en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴昊,男,1994年生。硕士研究生,矿物学、岩石学、矿床学专业。E-mail:944842206@qq.com。

通讯作者:

祝向平,男,1979年生。博士,高级工程师,主要从事矿物学、岩石学、矿床学研究工作。E-mail:zhuxiangping3@hotmail.com。

参考文献
Abraitis P K, Pattrick R A D, Vaughan D J. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74(1-4): 41~59.
参考文献
Cai Meifang, Dang Zhi. 2006. A review on pyrrhotite oxidation mechanism and acid mine drainage prevention. Environmental Pollution & Control, (1): 58~61 (in Chinese with English abstract).
参考文献
Cao Ye, Li Shengrong, Zhang Huafeng, Ao Chong, Li Zhenzhen, Liu Xiaobin. 2010. Characteristics of cell parameters of pyrite and quartz and their geological significance at Shihu gold deposit in Western Hebei, north China. Bulletin of Mineralogy, Petrology and Geochemistry, 29(2): 185~191 (in Chinese with English abstract).
参考文献
Carl O Moses, D Kirk Nordstrom, Janet S Herman, Aaron L Mills. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6): 1561~1571.
参考文献
Charuseiam Y, Chotpantarat S, Sutthirat C. 2022. Acid mine drainage potential of waste rocks in a gold mine (Thailand): application of a weathering cell test and multivariate statistical analysis. Environmental Geochemistry and Health, 44(3): 1049~1079.
参考文献
Chen Binghui, Wan Moli, Wang Zhimei, Luo Zhihui, Li Wen, Shi Guiyong. 2010. A study of the bio-oxidation of pyrite by Acidithiobacillus ferrooxidans from the acid mine drainage in the Dabaoshan polymetallic ore deposit, northern Guangdong. Acta Petrologica Et Mineralogica, 29(5): 562~568 (in Chinese with English abstract).
参考文献
Chen Fuchuan, Deng Jun, Wang Qingfei, Jan Marten Huizenga, Li gongjian, Gu Youwei. 2020. LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes. Ore Geology Reviews, 117: 103309.
参考文献
Chen Guangyuan, Sun Daisheng, Chang Li, Zang Weisheng, Wang Jian, Lu Anhuai. 1987. Morphogenesis of pyrite. Geoscience, (1): 60~76 (in Chinese with English abstract).
参考文献
Chen Xilian, Huang Wenting, Zou Yinqiao, Liang Huaying, Zhang Jian, Zhang Yuquan. 2016. Zircon U-Pb geochronology and geochemistry of ore-bearing porphyries in the southern Yulong porphyry copper belt, and factors resulting in the differences in scale of mineralization between the southern and northern Yulong porphyry copper belt. Acta Petrologica Sinica, 32(8): 2522~2534 (in Chinese with English abstract).
参考文献
Deng Chengxun, Yue Mei, Wang Lingling, Wu Fenghua. 2013. Experimental study on the effects of Thiobacillus ferrooxidans on the supergenesis of pyrite under weathering conditions. Journal of Safety and Environment, 13(3): 83~89 (in Chinese with English abstract).
参考文献
Deng Jun, Wang Qingfei, Li Gongjian, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268~299.
参考文献
Eggleston C M, Ehrhardt J J, Stumm W. 1996. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study. American Mineralogist, 81(9-10): 1036~1056.
参考文献
Eggleston C M, Hochella M F. 1992. Scanning tunneling microscopy of pyrite {100}: Surface structure and step reconstruction. American Mineralogist, 77(1-2): 221~224.
参考文献
Fan Hongrui, Li Xinghui, Zuo Yabin, Chen Lei, Liu Shang, Hu Fangfang, Feng Kai. 2018. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrologica Sinica, 34(12): 3479~3496 (in Chinese with English abstract).
参考文献
Feng Jiling, Tian Hua, Huang Yaling, Ding Zhiying, Yin Zhoulan. 2019. Directional oxidation of pyrite in acid solution. Minerals, 9(1): 7.
参考文献
Fu Fangfang, Zan Minjie, Zhao Yuzhe, Zhang Shuangyan, Guo Peng. 2019. Determination of LA-ICP-MS in situ micro-elements in the Xiaoyingpan gold deposit pyrite and its significance for the genesis of the deposit. China Resources Comprehensive Utilization, 37(12): 48~50 (in Chinese with English abstract).
参考文献
Fu Xiaoming, Zhang Dexian, Dai Tagen, Gao Jianfeng. 2018. Trace element record of pyrite from diverse deposits——Examples from the Dabaoshan polymetallic deposit of northern Guangdong, South China. Geotectonica et Metallogenia, 42(3): 505~519 (in Chinese with English abstract).
参考文献
Gao Jianfeng, Zhou Meifu, Lightfoot Peter C, Christina Yan Wang, Qi Liang, Sun Min. 2013. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology, 108(8): 1833~1848.
参考文献
Gao Jianwei, Shen Junfeng, Li Guowu, Wang Laiming, Sun Ningyue, Liu Handong, Chi Lei, Zhang Huafeng, Du Baisong. 2020. Characteristics of cell parameters and thermoelectricity of the pyrite in the Sanshandao north offshore gold deposit, Shandong Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1205~1214 (in Chinese with English abstract).
参考文献
Gong Xin, Wei Xiaoyong, Zhao Yuanyi, Liu Chunhua, Shui Xinfang, Du Lin, Song Xiaojun, Gun Minshan, Tan Wei. 2021. LA-ICP-MS analysis of pyrite from Hulalin gold deposit in the upper Heilongjiang basin and its implication on genesis of the deposit. Geotectonica et Metallogenia, 45(4): 745~760 (in Chinese with English abstract).
参考文献
Grande J A, Luís A T, Santisteban M, Dávila J M, Sarmiento A, Fortes J C, Silva E Ferreira da, Córdoba F. 2022. A common paragenesis and two AMD pollution sources in the Iberian pyrite belt (SW Spain): Proposal of a natural attenuation model in the affected fluvial network. Journal of Iberian Geology, 48(2): 191~204.
参考文献
Gu Xin, Heaney P J, Reis F D A A, Brantley Susan L. 2020. Deep abiotic weathering of pyrite. Science, 370(6515): eabb8092.
参考文献
He Hongping, Xian Haiyang, Zhu Jianxi, Tan Wei, Liang Xiaoliang, Chen Meng. 2019. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite. Acta Petrologica Sinica, 35(1): 129~136 (in Chinese with English abstract).
参考文献
Hou Ruidong, Zhang Shuangjie, Sun Cuifang, Shao Mingjie, Wu Mengwei. 2018. Effect of Cr on high temperature oxidation behavior of steel. Journal of Plasticity Engineering, 25(2): 276~283 (in Chinese with English abstract).
参考文献
Huang Xiaowen, Zhou Meifu, Qi Liang, Gao Jianfeng, Wang Yuwang. 2013. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China. Mineralium Deposita, 48(8): 925~946.
参考文献
Ighalo Joshua O, Kurniawan Setyo Budi, Iwuozor Kingsley O, Aniagor Chukwunonso O, Ajala Oluwaseun J, Oba Stephen N, Iwuchukwu Felicitas U, Ahmadi Shabnam, Igwegbe Chinenye Adaobi. 2022. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Safety and Environmental Protection, 157: 37~58.
参考文献
Jia Dacheng, Tang Shuo, Pei Yao, Gao Wen, Song Yunhong, Guo Wei, Zhang Chuanle. 2012. Prospecting significance and geochemical characteristics of the pyrites in Jincang mineralized belt, Yanbian, Jilin Province. Journal of Jilin University(Earth Science Edition), 42(4): 1069~1075 (in Chinese with English abstract).
参考文献
Jiang Lei, Zhou Huaiyang, Peng Xiaotong. 2007. Phases in pyrite bio-oxidation process. Metal Mine, (10): 59~63 (in Chinese with English abstract).
参考文献
Jiang Wenrui, Tu Zhihong, Zhou Shu, Wu Qi, Dang Zhi, He Huijun, Liu Chongmin, Liu Jie. 2021. A brief overview on the mechanism and kinetic influencing factors of the pyrite surface oxidation. Metal Mine, (3): 88~102 (in Chinese with English abstract).
参考文献
Lehner S, Savage K, Ciobanu M, Cliffel D E. 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta, 71(10): 2491~2509.
参考文献
Leng Chengbiao. 2017. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LAICPMS trace elements of pyrite and pyrrhotite. Earth Science Frontiers, 24(6): 162~175 (in Chinese with English abstract).
参考文献
Li Chunhua. 2021. Study on the mechanism of the effect of light on the chemical oxidation of pyrite. Master's dissertation of Guilin University of Technology (in Chinese with English abstract).
参考文献
Li Guangming, Zhang Xianan, Qin Kezhang, Sun Xingguo, Zhao Junxing, Yin Xianbo, Li Jinxiang, Yuan Huashan. 2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terrane, Central Tibet: Integrated evidence from geology, hydrothermal alteration and sulfide assemblages. Acta Petrologica Sinica, 31(8): 2307~2324 (in Chinese with English abstract).
参考文献
Li Yanpan, Li Zhaorui, Yan Shunyi, Ma Weishi, Kang Xiaoyue, Huang Xin, Chen Ruihong, Zhang Qian. 2021. Inhibition effect of corn stover biochar on pyrite oxidation. Guangdong Chemical Industry, 48(10): 21~24+44 (in Chinese with English abstract).
参考文献
Ling Sixiang, Wu Xiyong, Ren Yong, Sun Chunwei, Liao Xin, Li Xiaoning, Zhu Baolong. 2015. Geochemistry of trace and rare earth elements during weathering of black shale profiles in northeast Chongqing, southwestern China: Their mobilization, redistribution, and fractionation. Geochemistry, 75(3): 403~417.
参考文献
Ling Sixiang, Wu Xiyong, Zhao Siyuan, Liao Xin, Ren Yong, Zhu Baolong. 2014. Geochemical mass balance and elemental transport during the weathering of the black shale of Shuijingtuo formation in northeast Chongqing, China. The Scientific World Journal, 2014.
参考文献
Liu Tong, Hu Yutian, Chen Nan, Xue Lingjing, Feng Chuanping, Ye Yubo. 2021. Electrochemical investigation of the oxidation of pyrite in neutral solutions. Electrochimica Acta, 393: 139078.
参考文献
Liu Yihao, Xue Chunji, Zhao Yun, Zhao Xiaobo, Chu Haixia, Liu Chengxian, Yu Liang, Wang Lu, Wu Dehai. 2020. Research on auriferous pyrite in hydrothermal gold deposits, China. Geoscience, 34(1): 1~12 (in Chinese with English abstract).
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.
参考文献
Lu Long, Xue Jiyue, Chen Fanrong, Zhao Lianzhong. 2005a. Dissolution of pyrite: An important study subject. Acta Petrologica et Mineralogica, (6): 666~670 (in Chinese with English abstract).
参考文献
Lu Long, Wang Rucheng, Xue Jiyue, Chen Fanrong, Chen Jun. 2005b. Experimental study of the oxidation rate of pyrite. Science in China, Ser. D, (5): 434~440 (in Chinese with English abstract).
参考文献
Ma Xiangxian, Zheng Guodong, Liang Shouyun, Wei Lijuan, Liang Mingliang. 2011. Weathering of pyrite and its engineering geological significance. Acta Petrologica et Mineralogica, 30(6): 1132~1138 (in Chinese with English abstract).
参考文献
Montes-Atenas G. 2022. Fundamentals and practical aspects of acid mine drainage treatment: An overview from mine closure perspective. Wastewater Treatment.
参考文献
Moreno-González Raúl, Macías Francisco, Olías Manuel, Cánovas Carlos Ruiz. 2022. Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian pyrite belt, Spain). Environmental Pollution, 295: 118697.
参考文献
Moses C O, Nordstrom D K, Herman J S, Mills A L. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6): 1561~1571.
参考文献
Mou Li, He Tengbing, Huang Huiqian, Li Xiangying. 2017. Progress in research on the acid mine drainage treatment. Tianjin Agricultural Sciences, 23(2): 42~45 (in Chinese with English abstract).
参考文献
Pan Guitang, Li Xingzhen, Wang Liquan, Ding Jun, Chen Zhiliang. 2002. Preliminary division of tectonic units of the Qinghai-Tibet plateau and its adjacent regions. Regional Geology of China, (11): 701~707 (in Chinese with English abstract).
参考文献
Kevin M. Rosso, Udo Becker, Michael F. Hochella. 1999. Atomically resolved electronic structure of pyrite {100} surfaces: An experimental and theoretical investigation with implications for reactivity. American Mineralogist, 84(10): 1535~1548.
参考文献
Kaye S. Savage, Daniela Stefan, Stephen W. Lehner. 2008. Impurities and heterogeneity in pyrite: influences on electrical properties and oxidation products. Applied Geochemistry, 23(2): 103~120.
参考文献
Skousen Jeffrey G, Ziemkiewicz Paul F, McDonald Louis M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1): 241~249.
参考文献
Smith D J, Naden J, Jenkin G R T, Keith M. 2017. Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems. Ore Geology Reviews, 89: 772~779.
参考文献
Somorjai Gabor A. 1990. Modern concepts in surface science and heterogeneous catalysis. Journal of Physical Chemistry, 94(3): 1013~1023.
参考文献
Song Biao, Zeng Zhuotong, Almatrafi Eydhah, Shen Maocai, Xiong Weiping, Zhou Chengyun, Wang Wenjun, Zeng Guangming, Gong Jilai. 2022. Pyrite-mediated advanced oxidation processes: applications, mechanisms, and enhancing strategies. Water Research, 118048.
参考文献
Stephen L, Kaye S, Madalina C, David E C. 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta, 71(10): 2491~2509.
参考文献
Su Tao, Spicer Robert A, Li Shihu, Xu He, Huang Jian, Sherlock S, Huang Yongjiang, Li Shufeng, Wang Li, Jia Linbo, Deng Weiyudong, Liu Jia, Deng Chenglong, Zhang Shitao, Valdes Paul J, Zhou Zhekun. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. National Science Review, 6(3): 495~504.
参考文献
Tang Renli. 1995. Geology of the Yulong Porphyry Copper (Molybdenum) Belt in Tibet. Beijing: Geological Publishing House (in Chinese).
参考文献
Tao Shilong, Lai Jianqing, Zhang Jiandong, Hu Lifang, Qian Lihua. 2017. Typomorphic features of pyrites from the Longtoushan gold deposit, Guangxi Province and the geological significance. Contributions to Geology and Mineral Resources Research, 32(1): 33~41 (in Chinese with English abstract).
参考文献
Tomiyama Shingo, Igarashi T. 2022. The potential threat of mine drainage to groundwater resources. Current Opinion in Environmental Science & Health: 100347.
参考文献
Tong Le, Fan Ronggui, Yang Shuangchun, Li Cunlei. 2021. Development and status of the treatment technology for acid mine drainage. Mining, Metallurgy & Exploration, 38(1): 315~327.
参考文献
Tu Zhihong. 2017. Studies of sulfur transformation in oxidation of pyrite and surface electrochemistry of pyrite oxidation. Doctoral dissertation of South China University of Technology (in Chinese with English abstract).
参考文献
Tu Zhihong, Wan Jingjing, Guo Chuling, Fan Cong, Zhang Ting, Lu Guining, Reinfelder John R, Dang Zhi. 2017. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochimica Acta, 239: 25~35.
参考文献
Tu Zhihong, Wu Qi, He Hongping, Zhou Shu, Liu Jie, He Huijun, Liu Chongming, Dang Zhi, Reinfelder John R. 2022. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Science of the Total Environment: 155116.
参考文献
Wang Liang, Tang Li, Zhang Shouting, Santosh M, Song Kairui, Sheng Yuanming, Feng Jiaying. 2021. Genesis of a Ag-Pb-Zn-F system: Insights from in situ sulfur isotope and trace elements of pyrite, and rare earth elements of fluorite in the Baiyine'lebu deposit, Inner Mongolia, China. Ore Geology Reviews, 104667.
参考文献
Wang Nan. 2012a. Electrochemical study of the pyrite oxidation in acidic solutions. Master's dissertation of South China University of Technology (in Chinese with English abstract).
参考文献
Wang Nan, Yi Xiaoyun, Dang Zhi, Liu Yun. 2021b. Investigation on mechanism of pyrite oxidation in acidic solutions. Environmental Science, 33(11): 3916~3921 (in Chinese with English abstract).
参考文献
Wang Yufei, Wang Zhilin, Lu Anhuai, Wu Lin, Xu Deru, Wu Tao, Long Yongzhen, Huang Zhilong, Fan Hongpeng. 2021. Discovery of cobalt-rich pyrite in the Yangjiadong ore block of the Maochang bauxite deposit, Guizhou Province and its significance. Acta Mineralogica Sinica, 41(Z1): 460~474 (in Chinese with English abstract).
参考文献
Wei Mingxiu. 1986. Cell parameter equation of pyrite and its genetic implications. Acta Mineralogica Sinica, (3): 245~251 (in Chinese with English abstract).
参考文献
Wei Youyi, Luo Jian. 1998. Thermodynamics analysis of oxidized coures of pyrite under natural abundant water. Journal of Mineralogy and Petrology, (S1): 119~123 (in Chinese with English abstract).
参考文献
Wu Daqing, Peng Jinlian, Chen Guoxi. 1996. Experimental study on adsorption of metal ions onto sulfides (I): Types. geochimica, (2): 181~182+193+184~189 (in Chinese with English abstract).
参考文献
Xia Yulin. 2019. Effects of isomorphic replacement on the surface reactivity of sphalerite and pyrite. Master's Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).
参考文献
Xiao Shenglan. 1979. Discussion of the order of activity of metals. Journal of Liaoning Normal University(Natural Science Edition), (3): 71~74+40 (in Chinese with English abstract).
参考文献
Xie Qiaoqin, Sun Shaohua, Ma Ziyi, Xu Liang, Wang Jiayu, Zhou Yuefei, Chen Tianhu, Xu Xiaochun. 2021. Mineralogy and genesis of colloform pyrite in Baocun Au(Cu) deposit, Tongling region, and its implication for Mesozoic polymetallic mineralization. Acta Geologica Sinica, 95(5): 1481~1494 (in Chinese with English abstract).
参考文献
Xu Wanwen, Zhang Wentao. 2004. Analysis of acid mine drainage pollution in Dexing copper mine. Jiangxi Chemical Industry, (1): 87~90 (in Chinese with English abstract).
参考文献
Yang Fucheng, Li Wenchang, Zhu Xiangping, Jiang Xiaojun, Liu Jun, Liao Zhongli, Liu Hongfei, Yang Houbin, Li Yong. 2020. Geological characteristics and prospecting of the Bada Cu-Au deposit in Mangkang county, East Tibet. Earth Science Frontiers, 27(4): 232~243 (in Chinese with English abstract).
参考文献
Yang Hongying, Gong Enpu, Zhao Yushan, Chen Gang. 2004. Study on dynamic bio-oxidation of interface between leaching bacterium solution and natural pyrite. Journal of Northeastern University, (9): 895~898 (in Chinese with English abstract).
参考文献
Yao Xizhu, Yang Tao, Zhu Zhiyong, Dang Ben, Feng Zhijie, Wu Changzhi. 2019. Characteristics of LA-ICP-MS trace elements in pyrite: Implications for the genesis of Xitieshan deposit in Qinghai province. Geological Journal of China Universities, 25(6): 888~900 (in Chinese with English abstract).
参考文献
Yu Jinxi, Liu Wenli, Yao Jiayin, Zhang Yanjun. 2013. Influence of crystal defects on pyrite surface oxidation and flotation behavior. China Mining Magazine, 22(5): 88~91+111 (in Chinese with English abstract).
参考文献
Yuan Jiaqiao, Bai Shaojun, Bi Yunxiao, Li Jie, Ding Zhan, Wen Shuming. 2022. Research progress of acid mine drainage treatment and resource comprehensive utilization at home and abroad. Nonferrous Metals Engineering, 12(4): 131~139.
参考文献
Zhang Haiming. 2021. Investigation of phase precipitation sequence calculation and formation mechanism at interface in oxidation resistant coating on titanium surface. Master's Dissertation of Shenyang University of Technology (in Chinese with English abstract).
参考文献
Zhang He. 2019. Content and significance of the study of the main trace elements and cell parameters of pyrite. China Metal Bulletin, (7): 288~289 (in Chinese with English abstract).
参考文献
Zhang Wenlin, Wen Huaizhong, Lin Xin, Cao Huawen. 2021. The in-situ trace elements of gold-bearing pyrites from Suoluogou gold deposit, Muli, Sichuan. Sedimentary Geology and Tethyan Geology, 43(1): 77~86 (in Chinese with English abstract).
参考文献
Zhao Kai, Yang Liqiang, Li Po, Xiong Yiqu. 2013. Morphology and chemistry composition of pyrite in the Laowangzhai gold deposit, Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 29(11): 3937~3948 (in Chinese with English abstract).
参考文献
Zhong Shuiping, Wu Zhi, Huang Zhongsheng, Ruan Renman. 2013. Oxidation kinetics reaction of gold-bearing pyrite in sulphuric acid. Chinese Journal of Rare Metals, 37(2): 295~301 (in Chinese with English abstract).
参考文献
Zhou Guiying, Ruan Renman, Wen Jiankang, Wu Biao. 2008. Bio-oxidation of pyrite during copper bioleaching in Zijinshan. Journal of University of Science and Technology Beijing, 165(1): 11~15 (in Chinese with English abstract).
参考文献
Zhu Aiping, Tian Huwei. 2020. Discussion on acid mine waste water treatment process in metal mine. Modern Mining, 36(1): 204~206 (in Chinese with English abstract).
参考文献
Zhu Huaxiong, He Yu. 2019. Feasibility study on source treatment of pyrite acidic wastewater in Niujiaowan of Xikou area, Longyou County, Zhejiang Province. Proceedings of The 2019 Annual Academic Conference of Zhejiang Geological Society, 151~156 (in Chinese with English abstract).
参考文献
Zhu Jianxi, Xian Haiyang, Lin Xiaoju, Tang Hongmei, Du Runxiang, Yang Yiping, Zhu Runliang, Liang Xiaoliang, Wei Jingming, Teng H Henry, He Hongping. 2018. Surface structure-dependent pyrite oxidation in relatively dry and moist air: implications for the reaction mechanism and sulfur evolution. Geochimica et Cosmochimica Acta, 228: 259~274.
参考文献
Zukowski W, Cooke D R, Deyell C L, McInnes P, Simpson K. 2014. Genesis and exploration implications of epithermal gold mineralization and porphyry-style alteration at the endeavour 41 prospect, Cowal district, New South Wales, Australia. Economic Geology, 109(4): 1079~1115.
参考文献
Zuo Lina, He Qianfeng. 2013. The state-of-art and progress of the treatment technology for acid mine wastewater. Environmental Engineering, 31(5): 35~38 (in Chinese with English abstract).
参考文献
曹烨, 李胜荣, 张华锋, 敖翀, 李真真, 刘小滨. 2010. 冀西石湖金矿黄铁矿和石英的晶胞参数特征及其地质意义. 矿物岩石地球化学通报, 29(2): 185~191.
参考文献
蔡美芳, 党志. 2006. 磁黄铁矿氧化机理及酸性矿山废水防治的研究进展. 环境污染与防治, (1): 58~61.
参考文献
陈炳辉, 万茉莉, 王智美, 罗志辉, 李文, 石贵勇. 2010. 粤北大宝山多金属矿酸性矿山废水中氧化亚铁硫杆菌对黄铁矿的生物氧化作用研究. 岩石矿物学杂志, 29(5): 562~568.
参考文献
陈光远, 孙岱生, 张立, 臧维生, 王健, 鲁安怀. 1987. 黄铁矿成因形态学. 现代地质, (1): 60~76.
参考文献
陈喜连, 黄文婷, 邹银桥, 梁华英, 张健, 张玉泉. 2016. 玉龙斑岩铜矿带南段含矿斑岩体锆石U-Pb年龄、地球化学特征及南北段成矿规模差异分析. 岩石学报, 32(8): 2522~2534.
参考文献
邓呈逊, 岳梅, 王玲玲, 吴凤华. 2013. 氧化亚铁硫杆菌对黄铁矿的表生风化试验研究. 安全与环境学报, 13(3): 83~89.
参考文献
范宏瑞, 李兴辉, 左亚彬, 陈蕾, 刘尚, 胡芳芳, 冯凯. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479~3496.
参考文献
付芳芳, 昝敏杰, 赵禹喆, 张双燕, 郭鹏. 2019. 小营盘金矿床黄铁矿LA-ICP-MS原位微区元素测定及其对矿床成因的指示意义. 中国资源综合利用, 37(12): 48~50.
参考文献
傅晓明, 张德贤, 戴塔根, 高剑峰. 2018. 不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例. 大地构造与成矿学, 42(3): 505~519.
参考文献
高建伟, 申俊峰, 李国武, 王来明, 孙宁岳, 刘汉栋, 迟雷, 张华锋, 杜柏松. 2020. 胶东三山岛北部海域金矿黄铁矿晶胞参数与热电性特征. 矿物岩石地球化学通报, 39(6): 1205~1214.
参考文献
巩鑫, 魏小勇, 赵元艺, 刘春花, 水新芳, 杜蔺, 宋小军, 衮民汕, 谭伟. 2021. 上黑龙江盆地虎拉林金矿床黄铁矿LA-ICP-MS原位测试及其对矿床成因的制约. 大地构造与成矿学, 45(4): 745~760.
参考文献
何宏平, 鲜海洋, 朱建喜, 谭伟, 梁晓亮, 陈锰. 2019. 从矿物粉晶表面反应性到矿物晶面反应性——以黄铁矿氧化行为的晶面差异性为例. 岩石学报, 35(1): 129~136.
参考文献
侯瑞东, 张双杰, 孙萃芳, 邵明杰, 吴梦玮. 2018. Cr元素对钢高温氧化行为的影响. 塑性工程学报, 25(2): 276~283.
参考文献
贾大成, 唐烁, 裴尧, 高文, 宋运红, 郭威, 张传乐. 2012. 吉林延边金苍矿化带黄铁矿地球化学特征及找矿意义. 吉林大学学报(地球科学版), 42(4): 1069~1075.
参考文献
蒋磊, 周怀阳, 彭晓彤. 2007. 黄铁矿生物氧化过程的阶段性. 金属矿山, (10): 59~63.
参考文献
蒋文瑞, 涂志红, 周姝, 吴奇, 党志, 何慧军, 刘崇敏, 刘杰. 2021. 黄铁矿表面氧化机理及动力学影响因素研究进展. 金属矿山, (3): 88~102.
参考文献
冷成彪. 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约. 地学前缘, 24(6): 162~175.
参考文献
李春花. 2021. 光对黄铁矿化学氧化影响作用机理研究. 桂林理工大学硕士学位论文.
参考文献
李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、热液蚀变及金属矿物组合证据. 岩石学报, 31(8): 2307~2324.
参考文献
李彦盼, 李赵芮, 鄢顺意, 马伟师, 康晓跃, 黄欣, 陈瑞红, 张倩. 2021. 玉米秸秆生物炭抑制黄铁矿氧化效果. 广东化工, 48(10): 21~24+44.
参考文献
刘一浩, 薛春纪, 赵云, 赵晓波, 褚海霞, 刘城先, 余亮, 王璐, 吴得海. 2020. 我国热液金矿中黄铁矿的载金性研究. 现代地质, 34(1): 1~12.
参考文献
卢龙, 薛纪越, 陈繁荣, 赵炼忠. 2005a. 黄铁矿表面溶解——不容忽视的研究领域. 岩石矿物学杂志, (6): 666~670.
参考文献
卢龙, 王汝成, 薛纪越, 陈繁荣, 陈骏. 2005b. 黄铁矿氧化速率的实验研究. 中国科学(D辑: 地球科学), (5): 434~440.
参考文献
马向贤, 郑国东, 梁收运, 魏丽娟, 梁明亮. 2011. 黄铁矿风化作用及其工程地质意义. 岩石矿物学杂志, 30(6): 1132~1138.
参考文献
牟力, 何腾兵, 黄会前, 李相楹. 2017. 酸性矿山废水治理技术的研究进展. 天津农业科学, 23(2): 42~45.
参考文献
潘桂棠, 李兴振, 王立全, 丁俊, 陈智粱. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, (11): 701~707.
参考文献
唐仁鲤. 1995. 西藏玉龙斑岩铜(钼)矿带地质. 北京: 地质出版社.
参考文献
陶诗龙, 赖健清, 张建东, 胡理芳, 钱丽华. 2017. 广西龙头山金矿床黄铁矿标型特征及其地质意义. 地质找矿论丛, 32(1): 33~41.
参考文献
涂志红. 2017. 黄铁矿氧化过程中硫形态转化及其表面氧化电化学研究. 华南理工大学博士学位论文.
参考文献
王楠. 2012a. 酸性条件下黄铁矿氧化过程的电化学研究. 华南理工大学硕士学位论文.
参考文献
王楠, 易筱筠, 党志, 刘云. 2012b. 酸性条件下黄铁矿氧化机制的研究. 环境科学, 33(11): 3916~3921.
参考文献
王宇非, 王智琳, 鲁安怀, 吴林, 许德如, 吴涛, 龙永珍, 黄智龙, 范宏鹏, 彭耳柯. 2021. 黔中猫场杨家洞矿段铝土矿中富钴黄铁矿的发现与意义. 矿物学报, 41(Z1): 460~474.
参考文献
魏明秀. 1986. 黄铁矿晶胞参数计算及某些杂质含量分布特征. 矿物学报, (3): 245~251.
参考文献
魏有仪, 罗健. 1998. 天然饱水条件下黄铁矿氧化过程的热力学探讨. 矿物岩石, (S1): 119~123.
参考文献
吴大清, 彭金莲, 陈国玺. 1996. 硫化物吸附金属离子的实验研究—Ⅰ类型. 地球化学, (2): 181~182+193+184~189.
参考文献
夏玉林, 2019. 类质同像置换对闪锌矿和黄铁矿表面反应性的制约. 中国科学院大学(中国科学院广州地球化学研究所)硕士学位论文.
参考文献
肖盛兰, 1979. 金属活动性顺序的讨论. 辽宁师院学报(自然科学版), (3): 71~74+40.
参考文献
谢巧勤, 孙少华, 马子意, 徐亮, 王家宇, 周跃飞, 陈天虎, 徐晓春. 2021. 铜陵包村金(铜)矿床中胶状黄铁矿矿物学及成因解析. 地质学报, 95(5): 1481~1494.
参考文献
许万文, 张文涛. 2004. 德兴铜矿酸性矿山废水污染分析. 江西化工, (1): 87~90.
参考文献
杨富成, 李文昌, 祝向平, 江小均, 刘俊, 廖忠礼, 刘鸿, 杨后斌, 李勇. 2020. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究. 地学前缘, 27(4): 232~243.
参考文献
杨洪英, 巩恩普, 赵玉山, 陈刚. 2004. 浸矿菌液/天然黄铁矿界面的动态氧化研究. 东北大学学报, (9): 895~898.
参考文献
姚希柱, 杨涛, 朱志勇, 党奔, 丰志杰, 吴昌志. 2019. 黄铁矿LA-ICP-MS微量元素特征: 对青海锡铁山矿床成因的启示. 高校地质学报, 25(6): 888~900.
参考文献
于进喜, 刘文礼, 姚嘉胤, 张廖军. 2013. 晶体缺陷对黄铁矿表面氧化以及浮选行为的影响. 中国矿业, 22(5): 88~91+111.
参考文献
张海明. 2021. 钛表面耐氧化涂层界面相析出顺序计算与形成机理研究. 沈阳工业大学硕士学位论文.
参考文献
张赫. 2019. 黄铁矿主微量元素及晶胞参数研究内容和意义. 中国金属通报, (7): 288~289.
参考文献
张文林, 文怀忠, 林鑫, 曹华文. 2021. 四川木里梭罗沟金矿床载金黄铁矿原位微量元素特征, 沉积与特提斯地质, 43(1): 77~86.
参考文献
赵凯, 杨立强, 李坡, 熊一曲. 2013. 滇西老王寨金矿床黄铁矿形貌特征与化学组成. 岩石学报, 29(11): 3937~3948.
参考文献
衷水平, 吴智, 黄中省, 阮仁满. 2013. 硫酸介质中载金黄铁矿的氧化动力学. 稀有金属, 37(2): 295~301.
参考文献
周桂英, 阮仁满, 温建康, 武彪. 2008. 紫金山铜矿浸出过程黄铁矿的氧化行为. 北京科技大学学报, 65(1): 11~15.
参考文献
朱爱平, 田虎伟. 2020. 浅谈金属矿山酸性废水处理工艺. 现代矿业, 36(1): 204~206.
参考文献
朱华雄, 何钰. 2019. 浙江省龙游县溪口牛角湾黄铁矿酸性废水源头治理可行性探讨. 浙江地质工作70年——浙江省地质学会2019年学术年会论文集, 151~156.
参考文献
左莉娜, 贺前锋. 2013. 酸性矿山废水的治理技术现状及进展. 环境工程, 31(5): 35~38.
目录contents

