en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

曾旭,男,1987年生。高级工程师,主要从事含油气盆地分析、非常规油气地质研究工作。E-mail:zengxu20212021@163.com。

参考文献
Alison R D, Marin K C, Eric K, Kenneth A F, William H C, Li Chuanyou, Yuan Daoyang. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics, 32(5): 1190~1211.
参考文献
Chang Hong, Li Leyi, Qiang Xiaoke, Carmala N G, Alexander Pullen, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.
参考文献
Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Pei Lei, Liu Zhanqing, Chen Yuxin, Liu Chengjun, Gao Jingmin, Wei Fanghui. 2013. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Cocoe A'Long quartz diorites body from the Hongshuichuan area in East Kunlun. Acta Geologica Sinica, 87(2): 178~196 (in Chinese with English abstract).
参考文献
Chen Xuanhua, Yin An, Gehrels G, Li Li, Jiang Rongbao. 2011. Chemical geodynamics of granitic magmatism in the basement of the eastern Qaidam basin, northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 85(2): 157~171 (in Chinese with English abstract).
参考文献
Chen Yan, Lei Tao, Zhang Guoqing, Yuan Li, Wang Duo, Wu Zhixiong, Chen Jinghua, Yang Qianxia. 2019. The geological conditions, resource potential and exploration direction of oil in Qaidam basin. Marine Origin Petroleum Geology, 24(2): 64~74 (in Chinese with English abstract).
参考文献
Chen Zhengle, Gong Hongliang, Li Li, Wang Xiaofeng, Chen Bolin, Chen Xuanhua. 2004. Cenozoic uplifting and exhumation process of the Altyn Tagh Mountains. Earth Science Frontiers, (4): 91~102 (in Chinese with English abstract).
参考文献
Cheng Feng, Jolivet M, Fu Suotang, Zhang Qiquan, Guan Shuwei, Yu Xiangjiang, Guo Zhaojie. 2014. Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam basin, Tectonophysics, 632: 32~47.
参考文献
Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2015a. Source to sink relation between the eastern Kunlun range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128(1-2): B31260. 1.
参考文献
Cheng Feng, Jolivet M, Dupont-Nivet G, Wang Lin, Yu Xiangjiang, Guo Zhaojie. 2015b. Lateral extrusion along the Altyn Tagh fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget. Terra Nova, 27: 416~425.
参考文献
Cheng Feng, Jolivet Marc, Hallot Erwan, Zhang Daowei, Zhang Changhao, Guo Zhaojie. 2017. Tectono-magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Research, 49: 248~263.
参考文献
Cheng Feng, Garzione C N, Mitra G, Jolivet M, Guo Zhaojie, Lu Huayu, Li Xiangzhong, Zhang Bo, Zhang Daowei, Zhang Changhao, Zhang H, Wang L. 2019. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau. Earth-Science Reviews, 198(C): 102945.
参考文献
Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Cheng Bin, Zhao Guochun, Li Jianhua. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.
参考文献
Dong Zengchan, Gu Pingyang, Jiao He, Zha Xianfeng, Chen Ruiming, Zhang Haidi. 2014. Geochemistry and chronology of Yanchangbeishan gabrro in Lenghu area at the west segment of the north margin of Qaidam. Chinese Journal of Geology, 49(4): 1132~1149 (in Chinese with English abstract).
参考文献
Feng Wei, Song Chunhui, Meng Qingquan, He Pengju, Fang Xiaomin, Chen Wenqi, Wang Xinghong, Wang Qiaoxin. 2022. Cenozoic multi-stage deformation of the Qilian Shan orogenic belt, northern Tibetan Plateau: Insights from a detrital zircon provenance study of an Oligocene-Miocene intermontane basin sedimentary succession. Journal of Asian Earth Sciences, 224: 105039.
参考文献
Fu Ling, Guan Ping, Jian Xing, Liu Ruijuan, Feng Fan, An Qun, Fan Chaofeng. 2012. Sedimentary genetic types of coarse fragment of Paleogene Lulehe Formation in Qaidam basin and time limit of the Tibetan Plateau uplift. Natural Gas Geoscience, 23(5): 833~840 (in Chinese with English abstract).
参考文献
Fu Suotang, Ma Dade, Chen Yan, Zhang Guoqing, Wu Kunyu. 2016. New advance of petroleum and gas exploration in Qaidam basin. Acta Petrolei Sinica, 37(S1): 1~10 (in Chinese with English abstract).
参考文献
Gao Shibao, Cowgill E, Wu Lei, Lin Xiubin, Cheng Xiaogan, Yang Rong, Soares C, Ketcham R A, An Kaixuan, Gong Junfeng, Song Xingtong, Tang Jianchao, Chen Hanlin, Yang Shufeng. 2022. From left slip to transpression: Cenozoic tectonic evolution of the North Altyn fault, NW margin of the Tibetan Plateau. Tectonics, 41(3): e2021TC006962.
参考文献
Gao Wanli, Wang Zongxiu, Li Leilei, Cui Mingming, Qian Tao, Hu Junjie. 2019. Discovery of the Permian granite in Saishiteng Mountain of the northern Qaidam basin and its tectonic significance. Acta Geologica Sinica, 93(4): 816~829 (in Chinese with English abstract).
参考文献
Ge Xiaohong, Zhang Meisheng, Liu Yongjiang, Ye Huiwen, Shi Caidong. 1998. Scientific problems and thought for research of the Altun fault. Geoscience, (3): 2~5 (in Chinese with English abstract).
参考文献
Guo Zhaojie, Lu Jiemin, Zhang Zhicheng. 2009. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau: Constraints from sedimentological and apatite fission-track data. Acta Geologica Sinica (English Edition), 83 (3): 562~579.
参考文献
Hou Zengqian, Yang Zhusen, Xu Wenyi, Mo Xuanxue, Ding Lin, Gao Yongfeng, Dong Fangliu, Li Guangming, Qu Xiaoming, Li Guangming, Zhao Zhidan, Jiang Sihong, Meng Xiangjin, Li Zhenqing, Qin Kezhang, Yang Zhiming. 2006. Metallogenesis in Tibetan collisional orogenic belt: I. Mineralization in main collisional orogenic setting. Mineral Deposits, (4): 337~358 (in Chinese with English abstract).
参考文献
Huo Feifei. 2019. Paleomagnetic results of the Mesozoic-Cenozoic strata in the northeastern Tibetan Plateau and their tectonic implications. Doctoral dissertation of Northwestern University (in Chinese with English abstract).
参考文献
Ji Junliang, Zhang Kexin, Peter D C, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.
参考文献
Jiang Gaolei, Zhang Simin, Liu Kunfeng, Zhang Kexin. 2014. Evolution of Neoproterozoic-Mesozoic sedimentary basins in Qilian-Qaidam-East Kunlun area. Earth Science (Journal of China University of Geosciences), 39(8): 1000~1016 (in Chinese with English abstract).
参考文献
Jolivet M, Brunel M, Seward D, Xu Zhenbo, Yang Juncheng, Malavieille J, Roger F, Leyreloup A, Arnaud Z, Wu Cyndi. 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun fault. Tectonics, 22(5): 1052.
参考文献
Li Chaopeng, Zheng Dewen, Zhou Renjie, Yu Jingxing, Wang Yizhou, Pang Jianzhang, Wang Ying, Hao Yuqi, Li Youjuan. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e91281.
