en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

胡古月,男,1985年生。研究员,主要从事矿床地球化学和分析化学研究工作。E-mail:wanghuguyue@126.com。

参考文献
Aharon P. 1988. A stable-isotope study of magnesites from the Rum Jungle uranium field, Australia: Implications for the origin of strata-bound massive magnesites. Chemical Geology, 69: 127~145.
参考文献
Bau M, Möller P. 1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, 45: 231~246.
参考文献
Bekker A, Kaufman A J, Karhu J A, Eriksson K A. 2005. Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137: 167~206.
参考文献
Bureau of Geological Exploration for Non-ferrous Metals. 2001. Magnesite resource reserve verification report of Sidao Hongshan, Jinta County of Gansu Province, 1~24 (in Chinese).
参考文献
Chen Yuchuan, Wang Denghong, Xu Zhigang, et al. , 2015. Important Minerals and Regional Metallogenic Regularity in China. Beijing: Geological Publishing House, 156~174 (in Chinese).
参考文献
Dong Aiguo, Zhu Xiangkun, Li Shizhen, Kendall B, Wang Yue, Gao Zhaofu. 2016. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constrains from Mg isotopes. Precambrian Research, 281: 673~683.
参考文献
Drnek T, Moraes M, Neto P B. 2018. Overview of magnesite. RHI Magnesia Bulletin, 1: 14~22.
参考文献
Ebner F, Prochaska W, Troby J, Zadeh A M A. 2004. Carbonate hosted sparry magnesite of the Greywacke zone, Austria/eastern Alps. Acta Petrologica Sinica, 20(4): 791~802 (in English with Chinese abstract).
参考文献
Feng Beizhan, Wang Xiaowei, Zeng Junjie, Zhang Xuekui. 2005. Characteristics determination of Paleoproterozoic Era continental rift volcanic rock in the western section of North Qilian. Gansu Geology, 14(1): 15~20 (in Chinese with English abstract).
参考文献
Gao Yu, Hao Yujie, Ren Yunsheng, Shi Yufan, Sun Zhenming, Wang Chongyi. 2020. U-Pb dating of detrital zircon from Dapandao Formation of Xingdong Group in Jiamusi Massif, Helongjiang and its geological significance. World Geology, 39(1): 16~29 (in Chinese with English abstract).
参考文献
He Shiping, Li Rongshe, Wang Chao, Yu Pusheng, Gu Pingyang, Shi Chao. 2010. Geochronology of gneissic plagioclase-amphibolite from Beidahe Group complex in western segment of Qilian Mountains, China. Geological Bulletin of China, 29(9): 1275~1280 (in Chinese with English abstract).
参考文献
Henjes-Kunst F, Prochaska W, Niedermayr A, Sullivan N, Baxter E. 2014. Sm-Nd dating of hydrothermal carbonate formation: An example from the Breitenau magnesite deposit (Styria, Austria). Chemical Geology, 387: 184~201.
参考文献
Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481~492 (in Chinese with English abstract).
参考文献
Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.
参考文献
Hu Guyue, Li Yanhe, Fan Changfu, Zhao Yue, Hou Kejun, Wang Tianhui. 2015. Paleoproterozoic magnesite and borate deposits from eastern Liaoning Province: With a discussion about synchrono-heteropic facies of sedimentary mineralization. Mineral Deposits, 34(3): 547~564.
参考文献
Hu Guyue, Sun Xinsheng, Zheng Jun, Yu Xuhui, Wang Dongbo, Li Yanhe, Zhao Yue, Chen Han, Xu Ying, Alison O. 2022. The genesis of Haicheng-Dashiqiao magnesite deposits, Liaodong Peninsula. Acta Geologica Sinica, 96(4): 1340~1355 (in Chinese with English abstract).
参考文献
Huang Hua, Zhang Lianchang, Sebastien F, Wang Changle, Zhai Mingguo. 2017. Depositional environment and original of the Lilaozhuang Neoarchean BIF-hosted iron-magnesite deposit on the southern margin of the North China Craton. International Journal of Earth Science, 106: 1753~1772.
参考文献
Huang Hua, Zhang Lianchang. 2020. Genesis of the Lilaozhuang iron-magnesite deposit in the Huoqiu area of Anhui Province: Indicative significance of carbon and oxygen isotopes. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1312~1324 (in Chinese with English abstract).
参考文献
Jiang Shaoyong, Chen Congxi, Chen Yongquan, Jiang Yaohui, Dai Baozhang, Ni Pei. 2004. Geochemistry and genetic model for the giant magnesite deposits in the eastern Liaoning Province, China. Acta Petrologica Sinica, 20(4): 765~772 (in Chinese with English abstract).
参考文献
Joshi P, Pant P D, Upadhyaya R C. 2009. Petrography and geochemistry of magnesite and talc deposits of Jhiroli, Kumaun Lesser Himalaya. Magmatism, Tectonism and Mineralization, 215~229.
参考文献
Krupenin M T, Kol'tsov A B. 2017. Geology, composition, and physicochemical model of sparry magnesite deposits of the southern Urals. Geology of Ore Deposits, 59(1): 14~35.
参考文献
Lee G, Shin D, Lee S, Koh S M, Lee B H, You B W, Yoo B C. 2021. Ore genesis and tectonic implication of the Daeheung-Ryongyang magnesite deposits in the East Jiao-Liao-Ji belt, North Korea. Lithos, 400-401: 106402.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
参考文献
Mao Jingwen, Zhang Zhaochong, Yang Jianmin, Song Biao, Wu Maobing, Zuo Guochao. 1998. Single grain zircon dating of Precambrian strata in the western section of North Qilian Mountains and its geological significance. Chinese Science Bulletin, 13: 1414~1417 (in Chinese with English abstract).
参考文献
Melezhik V A, Fallick A E, Medvedev P V, Makarikhin V V. 2001. Palaeoproterozoic magnesite: Lithological and isotopic evidence for playa/sabkha environments. Sedimentology, 48(2): 379~397.
参考文献
Melezhik V A, Fallick A E, Rychanchik D V, Kuznetsov A B. 2005. Palaeoproterozoic evaporates in Fennoscandia: Implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the δ13C excursions. Terra Nova, 17: 141~148.
参考文献
Misch D, Pluch H, Mali H, Ebner F, Huang Hui. 2018. Genesis of giant Early magnesite and related talc deposits in the Mafeng area, Liaoning Province, NE China. Journal of Asian Earth Sciences, 160: 1~12.
参考文献
Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1~35.
参考文献
Nishihara H. 1956. Origin of the bedded magnesites of Manchuria. Economic Geology, 51(7): 698~711.
参考文献
Pohl W. 1990. Genesis of magnesite deposit-models and trends. International Journal of Earth Sciences, 79(2): 291~299.
参考文献
Ronchi L H, Parente C V, Fuzikawa K, Neto A B. 2008. Genetic and metamorphic conditions constrained by fluid Paleoproterozoic (c. 1. 8 Ga) magnesite ore deposits, NE Brazil. Journal of South American Earth Science, 25(4): 492~500.
参考文献
Schroll E. 2002. Genesis of magnesite deposits in the view of isotope geochemistry. Boletim Paranaense de Geociências, 50: 59~68.
参考文献
Schumann D, Martin R F, Fuchs S, Fourestier J D. 2019. Silicocarbonatitic melt inclusions in fluorapatite from the Yates prospect, Otter lake, Quebec: Evidence of marble anatexis in the central metasedimentary belt of the Grenville Province. The Canadian Mineralogist, 57: 583~604.
参考文献
Sláma J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N Whitehouse M J. 2008. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.
参考文献
Sun Yubao. 2007. Geological characteristics and metallogenic types of the Lilaozhuang iron-magnesite deposit in Huoqiu, Anhui. Mineral Resources and Geology, 21(5): 532~537.
参考文献
Tang Haoshu, Chen Yanjing, Wu Guang, Yang Tao. 2009. Rare earth element geochemistry of carbonates of Dashlqiao Formation, Liaohe Group, eastern Liaoning Province: Implications for Lomagundi event. Acta Petrologica Sinica, 25(11): 3075~3093 (in Chinese with English abstract).
参考文献
Tang Haoshu, Chen Yanjing, Santosh M, Zhong Hong, Wu Guang, Lai Yong. 2013. C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: Implications for the Great Oxidation Event and ore genesis. Geological Journal, 48(5), 467~483.
参考文献
Tracy D F, Fielding C R. 2003. Marine origin for Precambrian, carbonate-hosted magnesite? Geology, 31: 1101~1104.
参考文献
Trap P, Faure M, Lin W, Monie P, Meffre S, Melleton J. 2009. The Zanhuang massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172: 80~98.
参考文献
Veizer J, Hoefs J. 1976. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 40: 1387~1395.
参考文献
Velasco F Q, Pesquera A, Arce R, Olmedo F. 1987. A contribution to the ore genesisof the magnesite deposit of Eugui, Navarra (Spain). Mineral Deposita, 22(1): 33~41.
参考文献
Wan Yusheng, Song Biao, Liu Dunyi, Wilde S A, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Paleoproterozoic tectonothermal event . Precambrian Research, 149: 249~271.
参考文献
Wang Peicheng, Zhang Chengji. 1996. Metamorphosed nonmetallic mineral-bearing form ations in the Proterozoic medium to high grade metamorphic sequence in eastern Shandong. Shandong Geology, 2: 31~47 (in Chinese with English abstract).
参考文献
Warren J K. 1990. Sedimentology and minerlogy of dolomitic Coorong lakes, South Australia. Journal of Sedimentary Petrology, 60(6): 843~858.
参考文献
Yang Chonghui, Du Lilin, Song Huixia, Ren Liudong, Miao Peisen, Lu Zenglong. 2018. Stratigraphic division and correlation of the Pleoproterozoic strata in the North China Craton: A review. Acta Petrologica Sinica, 34(4): 1019~1057 (in Chinese with English abstract).
参考文献
Yang Xiaoyong, Wang Bohua, Du Zhenbao, Wang Qicai, Wang Yuxian, Tu Zhengbiao, Zhang Wenli, Sun Weidong. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of the North China craton. Acta Petrologica Sinica, 28(11): 3476~3496.
参考文献
Yaxley G M, Anenburg M, Tappe S, Decree S, Guzmics T. 2022. Carbonatites: Classification, sources, evolution, and emplacement. Annual Review of Earth and Planetary Sciences, 50: 261~293.
参考文献
Zadeh A M A. , Ebner F, Jiang Shaoyong, 2015. Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (eastern Alps/Austria): Implications for a metasomatic genetic model. Mineralogy and Petrology, 109(5): 555~575.
参考文献
Zhang Qiusheng. 1988. Early proterozoic tectonic styles and associated mineral deposits of the North China platform. Precambrian Research, 39(1-2): 1~29.
参考文献
Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13~54.
参考文献
陈毓川, 王登红, 徐志刚等. 2015. 中国重要矿产和区域成矿规律. 北京: 地质出版社, 156~174.
参考文献
冯备战, 王晓伟, 曾俊杰, 张学奎. 2005. 北祁连西段古元古代大陆裂谷火山岩性质的确定. 甘肃地质学报, 14(1): 15~20.
参考文献
高煜, 郝宇杰, 任云生, 史雨凡, 孙振明, 王崇一. 2020. 黑龙江佳木斯地块兴东群大盘道组碎屑锆石U-Pb定年及其地质意义. 世界地质, 39(1): 16~29.
参考文献
何世平, 李荣社, 王超, 于浦生, 辜平阳, 时超. 2010. 祁连山西段甘肃肃北地区北大河岩群片麻状斜长角闪岩的形成时代. 地质通报, 29(9): 1275~1280.
参考文献
胡古月, 李延河, 范昌福, 赵悦, 侯可军, 王天慧. 2015. 辽东古元古代菱镁矿矿床与硼酸盐矿床——同期异相沉积成矿探讨. 矿床地质, 34(3): 547~564.
参考文献
胡古月, 孙新胜, 郑军, 余旭辉, 王东波, 李延河, 赵悦, 陈翰, 徐莺, Ord A. 2022. 辽东半岛海城-大石桥菱镁矿矿床成因探讨. 地质学报, 96(4): 1340~1355.
参考文献
黄华, 张连昌. 2020. 安徽霍邱李老庄铁-菱镁矿床成因探讨: 碳、氧同位素的指示意义. 矿物岩石地球化学通报, 39(6): 1312~1324.
参考文献
毛景文, 张招崇, 杨建民, 宋彪, 吴茂炳, 左国朝. 1998. 北祁连山西段前寒武纪地层单颗粒锆石测年及地质意义. 科学通报, 13: 1414~1417.
参考文献
孙玉宝. 2007. 安徽霍邱李老庄铁矿-菱镁矿矿床地质特征及矿床成因类型. 矿产与地质, 21(5): 532~537.
参考文献
汤好书, 陈衍景, 武广, 杨涛. 2009. 辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示. 岩石学报, 25(11): 3075~3093.
参考文献
王沛成, 张成基. 1996. 鲁东地区元古宙中深变质岩系非金属矿含矿变质建造. 山东地质, 2: 31~47.
参考文献
杨崇辉, 杜利林, 宋会侠, 任留东, 苗培森, 路增龙. 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019~1057.
参考文献
杨晓勇, 王波华, 杜贞宝, 王启才, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476~3496.
参考文献
张秋生. 1984. 中国早前寒武纪地质及成矿作用. 吉林人民出版社, 1~544.
参考文献
张招崇, 毛景文, 左国朝, 杨建民, 王志良, 张作衡. 1998. 北祁连山西段早元古代变质火山岩的地球化学特征及其构造背景. 矿物岩石, 18(4): 22~31.
目录contents

