en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

方朝刚,男,1987年生。高级工程师,博士研究生,主要从事沉积学和非常规油气研究。E-mail:fangchaogang206@163.com。

通讯作者:

章诚诚,男,1989年生。高级工程师,博士,主要从事沉积岩石学和油气地质研究。E-mail:zhangcc3614@foxmail.com。

参考文献
Ballentine C J, Burnard P G. 2002. Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, 47(1): 481~538.
参考文献
Bi Zhongqi, Ding Baoliang. 1997. Sedimentary environments of Triassic evaporute formations in the lower Yangtze River region. Volcanology & Mineral Resources, 18(2): 127~136 (in Chinese with English abstract).
参考文献
Broadhead R F. 2005. Helium in New Mexico-Geologic distribution, resource demand, and exploration possibilities. New Mexico Geology, 27(4): 93~100.
参考文献
Brown A A. 2010. Formation of high helium gases: A guide for explorationists. AAPG Convention, New Orleans, Louisiana.
参考文献
Cao Chunhui, Li Zhongping, Du Li, Li Liwu. 2011. Research of method of analyzing natural gas composition by a MAT271 mass spectrometer. Modern Scientific Instrument, 5(10): 103~106 (in Chinese with English abstract).
参考文献
Chang Yinfo, Dong Shuwen, Huang Dezhi. 1996. On tectonics of “Poly-basement with one cover” in middle-Lower Yangtze craton China. Volcanology & Mineral Resources, 17(1): 1~15 (in Chinese with English abstract).
参考文献
Chang Yinfo, Li Jiahao, Song Chuanzhong. 2019. The regional tectonic framework and some new understandings of the Middle-Lower Yangtze River valley metallogenic belt. Acta Petrologica Sinica, 35(12): 3579~3591 (in Chinese with English abstract).
参考文献
Chen Ping, Zhang Minqiang, Xu Yongzhe, Liu Jinshui, Du Xuebin, Hu Xiaohui, Lu Yongchao. 2013. The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu-Jingxian, Lower Yangtze area. Acta Petrologica Sinica, 29(8): 2925~2935(in Chinese with English abstract).
参考文献
Chen Zhihong, Xing Guangfu. 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China. Precambrian Research, 279: 81~90.
参考文献
Dai Jinxing. 1992. Identification of various genetic natural gases. China Offshore Oil and Gas (Geology), 6(1): 11~19 (in Chinese with English abstract).
参考文献
Dai Jinxing, Shi Xin, Wang Yanzhao. 2001. Summary of the abiogenic origin theory and the abiogenic gas pools (fields). Acta Petrolei Sinica, 22(6): 5~10 (in Chinese with English abstract).
参考文献
Dong Shuwen, He Dalin, Shi Yonghong. 1993. Structural characteristics and emplacement mechanism of granitoid in Dangling Anhui, China. Scientia Geologica Sinice, 28(1): 10~20 (in Chinese with English abstract).
参考文献
Grassmann S, Cramer B, Delisle G, Messner J, Winsemann J. 2005. Geological history and petroleum system of the Mittelplate oil field, northern Germany. International Journal of Earth Sciences, 94: 979~989.
参考文献
Guo Nianfa. 1996. Evolutionary gound of basin and regional structure in Lower Yangtze area. Geology of Zhejiang, 12(2): 19~27 (in Chinese with English abstract).
参考文献
Guo Nianfa, You Xiaozhong, Xu Jun. 1999. Geological character of Xiqiao helium-bearing gas field and prospecting of helium-bearing natural gas in North Jiangsu basin. Petroleum Exploration and Development, 26(5): 24~26 (in Chinese with English abstract).
参考文献
Han Wei, Li Yuhong, Lu Jincai, Ren Zhanli, Xu Wei, Song Bo. 2014. The factors responsible for the unusual content of helium-rich natural gas in the Weihe basin, Shaanxi Province. Geological Bulletin of China, 33(11): 1836~1841 (in Chinese with English abstract).
参考文献
Han Wei, Liu Wenjin, Li Yuhong, Zhou Junlin, Zhang Wen, Zhang Yunpeng, Chen Xiaohong, Huang Bin. 2020. Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam basin. Natural Gas Geosciences, 31(3): 385~392 (in Chinese with English abstract).
参考文献
Hu Dezhao, Xu Mingjie, Huang Zhongjin. 1996. A study on the balanced cross section of Wuwei basin, Anhui Province. Geological Journal of China Universities, 2(4): 72~77 (in Chinese with English abstract).
参考文献
Kaneoka I, Takaoka N. 1985. Noble-gas state in the Earth's interior: Some constraints on the present state. Chemical Geology (Isotope Geoscience Section), 52(1): 75~95.
参考文献
Krooss B, Littke R, Müller B, Frielingsdorf J, Schwochau K, Idiz E. 1995. Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations. Chemical Geology, 126(3-4): 291~318.
参考文献
Li Hongjing, Xie Xinong, Huang Junhua, Chen Hui, Lin Zhengliang. 2012. Main factors controlling the formation of excellent marine source rocks in Permian Maokou Formation of Northwest Sichuan, China. Earth Science—Journal of China University of Geosciences, 37(1): 171~180 (in Chinese with English abstract).
参考文献
Li Jianqing, Zhang Chengcheng, Huang Zhengqing, Fang Chaogang, Wu Tong, Shao Wei, Zhou Daorong, Teng Long, Wang Yuanjun, Huang Ning. 2021. Overpressure gas reservoirs and its key elements of hydrocarbon enrichment in the complex structural area of the Lower Yangtze. Geological Bulletin of China, 40(4): 577~585.
参考文献
Li Yuhong, Wang Xingyun, Han Wei. 2016. Mode of occurrence of helium in Weihe basin, Shaanxi Province and its significance. Geological Bulletin of China, 35(2-3): 372~378 (in Chinese with English abstract).
参考文献
Li Yuhong, Zhang Wen, Wang Li, Zhao Fenghua, Han Wei, Chen Gaochao. 2017. Several issues in the accumulation of crust-derived helium and the accumulation model. Journal of Xi'an University of Science and Technology, 37(4): 565~572 (in Chinese with English abstract).
参考文献
Littke R, Krooss B, Idiz E, Frielingsdorf J. 1995. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures. AAPG Bulletin, 79(3): 410~430.
参考文献
Liu Gang, Dong Shuwen, Ma Licheng, Cui Jianjun, Xue Huaiming, Shi Wei, Li Jianhua, Huang Shiqi. 2016. Basement and metallogeny belt of the Middle-Lower Yangtze River, eastern China. Acta Geologica Sinica, 90(9): 2258~2275 (in Chinese with English abstract).
参考文献
Liu Wenhui, Sun Mingliang, Xu Yongchang. 2001. Noble gas isotope characteristics and gas source tracing of natural gas in Ordos basin. Science Bulletin, 46(22): 1902~1905 (in Chinese with English abstract).
参考文献
Lü Qingtian, Liu Zhendong, Dong Shuwen, Yan Jiayong, Zhang Yongqian. 2015. The nature of Yangtze River deep fault zone: Evidence from deep seismic data. Chinese Journal of Geophysics, 58(12): 4344~4359 (in Chinese with English abstract).
参考文献
Maione S J. 2004. Helium exploration—A 21st century challenge. Houston Geological Society, 46(6): 27~30.
参考文献
Mamyrin B A, Tolstikhin I N. 1984. Helium Isotopes in Nature. Amsterdam: Elsevier.
参考文献
Nuttall W J, Clarke R H, Glowacki B A. 2012. Stop squandering helium. Nature, 485(7400): 573~575.
参考文献
Pierce A P, Gott G B, Mytton J W, Faul H. 1964. Uranium and helium in the Panhandle gas field, Texas, and adjacent areas. US Government Printing Office.
参考文献
Ruedemann P, Oles L M. 1929. Helium—Its probable origin and concentration in the Amarillo fold, Texas. AAPG Bulletin, 13(7): 799~810.
参考文献
Tao Mingxin, Shen Ping, Xu Yongchang, Fei Fuan, Luo Jikun. 1997. Characteristics and formation conditions of mantle-derived helium reservoirs in northern Jiangsu basin. Natural Gas Geoscience, 8(3): 1~8 (in Chinese with English abstract).
参考文献
Tao Mingxin, Xu Yongchang, Han Wenggong, Gao Bo, Ma Jinglong, Wang Wanchun. 2001. Active characteristics and accumulative effects of mantle-derived fluids in eastern China. Geotectonic et Metallogenia, 3(25): 265~270 (in Chinese with English abstract).
参考文献
Tao Xiaowan, Li Jianzhong, Zhao Libin, Li Liwu, Zhu Wenping, Xing Lantian, Shan Xiuqin, Zheng Hongju, Zhang Liping. 2019. Helium resources and the discovery of the first supergiant helium reserve in China Hetianhe gas field. Earth Science, 44(3): 1024~1041 (in Chinese with English abstract).
参考文献
Wu Jianhua, Guo Guoling, Guo Jialei, Zhang Qi, Wu Rengui, Yu Dagan. 2017. Spatial-temporal distribution of Mesozoic igneous rock and their relationship with hydrothermal uranium deposits in eastern China. Acta Petrologica Sinica, 33(5): 1591~1614 (in Chinese with English abstract).
参考文献
Wu Tong, Li Jianqing, Zhang Chengcheng, Shao Wei, Fang Chaogang, Zhou Daorong, Huang Ning. 2020. Analysis on the gas reservoir forming conditions of Middle Triassic Zhouchongcun Formation in Wuwei depression, Lower Yangtze basin. East China Geology, 41(4): 425~433 (in Chinese with English abstract).
参考文献
Xing Fengming, Xu Xiang. 1993. Nd, Sr, Pb isotopic geochemistry of the Mesozoic granitolds in South Anhui. Geology in Anhui, 3(1): 35~41 (in Chinese with English abstract).
参考文献
Xing Guangfu, Li Jianqing, Duan Zheng, Cao Mingxuan, Yu Minggang, Chu Pingli, Chen Rong. 2021. Mesozoic-Cenozoic volcanic cycle and volcanic reservoirs in East China. Journal of Earth Science, 32(4): 742~765.
参考文献
Xu Feifei, Zhang Xunhua, Huang Zhengqing, Li Jianqing, Wu Tong. 2019. Characteristics of the Dalong and Gufeng Formation shale reservoirs in Ningguo depression, lower Yangtze region, China. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2): 180~190 (in Chinese with English abstract).
参考文献
Xu Xi, Gao Shunli. 2015a. The structure and formation of the Cenozoic fault basin in the Lower Yangtze region. Earth Science Frontiers, 22(6): 148~166 (in Chinese with English abstract).
参考文献
Xu Xi, Gao Shunli, Wang Xingjian, Huang Junbo, Wang Bo. 2015b. Cenozoic deformation of extensional tectonics in the Lower Yangtze region and its tectonic significance. Earth Science (Journal of China University of Geoscience), 40(12): 1968~1986 (in Chinese with English abstract).
参考文献
Xu Xi, Zhu Xiaoying, Shan Xipeng, Xiao Mengchu, Sun Lianpu, Gao Shunli. 2018. Structure and sedimentary characteristics of the Meso-Cenozoic basin group along the Yangtze River in the Lower Yangtze region. Petroleum Geology & Experiment, 40(3): 303~314 (in Chinese with English abstract).
参考文献
Xu Yongchang. 1997. Helium isotope distribution of natural gasses and its structural setting. Earth Science Frontiers, 4 (3-4): 185~190.
参考文献
Xu Yongchang, Shen Ping, Liu Wenhui, Tao Mingxin, Sun Mingliang, Du Jianguo. 1998. Noble Gas Geochemistry in Natural Gases. Beijing: Science Press (in Chinese with English abstract).
参考文献
Xu Yongchang, Liu Wenhui, Shen Ping, Tao Mingxin, Zheng Jianjing. 2003. An important branch of gas geochemistry—Noble gas geochemistry. Natural Gas Geoscience, 14(3): 157~166 (in Chinese with English abstract).
参考文献
Zhang Jian, Yang Wei, Yi Haiyong, Xie Wuren, Xie Zengye, Zeng Fuying, Cen Yongjing. 2015. Feasibility of exploring high helium bearing natural gas reservoirs in pre-Sinian System of Sichuan basin. Natural Gas Industry, 35(1): 45~52 (in Chinese with English abstract).
参考文献
Zhang Xiaobao, Zhou Fei, Cao Zhanyuan, Liang Mingliang. 2020. Discovery, helium source and exploration prospect of Dongping helium industrial gas field in Qaidam basin. Natural Gas Geosciences, 31(11): 1585~1592 (in Chinese with English abstract).
参考文献
Zhang Yunpeng, Li Yuhong, Lu Jincai, Li Yonghong, Song Bo, Guo Wang. 2016. Finding of helium-rich natural gas in the north margin of the Qaidam basin: Discussing the pool-forming geological conditions. Geological Bulletin, 35(2-3): 364~371 (in Chinese with English abstract).
参考文献
Zhou Yan, Jin Zhijun, Zhu Dongya, Yuan Yusong, Li Shuangjian. 2012. Current status and progress in research of hydrocarbon cap rocks. Petroleum Geology & Experiment, 34(3): 234~245 (in Chinese with English abstract).
参考文献
毕仲其, 丁保良. 1997. 下扬子区三叠系膏盐建造的沉积环境. 火山地质与矿产, 18(2): 127~136.
参考文献
曹春辉, 李中平, 杜丽, 李立武. 2011. 气体同位素质谱仪MTA271分析天然气组分的方法研究. 现代科学仪器, 5 (10): 103~106.
参考文献
常印佛, 董树文, 黄德志. 1996. 论中—下扬子 “一盖多底” 格局与演化. 火山地质与矿产, 17(1): 1~15.
参考文献
常印佛, 李加好, 宋传中. 2019. 长江中下游成矿带区域构造格局的新认识. 岩石学报, 35(12): 3579~3591.
参考文献
陈平, 张敏强, 许永哲, 刘金水, 杜学斌, 胡小辉, 陆永潮. 2013. 下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征. 岩石学报, 29(8): 2925~2935.
参考文献
戴金星. 1992. 各类天然气的成因鉴别. 中国海上油气(地质), 6(1): 11~19.
参考文献
戴金星, 石昕, 卫延召. 2001. 无机成因油气论和无机成因的气田(藏)概略. 石油学报, 22(6): 5~10.
参考文献
董树文, 何大林, 石永红. 1993. 安徽董岭花岗岩类的构造特征及侵位机制. 地质科学, 28(1): 10~20.
参考文献
郭念发. 1996. 下扬子盆地与区域地质构造演化及油气成藏分析. 浙江地质, 12(2): 19~27.
参考文献
郭念发, 尤孝忠, 徐俊. 1999. 苏北盆地溪桥含氦天然气田地质特征及含氦天然气勘探前景. 石油勘探与开发, 26(5): 24~26.
参考文献
韩伟, 李玉宏, 卢进才, 任战利, 许伟, 宋博. 2014. 陕西渭河盆地富氦天然气异常的影响因素. 地质通报, 33(11): 1836~1841.
参考文献
韩伟, 刘文进, 李玉宏, 周俊林, 张文, 张云鹏, 陈晓宏, 黄斌. 2020. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素. 天然气地球科学, 31(3): 385~392.
参考文献
胡德昭, 徐鸣洁, 黄钟谨. 1996. 安徽无为盆地平衡地质剖面研究. 高校地质学报, 2(4): 72~77.
参考文献
李红敬, 解习农, 黄俊华, 陈慧, 林正良. 2012. 川西北二叠系茅口组海相优质烃源岩发育控制因素. 地球科学: 中国地质大学学报, 37(1): 171~180.
参考文献
李建青, 章诚诚, 黄正清, 方朝刚, 吴通, 邵威, 周道容, 滕龙, 王元俊, 黄宁. 2021. 下扬子复杂构造区超高压含气层的发现及油气富集关键要素. 地质通报, 40(4): 577~585.
参考文献
李玉宏, 王行运, 韩伟. 2016. 陕西渭河盆地氦气资源赋存状态及其意义. 地质通报, 35(2-3): 372~378.
参考文献
李玉宏, 张文, 王利, 赵峰华, 韩伟, 陈高潮. 2017. 壳源氦气成藏问题及成藏模式. 西安科技大学学报, 37(4): 565~572.
参考文献
刘刚, 董树文, 马立成, 崔建军, 薛怀民, 施炜, 李建华, 黄始琪. 2016. 长江中下游地区基底与成矿. 地质学报, 90(9): 2258~2275.
参考文献
刘文汇, 孙明良, 徐永昌. 2001. 鄂尔多斯盆地天然气稀有气体同位素特征及气源示踪. 科学通报, 46(22): 1902~1905.
参考文献
吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015. “长江深断裂带”的构造性质: 深地震反射证据. 地球物理学报, 58(12): 4344~4359.
参考文献
陶明信, 沈平, 徐永昌, 费富安, 罗继坤. 1997. 苏北盆地幔源氦气藏的特征与形成条件. 天然气地球科学, 8(3): 1~8.
参考文献
陶明信, 徐永昌, 韩文功, 高波, 马锦龙, 王万春. 2001. 中国东部幔源流体的活动特征与成藏效应. 大地构造与成矿学, 3(25): 265~270.
参考文献
陶小晚, 李建忠, 赵力彬, 李立武, 朱文平, 邢蓝田, 苏法卿, 单秀琴, 郑红菊, 张立平. 2019. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田. 地球科学, 44(3): 1024~1041.
参考文献
巫建华, 郭国林, 郭佳磊, 张旗, 吴仁贵, 余达淦. 2017. 中国东部中生代岩浆岩的时空分布及其与热液型铀矿的关系. 岩石学报, 33(5): 1591~1614.
参考文献
吴通, 李建青, 章诚诚, 邵威, 方朝刚, 周道容, 黄宁. 2020. 下扬子无为盆地中三叠世周冲村组天然气成藏物质基础分析. 华东地质, 41(4): 425~433.
参考文献
邢凤鸣, 徐祥. 1993. 皖南中生代花岗岩类 Nd, Sr, Pb 同位素特点. 安徽地质, 3(1): 35~41.
参考文献
徐菲菲, 张训华, 黄正清, 李建青, 吴通. 2019. 下扬子地区宁国盆地大隆组—孤峰组泥页岩储层特征. 成都理工大学学报: 自然科学版, 46(2): 180~190.
参考文献
徐曦, 高顺莉. 2015a. 下扬子区新生代断陷盆地的构造与形成. 地学前缘, 22(6): 148~166.
参考文献
徐曦, 高顺莉, 王兴建, 黄俊菠, 王博. 2015b. 下扬子区新生代伸展构造变形及其区域构造意义. 地球科学(中国地质大学学报), 40(12): 1968~1986.
参考文献
徐曦, 朱晓颖, 单希鹏, 肖梦楚, 孙连浦, 高顺莉. 2018. 下扬子区中新生代沿江盆地群的盆地结构与沉积特征. 石油实验地质, 40(3): 303~314.
参考文献
徐永昌. 1997. 天然气中氦同位素分布及构造环境. 地学前缘, 4 (3-4): 185~190.
参考文献
徐永昌, 沈平, 刘文汇, 陶明信, 孙明良, 杜建国. 1998. 天然气中稀有气体地球化学. 北京: 科学出版社.
参考文献
徐永昌, 刘文汇, 沈平, 陶明信, 郑建京. 2003. 天然气地球化学的重要分支——稀有气体地球化学. 天然气地球科学, 14(3): 157~166.
参考文献
张健, 杨威, 易海永, 谢武仁, 谢增业, 曾富英, 岑永静. 2015. 四川盆地前震旦系勘探高含氦天然气藏的可行性. 天然气工业, 35(1): 45~52.
参考文献
张晓宝, 周飞, 曹占元, 梁明亮. 2020. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景. 天然气地球科学, 31(11): 1585~1592.
参考文献
张云鹏, 李玉宏, 卢进才, 李永红, 宋博, 郭望. 2016. 柴达木盆地北缘富氦天然气的发现——兼议成藏地质条件. 地质通报, 35(2-3): 364~371.
参考文献
周雁, 金之钧, 朱东亚, 袁玉松, 李双建. 2012. 油气盖层研究现状与认识进展. 石油实验地质, 34(3): 234~245.
目录contents