参考文献
Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Chevalier M-L, Wang Huan, Lu Haijian, Zheng Yong, Li Chunrui. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213 (in Chinese with English abstract).
参考文献
Li Linlin, Guo Zhaojie, Guan Shuwei, Zhou Suping, Wang Mingzhen, Fang Yanan, Zhang Chenchen. 2015. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam basin. Science China: Earth Sciences, 45(6): 780~798+1~6 (in Chinese with English abstract).
参考文献
Li Ruibao, Pei Xianzhi, Li Zuochen, Liu Zhanqing, Chen Guochao, Chen Youxin, Wei Fanghui, Gao Jingmin, Liu Chengjun, Pei Lei. 2012. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244~254 (in Chinese with English abstract).
参考文献
Liu Chiyang, Fu Suotang, Zhang Daowei, Chen Yan, Huang Lei, Shi Yajun. 2020. Determination of giant hydrocarbon enrichment area in Qaidam basin and its exploration results: An example for source-controlling of original basin and reform-controlling reservoir in a reformed basin. Acta Petrolei Sinica, 41(12): 1527~1537 (in Chinese with English abstract).
参考文献
Liu Liang, Kang Lei, Cao Yuting, Yang Wengqiang. 2015. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China. Science China: Earth Sciences, 45(8): 1126~1137 (in Chinese with English abstract).
参考文献
Liu Yongshun, Yu Haifeng, Xin Houtian, Lu Songnian, Xiu Qunye, Li Quan. 2009. Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China. Geological Bulletin of China, 28(10): 1430~1438 (in Chinese with English abstract).
参考文献
Liu Yongshun, Yu Haifeng, Xiu Qunye, Yang Junquan, Li Quan. 2010. Characteristics and tectonic implications of eclogites in southern Altun area. Acta Petrologica et Mineralogica, 29(2): 166~174 (in Chinese with English abstract).
参考文献
Liu Yuhua, Wang Xiang, Zhang Min, Peng Dehua. 2010. Study on hydrocarbon generation conditions of the dark mudstone in well Lvcan 1 in southwest Qaidam basin. Special Oil & Gas Reservoirs, 17(4): 50~52 (in Chinese with English abstract).
参考文献
Lu Haijian, Ye Jiacan, Guo Licheng, Pan Jiawei, Xiong Shangfa, Li Haibing. 2019. Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam basin. Lithosphere, 11(2): 252~272.
参考文献
Luo Liang, John Geissman, Zeng Xu, Wang Bo, Zhou Fei, Zhang Yi, Yang Shaohang, Zhou Yangfan. 2022. Geometry and kinematics of the western part of the NE Qaidam basin: Implications for the growth of the Tibetan Plateau. Tectonophysics, 822: 229154.
参考文献
Lv Baofeng, Zhang Yueqing, Yang Shuyi. 2011. Characteristics of structural system and its implication for formation dynamics in Qaidam basin. Geological Review, 57(2): 167~174 (in Chinese with English abstract).
参考文献
Ma Dade, Wang Yanqing. 2015. New understandings and exploration discovery of Paleogene reservoirs of Kunbei fault terrace belt, Qaidam basin, NW China. Petroleum Exploration and Development, 42(4): 529~537 (in Chinese with English abstract).
参考文献
Mao Liguang, Xiao Ancheng, Wu Lei, Li Benliang, Wang Liqun, Lou Qianqian, Dong Youpu, Qin Suhua. 2014. Cenozoic tectonic and sedimentary evolution of southern Qaidam basin, NE Tibetan Plateau and its implication for the rejuvenation of eastern Kunlun Mountains. Science China (Earth Sciences), 57(11): 2726~2739.
参考文献
Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planet Science Letters, 171: 107~122.
参考文献
Ni Jinyu. 2010. Zircon U-Pb age and tectonic setting of Permian-Triassic volcanic rock in East Kunlun orogenic belt. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).
参考文献
Ni Xianglong, Wang Jiangong, Guo Jiajia, Du Binshan, Yi Dinghong, Long Guohui, Li Zhiming, Hui Yuanyuan. 2019. Reservoir-controlling effect of basement faults and favorable exploration zones in southwestern Qaidam basin. Lithologic Reservoirs, 31(4): 32~41 (in Chinese with English abstract).
参考文献
Nie Junsheng, Ren Xueping, Saylor J E, Su Qingda, Horton B K, Bush M A, Chen Wenhan, Pfaff K. 2020. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2): 310~320.
参考文献
Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.
参考文献
Pan Jiawei, Li Haibing, Sun Zhiming, Liu Dongliang, Wu Chan, Yu Changqing. 2015. Tectonic responses in the Qaidam basin induced by Cenozoic activities of the Altyn Tagh fault. Acta Petrologica Sinica, 31(12): 3701~3712 (in Chinese with English abstract).
参考文献
Pang Jianzhang, Yu Jingxing, Zheng Dewen, Wang Yizhou, Zhang Huiping, Li Chaopeng, Wang Weitao, Hao Yuqi. 2019. Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 181: 103909.
参考文献
Peng Yinbiao, Yu Shengyao, Li Sanzhong, Zhang Jianxin, Liu Yongjiang, Li Yunshuai, Santosh M. 2019. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent. Earth-Science Reviews, 199(C): 102954.
参考文献
Peng Yuan, Ma Yinsheng, Liu Chenglin, Sun Jiaopeng, Hu Zhongya, Mou Hongliang, Zheng Ce. 2016. SHRIMP zircon ages of the Dagangou volcanic rocks in the eastern Kunlun orogenic belt and their implications. Geological Bulletin of China, 35(Z1): 356~363 (in Chinese with English abstract).
参考文献
Qi Bangshen, Hu Daogong, Yang Xiaoxiao, Zhang Yaoling, Tan Chengxuan, Zhang Peng, Feng Chengjun. 2016. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene. Journal of Asian Earth Sciences, 124: 28~41.
参考文献
Song Bowen, Spicer R A, Zhang Kexin, Ji Junliang, Farnsworth A, Hughes A C, Yang Yibo, Han Fang, Xu Yadong, Spicer T, Shen Tianyi, Lunt D J, Shi Gongle. 2020. Qaidam basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth and Planetary Science Letters, 537: 116175.
参考文献
Song Shuguang, Su Li, Li Xianhua, Niu Yaoling, Zhang Lifei. 2012. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Research, 220-221: 9~22.
参考文献
Su Zhenguo. 2019. Geological characteristics, provenance analysis and tectonic evolution of the volcanic-sedimentary strata of the Maoniushan Formation in the Hongshuihe area of the eastern Kunlun orogenic belt. Master's thesis of Chang'an University (in Chinese with English abstract).
参考文献
Tang Liangjie, Jin Zhijun, Zhang Mingli, Zhang Bingshan, You Fubao, Luo Jing. 1999. Tectonic evolution of Qaidam basin in Sinian-Triassic. Chinese Journal of Geology, (3): 289~300 (in Chinese with English abstract).
参考文献
