en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

舒小超,男,1992年生。讲师,主要从事碳酸岩及碱性岩相关成岩成矿作用研究。E-mail:sxc@cumt.edu.cn。

通讯作者:

孟凡巍,男,1977年生。教授,研究方向为原位微区地球化学分析。E-mail:mfw2010@126.com。

参考文献
Andersson S S, Wagner T, Jonsson E, Fusswinkel T, Whitehouse M J. 2019. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochimica et Cosmochimica Acta, 255: 163~187.
参考文献
Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element composition and their relationship to host rock type. Journal of Geochemical Exploration, 76(1): 45~69.
参考文献
Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry: A potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6): 1397~1410.
参考文献
Boyce J W, Hervig R L. 2009. Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica. Contribution to Mineralogy and Petrology, 157(2): 135~145.
参考文献
Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62(1): 63~83.
参考文献
Castillo P R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 258~268.
参考文献
Chen Bin, Jahn B M, Tian Wei. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotopic compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245~257.
参考文献
Chen Bin, Niu Xiaolu, Wang Zhiqiang, Gao Lin, Wang Chao. 2013. Geochronology, petrology, and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton. Science China: Earth Sciences, 43(7): 1073~1087 (in Chinese with English abstract).
参考文献
Downes H, Balaganskaya E, Beard A, Liferovich R, Demaiffe D. 2005. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos, 85(1): 48~75.
参考文献
Evans K A, Elburg M A, Kamenetsky V S. 2012. Oxidation state of subarc mantle. Geology, 40(9): 783~786.
参考文献
Foley S F, Venturelli G, Green D H, Toscani L. 1987. The ultrapotassic rocks: Characteristics, classification, and constrains for petrogenenetic models. Earth-Science Reviews, 24(2): 81~134.
参考文献
Hou Tong, Zhang Zhaochong, Keiding J K, Veksler I V. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: Implications for lithospheric mantle metasomatism and the origin of apatite ores. Journal of Petrology, 56(5): 251~256.
参考文献
Jiang Neng, Chu Xuelei, Mizuta T, Ishiyama D, Mi Jiguang. 2004. A magnetite-apatite deposit in the Fanshan alkaline ultramafic complex, northern China. Economic Geology, 99(2): 397~408.
参考文献
Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325(5940): 605~607.
参考文献
Ketcham R A. 2015. Technical note: Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist, 100(7): 1620~1623.
参考文献
Li Chao, Zhou Limin, Zhao Zheng, Zhang Zhiyuan, Zhao Hong, Li Xinwei, Qu Wenjun. 2018. In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS. Journal of Asian Earth Sciences, 160: 38~47.
参考文献
Li Huawei, Yang Zhiming. 2023. Geochemistry of magmatic zircon and apatite and its applications in porphyry deposits. Acta Geologica Sinica, 97(4): 973~1001 (in Chinese with English abstract).
参考文献
Liu Yan, Hou Zengqian. 2017. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. Journal of Asian Earth Sciences, 137: 35~79.
参考文献
Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusion. Beijing: Science Press (in Chinese with English abstract).
参考文献
Mao Mao, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111(5): 1187~1222.
参考文献
McInnes B I A, Cameron E M. 1994. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth and Planetary Science Letters, 122(1-2): 125~141.
参考文献
Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.
参考文献
Mou Baolei, Shao Jian, Bian Zhenhui. 1999. Discovery of carbonatite in the Fanshan alkaline igneous complex in Hebei Province, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 35(2): 243~247 (in Chinese with English abstract).
参考文献
Niu Xiaolu. 2011. Research on Late Triassic ultrapotassic alkaline rocks and Early Cretaceous Dengzhazi A-type granites on the northern margin of the North China Craton. Doctoral dissertation of Peking University (in Chinese with English abstract).
参考文献
Niu Xiaolu, Chen Bin, Liu Ankun, Suzuki K, Ma Xu. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Croton. Lithos, 149: 146~158.
参考文献
Pan Lichuan, Hu Ruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as Petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254-255: 118~130.
参考文献
Qu Pan, Yang Wubin, Niu Hecai, Li Ningbo, Wu Dan. 2021. Apatite fingerprints on the magmatic-hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China. Geological Society of America Bulletin, 134(7-8): 1863~1876.
参考文献
Ren Rong, Mou Baolei, Han Baofu, Zhang Lei, Chen Jiafu, Xu Zhao, Song Biao. 2009. Zircon SHRIMP U-Pb dating of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. Acta Petrologica Sinica, 25(3): 588~594 (in Chinese with English abstract).
参考文献
Richards J P, López G P, Zhu Jingjing, Creaser R A, Locock A J, Mumin A H. 2017. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu±Mo±Au and intrusion-related iron oxide Cu-Au deposits in northern Chile. Economic Geology, 112(2): 295~318.
参考文献
Rudnick R L, Gao Shan. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 3: 1~64.
参考文献
Smythe D J, Brenan J M. 2015. Cerium oxidation state insilicatemelts: Combined fO2, temperature and compositional effects. Geochimica et Cosmochimica Acta, 170: 173~187.
参考文献
Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Review, 65: 97~131.
参考文献
Sun Xiang, Leng Chengbiao, Hollings P, Song Qingjie, Li Ruyue, Wan Xiuquan. 2020. New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: Implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation. Mineralium Deposita, 56(5): 1~18.
参考文献
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42: 313~345.
参考文献
Tacker R C. 2004. Hydroxyl ordering in igneous apatite. American Mineralogist, 89(10): 1411~1421.
参考文献
Tacker R C, Stormer J C. 1989. A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. American Mineralogist, 74(7-8): 877~888.
参考文献
Watson E B, Capobianco C J. 1981. Phosphorus and the rare-earth elements in felsic magmas: An assessment of the role of apatite. Geochimica et Cosmochimica Acta, 45(12): 2349~2358.
参考文献
Xing Kai, Shu Qihai, Lentz D R, Wang Fangyue. 2020. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the lesser Xing’an range, NE China. American Mineralogist, 105: 382~396.
参考文献
Xing Kai, Shu Qihai. 2021. Applications of apatite in study of ore deposits: A review. Mineral Deposits, 40(2): 189~205 (in Chinese with English abstract).
参考文献
Zaitsev A N, Williams C T, Jeffries T E, Strekopytov S, Moutte J, Ivashchenkova O V, Spratt J, Petrov S V, Wall F, Seltmann R, Borozdin A P. 2014. Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61(3): 204~225.
参考文献
Zhai Mingguo. 2004. 2. 1~1. 7 Ga geological event group and its tectonic significance. Acta Petrologica Sinica, 20(6): 1343~1354 (in Chinese with English abstract).
参考文献
Zhang Rongwei, Xue Chuandong, Xue Lipeng, Liu Xing. 2019. The geochemical characteristics and their geological significance of apatite from Bengge gold deposit in Sanjiang region, SW China. Acta Petrologica Sinica, 35(5): 1407~1422 (in Chinese with English abstract).
参考文献
陈斌, 牛晓露, 王志强, 高林, 王超. 2013. 华北克拉通北缘姚家庄过钾质超镁铁岩-正长岩杂岩体的锆石 U-Pb 年代学、岩石学和地球化学特征. 中国科学: 地球科学, 43(7): 1073~1087.
参考文献
李华伟, 杨志明. 2023. 岩浆锆石和磷灰石矿物化学及在斑岩矿床领域的应用. 地质学报, 97(4): 973~1001.
参考文献
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社.
参考文献
牟保磊, 邵济安, 边振辉. 1999. 矾山碱性杂岩体中发现碳酸岩. 北京大学学报(自然科学版), 35(2): 243~247.
参考文献
牛晓露. 2011. 华北克拉通北缘晚三叠世过钾质碱性岩和早白垩世邓栅子a-型花岗岩的研究. 北京大学博士学位论文.
参考文献
任荣, 牟保磊, 韩宝福, 张磊, 陈家富, 徐钊, 宋彪. 2009. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄. 岩石学报, 25(3): 588~594.
参考文献
邢凯, 舒启海. 2021. 磷灰石在矿床学研究中的应用. 矿床地质, 40(2): 189~205.
参考文献
翟明国. 2004. 华北克拉通2. 1~1. 7 Ga地质事件群的分解和构造意义探讨. 岩石学报, 20(6): 1343~1354.
参考文献
张荣伟, 薛传东, 薛力鹏, 刘星. 2019. 西南三江甭哥金矿床磷灰石地球化学特征及地质意义. 岩石学报, 35(5): 1407~1422.
目录contents

