en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李建波,男,1976年生。博士,副教授,主要从事中小尺度构造解析、构造与成矿等方面的研究工作。E-mail:jianboli2000@163.com。

参考文献
Chen Bin, Jahn Borming, Wilde S A, Xu Bei. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328: 157~182.
参考文献
Chen Chen, Zhang Zhicheng, Li Ke, Chen Yan, Tang Wenhao, Li Jianfeng. 2015. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China block. Journal of Asian Earth Sciences, 97: 307~319.
参考文献
Davis G A, Xu Bei, Zheng Yadong, Zhang Weiji. 2004. Indosinian extension in the Solonker suture zone: The Sonid Zuoqi metamorphic core complex, Inner Mongolia. China Earth Science Frontiers, 11: 135~144.
参考文献
Davis G A, Meng Jiafeng, Cao Wenrong, Du Xingqiang. 2009. Triassic and Jurassic tectonics in the eastern Yanshan belt, North China: Insights from the controversial Dengzhangzi Formation and its neighboring units. Earth Science Frontiers, 16(3): 69~86.
参考文献
Doughty P T, Price R A. 1999. Tectonic evolution of the Priest River complex, northern Idaho and Washington: A reappraisal of the Newport fault with new insights on metamorphic core complex formation. Tectonics, 18: 375~393.
参考文献
Eizenhöfer P R, Zhao Guochun, Zhang Jian, Sun Min. 2014. Final closure of the Paleo-Asian Ocean along the Solonker suture zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 33: 441~463.
参考文献
Foster D A, Fanning C M. 1997. Geochonology of the northern Idaho batholith and the Bitterroot metamorphic core complex: Magmatism preceding and contmporaneoux with extension. Bulletin of the Geological Society of America, 109: 379~394.
参考文献
Gao Jun, Zhu Mingtian, Wang Xinshui, Hong Tao, Li Guangming, Li Jilei, Xiao Wenjiao, Qin Kezhang, Zeng Qingdong, Shen Ping, Xu Xingwang, Zhang Zhaochong, Zhou Jianbo, Lai Yong, Zhang Xiaohui, Sun Jinggui, Wan Bo, Wang Bo. 2019. Large- scale porphyry-type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geologica Sinica, 93(1): 24~71.
参考文献
Graham S A, Hendrix M S, Johnson C L. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southern Mongolia. Bulletin of the Geological Society of America, 113(12): 1560~1579.
参考文献
Grove M, Harrison T M. 1996. 40Ar diffusion in Fe-rich biotite. American Mineralogist, 81(7-8) : 940~951.
参考文献
Harrison T M, Duncan I, McDougall I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11): 2461~2468.
参考文献
Hu Jianmin, Liu Xiaowen, Xu Gang, Liu Jian, Zhang Shuanhong. 2005. The slidding-slump-mudflow sedimentation during the Late-Triassic to Middle Jurassic in Western Liaoning Province, China. Acta Geologica Sinca, 79: 453~464 (in Chinese with English abstract).
参考文献
Hu Jianmin, Zhao Yue, Liu Xiaowen, Xu Gang. 2010. Early Mesozoic deformations of the eastern Yanshan thrust belt, northern China. International Journal of Earth Sciences (geol Rundsch), 99: 785~800.
参考文献
Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Fitton J G, Mahoney J J, Wallace P J, Saunders A D, eds. Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publications, 226: 73~100.
参考文献
Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91: 181~193.
参考文献
Ji Zejia, Zhang Zhicheng, Chen Yan, Li Ke, Yang Jinfu, Qian Xiaoyan. 2018. Geochemistry, geochronology, and Sr-Nd isotopic compositions of Permian volcanic rocks in the northern margin of the North China block: Implications for the tectonic setting of the southeastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 107: 2143~2161.
参考文献
Jian Ping, Liu Dunyi, Kröner A, Windley B F, Shi Yueruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118: 169~190.
参考文献
Österle J E, Little T A, Seward D, Stockli D F, Gamble J. 2020. The petrology, geochronology and tectono-magmatic setting of igneous rocks in the Suckling-Dayman metamorphic core complex, Papua New Guinea. Gondwana Research, 83: 390~414.
参考文献
Li Shan, Chung S L, Wilde S A, Wang Tao, Xiao Wenjiao, Guo Qianqian. 2016. Linking magmatism with collision in an accretionary orogen. Scientific Reports, 6: 25751.
参考文献
Li Shan, Chung S L, Wilde S A, Jahn B M, Xiao Wenjiao, Wang Tao, Guo Qianqian. 2017. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth, 122: 2291~2309.
参考文献
Li Shichao, Wang Hongtao, Wang Xing'an, Yang Xiaopeng, Zhao Zheren. 2020. Northward plate subduction process of the Paleo-Asian Ocean in the middle part of the Central Asian Orogenic Belt: Evidence from adakites. Acta Petrologica Sinica, 36(8): 2521~2536 (in Chinese with English abstract).
参考文献
Lin Wei, Zeng Jipei, Meng Lingdong, Qiu Huabiao, Wei Wei, Ren Zhiheng, Chu Yang, Li Shuangjian, Song Chao, Wang Qingchen. 2021. Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex. Science China Earth Sciences, 64(9): 1557~1589.
参考文献
Liu Changfeng, Yang Shuaishi, Wu Jiangwei, Zhang Huafeng. 2010. Dating and petrogenesis of Late Permian-Early Triassic peraluminous granites in the Siziwangqi area, Inner Mongolia. Acta Geologica Sinica, 84: 1002~1016 (in Chinese with English abstract).
参考文献
Liu Min, Lai Shaocong, Zhang Da, Zhu Renzhi, Qin Jiangfeng, Xiong Guangqiang. 2019. Middle Permian high Sr/Y monzogranites in central Inner Mongolia: Reworking of the juvenile lower crust of Bainaimiao arc belt during slab break-off of the Palaeo-Asian oceanic lithosphere. International Geology Review, 61(17): 1~17.
参考文献
Lister G S, Baldwin S L. 1993. Plutonism and the origin of the metamorphic core complex. Geology, 21: 607~6101.
参考文献
Liu Qian, Zhao Guochun, Han Yigui, Eizenhöfer P R, Zhu Yanlin, Hou Wenzhu, Zhang Xiaoran. 2017. Timing of the final closure of the Paleo-Asian Ocean in the Alxa terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos: 19~30.
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Gunther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.
参考文献
Liu Yongjiang, Ma Yongfei, Feng Zhiqiang, Li Weimin, Li Sanzhong, Guan Qingbin, Chen Zhaoxu, Zhou Tong, Fang Qi'ang. 2022. Paleozoic Orocline in the eastern Central Asian Orogenic Belt. Acta Geologica Sinica, 96(10): 3468~3493 (in Chinese with English abstract).
参考文献
Ludwig K R. 2003. ISOPLOT 3. 0: A Gochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center.
参考文献
McDougall I, Harrison T M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. 2nd Edition. New York: Oxford University Press.
参考文献
Meng Qingren, Hu Jianmin, Jin Jiuqiang, Zhang Yan, Xu Dafeng. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region. Basin Research, 15: 397~415.
参考文献
Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.
参考文献
Reiners P W, Farley K A, Hickes H J. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1-4): 297~308.
参考文献
Reiners P W, Spell T L, Nicolescu S, Zanetti K A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8): 1857~1887.
参考文献
Schulmann K, Paterson S. 2011. Asian continental growth. Nature Geoscience, 4: 827~829.
参考文献
Scott R J, Foster D A, Lister G S. 1998. Tectonic implications of rapid cooling of low plate rocks from the Buckskin-Rawhide metamorphic core complex, west-central Arizona. Bulletin of the Geological Society of America, 110: 688~614.
参考文献
Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.
参考文献
Shao Ji, an, Wang You, Tang Kedong D. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China. Acta Petrologica Sinica, 33(10): 3002~3010 (in Chinese with English abstract).
参考文献
Simpson C, Schmid S M. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Bulletin of the Geological Society of America, 94: 1281~1288.
参考文献
Shen Liang. 2016. Provenance analysis and structural significance of Triassic sandstone in Solun-Linxi area. Master degree thesis of Jilin University (in Chinese).
参考文献
Stipp M, Stunitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24: 1861~1884.
参考文献
Tang Jianzhou, Zhang Zhicheng, Liu Bo, Zhang Huaihui. 2021. Geochemistry of Early Triassic pillow basalts from Sonid Zuoqi, Central Inner Mongolia and their geological significance. Geotectonica et Metallogenia, 45(4): 805~821(in Chinese with English abstract).
参考文献
Wang Tao, Zheng Yadong, Gehrels G E, Mu Zhiguo. 2001. Geochronological evidence for existence of the south Mongolian microcontinent: A zircon U-Pb age of granitoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex on the SinoMongolian border. Chinese Science Bulletin, 46: 2005~2008.
参考文献
Wang Tao, Zheng Yadong, Li Tianbin, Gao Yongjun. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23: 715~729.
参考文献
Wang Tao, Zheng Yadong, Zhang Jinjiang, Zeng Lingshen, Tatiana D, Guo Lei, Li Jianbo. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, 30(6): 1~31.
参考文献
Wang Tao, Guo Lei, Zheng Yadong, Tatiana D, Dmitry G, Zeng Lingshen, Li Jianbo, Wang Yanbin. 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315~345.
参考文献
Wang Tao, Tong Ying, Xiao Wenjiao, Guo Lei, Windley B F, Donskaya T, Li Shan, Tserendash T, Zhang Jianjun. 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data. National Science Review, 8: 1~12.
参考文献
Wawrzenitz N, Krohe A. 1998. Exhumation and doming of the Thaso metamorphic core complex (Rhodope, Greece): Structural and geochronological constraints. Tectonophysics, 285: 301~332.
参考文献
Webb L E, Johnson C L, Minjin C. 2010. Late Triassic sinistral shear in the East Gobi fault zone, Mongolia. Tectonophysics, 495: 246~255.
参考文献
Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific Plate subduction: A review of the evidence. Tectonophysics, 662: 345~362.
参考文献
Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the central Asian orogenic belt. Journal of Geological Society, 164: 31~47.
参考文献
Wu Didi, Li Shan, Chew D, Liu Tieyi, Guo Donghai. 2021. Permian-Triassic magmatic evolution of granitoids from the southeastern Central Asian Orogenic Belt: Implications for accretion leading to collision. Science China Earth Sciences, 64(5): 788~806.
参考文献
Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: 8~20.
参考文献
Xiao Wenjiao, Windley B F , Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review Earth Planet Science, 43: 477~507.
参考文献
Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong, Song Dongfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Science Review, 186: 94~128.
参考文献
Xu Bei, Chen Bin. 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia. Science in China (Series D), 40 (5): 463~469.
参考文献
Xu Bei, Charvet J, Chen Yan, Zhao Pan, Shi Guanzhong. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342~1364.
参考文献
Yuan Lingling, Zhang Xiaohui. 2018. Petrogenesis of the Middle Triassic Erenhot granitoid batholith in central Inner Mongolia (northern China) with tectonic implication for the Triassic Mo mineralization in the eastern Central Asian Orogenic Belt. Journal of Asian Earth Science, 165: 37~58.
参考文献
Zhang Andong, Liu Shaofeng, Lin Chengfa, Zhang Bo. 2020. Timing of deposition in the Dengzhangzi and Guojiadian basins of the Yanshan fold-thrust belt, North China International Geology Review, 62: 2344~2365.
参考文献
Zhang Jinjiang, Zheng Yadong. 1997. Polar Mohr constructions of strain analysis in general shear zone. Journal of Structural Geology, 19: 745~748.
参考文献
Zhang Lianchang, Ying Jifeng, Chen Zhiguang, Wu Huaying, Wang Fei, Zhou Xinhua. 2008. Age and tectonic setting of Triassic basic volcanlc rocks in southern Da Hinggan Range. Acta Petrologica Sinica, 24(4): 911~920 (in Chinese with English abstract).
参考文献
Zhang Shuanhong, ZHao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, Wu Hai. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824~842 (in Chinese with English abstract).
参考文献
Zhang Shuanhong, Zhao Yue, Ye Hao, Hou Kejun, Li Chaofeng. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 155: 1~18.
参考文献
Zhao Liang, Li Zian, Li Jingyan, Guo Feng. 2019. Generation of Triassic post-collisional granitoids in the Linxi region (Inner Mongolia, NE China) and crustal growth in the eastern Central Asian Orogenic Belt through melting of relict oceanic crust. Journal of Asian Earth Sciences, 171: 348~362.
参考文献
Zheng Yadong, Wang Tao, Zhang Jinjiang. 2008. Theory and practice of kinematic vorticity (WK). Earth Science Frontiers, 15: 209~220 (in Chinese with English abstract).
参考文献
Zhou Hai, Zhao Guochun, Li Jianhua, Han Yigui, Yao Jinlong, Wang Bo. 2019. Magmatic evidence for Middle-Late Permian tectonic evolution on the Northern margin of the North China Craton. Lithos, 336-337: 125~142.
参考文献
冯乾乾, 邱楠生, 常健, 刘念. 2018. 房山岩体构造-热演化: 来自(U-Th) /He年龄的约束. 地球科学, 43(6): 1973~1982.
参考文献
高俊, 朱明田, 王信水, 洪涛, 李光明, 李继磊, 肖文交, 秦克章, 曾庆栋, 申萍, 徐兴旺, 张招崇, 周建波, 赖勇, 张晓晖, 孙景贵, 万博, 王博. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24~71.
参考文献
胡健民, 刘晓文, 徐刚, 刘健, 张拴宏. 2005. 辽西晚三叠世末—中侏罗世崩塌-滑坡-泥石流沉积及其构造意义. 地质学报, 79: 453~464.
参考文献
胡玲, 刘俊来, 纪沫. 2009. 变形显微构造识别手册. 北京, 地质出版社.
参考文献
李世超, 王洪涛, 李刚, 王兴安, 杨小鹏, 赵哲仁. 2020. 中亚造山带中段古亚洲洋北向平板俯冲过程: 来自埃达克岩的证据. 岩石学报, 36(8): 2521~2536.
参考文献
林伟, 曾纪培, 孟令通, 邱华标, 卫巍, 任志恒, 褚杨, 李双建, 宋超, 王清晨. 2021. 伸展构造与华北克拉通破坏-花岗岩磁组构和变质核杂岩的构造分析. 中国科学-地球科学, 51(9): 1558~1593.
参考文献
柳长峰, 杨帅师, 武将伟, 张华锋. 2010. 内蒙古中部四子王旗地区晚二叠-早三叠世过铝质花岗岩定年及成因. 地质学报, 84: 1002~1016.
参考文献
刘永江, 马永非, 冯志强, 李伟民, 李三忠, 关庆彬, 陈昭旭, 周桐, 方启昂. 2022. 中亚造山带东段古生代山弯构造. 地质学报, 96(10): 3468~3493.
参考文献
邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代-早中生代构造环境的讨论. 岩石学报, 33(10): 3002~3010.
参考文献
孙敬博, 孙腾飞, 陈文, 喻顺, 尹继元, 李超, 张彦, 刘新宇. 2015. 新疆东天山红云滩地区构造-热演化探讨: 来自Ar-Ar和(U-Th)/He热年代学的约束. 岩石学报, 31(12): 3732~3742.
参考文献
申亮. 2016. 索伦—林西地区三叠纪砂岩物源分析及构造意义. 吉林大学硕士论文.
参考文献
唐建洲, 张志诚, 刘博, 张怀惠. 2021. 内蒙古中部苏尼特左旗早三叠世枕状玄武岩地球化学特征及地质意义. 大地构造与成矿学, 45(4): 805~821.
参考文献
徐备, 陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化. 中国科学, 27(3): 227~232.
参考文献
王同和. 1988. 呼伦贝尔一巴音和硕裂谷系的演化及形成机制, 中国地质科学院沈阳地质矿产研究所所刊, 第17号, 135~143.
参考文献
张斌, 陈文, 孙敬博, 喻顺, 尹继元. 2016. 南天山欧西达坂岩体热演化历史与隆升过程分析—来自Ar-Ar和(U-Th)/He热年代学的证据. 中国科学, 46(3): 392~405.
参考文献
张连昌, 英基丰, 陈志广, 吴华英, 王非, 周新华. 2008. 大兴安岭南段三叠纪基性火山岩时代与构造环境. 岩石学报, 24(4): 911~920.
参考文献
张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824~842.
参考文献
郑亚东, 王涛, 张进江. 2008. 运动学涡度的理论与实践. 地学前缘, 15: 209~220.
参考文献
朱俊宾. 2015. 内蒙古东南部上石炭统-下三叠统的沉积环境和构造背景. 中国地质大学(北京)博士学位论文.
目录contents