Wang Chengshan, Dai Jinggen, Liu Zhifei, Zhu Lidong, Li Yalin, Jia Guodong. 2009. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review. Earth Science Frontiers, 16(3): 1~30 (in Chinese with English abstract).
参考文献
Wang Fei, Luo Qinghua, Li Qi, Wan Jinglin, Zheng Dewen, Li Daming, Wang Yu. 2002. Cooling event around 30 Ma in the northern edge of the Qaidam basin: Constraints from 40Ar/39Ar and fission track thermochronology. Geological Review, 48(S1): 88~96 (in Chinese with English abstract).
参考文献
Wang Fei, Feng Huile, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhang Zhigang, Zhu Rixiang. 2016. Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 675: 196~208.
参考文献
Wang Lin, Scott A M, Cheng Feng. 2020. From a proximal-deposition-dominated basin sink to a significant sediment source to the Chinese Loess Plateau: Insight from the quantitative provenance analysis on the Cenozoic sediments in the Qaidam basin, northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology. 556: 109883.
参考文献
Wang Tao, Hong Dawei, Jahn Borming, Tong Ying, Wang Yanbin, Han Baofu, Wang Xiaoxia. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735~751.
参考文献
Wang Weitao, Zhang Peizhen, Zheng Dewen, Pang Jianzhang. 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau. Earth Science Frontiers, 21(4): 266~274 (in Chinese with English abstract).
参考文献
Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby Eric, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8(1): 15887.
参考文献
Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.
参考文献
Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.
参考文献
Wu Chen, Yin An, Zuza Andrew V, Zhang Jinyu, Liu Wencan, Ding Lin. 2016. Pre-Cenozic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8(3): 254~292.
参考文献
Wu Chen, Li Jie, Ding Lin. 2021. Low-temperature thermochronology constraints on the evolution of the eastern Kunlun Range, northern Tibetan Plateau. Geosphere, 17(4): 1193~1213.
参考文献
Wu Lei, Xiao Ancheng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China: Earth Sciences, 42(12): 1863~1876 (in Chinese with English abstract).
参考文献
Wu Lei, Gong Qinglin, Qin Suhua. 2013. When did Cenozoic left-slip along the Altyn Tagh fault initiate? A comprehensive approach. Acta Petrologica Sinica, 29(8): 2837~2850 (in Chinese with English abstract).
参考文献
Wu Zhenhan, Jiang Wan, Zhou Jirong, Li Jixiang. 2001. Thermal-chronological dating on the thermal history of plutons and tectonic-landform evolution of the central Tibetan Plateau. Acta Geologica Sinica, 75(4): 468~476 (in Chinese with English abstract).
参考文献
Wu Zhenhan, Wu Zhonghai, Hu Daogong, Ye Peisheng, Zhou Chunjing. 2007. Geological evidences for the Tibetan Plateau uplifted in Late Oligocene. Acta Geologica Sinica, 81(5): 577~587 (in Chinese with English abstract).
参考文献
Xiao Ancheng, Yu Long, Xiong Guangyao, Zhang Junyong, Zhang Yongshu, Wu Lei, Zhao Haifeng, Tan Suhua. 2021. Triassic retroarc foreland basin in southern Qilian area: Evidence from sedimentary filling and tectonics. Acta Petrologica Sinica, 37(8): 2385~2400 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zeming, Ceng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China, 43(1): 1~42 (in Chinese with English abstract).
参考文献
Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65~94 (in Chinese with English abstract).
参考文献
Yan Zhen, Fu Changlei, Aitchison J C, Buckman S, Niu Manlan, Cao Bo, Sun Yi, Guo Xianqing, Wang Zongqi, Zhou Renjie. 2019. Retro-foreland basin development in response to Proto-Tethyan Ocean closure, NE Tibet Plateau. Tectonics, 38(12): 4229~4248.
参考文献
Yang Jingsui, Shi Rendeng, Wu Cailai, Su Dechen, Chen Songyong, Wang Xibin, Wooden Joseph. 2008. Petrology and SHRIMP age of the Honeliugou ophiolite at Milan, north Altun, at the northern margin of the Tibetan plateau. Acta Petrologica Sinica, 24(7): 1567~1584 (in Chinese with English abstract).
参考文献
Ye Yuhui. 2021. Cenozoic tectonic activity of the North Altyn fault: Evidence from geomorphological analysis and thermochronology. Master's thesis of Zhejiang University (in Chinese with English abstract).
参考文献
Yi Li. 2020. Effect of the Tibetan Plateau uplift on the hydrocarbon accumulation of Cenozoic Qaidam basin. Doctoral dissertation of China University of Petroleum (Beijing) (in Chinese with English abstract).
参考文献
Yin An, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Qing, Zhou Xianqiang, Wang Xiaofeng, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10): 1257~1295.
参考文献
Yin An, Dang Yuqi, Wang Licun, Jiang Wuming, Zhou Suping, Chen Xuanhua, Gehrels G E, McRivette M W. 2008. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120(7-8): 813~846.
参考文献
Yu Jingxing, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Liu Caicai, Wang Weitao, Li Youjuan, Li Chaopeng, Xiao Lin. 2019. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere, 15(2): 423~432.
参考文献
Yue Yongjun, Bradley D R, Stephan A G, Joseph L W, George E G, Zhang Zhicheng. 2004. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters, 217(1): 111~122.
参考文献
Yue Yongjun, Stephan A G, Bradley D R, Joseph L W. 2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault. Tectonophysics, 406: 165~178.
参考文献
Zeng Xu, Lin Tong, Wang Wei, Yan Zhandong, Hao Cuiguo, Bian Yingying, Wang Jun. 2019. Detrital zircon dating of LA-ICP-MS in the Upper Jurassic and indicative significance of the Qaidam basin. Natural Gas Geoscience, 30(5): 662~672 (in Chinese with English abstract).
参考文献
Zhang Jianxin, Yu Shengyao, Li Yunshuai, Yu Xingxing, Lin Yihui, Mao Xiaohong. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531~3554 (in Chinese with English abstract).
参考文献
Zhang Jianxin, Lu Zenglong, Mao Xiaohong, Teng Xia, Zhou Guisheng, Wu Yawei, Guo Qi. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74~102 (in Chinese with English abstract).
参考文献
Zhang Jinming, Fu Yanwen, Tian Chengxiu, Lei Xiaoqing. 2021. Lithofacies paleogeography and genesis of salt rock in the Late Eocene of western Qaidam basin. Journal of Stratigraphy, 45(4): 545~553 (in Chinese with English abstract).
参考文献
Zhang Kexin, Wang Guocan, Hong Hanlie, Xu Yadong, Wang An, Cao Kai, Luo Mansheng, Ji Junliang, Xiao Guoqiao, Lin Xiao. 2013. The study of the Cenozoic uplift in the Tibetan Plateau: A review. Geological Bulletin of China, 32(1): 1~18 (in Chinese with English abstract).