    摘要

    黄铁矿在自然环境中极易发生氧化,造成严重生态环境问题。为了研究自然条件下不同粒度和晶形黄铁矿化学成分的差异对黄铁矿氧化速率的影响,本文对巴达铜金矿床黄铁矿进行了LA-ICP-MS原位主微量元素分析和矿物面扫描分析。测试结果表明粗粒黄铁矿S、Fe含量较高,成分更纯;微量元素As、Co、Ni和Pb、Cu、Zn分别以类质同象方式和包裹体形式更多地存在于细粒黄铁矿中,二者均能促使细粒黄铁矿氧化速率加快;粗粒黄铁矿中Cr和Ti元素含量较高,其氧化后生成致密氧化膜可抑制黄铁矿被进一步氧化。本文认为对于本矿床中粗粒黄铁矿和细粒黄铁矿氧化污染问题应采用两种不同的治理措施,对于不易被氧化的粗粒黄铁矿,使其处于常温常压的干燥避光环境中即可防止发生氧化;对于易氧化的细粒黄铁矿,其氧化产物造成污染对环境压力较大,应采用源头治理和末端治理相结合的措施进行处理,以达到更科学的治理效果。

    Abstract

    This study aims to investigate the effect of chemical composition of pyrite with different grain sizes and crystal forms on the oxidation rate of pyrite under natural conditions. In this paper, LA-ICP-MS in situ major and trace element analysis and mineral surface scanning analysis of pyrite in the Bada copper-gold deposit were carried out. The test results show that the coarse-grained pyrite has higher S and Fe content and purer composition, and the trace elements As, Co, Ni and Pb, Cu, and Zn exist preferentially in the fine-grained pyrite in the form of isomorphism and inclusions, respectively. In granular pyrite, both of them can accelerate the oxidation rate of fine-grained pyrite, the content of Cr and Ti in coarse-grained pyrite is higher, and a dense oxide film is formed after oxidation to inhibit further oxidation of pyrite. This paper proposes that different treatment measures should be adopted for the oxidation pollution of coarse-grained pyrite and fine-grained pyrite in most deposits. Coarse-grained pyrite is not easily oxidized, and it can be prevented from oxidation by keeping it in a dry and dark environment at normal temperature and pressure. Fine-grained pyrite is easily oxidized, and the pollution caused by the oxidation products has a great impact on the environment. It should be treated with a combination of source and end treatment for effectively preventing oxidation.