    摘要

    产于华北克拉通北缘的晚三叠世矾山超钾质碱性岩杂岩体主要由单斜辉石岩和辉石正长岩等组成,以发育内生磷灰石-磁铁矿矿床而闻名。本文选取矾山杂岩体中的磷灰石为研究对象,通过测试磷灰石的主微量元素及原位Sr-Nd同位素组成以探讨母岩浆的氧逸度及含水性特征。研究表明,矾山磷灰石以轻稀土元素富集、重稀土元素亏损为特征,显示出缺乏显著Ce异常的“右倾”的稀土配分型式,且具有较低的Ga含量及较高的δEu值,暗示杂岩体具有较高的岩浆氧逸度,这也得到了磷灰石Mn氧逸度计的支持。所有磷灰石以高Sr、低Y为特征,具有较高的Sr/Y(>30)和La/Yb(>90)比值,且Sr/Y与La/Yb存在明显的正相关关系,表明矾山超钾质岩浆具有较高的含水量。矾山磷灰石的原位Sr-Nd同位素投点位于地幔序列,明显偏离地壳趋势。母岩浆的“氧化且富水”特征是矾山杂岩体得以发生磷灰石-磁铁矿矿化的重要因素,其主要与板片俯冲过程中蚀变洋壳对岩石圈地幔的交代作用有关。通过对比矾山杂岩体与全球范围内其他地质环境中磷灰石的成分数据,发现具有“高Sr、低F、少Cl”特征的磷灰石可作为识别超钾质碱性岩杂岩体(及其相关金属矿床)的特征矿物。

    Abstract

    The Late Triassic Fanshan ultrapotassic alkaline complex in the northern margin of the North China Craton is mainly composed of clinopyroxene and pyroxene syenite, and is famous for the development of endogenetic apatite-magnetite deposits. Apatites in the Fanshan complex were selected as the research object in this paper to clarify the oxygen fugacity and water content of the parent magmas by measuring their major-and trace-elements and in-situ Sr-Nd isotopic compositions. The study shows that the Fanshan apatites are characterized by enrichment of light rare earth elements and depletion of heavy rare earth elements. The distribution patterns of rare earth elements exhibit the characteristics of right-deviation with low Ga levels and high δEu values. These characteristics indicate that the complex has high magmatic oxygen fugacity, which is also supported by apatite Mn oxygen fugacity meter. All apatites are characterized by high Sr and low Y, and their high ratios of Sr/Y (>30) and La/Yb (>90) exhibit an obvious positive correlation, suggesting a high water content for the Fanshan ultrapotassic magmas. The in-situ Sr-Nd isotopic compositions of the Fanshan apatites plot in the mantle field, obviously deviating from the crustal trend. The characteristics of “oxidation and water-rich” of the parent magmas is an important factor for the apatite-magnetite mineralization in the Fanshan complex, which is probably related to the metasomatism of the altered oceanic crust on the lithospheric mantle during the plate subduction. Comparing the composition data of apatites in the Fanshan complex with those in other geological settings worldwide, it is considered that the apatites with the characteristics of “high Sr, low F and little Cl” can serve as a characteristic mineral for identifying ultrapotassic alkaline rock complexes (and their related metal deposits).

  • 磷灰石属于六方晶系的钙磷酸盐矿物,其晶体结构可容纳多种元素(如S、Fe、Mn、F、Cl等)的替代(邢凯和舒启海,2021)。由于磷灰石对结晶环境十分敏感,并且具有较强的抗蚀变能力,能较好地保存寄主岩体的初始信息,因而常被认为是研究成岩成矿作用的理想“矿物探针”(Qu Pan et al.,2021)。近年来,随着原位微区分析测试技术的飞速发展,磷灰石在地质学领域的应用日益广泛,包括但不限于:① 磷灰石含有较高的U和Th含量,常被用于U-Pb同位素体系的地质定年(Sun Xiang et al.,2020);② 磷灰石主、微量元素可用于限定复杂岩浆-热液体系中的氧逸度、挥发分和含水性等信息(Richards et al.,2017);③ 磷灰石原位Sr-Nd、O和Cl同位素等往往被用于示踪寄主岩体的岩浆源区及其演化特征(Andersson et al.,2019; Xing Kai et al.,2020);④ 磷灰石是熔体或流体包裹体的良好宿主,其包裹体信息可直接反映岩浆-热液体系的物理化学性质(Bouzari et al.,2016)。

  • 超钾质碱性岩杂岩体通常被认为是破坏性克拉通边缘的产物,具有独特的主量元素成分(K2O>3%,MgO>3%且K2O/Na2O>2;Foley et al.,1987)且富集大离子亲石元素,是理解地幔性质及壳-幔物质循环过程的重要窗口(陈斌等,2013)。位于华北克拉通北缘的河北矾山超镁铁质-正长岩杂岩体(简称矾山杂岩体)是该类岩石的典型实例,其主要由单斜辉石岩和辉石正长岩等碱性岩组成,以发育储量为76 Mt的内生磷灰石-磁铁矿矿床而闻名(Jiang Neng et al.,2004)。全球范围内,有利于形成磷灰石-磁铁矿矿床的岩体主要为富钠霞石正长岩(如俄罗斯科拉半岛的Lovozero和Khibina侵入体;Zaitsev et al.,2014),因此矾山磷灰石-磁铁矿矿床实质上代表了一种“罕见的”与超钾质碱性岩浆相关的磷灰石、磁铁矿结晶堆积。国内外学者对矾山杂岩体的地质特征(Jiang Neng et al.,2004)、成岩成矿时代(任荣等,2009)及岩石地球化学特征(Niu Xiaolu et al.,2012; Hou Tong et al.,2015)进行了大量研究,并取得丰硕成果。然而,以往研究多采用全岩地球化学分析以约束矾山杂岩体的岩浆起源及演化特征,从技术方法而言存在以下缺陷:① 微弱的蚀变、矿化及表生作用会给全岩成分带来显著的改变,因此全岩分析必然不能准确反映相应熔体的信息;② 即使成岩后未发生任何蚀变,全岩地球化学数据也仅仅代表岩浆演化最终产物的平均成分特征,无法示踪矿物生长过程及其结晶环境的敏感性变化。

  • 磷灰石是贯穿矾山杂岩体成岩过程的关键矿物,其矿物化学特征为解译矾山超钾质碱性岩浆起源与演化提供了天然窗口。本文基于对矾山杂岩体详细的野外地质调查及镜下显微观察,选择与磷灰石-磁铁矿矿化密切相关的单斜辉石岩和辉石正长岩中的磷灰石为研究对象,重点开展:① 通过磷灰石的主微量元素分析厘清超钾质岩浆的氧逸度及含水性特征;② 利用磷灰石原位Sr-Nd同位素测试查明矾山超钾质岩浆源区信息与氧逸度及含水性特征的耦合关系;③ 将矾山杂岩体的磷灰石数据与全球范围内其他地质环境中的磷灰石数据进行综合对比,探讨磷灰石成分特征对超钾质岩浆相关矿产资源找矿勘查的指示意义。

  • 1 地质背景

  • 1.1 区域地质

  • 矾山杂岩体位于河北省涿鹿县矾山镇,构造上处于华北克拉通北缘的燕辽沉降带中(图1a)。华北克拉通是世界上最古老的陆核之一,古生代时期古亚洲洋板块向华北克拉通俯冲,形成早古生代的岛弧增生系列和一套中—晚古生代的钙碱性侵入岩。西伯利亚板块和华北克拉通在晚二叠世沿着索伦缝合带发生碰撞,并于270~250 Ma左右最终聚合(翟明国,2004Chen Bin et al.,2009)。尔后,三叠纪碱性岩浆活动沿着平行于华北克拉通北缘的东西走向带侵位,形成了一条长约1500 km的碱性岩带。其中,早三叠世碱性岩主要由二长花岗岩、钾长石花岗岩和少量二长岩组成,而中—晚三叠世碱性岩包括正长岩、碱性花岗岩及超钾质碱性侵入体(陈斌等,2013Hou Tong et al.,2015)。