参考文献
Zhang Shiming, Zhang Xiaojun, Wang Jiangong, Zhang Tingjing, Cui Jun, Wang Chao, Fu Juorong. 2022. Characteristics and their controlling factors of mixed sediments in saline lakes: A case study of lower Ganchaigou Formation in the western Qaidam basin. Journal of China University of Mining & Technology, 51(1): 160~173 (in Chinese with English abstract).
参考文献
Zhang Tao, Song Chunhui, Wang Yadong, Zheng Haijun, Zhang Zhigao, Wu Song, Meng Qingquan, Fang Xiaomin. 2012. The Late Cenozoic tectonic deformation in the western Qaidam basin and its implications. Earth Science Frontiers, 19(5): 312~321 (in Chinese with English abstract).
参考文献
Zhang Yueqiao, Li Hailong. 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion-related orogenic system. Geology in China, 43(6): 1829~1852 (in Chinese with English abstract).
参考文献
Zhao Feifei, Sun Fengyue, Liu Jinglong. 2017. Zircon U-Pb geochronology and geochemistry of the gneissic granodiorite in Manite area from East Kunlun, with implications for geodynamic setting. Earth Science, 42(6): 927~940+1044 (in Chinese with English abstract).
参考文献
Zhao Junfeng, Zeng Xu, Tian Jixian, Hu Chao, Wang Di, Yan Zhandong, Wang Ke, Zhao Xudong. 2020. Provenance and paleogeography of the Jurassic northwestern Qaidam basin (NW China): Evidence from sedimentary records and detrital zircon geochronology. Journal of Asian Earth Sciences, 190(C): 104060.
参考文献
Zhao Xudong, Zhao Junfeng, Zeng Xu, Tian Jixian, Guo Zeqing, Wang Chao, Wang Di, Hu Chao. 2020. Early-Middle Jurassic paleogeography reconstruction in the western Qaidam basin: Insights from sedimentology and detrital zircon geochronology. Marine and Petroleum Geology, 118: 104445.
参考文献
陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178~196.
参考文献
陈宣华, 尹安, Gehrels G, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157~171.
参考文献
陈琰, 雷涛, 张国卿, 袁莉, 王铎, 吴志雄, 陈景华, 杨乾霞. 2019. 柴达木盆地石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(2): 64~74.
参考文献
陈正乐, 宫红良, 李丽, 王小凤, 陈柏林, 陈宣华. 2004. 阿尔金山脉新生代隆升-剥露过程. 地学前缘, (4): 91~102.
参考文献
董增产, 辜平阳, 焦和, 查显锋, 陈锐明, 张海迪. 2014. 柴北缘西端冷湖盐场北山辉长岩地球化学及年代学研究. 地质科学, 49(4): 1132~1149.
参考文献
付玲, 关平, 简星, 刘瑞娟, 冯帆, 安群, 范朝峰. 2012. 柴达木盆地路乐河组粗碎屑沉积成因与青藏高原隆升时限. 天然气地球科学, 23(5): 833~840.
参考文献
付锁堂, 马达德, 陈琰, 张国卿, 伍坤宇. 2016. 柴达木盆地油气勘探新进展. 石油学报, 37(S1): 1~10.
参考文献
高万里, 王宗秀, 李磊磊, 崔明明, 钱涛, 胡俊杰. 2019. 柴达木盆地北缘小赛什腾山二叠纪花岗岩的发现及其构造意义. 地质学报, 93(4): 816~829.
参考文献
葛肖虹, 张梅生, 刘永江, 叶慧文, 石采东. 1998. 阿尔金断裂研究的科学问题与研究思路. 现代地质, (3): 2~5.
参考文献
侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 2006. 青藏高原碰撞造山带: i. 主碰撞造山成矿作用. 矿床地质, (4): 337~358.
参考文献
霍斐斐. 2019. 青藏高原东北部中-新生代地层古地磁研究及构造意义. 西北大学博士学位论文.
参考文献
姜高磊, 张思敏, 柳坤峰, 张克信. 2014. 祁连-柴达木-东昆仑新元古-中生代沉积盆地演化. 地球科学(中国地质大学学报), 39(8): 1000~1016.
参考文献
李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M-L, 王焕, 卢海建, 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.
参考文献
李林林, 郭召杰, 管树巍, 周苏平, 王明振, 房亚男, 张晨晨. 2015. 柴达木盆地西南缘新生代碎屑重矿物组合特征及其古地理演化. 中国科学: 地球科学, 45(6): 780~798+1~6.
参考文献
李瑞保, 裴先治, 李佐臣, 刘战庆, 陈国超, 陈有炘, 魏方辉, 高景民, 刘成军, 裴磊. 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244~254.
参考文献
刘池洋, 付锁堂, 张道伟, 陈琰, 黄雷, 石亚军. 2020. 柴达木盆地巨型油气富集区的确定及勘探成效——改造型盆地原盆控源、改造控藏之范例. 石油学报, 41(12): 1527~1537.
参考文献
刘良, 康磊, 曹玉亭, 杨文强. 2015. 杨文强. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用. 中国科学: 地球科学, 45(8): 1126~1137.
参考文献
刘永顺, 于海峰, 辛后田, 陆松年, 修群业, 李铨. 2009. 阿尔金山地区构造单元划分和前寒武纪重要地质事件. 地质通报, 28(10): 1430~1438.
参考文献
刘永顺, 于海峰, 修群业, 杨俊泉, 李铨. 2010. 南阿尔金地区榴辉岩特征及意义. 岩石矿物学杂志, 29(2): 166~174.
参考文献
刘玉华, 王祥, 张敏, 彭德华. 2010. 柴达木盆地西部南区绿参1井暗色泥岩生烃条件研究. 特种油气藏, 17(4): 50~52.
参考文献
吕宝凤, 张越青, 杨书逸. 2011. 柴达木盆地构造体系特征及其成盆动力学意义. 地质论评, 57(2): 167~174.
参考文献
马达德, 王艳清. 2015. 柴达木盆地昆北断阶带古近系储集层新认识与勘探发现. 石油勘探与开发, 42(4): 529~537.
参考文献
倪晋宇. 2010. 东昆仑造山带二叠纪-三叠纪火山岩锆石U-Pb年龄与构造环境. 中国地质科学院博士学位论文.
参考文献
倪祥龙, 王建功, 郭佳佳, 杜斌山, 易定红, 龙国徽, 李志明, 惠媛媛. 2019. 柴达木盆地西南地区基底断裂的控藏作用与有利区带. 岩性油气藏, 31(4): 32~41.
参考文献
潘家伟, 李海兵, 孙知明, 刘栋梁, 吴婵, 于常青. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应. 岩石学报, 31(12): 3701~3712.
参考文献
彭渊, 马寅生, 刘成林, 孙娇鹏, 胡忠亚, 牟宏良, 郑策. 2016. 东昆仑大干沟火山岩SHRIMP锆石U-Pb测年及其地质意义. 地质通报, 35(Z1): 356~363.
参考文献
苏朕国. 2019. 东昆仑东段洪水河地区牦牛山组火山-沉积地层地质特征、物源分析和构造演化. 长安大学硕士学位论文.
参考文献
汤良杰, 金之钧, 张明利, 张兵山, 由福报, 骆静. 1999. 柴达木震旦纪—三叠纪盆地演化研究. 地质科学, (3): 289~300.
参考文献
王成善, 戴紧根, 刘志飞, 朱利东, 李亚林, 贾国东. 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展. 地学前缘, 16(3): 1~30.
参考文献
王非, 罗清华, 李齐, 万景林, 郑德文, 李大明, 王瑜. 2002. 柴达木盆地北缘30 Ma前的快速冷却事件及构造意义——40Ar/39Ar及FT热年代学制约. 地质论评, 48(S1): 88~96.
参考文献
王伟涛, 张培震, 郑德文, 庞建章. 2014. 青藏高原东北缘海原断裂带晚新生代构造变形. 地学前缘, 21(4): 266~274.
参考文献
吴磊, 肖安成, 汪立群, 毛黎光, 王亮, 董有浦, 徐波. 2012. 阿尔金断裂中段南侧东西向隆起的形成及对阿尔金山新生代隆升机制的启示. 中国科学: 地球科学, 42(12): 1863~1876.
参考文献
吴磊, 巩庆霖, 覃素华. 2013. 阿尔金断裂新生代大规模走滑起始时间的厘定. 岩石学报, 29(8): 2837~2850.
参考文献
吴珍汉, 江万, 周继荣, 李冀湘. 2001. 青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析. 地质学报, 75(4): 468~476.
参考文献
吴珍汉, 吴中海, 胡道功, 叶培盛, 周春景. 2007. 青藏高原渐新世晚期隆升的地质证据. 地质学报, 81(5): 577~587.
参考文献
肖安成, 余龙, 熊光耀, 张军勇, 张永庶, 吴磊, 赵海峰, 覃素华. 2021. 祁连山南部地区三叠纪弧后前陆盆地——基于沉积填充与大地构造的证据. 岩石学报, 37(8): 2385~2400.
参考文献
许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展. 中国地质, 43(1): 1~42.
参考文献
许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.
参考文献
杨经绥, 史仁灯, 吴才来, 苏德辰, 陈松永, 王希斌, Wooden Joseph. 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年. 岩石学报, 24(7): 1567~1584.
参考文献
叶雨晖. 2021. 北阿尔金断裂新生代构造活动特征及意义: 来自地貌分析与热年代学的证据. 浙江大学硕士学位论文.
参考文献
易立. 2020. 青藏高原隆升对柴达木盆地新生界油气成藏的控制作用. 中国石油大学(北京)博士学位论文.
参考文献
曾旭, 林潼, 王薇, 闫占冬, 郝翠果, 边滢滢, 王军. 2019. 柴达木盆地上侏罗统碎屑锆石LA-ICP-MS定年及指示意义. 天然气地球科学, 30(5): 662~672.
参考文献
张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531~3554.
参考文献
张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74~102.
参考文献
张金明, 付彦文, 田成秀, 雷晓清. 2021. 柴达木盆地西部始新世晚期岩相古地理特征及盐岩成因. 地层学杂志, 45(4): 545~553.
参考文献
张克信, 王国灿, 洪汉烈, 徐亚东, 王岸, 曹凯, 骆满生, 季军良, 肖国桥, 林晓. 2013. 青藏高原新生代隆升研究现状. 地质通报, 32(1): 1~18.
参考文献
张世铭, 张小军, 王建功, 张婷静, 崔俊, 王超, 伏珏蓉. 2022. 咸化湖盆混合沉积特征及控制因素分析——以柴达木盆地西部地区古近系下干柴沟组为例. 中国矿业大学学报, 51(1): 160~173.
参考文献
张涛, 宋春晖, 王亚东, 郑海军, 张志高, 吴松, 孟庆泉, 方小敏. 2012. 柴达木盆地西部地区晚新生代构造变形及其意义. 地学前缘, 19(5): 312~321.
参考文献
张岳桥, 李海龙. 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系. 中国地质, 43(6): 1829~1852.
参考文献
赵菲菲, 孙丰月, 刘金龙. 2017. 东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景. 地球科学, 42(6): 927~940.
目录contents