  • 黄铁矿是硫化物矿床内最常见且极具活性的硫化物(Tu Zhihong et al.,2017Feng Jiling et al.,2019Liu Tong et al.,2021),化学式为FeS2,Fe和S的理论含量分别为46.55%和53.45%。黄铁矿属等轴晶系,是NaCl型结构的衍生结构,由呈哑铃状对硫[S2]2-阴离子与Fe2+阳离子结合而成(于进喜等,2013)。在温度较高(>300℃)或较低(<220℃)、热液流体过饱和度(硫逸度)较低、成矿体系快速冷却以及成矿物质供应不足的条件下,主要发育立方体(100)黄铁矿;在温度适中(220~300℃)、热液流体过饱和度(硫逸度)较高、成矿体系缓慢冷却以及成矿物质供应充足的条件下,主要发育八面体(111)和五角十二面体(210)黄铁矿(陈光远等,1987赵凯等,2013陶诗龙等,2017)。此外,黄铁矿在其形成过程中常因Co、Ni等类质同象代替了部分Fe,形成FeS2-CoS2和FeS2-NiS2系列,As、Se、Te等代替S,导致其理化性质往往发生很大改变,如晶胞变大、硬度降低、颜色变浅以及表面氧化活性增强等(涂志红,2017)。黄铁矿在表生环境中易被氧化产生酸性矿山废水(acid mine drainage,AMD)并释放出许多重金属离子影响生态环境(Feng Jiling et al.,2019Tong Le et al.,2021)。实验室条件下对可能影响黄铁矿氧化速率的外部环境因素进行了大量研究,主要包括温度差异(魏有仪等,1998卢龙等,2005a衷水平等,2013李春花,2021)、氧化还原电位(周桂英等,2008陈炳辉等,2010)、水环境(魏有仪等,1998李春花,2021)、光照条件(李春花,2021)、pH值(Carl et al.,1987;魏有仪等,1998王楠,2012a王楠等,2012b邓呈逊等,2013李春花,2021)、氧含量(魏有仪等,1998卢龙等,2005b李春花,2021)等。前人将黄铁矿的氧化机理分为生物氧化(包括直接氧化和间接氧化)和化学氧化(杨洪英等,2004蔡美芳等,2006蒋磊等,2007于进喜等,2013何宏平等,2019蒋文瑞等,2021李春花,2021),其采用的研究方法和技术手段主要集中在实验室摇瓶浸矿、表面氧化动力学和表面电化学研究等方面,对于自然环境条件下不同粒度和晶形的黄铁矿中化学成分差异影响其氧化速率的相关研究相对较少。结合前人广泛的野外观察结果发现的粗粒黄铁矿较细粒黄铁矿不易被氧化的现象,本文利用LA-ICP-MS技术对西藏巴达铜金矿床不同粒度和晶形的黄铁矿进行主微量元素原位点测试和矿物面扫描分析,旨在完善黄铁矿化学氧化过程中成分差异影响氧化速率的认识,为矿山尾矿和酸性矿山废水处理等环境污染热点问题提供新思路。

  • 1 区域地质背景

  • 西藏巴达铜金矿床位于特提斯构造域东部的昌都-思茅地块内部,与东部金沙江结合带和西部北澜沧江结合带相邻,邻区还发育有班公湖-怒江结合带、甘孜-理塘结合带等,走向多呈北西-南东向。区内广泛出露中生代(T、J、K)和古生代(D、C、P)地层。区内断裂构造较发育,岩浆活动强烈(唐仁鲤,1995潘桂棠等,2002)。区内以发育NW-SE向逆冲断裂为主,辅以两组次级共轭剪切断层(NNE和NEE向),多以脆-韧性断裂作用为主。该区分布的岩浆岩以始新世—渐新世小型花岗斑岩体、闪长玢岩体、正长斑岩体为主,局部以潜火山岩产出,以巴达铜金矿床北部的遵喜等地出露为代表;火山岩以新近纪拉屋拉组(Nl)碱性火山岩为主,出露于巴达矿床外围的总郭和拉乌山等地,呈NNW向狭长带状分布,芒康卡均村拉屋拉组火山凝灰岩全岩40Ar/39Ar测年获得的年龄值为33.4±0.5 Ma和34.7±0.5 Ma(Su Tao et al.,2019),认为拉屋拉组形成时代为始新世—渐新世的转折期。区域上分布的矿床主要为与喜马拉雅期浅成—超浅成中酸性岩体有关的银金多金属矿床,目前研究程度相对较低,主要包括色礼铜钼矿、色错铜矿、吉措铅锌矿、马牧普铜金矿、遵喜铜矿、总郭铜矿等矿点(陈喜连等,2016)(图1)。

  • 巴达铜金矿床内出露的地层为下白垩统景星组(K1j)和白垩系上统南新组(K2n)(图2)。景星组(K1j)岩性为灰色钙质粉砂岩、暗灰色泥(碳)质板岩夹浅灰白色中—细粒长石石英砂岩,南新组(K2n)为灰白色中—细粒长石石英砂岩夹浅紫红色砾岩。受控于区域上挤压应力机制,矿床内发育构造以断层为主。巴达铜金矿床内地表覆盖较厚,断层露头出露较少。通过部分断层露头发育的断面、擦痕及矿床内负地形等识别标志,初步确定了巴达矿床区内主要发育NW走向断层,并伴有多期NE向断层。矿床内出露的岩浆岩主要为石英二长斑岩(图2),呈带状分布于矿床中部,呈灰白色,具斑状结构,块状构造。通过对巴达矿床进行详细的野外钻孔编录,结合镜下蚀变矿物的观察,识别出巴达矿床的围岩蚀变类型主要为钾长石化、黑云母化、绿泥石化、绢云母化、伊利石化、绿帘石化、碳酸盐化、硅化、蛋白石化、蒙脱石化和高岭石化等。巴达铜金矿床广泛发育碳酸盐化+伊利石化+绢云母化等低温蚀变,发育黄铁矿-黄铜矿-黝铜矿-方铅矿-低FeS闪锌矿等金属硫化物,成矿金属元素以铜金为主,少量铅-银,符合中硫化型浅成低温热液矿床的主体特征(李光明等,2015)。钾化和大量细脉浸染状黄铁矿、黄铜矿的发育,又具有斑岩型矿床的矿物组合特征。但与典型斑岩型和浅成低温热液矿床不同,巴达铜金矿化主要产于白云石脉中,热液石英发育较少,钾化相对较弱,与产于碱性斑岩的浅成低温热液矿床的特征(Smith et al.,2017)较一致。同时碳酸盐、伊利石和赤铁矿等矿物的产生表明流体是氧化的、具有近中性的pH值,符合碱性斑岩-浅成低温热液系统的特征(Zukowski et al.,2014)。因此认为巴达铜金矿矿床成因类型为斑岩-浅成低温热液矿床。

  • 矿床矿石构造较简单,以细脉浸染状、团块状构造为主,次为脉状构造;金属矿物以黄铁矿、金、银金矿为主。黄铁矿集合体呈浸染状、细脉状、网脉状等,常与黄铜矿、毒砂和方铅矿共生,并可见方铅矿细脉穿插于黄铁矿集合体中。通过矿相学观察,发现了至少两个阶段的黄铁矿。第一期为自形—半自形颗粒较粗大的黄铁矿,主要呈立方体晶形,未见共生或伴生矿物;第二期为细粒黄铁矿(多为五角十二面体晶形)和与黄铜矿共生的半自形—他形黄铁矿,可伴生有少量方铅矿、黝铜矿、辉铜矿等。

  • 2 样品与方法

  • 本次研究采集的黄铁矿样品来自于巴达铜金矿床的钻孔(zk0-4-142,zk2-0-85,zk3-0-173,zk3-5-52,zk4-5-182,zk4-17-97,zk8-5-142,zk10-9-165,zk10-13-155,zk12-4-303,zk18-0-317等)和坑道(PD6-1,PD6-2,PD6-3)中(图2)。对黄铁矿样品的薄片进行镜下矿相学观察,从中挑选出典型黄铁矿颗粒69颗并将其进行分类处理,按照粒度大小分为粗粒和细粒两类,粗粒黄铁矿以0.5~2 mm为主,细粒黄铁矿以0.1~0.5 mm为主,其次按照矿物晶形分为四类,分别为粗粒立方体黄铁矿、粗粒五角十二面体黄铁矿、细粒立方体黄铁矿和细粒五角十二面体黄铁矿(图3)。

  • 图1 研究区区域构造单元划分图(a)(据Deng Jun et al.,2014修编)与昌都-芒康成矿带区域地质图(b)(据杨富成等,2020修编)

  • Fig.1 The regional tectonic unit division map (a) (modified from Deng Jun et al., 2014) and the regional geological map of the Changdu-Mangkang metallogenic belt (b) (modified from Yang Fucheng et al., 2020)

  • 图2 巴达铜金矿床地质简图及相应采样位置(据杨富成等,2020修编)

  • Fig.2 Geological map of the Bada copper-gold deposit and corresponding sampling locations (modified from Yang Fucheng et al., 2020)

  • 图3 巴达铜金矿床黄铁矿激光光片(a~d)和镜下矿物(e~x)特征

  • Fig.3 Laser light sheet (a~d) and microscopic mineral (e~x) characteristics of pyrite in the Bada copper-gold deposit

  • (a~d)—激光光片中的黄铁矿特征,其粒径差异较大,较粗粒的黄铁矿粒径可达3 cm,较细粒的黄铁矿肉眼难以识别;(e~n)—粗粒黄铁矿镜下特征,大部分颗粒粒径 >500 μm,其边缘较自形;(o~x)—细粒黄铁矿镜下特征,其粒径以<500 μm为主,自形程度相对较差;①—粗粒立方体黄铁矿;②—粗粒五角十二面体黄铁矿;③—细粒立方体黄铁矿;④—细粒五角十二面体黄铁矿;Py—黄铁矿

  • (a~d) —the characteristics of pyrite in the laser light sheet, and their particle sizes differ greatly; the coarser pyrite can reach 3 cm in size, and the finer pyrite is difficult to identify with the naked eye; (e~n) —the microscopic feature of coarse pyrite, most of which have a particle size >500 μm, their edges are more self shaped; (o~x) —the microscopic feature of fine pyrite, their particle size is mainly <500 μm, with relatively poor degree of self formation; ①—coarse-grained cubic pyrite; ②—coarse-grained pentagonal dodecahedral pyrite; ③—fine-grained cubic pyrite; ④—fine-grained pentagonal dodecahedral pyrite; Py-pyrite

  • 将采集的黄铁矿样品用水冲洗、切割得到新鲜面,制备抛光薄片过程中利用超声波除去抛光液中对样品可能会发生污染的成分,然后使用光学显微镜和扫描电子显微镜进行检查,以表征黄铁矿矿物学和结构关系。对挑选出的黄铁矿颗粒进行LA-ICP-MS分析,剔除含有硅酸盐和碳酸盐包裹体的黄铁矿,以避免其他矿物的信号污染和后期蚀变的影响。

  • 黄铁矿微量元素分析在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS完成。其中激光剥蚀系统为RESOLution-LR-S155 193 nm准分子激光器,电感耦合等离子体质谱(ICP-MS)为Agilent 7700x。分析方法见Gao Jianfeng et al.(2013)Huang Xiaowen et al.(2013)。在测试之前用SRM 610对ICP-MS性能进行优化,使仪器达到最佳的灵敏度和电离效率(U/Th≈1)、尽可能小的氧化物产率(ThO/Th<0.3%)。LA-ICP-MS点分析采用的激光束斑为26 μm,脉冲为5 Hz,能量密度为2.5 J/cm2。剥蚀过程中氦气(350 mL/min)作为载气与氩气(900 mL/min)在剥蚀池内混合,与样品气溶胶共同进入ICP-MS中。每次分析包括~30 s背景采集,然后从样品中采集30 s信号数据。使用STDGL3、GSD-1G和天然纯黄铁矿(Py)为校正外标,硫化物国际标样MASS-1用以监控数据质量。测定黄铁矿中主、微量元素包括S、Fe、As、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Se、Rb、Sr、Mo、Ag、Sn、Sb、Te、Au、Pb、Bi等22种元素,含量计算采用多外标法和总量归一化法,所获大部分数据的分析误差<5%,所测元素总浓度认定为100%(Liu Yongsheng et al.,2008),数据处理使用ICPMSDateCal软件完成(Liu Yongsheng et al.,2008)。

  • 黄铁矿原位微区面扫描分析测试通过样品台水平移动实现激光线扫描,利用方形光束在不增加光斑大小的情况下将信号最大化,确保在线扫描期间进行代表性采样。线扫描激光束斑的直径为13~20 μm,由样品黄铁矿颗粒大小决定,线扫描行距与束斑直径一致,以10 Hz的重复频率和恒定速度进行剥蚀。GSE-1G和STDGL3为校正外标,校正原始数据获得其他主微量元素的绝对含量及分布型式。数据处理使用iolite(V4)软件完成。

  • 3 测试结果

  • 本研究对挑选出的69颗典型黄铁矿颗粒进行LA-ICP-MS原位主微量元素测试,并将其按照不同粒度和晶形进行分类,共获得140个测点的主微量元素含量结果(附表1)以及2颗五角十二面体黄铁矿的LA-ICP-MS mapping特征(图4、5)。

  • 3.1 主量元素Fe、S含量

  • 巴达铜金矿床中不同类型黄铁矿Fe和S元素含量存在差异(附表1)。黄铁矿主量元素中Fe元素含量变化于38.82%~46.53%之间,平均值为45.68%;S元素含量为44.61%~53.44%之间,平均值为52.45%,Fe和S元素含量均低于黄铁矿的理论值(Fe为46.55%、S为53.45%);将黄铁矿按粒度大小分为四类:粗粒立方体、粗粒五角十二面体、细粒立方体和细粒五角十二面体黄铁矿,其中粗粒立方体黄铁矿Fe元素含量为43.94%~46.53%之间,平均值为45.72%,低于理论值0.83%,S元素含量为50.59%~53.43%之间,平均值为52.57%,低于理论值0.88%;粗粒五角十二面体黄铁矿Fe元素含量为45.22%~46.51%之间,平均值为46.20%,低于理论值0.35%,S元素含量为52.01%~53.42%之间,平均值为53.07%,低于理论值0.38%;细粒立方体黄铁矿Fe元素含量为43.70%~46.52%之间,平均值为45.62%,低于理论值0.93%,S元素含量为50.21%~53.43%之间,平均值为52.43%,低于理论值1.02%;细粒五角十二面体黄铁矿Fe含量为38.82%~46.52%之间,平均值为45.63%,低于理论值0.92%,S元素含量为44.61%~53.44%之间,平均值为52.51%,低于理论值0.95%。可看出粗粒五角十二面体黄铁矿Fe、S元素的平均值最接近理论值,其次分别为粗粒立方体黄铁矿、细粒五角十二面体黄铁矿和细粒立方体黄铁矿。

  • 3.2 微量元素含量变化及赋存状态

  • 巴达铜金矿床黄铁矿微量元素按照含量高低进行分类(图6)并将各微量元素含量变化按照黄铁矿不同粒度和晶形进行分类(图7),其中在1000×10-6~10000×10-6区间的有As,元素含量为1369×10-6;在100.0×10-6~1000×10-6区间的有Co、Ni、Ti、Cu、Pb、Mn,元素含量平均值分别为500×10-6、466×10-6、320×10-6、217×10-6、154×10-6和122×10-6;在10.0×10-6~100.0×10-6区间的有Zn、Bi、Te、Sr、Cr、Se、V,元素含量平均值分别为81.0×10-6、66.4×10-6、29.9×10-6、26.7×10-6、26.6×10-6、24.8×10-6和14.1×10-6;在1.00×10-6~10.0×10-6区间的有Ag、Rb、Mo、Sb、Sn,元素含量平均值分别为7.26×10-6、4.16×10-6、4.06×10-6、3.18×10-6和1.62×10-6;在0.10×10-6~1.00×10-6区间的有Au,元素含量平均值为0.66×10-6

  • 图4 巴达铜金矿床粗粒五角十二面体黄铁矿主微量元素LA-ICP-MS mapping图像

  • Fig.4 The LA-ICP-MS mapping images for major and trace elements in coarse-grained pentagonal dodecahedral pyrite from Bada copper-gold deposit

  • 3.2.1 以类质同象进入黄铁矿的元素

  • As在粗粒立方体和粗粒五角十二面体黄铁矿中含量较低且变化范围较小,分别为50.6×10-6~1266×10-6(平均值为399×10-6)和165×10-6~627×10-6(平均值为336×10-6);细粒立方体和细粒五角十二面体黄铁矿中As元素平均含量较高且变化范围较大,分别为3.12×10-6~7886×10-6(平均值为1676×10-6)和16.8×10-6~9702×10-6(平均值为1744×10-6)(图7)。在时间分辨率剖面图(图8a、b,图9a、b)中发现粗粒黄铁矿中As元素谱线较平滑,细粒黄铁矿中As元素谱线起伏幅度较大,再结合面扫描图像(图4、5)可看出粗粒黄铁矿中As元素较均匀的以类质同象方式替代S,而细粒黄铁矿中As分布不均匀且呈线状分布,与Co、Ni等分布情况相似,暗示细粒黄铁矿中可能存在裂隙。

  • Co元素在粗粒五角十二面体黄铁矿中含量变化较小且平均含量较低,为20.8×10-6~110×10-6(平均值为55.1×10-6),在粗粒立方体、细粒立方体和细粒五角十二面体黄铁矿中平均含量较高且相近,分别为0.30×10-6~2097×10-6(平均值为550×10-6)、2.36×10-6~1739×10-6(平均值为464×10-6)和0.62×10-6~3736×10-6(平均值为589×10-6)(图7);Ni元素在细粒五角十二面体黄铁矿中平均含量明显高于粗粒立方体、粗粒五角十二面体和细粒立方体黄铁矿,达到708×10-6,其中细粒立方体黄铁矿中Ni元素平均含量略高于粗粒立方体和粗粒五角十二面体黄铁矿,达到316×10-6(图7),Co、Ni在面扫描图像(图4、5)中呈现较好的正相关关系,且在粗粒黄铁矿时间分辨率谱线图(图8a、b)中无明显峰谱特征,暗示Co、Ni均以类质同象存在于黄铁矿晶格中。