    摘要

    在无为盆地WWY1井三叠系周冲村组首次发现了异常高压富氦天然气显示,对其中2个气样的气体组分分析发现,He的体积分数分别为4.51%和4.56%,远高于0.1%的氦气工业利用标准;3He/4He值分别为5.50×10-8和6.40×10-8,幔源氦占比仅仅为0.32%和0.40%,应属典型的壳源氦。同时依据 、CO2含量及N2含量综合分析认为该天然气为有机成因,其烃源岩类型与研究区广泛发育的二叠系烃源岩相吻合。通过区域地质资料和深部地球物理资料分析认为其氦源极可能来源于古—中元古代基底花岗岩。长江深断裂带可作为联通深部地壳与浅部地层的重要通道,对于氦气扩散外移起到了关键作用。当富氦流体运移至浅部遇到天然气等载体气气藏时,流体的氦浓度迅速降低,氦气大量脱溶进入载体气气藏形成富氦天然气藏,活动的断裂系统和裂缝为其提供了运移和疏导通道。盆地内三叠系周冲村组多套膏岩盖层在一定的埋深条件下形成了超高压封闭条件,有可能是阻止富氦天然气向上扩散的重要原因,膏岩层下白云岩裂缝性储层为其提供了储存空间,具有良好的储盖时空配置关系。下扬子沿江地区具有多个与无为盆地地质条件相类似的同级盆地(如:望江盆地),预示着沿江地区具备十分有利的氦气勘探潜力,此外本次研究提出的氦气成藏模式也可为区域上氦气勘探提供重要的指导意义。

    Abstract

    Abnormal high pressure helium-rich natural gas was first discovered in the Triassic Zhouchongcun Formation in Well WWY1 of the Wuwei basin. Gas composition analysis of two gas samples showed that the volume proportions of He were 4.51% and 4.56%, respectively, which were much higher than the industrial utilization standard (0.1%). The two values of 3He/4He are 5.50×10-8 and 6.40×10-8 respectively, and the proportion of mantle-derived helium is only 0.32% and 0.40%, which typically suggests crust-derived helium. The integrated analysis of , CO2 content and N2 content indicates the gas has an organic origin, which is associated with the widespread development of Permian hydrocarbon rock in the study area. Analysis of regional geological and deep geophysical data suggests that the helium source rocks are most likely derived from Paleo- and Meso-Proterozoic basement granites. As an important channel connecting deep crust and shallow strata, the Yangtze River deep fault zone plays a key role in helium migration. When the helium-rich fluid migrates to the shallows and meets the carrier gas reservoir of natural gas, the helium concentration of the fluid decreases rapidly and a large amount of helium diffuses into the carrier gas reservoir to form the helium-rich gas reservoir. During this process, active fault systems and fractures served as effective migration channels. The Triassic Zhouchongcun Formation in the sag has formed an ultra-high pressure confining condition under certain burial depth conditions, which has prevented the upward diffusion of helium-rich natural gas. The fractured dolomite reservoir under the gypsum rock layer provides a storage space, and has a good spatial and temporal configuration of the storage cap. There are several similar basins along the Yangtze River (e.g.Wangjiang basin), indicating that there is a very favorable potential for helium exploration along the Yangtze River Area. In addition, the helium accumulation model proposed in this study can also provide important guidance for regional helium exploration.