    摘要

    柴达木盆地被祁连山、阿尔金山及昆仑山所环绕,盆地古近系下干柴沟组(E23)地层独特的岩性和沉积格局指示了复杂盆山体系和源区多样成因。本文选取了盆地内部不同构造带5口钻井下干柴沟组的中粗砂岩样品,利用碎屑锆石U-Pb定年等分析方法对柴达木盆地进行了构造、物源系统分析。研究结果表明,位于祁连山前的XX-1井样品下干柴沟组锆石年龄介于2692~156 Ma之间,主要峰值年龄为448 Ma和249 Ma,L6-1井样品锆石年龄介于2693~220 Ma之间,主要峰值年龄为499 Ma和415 Ma;位于盆地西部沉降中心内部的YIT-1井样品下干柴沟组锆石年龄介于2796~266 Ma之间,主要峰值年龄为423 Ma和255 Ma;阿尔金山前的N-105井样品下干柴沟组锆石年龄介于2481~242 Ma之间,主要峰值年龄为422 Ma和259 Ma,N-109井样品锆石年龄介于2638~228 Ma之间,主要峰值年龄为444 Ma和246 Ma。通过与主要源区年龄对比可知,盆地不同构造带下干柴沟组的物源差异较大,靠近祁连山前的XX-1井、L6-1井的物源主要来自于祁连山内部;位于阿尔金山前相邻的N-105、N-109井物源主体来自于阿尔金山内部,但N-109井存在祁连山物源贡献;柴西坳陷内部YIT-1井物源受祁连山及东昆仑共同控制。物源分析结果表明祁连山在古近纪已大规模隆升,并且作为青藏高原北部边界为柴达木盆地持续提供物源;阿尔金山及昆仑山在下干柴沟组沉积时期已经形成雏形,但并未大规模隆升,造成了山前带复杂的物源体系。

    Abstract

    The Qaidam basin is surrounded by the Qilian Mountains, Altun Mountains and Kunlun Mountains. The unique lithology and sedimentary pattern of the Paleogene lower Ganchaigou Formation (E23) in the basin indicate the complex basin mountain system and the diverse genesis of the source area. In this paper, the structure and provenance of the Qaidam basin are systematically analyzed by using detrital zircon U-Pb dating and other analytical methods. The results show that the E23 zircon ages of the samples from well XX-1 in the front of the Qilian Mountains range from 2692 Ma to 156 Ma, and the main peak ages were 448 Ma and 249 Ma. The E23 zircon ages of samples from the well L6-1 ranged from 2693 Ma to 220 Ma, with the main peak ages of 499 Ma and 415 Ma. The E23 zircon ages of samples from the well YIT-1 located in the Western subsidence center of the basin ranged from 2796 Ma to 266 Ma, with the main peak ages of 423 Ma and 255 Ma. The E23 zircon ages of samples from the well N-105 in front of the Altun Mountains ranged from 2481 Ma to 242 Ma, and the main peak ages were 422 Ma and 259 Ma. The E23 zircon ages of samples from the well N-109 ranged from 2638 Ma to 228 Ma, and the main peak ages were 444 Ma and 246 Ma. Compared with the ages of the main source areas, the provenance of E23 in different structural zones of the basin is different. The provenance of E23 in wells XX-1 and L6-1 near the front of the Qilian Mountains mainly comes from the interior of the Qilian Mountains. The main source of wells N-105 and N-109 located in front of the Altyn Tagh Mountains is from the interior of the Altyn Tagh Mountains, but well N-109 has the contribution of the Qilian Mountains. The source of the well YIT-1 in the Chaixi depression is jointly controlled by the Qilian Mountains and the East Kunlun Mountains. The results of provenance analysis show that the Qilian Mountain has been uplifted on a large scale in the Paleogene, and as the northern boundary of the Qinghai-Tibet Plateau, it continues to provide provenance for the Qaidam basin. The Altun Mountains and Kunlun Mountains had taken shape in the E23 period, but did not rise on a large scale, resulting in a complex provenance system in the piedmont zone.