    摘要

    苏尼特左旗变质核杂岩位于中亚造山带东南部,其发育一走向近EW、倾向S的低角度伸展型拆离带,主要由下盘的二叠纪—三叠纪侵入体、韧性剪切带(糜棱岩带)、脆性拆离断层面及上盘的古生代和元古宙岩石组成。韧性拆离带内主要岩石类型为花岗质糜棱岩,宏观尺度普遍发育面理与线理,产状为145°~194°∠34°~55°与185°~228°∠15°~39°。显微尺度下石英强烈定向成拔丝状、并具亚颗粒旋转重结晶现象;长石形成不对称的旋转碎斑系及核幔构造。剪切带内不对称长石碎斑、云母鱼、S-C组构等指示上盘向SW方向剪切。以拆离带内强变形糜棱岩及下盘哈拉图岩体为测年对象,两个花岗质糜棱岩与下盘不变形花岗岩的锆石U-Pb年龄为244.4±1.8 Ma、244.0±2.4 Ma与229.4±2.1 Ma;锆石(U-Th)/He的年龄为212.5±13.1 Ma、214.1±13.2 Ma。结合区域构造背景与前人研究资料,认为苏尼特拆离带变形起始时限为244 Ma以后,变形峰期时限为224 Ma并持续至214 Ma。苏尼特左旗变质核杂岩韧性拆离带在244~224 Ma与224~213 Ma两个时期的冷却速率分别为18.5 ℃/Ma与 16.3 ℃/Ma,隆升速率为0.54 km/Ma与0.48 km/Ma,早期以简单剪切为主的一般剪切作用与晚期以纯剪切为主的一般剪切作用共同制约苏尼特左旗变质核杂岩韧性拆离带的构造剥露过程。本文成果显示在华北北缘到中亚造山带之间早中生代存在一地壳快速隆升事件,可能为中亚造山带最终闭合后的伸展垮塌与蒙古-鄂霍茨克构造带的远程效应共同作用结果。

    Abstract

    The Sonid Zuoqi ductile metamorphic core complexes, which are located on the south-eastern margin of the CAOB, includes a extensional ductile detachment zone which strike EW and dip to S. The footwall of this detachment zone consists of Permian-Triassic intrusions, ductile shear zone (mylonite zone) and brittle detachment fault zone, and the hangwall composes of Palaeozoic and Proterozoic rocks. The major rock types of the Sonid Zuoqi ductile detachment zone are mylonites which are generally characterized by a down-dip stretching lineation which plunges to 15°~39° toward 185°~228°and well-developed mylonitic foliation (S-C foliation) which dips toward 145°~194° at 34°~55°. At the microscopic scale, the quartz is strongly oriented to wire-drawing and has sub-particle recrystallization. The feldspar forms asymmetric rotational cataclastic system and core-mantle structure. Shear-sense indicators such as asymmetric porphyroclasts, S-C fabric and mica-fish, consistently indicate top-to-the-SW shear. The strong deformation mylonite and Halatu plutons within the footwall of detachment zone are taken as the dating objects and yields zircon U-Pb ages of 244.4±1.8 Ma, 244.0±2.4 Ma and 229.4±2.1 Ma; (U-Th)/He age of 212.5±13.1 Ma and 214.1±13.2 Ma for two strong deformation mylonite and the granite with the detachment zone, respectively. Combined with the regional tectonic background and previous research data, it is considered that the initial deformation time of the Sonid Zuoqi detachment zone was after 244 Ma, and the deformation peak time was 224 Ma and continued to 214 Ma. The cooling rates of the ductile detachment zone of the Sonid Zuoqi metamorphic core complex during 244~224 Ma and 224~214 Ma are 18.5 ℃/Ma and 16.3 ℃/Ma, respectively, and the uplift rates are 0.54 km/Ma and 0.48 km/Ma, respectively. The early simple shear-dominated general shear and the late pure shear-dominated general shear jointly restrict the structural denudation process of the Sonid Zuoqi metamorphic core complex. The results of this paper show that there was a rapid crustal uplift event in the early Mesozoic between the northern margin of North China and the Central Asian orogenic belt, which may be the result of the combined action of the collapse after the final closure of the Central Asian orogenic belt and the far-field effect of the Mongolia-Okhotsk tectonic belt.