    摘要

    晶质菱镁矿矿床赋存于海相碳酸盐岩建造,为富镁碳酸盐经后期变质重结晶的产物,属沉积-变质型矿床。本次研究将中国境内的晶质菱镁矿矿床按变质重结晶程度分为三类 (高、中和低),并进行了地质和地球化学研究,获得如下认识:① 产于古生代海相碳酸盐岩中的菱镁矿矿床经历低程度变质重结晶作用(绿片岩相),矿石结晶度差,品位相对较低(44.98%~47.35%),且保留有海相碳酸盐岩建造的碳同位素地球化学特征(δ13CV-PDB:-0.4‰~+0.3‰);② 大型(>5000万t)优质(MgO>46%)晶质菱镁矿矿床集中分布在华北克拉通东部的古元古代胶-辽-吉活动带海相碳酸盐岩中,矿体后期经历中等程度变质重结晶作用(中—低角闪岩相),矿石发生中等程度的重结晶作用,继承了海相碳同位素地球化学特征(δ13CV-PDB:-1.9‰~+1.7‰);③ 经历高角闪岩相(高级)变质作用的菱镁矿矿床矿石结晶程度最优,但强烈的变质作用引发外源含硅热液流体加入而发生蛇纹石化作用,矿石品位低(MgO=44.42%~45.55%),具有较高的TFeO、Mn和Ti含量,整体亦显示较低的碳同位素组成(δ13CV-PDB:-4.1‰~-3.5‰)。因此,沉积-变质型菱镁矿矿体的镁质富集可能发生在海相沉积成岩期,后期变质作用引发富镁碳酸盐矿物重结晶作用,镁质碳酸盐和钙质碳酸盐矿物进一步发生近原地分离重结晶作用,形成晶质菱镁矿矿体和富镁白云石夹石,但过高(高角闪岩相及以上)或过低(绿片岩相)的变质作用可能均不利于形成大型优质晶质菱镁矿矿床。

    Abstract

    The sedimentary-metamorphic sparry magnesite deposits are hosted in the Mg-rich marine carbonate Formations and suffered metamorphic recrystallization of late-stages. Geochemical and stable isotope (C and O) study has been carried out on three typical magnesite deposits suffered by high-, medium- and low-metamorphic grades. Geological observation and geochemical data shows: ① The magnesite ores that hosted in Paleozoic marine sedimentary rocks endured low grade metamorphic recrystallization, shows relatively low contents of magnisium (44.98%~47.35%), and inherited the marine carbon isotopic characteristics (δ13CV-PDB: -0.4‰~+0.3‰). ② Most of the large-class (>50 Mt) magnesite deposits in China are located at the Paleoproterozoic Jiao-Liao-Ji belt, east margin of North China Craton. These magnesite ore endured medium grade metamorphic recrystallization, shows relatively high contents of magnisium (MgO>46%), and inherited the marine carbon isotopic characteristics (δ13CV-PDB: -1.9‰~+1.7‰). ③ The magnesite ores that endured high grade metamorphic recrystallization with large crystals (particle size of more than 1cm), altered by silica-metamorphic fluids. These serpentinized magnesite ores show relatively low contents of magnisium (MgO=44.42%~45.55%), high contents of TFeO, Mn, Ti, and low carbon isotopic compositions (δ13CV-PDB:-4.1‰~-3.5‰). Therefore, the magnesium enrichment process may be happened during the marine sedimentary and diagenetic epoch, with the sparry magnesite ores formed during the metamorphic recrystallization of late-stages. The Mg- and Ca-carbonate may occur fractional crystallization during the metamorphism, formed the dolomite interlayers in the magnesite orebodies, the high (high amphibolite to granulite facies) or low (greenschist facies) metamorphic recrystallization were not beneficial to the development of sedimentary-metamorphic sparry magnesite deposit.

  • 按围岩类型和矿石结晶程度,菱镁矿矿床可分为两大类:赋存于新太古界—古生界海相碳酸盐岩中的“沉积-变质型”晶质菱镁矿矿床和赋存于超镁铁质岩内或其周缘地层之中的“超基性岩相关型”隐晶质菱镁矿矿床(陈毓川等,2015)。全球菱镁矿保有资源储量聚集在中国(26%)、朝鲜(23%)和俄罗斯(21%)(Drnek et al.,2018),并以沉积-变质型为主。沉积-变质型晶质菱镁矿资源主要产于亚洲东部华北-朝鲜克拉通的新太古界—古元古界海相沉积碳酸盐岩(Zhang Qiusheng,1988; Huang Hua et al.,2017; Lee et al.,2021),东欧地区的古生界海相碳酸盐岩建造(Ebner et al.,2004; Zaheh et al.,2015),少部分亦可见于澳大利亚北领地(Aharon et al.,1988),巴西克拉通(Ronchi et al.,2008),以及全球诸多造山带微地块(Ronchi et al.,2008)。超基性岩相关型隐晶质菱镁矿矿床产于蛇绿岩套之中,品位较高且分布广泛,但普遍为中小型矿床(单个矿床控制资源量小于5000万t),仅我国青藏高原的卡玛多菱镁矿矿床的矿石资源量达5100万t,为大型矿床(陈毓川等,2015)。

  • 沉积-变质型晶质菱镁矿矿床为全球菱镁矿矿石的开发主体,其成因机制一直备受关注。由于晶质菱镁矿矿床中保留有大量原生沉积叠层石及海相沉积特征的稳定同位素证据,学者将矿床成因归结为与海相蒸发沉积事件相关(Nishihara,1956; Zhang Qiusheng,1988; Pohl,1990)。潟湖相富镁碳酸盐岩沉积期后,晚阶段卤水交代形成菱镁矿矿床的成矿模式在21世纪初被提出(Melezhik et al.,2001),并得到众多学者的赞同(例如Joshi et al.,2009; Zadeh et al.,2015; Krupenin and Koltsov,2017)。但是,后期变质作用引发矿石重结晶和交代现象在矿石结构中表现显著,变质作用在成矿过程中的贡献究竟如何,却是一个存在争议的问题。具体观点包括:① 变质作用引发外源富镁变质热液交代白云岩地层成矿(例如Velasco et al.,1987; Aharon,1988); ② 原地重结晶作用(例如Nishihara,1956; Schroll,2002; Frank et al.,2005; Tang Haoshu et al.,2013; Misch et al.,2018); ③ 变质作用导致镁质流失和矿体贫化(Dong Aiguo et al.,2016)。

  • 为确定变质重结晶在菱镁矿成矿过程中的作用,本次研究根据围岩变质级别和矿物重结晶程度,将中国境内赋存于镁质碳酸盐岩建造之中的沉积-变质型菱镁矿矿床划分为低、中和高三种变质重结晶级别。经历绿片岩相变质作用的沉积-变质型菱镁矿矿床赋存于古生界,定为经历低等程度的变质重结晶作用;经历中—低角闪岩相变质作用的菱镁矿矿床产于古元古界—中元古界,定为经历中等程度的变质重结晶作用;而经历高角闪岩相—混合岩化变质程度的矿床主要产于新太古界—古元古界,个别赋存于新元古界,定为经历高等程度的变质重结晶作用。通过对三类不同变质重结晶程度的典型菱镁矿矿床进行了野外地质调查和采样,并配以元素地球化学和同位素地球化学测试工作,试图更深入地理解后期变质重结晶作用对沉积-变质型晶质菱镁矿矿床改造过程,更好地限定变质重结晶在菱镁矿矿床成矿过程中所起到的作用。

  • 1 矿床分布规律及地质特征

  • 1.1 中国菱镁矿矿床分布特征

  • 中国菱镁矿资源储量居全球之首,主体(>98%)以层控晶质菱镁矿矿体形式赋存于新太古代—古生代海相富镁碳酸盐岩建造中,少部分(<2%)呈网脉状或块状隐晶质菱镁矿矿体赋存于超基性岩岩体及其周缘碳酸盐岩中。按照中华人民共和国地质矿产行业标准中的菱镁矿、白云岩矿产地质勘查规范(DZ/T 0348—2020)的资源储量规模划分标准,菱镁矿矿床矿石(MgO含量大于41%)量<1000万t为小型,1000~5000万t为中型,>5000万t为大型。中国的晶质菱镁矿矿床(或矿集区)及资源储量规模总结如下:① 华北克拉通东南缘新太古界霍邱条带状铁建造中的李老庄铁矿伴生的菱镁矿资源,菱镁矿矿石资源量332.9万t(孙玉宝,2007);、② 华北克拉通中部晋-豫活动带,发育于古元古界官都群的大河菱镁矿床矿床,菱镁矿矿石资源量3747万t(河北省地质局第十四地质队,1977); ③ 华北克拉通东部胶-辽-吉活动带,赋存于古元古界辽河群大石桥组之中的辽宁省海城-大石桥菱镁矿矿集区和赋存于古元古界粉子山群张格庄组的粉子山-优游山菱镁矿矿集区,矿石储量合计超过10亿t(陈毓川等,2015);④ 中亚北山造山带柳园-大奇山地块,中元古界蓟县系平头山组发育有四道红山滑石-菱镁矿矿床,菱镁矿矿石资源量为392.5万t(甘肃省有色金属地质勘查局,2011);⑤ 中亚造山带东段,兴蒙造山带内佳木斯前寒武纪地块的新元古界兴东群建堂组中发育有环山子菱镁矿矿床菱镁矿,矿石量570万t(黑龙江省有色金属地质勘查研究总院,2003); ⑥ 祁连造山带内北祁连前寒武纪地块,北大河岩群中发育有古生代别盖菱镁矿矿床,矿石量2694万t(甘肃省地质局第二地质队,1970); ⑦ 塔里木克拉通北缘,艾尔宾晚古生代残余海盆的早泥盆世镁质碳酸盐岩建造之中的哈勒哈特和尖山菱镁矿矿床,矿石量>5000万t(陈毓川等,2015)。因此,中国沉积-变质型晶质菱镁矿矿床的主成矿时代集中在古元古代和古生代两个时期:古元古代在华北克拉通的古元古代活动带中形成了全球最大规模的菱镁矿矿床矿集区;古生代阶段在塔里木克拉通和祁连山的微地块中形成了一些中—大型菱镁矿矿床。另外,中国具工业开发意义的超基性岩相关型菱镁矿矿床仅包括有西藏类乌齐县卡玛多(大型)、内蒙古乌拉特中旗察汗奴鲁(小型)、甘肃肃北县音凹峡(小型)和青海祁连草大阪(小型)四处,资源量占比仅不到2%(陈毓川等,2015)。

  • 按照变质级别,中国的沉积-变质型晶质菱镁矿矿床可分为经历有高级(高角闪岩相—混合岩化)变质作用,中级(中—低角闪岩相)变质作用和低级(绿片岩相)变质作用三类,重结晶程度与变质级别正相关。经历高级变质作用的菱镁矿矿床包括华北克拉通东南缘的新太古代李老庄铁矿中伴生的菱镁矿资源,晋豫活动带中的古元古代大河菱镁矿矿床和兴蒙造山带内佳木斯前寒武纪地块中的新元古界环山子菱镁矿矿床。经历中级变质作用的菱镁矿矿床为华北克拉通胶-辽-吉活动带中的古元古界的海城-大石桥菱镁矿矿集区,粉子山-优游山菱镁矿矿集区和中亚北山造山带柳园-大奇山地块中的中元古界四道红山滑石-菱镁矿矿床。经历低级变质作用的菱镁矿矿床为祁连造山带的别盖和塔里木克拉通北缘艾尔宾晚古生代残余海盆的早泥盆世镁质碳酸盐岩建造之中的哈勒哈特和尖山菱镁矿矿床(图1)。

  • 1.2 矿床地质特征

  • 本次研究对别盖、海城—大石桥、大河三处典型菱镁矿矿床(矿集区)进行了野外地质调查和采样,以期获得不同变质及重结晶程度对菱镁矿矿体的地质改造印记。

  • 1.2.1 别盖菱镁矿矿床

  • 甘肃别盖菱镁矿矿床赋存于北大河岩群三组的镁质碳酸盐岩建造。北大河群主要分布于祁连山西段至祁连山主峰一带,呈透镜状、长条状的残块形式分布于祁连造山带中(冯备战等,2005)。北大河群主体由古元古代大陆裂谷型火山岩构成,被认为是形成于北祁连山古元古代裂谷环境(毛景文等,1998张招崇等,1998冯备战等,2005)。在祁连山造山带最西端,肃北县县城附近的北大河群三组的碳酸盐岩建造中,产出有别盖菱镁矿矿床。祁连造山带西段肃北党河一带(图2)的北大河岩群普遍发育透入性片理,局部发育片麻理,变质程度为低角闪岩相—高绿片岩相(何世平等,2010)。