  • 氦气(He)是一种重要的稀有气体,具有分子质量小、沸点最低、超高热导、化学惰性等特征。因其特殊的物理化学性质,目前被广泛应用于航空航天、特种冶金、低温超导、深海潜水、金属焊接、光学、制冷、医疗等重要领域(韩伟等,2014)。我国是氦气资源十分紧缺的国家,探明储量仅占世界氦气资源的2.1%,对外依存度极高,已成为严重制约我国高精尖科技领域稳定和持续发展的一个资源短板。近些年来,一些氦气生产和出口国相继将氦气列为战略储备资源,致使液氦的价格进一步拉升,达到黄金价格的400倍(被称为“黄金气”)(Nuttall et al.,2012),氦气的资源保障需求进一步加剧。截止2020年,我国仅在塔里木盆地、四川盆地、鄂尔多斯盆地、柴达木盆地等西部地区发现了一批具有商业开采潜能的含氦气藏,为缓解氦气长期短缺带来的供给压力,加强国内其他地区氦气资源的勘探和开发非常必要(刘文汇等,2001; 张健等,2015; 陶小晚等,2019; 张晓宝等,2020; 韩伟等,2020)。

  • 和一些常规气藏不同,氦气并不能独立成藏,而是普遍作为其他气藏伴生气存在,如CH4气藏、CO2气藏、N2气藏等(陶明信等,1997; 李玉宏等,20162017)。一般来说,气藏中氦气含量超过0.1%,即达到工业标准,具有氦气商业可开采价值。目前学界对地下氦气的研究主要聚焦氦的来源和成因判别方面,并取得了一些重要认识。氦的来源可以简单地划分为幔源氦、壳源氦和大气氦源(Ballentine and Burnard,2002)。其中,壳源氦主要是由地壳中富含铀(U)、钍(Th)的岩石通过放射性衰变产生,因此其氦源岩岩石类型相对较为复杂。例如:盆地下部的花岗岩基底和入侵盆地内部的花岗岩岩体常被认为是盆地氦气聚集的重要氦源岩,因为花岗岩中放射性元素U、Th含量是常见的各类岩石中最高的(李玉宏等,2017)。在美国的Panhandle、Hugoton,中国的威远、塔里木西南巴什托等气田中氦气的来源与巨大的花岗岩体被证实有明显的成因联系(Ruedemann and Oles,1929; Maione,2004; Broadhead,2005; 陶小晚等,2019; 张晓宝等,2020)。也有学者提出盆地中富有机质泥页岩U、Th质量分数相对较高,也可以对气藏中氦气的生成具有一定的贡献(Pierce et al.,1964; Brown,2010),且烃源岩中生成的氦气具有与烃类气一起运移成藏的潜力,然而,事实上以泥页岩为烃源岩的天然气藏中并未形成广泛的氦气富集,富有机质泥页岩能否作为有效氦源岩还需要明确的实例去证实。自然界中氦元素有两种同位素(3He和4He),由于3He主要来自幔源氦、4He主要来自壳源氦,利用氦同位素显著的成因差异能够为不同来源的氦提供准确的判识标志(Mamyrin and Tolstikhin,1984)。陶明信等(2001)徐永昌(2003)利用样品氦的3He/4He值(R)与大气氦的3He/4He值(Ra)的比值(R/Ra)来表示气样的氦同位素特征,是判别氦气成因的一个重要指标。到目前为止,关于氦气生成、运聚、保存的系统研究仍相对较少(韩伟等,2020),对氦气成藏机理认识还不够全面和深入(李玉宏等,2017)。

  • 我国下扬子地区具备氦气聚集成藏的基本地质条件和潜在勘探价值,该地区自20世纪90年代就有多处含氦气藏发现的报道,如苏北盆地东台凹陷、溱潼凹陷、金湖凹陷以及江苏溪桥地区(陶明信等,1997; 郭念发等,1999)。但总体来说,该地区的氦气调查工作进展较为缓慢,除了苏北盆地,之前在下扬子其他地区还尚无氦气的新发现。近来年,中国地质调查局牵头对下扬子油气页岩气资源开展调查,在下扬子无为盆地中三叠统周冲村组首次发现了超高压富氦天然气异常,取得了下扬子氦气和天然气资源调查的重大进展。本文在以往工作认识基础上,结合最新物探、钻井、实验测试和地质调查成果,对下扬子无为盆地富氦天然气中氦气成因和成藏地质条件开展详细分析,并提出无为盆地氦气的成藏模式,旨在为评价该区域氦气资源潜力和后续氦气勘探部署提供重要参考价值。

  • 1 研究区概况

  • 下扬子地区位于扬子地块东北缘,介于大别-苏鲁造山带与江绍断裂之间,整体上呈南西较窄、北东开阔的喇叭形地带(图1),范围包括长江下游被郯庐断裂带和江绍断裂所限制的大片区域(郭念发,1996)。现今构造格局主要由南部以前寒武纪地层出露为主的陆内隆起区和中-北部以第四纪覆盖出露为主的古—新生代叠合盆地区所构成。目前叠合盆地区除了苏北盆地研究程度较高,其他地区的研究相对薄弱,尤其是位于下扬子中部的沿江盆地群。该盆地群由9个中—新生代陆相沉积盆地所组成,自西向东依次为潜山盆地、全椒盆地、望江盆地、无为盆地、鄱阳盆地、句容-南陵盆地、常州-宣城盆地、溧阳盆地和平湖盆地(徐曦和高顺莉,2015a; 徐曦等,2015b2018),具有相似的中—新生代演化历史。中—新生代以来,这些盆地地区以接受沉积为主,其下伏的下扬子古生界海相地层保存相对较好,是下扬子油气资源勘探潜在有利区。

  • 研究区无为盆地地理位置上处在安徽省沿江地区,总体呈北东—南西向展布,北西侧以照明山边界断裂与含巢推覆带相邻,西南侧与望江盆地相接,东南侧为长江断裂带。盆地大部分地区被第四系覆盖,局部出露晚白垩世、古近纪及新近纪地层,面积约3030 km2(图1)。

  • 无为盆地经过多年的油气页岩气勘探,证实存在二叠系优质烃源岩。二叠系烃源岩以海相暗色碳质泥岩和硅质泥岩为主,具有页岩厚度大、有机质丰度高、成熟度高等特点(李红敬等,2012; 徐菲菲等,2019)。目前已有多个油气发现与该套烃源岩有关联(吴通等,2020; 李建青等,2021)。

  • 2 富氦天然气的发现

  • 2019年中国地质调查局南京地质调查中心在下扬子无为盆地实施的参数井WWY1井,首次在三叠系周冲村组膏岩层下白云岩中发现异常高压富氦天然气显示。本次研究采集了2个天然气样品,取自WWY1井白云岩储层,该储层被上覆巨厚膏盐岩层封盖。样品采用耐压钢瓶保存,以避免污染和泄漏,具体采样方法及要求见徐永昌(1998)。样品送至中国科学院西北生态环境资源研究院油气研究中心进行测试,其中天然气组分分析采用Mat-271质谱仪,样品测试条件、方法及精度详见曹春辉等(2011),分析结果见表1。天然气氦同位素测试在 Nobleless SFT 质谱仪上进行,具体测试条件、方法及精度参见张云鹏等(2016),分析结果见表2。

  • 图1 下扬子断陷盆地系统的构造格架与空间展布(a)及无为盆地地震测线A—A’与构造解释(b)

  • Fig.1 Structural framework and spatial distribution of the Lower Yangtze fault basin system (a) and seismic line A—A’ and structural interpretation (b) in Wuwei basin

  • 从表1可以看出,2个样品气体成分以甲烷和氮气为主,甲烷体积分数分别为49.67%和50.61%,氮气体积分数分别为43.97%和43.15%,其他烃类体积分数较小,但其中氦气的体积分数分别为4.51%和4.56%,远高于0.1%的氦气工业利用标准,显示了较好的氦气异常。

  • 表1 无为盆地WWY1井样品气体组分与含量(%)

  • Table1 Gas composition and content (%) of samples from well WWY1 in Wuwei basin

  • 表2 无为盆地WWY1井样品气体同位素及幔源氦占比统计

  • Table2 Statistics of gas isotopes and proportion of mantle-derived helium in samples from well WWY1 in Wuwei basin

  • 3 氦气成因分析

  • 由于自然界中氦气往往是作为伴生气富集于其他气藏中,因此气藏中氦气的成因可以通过氦气自身和其所处气藏的主要气体的来源途径来进行综合判断。

  • 3.1 氦同位素分析

  • 氦有2种稳定同位素3He和4He,具有不同的成因,其比值R=3He/4He常用来判断氦气的成因及来源。大气来源同位素特征值为1.4×10-6,壳源同位素特征值为2×10-8Mamyrin and Tolstikhin,1984),幔源同位素特征值为1.1×10-5Kaneoka and Takaoka,1985)。由于样品中大气氦可以忽略,因此常用二元法计算天然气中幔源氦所占份额,计算公式为(徐永昌,1997):

  • 幔源 He(%)=3He/4He-3He/4He3He/4He -3He/4He×100
    (1)
  • 样品氦(R)和大气氦(Ra)的同位素比值可用来表示气样的He同位素特征,即R/Ra=(3He/4He)样品/(3He/4He)大气。当 R/Ra<1 时,表示为壳源,即氦气组成中以壳源氦为主; R/Ra>1时,表示为幔源,意味着有相当多的幔源氦加入。从表2中可见,无为盆地2个气样3He/4He 最小值为 5.5×10-8,最大值为6.4×10-8,平均值为5.95×10-8,均为10-8量级; 幔源氦占比仅仅为0.32%和0.40%,应属典型的壳源氦。值得一提的是截至目前华东地区无为盆地(WWY1井)最新发现的三叠系异常高压富氦天然气与中国东部其他盆地已发现的氦气成因存在较大差异(图2)。因此,该发现对提升我国东部氦源认识及氦气资源的勘探部署具有重要意义。