  • 图1 河北矾山杂岩体的大地构造背景及区域地质简图(据Jiang Neng et al.,2004修改)

  • Fig.1 Tectonic setting and sketch geological map of the Fanshan complex, Hebei Province (modified from Jiang Neng et al., 2004)

  • 1.2 岩相学特征

  • 矾山杂岩体侵位于中元古界蓟县系雾迷山组之中,产于东西向构造带与北北东向构造带的交接部位(图1b),为一环状超钾质碱性侵入体(图2a)。杂岩体长约5~6 km、宽约4~5 km、面积约20~30 km2,空间上呈漏斗形,平面上呈向东南突出的月牙形,剖面上为向岩体中心倾斜的向斜构造,北西翼被第四系沉积物所覆盖(图2b)。矾山杂岩体由碱性岩浆活动中心式侵入所形成,由内向外可分为三个岩相带:① 辉石正长岩+少量正长岩(岩相带Ⅰ);② 以单斜辉石岩为主的层状岩体+磷辉石-磁铁矿矿体(岩相带Ⅱ);③ 富含石榴子石及正长石的单斜辉石岩(岩相带Ⅲ),后期正长岩及少量碳酸岩岩脉穿插于上述岩相带内(图2; Jiang Neng et al.,2004)。磷灰石-磁铁矿矿体东西长约2 km,南北宽约1.5 km,受层状岩体控制,与单斜辉石岩呈韵律层状构造分布。矿体平面上呈宽底“U”字弧形,中段近东西向展布,东侧及西侧向北转弯;剖面上为向中心缓倾斜的厚大层状矿体,两端则有变陡趋势。除有用矿物磷灰石及磁铁矿外,矿体中可能含有磁黄铁矿、黄铁矿、黄铜矿、钛铁矿、镜铁矿、方铅矿、闪锌矿、辉钼矿、辉铜矿等金属矿物,以及单斜辉石、黑云母、正长石、石榴子石、榍石及少量的氟碳铈矿(Hou Tong et al.,2015)。磷灰石-磁铁矿型矿石多呈块状或条带状构造(图3a),磁铁矿呈他形粒状与自形磷灰石晶体形成海绵陨铁结构(图3b)。

  • 图2 河北矾山杂岩体环状岩相带分布图(a)和岩相带剖面图(b)(剖面位置为图a中A—B线,据Jiang Neng et al.,2004修改)

  • Fig.2 Map showing the distribution of the annular lithofacies units (a) and cross-section (b) of the annular lithofacies units in the Fanshan complex, Hebei Province (the line A—B in Fig. a denotes the location of the cross-section, modified from Jiang Neng et al., 2004)

  • 本研究选择的样品为与磷灰石-磁铁矿矿体密切相关的单斜辉石岩和辉石正长岩。单斜辉石岩颜色较深、色率较高(图3c、d),主要由长柱状单斜辉石(50%~65%)、黑云母(10%~20%)、磷灰石(5%~15%)及少量正长石(5%~10%)组成(图4a~c),单斜辉石多为中粗粒、自形状且定向排列,具有堆晶成因的典型特征。长柱状单斜辉石构成的间隙中往往充填有他形正长石,正长石局部强烈绢云母化及碳酸盐化。磷灰石多为黄绿色、粒状,晶体中裂纹相对发育,偶见少量黑云母和磁铁矿颗粒填充其间。辉石正长岩颜色较浅(图3d、e),主要由自形程度相对较高的圆球状正长石(35%~60%)、单斜辉石(25%~35%)、黑云母(10%~15%)、石榴子石(5%~10%)和磷灰石(5%~10%)组成(图4d、e),其中,黑云母多为中—粗粒、自形—半自形片状,具有红褐色—浅黄色多色性,常呈较大片状颗粒包裹小颗粒单斜辉石和磷灰石,而磷灰石呈无色或黄绿色、柱状或粒状充填或镶嵌于黑云母颗粒组成的近三角形间隙之内(图4d),部分磷灰石颗粒在扫描电镜图像(SEM)下显示明显的核边结构(图4f)。

  • 矾山杂岩体的部分磷灰石颗粒发育直径细小(一般小于30 μm)的包裹体。其中,熔体及熔-流包裹体主要见于单斜辉石岩中的磷灰石(图4g),前者通常显示出较为洁净的“晶莹剔透”的外观特征,后者多呈椭圆形或负晶形,熔体相占比约为40%~80%。单斜辉石岩(图4h)及辉石正长岩(图4i)中磷灰石均发育流体包裹体,大部分包裹体显示轻微的“双眼皮”结构,表明此类包裹体中可能存在CO2气体。事实上,富含CO2是超钾质岩浆-热液体系的典型特征,这也得到了牟保磊等(1999)报道的“矾山杂岩体中发现碳酸岩”这一事实的支持。单斜辉石岩中磷灰石的流体包裹体具有比辉石正长岩更高的气相占比(分别为30%~70%、10%~50%),由于气相的存在使得包裹体颜色整体发暗。从熔体包裹体→流体包裹体的连续演化表明矾山超钾质岩浆经历了流体出溶过程,根据矾山杂岩体的岩相学特征,出溶的流体除含有H2O、CO2等挥发性组分之外,还应当含有K+、Na+、Ca2+、PO43-等离子。

  • 图3 河北矾山杂岩体野外及镜下照片

  • Fig.3 Field and microscopic photos of the Fanshan complex, Hebei Province

  • (a)、(b)—磷灰石-磁铁矿矿石;(c)—相互接触的单斜辉石岩和辉石正长岩;(d)—单斜辉石岩;(e)、(f)辉石正长岩;Ap—磷灰石;Cpx—单斜辉石;Mag—磁铁矿;BSE—背散射电子图像

  • (a) , (b) —apatite-magnetite ore; (c) —contact zone of the clinopyroxenite and pyroxene syenite; (d) —clinopyroxenite; (e) , (f) —pyroxene syenite; Ap—apatite; Cpx—clinopyroxene; Mag—magnetite; BSE—backscattered electron image

  • 图4 河北矾山杂岩体中单斜辉石岩和辉石正长岩的镜下照片

  • Fig.4 Photomicrographs showing the petrological characteristics of the clinopyroxenite and pyroxene syenite in the Fanshan complex, Hebei Province

  • (a)~(c)—单斜辉石岩镜下单偏光及冷阴极发光照片,图c为图b对应的冷阴极发光照片;(d)~(f)—辉石正长岩镜下单偏光及扫描电镜图像,图f显示磷灰石具有明显的核边结构;(g)—单斜辉石岩中磷灰石发育的熔体及熔-流包裹体;(h)、(i)—单斜辉石岩(图h)及辉石正长岩(图i)中磷灰石发育的流体包裹体,具有含CO2气体的“双眼皮”结构,气相占比分别约为30%~70%及10%~40%(体积估算据卢焕章等,2004);Ap—磷灰石;Cpx—单斜辉石;Bt—黑云母;Grn—石榴子石;Or—正长石;(-)—单偏光;CL—阴极发光;SEM—扫描电镜

  • (a) ~ (c) —transmitted plane-polarized light and cold cathode luminescence (CL) images of the clinopyroxenite, in which Fig. c is the cold CL image corresponding to Fig. b; (d) ~ (f) —transmitted plane-polarized light images of the pyroxene syenite, with Fig. f showing the core-rim texture of apatite; (g) —melt and melt-fluid inclusions developed in clinopyroxenite-host apatites; (h) , (i) —fluid inclusions developed in apatites of clinopyroxenite (Fig. h) and pyroxene syenite (Fig. i) have the “double eyelid” characteristic containing CO2 gas, with gas phase proportions of 30%~70% and 10%~40% respectively (volume estimation is based on Lu Huanzhang et al., 2004) ; Ap—apatite; Cpx—clinopyroxene; Bt—biotite; Grn—garnet; Or—orthoclase; (-) —transmitted plane-polarized light; CL—cathode luminescence; SEM—scanning electron microscope