  • 图1 中国菱镁矿矿床分布图(底图据Zhao Guochun et al.,2012

  • Fig.1 Distribution map of magnesite deposits in China (after Zhao Guochun et al., 2012)

  • ①—李老庄磁铁矿-菱镁矿矿床(高级变质作用); ②—大河菱镁矿矿床(高级变质作用); ③—海城-大石桥菱镁矿矿集区(中级变质作用); ④—优游山-粉子山菱镁矿矿集区(中级变质作用); ⑤—四道红山滑石-菱镁矿矿床(中级变质作用); ⑥—环山子菱镁矿矿床(高级变质作用); ⑦—别盖菱镁矿矿床(低级变质作用); ⑧—哈勒哈特菱镁矿矿床(低级变质作用); ⑨—尖山菱镁矿矿床(低级变质作用); ⑩—卡玛多菱镁矿矿床; ⑪—察汗奴鲁菱镁矿矿床; ⑫—音凹峡菱镁矿矿床; ⑬—草大阪菱镁矿矿床; ①~⑨为沉积变质型晶质菱镁矿矿床; ⑩~⑬为超基性岩相关型隐晶质菱镁矿矿床

  • ①—Lilaozhuang magnetite-magnesite deposit (high-grade metamorphism) ; ②—Dahe magnesite deposit (high-grade metamorphism) ; ③—Haicheng-Dashiqiao magnesite ore concentration area (medium-grade metamorphism) ; ④—Youyoushan-Fenzishan magnesite ore concentration area (medium-grade metamorphism) ; ⑤—Sidao Hongshan talc-magnesite deposit (medium-grade metamorphism) ; ⑥ Huanshanzi magnesite deposit (high-grade metamorphism) ; ⑦—Biegai magnesite deposit (low-grade metamorphism) ; ⑧—Hale Hate magnesite deposit (low-grade metamorphism) ; ⑨—Jianshan magnesite deposit (low-grade metamorphism) ; ⑩—Kamaduo magnesite deposit; ⑪—Chahanuru magnesite deposit; ⑫—Yinaoxia magnesite deposit; ⑬—Caodaban magnesite deposit; ①~⑨ represent sedimentary-metamorphic sparry magnesite deposit; ⑩~⑬represent ultramafic-related cryptocrystalline magnesite deposit

  • 别盖菱镁矿赋存于白云石大理岩中,层控特性明显,矿体多呈似层状,偶为透镜状。矿体之延伸方向,与围岩层理一致(图3a),但接触面常呈不规则状。宏观上可见白云岩或泥质岩透镜体,多呈条带状(图3b)、扁豆状,与矿体的界线较明显,一般长度小于30 m,宽度小于5 m。别盖菱镁矿所在地层经历了“千枚岩”程度的绿片岩相变质作用(何世平等,2010),矿体下部层位中夹有炭质千枚岩(图3b),矿体下盘发育有条带状白云岩地层(图3c)。相对于产在华北克拉通的海城式晶质菱镁矿矿床(陈毓川等,2015),别盖菱镁矿所在地层经历的变质作用程度较低,矿石普遍晶粒较小(图3d),晶体粒度普遍在100~200 μm(图3f);极少部分矿石具有肉眼可见的晶质结构(图3d)。矿石构造单一,以块状为主,约占矿石90%,其次为条带状、条纹状矿石(图3e),偶见斑杂状及角砾状矿石。别盖菱镁矿矿床的热液交代现象较为常见,矿体中存在白云质交代残留体,多为肉红色白云岩、紫红色角砾状白云岩和白云质菱镁岩,与矿体的界线一般不明显,多呈渐变过渡状态。

  • 图2 甘肃肃北党和一带地质简图(据徐学义等,2008何世平等,2010修改)

  • Fig.2 Geological sketch of Danghe area in Subei County, Gansu Province (modified after Xu Xueyi et al., 2008; He Shiping et al., 2010)

  • 1 —第四系; 2—志留系巴龙贡噶尔组; 3—中上奥陶统盐池湾组; 4—中下奥陶统吾力沟组; 5—中寒武统黑茨沟组; 6—上寒武统香毛山组; 7—青白口系龚岔群; 8—蓟县系花儿地组; 9—长城系南白水河组; 10—长城系朱龙关群; 11—古元古界北大河岩群; 12—太古宇—古元古界敦煌岩群; 13—中元古代二长花岗岩; 14—志留纪超基性岩;15—志留纪辉长岩; 16—志留纪闪长岩; 17—志留纪石英闪长岩; 18—志留纪花岗闪长岩; 19—志留纪花岗岩; 20—志留纪二长花岗岩; 21—断层/推测断层; 22—公路/河流; 23—研究区范围; 24—别盖菱镁矿矿床

  • 1 —Quaternary; 2—Balonggar Formation of Silurian; 3—Yanchiwan Formation of Middle and Upper Ordovician; 4—Wuligou Formation of Middle and Lower Ordovician; 5—Heicigou Formation of Middle Cambrian; 6—Xiangmaoshan Formation of Upper Cambrian; 7—Gongcha Group of Qingbaikou System; 8—Huadi Formation of Jixian System; 9—Nanbaishuihe Formation of Changcheng System; 10—Zhulongguan Group of Changcheng System; 11—North River Group of Paleoproterozoic; 1—Dunhuang Group of Archean-Paleoproterozoic; 13—Mesoproterozoic monzogranite; 14—Silurian ultrabasic rocks; 15—Silurian gabbro; 16—Silurian diorite; 17—Silurian quartz diorite; 18—Silurian granodiorite; 19—Silurian granites; 20—Silurian monzogranite; 21—fault or presumed fault; 22—roads or rivers; 23—study area; 24—Biegai magnesite deposit

  • 图3 别盖菱镁矿矿床的野外露头及镜下照片

  • Fig.3 Outcrops and microscopic photos of Biegai magnesite deposit

  • (a)—北大河群三岩组之中的层控型菱镁矿矿体;(b)—菱镁矿矿体中的碳质千枚岩夹层;(c)—矿体下盘的保留有沉积变余条带的白云岩;(d)—微晶菱镁矿矿石;(e)—矿体中赋存的少量重结晶条带及晶质菱镁矿矿石;(f)—微晶菱镁矿矿石的镜下照片;(g)—矿体下盘云母片岩的野外露头;(h)—矿体下盘云母片岩的镜下照片; Bt—黑云母; Mag—菱镁矿; Ms—白云母; Pl—斜长石; Qtz—石英; Sparry Mag—晶质菱镁矿

  • (a) —strata-bound magnesite ore bodies in the third Formation of the Beidahe Group; (b) —carbonaceous phyllite intercalation in magnesite ore bodies; (c) —the retention of the footwall of the orebody is dolomite with sedimentary variation bands; (d) —microcrystalline magnesite ore; (e) —a small amount of recrystallized bands and crystalline magnesite ore occurring in the ore body; (f) —microscopic photographs of microcrystalline magnesite ores; (g) —field outcrops of mica schist in the footwall of the ore body; (h) —microscopic photographs of mica schist in the footwall of the ore body; Bt—biotite; Mag—magnesite; Ms—muscovite; Pl—plagioclase; Qtz—quartz; Sparry Mag—crystalline magnesite

  • 1.2.2 海城-大石桥菱镁矿矿集区

  • 辽东海城-大石桥矿集区的菱镁矿矿床严格赋存于辽河群大石桥组三段。辽河群自下而上可分为浪子山组、里尔峪组、高家峪组、大石桥组和盖县组。其中的大石桥组又可分为三段:一段以千枚岩和片岩为主,夹杂少量的条带状大理岩和灰褐色变质凝灰岩;二段以黑云母片岩,二云母片岩和石榴二云母片岩为主,十字石矽线石云母石英片岩较为常见,上部层位之中含有一些硅化大理岩薄层;三段以厚层状的菱镁矿矿体和白云石大理岩为主,在东部地区可见到硅藻类化石及原生沉积构造,顶部的白云质大理岩内薄层状绢云母千枚岩多有产出。辽东半岛海城-大石桥菱镁矿矿集区的晶质菱镁矿矿床均产于大石桥组三段之中,包括有小圣水寺、青山怀、水泉、铧子峪、金家堡子—下房身和祝家等矿床(图4)。区内变质岩系的片理走向为NEE-SWW向,倾向NNW,倾角40°~70°,某些矿区的岩层发生“倒转”(倾向南),铧子峪存在扭曲构造(张秋生等,1984)。区域上,大石桥组呈现出扇形构造,两侧的岩层产状相向倾斜,核部为一明显的直立带。扇形构造核部的直立带,往往发生滑石化或出现滑石矿(张秋生等,1984)。尽管地层经历有后期强烈的变形作用,菱镁矿矿体仍以层状或似层状严格赋存于大石桥组三段富镁碳酸盐岩建造之中,显示为层控。该矿床由上、中和下三部分矿体组成。下部矿体主要特征是条带状菱镁矿和白云石大理岩互层,夹有白云质千枚岩;中部矿体品位高,厚度大,为主要工业矿体;上部矿体常见菱镁矿矿层与白云石大理岩在横向上发生相变(张秋生,1984)。菱镁矿矿体主要矿石矿物为菱镁矿(含量87%~97%),次为滑石,透闪石、方柱石、斜绿泥石、石英、菱铁矿、含铁菱镁矿、铁菱镁矿、白云石、铁白云石、菱锰矿、黄铁矿、磁铁矿、赤铁矿和褐铁矿(Zhang Qiusheng,1988)。

  • 辽东海城-大石桥矿集区的菱镁矿矿石结构构造较为多样,主体为块状和条带状构造。块状菱镁矿组成较为单一,矿物的分布无方向性,且致密而无空洞,矿石晶体的大小可达3~4 cm(图5a、b),也有呈“砂糖颗粒状”,粒度较小(图5c)。整个菱镁矿矿集区的菱镁矿矿石以条带状菱镁矿矿石为主(图5f),表现为黑色和灰色条带状平行排列。在下部矿体之中,常能见到叠层石发生菱镁矿矿化(图5d、e)。矿体内部的韧性剪切带中往往夹有砂、板岩(图5g),并已普遍发生蛇纹石化和滑石化(图5h)。赋矿地层尽管与上、下层位的白云岩及变粒岩呈断层接触关系,但在赋矿的高镁白云岩内部也可见到泥质夹层。后期角闪岩相变质作用使得周缘地层中形成了大量的石榴子石、十字石等特征变质矿物(图5j)。在变质作用的加持之下,如在青山怀菱镁矿矿床的矿体下部层位,小规模的菱镁矿矿脉和白云石脉侵入到了白云岩地层之中(图5i),但此种脉状菱镁矿矿石的出露规模极为有限,仅仅在矿体下盘5~10 m的范围内有分布,且脉体宽度一般不超过1 m。变质作用形成的碳酸盐岩重结晶作用尽管很强烈,矿体内出现晶质菱镁矿交代白云石的现象,构造作用也使得大石桥组发生韧性剪切,但野外并未观察到千米级别的,大规模镁质从外源迁入矿体的地质证据。当然,与变质作用相关的硅质热液与菱镁矿矿石发生了反应,并在韧性剪切带中形成了大型滑石矿床(Misch et al.,2018)。

  • 1.2.3 大河菱镁矿矿床

  • 华北克拉通中部古元古界活动带产有一处中型晶质菱镁矿矿床——大河菱镁矿矿床。大河菱镁矿矿床产于古元古界官都群下部的富镁碳酸盐岩建造之中(图6)。官都群是一套层状、似层状的浅变质火山-沉积岩石组合。区域上,官都群中既发育有大量2.2 Ga左右的碎屑锆石年龄,同时,又受锆石U-Pb结晶年龄为2517~2488 Ma的黄岔岩体侵位,其沉积时代存在有新太古代和古元古代的争议,目前存在有进一步解体的可能(与杨崇辉个人交流所得)。本次工作在大河菱镁矿矿床的底板围岩中采集了角闪变粒岩进行锆石U-Pb定年测试,将菱镁矿的初始沉积时代定为古元古代。

  • 大河菱镁矿矿床的矿体大致上可分为上、下两层,中间夹有一层硅酸质岩石——黑云母变粒岩和片麻岩。矿体后期经历强烈的变质重结晶作用,在主矿体周缘(200 m外)亦可见到大小不一的菱镁矿矿体透镜体(河北省地质局第十四地质队,1977)。按照1961年的勘查报告,菱镁矿矿体的上层厚4.93~58.24 m,在矿区西部露头处厚度由7 m左右向大河矿区迅速增厚到20余米,至东南尖灭位置处,与之下的薄层白云岩相接。下层厚2.00~32.81 m,在前補透矿段矿体延伸长度为70 m,到大河矿段延伸长120 m。整体上,两层厚大矿体东西方向上可延续超过1 km,整体上控制的资源量为3747万t,保有资源量仍超过1000万t,达到中型菱镁矿矿床规模。