  • 3.2 组分气体来源分析

  • δ13CCH4特征是区别天然气中甲烷有机成因和无机成因的最主要标志,通常将δ13CCH4>20‰作为无机成因甲烷的标志之一。天然气中CO2的含量和δ13CCO2也可作为判别CO2组分成因类型的重要依据。前人统计表明我国有机成因CO2的δ13C区间值在39‰~8‰,主频率区间为17‰~12‰; 而无机成因CO2的δ13C区间值一般为10‰~+7‰,主频率段为6‰~3‰(戴金星,1992; 戴金星等,2001)。此外,有机成因CO2在天然气藏中含量一般很少(<20%),而富含CO2的烃类气藏和CO2气藏中的CO2几乎都是无机成因(戴金星等,2001)。N2也是一种常见的天然气组分气体,含量通常不超过10%,而天然气中高含量的N2被认为与烃源岩过成熟演化有关(Littke et al.,1995; Krooss et al.,1995)。

  • 图2 无为盆地WWY1井3He/4He-He含量关系及与我国东部主要气田对比

  • Fig.2 Comparison of well WWY1 3He/4He-He content relationship in Wuwei basin and major gas fields in eastern China

  • WWY1井周冲村组2个气样δ13CCH4在26.3‰~26.0‰之间,δ13CCO2为13.7‰,且CO2含量远小于20%,以及高含量的N2,表明该天然气为有机成因,与深部无机成因气无关。这与研究区二叠系烃源岩的类型(海相泥岩、页岩)及高成熟度(2%<Ro<3%)相吻合(陈平等,2013)。

  • 4 氦气富集地质条件及影响因素

  • 相比于普通的烃类气体,氦气的分子最小,渗透性极强,容易散逸,因此氦气富集除需具备一定储集条件外,还需要有源源不断的氦气补给和封闭性强的盖层。无为盆地三叠系周冲村组氦气的富集与该区域具备充足的源岩、良好的运移和储集条件、优质的膏岩封盖层息息相关。

  • 4.1 氦源岩特征

  • 氦同位素组成特征表明无为盆地氦气为壳源成因。壳源氦来源于地壳中放射性的铀、钍等元素的衰变,这些放射性物质产生氦气是一个极其漫长的积累过程。由于铀、钍元素放射性半衰期达到几亿年到十几亿年,因此,那些规模巨大、形成年代古老、构造改造强烈的岩体最有可能成为有效氦源岩(李玉宏等,2017)。

  • 无为盆地所在的扬子地块自古—中元古代以来,经历了长期、多期次的复杂构造变动,形成了多期岩浆活动事件及多旋回岩浆岩分布,包括古—中元古代基底花岗岩、晋宁期不同微古板块拼合带花岗岩、加里东期与印支期陆内造山作用生成的花岗岩、燕山期活动陆缘构造转换阶段形成的花岗岩等(Xing et al.,2021)。其中以古—中元古代花岗岩基底及中生代燕山期岩浆岩侵入岩体与无为盆地空间分布最为紧密。

  • 露头和航磁资料显示燕山期岩浆岩受北东-北北东向深大断裂控制,形成以长江断裂为轴线对称分布的同向带状构造岩浆岩带,构成长江下游中生代内生金属成矿带。该岩浆岩带在宁芜地区主要分布于无为盆地东北缘和东南缘、规模较大,而在盆地内部基本呈规模较小的隐伏—半隐伏岩体,表现为局部相对高磁异常(图3)。年代学证据表明长江下游剧烈岩浆作用大多发生在燕山晚期(140~120 Ma),形成于中国东部陆缘由挤压转变为伸展构造背景(Xing et al.,2021)。虽然该岩浆岩成矿带中已发现多个热液型铀矿床和矿点(巫建华等,2017),预示该期岩浆作用形成的岩体可能铀含量偏高,但考虑到盆地内部岩体规模偏小且形成年代偏新,其生氦潜力有限,并不是一套主力氦源岩。

  • 前寒武纪基底研究显示下扬子地块区域上具“一盖多底”的地壳结构特征,在震旦纪以来形成的统一沉积盖层之下,具有四种不同的基底建造类型(常印佛等,2019)。在无为盆地沉积盖层之下为古—中元古代的董岭式基底,该基底在长江下游地区北界为宿松-滁河断裂,南以庐山-青阳-宜城-常州断裂与江南式基底相接,整体呈东西向的巨型条带状古垣(刘刚等,2016)。该基底在MT视电阻率二维连续介质反演剖面上表现为总体相对高阻的特征,与两侧深部电性明显不同(图4a),最新的地壳深部地震资料进一步显示其呈均一的空白反射(图4b)。该基底出露特征显示其原岩主要为酸性火山岩和花岗质侵入岩建造,放射性同位素年代学证据显示其年龄跨度较大(1895~1400 Ma),但形成时间不晚于中元古代(邢凤鸣和徐祥,1993; 董树文等,1993; Chen and Xing,2016),具有古老花岗岩基底属性(常印佛等,2019)。因此,从基底岩性特征、整体规模、形成时代来说,该基底具备有利的氦源岩条件,是本区的主力氦源岩,这与国内外许多已发现的壳源型氦气藏的氦源岩具有很好的可类比性(Ruedemann,1929; Maione,2004; 张健等,2015; 陶小晚等,2019)。

  • 4.2 运移条件

  • 花岗岩体本身为致密的块状构造,孔隙度、渗透率极差,并不利于氦气生成后的排出和储集。但如果花岗岩体经后期构造作用发育断层、裂隙与节理,可以大大提升其气体排出效率,生成的氦气沿着裂变径迹定向扩散完成初次运移,而后一般溶于孔隙水等流体中发生二次运移(Ballentine et al.,2002)。运移通道包括基底断层和断裂系统,最终可以在物性相对较好的地层中富集(李玉宏等,2017)。无为盆地西北侧以照明山断裂为界,紧邻巢湖-宿松褶皱逆冲断裂带; 东南侧大致以长江断裂带为界,为芜湖-铜陵隔档式褶皱带(胡德昭等,1996)。最新的地壳深部地震资料显示长江断裂带是一条深大断裂(吕庆田等,2015),可作为联通深部地壳的重要通道,对于氦气运移起到了关键作用。

  • 图3 无为盆地周缘花岗岩体分布图(依据区域航磁资料解释)

  • Fig.3 Distribution map of granite bodies around Wuwei basin (interpreted based on regional aeromagnetic data)

  • 长江断裂带一般指由安庆经芜湖、南京至镇江段,位于下扬子地块内一条陆内断裂构造带。长度可达400 km以上,断裂带宽10~25 km。它是在元古宙基底拼合带基础上,燕山期强烈再活化的构造-岩浆岩带,具有深及岩石圈地幔性质的断裂带(常印佛等,1996)。长江断裂带经历了从逆冲到正断层的转换,燕山期该断裂处于挤压变形阶段,上地壳形成了大规模冲断和叠瓦构造(吕庆田等,2015),导致基底花岗体内部形成断层、裂隙与节理,打通了氦气扩散的通道; 早白垩世转换为伸展变形阶段,长江深断裂带反转为区域正断层带,软流圈上隆,引发进一步的伸展和岩浆活动,深部的氦气随着断裂通道向浅部运移。

  • 4.3 储层特征

  • 无为盆地在经历了加里东期、海西期、印支期和燕山期等多期构造运动后,形成一系列彼此交织、呈棋盘网格分布的裂缝系统(徐曦等,2018),高密度的网格状裂缝致使白云岩地层破碎加剧、连通性增强,为后期白云岩储层改造提供了先决条件。

  • 运用测井资料、覆压孔渗实验和薄片面孔率三个手段综合分析WWY1井白云岩储层的孔渗条件。测井曲线显示白云岩与膏岩的接触带孔隙度增高,自然伽马(GR)、无铀伽马(KTH)表现为低伽马背景下的尖峰状凸起的响应特征,深侧向和浅侧向测井值通常表现为致密高电阻率背景下的低凸起响应特征(图5),测井综合解释含气层(2346.7~2349 m)岩石孔隙度为3.90%,渗透率为0.33×10-3 μm2(表3); PoroPDP覆压孔隙度渗透率测试仪测得周冲村组岩芯(2357 m)有效孔隙度在0.86%~1.10%之间,而渗透率由于高导缝存在,其储层裂缝渗透率大于10×10-3μm2(表3); WWY1井成像测量井段可见到大量的高导缝(图6a),属于以构造作用为主形成的天然裂缝,在成像测井图像上往往表现为黑褐色正弦曲线,有的连续性较好,有的呈半闭合状,图像上的黑褐色表明此类裂缝未被方解石等高阻矿物完全充填,属于有效缝,与岩芯观察相吻合(图6b); 储层岩芯(2353~2364 m)镜下碳酸盐类面孔率在0.69%~1.43%之间,孔隙主要与未充填的裂隙相关,同时在裂缝边缘还观察到沥青质(图6c)。

  • 图4 下扬子MT视电阻率二维连续介质反演剖面解释(a,据李建青等,2021,略加修改; 剖面位置见图1)和下扬子深度地震剖面解释(b,据吕庆田等,2015,略加修改; 剖面位置见图1)

  • Fig.4 MT apparent resistivity continuous media inversion section (a, modified from Li Jianqing et al., 2021; section location is shown in Fig.1) and interpreted seismic section for the deep seismic profile (b, modified from Lü Qingtian et al., 2015; section location is shown in Fig.1) across the Lower Yangtze region

  • 图5 无为盆地WWY1井周冲村组储层段测井综合解释孔渗特征

  • Fig.5 Comprehensive interpretation of porosity and permeability characteristics by logging in the reservoir section of Zhouchongcun Formation in well WWY1 in Wuwei basin

  • 总体而言该套含气储层为低孔隙度,但在白云岩与膏岩接触带孔隙度增高(图5),网格状裂缝的存在有效地增大了储层的渗透率。

  • 表3 无为盆地WWY1井周冲村组白云岩储层孔渗特征

  • Table3 Porosity and permeability characteristics of dolomite reservoirs of Zhouchongcun Formation in well WWY1 in Wuwei basin

  • 4.4 盖层特征及其封盖性

  • WWY1井录井及岩芯资料显示,三叠系周冲村组发育两套白云岩+膏岩组合(图7),结合前人对区域分析认为无为盆地在三叠纪周冲村期主要发育咸化背景下的潮坪-潟湖相沉积,属于气候炎热、蒸发强烈的陆表海沉积体系单元(毕仲其和丁保良,1997)。WWY1井第一套膏岩厚度达202 m,第二套膏岩厚度为101 m(图7),属于典型的咸化潟湖沉积。从膏岩自身封盖性来看,当埋深大致超过2000 m时,膏岩会从脆性向塑性转换,不易被断层切穿(周雁等,2012),可以有效保护下伏的油气藏不受破坏(Grassmann et al.,2005)。两套膏岩层埋深都超过2000 m,具有良好的封盖能力,是下扬子地区重要的区域性盖层。其主要分布于怀宁—芜湖—南京一线沿江地区及其相邻的推覆带,仅常州的膏岩独立分布于推覆带,大致呈北东向。其中无为盆地是三叠系周冲村组膏岩分布的核心区域(图8),厚度普遍大于100 m,尤其盆地东北缘含山陶厂膏岩矿区膏岩层累计厚度更是高达790 m。