  • 中亚造山带北邻西伯利亚克拉通、南倚塔里木克拉通和华北克拉通,是古亚洲洋从中元古代到古生代末期长期俯冲-增生演化的结果(Şengör et al.,1993; Jahn et al.,2000; Windley et al.,2007; Xiao Wenjiao et al.,20152018)。晚二叠世—早三叠世中亚造山带由增生演化为碰撞体系,随后发生了强烈的后碰撞/后造山伸展作用(Xiao Wenjiao et al.,2003; 张拴宏等,2010; Schulmann and Paterson,2011; Eizenh fer et al.,2014; Li Shan et al.,20162017)并得到区域上诸多岩石学、古地磁学与沉积学研究成果的佐证(Graham et al.,2001; Meng Qingren et al.,2003; 胡健民等,2005; 张连昌等,2008; Davis et al.,2009; Hu Jianmin et al.,2010; Zhang Shuanhong et al.,2012; Chen Chen et al.,2015; 邵济安等,2017; Ji Zejia et al.,2018; Zhou Hai et al.,2019; Gao Jun et al.,2019; Zhao Liang et al.,2019; Zhang Andong et al.,2020; 唐建洲等,2021刘永江等,2022),但该伸展事件发育时限、作用方式及地壳伸展剥蚀速率等问题需进一步探讨。本文拟选择中亚造山带东南缘的苏尼特左旗变质核杂岩韧性拆离带为研究对象,在野外调研基础上,对韧性拆离带内糜棱岩、拆离带下盘哈拉图岩体进行锆石U-Pb与(U-Th)/He定年,结合前人的年代学资料,构建研究区构造-热演化历史,探讨其隆升过程,为中亚造山带造山后构造演化提供信息。

  • 1 地质背景

  • 内蒙古苏尼特左旗位于中亚造山带东南缘,索伦-西拉木伦缝合带北侧(图1b),由北向南依次为蒙古-鄂霍茨克构造带(图1a)、南蒙古地块、北部造山带、索伦-西拉木伦缝合带、南部造山带和华北克拉通北缘(Jian Ping et al.,2010; Xiao Wenjiao et al.,20152018; Li Shan et al.,20162017; Wu Didi et al.,2021)。蒙古-鄂霍茨克构造带位于中亚造山带东部,西起内蒙古中部的杭盖山脉,东至鄂霍茨克海的乌达海湾,北部为西伯利亚板块、南部为南蒙古地体、东部为太平洋板块,是三叠纪—晚侏罗世蒙古-鄂霍茨克洋由西向东板片后撤、剪刀状闭合的结果(Wang Tao et al.,2022)。索伦-西拉木伦缝合带从研究区南部通过,长约2500 km,宽约50~100 km,晚古生代末期到早中生代西伯利亚板块和华北板块沿该带呈剪刀状拼合(Xiao Wenjiao et al.,2003; Xu Bei et al.,2013; Eizenhöfer et al.,2014; Wilde,2015; Liu Qian et al.,2017)且持续到中三叠世末期(Yuan Lingling et al.,2018)。沿索伦-西拉木伦缝合带两侧线状分布的与碰撞有关的加厚下地壳来源的早三叠纪高Sr/Y的花岗岩是古亚洲洋最终闭合的标志,构造体制也由陆缘弧转换为软碰撞及后续的陆内造山作用(Wu Didi et al.,2021);同时,地层也由早二叠世浅海相、晚二叠世海-陆交互相到早—中三叠世陆相沉积的转变,其上为侏罗纪中酸性火山岩不整合覆盖(朱俊宾,2015),这表明,三叠纪之后,研究区一直处于构造隆升与剥蚀状态。

  • 2 苏尼特左旗变质核杂岩的构造组成

  • 苏尼特左旗变质核杂岩的主体为交其尔韧性拆离带,为一走向近EW、倾向S的低角度伸展型拆离带(图2)(Davis et al.,2004),主要构造要素包括拆离带下盘的古生代中期和二叠纪、三叠纪侵入体(宝底道和哈拉图岩体),拆离带之下、叠加在下盘哈拉图岩体上的韧性剪切带(糜棱岩带),脆性拆离断层面及上盘的古生代和元古宙岩石(Davis et al.,2004)。

  • 图1 中亚造山带中-东段构造格架图(a,据 Jahn et al.,2004; Zhang et al.,2015)及内蒙古中部地区地质简图(b,据Wu Didi et al.,2021; 唐建洲等,2021

  • Fig.1 Tectonic framework of the central-eastern segment of the Central Asian Orogenic Belt (a, modified after Jahn et al., 2004; Zhang et al., 2015) and sketch geological map of the central Inner Mongolia (b, after Wu Didi et al., 2021; Tang Jianzhou et al., 2021)

  • 图2 苏尼特左旗南部地质简图(据Chen Bin et al.,2000; Davis et al.,2004修改)

  • Fig.2 Sketch geological map of the southern Sonid Zuoqi (modified from Chen Bin et al., 2000; Davis et al., 2004

  • 拆离带上盘的岩性复杂,主要由混杂岩带组成。混杂岩带出露于二道井、查干乌拉到洪格尔一带(图2)。混杂岩的基质主要由变形的变质砂岩、变质火山岩和云母石英片岩组成(图3a),混杂岩中的岩块以白云岩最多,其次为石英岩、石英片岩、超镁铁质和镁铁质岩石、大理岩、灰岩、砾岩和蓝片岩,片理化不均一(Xu Bei et al.,1997);另外,混杂岩内还发育一系列南倾、倾角不等的正断层(图3a)。

  • 拆离带下盘侵入体主要由宝底道岩体和哈拉图岩体组成。宝底道岩体为一复式岩体,主要由闪长岩、石英闪长岩、英云闪长岩、花岗闪长岩和花岗岩组成,U-Pb年龄为310 Ma(Chen Bin et al.,2000)。哈拉图岩体(图3b),主体为黑云母二长花岗岩,具A型花岗岩的特征,U-Pb年龄为230 Ma(Chen Bin et al.,2000; Wu Didi et al.,2021),与宝底道岩体、前陆变形带及混杂带呈侵入接触关系(Chen Bin et al.,2000)。

  • 交其尔韧性拆离带从哈拉图岩体南部边界通过,主要岩石类型为花岗质糜棱岩,是哈拉图岩体韧性变形的产物(图3c、d)。糜棱岩普遍发育的S面理和C面理,面理主要由对称和不对称眼球状长石和石英条带组成,产状145°~194°∠34°~45°。不对称眼球体常构成 σ 碎斑,碎斑体的中部和尾部取向分别定义糜棱状岩石的S和C面并构成S-C组构。线理由长石、石英、黑云母颗粒的优选定向构成,产状185°~228°∠15°~39°。糜棱岩中还发育一组间隔的、近平行的小型剪切条带即伸展褶劈理C′进而形成S-C-C′组构,该剪切条带以小角度切割和错断透入性糜棱面理并使之发生弯曲,表明伸展褶劈理或C′晚于S-C组构发育且剪切指向与糜棱岩一致。不对称眼球、云母鱼、S-C及S-C-C′组构等运动学标志同时指示上盘相对下盘向南西SW向的正断式剪切。

  • 3 样品描述、有限应变测量及运动学涡度估算

  • 样品N140511-1与210925-22,采样位置(N43°31.460′,E113°44.759′),花岗结构,块状构造,岩性为黑云母二长花岗岩,不变形,主要由石英,碱性长石、斜长石以及少量的黑云母组成。黑云母含量少于5%,单偏光下多色性明显,正交偏光下具墨色的异常干涉色(图4a、b)。碱性长石普遍高岭土化,含量约30%。斜长石也绝大部分绢云母化,局部沿斜长石聚片双晶发育,干涉色多为一级灰,含量约25%。石英表面较干净,干涉色一级灰白,含量约40%。样品N140511-2.1与210925-23,采样位置(N43°31.339′,E113°44.884′),糜棱结构,片麻状构造,强变形,原岩为黑云母二长花岗岩,宏观上面理与线理发育,显微镜下石英普遍重结晶且强烈定向成拔丝状,长石形成不对称的旋转碎斑系及核幔构造(图4c、d),石英及长石碎斑等运动学指向标志指示向SW方向剪切,样品N140511-5.1,采样位置(N43°31.352′,E113°44.699′),糜棱结构,片麻状构造,强变形(图4e、f),但相较于样品N140511-2.1变形弱,原岩为黑云母二长花岗岩,宏观上面理与线理发育,显微镜下可见石英亚颗粒旋转重结晶现象,暗示剪切带的变形温度在400~500℃之间(Stipp et al.,2002),长石碎斑、云母鱼等指示向SW方向剪切。

  • 图3 苏尼特左旗韧性拆离带上、下盘野外宏观照片

  • Fig.3 Photographs of low-upper plate of the Sonid Zuoqi ductile detachment zone

  • (a)—拆离带上盘混杂带;(b)—拆离带下盘哈拉图岩体;(c)—拆离带内糜棱岩及S-C-C′组构;(d)—糜棱岩的拉伸线理L

  • (a) —mélange belt of the detachment zone hallwall; (b) —Halatu pluton of the detachment zone footwall; (c) —mylonite of detachment zone and S-C-C′ fabric in it; (d) —lineation of mylonite (L)

  • 剪切带一般经历几个阶段的演化,如韧性变形、韧脆变形和脆性变形。与之对应,不同的岩石组构记录了不同变形期的运动学涡度。基于有限应变测量的极莫尔圆法估算了糜棱岩早期韧性变形的平均运动涡度(Simpson et al.,1993; Zhang Jinjiang et al.,1997; 郑亚东等,2008)。最大有效力矩法(郑亚东等,2008)或C’法记录了拆离末期糜棱岩韧脆性变形的运动学涡度。共轭脆性断层估算的是剪切带脆性变形期的“涡度”。因此,本文选择基于有限应变的极莫尔圆法与C′法分别估算剪切带早期韧性变形与晚期韧脆性变形转换时的运动学涡度,进而详细刻画剪切带的运动学演化过程。手标本尺度,以长石为应变标志体,用Rf/Φ 法获得样品N140511-2与N140511-5.1的弗林参数为0.55和0.75,显示为压扁应变;极莫尔圆法估算的运动学涡度值为0.86和0.80,表明为简单剪切;露头尺度,利用C′法估算的运动学涡度值显示为纯剪切,测量结果列于表1。

  • 图4 苏尼特左旗变质核杂岩韧性拆离带内测年样品显微照片(正交偏光)

  • Fig.4 Micrograph of the Sonid Zuoqi MCC ductile detachment zone (cross-polarized light)

  • (a、b)—黑云母二长花岗岩样品N140511-1;(c、d)—强变形糜棱岩样品N140511-5.1及其中的长石旋转碎斑;(e、f)—强变形糜棱岩样品N140511-2中的石英亚颗粒旋转重结晶; Kfs—碱性长石; Pl—斜长石; Bt—黑云母; Q—石英; rQ—动态重结晶石英; M—云母鱼