  • 2 样品采集与分析方法

  • 采集矾山杂岩体中单斜辉石岩和辉石正长岩的新鲜样品送至河北省区域地质调查研究所磨制光薄片,并在中国地质科学院矿产资源研究所利用光学显微镜和扫描电镜(SEM)、中国地质大学(北京)地质过程与矿产资源国家重点实验室利用冷阴极发光仪(CL)精细鉴定磷灰石的矿物学特征。选择单偏光镜下表面干净透明且包裹体发育较少、扫描电镜和冷阴极发光照片中颜色均一且明亮的磷灰石颗粒(被认为是未蚀变磷灰石)进行后续分析测试。

  • 2.1 磷灰石电子探针(EMPA)分析

  • 磷灰石的主量元素测试在中国地质科学院矿产资源研究所电子探针实验室完成。电子探针仪型号为JXA-8230。分析条件为:加速电压15 kV,束电流20 nA,束斑大小5 μm。测试的主要元素包括Na、Mg、Si、Mn、Ca、P、S、Al、Fe、Ti以及卤素成分F和Cl。主要元素的平均检出限为0.01%,分析准确度在±5%以内。

  • 2.2 磷灰石LA-ICP-MS微量元素测试

  • 磷灰石激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)微量元素测试在南京聚谱检测有限公司完成,实验采用193 nm ArF准分子激光剥蚀器和型号为Agilent 7700X的电感耦合等离子体质谱仪(ICP-MS)联机测试,剥蚀气溶胶由高纯度的氦气送入ICP-MS完成测试。分析条件为:激光能量80 mJ,剥蚀束斑直径30 μm,频率使用8 Hz,剥蚀时间45 s。使用NIST610作为外标,43Ca作为微量元素的内标,各元素的测试精度优于10%。

  • 2.3 磷灰石原位Sr-Nd同位素测试

  • 磷灰石原位 Sr-Nd测试在武汉上谱分析科技有限责任公司完成,测试在ASI J-200 343 nm飞秒激光和Neptune Plus型多接收电感耦合等离子体质谱(MC-ICP-MS)联机系统上进行。采用线扫描方式剥蚀样品,束斑直径为40 μm,线扫描速度为0.65 μm/s,频率为10 Hz,能量密度为10 J/cm2,具体设备参数及测试流程详见Li Chao et al.(2018)。分析不确定性对87Sr/86Sr小于0.015%,对143Nd/144Nd小于0.005%。

  • 3 测试结果

  • 3.1 磷灰石主量成分

  • 矾山杂岩体中磷灰石的主量成分测试结果见表1和图5,采用Ketcham(2015)报道的方法(基于磷灰石含有26 OH-)计算了各元素的化学计量数(pfu)。总体而言,单斜辉石岩和辉石正长岩中磷灰石的CaO(52.4%~55.8%与52.7%~55.6%)、P2O5(39.8%~41.6%与40.1%~41.7%)、SiO2(0.25%~1.18%与0.75%~1.09%)和SO3 (0.29%~0.70%与0.42%~0.61%)含量相差不大。矾山磷灰石为典型的氟磷灰石,F组分(1.68%~2.86%与1.74%~2.58%)远高于Cl组分(<0.06%)。除上述元素外,矾山磷灰石还是Sr和稀土(REE)元素的重要载体。数据显示,矾山单斜辉石岩和辉石正长岩中磷灰石具有相对接近的SrO(0.25%~0.86%与0.19%~0.88%)、Nd2O3(0.11%~0.25%与0.12%~0.25%)和Ce2O3(0.16%~0.32%与0.17%~0.57%)含量。

  • 表1 河北矾山杂岩体中磷灰石的主量元素成分

  • Table1 Major element compositions of apatites in the Fanshan complex, Hebei Province

  • 注:磷灰石主量元素的化学计量数(pfu)计算据Ketcham,2015

  • 图5 河北矾山杂岩体中磷灰石的主量成分图解(a~d)

  • Fig.5 Major element compositions (a~d) of the apatite in the Fanshan complex, Hebei Province

  • 3.2 磷灰石微量成分

  • 矾山杂岩体中磷灰石的LA-ICP-MS微量元素数据见表2,两类岩石(原始数据引自Hou Tong et al.,2015)及其所赋存的磷灰石中球粒陨石标准化REE元素配分曲线见图6(标准化值据Sun and Mcdonough,1989)。单斜辉石岩(4184×10-6~5488×10-6)和辉石正长岩(3635×10-6~6058×10-6)中磷灰石的ΣREE(镧系元素+Y)范围较为接近。所有磷灰石颗粒均具有轻稀土元素(LREE)富集、重稀土元素(HREE,含Y)亏损的特征,在REE元素配分曲线中显示明显的“右倾”型式(图6)。矾山磷灰石显示轻微的Eu负异常,其中辉石正长岩(平均为0.92)具有比单斜辉石岩(平均为0.90)中磷灰石稍高的δEu值。单斜辉石岩和辉石正长岩中磷灰石的Sr(7090×10-6~9745×10-6与7142×10-6~9319×10-6)和Ga(13.2×10-6~17.8×10-6与12.6×10-6~21.9×10-6)含量较为均一。

  • 3.3 磷灰石原位Sr-Nd同位素

  • 矾山杂岩体中磷灰石的原位Sr-Nd同位素数据见表3,基于前人报道的矾山杂岩体中锆石U-Pb年龄218 Ma(任荣等,2009)计算了初始同位素组成。单斜辉石岩和辉石正长岩共14个数据点显示出相对均一的Sr同位素组成,单斜辉石岩和辉石正长岩的(87Sr/86Sr)i比值分别为0.70514~0.70522与0.70506~0.70521。单斜辉石岩中磷灰石的147Sm/144Nd和143Nd/144Nd比值分别为0.09804~0.10693和0.51215~0.51220,计算的εNdt)值范围为-6.93~-5.84;辉石正长岩岩中磷灰石的147Sm/144Nd和143Nd/144Nd比值分别为0.10248~0.10837和0.51216~0.51223,计算的εNdt)值范围为-6.87~-5.40。

  • 表2 河北矾山杂岩体中磷灰石的部分微量元素成分

  • Table2 Partial trace element compositions of the apatites in the Fanshan complex, Hebei Province

  • 4 讨论

  • 4.1 磷灰石矿物化学对矾山超钾质岩浆氧逸度及含水性特征的指示

  • 4.1.1 岩浆氧逸度

  • 磷灰石中的Eu、Ce和Ga是重要的变价元素,常被用于指示岩浆的氧化还原状态(Cao Mingjian et al.,2012; Pan Lichuan et al.,2016)。上述三种元素通常均具有两种价态,分别为Eu3+/Eu2+、Ce4+/Ce3+和Ga3+/Ga2+、Eu3+、Ce3+、Ga2+由于与Ca2+具有相似的离子半径,更易置换磷灰石中的Ca2+而表现为亲磷灰石的价态(Belousova et al.,2002)。理论上在较高的氧逸度环境中,熔体中的Eu3+、Ce4+和Ga3+的相对比例升高,致使Eu2+/Eu3+、Ce3+/Ce4+和Ga2+/Ga3+比值降低,从而导致磷灰石中Eu呈正异常、Ce呈负异常以及Ga含量降低(Miles et al.,2014; Xing Kai et al.,2020)。然而,在自然界中不同岩浆氧逸度范围内Ce4+均只占据了极低比例(通常Ce4+/Ce3+<0.01),Ce元素的异常行为极其微弱且往往较难鉴别(尤其是相对于Eu异常),因此近年来不少学者对使用磷灰石Ce异常指示岩浆氧化还原条件存在强烈质疑(Smythe et al.,2015; 邢凯和舒启海,2021李华伟和杨志明,2023)。

  • 图6 河北矾山杂岩体中磷灰石的球粒陨石标准化REE配分曲线

  • Fig.6 Chondrite normalized REE distribution patterns of the apatite in the Fanshan complex, Hebei Province

  • 表3 河北矾山杂岩体磷灰石原位 Sr-Nd 同位素组成

  • Table3 In-situ Sr-Nd isotopic composition of apatites in the Fanshan complex, Hebei Province