  • 图6 无为盆地WWY1井储层段成像测井裂缝图像及岩芯、薄片裂缝照片

  • Fig.6 Imaging logging fracture images and core and thin section photographs of well WWY1 reservoir section in Wuwei basin

  • (a)—WWY1井周冲村组储层段裂缝图像特征;(b)—深灰色白云岩,高角度裂缝发育,部分未充填,WWY1井,2352.3 m,周冲村组;(c)—细晶白云岩,多期次裂缝,部分未充填,溶蚀孔缝边缘见沥青,WWY1井,2352.3 m,周冲村组

  • (a) —image characteristics of fractures in the Zhouchongcun Formation reservoir in well WWY1; (b) —dark gray dolomite, with high-angle fractures, partially unfilled, well WWY1, 2352.3 m, Zhouchongcun Formation; (c) —fine-grained dolomite, mostly fractures in the stage, part of which are not filled, and asphalt is seen on the edge of dissolution pores and fractures, well WWY1, 2352.3 m, Zhouchongcun Formation

  • 图7 无为盆地WWY1井三叠系周冲村组沉积相柱状图

  • Fig.7 Sedimentary facies histogram of the Triassic Zhouchongcun Formation in well WWY1 in Wuwei basin

  • 5 富氦天然气成藏模式

  • 无为盆地氦气的聚集成藏过程与氦气的生成机制、盆地的构造演化过程以及盆地内流体的运移方式密切相关,是一个连续、完整的动态过程。氦气成因分析认为无为盆地氦气来源于壳源,其氦源岩极可能来源于古—中元古代基底花岗岩。

  • 长江断裂带是一条多期活动的深大断裂,燕山期在上地壳形成了大规模冲断和叠瓦构造,导致基底花岗体内部形成断层、裂隙与节理,打通了氦气扩散的通道; 早白垩世转换为伸展变形阶段,反转为区域正断层带,软流圈上隆,引发进一步的伸展和岩浆活动,深部的氦气随着岩浆通道向浅部扩散(图9)。气体组分分析表明该天然气为有机成因,与研究区广泛发育的二叠系烃源岩类型相吻合。根据亨利定律,流体中气体溶解度受控于气体的分压和亨利系数。氦气在深部氦源岩中分压大、温度高,能溶于流体中运出。当富氦流体运移至浅部遇到天然气等载体气气藏时,在气液界面,氦气分压极低,因此更趋向于进入气相。这一过程中流体的氦浓度迅速降低,氦气大量脱溶进入载体气藏形成富氦天然气藏。其他次生断裂和后期构造应力裂缝则构成富氦天然气运移的输导网络,有效沟通了烃源岩和储集层,控制了氦气在平面和纵向上的分布。网格状裂缝致使白云岩地层破碎加剧、连通性增强,为后期白云岩储层改造提供了先决条件。盆地内三叠系周冲村组多套膏岩盖层在一定的埋深条件下形成的超高压封闭条件,有可能是阻止氦气向上扩散重要原因,形成了三叠系周冲村组富氦天然气储、盖组合,具有良好的时空配置关系。

  • 图8 下扬子地区三叠系周冲村组膏岩厚度分布图(据李建青等,2021,略加修改)

  • Fig.8 Thickness distribution map of gypsum rock in the Triassic Zhouchongcun Formation in the Lower Yangtze region (modified from Li Jianqing et al., 2021)

  • 无为盆地、望江盆地和潜山盆地位于沿江对冲过渡带,句容-南陵盆地、常州-宣城盆地位于逆冲推覆带后缘,深部地震剖面揭示对冲过渡带和后缘盆地带构造相对简单,古生界上覆100~300 m不等的膏岩封盖,为下扬子复杂构造区的有利成藏带(李建青等,2021),预示着沿江地区具备十分有利的氦气勘探潜力,此外本次研究提出的氦气成藏模式也可为区域上氦气勘探提供重要的指导意义。

  • 6 结论

  • (1)无为盆地WWY1井三叠系周冲村组首次发现了异常高压富氦天然气显示,氦气成因分析认为其属于典型的壳源氦,这与中国东部其他盆地已发现的氦气成因存在较大差异。

  • (2)无为盆地壳源氦极可能来源于基底的古—中元古代基底花岗岩放射性衰变。当富氦流体运移至浅部遇到天然气等载体气气藏时,流体的氦浓度迅速降低,氦气大量脱溶进入载体气气藏形成富氦天然气藏,其他次生断裂和后期构造应力裂缝则构成富氦天然气的输导网络,有效沟通了烃源岩和储集层。

  • (3)无为盆地内三叠系周冲村组多套膏岩盖层在埋深大于2000 m条件下形成了超高压特殊封闭条件,膏岩层下白云岩裂缝性储层为其提供了储存空间,具有良好的储盖时空配置关系。

  • 图9 无为盆地富氦天然气藏成藏模式图

  • Fig.9 Accumulation model of helium-rich natural gas reservoirs in Wuwei basin

  • 参考文献

    • Ballentine C J, Burnard P G. 2002. Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, 47(1): 481~538.

    • Bi Zhongqi, Ding Baoliang. 1997. Sedimentary environments of Triassic evaporute formations in the lower Yangtze River region. Volcanology & Mineral Resources, 18(2): 127~136 (in Chinese with English abstract).

    • Broadhead R F. 2005. Helium in New Mexico-Geologic distribution, resource demand, and exploration possibilities. New Mexico Geology, 27(4): 93~100.

    • Brown A A. 2010. Formation of high helium gases: A guide for explorationists. AAPG Convention, New Orleans, Louisiana.

    • Cao Chunhui, Li Zhongping, Du Li, Li Liwu. 2011. Research of method of analyzing natural gas composition by a MAT271 mass spectrometer. Modern Scientific Instrument, 5(10): 103~106 (in Chinese with English abstract).

    • Chang Yinfo, Dong Shuwen, Huang Dezhi. 1996. On tectonics of “Poly-basement with one cover” in middle-Lower Yangtze craton China. Volcanology & Mineral Resources, 17(1): 1~15 (in Chinese with English abstract).

    • Chang Yinfo, Li Jiahao, Song Chuanzhong. 2019. The regional tectonic framework and some new understandings of the Middle-Lower Yangtze River valley metallogenic belt. Acta Petrologica Sinica, 35(12): 3579~3591 (in Chinese with English abstract).

    • Chen Ping, Zhang Minqiang, Xu Yongzhe, Liu Jinshui, Du Xuebin, Hu Xiaohui, Lu Yongchao. 2013. The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu-Jingxian, Lower Yangtze area. Acta Petrologica Sinica, 29(8): 2925~2935(in Chinese with English abstract).

    • Chen Zhihong, Xing Guangfu. 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China. Precambrian Research, 279: 81~90.

    • Dai Jinxing. 1992. Identification of various genetic natural gases. China Offshore Oil and Gas (Geology), 6(1): 11~19 (in Chinese with English abstract).

    • Dai Jinxing, Shi Xin, Wang Yanzhao. 2001. Summary of the abiogenic origin theory and the abiogenic gas pools (fields). Acta Petrolei Sinica, 22(6): 5~10 (in Chinese with English abstract).

    • Dong Shuwen, He Dalin, Shi Yonghong. 1993. Structural characteristics and emplacement mechanism of granitoid in Dangling Anhui, China. Scientia Geologica Sinice, 28(1): 10~20 (in Chinese with English abstract).

    • Grassmann S, Cramer B, Delisle G, Messner J, Winsemann J. 2005. Geological history and petroleum system of the Mittelplate oil field, northern Germany. International Journal of Earth Sciences, 94: 979~989.

    • Guo Nianfa. 1996. Evolutionary gound of basin and regional structure in Lower Yangtze area. Geology of Zhejiang, 12(2): 19~27 (in Chinese with English abstract).

    • Guo Nianfa, You Xiaozhong, Xu Jun. 1999. Geological character of Xiqiao helium-bearing gas field and prospecting of helium-bearing natural gas in North Jiangsu basin. Petroleum Exploration and Development, 26(5): 24~26 (in Chinese with English abstract).

    • Han Wei, Li Yuhong, Lu Jincai, Ren Zhanli, Xu Wei, Song Bo. 2014. The factors responsible for the unusual content of helium-rich natural gas in the Weihe basin, Shaanxi Province. Geological Bulletin of China, 33(11): 1836~1841 (in Chinese with English abstract).

    • Han Wei, Liu Wenjin, Li Yuhong, Zhou Junlin, Zhang Wen, Zhang Yunpeng, Chen Xiaohong, Huang Bin. 2020. Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam basin. Natural Gas Geosciences, 31(3): 385~392 (in Chinese with English abstract).

    • Hu Dezhao, Xu Mingjie, Huang Zhongjin. 1996. A study on the balanced cross section of Wuwei basin, Anhui Province. Geological Journal of China Universities, 2(4): 72~77 (in Chinese with English abstract).

    • Kaneoka I, Takaoka N. 1985. Noble-gas state in the Earth's interior: Some constraints on the present state. Chemical Geology (Isotope Geoscience Section), 52(1): 75~95.

    • Krooss B, Littke R, Müller B, Frielingsdorf J, Schwochau K, Idiz E. 1995. Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations. Chemical Geology, 126(3-4): 291~318.

    • Li Hongjing, Xie Xinong, Huang Junhua, Chen Hui, Lin Zhengliang. 2012. Main factors controlling the formation of excellent marine source rocks in Permian Maokou Formation of Northwest Sichuan, China. Earth Science—Journal of China University of Geosciences, 37(1): 171~180 (in Chinese with English abstract).

    • Li Jianqing, Zhang Chengcheng, Huang Zhengqing, Fang Chaogang, Wu Tong, Shao Wei, Zhou Daorong, Teng Long, Wang Yuanjun, Huang Ning. 2021. Overpressure gas reservoirs and its key elements of hydrocarbon enrichment in the complex structural area of the Lower Yangtze. Geological Bulletin of China, 40(4): 577~585.

    • Li Yuhong, Wang Xingyun, Han Wei. 2016. Mode of occurrence of helium in Weihe basin, Shaanxi Province and its significance. Geological Bulletin of China, 35(2-3): 372~378 (in Chinese with English abstract).

    • Li Yuhong, Zhang Wen, Wang Li, Zhao Fenghua, Han Wei, Chen Gaochao. 2017. Several issues in the accumulation of crust-derived helium and the accumulation model. Journal of Xi'an University of Science and Technology, 37(4): 565~572 (in Chinese with English abstract).

    • Littke R, Krooss B, Idiz E, Frielingsdorf J. 1995. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures. AAPG Bulletin, 79(3): 410~430.

    • Liu Gang, Dong Shuwen, Ma Licheng, Cui Jianjun, Xue Huaiming, Shi Wei, Li Jianhua, Huang Shiqi. 2016. Basement and metallogeny belt of the Middle-Lower Yangtze River, eastern China. Acta Geologica Sinica, 90(9): 2258~2275 (in Chinese with English abstract).