  • (a, b) —biotite monzonitic granite sample N140511-1; (c, d) —strong deformed mylonite sample N140511-5.1, with rotated feldspar porphyroclasts; (e, f) —strong deformed mylonite sample N140511-2, showing subgrain rotation recrystallization of quartz; Kfs—alkali feldspar; Pl—plagioclase; Bt—biotite; Q—quartz; rQ—dynamic recrystallization quartz; M—mica fish

  • 4 年代学分析

  • 4.1 分析方法

  • 4.1.1 锆石U-Pb年龄分析

  • 锆石单矿物分离在河北省诚信地质服务有限公司完成,将原岩样品粉碎,经常规重选和电磁选后在双目镜下挑选锆石。将完整的锆石颗粒置于DEVCON环氧树脂中,待固结后抛磨,使锆石内部充分暴露,然后进行锆石反射光和透射光照相及锆石的阴极发光(CL)照相,锆石的阴极发光图像在中国地质科学院矿产资源研究所电子探针实验室完成。测试分析在中国地质科学院地质研究所完成。锆石U-Pb定年工作所用的MC-ICP-MS为美国Thermo Fisher公司最新一代Neptune Plus型多接收等离子体质谱仪。采用的激光剥蚀系统为美国Coherent公司生产的GeoLasPro 193nm。激光剥蚀以氦气作为剥蚀物质的载气,激光剥蚀束斑直径为24~44 μm,通常采用32 μm,激光能量密度为10 J/cm2,频率为8 Hz。锆石中的U、Pb在10000 K以上的高温等离子体中发生离子化,利用动态变焦扩大色散可以同时接收质量数相差很大的U-Pb同位素,从而进行锆石微区U-Pb同位素原位同时测定。每个分析点的气体背景采集时间为4 s,信号采集时间为23 s。数据分析前用国际上通用的锆石标样91500作为参考物质进行仪器的最佳化,使仪器达到最大的灵敏度、最小的氧化物产率(ThO+/Th+<2%)和最低的背景值。选用GJ-1作为辅助标样对数据的准确性进行验证。ICP-MS 数据采集选用一个质量峰采集一点的跳峰方式。每测定5~10 个样品点,测定一组标样(一个标样91500点和一个GJ-1点)。采用ICP-MSDataCal程序(Liu Yongsheng et al.,2008)和Isoplot程序(Ludwig,2003)进行数据处理;年龄计算以标准锆石91500 为外标进行同位素比值分馏。

  • 表1 苏尼特左旗变质核杂岩韧性拆离带内样品有限应变与运动学涡度值

  • Table1 Value of strain and kinematic vorticity of samples in the Sonid Zuoqi MCC ductile detachment zone

  • 4.1.2 锆石(U-Th)/He年龄分析

  • 岩石样品经过破碎、过筛、淘洗、重液分离等标准的矿物分选流程后,得到锆石矿物颗粒。用于(U-Th)/He定年的锆石样品在体式显微镜下进一步挑选出自形程度高、无包裹体、无裂缝、满足尺寸要求的晶体。将挑选好的晶体进行拍照,并测量晶体尺寸,根据测量结果计算ɑ校正系数(FT),然后将样品装入铂囊中。He气提取和分析在Alphachronll氦同位素质谱仪上进行。采用970 nm二极管激光器加热提取He气,加热温度约为900℃。样品中释放的4He与3He混合,通过四极杆质谱测定4He/3He值;3He的量通过4He标准气体标定,最终计算可得到样品中的4He含量。4He的测量精度优于1%。气体纯化系统由机器泵、分子泵、离子泵和锆铝泵组成。在相同的流程下至少进行两次取气、分析过程。完成氦含量分析的锆石样品加入25 μL的235U和230Th浓度分别为15×10-9和5×10-9的稀释剂溶液;同时,在含25×10-9 U和25×10-9 Th的标准溶液中加入等量稀释剂。稀释剂溶液中的7 mol/L的硝酸可以将锆石溶解。在锆石完全溶解之后,加水进行稀释即可用于U、Th测试。U、Th元素分析在电感耦合等离子体质谱仪(ICP-MS)上完成,U和Th同位素比值分析不确定度通常小于2%。锆石(U-Th)/He年龄分析在中国地质科学院地质研究所完成,详细实验流程见孙敬博等(2015)

  • 4.2 分析结果

  • 4.2.1 锆石U-Pb年龄分析结果

  • 样品N140511-1中的锆石多为无色、透明的长柱状晶形(长60~100 μm),长宽比约为2∶1。锆石发育清楚振荡环带(图5a),显示为岩浆结晶锆石。且这些锆石的Th/U比值均较大,除N140511-1-06、N140511-1-07与N140511-12等点外,其余均大于0.4,具有典型岩浆锆石的高Th/U比值特征,显示岩浆锆石的特征。样品N140511-1共进行了12个点的测定。12个点均落在谐和线上及其附近(图5a),206Pb/238U年龄的加权平均值为229.4±2.1 Ma,MSWD=0.98。代表哈拉图岩体的岩浆结晶年龄。

  • 强变形糜棱岩样品N140511-2中的锆石多为无色、透明的长柱状晶形(长100~200 μm),长宽比约为2∶1~3∶1。锆石发育清晰岩浆生长环带与韵律结构(图5b),且这些锆石的Th/U比值均较大,除点N140511-2.1-06与 N140511-2.1-18外,其余均大于0.4,具有典型岩浆锆石的高Th/U比值特征,显示岩浆锆石特征。样品N140511-2.1共进行了20个点的测定。 20个点均落在谐和线上及其附近(图5b),206Pb/238U年龄的加权平均值为244.4±1.8 Ma,MSWD=1.4。代表拆离带内强变形糜棱岩的岩浆结晶年龄。样品N140511-5.1中的锆石多为无色、透明的短柱状晶形(长100~200 μm),长宽比约为1∶1.5。锆石发育清晰振荡环带(图5c),且这些锆石的Th/U比值均较大,均大于0.4,具有典型岩浆锆石的高Th/U比值特征,显示岩浆锆石特征。样品N140511-5.1共进行了10个点的测定。10 个点均落在谐和线上及其附近,206Pb/238U年龄的加权平均值为244.0±2.4 Ma,MSWD=0.31。样品N140511-2与N140511-5.1的测点均打在具有振荡环带的幔部和边部,代表拆离带内强变形糜棱岩的岩浆结晶年龄。所有锆石U-Pb详细测年结果见表2。

  • 图5 哈拉图岩体(花岗岩)及苏尼特左旗变质核杂岩韧性拆离带内糜棱岩样品锆石LA-ICP-MS U-Pb 年龄谐和图及加权平均年龄

  • Fig.5 LA-ICP-MS U-Pb concordia diagrams showing zircon ages of sample N140511-1 from Halatu pluton, samples from Halatu granite and mylonite of Sonid Zuoqi MCC ductile detachment zone

  • 4.2.2 锆石(U-Th)/He分析结果

  • 锆石单颗粒的(U-Th)/He 同位素测年分析结果列于表3。锆石显微照片见图6,晶体呈自形结构,粒度均在60 μm以上,颗粒未见包裹体和裂缝,实验过程中未出现辐射损伤等现象,说明样品质量较好,所记录的热演化信息准确性较高。样品210925-22,5个锆石的(U-Th)/He年龄介于243.9±16.2 Ma到148.4±8.7 Ma;所有实测锆石中,3号锆石所获得的年龄与其余4个年龄差别较大,但采用异常值检验后发现148.4±8.7 Ma并非属于异常值,并且U、Th及He含量也未发现明显异常,因此没有充分理由予以剔除,取其平均值212.5±13.1 Ma作为样品210925-22年龄值。样品20925-23,4个锆石的(U-Th)/He年龄232.6±14.8 Ma到180.6±11.1 Ma之间,同样取其平均值214.1±13.2 Ma作为该样品的年龄。

  • 5 讨论

  • 5.1 构造年代学

  • 变质核杂岩的剥露过程一般经历地壳中深层次近水平切向剪切(高温)、持续递进剪切变形(中温)及穹状隆升(低温)三个阶段(Lister et al.,1993),与之对应,变形时限一般也分为变形起始、变形持续及变形结束三个时限(Wang Tao et al.,2011)。前文述及,交其尔韧性拆离带发育于哈拉图岩体的南部边界,与岩体呈构造叠加关系(图2)。侵入拆离带内强变形的糜棱状哈拉图岩体的锆石U-Pb年龄为244 Ma,拆离带下盘未变形哈拉图岩体的U-Pb年龄为229 Ma,暗示哈拉图岩体形成是早、晚两期岩浆作用所致。结合野外观察与构造叠加关系,认为交其尔韧性拆离带伸展变形起始时间最早应晚于244 Ma,大规模的伸展变形可能是晚期与地壳伸展相关的A型花岗质岩浆(229 Ma)侵位后开始(Wu Didi et al.,2021)。另据拆离带内糜棱岩的显微组构特征,石英主体为亚颗粒旋转重结晶,表明剪切带的变形温度在400~500℃之间(Stipp et al.,2002胡玲等,2009),即Davis et al.(2004)年获得的拆离带下盘糜棱岩化哈拉图岩体的白云母Ar-Ar年龄(封闭温度380℃,224 Ma)反映了拆离带韧性变形峰期的年龄,伸展启动时间可能略早于224 Ma。锆石(U-Th)/He年龄(214 Ma)应为核杂岩伸展抬升冷却至200℃时的时限(Reiners et al.,200220042005)。因此,苏尼特左旗变质核杂岩交其尔韧性拆离带变形起始时限为244 Ma以后,变形峰期时限为224 Ma并持续至214 Ma及以后。这一伸展变形由弱变强趋势与华北北缘三叠纪都山岩体磁组构研究结果一致(林伟等,2021)。

  • 表2 哈拉图岩体(花岗岩)及苏尼特左旗变质核杂岩韧性拆离带糜棱岩样品锆石LA-ICP-MS U-Pb测试结果

  • Table2 Zircon U-Pb age dating results for Halatu pluton and mylonite of the Sonid Zuoqi MCC ductile detachment zone

  • 图6 苏尼特左旗变质核杂岩韧性拆离带内哈拉图花岗岩体(a)及糜棱岩(b)的(U-Th)/He测年锆石显微照片

  • Fig.6 Microscopy photos of zircon, for (U-Th) /He dating, in the Halatu granite pluton (a) and mylonite (b) within the Sonid Zuoqi MCC ductile detachment zone

  • 表3 苏尼特左旗哈拉图岩体(花岗岩)及苏尼特左旗变质核杂岩韧性拆离带糜棱岩样品锆石(U-Th)/He测试结果

  • Table3 Zircon (U-Th) /He dating results for biotite granite and mylonites of the Sonid Zuoqi MCC ductile detachment zone