  • 图5 巴达铜金矿床细粒五角十二面体黄铁矿主微量元素LA-ICP-MS mapping图像

  • Fig.5 The LA-ICP-MS mapping images for main and trace elements in fine-grained pentagonal dodecahedral pyrite from Bada copper-gold deposit

  • 3.2.2 以包裹体形式进入黄铁矿的元素

  • Cu在细粒立方体和细粒五角十二面体黄铁矿中的含量变化范围和平均值均大于粗粒立方体和粗粒五角十二面体黄铁矿,分别为1.16×10-6~1145×10-6(平均值为127×10-6)和1.28×10-6~4362×10-6(平均值为377×10-6)(图7),在细粒五角十二面体黄铁矿面扫描图(图4)中发现存在相对富集区域,而粗粒五角十二面体黄铁矿扫描图(图5)中未发现富集点,由于Cu为亲硫元素,常形成硫化物,暗示Cu可能以黄铜矿包裹体存在于细粒五角十二面体黄铁矿中。

  • Pb在细粒立方体和细粒五角十二面体黄铁矿中平均含量较高且含量变化范围较大,分别达到0.49×10-6~2023×10-6(平均值为282×10-6)和0.34×10-6~1023×10-6(平均值为160×10-6),而粗粒立方体和粗粒五角十二面体黄铁矿中Pb元素平均含量较低且含量变化范围较小,分别为0.20×10-6~81.8×10-6(平均值为18.5×10-6)和0.12×10-6~37.5×10-6(平均值为10.3×10-6)(图7),在时间分辨率剖面图(图8a、b,图9a、b)中发现Pb在细粒黄铁矿中存在峰谱而在粗粒黄铁矿中则基本低于检出线,通过面扫描图(图4、5)中可看出Pb元素在细粒黄铁矿中含量较高并表现出局部富集,在粗粒黄铁矿中则含量较低且无明显富集点,说明细粒黄铁矿中含有方铅矿包裹体且细粒黄铁矿中的方铅矿包裹体较粗粒黄铁矿中的方铅矿包裹体占位更大且数量更多,粗粒黄铁矿中的Pb则可能为极少量的纳米级的方铅矿颗粒较均匀地分布在黄铁矿中。

  • 图6 巴达铜金矿床黄铁矿微量元素含量变化箱线图

  • Fig.6 Boxplot of trace element content change in pyrite from Bada copper-gold deposit

  • 在细粒五角十二面体黄铁矿的时间分辨率剖面图(图9a、b)中发现Bi、Ag、Sb和Sn元素与Pb显示出峰谱,而在粗粒黄铁矿时间分辨率剖面图(图8a、b)中未发现上述特征。在细粒五角十二面体黄铁矿原位微量元素含量变化协变图(图9c)以及面扫描微量元素含量变化剖面图(图9d)中可看出Bi、Ag、Sb和Sn的含量与Pb具有较好的协同变化关系,而在粗粒五角十二面体黄铁矿中则无协同关系。由于Pb以方铅矿的形式存在于黄铁矿中,暗示Bi、Ag、Sb和Sn则是以类质同象的方式赋存于方铅矿晶格中。

  • Zn在细粒立方体和细粒五角十二面体黄铁矿中平均含量高于粗粒立方体和粗粒五角十二面体黄铁矿,达到1.21×10-6~245×10-6(平均值为90.3×10-6)和1.08×10-6~1049×10-6(平均值为113×10-6)(图7),通过面扫描图(图4、5)中可看出细粒黄铁矿中存在Zn的富集点而粗粒黄铁矿中没有明显富集,暗示Zn以闪锌矿包裹体形式存在于黄铁矿中。

  • 3.2.3 形成氧化膜的元素

  • Cr在粗粒立方体和粗粒五角十二面体黄铁矿中的平均含量和变化范围明显大于细粒立方体和细粒五角十二面体黄铁矿,分别为4.57×10-6~74.4×10-6(平均值为33.4×10-6)和8.69×10-6~618×10-6(平均值为158×10-6)(图7)。Ti元素含量处于100.0×10-6~1000×10-6区间,在粗粒立方体黄铁矿中Ti平均含量明显高于粗粒五角十二面体、细粒立方体和细粒五角十二面体黄铁矿,达到764×10-6(图7)。Cr和Ti元素化学活动性强于Fe,易与氧发生反应,在氧化过程中可形成Cr2O3和TiO2、Ti6O、Ti3O、TiO、Ti3O5等致密氧化膜。

  • 3.2.4 其他元素

  • Mn在粗粒立方体、粗粒五角十二面体和细粒五角十二面体黄铁矿中平均含量和变化范围相近,但细粒立方体黄铁矿中Mn平均含量和变化范围明显高于前三者,达到0.97×10-6~4559×10-6(平均值为312×10-6)(图7),通过面扫描图(图4、5)发现其与黄铁矿S和Fe元素呈负相关关系并且分布于黄铁矿外部,由于Mn为亲石元素,易与氧形成稳定的离子化合物,因此不易替代黄铁矿中的Fe和S,对黄铁矿氧化过程影响较小。

  • Te、Sr、Se、V、Rb、Mo和Au含量均小于黄铁矿测试元素总含量的0.01%,在时间分辨率谱线图中未发现这些元素显示的峰谱。在LA-ICP-MS面扫描图(图4、5)中未发现Te、Sr、Se、V、Rb和Mo元素明显富集或与Fe、S元素呈相关性,但发现细粒五角十二面体黄铁矿中Au元素与As元素呈良好的正相关关系,在对细粒黄铁矿的镜下观察中未发现可见金,暗示Au可能以类质同象的形式赋存于黄铁矿的含As带中。

  • 4 讨论

  • 4.1 类质同象对黄铁矿氧化速率的影响

  • 黄铁矿在形成过程中有Co、Ni类质同象替代Fe,As、Se替代S(姚希柱等,2019Chen Fuchuan et al.,2020Liu Yihao et al.,2020Wang Liang et al.,2021巩鑫等,2021王宇非等,2021),这些元素进入黄铁矿晶格中,使黄铁矿处于亚稳状态,因此具有相对的活性(张文林等,2021)。含As较多的黄铁矿比含少量As或不含As的黄铁矿反应性更强,含As最少的黄铁矿反应性最差(Stephen et al.,2007)。纯净黄铁矿(S/Fe=2)晶胞参数的理论值a0=0.54176 nm,一般认为As、Co、Ni等微量元素使黄铁矿晶胞参数增大,Fe-S、Co-S和Ni-S三个共价键的距离是依次增大的,分别为0.226 nm、0.234 nm和0.240 nm,若有1%的As置换S,则至少可以使黄铁矿的a0值增大2.4×10-4 nm(魏明秀,1986曹烨等,2010张赫,2019)。通过对四类不同粒度和晶形黄铁矿对比(图10),As元素在细粒立方体黄铁矿和细粒五角十二面体黄铁矿中平均含量明显高于粗粒立方体黄铁矿和粗粒五角十二面体黄铁矿,面扫描图像(图4、5)表明细粒黄铁矿中As主要分布于黄铁矿边缘部分,且黄铁矿氧化反应总是优先发生在其与O2和H2O接触的表面,As-取代S-使结构中S-S键的平均键长有所增加(高建伟等,2020),导致黄铁矿边缘部分晶格发生畸变并出现晶格缺陷(刘一浩等,2020),增强As含量高的细粒黄铁矿边缘部分反应活性,致使与O2和H2O发生反应时速率加快。在氧化环境中, Ni、Co和As,尤其是Co,显著改变黄铁矿的半导体性能,促进电子的转移,加速黄铁矿的氧化过程(Savage et al.,2008)。Co、Ni的置换作用延缓了黄铁矿晶体的生长,增加了表面Fe-S键长,使黄铁矿暴露更多高能反应面,这些置换离子会增加黄铁矿的比表面积和电子传递效率(夏玉林,2019),进而提高被氧化的速率。对比不同类型黄铁矿(图10)发现,在自然条件下几乎不发生氧化的粗粒立方体黄铁矿的Co含量与细粒立方体和细粒五角十二面体黄铁矿的Co含量相近,而粗粒五角十二面体黄铁矿Co含量明显较低,Ni元素在细粒立方体和细粒五角十二面体黄铁矿中含量高于粗粒立方体和粗粒五角十二面体黄铁矿,因此判断细粒黄铁矿发生氧化可能受Co、Ni含量影响,且含量愈高愈容易发生氧化。Se在不同分类黄铁矿中含量均低于总含量的0.01%,对晶胞参数的改变和S-S键长影响甚微,在面扫描图像(图4、5)中也未发现明显富集,因此Se元素对黄铁矿在自然条件下的氧化反应贡献较小。当As进入黄铁矿晶格后,通过偶联取代促进了三价金属的掺入,也可能通过破坏黄铁矿晶格,促进缺陷的形成,促进不相容微量元素的掺入(Abraitis et al.,2004)。因此,As、Co、Ni等微量元素的类质同象替代导致黄铁矿结构的变形,不仅增加晶格缺陷形成的可能性,还可能破坏黄铁矿晶格,导致黄铁矿易发生氧化。

  • 图7 巴达铜金矿床黄铁矿不同粒度大小和晶体结构微量元素含量变化箱线图

  • Fig.7 Boxplot of trace element content variation of pyrite with different grain size and crystal structure in Bada copper-gold deposit

  • 图8 巴达铜金矿床粗粒五角十二面体黄铁矿(a)和粗粒立方体黄铁矿(b)LA-ICP-MS时间分辨率剖面图

  • Fig.8 LA-ICP-MS time resolution profile of coarse-grained pentagonal dodecahedral pyrite (a) and coarse-grained cubic pyrite (b) in Bada copper-gold deposit

  • 图9 巴达铜金矿床细粒黄铁矿LA-ICP-MS时间分辨率剖面图(a,b)及部分元素含量变化协变图(c,d)(a—a’位置见图5)

  • Fig.9 LA-ICP-MS time resolution profile (a, b) and covariance figure of partial element content change (c, d) of fine-grained pentagonal dodecahedral pyrite in Bada copper-gold deposit (the location of a—a’ is shown in Figure5)

  • 图10 巴达铜金矿床黄铁矿不同粒度和晶形微量元素平均含量雷达图

  • Fig.10 Radar chart of trace element average of different particle sizes and crystal forms of pyrite in Bada copper-gold deposit

  • 将巴达铜金矿床黄铁矿按照不同粒径和粒径进行分类,图(a)中阴影部分所示区域为粗粒立方体黄铁矿微量元素含量平均值,图(b)中阴影部分所示区域为粗粒五角十二面体黄铁矿微量元素含量平均值,图(c)中阴影部分所示区域为细粒立方体黄铁矿微量元素含量平均值,图(d)中阴影部分所示区域为细粒五角十二面体黄铁矿微量元素含量平均值

  • The pyrite in Bada copper gold deposit is classified according to different particle sizes and particle sizes; the shaded area in Figure (a) shows the average content of trace elements in coarse cubic pyrite, the shaded area in Figure (b) shows the average content of trace elements in coarse pentagonal dodecahedron pyrite, and the shaded area in Figure (c) shows the average content of trace elements in fine cubic pyrite, the shaded area in Figure (d) shows the average trace element content of fine pentagonal dodecahedron pyrite

  • 4.2 包裹体对黄铁矿氧化速率的影响

  • 矿物原位微区测试结果显示细粒五角十二面体黄铁矿的Pb含量较高,通过LA-ICP-MS面扫描测试发现黄铁矿内部有较多高于本底的Ag、Bi、Sb、Sn和Pb的富集点,这五种元素之间具有良好的协同变化趋势(图4),并且在时间分辨率剖面图上出现Pb、Ag、Bi、Sb、Sn的峰谱(图9a、b)。在原位微量元素含量变化协变图(图9c)以及面扫描微量元素含量变化剖面图(图9d)中可看出Ag、Bi、Sb、Sn的含量与Pb呈正相关关系,暗示Pb以方铅矿显微包裹体的方式赋存于黄铁矿中;在时间分辨率剖面图中可见Ag、Bi、Sb、Sn相对较平滑的谱线,暗示Ag、Bi、Sb、Sn以类质同象的方式赋存于方铅矿晶格中。但是Pb为亲铜元素,很难以类质同象的方式替代黄铁矿中的Fe(范宏瑞等,2018),因此,在黄铁矿中具有平滑曲线的Pb可能是纳米级的方铅矿颗粒较为均匀分布的结果(冷成彪,2017)。另外Cu和Zn在粗粒五角十二面体黄铁矿面扫描图像(图4)中也存在明显富集,但Cu2+和Zn2+作为铜型离子与Fe2+型离子差别较大,很难以类质同象替换Fe进入黄铁矿晶格,因此较高的Cu、Pb、Zn含量是黄铁矿中含有极细微的黄铜矿、方铅矿和闪锌矿包裹体所致,这些金属硫化物多以充填交代方式呈网脉状分布于黄铁矿中(贾大成等,2012)。

  • 包裹体与黄铁矿的接触面存在台阶、褶皱和破损断面等微形貌(Somorjai,1990)。由于黄铁矿表面结构的弛豫和重构,以及断裂面的悬键差异,会产生不同的表面位(Eggleston et al.,19921996;Rosso et al.,1999)。位错、缺陷、台阶扭折等表面位具有优先反应性,由于这些表面包含了较多的悬空键,活性较强,即这些断面位的结构与其他表面结构的表面位存在明显的差异(吴大清等,1996)。因此氧化反应在黄铁矿与方铅矿、黄铜矿和闪锌矿包裹体的接触面上会优先发生,氧化速率较无包裹体存在的黄铁矿更快。在不同粒度和晶形中(图9)可看出细粒立方体和细粒五角十二面体黄铁矿的Cu、Pb、Zn含量高于粗粒立方体和粗粒五角十二面体黄铁矿,判断细粒黄铁矿优先于粗粒黄铁矿发生氧化。

  • 4.3 氧化膜的生成对黄铁矿氧化速率的影响

  • 黄铁矿氧化过程中,不同元素的含量差异和活性强弱影响黄铁矿的氧化速率。相同环境下,根据以电极电位为标准的化学元素活动性顺序可得出本研究中元素活动性顺序,由强到弱依次为Rb、Sr、Ti、Mn、V、Cr、Zn、Fe、Co、Ni、Mo、Sn、Pb、Cu、Ag、Au(肖盛兰,1979)。通过质量平衡方程得出Mn、Sr、Ba、Pb、U、V、Cr、Co、Ni、Cu、Zn在风化剖面中活动性较强(Ling Sixiang et al.,20142015),因此Sr、V、Cr、Zn、Mn活动性既强于Fe,且在风化剖面中活动性也较强,但研究区黄铁矿中Sr、V、Zn含量分别低于总元素含量0.01%,对黄铁矿氧化影响较小,Mn主要赋存于黄铁矿外,与黄铁矿氧化相关性较差,而Cr较为特殊,其含量越高,抗氧化能力越强,在粗粒黄铁矿中含量明显高于细粒黄铁矿,且粗粒五角十二面体黄铁矿Cr含量达到158×10-6,是细粒五角十二面体黄铁矿Cr含量的18倍。在粗粒与细粒黄铁矿Cr元素分布情况三维模式(图11、图12)对比中,发现粗粒黄铁矿中Cr元素形成的峰明显更高且连续,判断自然条件下粗粒黄铁矿边缘优先被氧化,生成的氧化膜Cr2O3较厚且连续,其内部阳离子空位低、结构致密,不利于金属原子及氧原子的相互扩散,有效阻止了表层金属的进一步氧化(侯瑞东等,2018),而细粒黄铁矿则相反,因此易与O2和H2O发生反应。除了Cr发生氧化生成氧化膜保护黄铁矿不被氧化外,Ti在氧化过程中同样能生成氧化膜避免黄铁矿发生氧化,化学活性上Ti极易与氧发生反应,与空气中的氧接触后会形成一定厚度的氧化膜,在一定程度上具有保护作用,阻碍氧原子扩散(张海明,2021),粗粒立方体黄铁矿中Ti含量最高(图7),可在黄铁矿氧化过程中生成TiO2、Ti6O、Ti3O、TiO、Ti3O5等氧化物形成的氧化膜,阻止粗粒立方体黄铁矿被氧化,也解释了Co在粗粒立方体黄铁矿中含量较高却不易发生氧化的问题。

  • 图11 巴达铜金矿床粗粒黄铁矿Cr元素氧化膜面扫描及三维模式图

  • Fig.11 Surface scanning and 3D pattern of Cr oxide film of coarse-grained pyrite in Bada copper-gold deposit

  • 图12 巴达铜金矿床细粒黄铁矿Cr元素氧化膜面扫描及三维模式图

  • Fig.12 Surface scanning and 3D pattern of Cr oxide film of fine-grained pyrite in Bada copper-gold deposit

  • 4.4 黄铁矿氧化产生的环境效应

  • 黄铁矿是地壳中含量最高的硫化物矿物,广泛存在于各种地质环境(谢巧勤等,2021),在矿区开采过程中,其氧化严重影响附近生态环境,可能产生的负效应有:① 矿区巷道及边坡安全问题,矿区开采活动导致黄铁矿暴露在空气中,一般情况下巷道内较潮湿,容易引起黄铁矿的氧化,同时产生的酸性流体流经巷道内支护结构时会对其产生腐蚀导致巷道安全隐患(马向贤等,2011),废矿中细粒黄铁矿较粗粒黄铁矿更易被氧化,具有更严重的后果;② 酸性矿山排水问题(Tu Zhihong et al.,2022),酸性矿山废水污染地下水及酸化土壤,使其不适合农业生产,其径流会污染附近水体降低pH值,杀死水体中的鱼类和水生生物(Ighalo et al.,2022),进入地下水系统后,对矿区附近的农田、林地、牧区等造成酸化以及重金属超标等环境问题,污染地域生态安全,并且持续性极强。相较于粗粒黄铁矿,细粒黄铁矿被氧化后产生的尾矿坝泄露风险、巷道安全隐患及边坡稳定性降低问题及酸性矿山废水产生和排放问题会更加严重(Grande et al.,2022),因此细粒黄铁矿发生氧化后产生的生态环境污染和矿区安全问题对矿区环境造成巨大压力。