  • 柴达木盆地位于青藏高原东北缘,是青藏高原上大型陆相中新生代盆地(付锁堂等,2016),其形成发育与特提斯构造域构造演化、特别是喜马拉雅运动有直接的联系(刘池洋等,2020)。同时盆地被祁连山、阿尔金山及昆仑山所环绕,3条造山带构造演化各异(吕宝凤等,2011):阿尔金山为大型陆内左行走滑断裂带,祁连山以逆冲为主,东昆仑造山带则兼具逆冲、走滑双重特征。因此,不同造山带的构造演化对柴达木盆地构造面貌控制作用迥异(Alison et al.,2013Cheng Feng et al.,2015a2015bJi Junliang et al.,2017)。特殊的盆山背景造成盆地沉积充填极具独特性,古近系下干柴沟组上段(E23)沉积时期(42.8~35.5 Ma)(潘家伟等,2015),在柴达木盆地西南部发育咸化湖盆沉积,在其他地区表现为一套粗粒碎屑沉积。目前对E23沉积时期的盆山关系存在以下科学问题:① 东昆仑造山带在该时期是否开始大规模隆升?一种观点认为在新生代早期(50~35 Ma)东昆仑造山带由于印度-欧亚大陆碰撞的远程效应,经历了强烈的构造变形及隆升剥露过程,形成了青藏高原北部重要的边界,控制着柴西坳陷整体构造格局的形成演化(Yin An et al.,2008付玲等,2012Mao Liguang et al.,2014霍斐斐等,2019);而另一种观点认为青藏高原的隆升经历了自南向北的扩展过程,东昆仑地区大规模的快速隆升始于渐新世晚期—中新世早期,古地磁年龄框架和物源分析结果显示东昆仑山构造隆升发生在25 Ma(Wang Weitao et al.,2017),黑云母和钾长石40Ar/39Ar年龄及相关热史模拟支持东昆仑山在30 Ma快速剥露(Mock C et al.,1999),昆仑山垭口地貌学研究表明东昆仑山强烈构造隆升在第四纪才发生(吴珍汉等,2001),在E23沉积时期东昆仑山并不是现今的盆地边界,盆地西南缘整体处于相对平静构造期,形成了大型湖盆坳陷,昆仑山前的昆北、东柴山地区广泛发育细粒沉积物是东昆仑山晚期隆升的直接证据(刘玉华等,2010马达德等,2015)。② 阿尔金山在该时期是否大规模活动,为盆地提供物源?一种观点认为阿尔金山在渐新世开始大规模右行走滑运动,阿尔金山与昆仑山的结合部位形成了大型走滑拉分盆地(葛肖虹等,1998Yin An et al.,2002Yue Yongjun et al.,20042005),盆地内部为E23沉积时期柴达木盆地西部的湖盆中心,沉积了一套以页岩、膏岩、碳酸盐岩夹少量细砂岩-粉砂岩的近千米的半深湖—深湖相沉积建造;从牛鼻子梁、七个泉等构造的古近系岩石粒度及沉积体系分析(张金明等,2021张世铭等,2022),该时期阿尔金山为盆地提供物源。第二种观点认为阿尔金山启动较晚,在渐新世末期(36 Ma)才开始大规模活动(杨经绥等,2008刘永顺等,2010吴磊等,2012张建新等,2015),而早期为一水下隆起,深层(新近系底部—基底)发育一系列北西向逆冲断裂,中新世后,阿尔金山断裂才大规模走滑活动,处于阿尔金山与东昆仑山结合部位的茫崖凹陷内部主要构造带浅层(第四系—新近系底部)为一系列滑脱逆冲构造叠加走滑构造样式,形成了深、浅两套构造层(易立,2020)。③ E23沉积时期位于祁连山前的盆地北缘地区主要是偏氧化色的粗碎屑沉积,而柴西地区整体为干旱、咸化背景下的湖相沉积,祁连山如何控制盆地的构造-沉积格局?由此可见E23沉积时期是盆地一个关键构造沉积变革期,开展其构造演化的研究可以破译柴达木盆地盆山作用关系及时空演化,而基于精细的物源分析是探讨盆山关系的重要纽带,因此碎屑锆石的U-Pb年龄变化可以反映物源区的构造隆升与沉降史。本次研究选取了柴达木盆地内山前凹陷5口钻井E23的砂岩样品,利用激光剥蚀-电感耦合等离子体-质谱法(LA-ICP-MS)开展了碎屑锆石U-Pb定年研究,结合周缘山系主要年龄分析了柴达木盆地E23的沉积物源信息,建立了祁连山、东昆仑山及阿尔金山E23沉积时期的古地理面貌,探讨了周缘山系与盆地构造演化作用关系,为新生代区域盆山耦合关系的研究提供沉积物源方面的证据。

  • 1 区域地质背景

  • 柴达木盆地在大地构造位置上属于特提斯构造域的东部,紧邻新生代印度和欧亚两大汇聚板块的过渡地带(许志琴等,2022)。盆地位于青藏高原的东北部,在前侏罗纪地块基础上发育起来的中新生代陆内叠合-改造型盆地,南界为东昆仑造山带与巴颜喀拉地块相邻,北界为祁连山-宗务隆山断裂,东以鄂拉山断裂为界,西以阿尔金造山带为界,形成“三山夹一盆”的楔状构造格局(Yin An et al.,2008)。柴达木盆地由古生代褶皱基底和元古宙结晶基底的双重基底构成(陈宣华等,2011Cheng Feng et al.,2017),盆地内部可划分出11个二级构造单元(陈琰等,2019)(图1)。

  • 1.1 盆地周缘造山带构造演化背景

  • 祁连山构造带位于柴达木地块北部,由多条北西-南东走向的山脉组成,其西端与阿尔金造山带相接,东部与秦岭造山带相连。该造山带由南往北依次划分为南祁连、中祁连与北祁连等构造单元(Yan Zhen et al.,2019)。祁连山造山带记录了新元古代—中生代期间发生的多期大陆裂解、洋盆形成、陆陆碰撞的造山过程(Guo Zhaojie et al.,2009; Song Shuguang et al.,2012)。新元古代—早古生代,柴达木北缘地区大陆开始裂解,形成早古生代“秦祁昆海”,该时期洋盆也发生俯冲消减,形成了一系列的岛弧火山岩及岩浆岩(姜高磊等,2014);晚奥陶世,北祁连洋闭合消亡形成北祁连造山带,柴北缘地块向与祁连微板块之间的欧龙布鲁克微陆块下俯冲消亡,柴达木地块发生陆壳深俯冲并形成了超高压变质带(汤良杰等,1999)。志留纪末—泥盆纪初期,造山作用结束,柴达木地块与欧龙布鲁克地块已拼合成一个整体。石炭纪在柴达木古陆南北两侧边缘强烈裂陷,祁连山内部的宗务隆海槽及阿尼玛卿海槽与盆地为碳酸盐岩台地及潮坪环境(汤良杰等,1999)。二叠纪—三叠纪时期,祁连地区海水退缩,构造活动相对较弱,同时也伴随着小规模岩浆运动(彭渊等,2016)。三叠纪末期古特提斯洋闭合,祁连山发生强烈隆升。印支期构造事件之后,柴达木地区处于印支造山期后的应力松弛状态,在近南北向松弛伸展构造应力场作用下,柴达木盆地开始接受沉积(Zhao Junfeng et al.,2020)。

  • 图1 柴达木盆地构造分区及采样位置

  • Fig.1 Tectonic division of the Qaidam basin and sampling location

  • Ⅰ-1—昆北断阶;Ⅰ-2—尕斯断陷;Ⅰ-3—茫崖凹陷;Ⅰ-4—大风山凸起;Ⅰ-5一里坪凹陷;Ⅱ-1—赛昆断陷;Ⅱ-2—大柴旦断陷;Ⅱ-3—德令哈断陷;Ⅱ-4—马海大红沟凸起;Ⅲ-1—三湖北斜坡;Ⅲ-2—三湖中央凹陷;Ⅲ-3—三湖南斜坡

  • Ⅰ-1—Kunbei fault stage; Ⅰ-2—Gasi fault depression; Ⅰ-3—Mangya depression; Ⅰ-4—Dafengshan uplift; Ⅰ-5—Yiliping depression; Ⅱ-1—Saikun fault depression; Ⅱ-2—Dachaidan fault depression; Ⅱ-3—Delingha fault depression; Ⅱ-4—Mahai Dahonggou uplift; Ⅲ-1—Sanhubei slopes; Ⅲ-2—Sanhu central depression; Ⅲ-3—Sanhunan slope