  • 注: FT—α校正系数; 校正年龄=未校正年龄/ FT

  • 5.2 苏尼特左旗南部构造-热演化历史

  • 有关核杂岩的剥露过程有两种观点,一是短期快速形成(Foster et al.,1997; Scott et al.,1998;Wawrzennitz and Krohe,1998; Doughty et al.,1999),二是长期递进演化的结果(Wang Tao et al.,2011; Österle et al.,2020),交其尔韧性拆离带作为苏尼特左旗变质核杂岩的主拆离带,其剥露速率遵循何种方式是本文重点关注的问题。依据本文获得的锆石U-Pb与(U-Th)/He年龄数据,结合Davis(2004)年获得的交其尔拆离带下盘糜棱岩化哈拉图岩体的白云母Ar-Ar年龄,重构了交其尔拆离带的构造-热演化历史。其中,不同矿物的温度区间以各自体系的封闭温度区间为基础,其中锆石U-Pb选择750±50℃,白云母40Ar-39Ar 选择380±50℃(Harrison et al.,1985; Grove and Harrison,1996; McDougall and Harrison,1999),锆石(U-Th)/He选择170~196℃(Reiners et al.,200220042005)(图7)。正常情况下,造山带的地温梯度为30℃/km,本文引用与研究区相邻的大兴安岭地区地温梯度35℃/km(王同和,1988),据此估算出锆石U-Pb体系封闭温度所代表的地下深度约为21.5 km、白云母40Ar-39Ar体系约为10.8 km、锆石(U-Th)/He体系约为5.5 km。交其尔拆离带在244~224 Ma、224~214 Ma两个时期的冷却速率分别为18.5℃/Ma与16.3℃/Ma;隆升速率为0.54 km/Ma与0.48 km/Ma。拆离带下盘哈拉图岩体同样经历了229~224 Ma 与224~212 Ma两个时期的冷却速率分别为74.3℃/Ma与15℃/Ma、隆升速率为2.14 km/Ma与0.44 km/Ma。图7显示,在拆离带变形峰期(224 Ma)之前,哈拉图岩体的隆升速率远大于拆离带的隆升速率。这一研究结果与中蒙边界西段亚干变质核杂岩(冷却速率18.1℃/Ma; Wang Tao et al.,2001;2004资料估算)及邻区的东戈壁断层(冷却速率为约20~40℃/Ma)(Webb et al.,2010)较接近。同时,相比较其他类似研究成果如华北北缘的房山岩体(冯乾乾等,2018)、天山造山带欧西达坂岩体(张斌等,2016)及红石滩地区(孙敬博等,2015)等,交其尔韧性拆离带冷却及隆升速率显然更大,这表明苏尼特左旗南部地区三叠纪可能存在一次地壳快速隆升事件。这一地壳快速隆升事件得到研究区及邻区沉积记录的响应,早三叠世开始,索伦—林西一带地层中碎屑锆石与晚二叠世时具有很大差异,其物源大部分是晚二叠世—早三叠世的岩浆碎屑,碎屑的锆石U-Pb同位素年龄峰值集中在247 Ma左右(李世超等,2020);另外,晚二叠世到早三叠世初,林西—巴林右旗一带,普遍发育类磨拉石山前沉积,也表明研究区及邻区在此期间存在一次造山运动剧烈,地壳快速隆升事件(朱俊宾等,2015申亮,2016)。

  • 5.3 苏尼特左旗南部伸展剥露过程

  • 依据前文构造年代学结果、构造-热演化史,应变与运动学涡度数据,结合区域构造演化,一个可能的苏尼特左旗变质核杂岩三叠纪构造演化及剥露过程如下。

  • 图7 苏尼特左旗变质核杂岩韧性拆离带构造-热演化图

  • Fig.7 Tectonic-thermal evolution diagram of ductile detachment zone of the Sonid Zuoqi metamorphic core complex

  • ~244 Ma后,交其尔韧性拆离带原岩应位于比韧-脆性转化带更深的下地壳(约21.5 km),且表现为近水平的切向剪切(WK≈1)(Wang Tao et al.,2011)并发育面理与线理(图8a)。早三叠世古亚洲洋最终闭合,上地壳构造体制由陆缘弧转换为软碰撞及后续的陆内造山作用(Wu et al.,2021)使研究区地壳缩短加厚形成早中生代陆内造山带。伴随造山带垮塌,上部地壳伸展启动,由伸展拆离导致的均衡调节使位于深部中下地壳的韧性拆离带以约0.54 km/Ma 速率拱形隆升(bows upward)。约229 Ma,具A型岩浆特征哈拉图岩体(Wu et al.,2021)开始侵位,表明此时深部地壳已发生减薄,岩浆上升侵入中下地壳,使其流变性增强,形成相对软弱带。随后代表地壳深层次伸展的变质核杂岩开始启动(Wang Tao et al.,2011)。在上地壳伸展与下部哈拉图岩体侵位的联合作用下,早期近水平的切向韧性剪切带中的垂向纯剪切组分势必增大,此时,应变转变为压扁应变(弗林参数为0.65);运动学涡度值由≈1减小为 0.83,交其尔韧性拆离带经历了以简单剪切为主的一般剪切作用。早期近水平切向韧性剪切带转变为伸展-减薄型剪切带(图8b)。

  • 伴随上地壳持续伸展及哈拉图岩体持续侵位使交其尔拆离带下盘继续隆升,相对应垂向的纯剪切组分持续增大。当交其尔韧性拆离带抬升至约10.8 km的韧-脆性转化带之上时,白云母40Ar-39Ar同位素体系(224 Ma)记录了变形峰期时限。这一阶段哈拉图岩体的隆升速率远大于拆离带的隆升速率,其后,两者逐渐协调一致,拆离带内糜棱岩的伸展褶劈理(C′)叠加在早期形成的S-C组构上,此时,伸展褶劈理(C′)记录的运动学涡度为0.37~0.44,平均为0.41,指示交其尔韧性拆离带抬升至韧-脆性转化带时经历了以纯剪切为主一般剪切作用(图8c)。

  • 图8 苏尼特左旗变质核杂岩韧性拆离带演化模式图

  • Fig.8 Evolution model diagram of the ductile detachment zone of the Sonid Zuoqi metamorphic core complex

  • 最后,韧性拆离带(糜棱岩)抬升至约5.5 km的近地表,锆石(U-Th)/He同位素体系(214 Ma)记录了此时的时限,并与下盘的哈拉图岩体及上盘未变形的多世代混杂岩在同一高程并置时,伸展褶劈理转化为脆性拆离断层面,交其尔韧性拆离带完成了其主要演化历史,同时,拆离带上盘叠加了一系列倾向SW,倾角不等的高角度脆性正断层(图8d)。需要强调,在韧性拆离带演化过程中,中酸性花岗岩浆底侵过程中带来的流体的加入、应变集中与软化等也是促成拆离带形成必不可少的因素。

  • 5.4 区域构造意义

  • 华北克拉通以北直至俄罗斯远东地区的中亚造山带东部,存在南部的索伦-西拉木伦与北部的蒙古-鄂霍茨克两大的缝合带。前文述及,在晚二叠纪至早三叠纪伴随古亚洲洋沿索伦-西拉木伦缝合带闭合,构造体制由增生演化为碰撞体系,随后发生了强烈的后碰撞/后造山伸展作用,这一伸展作用的起因应是中亚造山带伸展垮塌的结果,区域上诸多的岩石学、构造地质学研究成果均支持这一观点,这一时期,研究区构造演化主要受控于上述构造背景。紧随其后,三叠纪开始(约220 Ma),北部的蒙古-鄂霍茨克构造带由西向东以剪刀状、板片后撤的方式于160~150 Ma最终闭合形成,同时,此种闭合方式在中亚造山带与蒙古-鄂霍茨克带之间会产生近NE-SW向伸展(Wang Tao et al.,2022)。年代学结果及构造分析显示,研究区伸展事件的触发因素可能与中亚造山带最终闭合后的伸展垮塌有关,后续的构造剥露可能是蒙古-鄂霍茨克带的远程效应所致。

  • 6 结论

  • (1)苏尼特左旗变形核杂岩交其尔韧性拆离为一走向近E-W、倾向S的低角度伸展型拆离带,拆离带内糜棱岩的运动学指向标志如不对称长石碎斑、云母鱼、S-C组构等均指示上盘向SW方向剪切。拆离带变形起始时限为244 Ma以后,变形主期时限为224 Ma并持续至214 Ma。

  • (2)苏尼特左旗变质核杂岩经历了早期韧性变形(244~224 Ma)与晚期韧-脆性变形(224~214 Ma)等两期构造演化:冷却速率分别为18.5℃/Ma与16.3℃/Ma,隆升速率分别为0.54 km/Ma与0.48 km/Ma;是早期以简单剪切为主的一般剪切作用与晚期以纯剪切为主的一般剪切作用共同作用的结果。

  • (3)本研究表明,华北北缘到中亚造山带之间早中生代存在一地壳快速隆升事件。

  • 参考文献

    • Chen Bin, Jahn Borming, Wilde S A, Xu Bei. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328: 157~182.

    • Chen Chen, Zhang Zhicheng, Li Ke, Chen Yan, Tang Wenhao, Li Jianfeng. 2015. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China block. Journal of Asian Earth Sciences, 97: 307~319.

    • Davis G A, Xu Bei, Zheng Yadong, Zhang Weiji. 2004. Indosinian extension in the Solonker suture zone: The Sonid Zuoqi metamorphic core complex, Inner Mongolia. China Earth Science Frontiers, 11: 135~144.

    • Davis G A, Meng Jiafeng, Cao Wenrong, Du Xingqiang. 2009. Triassic and Jurassic tectonics in the eastern Yanshan belt, North China: Insights from the controversial Dengzhangzi Formation and its neighboring units. Earth Science Frontiers, 16(3): 69~86.

    • Doughty P T, Price R A. 1999. Tectonic evolution of the Priest River complex, northern Idaho and Washington: A reappraisal of the Newport fault with new insights on metamorphic core complex formation. Tectonics, 18: 375~393.

    • Eizenhöfer P R, Zhao Guochun, Zhang Jian, Sun Min. 2014. Final closure of the Paleo-Asian Ocean along the Solonker suture zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 33: 441~463.

    • Foster D A, Fanning C M. 1997. Geochonology of the northern Idaho batholith and the Bitterroot metamorphic core complex: Magmatism preceding and contmporaneoux with extension. Bulletin of the Geological Society of America, 109: 379~394.

    • Gao Jun, Zhu Mingtian, Wang Xinshui, Hong Tao, Li Guangming, Li Jilei, Xiao Wenjiao, Qin Kezhang, Zeng Qingdong, Shen Ping, Xu Xingwang, Zhang Zhaochong, Zhou Jianbo, Lai Yong, Zhang Xiaohui, Sun Jinggui, Wan Bo, Wang Bo. 2019. Large- scale porphyry-type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geologica Sinica, 93(1): 24~71.