  • 在过去的几十年中,人们对于酸性矿山废水进行了广泛的研究(许万文等,2004左莉娜等,2013牟力等,2017;Skousen et al.,2019;朱爱平等,2020Charuseiam et al.,2022Montes-Atenas,2022;Moreno-González et al.,2022;Song Biao et al.,2022;Tomiyama et al.,2022;Yuan Jiaqiao et al.,2022)。黄铁矿发生氧化形成酸性矿山废水主要发生的化学反应有:

  • 2FeS2+7O2+2H2O2Fe2++4H++4SO42-
    (1)
  • 4Fe2++O2+4H+4Fe3++2H2O
    (2)
  • FeS2+14Fe3++8H2O15Fe2++2SO42-+16H+
    (3)
  • 总反应式:

  • 3FeS2+8O2+10Fe3++8H2O13Fe2++6SO42-+16H+
    (4)
  • 黄铁矿通过此反应过程循环往复至完全氧化,形成酸性矿山废水。目前国内处理黄铁矿氧化产生酸性废水的方法以化学处理、物理处理和生物处理等技术为主,常见的工艺包括中和法、微生物法和人工湿地法等。近年来一些新技术、新工艺和新方法如电化学技术、膜分离技术、反渗透技术等,均在一定程度上融合了源头控制技术共同治理酸性矿山废水污染。

  • 对于在自然条件下不易发生氧化的粗粒黄铁矿,不易形成酸性废水和重金属污染,对环境压力较小,因此防止以粗粒为主的黄铁矿氧化有以下建议:① 温度条件,应保证粗粒黄铁矿所处环境维持在特定温度区间,提高氧化反应发生条件;② 控制湿度,避免黄铁矿与水接触或在处于潮湿环境下,选择干燥通风环境下堆放粗粒黄铁矿;③ 酸碱性环境,pH值越低,黄铁矿越易被氧化,因此建议堆放粗粒黄铁矿所处环境的pH值保持在中性环境,避免酸化;④ 光照条件,建议选择避免阳光直射的阴凉环境,阳光直射黄铁矿表面造成其温度升高,电阻减小,导电性能提高,生成电子空穴,氧化作用增强。

  • 对于细粒黄铁矿,相较于粗粒黄铁矿有较高的As、Co和Ni含量,其以类质同象的方式进入黄铁矿,以及黄铁矿内含有更多的方铅矿、黄铜矿和闪锌矿包裹体,Cr和Ti元素无法形成连续致密的氧化膜阻止细粒黄铁矿被氧化,因此氧化过程中易形成酸性矿山废水和重金属污染,对环境压力较大,针对细粒黄铁矿氧化造成环境污染的治理措施有:① 对酸性矿山废水和重金属污染的末端治理,采用化学处理、物理处理和生物处理等技术方法(Yuan Jiaqiao et al.,2022),工艺包括中和法、微生物法和人工湿地法。其中,中和法是处理酸性矿山废水最常用的方法,在酸性水中投入碱性中和物,使废水中的金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀进而达成去除的目的,常用的中和剂有碱石灰、碳酸钙、废电石、Na2CO3、NaOH等;② 从环境破坏的开端和根源上进行的源头治理,由于细粒黄铁矿在氧化过程中产生酸性矿山废水的条件易满足,在堆放过程中产生大量酸性废水只通过末端处理的结果势必造成新的污染物,难以有效利用,易造成二次污染,且成本较高,经济效益较低,因此源头治理尤为重要。源头控制的治理技术有覆盖法、杀菌剂法、表面钝化处理法等,其中覆盖法中柠檬酸有机覆膜技术、磷酸铁包膜技术、8-羟基喹啉包膜法和有机盐包膜法等,将易氧化的细粒黄铁矿表面经过处理生成一种致密的、覆盖性好的膜,降低细粒黄铁矿的氧化速率,减少酸性废水和重金属离子的生成,有效提高酸性废水的pH值,从而降低矿山酸性废水处理的单位成本(朱华雄等,2019)。在覆盖法中,玉米秸秆生物炭对黄铁矿的氧化有良好的抑制效果,生物炭表面丰富的官能团能与黄铁矿表面键合形成覆盖膜,阻挡黄铁矿表面与外界的O2和H2O接触,抑制细粒黄铁矿的氧化速率(李彦盼等,2021)。

  • 5 结论

  • (1)粗粒黄铁矿中Fe和S元素含量高于细粒黄铁矿,As、Co、Ni、Cu、Pb、Mn、Zn、Bi、Sr、Ag、Mo、Sb、Sn和Au元素在细粒黄铁矿中含量更高,Ti和Cr元素在粗粒黄铁矿中含量更高,Te、Se、V和Rb元素在细粒黄铁矿和粗粒黄铁矿中含量相近。

  • (2)As、Co、Ni和Pb、Cu、Zn元素分别以类质同象方式和包裹体形式更多地存在于细粒黄铁矿中,二者均能促使细粒黄铁矿氧化速率快于粗粒黄铁矿,粗粒黄铁矿中Cr和Ti含量较高,其氧化后生成致密氧化膜可抑制粗粒黄铁矿被进一步氧化。

  • (3)本矿床中,细粒黄铁矿易发生氧化而粗粒黄铁矿不易被氧化。在其他矿床中,富Cr和Ti的黄铁矿不容易被氧化,而富As、Co、Ni等元素的黄铁矿容易被氧化。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202307096?st=article_issue

  • 附表1 巴达铜金矿床黄铁矿LA-ICP-MS主(%)、微量元素含量(×10-6

  • Appendix 1 LA-ICP-MS major (%) and trace element contents (×10-6) of pyrite from Bada Cu-Au deposit

  • 续附表1

  • 续附表1

  • 续附表1

  • 参考文献

    • Abraitis P K, Pattrick R A D, Vaughan D J. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74(1-4): 41~59.

    • Cai Meifang, Dang Zhi. 2006. A review on pyrrhotite oxidation mechanism and acid mine drainage prevention. Environmental Pollution & Control, (1): 58~61 (in Chinese with English abstract).

    • Cao Ye, Li Shengrong, Zhang Huafeng, Ao Chong, Li Zhenzhen, Liu Xiaobin. 2010. Characteristics of cell parameters of pyrite and quartz and their geological significance at Shihu gold deposit in Western Hebei, north China. Bulletin of Mineralogy, Petrology and Geochemistry, 29(2): 185~191 (in Chinese with English abstract).

    • Carl O Moses, D Kirk Nordstrom, Janet S Herman, Aaron L Mills. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6): 1561~1571.

    • Charuseiam Y, Chotpantarat S, Sutthirat C. 2022. Acid mine drainage potential of waste rocks in a gold mine (Thailand): application of a weathering cell test and multivariate statistical analysis. Environmental Geochemistry and Health, 44(3): 1049~1079.

    • Chen Binghui, Wan Moli, Wang Zhimei, Luo Zhihui, Li Wen, Shi Guiyong. 2010. A study of the bio-oxidation of pyrite by Acidithiobacillus ferrooxidans from the acid mine drainage in the Dabaoshan polymetallic ore deposit, northern Guangdong. Acta Petrologica Et Mineralogica, 29(5): 562~568 (in Chinese with English abstract).

    • Chen Fuchuan, Deng Jun, Wang Qingfei, Jan Marten Huizenga, Li gongjian, Gu Youwei. 2020. LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes. Ore Geology Reviews, 117: 103309.

    • Chen Guangyuan, Sun Daisheng, Chang Li, Zang Weisheng, Wang Jian, Lu Anhuai. 1987. Morphogenesis of pyrite. Geoscience, (1): 60~76 (in Chinese with English abstract).

    • Chen Xilian, Huang Wenting, Zou Yinqiao, Liang Huaying, Zhang Jian, Zhang Yuquan. 2016. Zircon U-Pb geochronology and geochemistry of ore-bearing porphyries in the southern Yulong porphyry copper belt, and factors resulting in the differences in scale of mineralization between the southern and northern Yulong porphyry copper belt. Acta Petrologica Sinica, 32(8): 2522~2534 (in Chinese with English abstract).

    • Deng Chengxun, Yue Mei, Wang Lingling, Wu Fenghua. 2013. Experimental study on the effects of Thiobacillus ferrooxidans on the supergenesis of pyrite under weathering conditions. Journal of Safety and Environment, 13(3): 83~89 (in Chinese with English abstract).

    • Deng Jun, Wang Qingfei, Li Gongjian, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268~299.

    • Eggleston C M, Ehrhardt J J, Stumm W. 1996. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study. American Mineralogist, 81(9-10): 1036~1056.

    • Eggleston C M, Hochella M F. 1992. Scanning tunneling microscopy of pyrite {100}: Surface structure and step reconstruction. American Mineralogist, 77(1-2): 221~224.

    • Fan Hongrui, Li Xinghui, Zuo Yabin, Chen Lei, Liu Shang, Hu Fangfang, Feng Kai. 2018. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrologica Sinica, 34(12): 3479~3496 (in Chinese with English abstract).

    • Feng Jiling, Tian Hua, Huang Yaling, Ding Zhiying, Yin Zhoulan. 2019. Directional oxidation of pyrite in acid solution. Minerals, 9(1): 7.

    • Fu Fangfang, Zan Minjie, Zhao Yuzhe, Zhang Shuangyan, Guo Peng. 2019. Determination of LA-ICP-MS in situ micro-elements in the Xiaoyingpan gold deposit pyrite and its significance for the genesis of the deposit. China Resources Comprehensive Utilization, 37(12): 48~50 (in Chinese with English abstract).

    • Fu Xiaoming, Zhang Dexian, Dai Tagen, Gao Jianfeng. 2018. Trace element record of pyrite from diverse deposits——Examples from the Dabaoshan polymetallic deposit of northern Guangdong, South China. Geotectonica et Metallogenia, 42(3): 505~519 (in Chinese with English abstract).

    • Gao Jianfeng, Zhou Meifu, Lightfoot Peter C, Christina Yan Wang, Qi Liang, Sun Min. 2013. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology, 108(8): 1833~1848.

    • Gao Jianwei, Shen Junfeng, Li Guowu, Wang Laiming, Sun Ningyue, Liu Handong, Chi Lei, Zhang Huafeng, Du Baisong. 2020. Characteristics of cell parameters and thermoelectricity of the pyrite in the Sanshandao north offshore gold deposit, Shandong Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1205~1214 (in Chinese with English abstract).

    • Gong Xin, Wei Xiaoyong, Zhao Yuanyi, Liu Chunhua, Shui Xinfang, Du Lin, Song Xiaojun, Gun Minshan, Tan Wei. 2021. LA-ICP-MS analysis of pyrite from Hulalin gold deposit in the upper Heilongjiang basin and its implication on genesis of the deposit. Geotectonica et Metallogenia, 45(4): 745~760 (in Chinese with English abstract).

    • Grande J A, Luís A T, Santisteban M, Dávila J M, Sarmiento A, Fortes J C, Silva E Ferreira da, Córdoba F. 2022. A common paragenesis and two AMD pollution sources in the Iberian pyrite belt (SW Spain): Proposal of a natural attenuation model in the affected fluvial network. Journal of Iberian Geology, 48(2): 191~204.

    • Gu Xin, Heaney P J, Reis F D A A, Brantley Susan L. 2020. Deep abiotic weathering of pyrite. Science, 370(6515): eabb8092.

    • He Hongping, Xian Haiyang, Zhu Jianxi, Tan Wei, Liang Xiaoliang, Chen Meng. 2019. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite. Acta Petrologica Sinica, 35(1): 129~136 (in Chinese with English abstract).

    • Hou Ruidong, Zhang Shuangjie, Sun Cuifang, Shao Mingjie, Wu Mengwei. 2018. Effect of Cr on high temperature oxidation behavior of steel. Journal of Plasticity Engineering, 25(2): 276~283 (in Chinese with English abstract).

    • Huang Xiaowen, Zhou Meifu, Qi Liang, Gao Jianfeng, Wang Yuwang. 2013. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China. Mineralium Deposita, 48(8): 925~946.

    • Ighalo Joshua O, Kurniawan Setyo Budi, Iwuozor Kingsley O, Aniagor Chukwunonso O, Ajala Oluwaseun J, Oba Stephen N, Iwuchukwu Felicitas U, Ahmadi Shabnam, Igwegbe Chinenye Adaobi. 2022. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Safety and Environmental Protection, 157: 37~58.

    • Jia Dacheng, Tang Shuo, Pei Yao, Gao Wen, Song Yunhong, Guo Wei, Zhang Chuanle. 2012. Prospecting significance and geochemical characteristics of the pyrites in Jincang mineralized belt, Yanbian, Jilin Province. Journal of Jilin University(Earth Science Edition), 42(4): 1069~1075 (in Chinese with English abstract).

    • Jiang Lei, Zhou Huaiyang, Peng Xiaotong. 2007. Phases in pyrite bio-oxidation process. Metal Mine, (10): 59~63 (in Chinese with English abstract).

    • Jiang Wenrui, Tu Zhihong, Zhou Shu, Wu Qi, Dang Zhi, He Huijun, Liu Chongmin, Liu Jie. 2021. A brief overview on the mechanism and kinetic influencing factors of the pyrite surface oxidation. Metal Mine, (3): 88~102 (in Chinese with English abstract).

    • Lehner S, Savage K, Ciobanu M, Cliffel D E. 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta, 71(10): 2491~2509.

    • Leng Chengbiao. 2017. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LAICPMS trace elements of pyrite and pyrrhotite. Earth Science Frontiers, 24(6): 162~175 (in Chinese with English abstract).

    • Li Chunhua. 2021. Study on the mechanism of the effect of light on the chemical oxidation of pyrite. Master's dissertation of Guilin University of Technology (in Chinese with English abstract).

    • Li Guangming, Zhang Xianan, Qin Kezhang, Sun Xingguo, Zhao Junxing, Yin Xianbo, Li Jinxiang, Yuan Huashan. 2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terrane, Central Tibet: Integrated evidence from geology, hydrothermal alteration and sulfide assemblages. Acta Petrologica Sinica, 31(8): 2307~2324 (in Chinese with English abstract).

    • Li Yanpan, Li Zhaorui, Yan Shunyi, Ma Weishi, Kang Xiaoyue, Huang Xin, Chen Ruihong, Zhang Qian. 2021. Inhibition effect of corn stover biochar on pyrite oxidation. Guangdong Chemical Industry, 48(10): 21~24+44 (in Chinese with English abstract).

    • Ling Sixiang, Wu Xiyong, Ren Yong, Sun Chunwei, Liao Xin, Li Xiaoning, Zhu Baolong. 2015. Geochemistry of trace and rare earth elements during weathering of black shale profiles in northeast Chongqing, southwestern China: Their mobilization, redistribution, and fractionation. Geochemistry, 75(3): 403~417.

    • Ling Sixiang, Wu Xiyong, Zhao Siyuan, Liao Xin, Ren Yong, Zhu Baolong. 2014. Geochemical mass balance and elemental transport during the weathering of the black shale of Shuijingtuo formation in northeast Chongqing, China. The Scientific World Journal, 2014.

    • Liu Tong, Hu Yutian, Chen Nan, Xue Lingjing, Feng Chuanping, Ye Yubo. 2021. Electrochemical investigation of the oxidation of pyrite in neutral solutions. Electrochimica Acta, 393: 139078.

    • Liu Yihao, Xue Chunji, Zhao Yun, Zhao Xiaobo, Chu Haixia, Liu Chengxian, Yu Liang, Wang Lu, Wu Dehai. 2020. Research on auriferous pyrite in hydrothermal gold deposits, China. Geoscience, 34(1): 1~12 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Lu Long, Xue Jiyue, Chen Fanrong, Zhao Lianzhong. 2005a. Dissolution of pyrite: An important study subject. Acta Petrologica et Mineralogica, (6): 666~670 (in Chinese with English abstract).

    • Lu Long, Wang Rucheng, Xue Jiyue, Chen Fanrong, Chen Jun. 2005b. Experimental study of the oxidation rate of pyrite. Science in China, Ser. D, (5): 434~440 (in Chinese with English abstract).

    • Ma Xiangxian, Zheng Guodong, Liang Shouyun, Wei Lijuan, Liang Mingliang. 2011. Weathering of pyrite and its engineering geological significance. Acta Petrologica et Mineralogica, 30(6): 1132~1138 (in Chinese with English abstract).

    • Montes-Atenas G. 2022. Fundamentals and practical aspects of acid mine drainage treatment: An overview from mine closure perspective. Wastewater Treatment.

    • Moreno-González Raúl, Macías Francisco, Olías Manuel, Cánovas Carlos Ruiz. 2022. Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian pyrite belt, Spain). Environmental Pollution, 295: 118697.

    • Moses C O, Nordstrom D K, Herman J S, Mills A L. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6): 1561~1571.

    • Mou Li, He Tengbing, Huang Huiqian, Li Xiangying. 2017. Progress in research on the acid mine drainage treatment. Tianjin Agricultural Sciences, 23(2): 42~45 (in Chinese with English abstract).

    • Pan Guitang, Li Xingzhen, Wang Liquan, Ding Jun, Chen Zhiliang. 2002. Preliminary division of tectonic units of the Qinghai-Tibet plateau and its adjacent regions. Regional Geology of China, (11): 701~707 (in Chinese with English abstract).

    • Kevin M. Rosso, Udo Becker, Michael F. Hochella. 1999. Atomically resolved electronic structure of pyrite {100} surfaces: An experimental and theoretical investigation with implications for reactivity. American Mineralogist, 84(10): 1535~1548.

    • Kaye S. Savage, Daniela Stefan, Stephen W. Lehner. 2008. Impurities and heterogeneity in pyrite: influences on electrical properties and oxidation products. Applied Geochemistry, 23(2): 103~120.

