, 蒋光武. 2009. 藏东八宿地区朱村组火山岩地球化学、同位素年代学及其构造意义. 地质通报, 28(9): 1244~1252.

    • 张宏飞. 2022. 俯冲大洋板片是如何发生断离的? 地球科学, 47(10): 3798~3799.

    • 赵珍, 陆露, 吴珍汉. 2019. 羌塘盆地中央隆起带的抬升演化: 构造-热年代学约束. 地学前缘, 26(2): 249~263.

    • 钟大赉, 丁林. 1996. 青藏高原的隆起过程及其机制探讨. 中国科学(D辑), 26(4): 289~295.

    • 朱弟成, 莫宣学, 王立全, 赵志丹, 牛耀龄, 周长勇, 杨岳衡. 2009. 西藏冈底斯东部察隅高分异 I 型花岗岩的成因: 锆石 U-Pb 年代学, 地球化学和 Sr-Nd-Hf 同位素约束. 中国科学: 地球科学, 39(7): 833~848.