  • 本次研究显示,矾山磷灰石整体上具有较低的Ga含量及较高的δEu值(图7a),表明矾山杂岩体具有较高的岩浆氧逸度,这也与“矾山杂岩体中广泛发育磁铁矿(图3b)”这一地质特征相吻合。其中,辉石正长岩具有比单斜辉石岩略高的磷灰石δEu值,暗示前者的氧逸度可能更高,这可能与形成辉石正长岩的熔体属于相对较晚的岩浆分离结晶阶段(更接近于相对较浅的地表深度)有关。矾山磷灰石的Ga含量和δEu值并没有展现出明显的负相关关系(图7a),暗示岩浆系统中氧化还原状态可能不是控制元素含量和地球化学异常的唯一因素,而岩浆演化过程中长石的结晶可能也扮演着重要角色,该观点得到了“矾山磷灰石的(Sm/Yb)CN值和Sr含量呈大致正相关分布(图7b)”这一现象的佐证(长石的结晶可有效降低岩浆中的Sr含量;Pan Lichuan et al.,2016)。此外,矾山超钾质岩浆的高氧逸度特征同样受到磷灰石Mn氧逸度计的支持。一般认为,磷灰石中的Mn浓度变化独立于熔体中Mn浓度的变化,Mn含量与岩浆氧逸度的对数(lgfO2)呈负相关的线性关系,因此可用磷灰石中Mn含量来评价岩浆的氧化还原状态。本次研究利用矾山磷灰石中的Mn含量(基于磷灰石电子探针数据的简单换算)求得矾山杂岩体的lgfO2为-10.3~-9.9,显著高于其他地质环境(如大洋中脊玄武岩、闪长岩及花岗闪长岩、矽卡岩型及斑岩型金属矿床;Mao Mao et al.,2016)中磷灰石的氧逸度(图8)。

  • 图7 河北矾山杂岩体中磷灰石的微量成分图解(a~d)

  • Fig.7 Trace element compositions (a~d) of the apatite in the Fanshan complex, Hebei Province

  • 4.1.2 岩浆含水性

  • 高Sr、低Y的全岩地球化学特征常被用于指示富水岩浆(Castillo,2006; 邢凯和舒启海,2021),然而全岩分析往往因岩体遭受蚀变,致使初始Sr、Y成分发生改变,从而难以准确表征岩浆的含水性。相反,磷灰石Sr、Y成分在指示岩浆分离结晶、水含量高低等信息具有独特优势,原因如下:① Sr和Y可以通过类质同象替代Ca元素而进入磷灰石晶格,早期结晶的磷灰石能继承岩体中的Sr和Y成分;② 磷灰石不易遭受蚀变改造,能较为完整地保留初始岩浆的Sr和Y成分(Pan Lichuan et al.,2016; Xing Kai et al.,2020)。本次研究表明矾山杂岩体的母岩浆具有较高的含水量,证据为:① 矾山磷灰石以高Sr、低Y为特征(图7c),具有较高的Sr/Y(>30)和La/Yb(>90)比值,Sr/Y与La/Yb均存在明显的正相关关系(图7d),具有此类微量元素特征的磷灰石是岩浆高含水量的标志;② 矾山磷灰石缺乏显著的负铕异常,并在球粒陨石标准化REE元素配分图解上显示出“右倾”的光滑曲线(图6),这通常被认为是富水碱性岩浆的典型REE配分特征(张荣伟等,2019);③ 矾山杂岩体的部分磷灰石颗粒发育流体包裹体(图4h、i),这是岩浆高含水量的直接证据;④ 从矿物组成而言,单斜辉石、正长石和黑云母在矾山杂岩体的广泛存在(图4a~e),不仅表明母岩浆高钾、富钙,还指示其具有相对较高的岩浆含水量。

  • 4.2 矾山超钾质岩浆“氧化且富水”特征的致因

  • 本文研究显示,矾山杂岩体单斜辉石岩和辉石正长岩中的磷灰石具有中等初始(87Sr/86Sr)i比值(分别为0.70514~0.70522与0.70506~0.70521),εNdt)值较低(分别为-6.93~-5.84和-6.87~-5.40),远低于科拉半岛碱性岩杂岩体(Downes et al.,2005)。在Sr-Nd同位素图解上(图9),矾山杂岩体磷灰石的同位素投点位于地幔序列、明显偏离地壳趋势,这与同时代的姚家庄超钾质杂岩体的Sr-Nd同位素投图的成分趋势类似,暗示了显著的幔源特征。值得注意的是,尽管二者的Sr-Nd同位素投点趋势相似,但投点范围并不完全一致(特别是前者的Nd同位素组成明显高于后者),原因一方面在于二者在测试对象和测试手段(前者针对磷灰石单矿物,后者针对全岩粉末)上的不同可能导致获得的数据存在系统性偏差。另一方面,矾山超钾质岩浆在侵位过程中被认为混染了古老下地壳基性麻粒岩/角闪岩(牛晓露,2011Niu Xiaolu et al.,2012),而姚家庄杂岩体被认为受到了具有极低εNdt)值(-44~-25)TTG片麻岩的混染作用(陈斌等,2013),因此地壳混染物性质的不同可能也导致了二者在同位素组成上的差异。

  • 图8 河北矾山杂岩体中磷灰石Mn 含量与lgfO2关系图

  • Fig.8 The correlation diagram between apatite Mn content and lgfO2 in the Fanshan complex, Hebei Province

  • 磷灰石Mn含量(基于电子探针数据的简单换算)与lgfO2的线性方程为lgfO2=-0.0022Mn-9.75(Miles et al.,2014),用于对比的其他地质环境中的磷灰石Mn含量数据引自Mao Mao et al.(2016)

  • The linear equation between apatite Mn content (based on a simple conversion using EMPA data) and lgfO2 is lgfO2=-0.0022Mn-9.75 (Miles et al., 2014) ; the data of apatite Mn contents in other geological settings used for comparison are from Mao Mao et al. (2016)

  • 矾山杂岩体的母岩浆为SiO2不饱和的高钾、富钙的超钾质岩浆,且以高氧逸度及高含水性为特征,这是俯冲带环境(即俯冲板片交代的地幔;Sun Weidong et al.,2015; Richards,2017)所产出岩浆的典型特征。本文认为,板片俯冲过程中蚀变洋壳对岩石圈地幔的交代作用是导致矾山超钾质岩浆具有“氧化且富水”特征的关键原因,证据为:① 俯冲板片中蚀变洋壳(上覆沉积碳酸盐)的富水介质(主要为超临界流体或熔体)和氧化物质(如水、Fe3+等)在壳-幔混合过程中将不断向地幔楔注入,从而持续提升地幔的氧化性和含水性(Kelley and Cottrell,2009; Sun Weidong et al.,2015);② 实验岩石学表明,蚀变洋壳在一定温压条件下产生的碳酸盐质熔体可与地幔矿物发生反应,并生成金云母和单斜辉石(>2 Gpa;McInnes and Cameron,1994),这与前人提出的矾山杂岩体“岩浆源区富含金云母-单斜辉石”的特征吻合(Niu Xiaolu et al.,2012)。结合对华北克拉通岩浆-构造事件的最新研究成果,三叠纪华北克拉通经历了古亚洲洋洋壳的持续俯冲,并在华北克拉通北缘形成了大量安第斯型陆弧岩浆岩带(Chen Bin et al.,2009),认为矾山杂岩体母岩浆高氧逸度、高含水性的特征与古生代期间古亚洲洋向华北克拉通之下俯冲产生的地幔交代作用有关。晚三叠世,由于华北克拉通北缘处于破坏大陆边缘的强烈伸展阶段,诱发了软流圈地幔上涌并使得富集的岩石圈地幔发生部分熔融而形成“氧化且富水”的岩浆体系,最终在应力松弛的条件下侵位到浅地表形成矾山超钾质碱性岩杂岩体。事实上,“氧化且富水”特征是超钾质岩浆得以发生磷灰石-磁铁矿矿化的重要条件,因为岩浆中的水是成矿金属在熔-流体之间不断运移的载体和运输介质,而高氧逸度可以阻止金属元素以低价态的形式分散到早期结晶的岩浆矿物(如石榴子石、单斜辉石等)中,从而在残余熔体中保留直至特定条件下的大规模结晶出来(Sun Weidong et al.,2015)。

  • 图9 河北矾山杂岩体中磷灰石的Sr-Nd同位素投图

  • Fig.9 Plot of Sr-Nd isotopic compositions of apatite in the Fanshan complex, Hebei Province