  • 图4 辽东半岛海城-大石桥菱镁矿成矿带的地质简图(据Tang Haoshu et al.,2013修改)

  • Fig.4 Geological map of Haicheng-Dashiqiao magnesite metallogenic belt in Liaodong Peninsula (modified after Tang Haoshu et al., 2013)

  • 1 —第四系坡残积物;2—新元古界钓鱼台组;3—古元古界盖县组;4—古元古界大石桥组;5—古元古界高家峪组;6—古元古界里尔峪组和“含硼岩系”;7—古元古界条痕状混合岩;8—古元古界浪子山组;9—太古宇条痕状混合岩;10—太古宇变质岩;11—燕山期石英二长岩;12—燕山期伟晶岩;13—燕山期花岗岩;14—燕山期二长花岗岩;15—印支期花岗岩;16—印支期二长花岗岩;17—印支期花岗闪长岩;18—中元古代花岗岩;19—中元古代二长花岗岩;20—中元古代花岗闪长岩;21—古元古代伟晶岩;22—古元古代辉长岩;23—太古宙花岗岩;24—断层;25—菱镁矿-滑石矿床;26—县城;27—镇

  • 1 —Quaternary slope residues; 2—Neoproterozoic Diaoyutai Formation; 3—Paleoproterozoic Gaixian Formation; 4—Paleoproterozoic Dashiqiao Formation; 5—Paleoproterozoic Gaojiayu Formation; 6—Paleoproterozoic Lieryu Formation and ‘boron-bearing rock series’; 7—Paleoproterozoic striated mixed rock; 8—Paleoproterozoic Langzishan Formation; 9—Archaean striated mix-rock; 10—Archaean metamorphic rocks; 11—Yanshanian quartz monzonite; 12—Yanshanian pegmatite; 13—Yanshanian granite; 14—Yanshanian monzogranite; 15—Indosinian granite; 16—Indosinian monzogranite; 17—Indosinian granodiorite; 18—Mesoproterozoic granites; 19—Mesoproterozoic monzogranite; 20—Mesoproterozoic granodiorite; 21—Paleoproterozoic pegmatite; 22—Paleoproterozoic gabbro; 23—Archean granite; 24—fault; 25—magnesite-talc deposit; 26—county; 27—town

  • 图5 海城-大石桥菱镁矿矿集区中的菱镁矿矿石手标本(a~g、i、k)及镜下特征(h、j、l)

  • Fig.5 Photos (a~g, i, k) and microscopic characteristics (h, j, l) of the magnesite ore samples in Haicheng-Dashiqiao magnesite ore concentration area

  • (a)—小圣水寺菱镁矿矿床中的晶质菱镁矿矿石;(b)—铧子峪菱镁矿矿床中的晶质菱镁矿矿石;(c)—金家堡子-下房身矿段中的“砂糖状”菱镁矿矿石;(d)—水泉菱镁矿矿床下部矿体之中发生菱镁矿矿化的叠层石;(e)—祝家菱镁矿矿床下部矿体之中发生菱镁矿矿化的叠层石;(f)—铧子峪菱镁矿矿床中条痕状菱镁矿矿石;(g)—菱镁矿矿体发生强剪切作用(祝家菱镁矿矿床);(h)—剪切带中形成的蛇纹石化泥质岩(祝家菱镁矿矿床);(i)—青山怀菱镁矿矿体下盘大石桥组二段大理岩受高镁白云岩交代的照片;(j)—大石桥组二段之中,石榴十字黑云母变粒岩的镜下照片;(k)—受硅质热液交代形成的滑石;(l)—滑石化菱镁矿的镜下照片

  • (a) —sparry magnesite ore from Xiaoshengshuisi magnesite deposit; (b) —sparry magnesite ore from Huaziyu magnesite deposit; (c) —“sugar-like” magnesite ore in Jinjiapuzi-Xiafangshen ore section; (d) —magnesite mineralized stromatolite occurs in the lower ore body of Shuiquan magnesite deposit; (e) —magnesite mineralized stromatolites occur in the lower orebodies of Zhujia magnesite deposit; (f) —striated magnesite ore in Huaziyu magnesite deposit; (g) —strong shear of magnesite ore body (Zhujia magnesite deposit) ; (h) —serpentinized argillite formed in shear zone (Zhujia magnesite deposit) ; (i) —photo of high magnesium dolomite metasomatism of marble in the second section of Dashiqiao Formation in the footwall of Qingshanhuai magnesite ore body; (j) —microscopic photograph of the pomegranate cross biotite granulite in the second section of Dashiqiao Formation; (k) —talc formed by siliceous hydrothermal metasomatism; (l) —microscopic photo of the sliding magnesite

  • 图6 赞皇杂岩前寒武纪基底地质图及大河菱镁矿床(改自Trap et al.,2009; 杨崇辉等,2018

  • Fig.6 Precambrian basement geological map of Zanhuang complex and Dahe magnesite deposit (modified after Trap et al., 2009; Yang Chonghui et al., 2018)

  • 两条黄线将赞皇杂岩分为三个部分,即东部赞皇区块、中部赞皇和西部赞皇区块; 1—甘淘河群; 2—官都群; 3—赞皇群; 4—新太古代正片麻岩; 5—古元古代钾质花岗岩; 6—新太古代钾质花岗岩; 7—新太古代花岗质片麻岩; 8—断层; 9—韧性剪切带

  • Two yellow lines divide the Zanhuang complex into three parts: the eastern Zanhuang block, the central Zanhuang block and the western Zanhuang block; 1—Gantaohe Group; 2—Guandu Group; 3—Zanhuang Group; 4—Neoarchean orthogneiss; 5—Paleoproterozoic high potassium granite; 6—Neoarchean high potassium granite; 7—Neoarchean granitic gneiss; 8—faluts; 9—ductile shear zones

  • 图7 大河菱镁矿床前補透矿段第二层矿向南分枝尖灭变化简化图

  • Fig.7 Simplified diagram of pinch-out change of south branch in the second layer of the Qianbutou ore block in Dahe magnesite deposit

  • 1 —官都群黑云母变粒岩和片麻岩; 2—高镁白云岩; 3—菱镁矿矿体; 4—断层; 5—钻孔编号

  • 1 —biotite granulite and gneiss of Guandu Group; 2—high magnesium dolomite; 3—magnesite ore body; 4—fault; 5—borehole number

  • 大河菱镁矿矿石多为浅黄色(图8a、b),少量白色。成分以菱镁矿为主。菱镁矿呈叶片状或粒状镶嵌结构,晶粒多为自形晶体,少量为他形。镜下可见颗粒间相互交代、溶蚀以及相互贯穿和包裹的现象(图8c)。断面上常见粗粒菱镁矿晶体断面(图8d)。后期硅质热液流体灌入,与碳酸盐矿物发生反应,引发菱镁矿矿石和白云石发生蛇纹石化作用(图8e、f)。后期发育有少量方解石脉夹石(图8g)。

  • 2 样品采集

  • 别盖菱镁矿矿床所在的北大河岩群在区域上的碎屑锆石年龄变化较大,存在古元古代(毛景文等,1998张招崇等,1998)和新元古代(何世平等,2010)的争议。为更好地限定别盖菱镁矿矿床所在的碳酸盐岩的沉积时代,本次工作在矿体下盘地层中采集了云母片岩样品SD21-2,以进一步厘定碳酸盐岩的初始沉积时代。同时,为限定低级变质作用(绿片岩相)对菱镁矿矿床的改造,在别盖菱镁矿矿床采集了5件菱镁矿矿石及2件白云岩样品。为限定中级变质(中—低角闪岩相)作用对菱镁矿矿石的改造,本次工作在海城-大石桥矿集区采集了多个矿床的菱镁矿矿石,进行同位素和地球化学特征的对比分析研究。为限定高级(高角闪岩相)变质作用对菱镁矿矿床的改造,采集了大河菱镁矿矿床前補透矿段和大河矿段的菱镁矿矿石。另外,为确定大河沉积-变质型菱镁矿矿床的初始沉积时代,本次工作采集了菱镁矿矿体底板之中的角闪变粒岩(样品DH-10)。

  • 3 测试方法

  • 3.1 全岩元素地球化学

  • 为确定中国沉积-变质型菱镁矿矿床中菱镁矿矿石和镁质大理岩围岩的地球化学特征,分析了它们的全岩主量和稀土元素组成。主量及稀土元素的测试在国家地质实验测试中心进行。主量元素通过XRF(X荧光光谱仪3080E)方法测试,分析精度为5%。稀土元素(REE)通过电感耦合等离子体质谱仪(ICP-MS)分析,含量大于10×10-6的元素的测试精度为5%,而小于10×10-6的元素精度为10%。个别在样品中含量低的元素,测试误差大于10%。分析结果列在表1中。

  • 3.2 C-O同位素

  • 菱镁矿矿床的矿石和大理岩的碳、氧同位素制备采用100%磷酸法分解并冷冻收集纯净的CO2气体,在自然资源部成矿作用与资源评价重点实验室的 MAT-253 型质谱计上完成碳同位素分析。结果以相对国际标准为V-PDB的δ13CV-PDB值和δ18OV-PDB值表示,精度优于±0.2‰。分析结果列在表2中。

  • 表1 海城-大石桥菱镁矿矿集区,别盖和大河菱镁矿矿床矿石和围岩的主量(%)、微量(μg/g)元素成分

  • Table1 Composition of major (%) and trace (μg/g) element data for the ores and wallrocks of the Haicheng-Dashiqiao magnesite belt, Biegai and Dahe magnesite deposit

  • 续表1

  • 续表1

  • 表2 别盖菱镁矿矿床,大河菱镁矿矿床及海城-大石桥菱镁矿矿集区的碳、氧同位素测试数据

  • Table2 Carbon and oxygen isotopic data of marbles and magnesite ores in Biegai, Dahe magnesite deposit and Haicheng-Dashiqiao magnesite mining area

  • 3.3 锆石U-Pb年代学

  • 本次研究对采集于别盖菱镁矿矿床下盘的云母片岩样品SD-3和大河菱镁矿矿床下盘的角闪变粒岩样品DH-10进行锆石单矿物挑选。样品的破碎和锆石的挑选由河北省廊坊市科大技术服务公司完成。阴极发光照相(CL)在配备阴极荧光探头的JSM6510型扫描电镜上完成。LA-MC-ICP-MS锆石U-Pb定年测试分析在中国地质科学院矿产资源研究所MC-ICP-MS实验室完成,锆石定年分析所用仪器为Finnigan Neptune型MC-ICP-MS及与之配套的Newwave UP 213激光剥蚀系统。激光剥蚀所用斑束直径为25 μm,频率为10 Hz,能量密度约为2.5 J/cm2,以He为载气。信号较小的207Pb、206Pb、204Pb(+204Hg)、202Hg用离子计数器(Multi-Ion-Counters)接收,208Pb、232Th、238U信号用法拉第杯接收,实现了所有目标同位素信号的同时接收并且不同质量数的峰基本上都是平坦的,进而可以获得高精度的数据,均匀锆石颗粒207Pb/ 206Pb、206Pb/238U、207Pb/235U的测试精度(2σ)均为2%左右,对锆石标准的定年精度和准确度在1%(2σ)左右。LA-MC-ICP-MS激光剥蚀采样采用单点剥蚀的方式,数据分析前用锆石GJ-1调试仪器,使之达到最优状态,锆石U-Pb定年以锆石GJ-1为外标, U、Th含量以锆石M127(U=923×10-9; Th=439×10-9; Th/U=0.475; Nasdala et al.,2008)为外标进行校正。测试过程中每测定5~7个样品前后重复测定两次锆石GJ1对样品进行校正,并测量一个锆石Plesovice,观察仪器的状态以保证测试的精确度。数据处理采用ICPMSDataCal程序(Liu et al.,2010),测量过程中绝大多数分析点206Pb/204Pb>1000,未进行普通铅校正,204Pb由离子计数器检测,锆石年龄谐和图用Isoplot 3.0程序获得。样品分析过程中,Plesovice标样作为未知样品的分析结果为336.5±1.1 Ma(n=3,2σ),对应的年龄推荐值为337.13±0.37 Ma(2σ)(Slama et al.,2008),两者在误差范围内完全一致。本文测试结果见表3和表4。

  • 图8 大河菱镁矿矿床及其下部层位角闪变粒岩的野外露头及镜下照片

  • Fig.8 Field outcrops and microscopic photographs of amphibolite leptynite in Dahe magnesite deposit and its lower horizon