    • Graham S A, Hendrix M S, Johnson C L. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southern Mongolia. Bulletin of the Geological Society of America, 113(12): 1560~1579.

    • Grove M, Harrison T M. 1996. 40Ar diffusion in Fe-rich biotite. American Mineralogist, 81(7-8) : 940~951.

    • Harrison T M, Duncan I, McDougall I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11): 2461~2468.

    • Hu Jianmin, Liu Xiaowen, Xu Gang, Liu Jian, Zhang Shuanhong. 2005. The slidding-slump-mudflow sedimentation during the Late-Triassic to Middle Jurassic in Western Liaoning Province, China. Acta Geologica Sinca, 79: 453~464 (in Chinese with English abstract).

    • Hu Jianmin, Zhao Yue, Liu Xiaowen, Xu Gang. 2010. Early Mesozoic deformations of the eastern Yanshan thrust belt, northern China. International Journal of Earth Sciences (geol Rundsch), 99: 785~800.

    • Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Fitton J G, Mahoney J J, Wallace P J, Saunders A D, eds. Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publications, 226: 73~100.

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91: 181~193.

    • Ji Zejia, Zhang Zhicheng, Chen Yan, Li Ke, Yang Jinfu, Qian Xiaoyan. 2018. Geochemistry, geochronology, and Sr-Nd isotopic compositions of Permian volcanic rocks in the northern margin of the North China block: Implications for the tectonic setting of the southeastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 107: 2143~2161.

    • Jian Ping, Liu Dunyi, Kröner A, Windley B F, Shi Yueruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118: 169~190.

    • Österle J E, Little T A, Seward D, Stockli D F, Gamble J. 2020. The petrology, geochronology and tectono-magmatic setting of igneous rocks in the Suckling-Dayman metamorphic core complex, Papua New Guinea. Gondwana Research, 83: 390~414.

    • Li Shan, Chung S L, Wilde S A, Wang Tao, Xiao Wenjiao, Guo Qianqian. 2016. Linking magmatism with collision in an accretionary orogen. Scientific Reports, 6: 25751.

    • Li Shan, Chung S L, Wilde S A, Jahn B M, Xiao Wenjiao, Wang Tao, Guo Qianqian. 2017. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth, 122: 2291~2309.

    • Li Shichao, Wang Hongtao, Wang Xing'an, Yang Xiaopeng, Zhao Zheren. 2020. Northward plate subduction process of the Paleo-Asian Ocean in the middle part of the Central Asian Orogenic Belt: Evidence from adakites. Acta Petrologica Sinica, 36(8): 2521~2536 (in Chinese with English abstract).

    • Lin Wei, Zeng Jipei, Meng Lingdong, Qiu Huabiao, Wei Wei, Ren Zhiheng, Chu Yang, Li Shuangjian, Song Chao, Wang Qingchen. 2021. Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex. Science China Earth Sciences, 64(9): 1557~1589.

    • Liu Changfeng, Yang Shuaishi, Wu Jiangwei, Zhang Huafeng. 2010. Dating and petrogenesis of Late Permian-Early Triassic peraluminous granites in the Siziwangqi area, Inner Mongolia. Acta Geologica Sinica, 84: 1002~1016 (in Chinese with English abstract).

    • Liu Min, Lai Shaocong, Zhang Da, Zhu Renzhi, Qin Jiangfeng, Xiong Guangqiang. 2019. Middle Permian high Sr/Y monzogranites in central Inner Mongolia: Reworking of the juvenile lower crust of Bainaimiao arc belt during slab break-off of the Palaeo-Asian oceanic lithosphere. International Geology Review, 61(17): 1~17.

    • Lister G S, Baldwin S L. 1993. Plutonism and the origin of the metamorphic core complex. Geology, 21: 607~6101.

    • Liu Qian, Zhao Guochun, Han Yigui, Eizenhöfer P R, Zhu Yanlin, Hou Wenzhu, Zhang Xiaoran. 2017. Timing of the final closure of the Paleo-Asian Ocean in the Alxa terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos: 19~30.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Gunther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.

    • Liu Yongjiang, Ma Yongfei, Feng Zhiqiang, Li Weimin, Li Sanzhong, Guan Qingbin, Chen Zhaoxu, Zhou Tong, Fang Qi'ang. 2022. Paleozoic Orocline in the eastern Central Asian Orogenic Belt. Acta Geologica Sinica, 96(10): 3468~3493 (in Chinese with English abstract).

    • Ludwig K R. 2003. ISOPLOT 3. 0: A Gochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center.

    • McDougall I, Harrison T M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. 2nd Edition. New York: Oxford University Press.

    • Meng Qingren, Hu Jianmin, Jin Jiuqiang, Zhang Yan, Xu Dafeng. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region. Basin Research, 15: 397~415.

    • Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.

    • Reiners P W, Farley K A, Hickes H J. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1-4): 297~308.

    • Reiners P W, Spell T L, Nicolescu S, Zanetti K A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8): 1857~1887.

    • Schulmann K, Paterson S. 2011. Asian continental growth. Nature Geoscience, 4: 827~829.

    • Scott R J, Foster D A, Lister G S. 1998. Tectonic implications of rapid cooling of low plate rocks from the Buckskin-Rawhide metamorphic core complex, west-central Arizona. Bulletin of the Geological Society of America, 110: 688~614.

    • Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.

    • Shao Ji, an, Wang You, Tang Kedong D. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China. Acta Petrologica Sinica, 33(10): 3002~3010 (in Chinese with English abstract).

    • Simpson C, Schmid S M. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Bulletin of the Geological Society of America, 94: 1281~1288.

    • Shen Liang. 2016. Provenance analysis and structural significance of Triassic sandstone in Solun-Linxi area. Master degree thesis of Jilin University (in Chinese).

    • Stipp M, Stunitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24: 1861~1884.

    • Tang Jianzhou, Zhang Zhicheng, Liu Bo, Zhang Huaihui. 2021. Geochemistry of Early Triassic pillow basalts from Sonid Zuoqi, Central Inner Mongolia and their geological significance. Geotectonica et Metallogenia, 45(4): 805~821(in Chinese with English abstract).

    • Wang Tao, Zheng Yadong, Gehrels G E, Mu Zhiguo. 2001. Geochronological evidence for existence of the south Mongolian microcontinent: A zircon U-Pb age of granitoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex on the SinoMongolian border. Chinese Science Bulletin, 46: 2005~2008.

    • Wang Tao, Zheng Yadong, Li Tianbin, Gao Yongjun. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23: 715~729.

    • Wang Tao, Zheng Yadong, Zhang Jinjiang, Zeng Lingshen, Tatiana D, Guo Lei, Li Jianbo. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, 30(6): 1~31.

    • Wang Tao, Guo Lei, Zheng Yadong, Tatiana D, Dmitry G, Zeng Lingshen, Li Jianbo, Wang Yanbin. 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315~345.

    • Wang Tao, Tong Ying, Xiao Wenjiao, Guo Lei, Windley B F, Donskaya T, Li Shan, Tserendash T, Zhang Jianjun. 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data. National Science Review, 8: 1~12.

    • Wawrzenitz N, Krohe A. 1998. Exhumation and doming of the Thaso metamorphic core complex (Rhodope, Greece): Structural and geochronological constraints. Tectonophysics, 285: 301~332.

    • Webb L E, Johnson C L, Minjin C. 2010. Late Triassic sinistral shear in the East Gobi fault zone, Mongolia. Tectonophysics, 495: 246~255.

    • Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific Plate subduction: A review of the evidence. Tectonophysics, 662: 345~362.

    • Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the central Asian orogenic belt. Journal of Geological Society, 164: 31~47.

    • Wu Didi, Li Shan, Chew D, Liu Tieyi, Guo Donghai. 2021. Permian-Triassic magmatic evolution of granitoids from the southeastern Central Asian Orogenic Belt: Implications for accretion leading to collision. Science China Earth Sciences, 64(5): 788~806.

    • Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: 8~20.

    • Xiao Wenjiao, Windley B F , Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review Earth Planet Science, 43: 477~507.

    • Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong, Song Dongfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Science Review, 186: 94~128.

    • Xu Bei, Chen Bin. 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia. Science in China (Series D), 40 (5): 463~469.

    • Xu Bei, Charvet J, Chen Yan, Zhao Pan, Shi Guanzhong. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342~1364.

    • Yuan Lingling, Zhang Xiaohui. 2018. Petrogenesis of the Middle Triassic Erenhot granitoid batholith in central Inner Mongolia (northern China) with tectonic implication for the Triassic Mo mineralization in the eastern Central Asian Orogenic Belt. Journal of Asian Earth Science, 165: 37~58.

    • Zhang Andong, Liu Shaofeng, Lin Chengfa, Zhang Bo. 2020. Timing of deposition in the Dengzhangzi and Guojiadian basins of the Yanshan fold-thrust belt, North China International Geology Review, 62: 2344~2365.

    • Zhang Jinjiang, Zheng Yadong. 1997. Polar Mohr constructions of strain analysis in general shear zone. Journal of Structural Geology, 19: 745~748.

    • Zhang Lianchang, Ying Jifeng, Chen Zhiguang, Wu Huaying, Wang Fei, Zhou Xinhua. 2008. Age and tectonic setting of Triassic basic volcanlc rocks in southern Da Hinggan Range. Acta Petrologica Sinica, 24(4): 911~920 (in Chinese with English abstract).

    • Zhang Shuanhong, ZHao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, Wu Hai. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824~842 (in Chinese with English abstract).

    • Zhang Shuanhong, Zhao Yue, Ye Hao, Hou Kejun, Li Chaofeng. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 155: 1~18.

    • Zhao Liang, Li Zian, Li Jingyan, Guo Feng. 2019. Generation of Triassic post-collisional granitoids in the Linxi region (Inner Mongolia, NE China) and crustal growth in the eastern Central Asian Orogenic Belt through melting of relict oceanic crust. Journal of Asian Earth Sciences, 171: 348~362.

    • Zheng Yadong, Wang Tao, Zhang Jinjiang. 2008. Theory and practice of kinematic vorticity (WK). Earth Science Frontiers, 15: 209~220 (in Chinese with English abstract).

    • Zhou Hai, Zhao Guochun, Li Jianhua, Han Yigui, Yao Jinlong, Wang Bo. 2019. Magmatic evidence for Middle-Late Permian tectonic evolution on the Northern margin of the North China Craton. Lithos, 336-337: 125~142.

    • 冯乾乾, 邱楠生, 常健, 刘念. 2018. 房山岩体构造-热演化: 来自(U-Th) /He年龄的约束. 地球科学, 43(6): 1973~1982.