    • Liu Wenhui, Sun Mingliang, Xu Yongchang. 2001. Noble gas isotope characteristics and gas source tracing of natural gas in Ordos basin. Science Bulletin, 46(22): 1902~1905 (in Chinese with English abstract).

    • Lü Qingtian, Liu Zhendong, Dong Shuwen, Yan Jiayong, Zhang Yongqian. 2015. The nature of Yangtze River deep fault zone: Evidence from deep seismic data. Chinese Journal of Geophysics, 58(12): 4344~4359 (in Chinese with English abstract).

    • Maione S J. 2004. Helium exploration—A 21st century challenge. Houston Geological Society, 46(6): 27~30.

    • Mamyrin B A, Tolstikhin I N. 1984. Helium Isotopes in Nature. Amsterdam: Elsevier.

    • Nuttall W J, Clarke R H, Glowacki B A. 2012. Stop squandering helium. Nature, 485(7400): 573~575.

    • Pierce A P, Gott G B, Mytton J W, Faul H. 1964. Uranium and helium in the Panhandle gas field, Texas, and adjacent areas. US Government Printing Office.

    • Ruedemann P, Oles L M. 1929. Helium—Its probable origin and concentration in the Amarillo fold, Texas. AAPG Bulletin, 13(7): 799~810.

    • Tao Mingxin, Shen Ping, Xu Yongchang, Fei Fuan, Luo Jikun. 1997. Characteristics and formation conditions of mantle-derived helium reservoirs in northern Jiangsu basin. Natural Gas Geoscience, 8(3): 1~8 (in Chinese with English abstract).

    • Tao Mingxin, Xu Yongchang, Han Wenggong, Gao Bo, Ma Jinglong, Wang Wanchun. 2001. Active characteristics and accumulative effects of mantle-derived fluids in eastern China. Geotectonic et Metallogenia, 3(25): 265~270 (in Chinese with English abstract).

    • Tao Xiaowan, Li Jianzhong, Zhao Libin, Li Liwu, Zhu Wenping, Xing Lantian, Shan Xiuqin, Zheng Hongju, Zhang Liping. 2019. Helium resources and the discovery of the first supergiant helium reserve in China Hetianhe gas field. Earth Science, 44(3): 1024~1041 (in Chinese with English abstract).

    • Wu Jianhua, Guo Guoling, Guo Jialei, Zhang Qi, Wu Rengui, Yu Dagan. 2017. Spatial-temporal distribution of Mesozoic igneous rock and their relationship with hydrothermal uranium deposits in eastern China. Acta Petrologica Sinica, 33(5): 1591~1614 (in Chinese with English abstract).

    • Wu Tong, Li Jianqing, Zhang Chengcheng, Shao Wei, Fang Chaogang, Zhou Daorong, Huang Ning. 2020. Analysis on the gas reservoir forming conditions of Middle Triassic Zhouchongcun Formation in Wuwei depression, Lower Yangtze basin. East China Geology, 41(4): 425~433 (in Chinese with English abstract).

    • Xing Fengming, Xu Xiang. 1993. Nd, Sr, Pb isotopic geochemistry of the Mesozoic granitolds in South Anhui. Geology in Anhui, 3(1): 35~41 (in Chinese with English abstract).

    • Xing Guangfu, Li Jianqing, Duan Zheng, Cao Mingxuan, Yu Minggang, Chu Pingli, Chen Rong. 2021. Mesozoic-Cenozoic volcanic cycle and volcanic reservoirs in East China. Journal of Earth Science, 32(4): 742~765.

    • Xu Feifei, Zhang Xunhua, Huang Zhengqing, Li Jianqing, Wu Tong. 2019. Characteristics of the Dalong and Gufeng Formation shale reservoirs in Ningguo depression, lower Yangtze region, China. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2): 180~190 (in Chinese with English abstract).

    • Xu Xi, Gao Shunli. 2015a. The structure and formation of the Cenozoic fault basin in the Lower Yangtze region. Earth Science Frontiers, 22(6): 148~166 (in Chinese with English abstract).

    • Xu Xi, Gao Shunli, Wang Xingjian, Huang Junbo, Wang Bo. 2015b. Cenozoic deformation of extensional tectonics in the Lower Yangtze region and its tectonic significance. Earth Science (Journal of China University of Geoscience), 40(12): 1968~1986 (in Chinese with English abstract).

    • Xu Xi, Zhu Xiaoying, Shan Xipeng, Xiao Mengchu, Sun Lianpu, Gao Shunli. 2018. Structure and sedimentary characteristics of the Meso-Cenozoic basin group along the Yangtze River in the Lower Yangtze region. Petroleum Geology & Experiment, 40(3): 303~314 (in Chinese with English abstract).

    • Xu Yongchang. 1997. Helium isotope distribution of natural gasses and its structural setting. Earth Science Frontiers, 4 (3-4): 185~190.

    • Xu Yongchang, Shen Ping, Liu Wenhui, Tao Mingxin, Sun Mingliang, Du Jianguo. 1998. Noble Gas Geochemistry in Natural Gases. Beijing: Science Press (in Chinese with English abstract).

    • Xu Yongchang, Liu Wenhui, Shen Ping, Tao Mingxin, Zheng Jianjing. 2003. An important branch of gas geochemistry—Noble gas geochemistry. Natural Gas Geoscience, 14(3): 157~166 (in Chinese with English abstract).

    • Zhang Jian, Yang Wei, Yi Haiyong, Xie Wuren, Xie Zengye, Zeng Fuying, Cen Yongjing. 2015. Feasibility of exploring high helium bearing natural gas reservoirs in pre-Sinian System of Sichuan basin. Natural Gas Industry, 35(1): 45~52 (in Chinese with English abstract).

    • Zhang Xiaobao, Zhou Fei, Cao Zhanyuan, Liang Mingliang. 2020. Discovery, helium source and exploration prospect of Dongping helium industrial gas field in Qaidam basin. Natural Gas Geosciences, 31(11): 1585~1592 (in Chinese with English abstract).

    • Zhang Yunpeng, Li Yuhong, Lu Jincai, Li Yonghong, Song Bo, Guo Wang. 2016. Finding of helium-rich natural gas in the north margin of the Qaidam basin: Discussing the pool-forming geological conditions. Geological Bulletin, 35(2-3): 364~371 (in Chinese with English abstract).

    • Zhou Yan, Jin Zhijun, Zhu Dongya, Yuan Yusong, Li Shuangjian. 2012. Current status and progress in research of hydrocarbon cap rocks. Petroleum Geology & Experiment, 34(3): 234~245 (in Chinese with English abstract).

    • 毕仲其, 丁保良. 1997. 下扬子区三叠系膏盐建造的沉积环境. 火山地质与矿产, 18(2): 127~136.

    • 曹春辉, 李中平, 杜丽, 李立武. 2011. 气体同位素质谱仪MTA271分析天然气组分的方法研究. 现代科学仪器, 5 (10): 103~106.

    • 常印佛, 董树文, 黄德志. 1996. 论中—下扬子 “一盖多底” 格局与演化. 火山地质与矿产, 17(1): 1~15.

    • 常印佛, 李加好, 宋传中. 2019. 长江中下游成矿带区域构造格局的新认识. 岩石学报, 35(12): 3579~3591.

    • 陈平, 张敏强, 许永哲, 刘金水, 杜学斌, 胡小辉, 陆永潮. 2013. 下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征. 岩石学报, 29(8): 2925~2935.

    • 戴金星. 1992. 各类天然气的成因鉴别. 中国海上油气(地质), 6(1): 11~19.

    • 戴金星, 石昕, 卫延召. 2001. 无机成因油气论和无机成因的气田(藏)概略. 石油学报, 22(6): 5~10.

    • 董树文, 何大林, 石永红. 1993. 安徽董岭花岗岩类的构造特征及侵位机制. 地质科学, 28(1): 10~20.

    • 郭念发. 1996. 下扬子盆地与区域地质构造演化及油气成藏分析. 浙江地质, 12(2): 19~27.

    • 郭念发, 尤孝忠, 徐俊. 1999. 苏北盆地溪桥含氦天然气田地质特征及含氦天然气勘探前景. 石油勘探与开发, 26(5): 24~26.

    • 韩伟, 李玉宏, 卢进才, 任战利, 许伟, 宋博. 2014. 陕西渭河盆地富氦天然气异常的影响因素. 地质通报, 33(11): 1836~1841.

    • 韩伟, 刘文进, 李玉宏, 周俊林, 张文, 张云鹏, 陈晓宏, 黄斌. 2020. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素. 天然气地球科学, 31(3): 385~392.

    • 胡德昭, 徐鸣洁, 黄钟谨. 1996. 安徽无为盆地平衡地质剖面研究. 高校地质学报, 2(4): 72~77.

    • 李红敬, 解习农, 黄俊华, 陈慧, 林正良. 2012. 川西北二叠系茅口组海相优质烃源岩发育控制因素. 地球科学: 中国地质大学学报, 37(1): 171~180.

    • 李建青, 章诚诚, 黄正清, 方朝刚, 吴通, 邵威, 周道容, 滕龙, 王元俊, 黄宁. 2021. 下扬子复杂构造区超高压含气层的发现及油气富集关键要素. 地质通报, 40(4): 577~585.

    • 李玉宏, 王行运, 韩伟. 2016. 陕西渭河盆地氦气资源赋存状态及其意义. 地质通报, 35(2-3): 372~378.

    • 李玉宏, 张文, 王利, 赵峰华, 韩伟, 陈高潮. 2017. 壳源氦气成藏问题及成藏模式. 西安科技大学学报, 37(4): 565~572.

    • 刘刚, 董树文, 马立成, 崔建军, 薛怀民, 施炜, 李建华, 黄始琪. 2016. 长江中下游地区基底与成矿. 地质学报, 90(9): 2258~2275.

    • 刘文汇, 孙明良, 徐永昌. 2001. 鄂尔多斯盆地天然气稀有气体同位素特征及气源示踪. 科学通报, 46(22): 1902~1905.

    • 吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015. “长江深断裂带”的构造性质: 深地震反射证据. 地球物理学报, 58(12): 4344~4359.

    • 陶明信, 沈平, 徐永昌, 费富安, 罗继坤. 1997. 苏北盆地幔源氦气藏的特征与形成条件. 天然气地球科学, 8(3): 1~8.

    • 陶明信, 徐永昌, 韩文功, 高波, 马锦龙, 王万春. 2001. 中国东部幔源流体的活动特征与成藏效应. 大地构造与成矿学, 3(25): 265~270.

    • 陶小晚, 李建忠, 赵力彬, 李立武, 朱文平, 邢蓝田, 苏法卿, 单秀琴, 郑红菊, 张立平. 2019. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田. 地球科学, 44(3): 1024~1041.

    • 巫建华, 郭国林, 郭佳磊, 张旗, 吴仁贵, 余达淦. 2017. 中国东部中生代岩浆岩的时空分布及其与热液型铀矿的关系. 岩石学报, 33(5): 1591~1614.

    • 吴通, 李建青, 章诚诚, 邵威, 方朝刚, 周道容, 黄宁. 2020. 下扬子无为盆地中三叠世周冲村组天然气成藏物质基础分析. 华东地质, 41(4): 425~433.