  • (a)—大河菱镁矿矿床的条痕状矿石;(b)—蛇纹石化晶质菱镁矿矿石;(c)—晶质菱镁矿矿石镜下照片;(d)—晶质菱镁矿矿石的二次电子图像;(e)—前補透矿段蛇纹石化菱镁矿;(f)—大河矿段蛇纹石化白云岩;(g)—菱镁矿矿石中的晚期方解石脉;(h)—下部层位角闪变粒岩;(i)—角闪变粒岩镜下照片; Am—角闪石; Cal—方解石; Dol—白云石; Mag—菱镁矿; Pl—斜长石;Qtz—石英

  • (a) —striped ores of Dahe magnesite deposit; (b) —serpentine sparry magnesite ore; (c) —microscopic photos of sparry magnesite ore; (d) —secondary electronic images of crystalline magnesite ores; (e) —serpentinized magneiste ores in Qianbutou ore block; (f) —serpentinized magneiste ores in Qianbutou ore block; (g) —calcite veins in magnesite ore; (h) —amphibole leptynite in footwall; (i) —microscopic photographs of amphibole leptynite; Am—amphibole; Cal—calcite; Dol—dolomite; Mag—magnesite; Pl—plagioclase; Qtz—quartz

  • 表3 别盖菱镁矿矿床矿体下盘云母片岩(样品SD21-2)LA-ICPMS锆石U-Pb定年数据

  • Table3 Zircon LA-ICPMS U-Pb isotopic compositions of the mica schist (sample SD21-2) in the footwall of the Biegai magnesite deposit

  • 续表3

  • 表4 大河菱镁矿矿床矿体下盘角闪变粒岩(样品DH-10)LA-ICPMS锆石U-Pb定年数据

  • Table4 Zircon LA-ICPMS U-Pb isotopic compositions of the amphibolite leptynite (sample DH-10) in the footwall of the Dahe magnesite deposit

  • 续表4

  • 续表4

  • 4 结果

  • 4.1 全岩元素地球化学

  • 经历中级程度变质重结晶的辽宁海城—大石桥地区具有相对最优质的菱镁矿矿石, MgO含量为46.54%~47.75%;经历低级(绿片岩相—低角闪岩相)变质作用的别盖菱镁矿矿床的矿石质量居中, MgO含量为44.98%~46.49%,显示较高的CaO含量为43%~3.28%(图9a);而经历高角闪岩相—麻粒岩相高级变质作用的大河菱镁矿的镁含量最低, MgO含量为44.42%~45.55%。经历高角闪岩相—麻粒岩相变质作用过程的大河菱镁矿矿床显示相对较高的硅(SiO2: 0.84%~1.96%)、锰(Mn: 401×10-6~482×10-6)和铁(TFeO: 3.05%~3.68%)含量,并引发矿石MgO含量下降。

  • 变质重结晶程度较低的别盖菱镁矿矿床显示较低的硅含量(SiO2低于检出限0.25%)。随着变质重结晶程度的增高,海城-大石桥菱镁矿矿集区和大河菱镁矿矿床的硅含量有逐渐升高的趋势(图9b)。同时,伴随着硅含量的增高,大河菱镁矿矿床显示出较高的铁含量(TFeO:3.05%~3.68%),可能是变质重结晶过程中外部物质进入的结果。

  • 4.2 C-O同位素

  • 经历高角闪岩相—麻粒岩相变质作用的大河菱镁矿矿床显示较低的δ13CV-PDB值为-4.1‰~-3.4‰和较高的δ18OV-PDB值-13.9‰~-13.2‰。别盖菱镁矿矿床则保留有海相沉积特征:菱镁矿δ13CV-PDB值为-0.4‰~+0.3‰,围岩大理岩δ13CV-PDB值为-0.9‰~+0.3‰;值得注意的是,别盖菱镁矿矿床中的大理岩(δ18OV-PDB值为-14.8‰~-13.2‰)具有相对于菱镁矿矿石(δ18OV-PDB值为-18.6‰~-16.6‰)较重的氧同位素组成。海城—大石桥地区菱镁矿碳同位素组成变化较大,但维持在零值附近,δ13CV-PDB值为-0.9‰~+0.3‰,氧同位素组成较轻(δ18OV-PDB值为-20.1‰~-17.0‰)。海城—大石桥地区的菱镁矿碳和氧同位素测试数据结果与前人数据(Jiang Shaoyong et al.,2004; Tang Haoshu et al.,2013)一致。

  • 图9 不同变质重结晶程度沉积-变质型菱镁矿矿床矿石的 MgO-CaO(a)、MgO-SiO2(b)、TFeO-SiO2(c)图

  • Fig.9 Plots of MgO-CaO (a) , MgO-SiO2 (b) and TFeO-SiO2 (c) of sedimentary-metamorphic magnesite deposits with different metamorphic recrystallization degrees

  • 图10 不同变质重结晶程度沉积-变质型菱镁矿矿床的同位素

  • Fig.10 Plots of C and O isotopes of ores and marbles in sedimentary-metamorphic magnesite deposits with different metamorphic recrystallization degrees

  • 4.3 锆石U-Pb年代学

  • 为确定经历绿片岩相—低角闪岩相别盖菱镁矿矿床的初始沉积时代,对其下盘的围岩云母片岩(样品SD-2)进行了LA-ICP-MS锆石单矿物U-Pb测试。菱镁矿矿体下盘的云母片岩(样品SD-2)锆石核部的阴极发光图像可见,锆石大小不一,呈浑圆状,为典型的碎屑锆石(图11a)。样品SD-2锆石的LA-ICP-MS分析结果总结如下:① 锆石测试点共计85个,而有效测试点(谐和度>90%)为40个,最年轻的206Pb/238U年龄为511.0±32.4 Ma,限定了赋矿地层的形成时代应晚于511.0 Ma;② 锆石主体年龄206Pb/238U数据分布在新元古代,且Th/U值>0.1,区域上可能有存在有一期新元古代的岩浆事件;③ 锆石中记录有少量的早前寒武纪年龄。因此,别盖菱镁矿矿床所在地层的碎屑锆石年龄与祁连造山带中东部地区由古元古代双峰式火山岩构成的北大河岩群(张招崇等,1998)显示极大的不同,菱镁矿矿床的初始沉积时代可能为早古生代,在晚于511 M发生沉积作用。

  • 为确定经历高角闪岩相—麻粒岩相大河菱镁矿矿床的初始沉积时代,对其围岩角闪变粒岩(DH-10)进行了LA-ICP-MS锆石单矿物U-Pb测试。角闪变粒岩锆石阴极发光图像可见,锆石粒径普遍超过100 μm,且大部分显示有震荡岩浆环带特征,少部分形成变质边(图12a)。样品DH-10锆石单矿物的LA-ICP-MS分析锆石测试点共计70个,而有效测试点(谐和度>90%)为39个,年龄可分为两组:① 3个边部锆石207Pb/206Pb年龄为18号测试点的2014.8±81.5 Ma,33号测试点的2134.8±35.3 Ma和2273.0±93.3 Ma(图12a);② 最年轻的碎屑锆石207Pb/206Pb年龄为2486.3±39.9 Ma,但主体年龄集中在新太古代,与区域上官渡群的碎屑锆石年龄结果(杨崇辉等,2018)一致。因此,大河菱镁矿矿床的赋矿地层——官都群富镁碳酸盐岩建造沉积时代应属于古元古代。

  • 图11 别盖菱镁矿矿床围岩云母片岩(样品SD21-2)锆石阴极发光图片(a)(图中的红圈代表激光剥蚀位置;白字为表3中的测试顺序号)及206Pb/238U定年数据(b)

  • Fig.11 Zircon cathodoluminescence images (a) (red cycles represent laser testing positions; while words represent testing number in Table 3) and 206Pb/238U data (b) of mica schist (sample SD21-2) from the wall rocks of the Biegai magnesite deposit

  • 图12 大河菱镁矿矿床围岩角闪变粒岩(样品DH-10)锆石阴极发光图片(a)(图中的红圈代表激光剥蚀位置; 白字为表4中的测试顺序号)及207Pb/206Pb定年数据(b)

  • Fig.12 Zircon cathodoluminescence images (a) (red cycles represent laser testing positions; while words represent testing number in Table 4) and 207Pb / 206Pb data (b) of amphibolite leptynite (sample DH-10) from the wall rocks of the Dahe magnesite deposit

  • 5 讨论

  • 全球范围内的沉积-变质型菱镁矿矿床均以层控矿体形式赋存于海相碳酸盐岩建造,初始镁质聚集来自于海相沉积作用已基本达成共识(Pohl,1990; Jiang Shaoyong et al.,2004; Misch et al.,2018)。但是,作为一种晶质菱镁矿矿石,后期变质过程对于成矿的作用的讨论往往是局限于单一矿床,难以得到启发性的新认识。中国菱镁矿矿床经历的变质程度往往与赋矿地层的时代相关,赋存于新太古界—古元古界中的菱镁矿矿床经历的变质程度较高,达到高角闪岩相—麻粒岩相。赋存于元古宙地层之中的菱镁矿矿床经历有中—低角闪岩相变质作用;而古生代富镁碳酸盐岩建造之中的菱镁矿矿床往往仅经历绿片岩相变质作用。个别造山带中亦存在例外,如东北地区佳木斯地块中的新元古界环山子菱镁矿矿床的变质程度达到高角闪岩相—麻粒岩相。菱镁矿矿石的重结晶程度与变质程度正相关,中国品质最高的菱镁矿矿床赋存于元古宇,但过高或过低的变质作用可能均不利于形成高品质沉积-变质型晶质菱镁矿矿床。

  • 5.1 低级变质作用(绿片岩相)对矿石的改造

  • 别盖菱镁矿矿床以层控矿体形式赋存于北大河群三段之中。矿体底板的云母片岩中最年轻的碎屑锆石年龄为511.0±32.4 Ma,地层形成于早古生代,较何世平等(2010)得到的地层碎屑锆石1400~724 Ma年龄更年青。以别盖为代表的古生代菱镁矿矿床,其围岩地层普遍经历了绿片岩相低级变质作用,下部层位发育有碳质千枚岩(图3b)。另外,中国境内的塔里木板块北缘发育有两处经历绿片岩相低级变质作用的菱镁矿矿床,矿体赋存于早—中泥盆世滨-浅海相环境的富镁碳酸盐岩建造(新疆地质矿产勘查开发局第三地质大队,2000)。

  • 在绿片岩相变质作用下,别盖菱镁矿矿床中的矿石发生低程度的重结晶作用,菱镁矿的矿物粒度普遍为100~200 μm;个别位置发生相对较强的重结晶作用,形成>1 cm的晶质菱镁矿矿石颗粒。别盖菱镁矿矿床的保留有海相沉积特征的碳同位素地球化学特征:菱镁矿矿石δ13CV-PDB值为-0.4‰~+0.3‰,围岩大理岩δ13CV-PDB值为-0.9‰~+0.3‰。在澳大利亚Rum Jungle地区,由白云石至菱镁矿发生δ18OV-PDB值的下降,被解释为是富镁盆地卤水在交代白云石过程中发生的氧同位素变化(Aharon et al.,1988)。别盖菱镁矿矿床中的大理岩(δ18OV-PDB值为-14.8‰~-13.2‰)具有相对于菱镁矿矿石(δ18OV-PDB值为-18.6‰~-16.6‰)较重的氧同位素组成,亦可能为变质流体交代作用引发的结果。就元素地球化学特征而言,阿尔卑斯山地区热液流体交代形成的菱镁矿中Fe2O3含量介于2.00%~3.17%之间(Henjes-Kunst et al.,2014)。热液交代形成的菱镁矿中含有较高的铁,可能是由于二价铁离子(0.078 nm)和二价镁离子(0.072 nm)具有相似的离子半径,在热液交代碳酸盐形成菱镁矿过程中易于发生离子交换(Bau and Möller,1992)。而在别盖菱镁矿矿床,矿石中的杂质主要为CaO(0.43~3.28%,平均2.17%),铁含量较低(FeO为0.20%~0.40%,平均0.29%)。因此,就菱镁矿矿体层控产出及元素地球化学特征情况而言,变质流体可能仅仅引发近原地溶解-重结晶,镁质非外源富镁流体带入。因此,就整体而言,变质作用对别盖菱镁矿改造程度较低,镁质富集成矿极有可能发生在沉积阶段。