    • 高俊, 朱明田, 王信水, 洪涛, 李光明, 李继磊, 肖文交, 秦克章, 曾庆栋, 申萍, 徐兴旺, 张招崇, 周建波, 赖勇, 张晓晖, 孙景贵, 万博, 王博. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24~71.

    • 胡健民, 刘晓文, 徐刚, 刘健, 张拴宏. 2005. 辽西晚三叠世末—中侏罗世崩塌-滑坡-泥石流沉积及其构造意义. 地质学报, 79: 453~464.

    • 胡玲, 刘俊来, 纪沫. 2009. 变形显微构造识别手册. 北京, 地质出版社.

    • 李世超, 王洪涛, 李刚, 王兴安, 杨小鹏, 赵哲仁. 2020. 中亚造山带中段古亚洲洋北向平板俯冲过程: 来自埃达克岩的证据. 岩石学报, 36(8): 2521~2536.

    • 林伟, 曾纪培, 孟令通, 邱华标, 卫巍, 任志恒, 褚杨, 李双建, 宋超, 王清晨. 2021. 伸展构造与华北克拉通破坏-花岗岩磁组构和变质核杂岩的构造分析. 中国科学-地球科学, 51(9): 1558~1593.

    • 柳长峰, 杨帅师, 武将伟, 张华锋. 2010. 内蒙古中部四子王旗地区晚二叠-早三叠世过铝质花岗岩定年及成因. 地质学报, 84: 1002~1016.

    • 刘永江, 马永非, 冯志强, 李伟民, 李三忠, 关庆彬, 陈昭旭, 周桐, 方启昂. 2022. 中亚造山带东段古生代山弯构造. 地质学报, 96(10): 3468~3493.

    • 邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代-早中生代构造环境的讨论. 岩石学报, 33(10): 3002~3010.

    • 孙敬博, 孙腾飞, 陈文, 喻顺, 尹继元, 李超, 张彦, 刘新宇. 2015. 新疆东天山红云滩地区构造-热演化探讨: 来自Ar-Ar和(U-Th)/He热年代学的约束. 岩石学报, 31(12): 3732~3742.

    • 申亮. 2016. 索伦—林西地区三叠纪砂岩物源分析及构造意义. 吉林大学硕士论文.

    • 唐建洲, 张志诚, 刘博, 张怀惠. 2021. 内蒙古中部苏尼特左旗早三叠世枕状玄武岩地球化学特征及地质意义. 大地构造与成矿学, 45(4): 805~821.

    • 徐备, 陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化. 中国科学, 27(3): 227~232.

    • 王同和. 1988. 呼伦贝尔一巴音和硕裂谷系的演化及形成机制, 中国地质科学院沈阳地质矿产研究所所刊, 第17号, 135~143.

    • 张斌, 陈文, 孙敬博, 喻顺, 尹继元. 2016. 南天山欧西达坂岩体热演化历史与隆升过程分析—来自Ar-Ar和(U-Th)/He热年代学的证据. 中国科学, 46(3): 392~405.

    • 张连昌, 英基丰, 陈志广, 吴华英, 王非, 周新华. 2008. 大兴安岭南段三叠纪基性火山岩时代与构造环境. 岩石学报, 24(4): 911~920.

    • 张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824~842.

    • 郑亚东, 王涛, 张进江. 2008. 运动学涡度的理论与实践. 地学前缘, 15: 209~220.

    • 朱俊宾. 2015. 内蒙古东南部上石炭统-下三叠统的沉积环境和构造背景. 中国地质大学(北京)博士学位论文.

  • 参考文献

    • Chen Bin, Jahn Borming, Wilde S A, Xu Bei. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: Petrogenesis and tectonic implications. Tectonophysics, 328: 157~182.

    • Chen Chen, Zhang Zhicheng, Li Ke, Chen Yan, Tang Wenhao, Li Jianfeng. 2015. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China block. Journal of Asian Earth Sciences, 97: 307~319.

    • Davis G A, Xu Bei, Zheng Yadong, Zhang Weiji. 2004. Indosinian extension in the Solonker suture zone: The Sonid Zuoqi metamorphic core complex, Inner Mongolia. China Earth Science Frontiers, 11: 135~144.

    • Davis G A, Meng Jiafeng, Cao Wenrong, Du Xingqiang. 2009. Triassic and Jurassic tectonics in the eastern Yanshan belt, North China: Insights from the controversial Dengzhangzi Formation and its neighboring units. Earth Science Frontiers, 16(3): 69~86.

    • Doughty P T, Price R A. 1999. Tectonic evolution of the Priest River complex, northern Idaho and Washington: A reappraisal of the Newport fault with new insights on metamorphic core complex formation. Tectonics, 18: 375~393.

    • Eizenhöfer P R, Zhao Guochun, Zhang Jian, Sun Min. 2014. Final closure of the Paleo-Asian Ocean along the Solonker suture zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, 33: 441~463.

    • Foster D A, Fanning C M. 1997. Geochonology of the northern Idaho batholith and the Bitterroot metamorphic core complex: Magmatism preceding and contmporaneoux with extension. Bulletin of the Geological Society of America, 109: 379~394.

    • Gao Jun, Zhu Mingtian, Wang Xinshui, Hong Tao, Li Guangming, Li Jilei, Xiao Wenjiao, Qin Kezhang, Zeng Qingdong, Shen Ping, Xu Xingwang, Zhang Zhaochong, Zhou Jianbo, Lai Yong, Zhang Xiaohui, Sun Jinggui, Wan Bo, Wang Bo. 2019. Large- scale porphyry-type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism. Acta Geologica Sinica, 93(1): 24~71.

    • Graham S A, Hendrix M S, Johnson C L. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southern Mongolia. Bulletin of the Geological Society of America, 113(12): 1560~1579.

    • Grove M, Harrison T M. 1996. 40Ar diffusion in Fe-rich biotite. American Mineralogist, 81(7-8) : 940~951.

    • Harrison T M, Duncan I, McDougall I. 1985. Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49(11): 2461~2468.

    • Hu Jianmin, Liu Xiaowen, Xu Gang, Liu Jian, Zhang Shuanhong. 2005. The slidding-slump-mudflow sedimentation during the Late-Triassic to Middle Jurassic in Western Liaoning Province, China. Acta Geologica Sinca, 79: 453~464 (in Chinese with English abstract).

    • Hu Jianmin, Zhao Yue, Liu Xiaowen, Xu Gang. 2010. Early Mesozoic deformations of the eastern Yanshan thrust belt, northern China. International Journal of Earth Sciences (geol Rundsch), 99: 785~800.

    • Jahn B M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In: Fitton J G, Mahoney J J, Wallace P J, Saunders A D, eds. Origin and Evolution of the Ontong Java Plateau. Geological Society, London, Special Publications, 226: 73~100.

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91: 181~193.

    • Ji Zejia, Zhang Zhicheng, Chen Yan, Li Ke, Yang Jinfu, Qian Xiaoyan. 2018. Geochemistry, geochronology, and Sr-Nd isotopic compositions of Permian volcanic rocks in the northern margin of the North China block: Implications for the tectonic setting of the southeastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 107: 2143~2161.

    • Jian Ping, Liu Dunyi, Kröner A, Windley B F, Shi Yueruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118: 169~190.

    • Österle J E, Little T A, Seward D, Stockli D F, Gamble J. 2020. The petrology, geochronology and tectono-magmatic setting of igneous rocks in the Suckling-Dayman metamorphic core complex, Papua New Guinea. Gondwana Research, 83: 390~414.

    • Li Shan, Chung S L, Wilde S A, Wang Tao, Xiao Wenjiao, Guo Qianqian. 2016. Linking magmatism with collision in an accretionary orogen. Scientific Reports, 6: 25751.

    • Li Shan, Chung S L, Wilde S A, Jahn B M, Xiao Wenjiao, Wang Tao, Guo Qianqian. 2017. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens. Journal of Geophysical Research: Solid Earth, 122: 2291~2309.

    • Li Shichao, Wang Hongtao, Wang Xing'an, Yang Xiaopeng, Zhao Zheren. 2020. Northward plate subduction process of the Paleo-Asian Ocean in the middle part of the Central Asian Orogenic Belt: Evidence from adakites. Acta Petrologica Sinica, 36(8): 2521~2536 (in Chinese with English abstract).

    • Lin Wei, Zeng Jipei, Meng Lingdong, Qiu Huabiao, Wei Wei, Ren Zhiheng, Chu Yang, Li Shuangjian, Song Chao, Wang Qingchen. 2021. Extensional tectonics and North China Craton destruction: Insights from the magnetic susceptibility anisotropy (AMS) of granite and metamorphic core complex. Science China Earth Sciences, 64(9): 1557~1589.

    • Liu Changfeng, Yang Shuaishi, Wu Jiangwei, Zhang Huafeng. 2010. Dating and petrogenesis of Late Permian-Early Triassic peraluminous granites in the Siziwangqi area, Inner Mongolia. Acta Geologica Sinica, 84: 1002~1016 (in Chinese with English abstract).

    • Liu Min, Lai Shaocong, Zhang Da, Zhu Renzhi, Qin Jiangfeng, Xiong Guangqiang. 2019. Middle Permian high Sr/Y monzogranites in central Inner Mongolia: Reworking of the juvenile lower crust of Bainaimiao arc belt during slab break-off of the Palaeo-Asian oceanic lithosphere. International Geology Review, 61(17): 1~17.

    • Lister G S, Baldwin S L. 1993. Plutonism and the origin of the metamorphic core complex. Geology, 21: 607~6101.

    • Liu Qian, Zhao Guochun, Han Yigui, Eizenhöfer P R, Zhu Yanlin, Hou Wenzhu, Zhang Xiaoran. 2017. Timing of the final closure of the Paleo-Asian Ocean in the Alxa terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos: 19~30.

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Gunther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34~43.

    • Liu Yongjiang, Ma Yongfei, Feng Zhiqiang, Li Weimin, Li Sanzhong, Guan Qingbin, Chen Zhaoxu, Zhou Tong, Fang Qi'ang. 2022. Paleozoic Orocline in the eastern Central Asian Orogenic Belt. Acta Geologica Sinica, 96(10): 3468~3493 (in Chinese with English abstract).

    • Ludwig K R. 2003. ISOPLOT 3. 0: A Gochronological Toolkit for Microsoft Excel. California: Berkeley Geochronology Center.

    • McDougall I, Harrison T M. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. 2nd Edition. New York: Oxford University Press.

    • Meng Qingren, Hu Jianmin, Jin Jiuqiang, Zhang Yan, Xu Dafeng. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region. Basin Research, 15: 397~415.

    • Reiners P W. 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and Geochemistry, 58(1): 151~179.