    • Skousen Jeffrey G, Ziemkiewicz Paul F, McDonald Louis M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1): 241~249.

    • Smith D J, Naden J, Jenkin G R T, Keith M. 2017. Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems. Ore Geology Reviews, 89: 772~779.

    • Somorjai Gabor A. 1990. Modern concepts in surface science and heterogeneous catalysis. Journal of Physical Chemistry, 94(3): 1013~1023.

    • Song Biao, Zeng Zhuotong, Almatrafi Eydhah, Shen Maocai, Xiong Weiping, Zhou Chengyun, Wang Wenjun, Zeng Guangming, Gong Jilai. 2022. Pyrite-mediated advanced oxidation processes: applications, mechanisms, and enhancing strategies. Water Research, 118048.

    • Stephen L, Kaye S, Madalina C, David E C. 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta, 71(10): 2491~2509.

    • Su Tao, Spicer Robert A, Li Shihu, Xu He, Huang Jian, Sherlock S, Huang Yongjiang, Li Shufeng, Wang Li, Jia Linbo, Deng Weiyudong, Liu Jia, Deng Chenglong, Zhang Shitao, Valdes Paul J, Zhou Zhekun. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. National Science Review, 6(3): 495~504.

    • Tang Renli. 1995. Geology of the Yulong Porphyry Copper (Molybdenum) Belt in Tibet. Beijing: Geological Publishing House (in Chinese).

    • Tao Shilong, Lai Jianqing, Zhang Jiandong, Hu Lifang, Qian Lihua. 2017. Typomorphic features of pyrites from the Longtoushan gold deposit, Guangxi Province and the geological significance. Contributions to Geology and Mineral Resources Research, 32(1): 33~41 (in Chinese with English abstract).

    • Tomiyama Shingo, Igarashi T. 2022. The potential threat of mine drainage to groundwater resources. Current Opinion in Environmental Science & Health: 100347.

    • Tong Le, Fan Ronggui, Yang Shuangchun, Li Cunlei. 2021. Development and status of the treatment technology for acid mine drainage. Mining, Metallurgy & Exploration, 38(1): 315~327.

    • Tu Zhihong. 2017. Studies of sulfur transformation in oxidation of pyrite and surface electrochemistry of pyrite oxidation. Doctoral dissertation of South China University of Technology (in Chinese with English abstract).

    • Tu Zhihong, Wan Jingjing, Guo Chuling, Fan Cong, Zhang Ting, Lu Guining, Reinfelder John R, Dang Zhi. 2017. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochimica Acta, 239: 25~35.

    • Tu Zhihong, Wu Qi, He Hongping, Zhou Shu, Liu Jie, He Huijun, Liu Chongming, Dang Zhi, Reinfelder John R. 2022. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Science of the Total Environment: 155116.

    • Wang Liang, Tang Li, Zhang Shouting, Santosh M, Song Kairui, Sheng Yuanming, Feng Jiaying. 2021. Genesis of a Ag-Pb-Zn-F system: Insights from in situ sulfur isotope and trace elements of pyrite, and rare earth elements of fluorite in the Baiyine'lebu deposit, Inner Mongolia, China. Ore Geology Reviews, 104667.

    • Wang Nan. 2012a. Electrochemical study of the pyrite oxidation in acidic solutions. Master's dissertation of South China University of Technology (in Chinese with English abstract).

    • Wang Nan, Yi Xiaoyun, Dang Zhi, Liu Yun. 2021b. Investigation on mechanism of pyrite oxidation in acidic solutions. Environmental Science, 33(11): 3916~3921 (in Chinese with English abstract).

    • Wang Yufei, Wang Zhilin, Lu Anhuai, Wu Lin, Xu Deru, Wu Tao, Long Yongzhen, Huang Zhilong, Fan Hongpeng. 2021. Discovery of cobalt-rich pyrite in the Yangjiadong ore block of the Maochang bauxite deposit, Guizhou Province and its significance. Acta Mineralogica Sinica, 41(Z1): 460~474 (in Chinese with English abstract).

    • Wei Mingxiu. 1986. Cell parameter equation of pyrite and its genetic implications. Acta Mineralogica Sinica, (3): 245~251 (in Chinese with English abstract).

    • Wei Youyi, Luo Jian. 1998. Thermodynamics analysis of oxidized coures of pyrite under natural abundant water. Journal of Mineralogy and Petrology, (S1): 119~123 (in Chinese with English abstract).

    • Wu Daqing, Peng Jinlian, Chen Guoxi. 1996. Experimental study on adsorption of metal ions onto sulfides (I): Types. geochimica, (2): 181~182+193+184~189 (in Chinese with English abstract).

    • Xia Yulin. 2019. Effects of isomorphic replacement on the surface reactivity of sphalerite and pyrite. Master's Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).

    • Xiao Shenglan. 1979. Discussion of the order of activity of metals. Journal of Liaoning Normal University(Natural Science Edition), (3): 71~74+40 (in Chinese with English abstract).

    • Xie Qiaoqin, Sun Shaohua, Ma Ziyi, Xu Liang, Wang Jiayu, Zhou Yuefei, Chen Tianhu, Xu Xiaochun. 2021. Mineralogy and genesis of colloform pyrite in Baocun Au(Cu) deposit, Tongling region, and its implication for Mesozoic polymetallic mineralization. Acta Geologica Sinica, 95(5): 1481~1494 (in Chinese with English abstract).

    • Xu Wanwen, Zhang Wentao. 2004. Analysis of acid mine drainage pollution in Dexing copper mine. Jiangxi Chemical Industry, (1): 87~90 (in Chinese with English abstract).

    • Yang Fucheng, Li Wenchang, Zhu Xiangping, Jiang Xiaojun, Liu Jun, Liao Zhongli, Liu Hongfei, Yang Houbin, Li Yong. 2020. Geological characteristics and prospecting of the Bada Cu-Au deposit in Mangkang county, East Tibet. Earth Science Frontiers, 27(4): 232~243 (in Chinese with English abstract).

    • Yang Hongying, Gong Enpu, Zhao Yushan, Chen Gang. 2004. Study on dynamic bio-oxidation of interface between leaching bacterium solution and natural pyrite. Journal of Northeastern University, (9): 895~898 (in Chinese with English abstract).

    • Yao Xizhu, Yang Tao, Zhu Zhiyong, Dang Ben, Feng Zhijie, Wu Changzhi. 2019. Characteristics of LA-ICP-MS trace elements in pyrite: Implications for the genesis of Xitieshan deposit in Qinghai province. Geological Journal of China Universities, 25(6): 888~900 (in Chinese with English abstract).

    • Yu Jinxi, Liu Wenli, Yao Jiayin, Zhang Yanjun. 2013. Influence of crystal defects on pyrite surface oxidation and flotation behavior. China Mining Magazine, 22(5): 88~91+111 (in Chinese with English abstract).

    • Yuan Jiaqiao, Bai Shaojun, Bi Yunxiao, Li Jie, Ding Zhan, Wen Shuming. 2022. Research progress of acid mine drainage treatment and resource comprehensive utilization at home and abroad. Nonferrous Metals Engineering, 12(4): 131~139.

    • Zhang Haiming. 2021. Investigation of phase precipitation sequence calculation and formation mechanism at interface in oxidation resistant coating on titanium surface. Master's Dissertation of Shenyang University of Technology (in Chinese with English abstract).

    • Zhang He. 2019. Content and significance of the study of the main trace elements and cell parameters of pyrite. China Metal Bulletin, (7): 288~289 (in Chinese with English abstract).

    • Zhang Wenlin, Wen Huaizhong, Lin Xin, Cao Huawen. 2021. The in-situ trace elements of gold-bearing pyrites from Suoluogou gold deposit, Muli, Sichuan. Sedimentary Geology and Tethyan Geology, 43(1): 77~86 (in Chinese with English abstract).

    • Zhao Kai, Yang Liqiang, Li Po, Xiong Yiqu. 2013. Morphology and chemistry composition of pyrite in the Laowangzhai gold deposit, Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 29(11): 3937~3948 (in Chinese with English abstract).

    • Zhong Shuiping, Wu Zhi, Huang Zhongsheng, Ruan Renman. 2013. Oxidation kinetics reaction of gold-bearing pyrite in sulphuric acid. Chinese Journal of Rare Metals, 37(2): 295~301 (in Chinese with English abstract).

    • Zhou Guiying, Ruan Renman, Wen Jiankang, Wu Biao. 2008. Bio-oxidation of pyrite during copper bioleaching in Zijinshan. Journal of University of Science and Technology Beijing, 165(1): 11~15 (in Chinese with English abstract).

    • Zhu Aiping, Tian Huwei. 2020. Discussion on acid mine waste water treatment process in metal mine. Modern Mining, 36(1): 204~206 (in Chinese with English abstract).

    • Zhu Huaxiong, He Yu. 2019. Feasibility study on source treatment of pyrite acidic wastewater in Niujiaowan of Xikou area, Longyou County, Zhejiang Province. Proceedings of The 2019 Annual Academic Conference of Zhejiang Geological Society, 151~156 (in Chinese with English abstract).

    • Zhu Jianxi, Xian Haiyang, Lin Xiaoju, Tang Hongmei, Du Runxiang, Yang Yiping, Zhu Runliang, Liang Xiaoliang, Wei Jingming, Teng H Henry, He Hongping. 2018. Surface structure-dependent pyrite oxidation in relatively dry and moist air: implications for the reaction mechanism and sulfur evolution. Geochimica et Cosmochimica Acta, 228: 259~274.

    • Zukowski W, Cooke D R, Deyell C L, McInnes P, Simpson K. 2014. Genesis and exploration implications of epithermal gold mineralization and porphyry-style alteration at the endeavour 41 prospect, Cowal district, New South Wales, Australia. Economic Geology, 109(4): 1079~1115.

    • Zuo Lina, He Qianfeng. 2013. The state-of-art and progress of the treatment technology for acid mine wastewater. Environmental Engineering, 31(5): 35~38 (in Chinese with English abstract).

    • 曹烨, 李胜荣, 张华锋, 敖翀, 李真真, 刘小滨. 2010. 冀西石湖金矿黄铁矿和石英的晶胞参数特征及其地质意义. 矿物岩石地球化学通报, 29(2): 185~191.

    • 蔡美芳, 党志. 2006. 磁黄铁矿氧化机理及酸性矿山废水防治的研究进展. 环境污染与防治, (1): 58~61.

    • 陈炳辉, 万茉莉, 王智美, 罗志辉, 李文, 石贵勇. 2010. 粤北大宝山多金属矿酸性矿山废水中氧化亚铁硫杆菌对黄铁矿的生物氧化作用研究. 岩石矿物学杂志, 29(5): 562~568.

    • 陈光远, 孙岱生, 张立, 臧维生, 王健, 鲁安怀. 1987. 黄铁矿成因形态学. 现代地质, (1): 60~76.

    • 陈喜连, 黄文婷, 邹银桥, 梁华英, 张健, 张玉泉. 2016. 玉龙斑岩铜矿带南段含矿斑岩体锆石U-Pb年龄、地球化学特征及南北段成矿规模差异分析. 岩石学报, 32(8): 2522~2534.

    • 邓呈逊, 岳梅, 王玲玲, 吴凤华. 2013. 氧化亚铁硫杆菌对黄铁矿的表生风化试验研究. 安全与环境学报, 13(3): 83~89.

    • 范宏瑞, 李兴辉, 左亚彬, 陈蕾, 刘尚, 胡芳芳, 冯凯. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479~3496.

    • 付芳芳, 昝敏杰, 赵禹喆, 张双燕, 郭鹏. 2019. 小营盘金矿床黄铁矿LA-ICP-MS原位微区元素测定及其对矿床成因的指示意义. 中国资源综合利用, 37(12): 48~50.

    • 傅晓明, 张德贤, 戴塔根, 高剑峰. 2018. 不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例. 大地构造与成矿学, 42(3): 505~519.

    • 高建伟, 申俊峰, 李国武, 王来明, 孙宁岳, 刘汉栋, 迟雷, 张华锋, 杜柏松. 2020. 胶东三山岛北部海域金矿黄铁矿晶胞参数与热电性特征. 矿物岩石地球化学通报, 39(6): 1205~1214.

    • 巩鑫, 魏小勇, 赵元艺, 刘春花, 水新芳, 杜蔺, 宋小军, 衮民汕, 谭伟. 2021. 上黑龙江盆地虎拉林金矿床黄铁矿LA-ICP-MS原位测试及其对矿床成因的制约. 大地构造与成矿学, 45(4): 745~760.

    • 何宏平, 鲜海洋, 朱建喜, 谭伟, 梁晓亮, 陈锰. 2019. 从矿物粉晶表面反应性到矿物晶面反应性——以黄铁矿氧化行为的晶面差异性为例. 岩石学报, 35(1): 129~136.

    • 侯瑞东, 张双杰, 孙萃芳, 邵明杰, 吴梦玮. 2018. Cr元素对钢高温氧化行为的影响. 塑性工程学报, 25(2): 276~283.

    • 贾大成, 唐烁, 裴尧, 高文, 宋运红, 郭威, 张传乐. 2012. 吉林延边金苍矿化带黄铁矿地球化学特征及找矿意义. 吉林大学学报(地球科学版), 42(4): 1069~1075.

    • 蒋磊, 周怀阳, 彭晓彤. 2007. 黄铁矿生物氧化过程的阶段性. 金属矿山, (10): 59~63.

    • 蒋文瑞, 涂志红, 周姝, 吴奇, 党志, 何慧军, 刘崇敏, 刘杰. 2021. 黄铁矿表面氧化机理及动力学影响因素研究进展. 金属矿山, (3): 88~102.

    • 冷成彪. 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约. 地学前缘, 24(6): 162~175.

    • 李春花. 2021. 光对黄铁矿化学氧化影响作用机理研究. 桂林理工大学硕士学位论文.

    • 李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、热液蚀变及金属矿物组合证据. 岩石学报, 31(8): 2307~2324.

    • 李彦盼, 李赵芮, 鄢顺意, 马伟师, 康晓跃, 黄欣, 陈瑞红, 张倩. 2021. 玉米秸秆生物炭抑制黄铁矿氧化效果. 广东化工, 48(10): 21~24+44.

    • 刘一浩, 薛春纪, 赵云, 赵晓波, 褚海霞, 刘城先, 余亮, 王璐, 吴得海. 2020. 我国热液金矿中黄铁矿的载金性研究. 现代地质, 34(1): 1~12.

    • 卢龙, 薛纪越, 陈繁荣, 赵炼忠. 2005a. 黄铁矿表面溶解——不容忽视的研究领域. 岩石矿物学杂志, (6): 666~670.

    • 卢龙, 王汝成, 薛纪越, 陈繁荣, 陈骏. 2005b. 黄铁矿氧化速率的实验研究. 中国科学(D辑: 地球科学), (5): 434~440.

    • 马向贤, 郑国东, 梁收运, 魏丽娟, 梁明亮. 2011. 黄铁矿风化作用及其工程地质意义. 岩石矿物学杂志, 30(6): 1132~1138.

    • 牟力, 何腾兵, 黄会前, 李相楹. 2017. 酸性矿山废水治理技术的研究进展. 天津农业科学, 23(2): 42~45.

    • 潘桂棠, 李兴振, 王立全, 丁俊, 陈智粱. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, (11): 701~707.

    • 唐仁鲤. 1995. 西藏玉龙斑岩铜(钼)矿带地质. 北京: 地质出版社.

    • 陶诗龙, 赖健清, 张建东, 胡理芳, 钱丽华. 2017. 广西龙头山金矿床黄铁矿标型特征及其地质意义. 地质找矿论丛, 32(1): 33~41.

    • 涂志红. 2017. 黄铁矿氧化过程中硫形态转化及其表面氧化电化学研究. 华南理工大学博士学位论文.

    • 王楠. 2012a. 酸性条件下黄铁矿氧化过程的电化学研究. 华南理工大学硕士学位论文.

    • 王楠, 易筱筠, 党志, 刘云. 2012b. 酸性条件下黄铁矿氧化机制的研究. 环境科学, 33(11): 3916~3921.

    • 王宇非, 王智琳, 鲁安怀, 吴林, 许德如, 吴涛, 龙永珍, 黄智龙, 范宏鹏, 彭耳柯. 2021. 黔中猫场杨家洞矿段铝土矿中富钴黄铁矿的发现与意义. 矿物学报, 41(Z1): 460~474.

    • 魏明秀. 1986. 黄铁矿晶胞参数计算及某些杂质含量分布特征. 矿物学报, (3): 245~251.

    • 魏有仪, 罗健. 1998. 天然饱水条件下黄铁矿氧化过程的热力学探讨. 矿物岩石, (S1): 119~123.

    • 吴大清, 彭金莲, 陈国玺. 1996. 硫化物吸附金属离子的实验研究—Ⅰ类型. 地球化学, (2): 181~182+193+184~189.

    • 夏玉林, 2019. 类质同像置换对闪锌矿和黄铁矿表面反应性的制约. 中国科学院大学(中国科学院广州地球化学研究所)硕士学位论文.

    • 肖盛兰, 1979. 金属活动性顺序的讨论. 辽宁师院学报(自然科学版), (3): 71~74+40.

    • 谢巧勤, 孙少华, 马子意, 徐亮, 王家宇, 周跃飞, 陈天虎, 徐晓春. 2021. 铜陵包村金(铜)矿床中胶状黄铁矿矿物学及成因解析. 地质学报, 95(5): 1481~1494.

    • 许万文, 张文涛. 2004. 德兴铜矿酸性矿山废水污染分析. 江西化工, (1): 87~90.

    • 杨富成, 李文昌, 祝向平, 江小均, 刘俊, 廖忠礼, 刘鸿, 杨后斌, 李勇. 2020. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究. 地学前缘, 27(4): 232~243.

    • 杨洪英, 巩恩普, 赵玉山, 陈刚. 2004. 浸矿菌液/天然黄铁矿界面的动态氧化研究. 东北大学学报, (9): 895~898.