  • 5.2 中级变质作用对矿石的改造

  • 我国华北克拉通东缘的胶-辽-吉活动带的古元古界富镁碳酸盐岩建造中发育有大规模的菱镁矿资源聚集带,是全球重要的菱镁矿工业原材料提供地(Misch et al.,2018),具体分为辽东半岛的海城—大石桥和山东半岛的粉子山—优游山两处矿集区。海城-大石桥菱镁矿矿集区的菱镁矿矿体严格产于大石桥组三段为典型的沉积层控非金属矿床(张秋生,1984),但不同菱镁矿矿床的矿体厚度变化较大(30~300 m)(Zhang Qiusheng et al.,1988),说明镁质初始富集过程存在不均一,与原生沉积成矿的产出特征不一致,交代作用可能在菱镁矿成矿过程中作用显著。莱州粉子山-优游山菱镁矿矿集区的矿体亦主要受控于2个基本条件:① 菱镁矿赋存于古元古界粉子山群张格庄组三段(即上白云石大理岩段)的富镁质碳酸盐岩沉积建造中。菱镁矿矿床的形成与分布明显受着一定的层位和岩性控制,为典型层控型矿床。② 矿山开采及区域地质研究时发现莱州菱镁矿矿体的分布与白云岩大理岩等围岩的产状并不都是一致的。在局部地段见到菱镁矿矿层与白云岩大理岩的接触界线有一定夹角;还见到菱镁矿矿体与白云石大理岩之间的接触界线为不规则的港湾状,反映出明显的交代作用特点(王沛成等,1996)。因此,与低级变质作用相比,经历中级变质作用的菱镁矿矿床中最重要的地质特征是出现大量菱镁矿矿石交代白云石的现象,且晶体颗粒直径普遍超过200 μm。同时,在海城-大石桥矿集区的菱镁矿矿体的上、下盘中,经常出现菱镁矿脉体切入富镁白云岩的地质现象(胡古月等,2022)。

  • 就碳同位素地球化学特征而言,海城—大石桥地区的大石桥组三段及其中赋存的菱镁矿矿石的变化范围较宽,δ13CV-PDB值为-4.5‰~+4.4‰(表2)。其中,大型层状矿体中心部位的晶质菱镁矿矿石δ13CV-PDB值集中在+0.3~+1.6‰(表2),位于海相沉积碳酸盐岩范围内,并显示有微弱的碳同位素正异常,被解释为 “大氧化”事件的印记(Tang Haoshu et al.,2013)。由于正常海相沉积碳酸盐岩的δ13CV-PDB值介于+0.3~+3.5‰之间(Veizer and Hoefs,1976; Melezhik et al.,2001),菱镁矿的碳同位素微弱正异常可能是因为蒸发沉积作用所致(Melezhik et al.,2001)。但是,受变质作用影响的矿体底板中脉状菱镁矿矿石的δ13CV-PDB值为-2.7‰(Tang et al.,2013),围岩中的高硅白云岩和滑石-菱镁矿也普遍显示偏低的碳同位素组成(Misch et al.,2018)。因此,虽然海城—大石桥地区菱镁矿矿床中局部变质热液流体交代导致菱镁矿δ13CV-PDB值下降(Tang Haoshu et al.,2013; Misch et al.,2018),但整体上菱镁矿矿石显示的微弱碳同位素正异常(表2)表明变质热液作用引发了矿石强烈的变质重结晶作用,但其所影响的范围仍然是局部的(汤好书等,2009)。当然,相对于低级变质作用的重结晶改造,海城-大石桥菱镁矿矿集区菱镁矿矿石的氧同位素组成较白云岩围岩明显变轻(~10‰),暗示变质作用引发的近原地镁质交代作用可能相对更为强烈(Aharon et al.,1988)。

  • 5.3 高级变质作用(高角闪岩相—麻粒岩相)对菱镁矿矿床的改造

  • 在中国境内,经历高角闪岩相—麻粒岩相变质程度的沉积-变质型菱镁矿矿床包括李老庄,环山子和大河三处。李老庄为伴生型菱镁矿矿床,主要矿石类型为碳酸盐型磁铁矿,属于霍邱条带状铁建造中的一处特殊类型矿床(黄华等,2020)。霍邱铁矿田与火山活动密切相关,为Algoma型(Hou Kejun et al.,2019);但局部位置(李老庄矿床)的沉积环境和沉积地层上更符合superior型BIF的特征(杨晓勇等,2012黄华等,2020)。霍邱铁矿床中的条带状铁建造整体与火山活动密切相关,地层沉积时间为2696~2564 Ma (Wan Yusheng et al.,2006)。李老庄菱镁矿矿床属于伴生菱镁矿资源,整体地层受一个向斜控制。向斜核部岩性为新太古界周集组条带状混合岩、混合岩化黑云/白云斜长片麻岩,两翼为吴集组的含磁铁矿片岩、混合岩、片麻岩和磁铁矿建造夹富镁碳酸盐岩和片麻岩(Huang Hua et al.,2020)。环山子菱镁矿矿床的直接容矿围岩为新元古界兴东群建堂组(高煜等,2020),矿体以透镜状产出为特点,矿体底板主要为条纹状混合岩和蛇纹石大理岩。这两处菱镁矿矿床均经历有高级变质作用。大河菱镁矿矿床在本文的矿床地质部分有详细的描述,此处不再累述。经历高级变质作用的菱镁矿矿石发生显著的交代特征,条带状矿石为主体(图4a)。矿物学上的共同特征是矿石重结晶程度高,发生蛇纹石化作用。

  • 就全球范围而言,超镁铁质岩中的菱镁矿一般为隐晶质菱镁矿, 13C强烈亏损(δ13CV-PDB值为-20‰~-5‰),而富镁碳酸盐岩中的菱镁矿则一般为亮晶质,且整体具有较高的δ13C值(+0.1‰~+8.0‰)(Aharon et al.,1988; Pohl,1990; Schroll,2002; 汤好书等,2009胡古月等,2015Lee et al.,2021),小部分受流体改造矿石的δ13CV-PDB值为负。我国经历有高角闪岩相—麻粒岩相的变质作用的菱镁矿矿床已基本失去海相沉积的C和O同位素地球化学特征(图10),与地壳碳酸盐发生深熔作用形成的火成碳酸岩相当(Schumann et al.,2019; Yaxley et al.,2022)。碳酸盐岩在沉积之后的成岩、变质和热液蚀变作用中均会发生同位素分馏,一般导致δ13CV-PDBδ18OV-PDB值降低(Veizer and Hoefs,1976; Jiang Shaoyong et al.,2004; Bekker et al.,2005; Melezhik et al.,2005; 汤好书等,2009)。李老庄矿床含铁菱镁矿矿石的δ18OV-PDB约为11‰,δ13CV-PDB值为-2.16‰~-1.35‰;与磁铁矿共生的菱镁矿的δ18OV-PDB为12.49‰~15.43‰,δ13CV-PDB为-10.66‰~-5.30‰。在富镁碳酸盐岩和BIF铁矿层的沉积地层上,经低角闪岩相变质及富铁镁流体的蚀变交代,使成矿物质在赋矿围岩构成的向斜核部叠加富集形成的菱镁矿-磁铁矿型李老庄矿床(黄华等,2020)。在大河菱镁矿矿床,菱镁矿矿石的δ13CV-PDB值为-4.1‰~-3.4‰,δ18OV-PDB为12.49‰~15.43‰(表2),此种C和O同位素组成的剧烈下降可能与高程度变质作用引发的热液交代作用相关。

  • 经历高角闪岩相—麻粒岩相变质的菱镁矿矿石MgO含量相对较低(44.42%~45.55%),但显示相对较高的硅(SiO2=0.84%~1.96%)、锰(Mn=401×10-6~482×10-6)和铁(TFeO=3.05%~3.68%)含量。在富镁碳酸盐岩建造在经历高级变质作用(高角闪岩相—麻粒岩相)的过程中,地层经历强烈的变质热液交代-重结晶作用,可能引发了外源物质的混入。

  • 5.4 中国沉积-变质型晶质菱镁矿矿床的成矿机制

  • 中国沉积-变质型菱镁矿矿床的形成分为沉积-成岩预富集期和变质重结晶期:沉积期可能发生在海相潟湖相环境,富镁卤水与早阶段的蒸发碳酸盐发生反应,形成富镁碳酸盐岩建造,之后,富镁碳酸盐发生近原地变质重结晶作用,可能引发镁质与钙质近原地分离重结晶作用,形成晶质菱镁矿矿床。

  • 5.4.1 沉积-成岩预富集期

  • 南澳大利亚州Coorong潟湖内的菱镁矿及水菱镁矿仅与白云石共同发生沉积(Warren,1990),在海水中直接通过蒸发沉积作用形成诸如海城-大石桥菱镁矿矿集区动辄上百米厚的菱镁矿矿层的可能性很小。但是,以别盖为代表的,经历低级变质作用的菱镁矿矿床记录有大量海相沉积地质特征,碳氧同位素亦显示海相蒸发沉积的地球化学特征。沉积-变质型菱镁矿矿石整体上偏正的δ13CV-PDB值支持蒸发作用的存在,在沉积阶段,富镁卤水与蒸发碳酸盐发生反应,这一过程类似于白云岩化(Melezhik et al.,2001)。卤水的地球化学特征为富镁、贫铁和稀土,与经历低—中高变质程度的菱镁矿矿床的地球化学特征相一致,指示成岩流体改造早阶段碳酸盐的成矿过程(Jiang Shaoyong et al.,2004)。因此,在蒸发过程中,富镁卤水形成于潟湖底部,逐步向下渗透,在成岩过程中使得早阶段沉淀的碳酸盐发生初始镁质富集的可能性极大。同时,这样的富镁卤水富集过程使得菱镁矿矿体中继承有海相蒸发沉积的稳定同位素(C-O)地球化学特征。

  • 5.4.2 近原地变质重结晶期

  • 通过对比低、中、高三类不同变质程度的沉积-变质型菱镁矿矿床,发现随着变质程度的增加,菱镁矿矿床的矿体形态、矿石结晶程度,元素地球化学特征和C-O同位素地球化学特征均呈规律性变化。变质作用对中国沉积-变质型菱镁矿矿床的成矿制约显示为以下三条: ① 菱镁矿交代白云岩现象在所有的沉积-变质型菱镁矿矿床中均有发现,变质作用为成矿的必要条件之一; ② 经历较低变质重结晶作用(绿片岩相)的富镁碳酸盐岩建造可形成菱镁矿矿床,镁质为原地富集形成菱镁矿矿石; ③ 中—低角闪岩相变质程度的富镁碳酸盐岩建造为成矿最有利地质体,过高或过低的变质作用均不利于矿床的形成。因此,近原地变质重结晶作用是形成晶质菱镁矿矿体的“二次富集”,最佳变质条件为中—低角闪岩相。过高的变质作用(高角闪岩相—麻粒岩相)易引发外源硅和铁元素随变质热液进入矿体,形成蛇纹石化菱镁矿矿石;过低的变质作用(绿片岩相)难以使得钙和镁离子发生高程度的结晶分离,菱镁矿矿石中钙含量相对较高。

  • 6 结论

  • 沉积-变质型晶质菱镁矿矿床镁质富集及成矿作用发生在海相沉积—成岩期,但后期中—低角闪岩相变质作用引发的富镁碳酸盐中Ca和Mg离子发生近原地分离重结晶亦是形成高纯度晶质菱镁矿矿石的必要条件。过高的变质重结晶作用可形成大晶体菱镁矿,但外源的Si和Fe物质也易进入矿体,使得矿石铁含量增高,且多发生蛇纹石化;过低的变质重结晶作用使得地层中的钙和镁碳酸盐不能实现高程度分离,矿石粒度小且品位低。在中—低角闪岩相变质作用下,易形成高品质晶质菱镁矿矿石。

  • 致谢:感谢中国地质科学院矿产资源研究所王倩在锆石U-Pb定年过程中给予的帮助。

  • 注释

  • ❶ 甘肃省地质局第二地质队.1970. 白云山、白云岩及别盖白云岩菱镁矿检查报告.

  • ❷ 甘肃省有色金属地质勘查局.2011. 甘肃省金塔县四道红山菱镁矿资源储量核查报告.

  • ❸ 河北省地质局第十四地质队.1977. 河北省邢台县大河菱镁矿地质勘探报告.

  • ❹ 黑龙江省有色金属地质勘查研究总院.2003. 黑龙江省萝北县环山菱镁矿详查报告.

  • ❺ 新疆地质矿产勘查开发局第三地质大队.2000. 新疆和静县哈勒哈特菱镁矿矿床普查地质报告.

  • ❻ 徐学义,李向民,王洪亮.2008.1∶100 万祁连山及邻区成矿地质背景图及说明书. 北京:地质出版社.

  • 参考文献

    • Aharon P. 1988. A stable-isotope study of magnesites from the Rum Jungle uranium field, Australia: Implications for the origin of strata-bound massive magnesites. Chemical Geology, 69: 127~145.

    • Bau M, Möller P. 1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, 45: 231~246.

    • Bekker A, Kaufman A J, Karhu J A, Eriksson K A. 2005. Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137: 167~206.

    • Bureau of Geological Exploration for Non-ferrous Metals. 2001. Magnesite resource reserve verification report of Sidao Hongshan, Jinta County of Gansu Province, 1~24 (in Chinese).

    • Chen Yuchuan, Wang Denghong, Xu Zhigang, et al. , 2015. Important Minerals and Regional Metallogenic Regularity in China. Beijing: Geological Publishing House, 156~174 (in Chinese).

    • Dong Aiguo, Zhu Xiangkun, Li Shizhen, Kendall B, Wang Yue, Gao Zhaofu. 2016. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constrains from Mg isotopes. Precambrian Research, 281: 673~683.

    • Drnek T, Moraes M, Neto P B. 2018. Overview of magnesite. RHI Magnesia Bulletin, 1: 14~22.