  • 阿尔金造山带夹于柴达木盆地和塔里木盆地之间,由多个形成于不同时期的构造单元组成(刘永顺等,2009张建新等,2015)。阿北地块广泛出露由米兰群、TTG片麻岩和古元古代侵入岩等构成的阿克塔什塔格杂岩,代表太古宙—古元古代陆核和结晶基底。阿中地块主要由中元古界阿尔金岩群及中—上元古界浅变质沉积岩系组成,反映中元古代稳定大陆边缘的沉积环境(刘永顺等,2009)。另外,在阿尔金地区南北各分布一条代表“古阿尔金洋”洋壳的新元古代末期—早古生代蛇绿混杂岩带,因此南阿尔金高压—超高压变质带也被认为是古洋闭合后,陆壳俯冲碰撞造山的产物(杨经绥等,2008刘良等,2015)。侏罗纪以来,阿尔金造山带具有脉冲性的多期活动特点,特别是在新生代的大规模左旋走滑和逆冲活动,在控制柴西地区新生代沉积的同时,也破坏了侏罗系—白垩系的原始沉积面貌(Zhao Xudong et al.,2020)。

  • 东昆仑造山带夹于柴达木盆地和巴彦喀拉山-松潘甘孜地块之间,其次级构造单元北祁漫塔格构造带与柴达木盆地西部中—新生代沉积-构造演化紧密相关(Pan Guitang et al.,2012)。北祁漫塔格构造带基底为太古宇—古元古界深变质岩系金水口岩群;上覆不整合中元古界—早古生界万宝沟群和纳赤台群,并不同程度发育晚古生代浅海沉积。南侧为祁漫塔格-香格里德蛇绿混杂岩带,是早古生代祁漫塔格洋向北俯冲消减的产物,岩浆活动时间约为486~423 Ma(Dong Yunpeng et al.,2018)。二叠纪—三叠纪由于古特提斯洋俯冲-闭合,东昆仑-祁漫塔格山开始大规模隆升,柴达木盆地和可可西里盆地因此被分隔(Wang Yadong et al.,2018)。之后又经历了中侏罗世末、晚白垩世、中新世等多期隆升事件,控制并改造了柴达木盆地西南部的中—新生代沉积地层(Cheng Feng et al.,2014Zhao Xudong et al.,2020)。

  • 1.2 柴达木盆地E23沉积时期构造沉积格局

  • 目前对柴达木盆地新生代地层年龄框架主要存在两种年代模型:即传统的观点认为柴达木盆地新生代初始沉积时间为53.5 Ma(Yin An et al.,2008Ji Junliang et al.,2017),而最近几项古地磁研究则表明柴达木盆地新生界底界年龄为30~25 Ma(Wang Weitao et al.,20172022Nie Junsheng et al.,2020)。然而,考虑到新的年龄框架的争议剖面均位于柴达木盆地东部地区(即红沟、红山一带),而本文所涉研究区主要位于或靠近盆地西部地区。Chang Hong et al.(2015)通过对柴达木盆地西部的花土沟开展精细的古地磁工作,研究表明下干柴沟组上覆的上干柴沟组初始沉积年龄大于30 Ma。因此,本文仍延续使用传统的新生代地层年龄框架,即下干柴沟组上段(E23)沉积时代为42.8~35.5 Ma。

  • 渐新世E23沉积时期的柴达木盆地与中喜马拉雅运动相对应(侯增谦等,2006),柴达木盆地构造演化整体可以概况为:阿尔金山、祁连山、昆仑山各异、挤压与弱伸展共存。由于印度板块的持续北移和陆内俯冲,在其与欧亚板块的持续聚敛作用下,青藏高原内部多个刚性块体有序的向北推挤,陆续挤压形成盆-山相间的复杂构造格局(王伟涛等,2014);处于柴达木地块与阿拉善地块之间的祁连山再次活化,快速隆升、逆冲、走滑、断陷断裂活动强烈(Yu Jingxing et al.,2019),在祁连山发育连片的河三角洲、扇三角洲沉积建造,E23以浅灰色粉砂岩、细砂岩、棕色—棕红色泥岩为主,夹少量偏氧化色的泥质粉砂岩、泥质砂岩,偶见含砾砂岩,中细粒砂岩叠置连片(图2)。而盆地的西南部则处于走滑转换应变场中,主要原因是阿尔金断裂为一条具有走滑调节性质的大型板内断裂,虽然前人对此时阿尔金山及东昆仑山的面貌及是否隆升存在争议,但是多数学者认为此时柴达木盆地西南部进入走滑拉分的弱断陷阶段,主要原因是NEE向阿尔金断裂新生代的第一幕走滑运动的左行走滑,叠加NWW 向东昆仑断裂的左行走滑使得柴达木盆地向东逃逸、伸展(张克信等,2013张岳桥等,2016李海兵等,2021),在盆地内形成了2个主要的沉降中心:柴西英雄岭-茫崖凹陷和一里坪凹陷。盆地西南部E23沉积受区域构造演化控制,干柴沟组上段(E23)主要为一套湿润气候条件下深湖—半深湖、三角洲前缘-前三角洲的沉积体系,岩性以灰色—深灰色、黑色的粉砂岩、碳酸盐岩、膏盐岩为主;即便在靠近东昆仑山前地区同样为深湖相的暗色泥岩沉积,只在非常靠近阿尔金山前的冲断带为棕红色、灰色—深灰色粗砂岩-砂岩的粗碎屑沉积。

  • 图2 柴达木盆地不同构造带E23岩性柱状图

  • Fig.2 Lithology column of E23 in different tetonic belts of Qaidam basin

  • 2 样品采集及测试

  • 结合柴达木盆地三山环绕的地质背景,本文选取了阿尔金山前的牛东、柴西地区的南翼山、祁连山前的冷湖地区典型探井的5件E23砂岩样品,进行了碎屑锆石U-Pb的年龄测试,井位位置见图1,样品以中、粗粒砂岩为主,具体信息见表1。L6-1井样品为棕灰色岩屑细砂岩,粒径主要介于0.1~0.2 mm,分选中等,磨圆度以棱角—次棱角状为主,矿物成分以石英、长石为主,岩屑以变质岩为主,见少量碳酸盐岩、板岩及个别酸性喷出岩碎屑等,填隙物主要为方解石、少量硬石膏及泥级矿物(图3a、b)。N-109井样品为浅灰色含砾粗砂岩,岩石成分以石英、长石为主,石英表面较为干净,长石高岭土化和绢云母化,岩屑主要为石英岩、千枚岩、碳酸盐岩等,填隙物为方解石及黏土矿物(图3c、d)。XX-1井样品为棕灰色含砾岩屑粗砂岩,石英具波状消光,且普遍具次生加大,长石为高岭土化、绢云母化,岩屑见石英岩、板岩、二长岩、长英岩等。填隙物为方解石。孔隙较发育,多为原生粒间孔、粒间溶蚀孔(图3e、f)。YIT-1井样品为棕灰色含砾长石中砂岩,长石高岭土化及绢云母化,石英表面干净,见少量岩屑,岩屑见花岗岩、石英岩、碳酸盐岩等,填隙物由方解石及硬石膏组成,见粒间孔、粒间溶孔(图3g、h)。N-105井样品为棕红色岩屑粗砂岩,颗粒分选差,石英表面干净,长石高岭土化和绢云母化,岩屑主要为碳酸盐岩、花岗岩、砂岩和石英岩碎屑,见零星绿帘石,填隙物由方解石和泥级矿物组成(图3i、j)。