    • 姚希柱, 杨涛, 朱志勇, 党奔, 丰志杰, 吴昌志. 2019. 黄铁矿LA-ICP-MS微量元素特征: 对青海锡铁山矿床成因的启示. 高校地质学报, 25(6): 888~900.

    • 于进喜, 刘文礼, 姚嘉胤, 张廖军. 2013. 晶体缺陷对黄铁矿表面氧化以及浮选行为的影响. 中国矿业, 22(5): 88~91+111.

    • 张海明. 2021. 钛表面耐氧化涂层界面相析出顺序计算与形成机理研究. 沈阳工业大学硕士学位论文.

    • 张赫. 2019. 黄铁矿主微量元素及晶胞参数研究内容和意义. 中国金属通报, (7): 288~289.

    • 张文林, 文怀忠, 林鑫, 曹华文. 2021. 四川木里梭罗沟金矿床载金黄铁矿原位微量元素特征, 沉积与特提斯地质, 43(1): 77~86.

    • 赵凯, 杨立强, 李坡, 熊一曲. 2013. 滇西老王寨金矿床黄铁矿形貌特征与化学组成. 岩石学报, 29(11): 3937~3948.

    • 衷水平, 吴智, 黄中省, 阮仁满. 2013. 硫酸介质中载金黄铁矿的氧化动力学. 稀有金属, 37(2): 295~301.

    • 周桂英, 阮仁满, 温建康, 武彪. 2008. 紫金山铜矿浸出过程黄铁矿的氧化行为. 北京科技大学学报, 65(1): 11~15.

    • 朱爱平, 田虎伟. 2020. 浅谈金属矿山酸性废水处理工艺. 现代矿业, 36(1): 204~206.

    • 朱华雄, 何钰. 2019. 浙江省龙游县溪口牛角湾黄铁矿酸性废水源头治理可行性探讨. 浙江地质工作70年——浙江省地质学会2019年学术年会论文集, 151~156.

    • 左莉娜, 贺前锋. 2013. 酸性矿山废水的治理技术现状及进展. 环境工程, 31(5): 35~38.

  • 参考文献

    • Abraitis P K, Pattrick R A D, Vaughan D J. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74(1-4): 41~59.

    • Cai Meifang, Dang Zhi. 2006. A review on pyrrhotite oxidation mechanism and acid mine drainage prevention. Environmental Pollution & Control, (1): 58~61 (in Chinese with English abstract).

    • Cao Ye, Li Shengrong, Zhang Huafeng, Ao Chong, Li Zhenzhen, Liu Xiaobin. 2010. Characteristics of cell parameters of pyrite and quartz and their geological significance at Shihu gold deposit in Western Hebei, north China. Bulletin of Mineralogy, Petrology and Geochemistry, 29(2): 185~191 (in Chinese with English abstract).

    • Carl O Moses, D Kirk Nordstrom, Janet S Herman, Aaron L Mills. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6): 1561~1571.

    • Charuseiam Y, Chotpantarat S, Sutthirat C. 2022. Acid mine drainage potential of waste rocks in a gold mine (Thailand): application of a weathering cell test and multivariate statistical analysis. Environmental Geochemistry and Health, 44(3): 1049~1079.

    • Chen Binghui, Wan Moli, Wang Zhimei, Luo Zhihui, Li Wen, Shi Guiyong. 2010. A study of the bio-oxidation of pyrite by Acidithiobacillus ferrooxidans from the acid mine drainage in the Dabaoshan polymetallic ore deposit, northern Guangdong. Acta Petrologica Et Mineralogica, 29(5): 562~568 (in Chinese with English abstract).

    • Chen Fuchuan, Deng Jun, Wang Qingfei, Jan Marten Huizenga, Li gongjian, Gu Youwei. 2020. LA-ICP-MS trace element analysis of magnetite and pyrite from the Hetaoping Fe-Zn-Pb skarn deposit in Baoshan block, SW China: Implications for ore-forming processes. Ore Geology Reviews, 117: 103309.

    • Chen Guangyuan, Sun Daisheng, Chang Li, Zang Weisheng, Wang Jian, Lu Anhuai. 1987. Morphogenesis of pyrite. Geoscience, (1): 60~76 (in Chinese with English abstract).

    • Chen Xilian, Huang Wenting, Zou Yinqiao, Liang Huaying, Zhang Jian, Zhang Yuquan. 2016. Zircon U-Pb geochronology and geochemistry of ore-bearing porphyries in the southern Yulong porphyry copper belt, and factors resulting in the differences in scale of mineralization between the southern and northern Yulong porphyry copper belt. Acta Petrologica Sinica, 32(8): 2522~2534 (in Chinese with English abstract).

    • Deng Chengxun, Yue Mei, Wang Lingling, Wu Fenghua. 2013. Experimental study on the effects of Thiobacillus ferrooxidans on the supergenesis of pyrite under weathering conditions. Journal of Safety and Environment, 13(3): 83~89 (in Chinese with English abstract).

    • Deng Jun, Wang Qingfei, Li Gongjian, Santosh M. 2014. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268~299.

    • Eggleston C M, Ehrhardt J J, Stumm W. 1996. Surface structural controls on pyrite oxidation kinetics: An XPS-UPS, STM, and modeling study. American Mineralogist, 81(9-10): 1036~1056.

    • Eggleston C M, Hochella M F. 1992. Scanning tunneling microscopy of pyrite {100}: Surface structure and step reconstruction. American Mineralogist, 77(1-2): 221~224.

    • Fan Hongrui, Li Xinghui, Zuo Yabin, Chen Lei, Liu Shang, Hu Fangfang, Feng Kai. 2018. In-situ LA-(MC)-ICPMS and (Nano) SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrologica Sinica, 34(12): 3479~3496 (in Chinese with English abstract).

    • Feng Jiling, Tian Hua, Huang Yaling, Ding Zhiying, Yin Zhoulan. 2019. Directional oxidation of pyrite in acid solution. Minerals, 9(1): 7.

    • Fu Fangfang, Zan Minjie, Zhao Yuzhe, Zhang Shuangyan, Guo Peng. 2019. Determination of LA-ICP-MS in situ micro-elements in the Xiaoyingpan gold deposit pyrite and its significance for the genesis of the deposit. China Resources Comprehensive Utilization, 37(12): 48~50 (in Chinese with English abstract).

    • Fu Xiaoming, Zhang Dexian, Dai Tagen, Gao Jianfeng. 2018. Trace element record of pyrite from diverse deposits——Examples from the Dabaoshan polymetallic deposit of northern Guangdong, South China. Geotectonica et Metallogenia, 42(3): 505~519 (in Chinese with English abstract).

    • Gao Jianfeng, Zhou Meifu, Lightfoot Peter C, Christina Yan Wang, Qi Liang, Sun Min. 2013. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, northwestern China. Economic Geology, 108(8): 1833~1848.

    • Gao Jianwei, Shen Junfeng, Li Guowu, Wang Laiming, Sun Ningyue, Liu Handong, Chi Lei, Zhang Huafeng, Du Baisong. 2020. Characteristics of cell parameters and thermoelectricity of the pyrite in the Sanshandao north offshore gold deposit, Shandong Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1205~1214 (in Chinese with English abstract).

    • Gong Xin, Wei Xiaoyong, Zhao Yuanyi, Liu Chunhua, Shui Xinfang, Du Lin, Song Xiaojun, Gun Minshan, Tan Wei. 2021. LA-ICP-MS analysis of pyrite from Hulalin gold deposit in the upper Heilongjiang basin and its implication on genesis of the deposit. Geotectonica et Metallogenia, 45(4): 745~760 (in Chinese with English abstract).

    • Grande J A, Luís A T, Santisteban M, Dávila J M, Sarmiento A, Fortes J C, Silva E Ferreira da, Córdoba F. 2022. A common paragenesis and two AMD pollution sources in the Iberian pyrite belt (SW Spain): Proposal of a natural attenuation model in the affected fluvial network. Journal of Iberian Geology, 48(2): 191~204.

    • Gu Xin, Heaney P J, Reis F D A A, Brantley Susan L. 2020. Deep abiotic weathering of pyrite. Science, 370(6515): eabb8092.

    • He Hongping, Xian Haiyang, Zhu Jianxi, Tan Wei, Liang Xiaoliang, Chen Meng. 2019. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite. Acta Petrologica Sinica, 35(1): 129~136 (in Chinese with English abstract).

    • Hou Ruidong, Zhang Shuangjie, Sun Cuifang, Shao Mingjie, Wu Mengwei. 2018. Effect of Cr on high temperature oxidation behavior of steel. Journal of Plasticity Engineering, 25(2): 276~283 (in Chinese with English abstract).

    • Huang Xiaowen, Zhou Meifu, Qi Liang, Gao Jianfeng, Wang Yuwang. 2013. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China. Mineralium Deposita, 48(8): 925~946.

    • Ighalo Joshua O, Kurniawan Setyo Budi, Iwuozor Kingsley O, Aniagor Chukwunonso O, Ajala Oluwaseun J, Oba Stephen N, Iwuchukwu Felicitas U, Ahmadi Shabnam, Igwegbe Chinenye Adaobi. 2022. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Safety and Environmental Protection, 157: 37~58.

    • Jia Dacheng, Tang Shuo, Pei Yao, Gao Wen, Song Yunhong, Guo Wei, Zhang Chuanle. 2012. Prospecting significance and geochemical characteristics of the pyrites in Jincang mineralized belt, Yanbian, Jilin Province. Journal of Jilin University(Earth Science Edition), 42(4): 1069~1075 (in Chinese with English abstract).

    • Jiang Lei, Zhou Huaiyang, Peng Xiaotong. 2007. Phases in pyrite bio-oxidation process. Metal Mine, (10): 59~63 (in Chinese with English abstract).

    • Jiang Wenrui, Tu Zhihong, Zhou Shu, Wu Qi, Dang Zhi, He Huijun, Liu Chongmin, Liu Jie. 2021. A brief overview on the mechanism and kinetic influencing factors of the pyrite surface oxidation. Metal Mine, (3): 88~102 (in Chinese with English abstract).

    • Lehner S, Savage K, Ciobanu M, Cliffel D E. 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta, 71(10): 2491~2509.

    • Leng Chengbiao. 2017. Genesis of Hongshan Cu polymetallic large deposit in the Zhongdian area, NW Yunnan: Constraints from LAICPMS trace elements of pyrite and pyrrhotite. Earth Science Frontiers, 24(6): 162~175 (in Chinese with English abstract).

    • Li Chunhua. 2021. Study on the mechanism of the effect of light on the chemical oxidation of pyrite. Master's dissertation of Guilin University of Technology (in Chinese with English abstract).

    • Li Guangming, Zhang Xianan, Qin Kezhang, Sun Xingguo, Zhao Junxing, Yin Xianbo, Li Jinxiang, Yuan Huashan. 2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terrane, Central Tibet: Integrated evidence from geology, hydrothermal alteration and sulfide assemblages. Acta Petrologica Sinica, 31(8): 2307~2324 (in Chinese with English abstract).

    • Li Yanpan, Li Zhaorui, Yan Shunyi, Ma Weishi, Kang Xiaoyue, Huang Xin, Chen Ruihong, Zhang Qian. 2021. Inhibition effect of corn stover biochar on pyrite oxidation. Guangdong Chemical Industry, 48(10): 21~24+44 (in Chinese with English abstract).

    • Ling Sixiang, Wu Xiyong, Ren Yong, Sun Chunwei, Liao Xin, Li Xiaoning, Zhu Baolong. 2015. Geochemistry of trace and rare earth elements during weathering of black shale profiles in northeast Chongqing, southwestern China: Their mobilization, redistribution, and fractionation. Geochemistry, 75(3): 403~417.

    • Ling Sixiang, Wu Xiyong, Zhao Siyuan, Liao Xin, Ren Yong, Zhu Baolong. 2014. Geochemical mass balance and elemental transport during the weathering of the black shale of Shuijingtuo formation in northeast Chongqing, China. The Scientific World Journal, 2014.

    • Liu Tong, Hu Yutian, Chen Nan, Xue Lingjing, Feng Chuanping, Ye Yubo. 2021. Electrochemical investigation of the oxidation of pyrite in neutral solutions. Electrochimica Acta, 393: 139078.

    • Liu Yihao, Xue Chunji, Zhao Yun, Zhao Xiaobo, Chu Haixia, Liu Chengxian, Yu Liang, Wang Lu, Wu Dehai. 2020. Research on auriferous pyrite in hydrothermal gold deposits, China. Geoscience, 34(1): 1~12 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Lu Long, Xue Jiyue, Chen Fanrong, Zhao Lianzhong. 2005a. Dissolution of pyrite: An important study subject. Acta Petrologica et Mineralogica, (6): 666~670 (in Chinese with English abstract).

    • Lu Long, Wang Rucheng, Xue Jiyue, Chen Fanrong, Chen Jun. 2005b. Experimental study of the oxidation rate of pyrite. Science in China, Ser. D, (5): 434~440 (in Chinese with English abstract).

    • Ma Xiangxian, Zheng Guodong, Liang Shouyun, Wei Lijuan, Liang Mingliang. 2011. Weathering of pyrite and its engineering geological significance. Acta Petrologica et Mineralogica, 30(6): 1132~1138 (in Chinese with English abstract).

    • Montes-Atenas G. 2022. Fundamentals and practical aspects of acid mine drainage treatment: An overview from mine closure perspective. Wastewater Treatment.

    • Moreno-González Raúl, Macías Francisco, Olías Manuel, Cánovas Carlos Ruiz. 2022. Temporal evolution of acid mine drainage (AMD) leachates from the abandoned tharsis mine (Iberian pyrite belt, Spain). Environmental Pollution, 295: 118697.

    • Moses C O, Nordstrom D K, Herman J S, Mills A L. 1987. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochimica et Cosmochimica Acta, 51(6): 1561~1571.

    • Mou Li, He Tengbing, Huang Huiqian, Li Xiangying. 2017. Progress in research on the acid mine drainage treatment. Tianjin Agricultural Sciences, 23(2): 42~45 (in Chinese with English abstract).

    • Pan Guitang, Li Xingzhen, Wang Liquan, Ding Jun, Chen Zhiliang. 2002. Preliminary division of tectonic units of the Qinghai-Tibet plateau and its adjacent regions. Regional Geology of China, (11): 701~707 (in Chinese with English abstract).

    • Kevin M. Rosso, Udo Becker, Michael F. Hochella. 1999. Atomically resolved electronic structure of pyrite {100} surfaces: An experimental and theoretical investigation with implications for reactivity. American Mineralogist, 84(10): 1535~1548.

    • Kaye S. Savage, Daniela Stefan, Stephen W. Lehner. 2008. Impurities and heterogeneity in pyrite: influences on electrical properties and oxidation products. Applied Geochemistry, 23(2): 103~120.

    • Skousen Jeffrey G, Ziemkiewicz Paul F, McDonald Louis M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1): 241~249.

    • Smith D J, Naden J, Jenkin G R T, Keith M. 2017. Hydrothermal alteration and fluid pH in alkaline-hosted epithermal systems. Ore Geology Reviews, 89: 772~779.

    • Somorjai Gabor A. 1990. Modern concepts in surface science and heterogeneous catalysis. Journal of Physical Chemistry, 94(3): 1013~1023.

    • Song Biao, Zeng Zhuotong, Almatrafi Eydhah, Shen Maocai, Xiong Weiping, Zhou Chengyun, Wang Wenjun, Zeng Guangming, Gong Jilai. 2022. Pyrite-mediated advanced oxidation processes: applications, mechanisms, and enhancing strategies. Water Research, 118048.

    • Stephen L, Kaye S, Madalina C, David E C. 2007. The effect of As, Co, and Ni impurities on pyrite oxidation kinetics: An electrochemical study of synthetic pyrite. Geochimica et Cosmochimica Acta, 71(10): 2491~2509.

    • Su Tao, Spicer Robert A, Li Shihu, Xu He, Huang Jian, Sherlock S, Huang Yongjiang, Li Shufeng, Wang Li, Jia Linbo, Deng Weiyudong, Liu Jia, Deng Chenglong, Zhang Shitao, Valdes Paul J, Zhou Zhekun. 2019. Uplift, climate and biotic changes at the Eocene-Oligocene transition in south-eastern Tibet. National Science Review, 6(3): 495~504.

    • Tang Renli. 1995. Geology of the Yulong Porphyry Copper (Molybdenum) Belt in Tibet. Beijing: Geological Publishing House (in Chinese).

    • Tao Shilong, Lai Jianqing, Zhang Jiandong, Hu Lifang, Qian Lihua. 2017. Typomorphic features of pyrites from the Longtoushan gold deposit, Guangxi Province and the geological significance. Contributions to Geology and Mineral Resources Research, 32(1): 33~41 (in Chinese with English abstract).

    • Tomiyama Shingo, Igarashi T. 2022. The potential threat of mine drainage to groundwater resources. Current Opinion in Environmental Science & Health: 100347.

    • Tong Le, Fan Ronggui, Yang Shuangchun, Li Cunlei. 2021. Development and status of the treatment technology for acid mine drainage. Mining, Metallurgy & Exploration, 38(1): 315~327.

    • Tu Zhihong. 2017. Studies of sulfur transformation in oxidation of pyrite and surface electrochemistry of pyrite oxidation. Doctoral dissertation of South China University of Technology (in Chinese with English abstract).

    • Tu Zhihong, Wan Jingjing, Guo Chuling, Fan Cong, Zhang Ting, Lu Guining, Reinfelder John R, Dang Zhi. 2017. Electrochemical oxidation of pyrite in pH 2 electrolyte. Electrochimica Acta, 239: 25~35.

    • Tu Zhihong, Wu Qi, He Hongping, Zhou Shu, Liu Jie, He Huijun, Liu Chongming, Dang Zhi, Reinfelder John R. 2022. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Science of the Total Environment: 155116.