    • Ebner F, Prochaska W, Troby J, Zadeh A M A. 2004. Carbonate hosted sparry magnesite of the Greywacke zone, Austria/eastern Alps. Acta Petrologica Sinica, 20(4): 791~802 (in English with Chinese abstract).

    • Feng Beizhan, Wang Xiaowei, Zeng Junjie, Zhang Xuekui. 2005. Characteristics determination of Paleoproterozoic Era continental rift volcanic rock in the western section of North Qilian. Gansu Geology, 14(1): 15~20 (in Chinese with English abstract).

    • Gao Yu, Hao Yujie, Ren Yunsheng, Shi Yufan, Sun Zhenming, Wang Chongyi. 2020. U-Pb dating of detrital zircon from Dapandao Formation of Xingdong Group in Jiamusi Massif, Helongjiang and its geological significance. World Geology, 39(1): 16~29 (in Chinese with English abstract).

    • He Shiping, Li Rongshe, Wang Chao, Yu Pusheng, Gu Pingyang, Shi Chao. 2010. Geochronology of gneissic plagioclase-amphibolite from Beidahe Group complex in western segment of Qilian Mountains, China. Geological Bulletin of China, 29(9): 1275~1280 (in Chinese with English abstract).

    • Henjes-Kunst F, Prochaska W, Niedermayr A, Sullivan N, Baxter E. 2014. Sm-Nd dating of hydrothermal carbonate formation: An example from the Breitenau magnesite deposit (Styria, Austria). Chemical Geology, 387: 184~201.

    • Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481~492 (in Chinese with English abstract).

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.

    • Hu Guyue, Li Yanhe, Fan Changfu, Zhao Yue, Hou Kejun, Wang Tianhui. 2015. Paleoproterozoic magnesite and borate deposits from eastern Liaoning Province: With a discussion about synchrono-heteropic facies of sedimentary mineralization. Mineral Deposits, 34(3): 547~564.

    • Hu Guyue, Sun Xinsheng, Zheng Jun, Yu Xuhui, Wang Dongbo, Li Yanhe, Zhao Yue, Chen Han, Xu Ying, Alison O. 2022. The genesis of Haicheng-Dashiqiao magnesite deposits, Liaodong Peninsula. Acta Geologica Sinica, 96(4): 1340~1355 (in Chinese with English abstract).

    • Huang Hua, Zhang Lianchang, Sebastien F, Wang Changle, Zhai Mingguo. 2017. Depositional environment and original of the Lilaozhuang Neoarchean BIF-hosted iron-magnesite deposit on the southern margin of the North China Craton. International Journal of Earth Science, 106: 1753~1772.

    • Huang Hua, Zhang Lianchang. 2020. Genesis of the Lilaozhuang iron-magnesite deposit in the Huoqiu area of Anhui Province: Indicative significance of carbon and oxygen isotopes. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1312~1324 (in Chinese with English abstract).

    • Jiang Shaoyong, Chen Congxi, Chen Yongquan, Jiang Yaohui, Dai Baozhang, Ni Pei. 2004. Geochemistry and genetic model for the giant magnesite deposits in the eastern Liaoning Province, China. Acta Petrologica Sinica, 20(4): 765~772 (in Chinese with English abstract).

    • Joshi P, Pant P D, Upadhyaya R C. 2009. Petrography and geochemistry of magnesite and talc deposits of Jhiroli, Kumaun Lesser Himalaya. Magmatism, Tectonism and Mineralization, 215~229.

    • Krupenin M T, Kol'tsov A B. 2017. Geology, composition, and physicochemical model of sparry magnesite deposits of the southern Urals. Geology of Ore Deposits, 59(1): 14~35.

    • Lee G, Shin D, Lee S, Koh S M, Lee B H, You B W, Yoo B C. 2021. Ore genesis and tectonic implication of the Daeheung-Ryongyang magnesite deposits in the East Jiao-Liao-Ji belt, North Korea. Lithos, 400-401: 106402.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Mao Jingwen, Zhang Zhaochong, Yang Jianmin, Song Biao, Wu Maobing, Zuo Guochao. 1998. Single grain zircon dating of Precambrian strata in the western section of North Qilian Mountains and its geological significance. Chinese Science Bulletin, 13: 1414~1417 (in Chinese with English abstract).

    • Melezhik V A, Fallick A E, Medvedev P V, Makarikhin V V. 2001. Palaeoproterozoic magnesite: Lithological and isotopic evidence for playa/sabkha environments. Sedimentology, 48(2): 379~397.

    • Melezhik V A, Fallick A E, Rychanchik D V, Kuznetsov A B. 2005. Palaeoproterozoic evaporates in Fennoscandia: Implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the δ13C excursions. Terra Nova, 17: 141~148.

    • Misch D, Pluch H, Mali H, Ebner F, Huang Hui. 2018. Genesis of giant Early magnesite and related talc deposits in the Mafeng area, Liaoning Province, NE China. Journal of Asian Earth Sciences, 160: 1~12.

    • Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1~35.

    • Nishihara H. 1956. Origin of the bedded magnesites of Manchuria. Economic Geology, 51(7): 698~711.

    • Pohl W. 1990. Genesis of magnesite deposit-models and trends. International Journal of Earth Sciences, 79(2): 291~299.

    • Ronchi L H, Parente C V, Fuzikawa K, Neto A B. 2008. Genetic and metamorphic conditions constrained by fluid Paleoproterozoic (c. 1. 8 Ga) magnesite ore deposits, NE Brazil. Journal of South American Earth Science, 25(4): 492~500.

    • Schroll E. 2002. Genesis of magnesite deposits in the view of isotope geochemistry. Boletim Paranaense de Geociências, 50: 59~68.

    • Schumann D, Martin R F, Fuchs S, Fourestier J D. 2019. Silicocarbonatitic melt inclusions in fluorapatite from the Yates prospect, Otter lake, Quebec: Evidence of marble anatexis in the central metasedimentary belt of the Grenville Province. The Canadian Mineralogist, 57: 583~604.

    • Sláma J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N Whitehouse M J. 2008. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.

    • Sun Yubao. 2007. Geological characteristics and metallogenic types of the Lilaozhuang iron-magnesite deposit in Huoqiu, Anhui. Mineral Resources and Geology, 21(5): 532~537.

    • Tang Haoshu, Chen Yanjing, Wu Guang, Yang Tao. 2009. Rare earth element geochemistry of carbonates of Dashlqiao Formation, Liaohe Group, eastern Liaoning Province: Implications for Lomagundi event. Acta Petrologica Sinica, 25(11): 3075~3093 (in Chinese with English abstract).

    • Tang Haoshu, Chen Yanjing, Santosh M, Zhong Hong, Wu Guang, Lai Yong. 2013. C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: Implications for the Great Oxidation Event and ore genesis. Geological Journal, 48(5), 467~483.

    • Tracy D F, Fielding C R. 2003. Marine origin for Precambrian, carbonate-hosted magnesite? Geology, 31: 1101~1104.

    • Trap P, Faure M, Lin W, Monie P, Meffre S, Melleton J. 2009. The Zanhuang massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172: 80~98.

    • Veizer J, Hoefs J. 1976. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 40: 1387~1395.

    • Velasco F Q, Pesquera A, Arce R, Olmedo F. 1987. A contribution to the ore genesisof the magnesite deposit of Eugui, Navarra (Spain). Mineral Deposita, 22(1): 33~41.

    • Wan Yusheng, Song Biao, Liu Dunyi, Wilde S A, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Paleoproterozoic tectonothermal event . Precambrian Research, 149: 249~271.

    • Wang Peicheng, Zhang Chengji. 1996. Metamorphosed nonmetallic mineral-bearing form ations in the Proterozoic medium to high grade metamorphic sequence in eastern Shandong. Shandong Geology, 2: 31~47 (in Chinese with English abstract).

    • Warren J K. 1990. Sedimentology and minerlogy of dolomitic Coorong lakes, South Australia. Journal of Sedimentary Petrology, 60(6): 843~858.

    • Yang Chonghui, Du Lilin, Song Huixia, Ren Liudong, Miao Peisen, Lu Zenglong. 2018. Stratigraphic division and correlation of the Pleoproterozoic strata in the North China Craton: A review. Acta Petrologica Sinica, 34(4): 1019~1057 (in Chinese with English abstract).

    • Yang Xiaoyong, Wang Bohua, Du Zhenbao, Wang Qicai, Wang Yuxian, Tu Zhengbiao, Zhang Wenli, Sun Weidong. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of the North China craton. Acta Petrologica Sinica, 28(11): 3476~3496.

    • Yaxley G M, Anenburg M, Tappe S, Decree S, Guzmics T. 2022. Carbonatites: Classification, sources, evolution, and emplacement. Annual Review of Earth and Planetary Sciences, 50: 261~293.

    • Zadeh A M A. , Ebner F, Jiang Shaoyong, 2015. Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (eastern Alps/Austria): Implications for a metasomatic genetic model. Mineralogy and Petrology, 109(5): 555~575.

    • Zhang Qiusheng. 1988. Early proterozoic tectonic styles and associated mineral deposits of the North China platform. Precambrian Research, 39(1-2): 1~29.

    • Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13~54.

    • 陈毓川, 王登红, 徐志刚等. 2015. 中国重要矿产和区域成矿规律. 北京: 地质出版社, 156~174.

    • 冯备战, 王晓伟, 曾俊杰, 张学奎. 2005. 北祁连西段古元古代大陆裂谷火山岩性质的确定. 甘肃地质学报, 14(1): 15~20.

    • 高煜, 郝宇杰, 任云生, 史雨凡, 孙振明, 王崇一. 2020. 黑龙江佳木斯地块兴东群大盘道组碎屑锆石U-Pb定年及其地质意义. 世界地质, 39(1): 16~29.

    • 何世平, 李荣社, 王超, 于浦生, 辜平阳, 时超. 2010. 祁连山西段甘肃肃北地区北大河岩群片麻状斜长角闪岩的形成时代. 地质通报, 29(9): 1275~1280.

    • 胡古月, 李延河, 范昌福, 赵悦, 侯可军, 王天慧. 2015. 辽东古元古代菱镁矿矿床与硼酸盐矿床——同期异相沉积成矿探讨. 矿床地质, 34(3): 547~564.

    • 胡古月, 孙新胜, 郑军, 余旭辉, 王东波, 李延河, 赵悦, 陈翰, 徐莺, Ord A. 2022. 辽东半岛海城-大石桥菱镁矿矿床成因探讨. 地质学报, 96(4): 1340~1355.

    • 黄华, 张连昌. 2020. 安徽霍邱李老庄铁-菱镁矿床成因探讨: 碳、氧同位素的指示意义. 矿物岩石地球化学通报, 39(6): 1312~1324.

    • 毛景文, 张招崇, 杨建民, 宋彪, 吴茂炳, 左国朝. 1998. 北祁连山西段前寒武纪地层单颗粒锆石测年及地质意义. 科学通报, 13: 1414~1417.

    • 孙玉宝. 2007. 安徽霍邱李老庄铁矿-菱镁矿矿床地质特征及矿床成因类型. 矿产与地质, 21(5): 532~537.

    • 汤好书, 陈衍景, 武广, 杨涛. 2009. 辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示. 岩石学报, 25(11): 3075~3093.

    • 王沛成, 张成基. 1996. 鲁东地区元古宙中深变质岩系非金属矿含矿变质建造. 山东地质, 2: 31~47.

    • 杨崇辉, 杜利林, 宋会侠, 任留东, 苗培森, 路增龙. 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019~1057.

    • 杨晓勇, 王波华, 杜贞宝, 王启才, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476~3496.

    • 张秋生. 1984. 中国早前寒武纪地质及成矿作用. 吉林人民出版社, 1~544.

    • 张招崇, 毛景文, 左国朝, 杨建民, 王志良, 张作衡. 1998. 北祁连山西段早元古代变质火山岩的地球化学特征及其构造背景. 矿物岩石, 18(4): 22~31.

  • 参考文献

    • Aharon P. 1988. A stable-isotope study of magnesites from the Rum Jungle uranium field, Australia: Implications for the origin of strata-bound massive magnesites. Chemical Geology, 69: 127~145.

    • Bau M, Möller P. 1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite. Mineralogy and Petrology, 45: 231~246.

    • Bekker A, Kaufman A J, Karhu J A, Eriksson K A. 2005. Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Research, 137: 167~206.

    • Bureau of Geological Exploration for Non-ferrous Metals. 2001. Magnesite resource reserve verification report of Sidao Hongshan, Jinta County of Gansu Province, 1~24 (in Chinese).

    • Chen Yuchuan, Wang Denghong, Xu Zhigang, et al. , 2015. Important Minerals and Regional Metallogenic Regularity in China. Beijing: Geological Publishing House, 156~174 (in Chinese).

    • Dong Aiguo, Zhu Xiangkun, Li Shizhen, Kendall B, Wang Yue, Gao Zhaofu. 2016. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constrains from Mg isotopes. Precambrian Research, 281: 673~683.