  • 底图引自牛晓露(2011),图中显示了其他岩体的Sr-Nd同位素成分范围,包括俄罗斯科拉半岛碱性岩火成岩省(Downes et al.,2005)、华北克拉通北缘晚古生代—早中生代侵入岩(Hou Tong et al.,2015)及姚家庄杂岩体(牛晓露,2011

  • The basement figure is from Niu Xiaolu (2011) ; the regions of the Sr-Nd isotopes of other rocks were shown, including alkaline igneous rocks of Kola Peninsula in Russia (Downes et al., 2005) , Late Paleozoic-early Mesozoic intrusive rocks (Hou Tong et al., 2015) and Yaojiazhuang complex (Niu Xiaolu, 2011) in the northern margin of the North China Craton

  • 4.3 勘探启示:全球磷灰石数据的对比

  • 本文对比了矾山杂岩体与全球范围内典型含磷灰石矿床或岩体(如矽卡岩型、造山型、IOCG型和IOA型金属矿床以及中酸性岩体如石英二长岩、闪长岩及花岗闪长岩等;Mao Mao et al.,2016)中磷灰石的典型微量元素特征(图10)。结果显示,矾山磷灰石在Eu-Yb (图10a)与(Ce/Yb)CN-(La/Sm)CN (图10b)协变图中并无明显的指示性意义,表明仅仅依靠磷灰石的REE元素含量(或其比值)难以准确、快速地识别出超钾质碱性岩体。Sr元素为中等不相容元素,由于Sr2+(11.8 nm)和Ca2+(10.0 nm)具有相似的离子半径,在磷灰石的晶格结构中Sr2+较为容易地替代Ca2+,因此磷灰石中的Sr元素含量往往较高(通常大于200×10-6Watson and Capobianco,1981)。本次研究发现,矾山磷灰石在Sr-Yb (图10c)与V-Sr(图10d)协变图中均显示出相对高Sr(接近10000×10-6)的成分特征,其成分范围与绝大多数碳酸岩中磷灰石的Sr含量范围类似,均显著高于其他典型地质体中磷灰石的Sr含量。针对上述磷灰石地球化学特征的合理解释为:超钾质杂岩体与碳酸岩(可视为一种特殊的碱性岩)均为典型的幔源岩石,后者往往产于板内裂谷或拉张环境中,通常被认为起源于由俯冲板片交代的富集岩石圈地幔(特别是承载REE元素矿化的碳酸岩),与碱性岩在空间上密切相关而构成碳酸岩-碱性岩杂岩体(如川西新生代碳酸岩-英碱正长岩杂岩体;Liu Yan and Hou Zengqian,2017)。事实上,矾山杂岩体同样报道了碳酸岩岩枝或岩脉穿插于由单斜辉石岩和辉石正长岩构成的环状杂岩体中(牟保磊等,1999)。因此,认为超钾质杂岩体与碳酸岩的富碱岩浆主要源自地幔交代作用,该过程能引起岩浆熔体中的大离子亲石元素Sr元素发生明显富集且具有高Sr/Y值特征,并反映在这些岩浆(及相关热液流体)所晶出的磷灰石地球化学特征上。上述分析表明,磷灰石中较高的Sr元素含量可作为快速识别超钾质岩体的指标。

  • 本文研究显示,矾山杂岩体与大洋中脊玄武岩中磷灰石F组分类似,均显著低于其他地质环境中产出的磷灰石(图11)。高温高压实验岩石学研究显示,F元素的分配系数(F在流体中的浓度/F在熔体中的浓度)通常小于1.0(大部分处于0.1~0.5范围),表明F元素因具有较强的亲石性而更容易进入熔体相(Tacker et al.,1989)。一般认为,F元素通常富集于地壳,而地幔中含量相对较少,因此地壳重熔形成的岩体通常表现出富F的特征(Boyce et al.,2009),这种特征也发生在岩体所赋存的磷灰石中。因此,本次研究显示的“矾山磷灰石中F组分总体相对较低”可由“岩浆源区并非来自地壳部分熔融,其成岩作用主要与地幔熔(流)体有关”解释。此外,研究还显示矾山磷灰石均为近于“纯净”的氟磷灰石,Cl含量极低(<0.06%),与前人报道的华北克拉通姚家庄碱性岩杂岩体中磷灰石的卤素特征类似(牛晓露,2011),具有此类卤素特征的磷灰石通常被认为是寄主岩体的地幔源区遭受蚀变洋壳中碳酸盐交代作用而生成的典型产物。上述分析表明,F组分相对较低(通常<3.0%)、而Cl含量极低(<0.1%)的磷灰石可作为产于破坏性克拉通边缘的超钾质岩浆系列的指示性矿物。

  • 图10 河北矾山杂岩体中磷灰石与全球范围内其他地质体中磷灰石(据Mao Mao et al.,2016)微量成分的对比

  • Fig.10 Comparison of trace element compositions between apatite in the Fanshan complex, Hebei Province and other geological settings in the world (after Mao Mao et al., 2016)

  • 图11 河北矾山杂岩体(部分数据引自Hou Tong et al.,2015)与全球范围内其他地质体中磷灰石(据Mao Mao et al.,2016)F组分的对比

  • Fig.11 Comparison of apatite F component between the Fanshan complex, Hebei Province (some data from Hou Tong et al., 2015) and other geological settings in the world (after Mao Mao et al., 2016)

  • 图中白圈位置代表磷灰石F组分的平均值,圈旁数字代表统计数量

  • The position of white circle in this figure denotes the average value of apatite F component, while the number beside the circle denotes the statistical quantity

  • 5 结论

  • (1)矾山磷灰石显示出缺乏显著Ce异常的“右倾”的REE配分型式,具有较低的Ga含量及较高的δEu值,以高Sr、低Y为特征且Sr/Y与La/Yb存在明显的正相关关系,所有这些元素地球化学特征表明矾山超钾质岩浆具有较高的氧逸度及含水性。

  • (2)母岩浆“氧化且富水”的特征是超钾质碱性岩杂岩体得以发生磷灰石-磁铁矿矿化的重要条件,该特征与板片俯冲过程中蚀变洋壳中富水介质和氧化物质对地幔楔的持续注入有关,因此有利于形成大型或超大型磷灰石-磁铁矿矿床的最佳构造配置为古老汇聚克拉通边缘。

  • (3)对全球范围内不同地质环境中磷灰石矿物成分的综合对比表明,具有“高Sr、低F、少Cl”特征的磷灰石可视为识别超钾质碱性岩杂岩体(及其相关金属矿床)的指示性矿物。

  • 致谢:中国地质科学院地质研究所刘琰研究员在论文构思及撰写过程中给予了悉心指导,两位匿名审稿专家提出了宝贵的修改意见,在此谨表谢忱。

  • 参考文献

    • Andersson S S, Wagner T, Jonsson E, Fusswinkel T, Whitehouse M J. 2019. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochimica et Cosmochimica Acta, 255: 163~187.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element composition and their relationship to host rock type. Journal of Geochemical Exploration, 76(1): 45~69.

    • Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry: A potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6): 1397~1410.

    • Boyce J W, Hervig R L. 2009. Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica. Contribution to Mineralogy and Petrology, 157(2): 135~145.

    • Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62(1): 63~83.

    • Castillo P R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 258~268.

    • Chen Bin, Jahn B M, Tian Wei. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotopic compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245~257.

    • Chen Bin, Niu Xiaolu, Wang Zhiqiang, Gao Lin, Wang Chao. 2013. Geochronology, petrology, and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton. Science China: Earth Sciences, 43(7): 1073~1087 (in Chinese with English abstract).

    • Downes H, Balaganskaya E, Beard A, Liferovich R, Demaiffe D. 2005. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos, 85(1): 48~75.

    • Evans K A, Elburg M A, Kamenetsky V S. 2012. Oxidation state of subarc mantle. Geology, 40(9): 783~786.

    • Foley S F, Venturelli G, Green D H, Toscani L. 1987. The ultrapotassic rocks: Characteristics, classification, and constrains for petrogenenetic models. Earth-Science Reviews, 24(2): 81~134.

    • Hou Tong, Zhang Zhaochong, Keiding J K, Veksler I V. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: Implications for lithospheric mantle metasomatism and the origin of apatite ores. Journal of Petrology, 56(5): 251~256.