    • 邢凤鸣, 徐祥. 1993. 皖南中生代花岗岩类 Nd, Sr, Pb 同位素特点. 安徽地质, 3(1): 35~41.

    • 徐菲菲, 张训华, 黄正清, 李建青, 吴通. 2019. 下扬子地区宁国盆地大隆组—孤峰组泥页岩储层特征. 成都理工大学学报: 自然科学版, 46(2): 180~190.

    • 徐曦, 高顺莉. 2015a. 下扬子区新生代断陷盆地的构造与形成. 地学前缘, 22(6): 148~166.

    • 徐曦, 高顺莉, 王兴建, 黄俊菠, 王博. 2015b. 下扬子区新生代伸展构造变形及其区域构造意义. 地球科学(中国地质大学学报), 40(12): 1968~1986.

    • 徐曦, 朱晓颖, 单希鹏, 肖梦楚, 孙连浦, 高顺莉. 2018. 下扬子区中新生代沿江盆地群的盆地结构与沉积特征. 石油实验地质, 40(3): 303~314.

    • 徐永昌. 1997. 天然气中氦同位素分布及构造环境. 地学前缘, 4 (3-4): 185~190.

    • 徐永昌, 沈平, 刘文汇, 陶明信, 孙明良, 杜建国. 1998. 天然气中稀有气体地球化学. 北京: 科学出版社.

    • 徐永昌, 刘文汇, 沈平, 陶明信, 郑建京. 2003. 天然气地球化学的重要分支——稀有气体地球化学. 天然气地球科学, 14(3): 157~166.

    • 张健, 杨威, 易海永, 谢武仁, 谢增业, 曾富英, 岑永静. 2015. 四川盆地前震旦系勘探高含氦天然气藏的可行性. 天然气工业, 35(1): 45~52.

    • 张晓宝, 周飞, 曹占元, 梁明亮. 2020. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景. 天然气地球科学, 31(11): 1585~1592.

    • 张云鹏, 李玉宏, 卢进才, 李永红, 宋博, 郭望. 2016. 柴达木盆地北缘富氦天然气的发现——兼议成藏地质条件. 地质通报, 35(2-3): 364~371.

    • 周雁, 金之钧, 朱东亚, 袁玉松, 李双建. 2012. 油气盖层研究现状与认识进展. 石油实验地质, 34(3): 234~245.

  • 参考文献

    • Ballentine C J, Burnard P G. 2002. Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, 47(1): 481~538.

    • Bi Zhongqi, Ding Baoliang. 1997. Sedimentary environments of Triassic evaporute formations in the lower Yangtze River region. Volcanology & Mineral Resources, 18(2): 127~136 (in Chinese with English abstract).

    • Broadhead R F. 2005. Helium in New Mexico-Geologic distribution, resource demand, and exploration possibilities. New Mexico Geology, 27(4): 93~100.

    • Brown A A. 2010. Formation of high helium gases: A guide for explorationists. AAPG Convention, New Orleans, Louisiana.

    • Cao Chunhui, Li Zhongping, Du Li, Li Liwu. 2011. Research of method of analyzing natural gas composition by a MAT271 mass spectrometer. Modern Scientific Instrument, 5(10): 103~106 (in Chinese with English abstract).

    • Chang Yinfo, Dong Shuwen, Huang Dezhi. 1996. On tectonics of “Poly-basement with one cover” in middle-Lower Yangtze craton China. Volcanology & Mineral Resources, 17(1): 1~15 (in Chinese with English abstract).

    • Chang Yinfo, Li Jiahao, Song Chuanzhong. 2019. The regional tectonic framework and some new understandings of the Middle-Lower Yangtze River valley metallogenic belt. Acta Petrologica Sinica, 35(12): 3579~3591 (in Chinese with English abstract).

    • Chen Ping, Zhang Minqiang, Xu Yongzhe, Liu Jinshui, Du Xuebin, Hu Xiaohui, Lu Yongchao. 2013. The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu-Jingxian, Lower Yangtze area. Acta Petrologica Sinica, 29(8): 2925~2935(in Chinese with English abstract).

    • Chen Zhihong, Xing Guangfu. 2016. Geochemical and zircon U-Pb-Hf-O isotopic evidence for a coherent Paleoproterozoic basement beneath the Yangtze Block, South China. Precambrian Research, 279: 81~90.

    • Dai Jinxing. 1992. Identification of various genetic natural gases. China Offshore Oil and Gas (Geology), 6(1): 11~19 (in Chinese with English abstract).

    • Dai Jinxing, Shi Xin, Wang Yanzhao. 2001. Summary of the abiogenic origin theory and the abiogenic gas pools (fields). Acta Petrolei Sinica, 22(6): 5~10 (in Chinese with English abstract).

    • Dong Shuwen, He Dalin, Shi Yonghong. 1993. Structural characteristics and emplacement mechanism of granitoid in Dangling Anhui, China. Scientia Geologica Sinice, 28(1): 10~20 (in Chinese with English abstract).

    • Grassmann S, Cramer B, Delisle G, Messner J, Winsemann J. 2005. Geological history and petroleum system of the Mittelplate oil field, northern Germany. International Journal of Earth Sciences, 94: 979~989.

    • Guo Nianfa. 1996. Evolutionary gound of basin and regional structure in Lower Yangtze area. Geology of Zhejiang, 12(2): 19~27 (in Chinese with English abstract).

    • Guo Nianfa, You Xiaozhong, Xu Jun. 1999. Geological character of Xiqiao helium-bearing gas field and prospecting of helium-bearing natural gas in North Jiangsu basin. Petroleum Exploration and Development, 26(5): 24~26 (in Chinese with English abstract).

    • Han Wei, Li Yuhong, Lu Jincai, Ren Zhanli, Xu Wei, Song Bo. 2014. The factors responsible for the unusual content of helium-rich natural gas in the Weihe basin, Shaanxi Province. Geological Bulletin of China, 33(11): 1836~1841 (in Chinese with English abstract).

    • Han Wei, Liu Wenjin, Li Yuhong, Zhou Junlin, Zhang Wen, Zhang Yunpeng, Chen Xiaohong, Huang Bin. 2020. Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam basin. Natural Gas Geosciences, 31(3): 385~392 (in Chinese with English abstract).

    • Hu Dezhao, Xu Mingjie, Huang Zhongjin. 1996. A study on the balanced cross section of Wuwei basin, Anhui Province. Geological Journal of China Universities, 2(4): 72~77 (in Chinese with English abstract).

    • Kaneoka I, Takaoka N. 1985. Noble-gas state in the Earth's interior: Some constraints on the present state. Chemical Geology (Isotope Geoscience Section), 52(1): 75~95.

    • Krooss B, Littke R, Müller B, Frielingsdorf J, Schwochau K, Idiz E. 1995. Generation of nitrogen and methane from sedimentary organic matter: Implications on the dynamics of natural gas accumulations. Chemical Geology, 126(3-4): 291~318.

    • Li Hongjing, Xie Xinong, Huang Junhua, Chen Hui, Lin Zhengliang. 2012. Main factors controlling the formation of excellent marine source rocks in Permian Maokou Formation of Northwest Sichuan, China. Earth Science—Journal of China University of Geosciences, 37(1): 171~180 (in Chinese with English abstract).

    • Li Jianqing, Zhang Chengcheng, Huang Zhengqing, Fang Chaogang, Wu Tong, Shao Wei, Zhou Daorong, Teng Long, Wang Yuanjun, Huang Ning. 2021. Overpressure gas reservoirs and its key elements of hydrocarbon enrichment in the complex structural area of the Lower Yangtze. Geological Bulletin of China, 40(4): 577~585.

    • Li Yuhong, Wang Xingyun, Han Wei. 2016. Mode of occurrence of helium in Weihe basin, Shaanxi Province and its significance. Geological Bulletin of China, 35(2-3): 372~378 (in Chinese with English abstract).

    • Li Yuhong, Zhang Wen, Wang Li, Zhao Fenghua, Han Wei, Chen Gaochao. 2017. Several issues in the accumulation of crust-derived helium and the accumulation model. Journal of Xi'an University of Science and Technology, 37(4): 565~572 (in Chinese with English abstract).

    • Littke R, Krooss B, Idiz E, Frielingsdorf J. 1995. Molecular nitrogen in natural gas accumulations: Generation from sedimentary organic matter at high temperatures. AAPG Bulletin, 79(3): 410~430.

    • Liu Gang, Dong Shuwen, Ma Licheng, Cui Jianjun, Xue Huaiming, Shi Wei, Li Jianhua, Huang Shiqi. 2016. Basement and metallogeny belt of the Middle-Lower Yangtze River, eastern China. Acta Geologica Sinica, 90(9): 2258~2275 (in Chinese with English abstract).

    • Liu Wenhui, Sun Mingliang, Xu Yongchang. 2001. Noble gas isotope characteristics and gas source tracing of natural gas in Ordos basin. Science Bulletin, 46(22): 1902~1905 (in Chinese with English abstract).

    • Lü Qingtian, Liu Zhendong, Dong Shuwen, Yan Jiayong, Zhang Yongqian. 2015. The nature of Yangtze River deep fault zone: Evidence from deep seismic data. Chinese Journal of Geophysics, 58(12): 4344~4359 (in Chinese with English abstract).

    • Maione S J. 2004. Helium exploration—A 21st century challenge. Houston Geological Society, 46(6): 27~30.

    • Mamyrin B A, Tolstikhin I N. 1984. Helium Isotopes in Nature. Amsterdam: Elsevier.

    • Nuttall W J, Clarke R H, Glowacki B A. 2012. Stop squandering helium. Nature, 485(7400): 573~575.

    • Pierce A P, Gott G B, Mytton J W, Faul H. 1964. Uranium and helium in the Panhandle gas field, Texas, and adjacent areas. US Government Printing Office.

    • Ruedemann P, Oles L M. 1929. Helium—Its probable origin and concentration in the Amarillo fold, Texas. AAPG Bulletin, 13(7): 799~810.

    • Tao Mingxin, Shen Ping, Xu Yongchang, Fei Fuan, Luo Jikun. 1997. Characteristics and formation conditions of mantle-derived helium reservoirs in northern Jiangsu basin. Natural Gas Geoscience, 8(3): 1~8 (in Chinese with English abstract).

    • Tao Mingxin, Xu Yongchang, Han Wenggong, Gao Bo, Ma Jinglong, Wang Wanchun. 2001. Active characteristics and accumulative effects of mantle-derived fluids in eastern China. Geotectonic et Metallogenia, 3(25): 265~270 (in Chinese with English abstract).

    • Tao Xiaowan, Li Jianzhong, Zhao Libin, Li Liwu, Zhu Wenping, Xing Lantian, Shan Xiuqin, Zheng Hongju, Zhang Liping. 2019. Helium resources and the discovery of the first supergiant helium reserve in China Hetianhe gas field. Earth Science, 44(3): 1024~1041 (in Chinese with English abstract).

    • Wu Jianhua, Guo Guoling, Guo Jialei, Zhang Qi, Wu Rengui, Yu Dagan. 2017. Spatial-temporal distribution of Mesozoic igneous rock and their relationship with hydrothermal uranium deposits in eastern China. Acta Petrologica Sinica, 33(5): 1591~1614 (in Chinese with English abstract).