    • Wang Liang, Tang Li, Zhang Shouting, Santosh M, Song Kairui, Sheng Yuanming, Feng Jiaying. 2021. Genesis of a Ag-Pb-Zn-F system: Insights from in situ sulfur isotope and trace elements of pyrite, and rare earth elements of fluorite in the Baiyine'lebu deposit, Inner Mongolia, China. Ore Geology Reviews, 104667.

    • Wang Nan. 2012a. Electrochemical study of the pyrite oxidation in acidic solutions. Master's dissertation of South China University of Technology (in Chinese with English abstract).

    • Wang Nan, Yi Xiaoyun, Dang Zhi, Liu Yun. 2021b. Investigation on mechanism of pyrite oxidation in acidic solutions. Environmental Science, 33(11): 3916~3921 (in Chinese with English abstract).

    • Wang Yufei, Wang Zhilin, Lu Anhuai, Wu Lin, Xu Deru, Wu Tao, Long Yongzhen, Huang Zhilong, Fan Hongpeng. 2021. Discovery of cobalt-rich pyrite in the Yangjiadong ore block of the Maochang bauxite deposit, Guizhou Province and its significance. Acta Mineralogica Sinica, 41(Z1): 460~474 (in Chinese with English abstract).

    • Wei Mingxiu. 1986. Cell parameter equation of pyrite and its genetic implications. Acta Mineralogica Sinica, (3): 245~251 (in Chinese with English abstract).

    • Wei Youyi, Luo Jian. 1998. Thermodynamics analysis of oxidized coures of pyrite under natural abundant water. Journal of Mineralogy and Petrology, (S1): 119~123 (in Chinese with English abstract).

    • Wu Daqing, Peng Jinlian, Chen Guoxi. 1996. Experimental study on adsorption of metal ions onto sulfides (I): Types. geochimica, (2): 181~182+193+184~189 (in Chinese with English abstract).

    • Xia Yulin. 2019. Effects of isomorphic replacement on the surface reactivity of sphalerite and pyrite. Master's Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).

    • Xiao Shenglan. 1979. Discussion of the order of activity of metals. Journal of Liaoning Normal University(Natural Science Edition), (3): 71~74+40 (in Chinese with English abstract).

    • Xie Qiaoqin, Sun Shaohua, Ma Ziyi, Xu Liang, Wang Jiayu, Zhou Yuefei, Chen Tianhu, Xu Xiaochun. 2021. Mineralogy and genesis of colloform pyrite in Baocun Au(Cu) deposit, Tongling region, and its implication for Mesozoic polymetallic mineralization. Acta Geologica Sinica, 95(5): 1481~1494 (in Chinese with English abstract).

    • Xu Wanwen, Zhang Wentao. 2004. Analysis of acid mine drainage pollution in Dexing copper mine. Jiangxi Chemical Industry, (1): 87~90 (in Chinese with English abstract).

    • Yang Fucheng, Li Wenchang, Zhu Xiangping, Jiang Xiaojun, Liu Jun, Liao Zhongli, Liu Hongfei, Yang Houbin, Li Yong. 2020. Geological characteristics and prospecting of the Bada Cu-Au deposit in Mangkang county, East Tibet. Earth Science Frontiers, 27(4): 232~243 (in Chinese with English abstract).

    • Yang Hongying, Gong Enpu, Zhao Yushan, Chen Gang. 2004. Study on dynamic bio-oxidation of interface between leaching bacterium solution and natural pyrite. Journal of Northeastern University, (9): 895~898 (in Chinese with English abstract).

    • Yao Xizhu, Yang Tao, Zhu Zhiyong, Dang Ben, Feng Zhijie, Wu Changzhi. 2019. Characteristics of LA-ICP-MS trace elements in pyrite: Implications for the genesis of Xitieshan deposit in Qinghai province. Geological Journal of China Universities, 25(6): 888~900 (in Chinese with English abstract).

    • Yu Jinxi, Liu Wenli, Yao Jiayin, Zhang Yanjun. 2013. Influence of crystal defects on pyrite surface oxidation and flotation behavior. China Mining Magazine, 22(5): 88~91+111 (in Chinese with English abstract).

    • Yuan Jiaqiao, Bai Shaojun, Bi Yunxiao, Li Jie, Ding Zhan, Wen Shuming. 2022. Research progress of acid mine drainage treatment and resource comprehensive utilization at home and abroad. Nonferrous Metals Engineering, 12(4): 131~139.

    • Zhang Haiming. 2021. Investigation of phase precipitation sequence calculation and formation mechanism at interface in oxidation resistant coating on titanium surface. Master's Dissertation of Shenyang University of Technology (in Chinese with English abstract).

    • Zhang He. 2019. Content and significance of the study of the main trace elements and cell parameters of pyrite. China Metal Bulletin, (7): 288~289 (in Chinese with English abstract).

    • Zhang Wenlin, Wen Huaizhong, Lin Xin, Cao Huawen. 2021. The in-situ trace elements of gold-bearing pyrites from Suoluogou gold deposit, Muli, Sichuan. Sedimentary Geology and Tethyan Geology, 43(1): 77~86 (in Chinese with English abstract).

    • Zhao Kai, Yang Liqiang, Li Po, Xiong Yiqu. 2013. Morphology and chemistry composition of pyrite in the Laowangzhai gold deposit, Ailaoshan orogenic belt, SW China. Acta Petrologica Sinica, 29(11): 3937~3948 (in Chinese with English abstract).

    • Zhong Shuiping, Wu Zhi, Huang Zhongsheng, Ruan Renman. 2013. Oxidation kinetics reaction of gold-bearing pyrite in sulphuric acid. Chinese Journal of Rare Metals, 37(2): 295~301 (in Chinese with English abstract).

    • Zhou Guiying, Ruan Renman, Wen Jiankang, Wu Biao. 2008. Bio-oxidation of pyrite during copper bioleaching in Zijinshan. Journal of University of Science and Technology Beijing, 165(1): 11~15 (in Chinese with English abstract).

    • Zhu Aiping, Tian Huwei. 2020. Discussion on acid mine waste water treatment process in metal mine. Modern Mining, 36(1): 204~206 (in Chinese with English abstract).

    • Zhu Huaxiong, He Yu. 2019. Feasibility study on source treatment of pyrite acidic wastewater in Niujiaowan of Xikou area, Longyou County, Zhejiang Province. Proceedings of The 2019 Annual Academic Conference of Zhejiang Geological Society, 151~156 (in Chinese with English abstract).

    • Zhu Jianxi, Xian Haiyang, Lin Xiaoju, Tang Hongmei, Du Runxiang, Yang Yiping, Zhu Runliang, Liang Xiaoliang, Wei Jingming, Teng H Henry, He Hongping. 2018. Surface structure-dependent pyrite oxidation in relatively dry and moist air: implications for the reaction mechanism and sulfur evolution. Geochimica et Cosmochimica Acta, 228: 259~274.

    • Zukowski W, Cooke D R, Deyell C L, McInnes P, Simpson K. 2014. Genesis and exploration implications of epithermal gold mineralization and porphyry-style alteration at the endeavour 41 prospect, Cowal district, New South Wales, Australia. Economic Geology, 109(4): 1079~1115.

    • Zuo Lina, He Qianfeng. 2013. The state-of-art and progress of the treatment technology for acid mine wastewater. Environmental Engineering, 31(5): 35~38 (in Chinese with English abstract).

    • 曹烨, 李胜荣, 张华锋, 敖翀, 李真真, 刘小滨. 2010. 冀西石湖金矿黄铁矿和石英的晶胞参数特征及其地质意义. 矿物岩石地球化学通报, 29(2): 185~191.

    • 蔡美芳, 党志. 2006. 磁黄铁矿氧化机理及酸性矿山废水防治的研究进展. 环境污染与防治, (1): 58~61.

    • 陈炳辉, 万茉莉, 王智美, 罗志辉, 李文, 石贵勇. 2010. 粤北大宝山多金属矿酸性矿山废水中氧化亚铁硫杆菌对黄铁矿的生物氧化作用研究. 岩石矿物学杂志, 29(5): 562~568.

    • 陈光远, 孙岱生, 张立, 臧维生, 王健, 鲁安怀. 1987. 黄铁矿成因形态学. 现代地质, (1): 60~76.

    • 陈喜连, 黄文婷, 邹银桥, 梁华英, 张健, 张玉泉. 2016. 玉龙斑岩铜矿带南段含矿斑岩体锆石U-Pb年龄、地球化学特征及南北段成矿规模差异分析. 岩石学报, 32(8): 2522~2534.

    • 邓呈逊, 岳梅, 王玲玲, 吴凤华. 2013. 氧化亚铁硫杆菌对黄铁矿的表生风化试验研究. 安全与环境学报, 13(3): 83~89.

    • 范宏瑞, 李兴辉, 左亚彬, 陈蕾, 刘尚, 胡芳芳, 冯凯. 2018. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程. 岩石学报, 34(12): 3479~3496.

    • 付芳芳, 昝敏杰, 赵禹喆, 张双燕, 郭鹏. 2019. 小营盘金矿床黄铁矿LA-ICP-MS原位微区元素测定及其对矿床成因的指示意义. 中国资源综合利用, 37(12): 48~50.

    • 傅晓明, 张德贤, 戴塔根, 高剑峰. 2018. 不同成因类型矿化中黄铁矿微量元素地球化学记录——以广东大宝山多金属矿床为例. 大地构造与成矿学, 42(3): 505~519.

    • 高建伟, 申俊峰, 李国武, 王来明, 孙宁岳, 刘汉栋, 迟雷, 张华锋, 杜柏松. 2020. 胶东三山岛北部海域金矿黄铁矿晶胞参数与热电性特征. 矿物岩石地球化学通报, 39(6): 1205~1214.

    • 巩鑫, 魏小勇, 赵元艺, 刘春花, 水新芳, 杜蔺, 宋小军, 衮民汕, 谭伟. 2021. 上黑龙江盆地虎拉林金矿床黄铁矿LA-ICP-MS原位测试及其对矿床成因的制约. 大地构造与成矿学, 45(4): 745~760.

    • 何宏平, 鲜海洋, 朱建喜, 谭伟, 梁晓亮, 陈锰. 2019. 从矿物粉晶表面反应性到矿物晶面反应性——以黄铁矿氧化行为的晶面差异性为例. 岩石学报, 35(1): 129~136.

    • 侯瑞东, 张双杰, 孙萃芳, 邵明杰, 吴梦玮. 2018. Cr元素对钢高温氧化行为的影响. 塑性工程学报, 25(2): 276~283.

    • 贾大成, 唐烁, 裴尧, 高文, 宋运红, 郭威, 张传乐. 2012. 吉林延边金苍矿化带黄铁矿地球化学特征及找矿意义. 吉林大学学报(地球科学版), 42(4): 1069~1075.

    • 蒋磊, 周怀阳, 彭晓彤. 2007. 黄铁矿生物氧化过程的阶段性. 金属矿山, (10): 59~63.

    • 蒋文瑞, 涂志红, 周姝, 吴奇, 党志, 何慧军, 刘崇敏, 刘杰. 2021. 黄铁矿表面氧化机理及动力学影响因素研究进展. 金属矿山, (3): 88~102.

    • 冷成彪. 2017. 滇西北红山铜多金属矿床的成因类型: 黄铁矿和磁黄铁矿LA-ICPMS微量元素制约. 地学前缘, 24(6): 162~175.

    • 李春花. 2021. 光对黄铁矿化学氧化影响作用机理研究. 桂林理工大学硕士学位论文.

    • 李光明, 张夏楠, 秦克章, 孙兴国, 赵俊兴, 印贤波, 李金祥, 袁华山. 2015. 羌塘南缘多龙矿集区荣那斑岩-高硫型浅成低温热液Cu-(Au)套合成矿: 综合地质、热液蚀变及金属矿物组合证据. 岩石学报, 31(8): 2307~2324.

    • 李彦盼, 李赵芮, 鄢顺意, 马伟师, 康晓跃, 黄欣, 陈瑞红, 张倩. 2021. 玉米秸秆生物炭抑制黄铁矿氧化效果. 广东化工, 48(10): 21~24+44.

    • 刘一浩, 薛春纪, 赵云, 赵晓波, 褚海霞, 刘城先, 余亮, 王璐, 吴得海. 2020. 我国热液金矿中黄铁矿的载金性研究. 现代地质, 34(1): 1~12.

    • 卢龙, 薛纪越, 陈繁荣, 赵炼忠. 2005a. 黄铁矿表面溶解——不容忽视的研究领域. 岩石矿物学杂志, (6): 666~670.

    • 卢龙, 王汝成, 薛纪越, 陈繁荣, 陈骏. 2005b. 黄铁矿氧化速率的实验研究. 中国科学(D辑: 地球科学), (5): 434~440.

    • 马向贤, 郑国东, 梁收运, 魏丽娟, 梁明亮. 2011. 黄铁矿风化作用及其工程地质意义. 岩石矿物学杂志, 30(6): 1132~1138.

    • 牟力, 何腾兵, 黄会前, 李相楹. 2017. 酸性矿山废水治理技术的研究进展. 天津农业科学, 23(2): 42~45.

    • 潘桂棠, 李兴振, 王立全, 丁俊, 陈智粱. 2002. 青藏高原及邻区大地构造单元初步划分. 地质通报, (11): 701~707.

    • 唐仁鲤. 1995. 西藏玉龙斑岩铜(钼)矿带地质. 北京: 地质出版社.

    • 陶诗龙, 赖健清, 张建东, 胡理芳, 钱丽华. 2017. 广西龙头山金矿床黄铁矿标型特征及其地质意义. 地质找矿论丛, 32(1): 33~41.

    • 涂志红. 2017. 黄铁矿氧化过程中硫形态转化及其表面氧化电化学研究. 华南理工大学博士学位论文.

    • 王楠. 2012a. 酸性条件下黄铁矿氧化过程的电化学研究. 华南理工大学硕士学位论文.

    • 王楠, 易筱筠, 党志, 刘云. 2012b. 酸性条件下黄铁矿氧化机制的研究. 环境科学, 33(11): 3916~3921.

    • 王宇非, 王智琳, 鲁安怀, 吴林, 许德如, 吴涛, 龙永珍, 黄智龙, 范宏鹏, 彭耳柯. 2021. 黔中猫场杨家洞矿段铝土矿中富钴黄铁矿的发现与意义. 矿物学报, 41(Z1): 460~474.

    • 魏明秀. 1986. 黄铁矿晶胞参数计算及某些杂质含量分布特征. 矿物学报, (3): 245~251.

    • 魏有仪, 罗健. 1998. 天然饱水条件下黄铁矿氧化过程的热力学探讨. 矿物岩石, (S1): 119~123.

    • 吴大清, 彭金莲, 陈国玺. 1996. 硫化物吸附金属离子的实验研究—Ⅰ类型. 地球化学, (2): 181~182+193+184~189.

    • 夏玉林, 2019. 类质同像置换对闪锌矿和黄铁矿表面反应性的制约. 中国科学院大学(中国科学院广州地球化学研究所)硕士学位论文.

    • 肖盛兰, 1979. 金属活动性顺序的讨论. 辽宁师院学报(自然科学版), (3): 71~74+40.

    • 谢巧勤, 孙少华, 马子意, 徐亮, 王家宇, 周跃飞, 陈天虎, 徐晓春. 2021. 铜陵包村金(铜)矿床中胶状黄铁矿矿物学及成因解析. 地质学报, 95(5): 1481~1494.

    • 许万文, 张文涛. 2004. 德兴铜矿酸性矿山废水污染分析. 江西化工, (1): 87~90.

    • 杨富成, 李文昌, 祝向平, 江小均, 刘俊, 廖忠礼, 刘鸿, 杨后斌, 李勇. 2020. 藏东芒康县巴达铜金矿床地质特征及找矿方向研究. 地学前缘, 27(4): 232~243.

    • 杨洪英, 巩恩普, 赵玉山, 陈刚. 2004. 浸矿菌液/天然黄铁矿界面的动态氧化研究. 东北大学学报, (9): 895~898.

    • 姚希柱, 杨涛, 朱志勇, 党奔, 丰志杰, 吴昌志. 2019. 黄铁矿LA-ICP-MS微量元素特征: 对青海锡铁山矿床成因的启示. 高校地质学报, 25(6): 888~900.

    • 于进喜, 刘文礼, 姚嘉胤, 张廖军. 2013. 晶体缺陷对黄铁矿表面氧化以及浮选行为的影响. 中国矿业, 22(5): 88~91+111.

    • 张海明. 2021. 钛表面耐氧化涂层界面相析出顺序计算与形成机理研究. 沈阳工业大学硕士学位论文.

    • 张赫. 2019. 黄铁矿主微量元素及晶胞参数研究内容和意义. 中国金属通报, (7): 288~289.

    • 张文林, 文怀忠, 林鑫, 曹华文. 2021. 四川木里梭罗沟金矿床载金黄铁矿原位微量元素特征, 沉积与特提斯地质, 43(1): 77~86.

    • 赵凯, 杨立强, 李坡, 熊一曲. 2013. 滇西老王寨金矿床黄铁矿形貌特征与化学组成. 岩石学报, 29(11): 3937~3948.

    • 衷水平, 吴智, 黄中省, 阮仁满. 2013. 硫酸介质中载金黄铁矿的氧化动力学. 稀有金属, 37(2): 295~301.

    • 周桂英, 阮仁满, 温建康, 武彪. 2008. 紫金山铜矿浸出过程黄铁矿的氧化行为. 北京科技大学学报, 65(1): 11~15.

    • 朱爱平, 田虎伟. 2020. 浅谈金属矿山酸性废水处理工艺. 现代矿业, 36(1): 204~206.

    • 朱华雄, 何钰. 2019. 浙江省龙游县溪口牛角湾黄铁矿酸性废水源头治理可行性探讨. 浙江地质工作70年——浙江省地质学会2019年学术年会论文集, 151~156.

    • 左莉娜, 贺前锋. 2013. 酸性矿山废水的治理技术现状及进展. 环境工程, 31(5): 35~38.