    • Jiang Neng, Chu Xuelei, Mizuta T, Ishiyama D, Mi Jiguang. 2004. A magnetite-apatite deposit in the Fanshan alkaline ultramafic complex, northern China. Economic Geology, 99(2): 397~408.

    • Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325(5940): 605~607.

    • Ketcham R A. 2015. Technical note: Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist, 100(7): 1620~1623.

    • Li Chao, Zhou Limin, Zhao Zheng, Zhang Zhiyuan, Zhao Hong, Li Xinwei, Qu Wenjun. 2018. In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS. Journal of Asian Earth Sciences, 160: 38~47.

    • Li Huawei, Yang Zhiming. 2023. Geochemistry of magmatic zircon and apatite and its applications in porphyry deposits. Acta Geologica Sinica, 97(4): 973~1001 (in Chinese with English abstract).

    • Liu Yan, Hou Zengqian. 2017. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. Journal of Asian Earth Sciences, 137: 35~79.

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusion. Beijing: Science Press (in Chinese with English abstract).

    • Mao Mao, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111(5): 1187~1222.

    • McInnes B I A, Cameron E M. 1994. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth and Planetary Science Letters, 122(1-2): 125~141.

    • Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.

    • Mou Baolei, Shao Jian, Bian Zhenhui. 1999. Discovery of carbonatite in the Fanshan alkaline igneous complex in Hebei Province, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 35(2): 243~247 (in Chinese with English abstract).

    • Niu Xiaolu. 2011. Research on Late Triassic ultrapotassic alkaline rocks and Early Cretaceous Dengzhazi A-type granites on the northern margin of the North China Craton. Doctoral dissertation of Peking University (in Chinese with English abstract).

    • Niu Xiaolu, Chen Bin, Liu Ankun, Suzuki K, Ma Xu. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Croton. Lithos, 149: 146~158.

    • Pan Lichuan, Hu Ruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as Petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254-255: 118~130.

    • Qu Pan, Yang Wubin, Niu Hecai, Li Ningbo, Wu Dan. 2021. Apatite fingerprints on the magmatic-hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China. Geological Society of America Bulletin, 134(7-8): 1863~1876.

    • Ren Rong, Mou Baolei, Han Baofu, Zhang Lei, Chen Jiafu, Xu Zhao, Song Biao. 2009. Zircon SHRIMP U-Pb dating of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. Acta Petrologica Sinica, 25(3): 588~594 (in Chinese with English abstract).

    • Richards J P, López G P, Zhu Jingjing, Creaser R A, Locock A J, Mumin A H. 2017. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu±Mo±Au and intrusion-related iron oxide Cu-Au deposits in northern Chile. Economic Geology, 112(2): 295~318.

    • Rudnick R L, Gao Shan. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 3: 1~64.

    • Smythe D J, Brenan J M. 2015. Cerium oxidation state insilicatemelts: Combined fO2, temperature and compositional effects. Geochimica et Cosmochimica Acta, 170: 173~187.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Review, 65: 97~131.

    • Sun Xiang, Leng Chengbiao, Hollings P, Song Qingjie, Li Ruyue, Wan Xiuquan. 2020. New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: Implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation. Mineralium Deposita, 56(5): 1~18.

    • Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42: 313~345.

    • Tacker R C. 2004. Hydroxyl ordering in igneous apatite. American Mineralogist, 89(10): 1411~1421.

    • Tacker R C, Stormer J C. 1989. A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. American Mineralogist, 74(7-8): 877~888.

    • Watson E B, Capobianco C J. 1981. Phosphorus and the rare-earth elements in felsic magmas: An assessment of the role of apatite. Geochimica et Cosmochimica Acta, 45(12): 2349~2358.

    • Xing Kai, Shu Qihai, Lentz D R, Wang Fangyue. 2020. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the lesser Xing’an range, NE China. American Mineralogist, 105: 382~396.

    • Xing Kai, Shu Qihai. 2021. Applications of apatite in study of ore deposits: A review. Mineral Deposits, 40(2): 189~205 (in Chinese with English abstract).

    • Zaitsev A N, Williams C T, Jeffries T E, Strekopytov S, Moutte J, Ivashchenkova O V, Spratt J, Petrov S V, Wall F, Seltmann R, Borozdin A P. 2014. Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61(3): 204~225.

    • Zhai Mingguo. 2004. 2. 1~1. 7 Ga geological event group and its tectonic significance. Acta Petrologica Sinica, 20(6): 1343~1354 (in Chinese with English abstract).

    • Zhang Rongwei, Xue Chuandong, Xue Lipeng, Liu Xing. 2019. The geochemical characteristics and their geological significance of apatite from Bengge gold deposit in Sanjiang region, SW China. Acta Petrologica Sinica, 35(5): 1407~1422 (in Chinese with English abstract).

    • 陈斌, 牛晓露, 王志强, 高林, 王超. 2013. 华北克拉通北缘姚家庄过钾质超镁铁岩-正长岩杂岩体的锆石 U-Pb 年代学、岩石学和地球化学特征. 中国科学: 地球科学, 43(7): 1073~1087.

    • 李华伟, 杨志明. 2023. 岩浆锆石和磷灰石矿物化学及在斑岩矿床领域的应用. 地质学报, 97(4): 973~1001.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社.

    • 牟保磊, 邵济安, 边振辉. 1999. 矾山碱性杂岩体中发现碳酸岩. 北京大学学报(自然科学版), 35(2): 243~247.

    • 牛晓露. 2011. 华北克拉通北缘晚三叠世过钾质碱性岩和早白垩世邓栅子a-型花岗岩的研究. 北京大学博士学位论文.

    • 任荣, 牟保磊, 韩宝福, 张磊, 陈家富, 徐钊, 宋彪. 2009. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄. 岩石学报, 25(3): 588~594.

    • 邢凯, 舒启海. 2021. 磷灰石在矿床学研究中的应用. 矿床地质, 40(2): 189~205.

    • 翟明国. 2004. 华北克拉通2. 1~1. 7 Ga地质事件群的分解和构造意义探讨. 岩石学报, 20(6): 1343~1354.

    • 张荣伟, 薛传东, 薛力鹏, 刘星. 2019. 西南三江甭哥金矿床磷灰石地球化学特征及地质意义. 岩石学报, 35(5): 1407~1422.

  • 参考文献

    • Andersson S S, Wagner T, Jonsson E, Fusswinkel T, Whitehouse M J. 2019. Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden. Geochimica et Cosmochimica Acta, 255: 163~187.

    • Belousova E A, Griffin W L, O'Reilly S Y, Fisher N I. 2002. Apatite as an indicator mineral for mineral exploration: Trace-element composition and their relationship to host rock type. Journal of Geochemical Exploration, 76(1): 45~69.

    • Bouzari F, Hart C J R, Bissig T, Barker S. 2016. Hydrothermal alteration revealed by apatite luminescence and chemistry: A potential indicator mineral for exploring covered porphyry copper deposits. Economic Geology, 111(6): 1397~1410.

    • Boyce J W, Hervig R L. 2009. Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica. Contribution to Mineralogy and Petrology, 157(2): 135~145.

    • Cao Mingjian, Li Guangming, Qin Kezhang, Seitmuratova E Y, Liu Yongsheng. 2012. Major and trace element characteristics of apatites in granitoids from Central Kazakhstan: Implications for petrogenesis and mineralization. Resource Geology, 62(1): 63~83.

    • Castillo P R. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51(3): 258~268.

    • Chen Bin, Jahn B M, Tian Wei. 2009. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotopic compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, 34(3): 245~257.

    • Chen Bin, Niu Xiaolu, Wang Zhiqiang, Gao Lin, Wang Chao. 2013. Geochronology, petrology, and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton. Science China: Earth Sciences, 43(7): 1073~1087 (in Chinese with English abstract).

    • Downes H, Balaganskaya E, Beard A, Liferovich R, Demaiffe D. 2005. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos, 85(1): 48~75.

    • Evans K A, Elburg M A, Kamenetsky V S. 2012. Oxidation state of subarc mantle. Geology, 40(9): 783~786.

    • Foley S F, Venturelli G, Green D H, Toscani L. 1987. The ultrapotassic rocks: Characteristics, classification, and constrains for petrogenenetic models. Earth-Science Reviews, 24(2): 81~134.