    • Reiners P W, Farley K A, Hickes H J. 2002. He diffusion and (U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1-4): 297~308.

    • Reiners P W, Spell T L, Nicolescu S, Zanetti K A. 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochimica et Cosmochimica Acta, 68(8): 1857~1887.

    • Schulmann K, Paterson S. 2011. Asian continental growth. Nature Geoscience, 4: 827~829.

    • Scott R J, Foster D A, Lister G S. 1998. Tectonic implications of rapid cooling of low plate rocks from the Buckskin-Rawhide metamorphic core complex, west-central Arizona. Bulletin of the Geological Society of America, 110: 688~614.

    • Şengör A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299~307.

    • Shao Ji, an, Wang You, Tang Kedong D. 2017. A reflection on the Xarmoron tectonomagmatic belt, Inner Mongolia, China. Acta Petrologica Sinica, 33(10): 3002~3010 (in Chinese with English abstract).

    • Simpson C, Schmid S M. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Bulletin of the Geological Society of America, 94: 1281~1288.

    • Shen Liang. 2016. Provenance analysis and structural significance of Triassic sandstone in Solun-Linxi area. Master degree thesis of Jilin University (in Chinese).

    • Stipp M, Stunitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700℃. Journal of Structural Geology, 24: 1861~1884.

    • Tang Jianzhou, Zhang Zhicheng, Liu Bo, Zhang Huaihui. 2021. Geochemistry of Early Triassic pillow basalts from Sonid Zuoqi, Central Inner Mongolia and their geological significance. Geotectonica et Metallogenia, 45(4): 805~821(in Chinese with English abstract).

    • Wang Tao, Zheng Yadong, Gehrels G E, Mu Zhiguo. 2001. Geochronological evidence for existence of the south Mongolian microcontinent: A zircon U-Pb age of granitoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex on the SinoMongolian border. Chinese Science Bulletin, 46: 2005~2008.

    • Wang Tao, Zheng Yadong, Li Tianbin, Gao Yongjun. 2004. Mesozoic granitic magmatism in extensional tectonics near the Mongolian border in China and its implications for crustal growth. Journal of Asian Earth Sciences, 23: 715~729.

    • Wang Tao, Zheng Yadong, Zhang Jinjiang, Zeng Lingshen, Tatiana D, Guo Lei, Li Jianbo. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, 30(6): 1~31.

    • Wang Tao, Guo Lei, Zheng Yadong, Tatiana D, Dmitry G, Zeng Lingshen, Li Jianbo, Wang Yanbin. 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315~345.

    • Wang Tao, Tong Ying, Xiao Wenjiao, Guo Lei, Windley B F, Donskaya T, Li Shan, Tserendash T, Zhang Jianjun. 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: Magmatic migration based on a large archive of age data. National Science Review, 8: 1~12.

    • Wawrzenitz N, Krohe A. 1998. Exhumation and doming of the Thaso metamorphic core complex (Rhodope, Greece): Structural and geochronological constraints. Tectonophysics, 285: 301~332.

    • Webb L E, Johnson C L, Minjin C. 2010. Late Triassic sinistral shear in the East Gobi fault zone, Mongolia. Tectonophysics, 495: 246~255.

    • Wilde S A. 2015. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific Plate subduction: A review of the evidence. Tectonophysics, 662: 345~362.

    • Windley B F, Alexeiev D, Xiao Wenjiao, Kröner A, Badarch G. 2007. Tectonic models for accretion of the central Asian orogenic belt. Journal of Geological Society, 164: 31~47.

    • Wu Didi, Li Shan, Chew D, Liu Tieyi, Guo Donghai. 2021. Permian-Triassic magmatic evolution of granitoids from the southeastern Central Asian Orogenic Belt: Implications for accretion leading to collision. Science China Earth Sciences, 64(5): 788~806.

    • Xiao Wenjiao, Windley B F, Hao Jie, Zhai Mingguo. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: 8~20.

    • Xiao Wenjiao, Windley B F , Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annual Review Earth Planet Science, 43: 477~507.

    • Xiao Wenjiao, Windley B F, Han Chunming, Liu Wei, Wan Bo, Zhang Ji'en, Ao Songjian, Zhang Zhiyong, Song Dongfang. 2018. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia. Earth Science Review, 186: 94~128.

    • Xu Bei, Chen Bin. 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia. Science in China (Series D), 40 (5): 463~469.

    • Xu Bei, Charvet J, Chen Yan, Zhao Pan, Shi Guanzhong. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342~1364.

    • Yuan Lingling, Zhang Xiaohui. 2018. Petrogenesis of the Middle Triassic Erenhot granitoid batholith in central Inner Mongolia (northern China) with tectonic implication for the Triassic Mo mineralization in the eastern Central Asian Orogenic Belt. Journal of Asian Earth Science, 165: 37~58.

    • Zhang Andong, Liu Shaofeng, Lin Chengfa, Zhang Bo. 2020. Timing of deposition in the Dengzhangzi and Guojiadian basins of the Yanshan fold-thrust belt, North China International Geology Review, 62: 2344~2365.

    • Zhang Jinjiang, Zheng Yadong. 1997. Polar Mohr constructions of strain analysis in general shear zone. Journal of Structural Geology, 19: 745~748.

    • Zhang Lianchang, Ying Jifeng, Chen Zhiguang, Wu Huaying, Wang Fei, Zhou Xinhua. 2008. Age and tectonic setting of Triassic basic volcanlc rocks in southern Da Hinggan Range. Acta Petrologica Sinica, 24(4): 911~920 (in Chinese with English abstract).

    • Zhang Shuanhong, ZHao Yue, Liu Jianmin, Hu Jianmin, Song Biao, Liu Jian, Wu Hai. 2010. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review. Acta Petrologica et Mineralogica, 29(6): 824~842 (in Chinese with English abstract).

    • Zhang Shuanhong, Zhao Yue, Ye Hao, Hou Kejun, Li Chaofeng. 2012. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction. Lithos, 155: 1~18.

    • Zhao Liang, Li Zian, Li Jingyan, Guo Feng. 2019. Generation of Triassic post-collisional granitoids in the Linxi region (Inner Mongolia, NE China) and crustal growth in the eastern Central Asian Orogenic Belt through melting of relict oceanic crust. Journal of Asian Earth Sciences, 171: 348~362.

    • Zheng Yadong, Wang Tao, Zhang Jinjiang. 2008. Theory and practice of kinematic vorticity (WK). Earth Science Frontiers, 15: 209~220 (in Chinese with English abstract).

    • Zhou Hai, Zhao Guochun, Li Jianhua, Han Yigui, Yao Jinlong, Wang Bo. 2019. Magmatic evidence for Middle-Late Permian tectonic evolution on the Northern margin of the North China Craton. Lithos, 336-337: 125~142.

    • 冯乾乾, 邱楠生, 常健, 刘念. 2018. 房山岩体构造-热演化: 来自(U-Th) /He年龄的约束. 地球科学, 43(6): 1973~1982.

    • 高俊, 朱明田, 王信水, 洪涛, 李光明, 李继磊, 肖文交, 秦克章, 曾庆栋, 申萍, 徐兴旺, 张招崇, 周建波, 赖勇, 张晓晖, 孙景贵, 万博, 王博. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制. 地质学报, 93(1): 24~71.

    • 胡健民, 刘晓文, 徐刚, 刘健, 张拴宏. 2005. 辽西晚三叠世末—中侏罗世崩塌-滑坡-泥石流沉积及其构造意义. 地质学报, 79: 453~464.

    • 胡玲, 刘俊来, 纪沫. 2009. 变形显微构造识别手册. 北京, 地质出版社.

    • 李世超, 王洪涛, 李刚, 王兴安, 杨小鹏, 赵哲仁. 2020. 中亚造山带中段古亚洲洋北向平板俯冲过程: 来自埃达克岩的证据. 岩石学报, 36(8): 2521~2536.

    • 林伟, 曾纪培, 孟令通, 邱华标, 卫巍, 任志恒, 褚杨, 李双建, 宋超, 王清晨. 2021. 伸展构造与华北克拉通破坏-花岗岩磁组构和变质核杂岩的构造分析. 中国科学-地球科学, 51(9): 1558~1593.

    • 柳长峰, 杨帅师, 武将伟, 张华锋. 2010. 内蒙古中部四子王旗地区晚二叠-早三叠世过铝质花岗岩定年及成因. 地质学报, 84: 1002~1016.

    • 刘永江, 马永非, 冯志强, 李伟民, 李三忠, 关庆彬, 陈昭旭, 周桐, 方启昂. 2022. 中亚造山带东段古生代山弯构造. 地质学报, 96(10): 3468~3493.

    • 邵济安, 王友, 唐克东. 2017. 有关内蒙古西拉木伦带古生代-早中生代构造环境的讨论. 岩石学报, 33(10): 3002~3010.

    • 孙敬博, 孙腾飞, 陈文, 喻顺, 尹继元, 李超, 张彦, 刘新宇. 2015. 新疆东天山红云滩地区构造-热演化探讨: 来自Ar-Ar和(U-Th)/He热年代学的约束. 岩石学报, 31(12): 3732~3742.

    • 申亮. 2016. 索伦—林西地区三叠纪砂岩物源分析及构造意义. 吉林大学硕士论文.

    • 唐建洲, 张志诚, 刘博, 张怀惠. 2021. 内蒙古中部苏尼特左旗早三叠世枕状玄武岩地球化学特征及地质意义. 大地构造与成矿学, 45(4): 805~821.

    • 徐备, 陈斌. 1997. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化. 中国科学, 27(3): 227~232.

    • 王同和. 1988. 呼伦贝尔一巴音和硕裂谷系的演化及形成机制, 中国地质科学院沈阳地质矿产研究所所刊, 第17号, 135~143.

    • 张斌, 陈文, 孙敬博, 喻顺, 尹继元. 2016. 南天山欧西达坂岩体热演化历史与隆升过程分析—来自Ar-Ar和(U-Th)/He热年代学的证据. 中国科学, 46(3): 392~405.

    • 张连昌, 英基丰, 陈志广, 吴华英, 王非, 周新华. 2008. 大兴安岭南段三叠纪基性火山岩时代与构造环境. 岩石学报, 24(4): 911~920.

    • 张拴宏, 赵越, 刘建民, 胡健民, 宋彪, 刘健, 吴海. 2010. 华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景. 岩石矿物学杂志, 29(6): 824~842.

    • 郑亚东, 王涛, 张进江. 2008. 运动学涡度的理论与实践. 地学前缘, 15: 209~220.

    • 朱俊宾. 2015. 内蒙古东南部上石炭统-下三叠统的沉积环境和构造背景. 中国地质大学(北京)博士学位论文.