    • Wu Tong, Li Jianqing, Zhang Chengcheng, Shao Wei, Fang Chaogang, Zhou Daorong, Huang Ning. 2020. Analysis on the gas reservoir forming conditions of Middle Triassic Zhouchongcun Formation in Wuwei depression, Lower Yangtze basin. East China Geology, 41(4): 425~433 (in Chinese with English abstract).

    • Xing Fengming, Xu Xiang. 1993. Nd, Sr, Pb isotopic geochemistry of the Mesozoic granitolds in South Anhui. Geology in Anhui, 3(1): 35~41 (in Chinese with English abstract).

    • Xing Guangfu, Li Jianqing, Duan Zheng, Cao Mingxuan, Yu Minggang, Chu Pingli, Chen Rong. 2021. Mesozoic-Cenozoic volcanic cycle and volcanic reservoirs in East China. Journal of Earth Science, 32(4): 742~765.

    • Xu Feifei, Zhang Xunhua, Huang Zhengqing, Li Jianqing, Wu Tong. 2019. Characteristics of the Dalong and Gufeng Formation shale reservoirs in Ningguo depression, lower Yangtze region, China. Journal of Chengdu University of Technology (Science & Technology Edition), 46(2): 180~190 (in Chinese with English abstract).

    • Xu Xi, Gao Shunli. 2015a. The structure and formation of the Cenozoic fault basin in the Lower Yangtze region. Earth Science Frontiers, 22(6): 148~166 (in Chinese with English abstract).

    • Xu Xi, Gao Shunli, Wang Xingjian, Huang Junbo, Wang Bo. 2015b. Cenozoic deformation of extensional tectonics in the Lower Yangtze region and its tectonic significance. Earth Science (Journal of China University of Geoscience), 40(12): 1968~1986 (in Chinese with English abstract).

    • Xu Xi, Zhu Xiaoying, Shan Xipeng, Xiao Mengchu, Sun Lianpu, Gao Shunli. 2018. Structure and sedimentary characteristics of the Meso-Cenozoic basin group along the Yangtze River in the Lower Yangtze region. Petroleum Geology & Experiment, 40(3): 303~314 (in Chinese with English abstract).

    • Xu Yongchang. 1997. Helium isotope distribution of natural gasses and its structural setting. Earth Science Frontiers, 4 (3-4): 185~190.

    • Xu Yongchang, Shen Ping, Liu Wenhui, Tao Mingxin, Sun Mingliang, Du Jianguo. 1998. Noble Gas Geochemistry in Natural Gases. Beijing: Science Press (in Chinese with English abstract).

    • Xu Yongchang, Liu Wenhui, Shen Ping, Tao Mingxin, Zheng Jianjing. 2003. An important branch of gas geochemistry—Noble gas geochemistry. Natural Gas Geoscience, 14(3): 157~166 (in Chinese with English abstract).

    • Zhang Jian, Yang Wei, Yi Haiyong, Xie Wuren, Xie Zengye, Zeng Fuying, Cen Yongjing. 2015. Feasibility of exploring high helium bearing natural gas reservoirs in pre-Sinian System of Sichuan basin. Natural Gas Industry, 35(1): 45~52 (in Chinese with English abstract).

    • Zhang Xiaobao, Zhou Fei, Cao Zhanyuan, Liang Mingliang. 2020. Discovery, helium source and exploration prospect of Dongping helium industrial gas field in Qaidam basin. Natural Gas Geosciences, 31(11): 1585~1592 (in Chinese with English abstract).

    • Zhang Yunpeng, Li Yuhong, Lu Jincai, Li Yonghong, Song Bo, Guo Wang. 2016. Finding of helium-rich natural gas in the north margin of the Qaidam basin: Discussing the pool-forming geological conditions. Geological Bulletin, 35(2-3): 364~371 (in Chinese with English abstract).

    • Zhou Yan, Jin Zhijun, Zhu Dongya, Yuan Yusong, Li Shuangjian. 2012. Current status and progress in research of hydrocarbon cap rocks. Petroleum Geology & Experiment, 34(3): 234~245 (in Chinese with English abstract).

    • 毕仲其, 丁保良. 1997. 下扬子区三叠系膏盐建造的沉积环境. 火山地质与矿产, 18(2): 127~136.

    • 曹春辉, 李中平, 杜丽, 李立武. 2011. 气体同位素质谱仪MTA271分析天然气组分的方法研究. 现代科学仪器, 5 (10): 103~106.

    • 常印佛, 董树文, 黄德志. 1996. 论中—下扬子 “一盖多底” 格局与演化. 火山地质与矿产, 17(1): 1~15.

    • 常印佛, 李加好, 宋传中. 2019. 长江中下游成矿带区域构造格局的新认识. 岩石学报, 35(12): 3579~3591.

    • 陈平, 张敏强, 许永哲, 刘金水, 杜学斌, 胡小辉, 陆永潮. 2013. 下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征. 岩石学报, 29(8): 2925~2935.

    • 戴金星. 1992. 各类天然气的成因鉴别. 中国海上油气(地质), 6(1): 11~19.

    • 戴金星, 石昕, 卫延召. 2001. 无机成因油气论和无机成因的气田(藏)概略. 石油学报, 22(6): 5~10.

    • 董树文, 何大林, 石永红. 1993. 安徽董岭花岗岩类的构造特征及侵位机制. 地质科学, 28(1): 10~20.

    • 郭念发. 1996. 下扬子盆地与区域地质构造演化及油气成藏分析. 浙江地质, 12(2): 19~27.

    • 郭念发, 尤孝忠, 徐俊. 1999. 苏北盆地溪桥含氦天然气田地质特征及含氦天然气勘探前景. 石油勘探与开发, 26(5): 24~26.

    • 韩伟, 李玉宏, 卢进才, 任战利, 许伟, 宋博. 2014. 陕西渭河盆地富氦天然气异常的影响因素. 地质通报, 33(11): 1836~1841.

    • 韩伟, 刘文进, 李玉宏, 周俊林, 张文, 张云鹏, 陈晓宏, 黄斌. 2020. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素. 天然气地球科学, 31(3): 385~392.

    • 胡德昭, 徐鸣洁, 黄钟谨. 1996. 安徽无为盆地平衡地质剖面研究. 高校地质学报, 2(4): 72~77.

    • 李红敬, 解习农, 黄俊华, 陈慧, 林正良. 2012. 川西北二叠系茅口组海相优质烃源岩发育控制因素. 地球科学: 中国地质大学学报, 37(1): 171~180.

    • 李建青, 章诚诚, 黄正清, 方朝刚, 吴通, 邵威, 周道容, 滕龙, 王元俊, 黄宁. 2021. 下扬子复杂构造区超高压含气层的发现及油气富集关键要素. 地质通报, 40(4): 577~585.

    • 李玉宏, 王行运, 韩伟. 2016. 陕西渭河盆地氦气资源赋存状态及其意义. 地质通报, 35(2-3): 372~378.

    • 李玉宏, 张文, 王利, 赵峰华, 韩伟, 陈高潮. 2017. 壳源氦气成藏问题及成藏模式. 西安科技大学学报, 37(4): 565~572.

    • 刘刚, 董树文, 马立成, 崔建军, 薛怀民, 施炜, 李建华, 黄始琪. 2016. 长江中下游地区基底与成矿. 地质学报, 90(9): 2258~2275.

    • 刘文汇, 孙明良, 徐永昌. 2001. 鄂尔多斯盆地天然气稀有气体同位素特征及气源示踪. 科学通报, 46(22): 1902~1905.

    • 吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015. “长江深断裂带”的构造性质: 深地震反射证据. 地球物理学报, 58(12): 4344~4359.

    • 陶明信, 沈平, 徐永昌, 费富安, 罗继坤. 1997. 苏北盆地幔源氦气藏的特征与形成条件. 天然气地球科学, 8(3): 1~8.

    • 陶明信, 徐永昌, 韩文功, 高波, 马锦龙, 王万春. 2001. 中国东部幔源流体的活动特征与成藏效应. 大地构造与成矿学, 3(25): 265~270.

    • 陶小晚, 李建忠, 赵力彬, 李立武, 朱文平, 邢蓝田, 苏法卿, 单秀琴, 郑红菊, 张立平. 2019. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田. 地球科学, 44(3): 1024~1041.

    • 巫建华, 郭国林, 郭佳磊, 张旗, 吴仁贵, 余达淦. 2017. 中国东部中生代岩浆岩的时空分布及其与热液型铀矿的关系. 岩石学报, 33(5): 1591~1614.

    • 吴通, 李建青, 章诚诚, 邵威, 方朝刚, 周道容, 黄宁. 2020. 下扬子无为盆地中三叠世周冲村组天然气成藏物质基础分析. 华东地质, 41(4): 425~433.

    • 邢凤鸣, 徐祥. 1993. 皖南中生代花岗岩类 Nd, Sr, Pb 同位素特点. 安徽地质, 3(1): 35~41.

    • 徐菲菲, 张训华, 黄正清, 李建青, 吴通. 2019. 下扬子地区宁国盆地大隆组—孤峰组泥页岩储层特征. 成都理工大学学报: 自然科学版, 46(2): 180~190.

    • 徐曦, 高顺莉. 2015a. 下扬子区新生代断陷盆地的构造与形成. 地学前缘, 22(6): 148~166.

    • 徐曦, 高顺莉, 王兴建, 黄俊菠, 王博. 2015b. 下扬子区新生代伸展构造变形及其区域构造意义. 地球科学(中国地质大学学报), 40(12): 1968~1986.

    • 徐曦, 朱晓颖, 单希鹏, 肖梦楚, 孙连浦, 高顺莉. 2018. 下扬子区中新生代沿江盆地群的盆地结构与沉积特征. 石油实验地质, 40(3): 303~314.

    • 徐永昌. 1997. 天然气中氦同位素分布及构造环境. 地学前缘, 4 (3-4): 185~190.

    • 徐永昌, 沈平, 刘文汇, 陶明信, 孙明良, 杜建国. 1998. 天然气中稀有气体地球化学. 北京: 科学出版社.

    • 徐永昌, 刘文汇, 沈平, 陶明信, 郑建京. 2003. 天然气地球化学的重要分支——稀有气体地球化学. 天然气地球科学, 14(3): 157~166.

    • 张健, 杨威, 易海永, 谢武仁, 谢增业, 曾富英, 岑永静. 2015. 四川盆地前震旦系勘探高含氦天然气藏的可行性. 天然气工业, 35(1): 45~52.

    • 张晓宝, 周飞, 曹占元, 梁明亮. 2020. 柴达木盆地东坪氦工业气田发现及氦气来源和勘探前景. 天然气地球科学, 31(11): 1585~1592.

    • 张云鹏, 李玉宏, 卢进才, 李永红, 宋博, 郭望. 2016. 柴达木盆地北缘富氦天然气的发现——兼议成藏地质条件. 地质通报, 35(2-3): 364~371.

    • 周雁, 金之钧, 朱东亚, 袁玉松, 李双建. 2012. 油气盖层研究现状与认识进展. 石油实验地质, 34(3): 234~245.