    • Hou Tong, Zhang Zhaochong, Keiding J K, Veksler I V. 2015. Petrogenesis of the ultrapotassic Fanshan intrusion in the North China Craton: Implications for lithospheric mantle metasomatism and the origin of apatite ores. Journal of Petrology, 56(5): 251~256.

    • Jiang Neng, Chu Xuelei, Mizuta T, Ishiyama D, Mi Jiguang. 2004. A magnetite-apatite deposit in the Fanshan alkaline ultramafic complex, northern China. Economic Geology, 99(2): 397~408.

    • Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas. Science, 325(5940): 605~607.

    • Ketcham R A. 2015. Technical note: Calculation of stoichiometry from EMP data for apatite and other phases with mixing on monovalent anion sites. American Mineralogist, 100(7): 1620~1623.

    • Li Chao, Zhou Limin, Zhao Zheng, Zhang Zhiyuan, Zhao Hong, Li Xinwei, Qu Wenjun. 2018. In-situ Sr isotopic measurement of scheelite using fs-LA-MC-ICPMS. Journal of Asian Earth Sciences, 160: 38~47.

    • Li Huawei, Yang Zhiming. 2023. Geochemistry of magmatic zircon and apatite and its applications in porphyry deposits. Acta Geologica Sinica, 97(4): 973~1001 (in Chinese with English abstract).

    • Liu Yan, Hou Zengqian. 2017. A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China. Journal of Asian Earth Sciences, 137: 35~79.

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusion. Beijing: Science Press (in Chinese with English abstract).

    • Mao Mao, Rukhlov A S, Rowins S M, Spence J, Coogan L A. 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111(5): 1187~1222.

    • McInnes B I A, Cameron E M. 1994. Carbonated, alkaline hybridizing melts from a sub-arc environment: Mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth and Planetary Science Letters, 122(1-2): 125~141.

    • Miles A J, Graham C M, Hawkesworth C J, Gillespie M R, Hinton R W, Bromiley G D. 2014. Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132: 101~119.

    • Mou Baolei, Shao Jian, Bian Zhenhui. 1999. Discovery of carbonatite in the Fanshan alkaline igneous complex in Hebei Province, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 35(2): 243~247 (in Chinese with English abstract).

    • Niu Xiaolu. 2011. Research on Late Triassic ultrapotassic alkaline rocks and Early Cretaceous Dengzhazi A-type granites on the northern margin of the North China Craton. Doctoral dissertation of Peking University (in Chinese with English abstract).

    • Niu Xiaolu, Chen Bin, Liu Ankun, Suzuki K, Ma Xu. 2012. Petrological and Sr-Nd-Os isotopic constraints on the origin of the Fanshan ultrapotassic complex from the North China Croton. Lithos, 149: 146~158.

    • Pan Lichuan, Hu Ruizhong, Wang Xinsong, Bi Xianwu, Zhu Jingjing, Li Chusi. 2016. Apatite trace element and halogen compositions as Petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos, 254-255: 118~130.

    • Qu Pan, Yang Wubin, Niu Hecai, Li Ningbo, Wu Dan. 2021. Apatite fingerprints on the magmatic-hydrothermal evolution of the Daheishan giant porphyry Mo deposit, NE China. Geological Society of America Bulletin, 134(7-8): 1863~1876.

    • Ren Rong, Mou Baolei, Han Baofu, Zhang Lei, Chen Jiafu, Xu Zhao, Song Biao. 2009. Zircon SHRIMP U-Pb dating of the Fanshan potassic alkaline ultramafite-syenite complex in Hebei Province, China. Acta Petrologica Sinica, 25(3): 588~594 (in Chinese with English abstract).

    • Richards J P, López G P, Zhu Jingjing, Creaser R A, Locock A J, Mumin A H. 2017. Contrasting tectonic settings and sulfur contents of magmas associated with Cretaceous porphyry Cu±Mo±Au and intrusion-related iron oxide Cu-Au deposits in northern Chile. Economic Geology, 112(2): 295~318.

    • Rudnick R L, Gao Shan. 2003. Composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 3: 1~64.

    • Smythe D J, Brenan J M. 2015. Cerium oxidation state insilicatemelts: Combined fO2, temperature and compositional effects. Geochimica et Cosmochimica Acta, 170: 173~187.

    • Sun Weidong, Huang Ruifang, Li He, Hu Yongbin, Zhang Chanchan, Sun Saijun, Zhang Lipeng, Ding Xing, Li Congying, Zartman R E, Ling Mingxing. 2015. Porphyry deposits and oxidized magmas. Ore Geology Review, 65: 97~131.

    • Sun Xiang, Leng Chengbiao, Hollings P, Song Qingjie, Li Ruyue, Wan Xiuquan. 2020. New 40Ar/39Ar and (U-Th)/He dating for the Zhunuo porphyry Cu deposit, Gangdese belt, southern Tibet: Implications for pulsed magmatic-hydrothermal processes and ore exhumation and preservation. Mineralium Deposita, 56(5): 1~18.

    • Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42: 313~345.

    • Tacker R C. 2004. Hydroxyl ordering in igneous apatite. American Mineralogist, 89(10): 1411~1421.

    • Tacker R C, Stormer J C. 1989. A thermodynamic model for apatite solid solutions, applicable to high-temperature geologic problems. American Mineralogist, 74(7-8): 877~888.

    • Watson E B, Capobianco C J. 1981. Phosphorus and the rare-earth elements in felsic magmas: An assessment of the role of apatite. Geochimica et Cosmochimica Acta, 45(12): 2349~2358.

    • Xing Kai, Shu Qihai, Lentz D R, Wang Fangyue. 2020. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the lesser Xing’an range, NE China. American Mineralogist, 105: 382~396.

    • Xing Kai, Shu Qihai. 2021. Applications of apatite in study of ore deposits: A review. Mineral Deposits, 40(2): 189~205 (in Chinese with English abstract).

    • Zaitsev A N, Williams C T, Jeffries T E, Strekopytov S, Moutte J, Ivashchenkova O V, Spratt J, Petrov S V, Wall F, Seltmann R, Borozdin A P. 2014. Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geology Reviews, 61(3): 204~225.

    • Zhai Mingguo. 2004. 2. 1~1. 7 Ga geological event group and its tectonic significance. Acta Petrologica Sinica, 20(6): 1343~1354 (in Chinese with English abstract).

    • Zhang Rongwei, Xue Chuandong, Xue Lipeng, Liu Xing. 2019. The geochemical characteristics and their geological significance of apatite from Bengge gold deposit in Sanjiang region, SW China. Acta Petrologica Sinica, 35(5): 1407~1422 (in Chinese with English abstract).

    • 陈斌, 牛晓露, 王志强, 高林, 王超. 2013. 华北克拉通北缘姚家庄过钾质超镁铁岩-正长岩杂岩体的锆石 U-Pb 年代学、岩石学和地球化学特征. 中国科学: 地球科学, 43(7): 1073~1087.

    • 李华伟, 杨志明. 2023. 岩浆锆石和磷灰石矿物化学及在斑岩矿床领域的应用. 地质学报, 97(4): 973~1001.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社.

    • 牟保磊, 邵济安, 边振辉. 1999. 矾山碱性杂岩体中发现碳酸岩. 北京大学学报(自然科学版), 35(2): 243~247.

    • 牛晓露. 2011. 华北克拉通北缘晚三叠世过钾质碱性岩和早白垩世邓栅子a-型花岗岩的研究. 北京大学博士学位论文.

    • 任荣, 牟保磊, 韩宝福, 张磊, 陈家富, 徐钊, 宋彪. 2009. 河北矾山钾质碱性超镁铁岩-正长岩杂岩体的锆石SHRIMP U-Pb年龄. 岩石学报, 25(3): 588~594.

    • 邢凯, 舒启海. 2021. 磷灰石在矿床学研究中的应用. 矿床地质, 40(2): 189~205.

    • 翟明国. 2004. 华北克拉通2. 1~1. 7 Ga地质事件群的分解和构造意义探讨. 岩石学报, 20(6): 1343~1354.

    • 张荣伟, 薛传东, 薛力鹏, 刘星. 2019. 西南三江甭哥金矿床磷灰石地球化学特征及地质意义. 岩石学报, 35(5): 1407~1422.