    • Drnek T, Moraes M, Neto P B. 2018. Overview of magnesite. RHI Magnesia Bulletin, 1: 14~22.

    • Ebner F, Prochaska W, Troby J, Zadeh A M A. 2004. Carbonate hosted sparry magnesite of the Greywacke zone, Austria/eastern Alps. Acta Petrologica Sinica, 20(4): 791~802 (in English with Chinese abstract).

    • Feng Beizhan, Wang Xiaowei, Zeng Junjie, Zhang Xuekui. 2005. Characteristics determination of Paleoproterozoic Era continental rift volcanic rock in the western section of North Qilian. Gansu Geology, 14(1): 15~20 (in Chinese with English abstract).

    • Gao Yu, Hao Yujie, Ren Yunsheng, Shi Yufan, Sun Zhenming, Wang Chongyi. 2020. U-Pb dating of detrital zircon from Dapandao Formation of Xingdong Group in Jiamusi Massif, Helongjiang and its geological significance. World Geology, 39(1): 16~29 (in Chinese with English abstract).

    • He Shiping, Li Rongshe, Wang Chao, Yu Pusheng, Gu Pingyang, Shi Chao. 2010. Geochronology of gneissic plagioclase-amphibolite from Beidahe Group complex in western segment of Qilian Mountains, China. Geological Bulletin of China, 29(9): 1275~1280 (in Chinese with English abstract).

    • Henjes-Kunst F, Prochaska W, Niedermayr A, Sullivan N, Baxter E. 2014. Sm-Nd dating of hydrothermal carbonate formation: An example from the Breitenau magnesite deposit (Styria, Austria). Chemical Geology, 387: 184~201.

    • Hou Kejun, Li Yanhe, Tian Yourong. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481~492 (in Chinese with English abstract).

    • Hou Kejun, Ma Xudong, Li Yanhe, Liu Feng, Han Dan. 2019. Genesis of Huoqiu banded iron formation (BIF), southeastern North China Craton, constraints from geochemical and Hf-O-S isotopic characteristics. Journal of Geochemical Exploration, 197: 60~69.

    • Hu Guyue, Li Yanhe, Fan Changfu, Zhao Yue, Hou Kejun, Wang Tianhui. 2015. Paleoproterozoic magnesite and borate deposits from eastern Liaoning Province: With a discussion about synchrono-heteropic facies of sedimentary mineralization. Mineral Deposits, 34(3): 547~564.

    • Hu Guyue, Sun Xinsheng, Zheng Jun, Yu Xuhui, Wang Dongbo, Li Yanhe, Zhao Yue, Chen Han, Xu Ying, Alison O. 2022. The genesis of Haicheng-Dashiqiao magnesite deposits, Liaodong Peninsula. Acta Geologica Sinica, 96(4): 1340~1355 (in Chinese with English abstract).

    • Huang Hua, Zhang Lianchang, Sebastien F, Wang Changle, Zhai Mingguo. 2017. Depositional environment and original of the Lilaozhuang Neoarchean BIF-hosted iron-magnesite deposit on the southern margin of the North China Craton. International Journal of Earth Science, 106: 1753~1772.

    • Huang Hua, Zhang Lianchang. 2020. Genesis of the Lilaozhuang iron-magnesite deposit in the Huoqiu area of Anhui Province: Indicative significance of carbon and oxygen isotopes. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1312~1324 (in Chinese with English abstract).

    • Jiang Shaoyong, Chen Congxi, Chen Yongquan, Jiang Yaohui, Dai Baozhang, Ni Pei. 2004. Geochemistry and genetic model for the giant magnesite deposits in the eastern Liaoning Province, China. Acta Petrologica Sinica, 20(4): 765~772 (in Chinese with English abstract).

    • Joshi P, Pant P D, Upadhyaya R C. 2009. Petrography and geochemistry of magnesite and talc deposits of Jhiroli, Kumaun Lesser Himalaya. Magmatism, Tectonism and Mineralization, 215~229.

    • Krupenin M T, Kol'tsov A B. 2017. Geology, composition, and physicochemical model of sparry magnesite deposits of the southern Urals. Geology of Ore Deposits, 59(1): 14~35.

    • Lee G, Shin D, Lee S, Koh S M, Lee B H, You B W, Yoo B C. 2021. Ore genesis and tectonic implication of the Daeheung-Ryongyang magnesite deposits in the East Jiao-Liao-Ji belt, North Korea. Lithos, 400-401: 106402.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Mao Jingwen, Zhang Zhaochong, Yang Jianmin, Song Biao, Wu Maobing, Zuo Guochao. 1998. Single grain zircon dating of Precambrian strata in the western section of North Qilian Mountains and its geological significance. Chinese Science Bulletin, 13: 1414~1417 (in Chinese with English abstract).

    • Melezhik V A, Fallick A E, Medvedev P V, Makarikhin V V. 2001. Palaeoproterozoic magnesite: Lithological and isotopic evidence for playa/sabkha environments. Sedimentology, 48(2): 379~397.

    • Melezhik V A, Fallick A E, Rychanchik D V, Kuznetsov A B. 2005. Palaeoproterozoic evaporates in Fennoscandia: Implications for seawater sulphate, the rise of atmospheric oxygen and local amplification of the δ13C excursions. Terra Nova, 17: 141~148.

    • Misch D, Pluch H, Mali H, Ebner F, Huang Hui. 2018. Genesis of giant Early magnesite and related talc deposits in the Mafeng area, Liaoning Province, NE China. Journal of Asian Earth Sciences, 160: 1~12.

    • Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249: 1~35.

    • Nishihara H. 1956. Origin of the bedded magnesites of Manchuria. Economic Geology, 51(7): 698~711.

    • Pohl W. 1990. Genesis of magnesite deposit-models and trends. International Journal of Earth Sciences, 79(2): 291~299.

    • Ronchi L H, Parente C V, Fuzikawa K, Neto A B. 2008. Genetic and metamorphic conditions constrained by fluid Paleoproterozoic (c. 1. 8 Ga) magnesite ore deposits, NE Brazil. Journal of South American Earth Science, 25(4): 492~500.

    • Schroll E. 2002. Genesis of magnesite deposits in the view of isotope geochemistry. Boletim Paranaense de Geociências, 50: 59~68.

    • Schumann D, Martin R F, Fuchs S, Fourestier J D. 2019. Silicocarbonatitic melt inclusions in fluorapatite from the Yates prospect, Otter lake, Quebec: Evidence of marble anatexis in the central metasedimentary belt of the Grenville Province. The Canadian Mineralogist, 57: 583~604.

    • Sláma J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N Whitehouse M J. 2008. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.

    • Sun Yubao. 2007. Geological characteristics and metallogenic types of the Lilaozhuang iron-magnesite deposit in Huoqiu, Anhui. Mineral Resources and Geology, 21(5): 532~537.

    • Tang Haoshu, Chen Yanjing, Wu Guang, Yang Tao. 2009. Rare earth element geochemistry of carbonates of Dashlqiao Formation, Liaohe Group, eastern Liaoning Province: Implications for Lomagundi event. Acta Petrologica Sinica, 25(11): 3075~3093 (in Chinese with English abstract).

    • Tang Haoshu, Chen Yanjing, Santosh M, Zhong Hong, Wu Guang, Lai Yong. 2013. C-O isotope geochemistry of the Dashiqiao magnesite belt, North China Craton: Implications for the Great Oxidation Event and ore genesis. Geological Journal, 48(5), 467~483.

    • Tracy D F, Fielding C R. 2003. Marine origin for Precambrian, carbonate-hosted magnesite? Geology, 31: 1101~1104.

    • Trap P, Faure M, Lin W, Monie P, Meffre S, Melleton J. 2009. The Zanhuang massif, the second and eastern suture zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 172: 80~98.

    • Veizer J, Hoefs J. 1976. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochimica et Cosmochimica Acta, 40: 1387~1395.

    • Velasco F Q, Pesquera A, Arce R, Olmedo F. 1987. A contribution to the ore genesisof the magnesite deposit of Eugui, Navarra (Spain). Mineral Deposita, 22(1): 33~41.

    • Wan Yusheng, Song Biao, Liu Dunyi, Wilde S A, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Paleoproterozoic tectonothermal event . Precambrian Research, 149: 249~271.

    • Wang Peicheng, Zhang Chengji. 1996. Metamorphosed nonmetallic mineral-bearing form ations in the Proterozoic medium to high grade metamorphic sequence in eastern Shandong. Shandong Geology, 2: 31~47 (in Chinese with English abstract).

    • Warren J K. 1990. Sedimentology and minerlogy of dolomitic Coorong lakes, South Australia. Journal of Sedimentary Petrology, 60(6): 843~858.

    • Yang Chonghui, Du Lilin, Song Huixia, Ren Liudong, Miao Peisen, Lu Zenglong. 2018. Stratigraphic division and correlation of the Pleoproterozoic strata in the North China Craton: A review. Acta Petrologica Sinica, 34(4): 1019~1057 (in Chinese with English abstract).

    • Yang Xiaoyong, Wang Bohua, Du Zhenbao, Wang Qicai, Wang Yuxian, Tu Zhengbiao, Zhang Wenli, Sun Weidong. 2012. On the metamorphism of the Huoqiu Group, forming ages and mechanism of BIF and iron deposit in the Huoqiu region, southern margin of the North China craton. Acta Petrologica Sinica, 28(11): 3476~3496.

    • Yaxley G M, Anenburg M, Tappe S, Decree S, Guzmics T. 2022. Carbonatites: Classification, sources, evolution, and emplacement. Annual Review of Earth and Planetary Sciences, 50: 261~293.

    • Zadeh A M A. , Ebner F, Jiang Shaoyong, 2015. Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (eastern Alps/Austria): Implications for a metasomatic genetic model. Mineralogy and Petrology, 109(5): 555~575.

    • Zhang Qiusheng. 1988. Early proterozoic tectonic styles and associated mineral deposits of the North China platform. Precambrian Research, 39(1-2): 1~29.

    • Zhao Guochun, Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222-223: 13~54.

    • 陈毓川, 王登红, 徐志刚等. 2015. 中国重要矿产和区域成矿规律. 北京: 地质出版社, 156~174.

    • 冯备战, 王晓伟, 曾俊杰, 张学奎. 2005. 北祁连西段古元古代大陆裂谷火山岩性质的确定. 甘肃地质学报, 14(1): 15~20.

    • 高煜, 郝宇杰, 任云生, 史雨凡, 孙振明, 王崇一. 2020. 黑龙江佳木斯地块兴东群大盘道组碎屑锆石U-Pb定年及其地质意义. 世界地质, 39(1): 16~29.

    • 何世平, 李荣社, 王超, 于浦生, 辜平阳, 时超. 2010. 祁连山西段甘肃肃北地区北大河岩群片麻状斜长角闪岩的形成时代. 地质通报, 29(9): 1275~1280.

    • 胡古月, 李延河, 范昌福, 赵悦, 侯可军, 王天慧. 2015. 辽东古元古代菱镁矿矿床与硼酸盐矿床——同期异相沉积成矿探讨. 矿床地质, 34(3): 547~564.

    • 胡古月, 孙新胜, 郑军, 余旭辉, 王东波, 李延河, 赵悦, 陈翰, 徐莺, Ord A. 2022. 辽东半岛海城-大石桥菱镁矿矿床成因探讨. 地质学报, 96(4): 1340~1355.

    • 黄华, 张连昌. 2020. 安徽霍邱李老庄铁-菱镁矿床成因探讨: 碳、氧同位素的指示意义. 矿物岩石地球化学通报, 39(6): 1312~1324.

    • 毛景文, 张招崇, 杨建民, 宋彪, 吴茂炳, 左国朝. 1998. 北祁连山西段前寒武纪地层单颗粒锆石测年及地质意义. 科学通报, 13: 1414~1417.

    • 孙玉宝. 2007. 安徽霍邱李老庄铁矿-菱镁矿矿床地质特征及矿床成因类型. 矿产与地质, 21(5): 532~537.

    • 汤好书, 陈衍景, 武广, 杨涛. 2009. 辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示. 岩石学报, 25(11): 3075~3093.

    • 王沛成, 张成基. 1996. 鲁东地区元古宙中深变质岩系非金属矿含矿变质建造. 山东地质, 2: 31~47.

    • 杨崇辉, 杜利林, 宋会侠, 任留东, 苗培森, 路增龙. 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019~1057.

    • 杨晓勇, 王波华, 杜贞宝, 王启才, 王玉贤, 涂政标, 张文利, 孙卫东. 2012. 论华北克拉通南缘霍邱群变质作用、形成时代及霍邱BIF铁矿成矿机制. 岩石学报, 28(11): 3476~3496.

    • 张秋生. 1984. 中国早前寒武纪地质及成矿作用. 吉林人民出版社, 1~544.

    • 张招崇, 毛景文, 左国朝, 杨建民, 王志良, 张作衡. 1998. 北祁连山西段早元古代变质火山岩的地球化学特征及其构造背景. 矿物岩石, 18(4): 22~31.