  • 锆石的制靶、阴极发光图像拍摄及锆石U-Pb同位素测试分析均在西北大学大陆动力学国家重点实验室完成。测试流程包括:① 样品分析,对样品进行机械性粉碎至80目,利用矿物介电分选仪进行磁选,然后经重液分选,最后通过双目镜挑选无裂痕、晶型完好、干净锆石颗粒。② 样品抛光、制靶,先用无色透明的环氧树脂固定,之后将锆石抛光使其内部结构剖面充分暴露,然后进行锆石颗粒的反射光、透射光、阴极发光照相(CL),通过透射光图象可以观察锆石内部是否有包裹体,通过反射光图象可以观察锆石是否有裂开,以选定最合适的锆石颗粒和激光剥蚀位置,CL 图像用于观察锆石内部结构。③ 测试前处理,用3%(v/v)的HNO3清洗样品表面,以除去样品表面的污染。④ 样品测试,将制好的靶置于剥蚀池中,高能量的激光使样品被轰击部分剥蚀并高温蒸发,由于样品放在密封的样品室,样品室有一个进气孔,一个出气孔,蒸发的样品被不断流通的气体(He、Ar气等)运送,通过管道带至等离子炬管中电离,再通过透镜系统由四极杆质谱进行同位素的测量。在测试过程中,首先使用美国研发人工合成的硅酸盐玻璃标准参考物质 NIST SRM610 使激光剥蚀系统达到最佳工作状态,并采用 91500 国际标准锆石作为外标进行校正,每测定 6 个样品点测定一次标样。光剥蚀等离子质谱为德国MicroLas公司生产的GeoLas200M。数据处理采用 GLITTER4.0 程序,谐和图的绘制和年龄计算采用 Isoplot 4.15版本软件。

  • 表1 柴达木盆地E23样品信息表

  • Table1 Sample information of E23 in the Qaidam basin

  • 图3 柴达木盆地典型钻井E23岩芯样品照片和铸体薄片照片(单偏光)

  • Fig.3 E23 core samples and casting thin sections (plane-polarized photomicrograph) from typical wells in the Qaidam basin

  • 3 分析结果

  • 本次采集的碎屑锆石绝大部分为无色透明,部分具棕红色,外形多为棱角状,是近物源的表现。代表性锆石阴极发光图像(图4)显示,可以分辨出两种锆石类型。一种是岩浆锆石,占总样品数量的70%,多呈长柱状,结晶环带较发育,CL图像显示比较清晰的韵律振荡环带结构,说明研究区被测锆石为典型的岩浆结晶锆石,因此所获得的年龄能够代表岩体的结晶年龄。另一种是变质岩锆石,变质锆石的母岩有两种类型,即沉积岩与火成岩。沉积岩为母岩的变质锆石,其锆石外形浑圆、磨蚀明显;火成岩为母岩的变质锆石,其锆石由暗色核部和亮色宽边两部分组成,反映源区经历了多期构造热事件。

  • 5 个砂岩样品锆石U-Pb同位素分析结果见附表1,其中大于 1000 Ma的点采用207Pb/206Pb年龄,而小于1000 Ma的点则采用206Pb/238U年龄。从U-Pb年龄谐和图(图5)可以看出,大部分都落在谐和线上或者谐和线附近,表明大部分锆石没有明显的Pb丢失,没受到明显后期热事件的影响。XX-1样品测试120颗锆石,共获得106个有效数据点,锆石年龄介于2691.9~155.8 Ma之间,主要峰值年龄为448 Ma和249.2 Ma,次要峰值年龄为1952 Ma、1810 Ma和847 Ma(图5a)。YIT-1样品测试116颗锆石,样品共获得84个有效数据点,锆石年龄介于2795.8~266.1 Ma之间,主要峰值年龄为423 Ma和255 Ma,次要峰值年龄为1787 Ma、872 Ma和479 Ma(图5b)。L6-1样品共测试123颗锆石,该样品共获得89个有效数据点,锆石年龄介于2692.8~220.2 Ma之间,主要峰值年龄为498.4 Ma和414.9 Ma,次要峰值年龄为2437 Ma、2369 Ma、1887 Ma和220 Ma(图5c)。N-105样品共测试130颗锆石,该样品共获得102个有效数据点,锆石年龄介于2481.5~241.9 Ma之间,主要峰值年龄为422.5 Ma和259 Ma(图5d)。N-109样品共测试125颗锆石,该样品共获得90个有效数据点,锆石年龄介于2637.9~228.3 Ma之间,主要峰值年龄为443.8 Ma和246.4 Ma,次要峰值年龄为2514 Ma和1865 Ma(图5e)。

  • 图4 柴达木盆地E23砂岩样品典型锆石CL图像

  • Fig.4 Typical zircon CL images of E23 sandstone samples from Qaidam basin

  • 图5 柴达木盆地E23砂岩样品碎屑锆石U-Pb年龄谐和图和直方图

  • Fig.5 Detrital zircon U-Pb age concordant and histogram of E23 sandstone samples from Qaidam basin

  • 4 碎屑物源分析

  • 4.1 潜在物源区

  • 前人分析表明,柴达木盆地存在3个潜在物源区,分别是东昆仑-祁曼塔格地块、阿尔金山、祁连造山带(曾旭等,2019Zhao Junfeng et al.,2020Zhao Xudong et al.,2020)(图6)。

  • 祁连造山带位于柴达木盆地以北。祁连造山带岩体年龄跨度较大,以早古生代(472~440 Ma)年龄群为主,主峰年龄为462 Ma,其次为一些更古老的元古宙年龄群,包括1000~800 Ma(峰值年龄924 Ma)、2000~1800 Ma(峰值年龄1855 Ma)和2500~2300 Ma(峰值年龄2432 Ma)(Wang Fei et al.,2016Lu Haijian et al.,2019Nie Junsheng et al.,2020Song Bowen et al.,2020Wang Lin et al.,2020)。祁连造山带内部发育大量与晚奥陶世—早泥盆世(460~400 Ma)柴达木地块与阿拉善地块碰撞相关的侵入岩,同时广泛分布于北祁连造山带高压变质岩带和柴达木北缘超高压变质岩带。前人锆石U-Pb定年结果表明柴达木北缘超高压变质岩带指示了大洋俯冲作用(490~460 Ma)、大陆俯冲作用(435~420 Ma)和超高压变质岩折返过程中退变质作用(410~400 Ma)。2000~1800 Ma和2500~2300 Ma年龄群主要分布在柴北缘东北部的欧龙布鲁克的变质基底中(张建新等,2021肖安成等,2021)。1000~800 Ma年龄群广泛分布在祁连造山带中的微陆块(如中祁连地块)中,被认为与新元古代罗迪尼亚超大陆汇聚集和随后的裂解作用有关(Song Shuguang et al.,2012; Peng Yinbiao et al.,2019)。在新元古代,塔里木—华北板块南缘发生大洋板块俯冲,1000 Ma的锆石可能与其造成的大陆型岩浆作用有关;在新元古代晚期(约 820~775 Ma),祁连洋盆沿着塔里木洋关闭的古缝合带在柴达木地块与华北板块之间打开(Song Shuguang et al.,2012; 许志琴等,2016; Peng Yinbiao et al.,2019)。

  • 东昆仑-祁曼塔格地块发育中生代早期(320~248 Ma,峰值年龄251 Ma)、早古生代(530~380 Ma,峰值年龄451 Ma)和新元古代(850~756 Ma,峰值年龄840 Ma)3期年龄岩体(陈国超等,2013赵菲菲等,2017苏朕国等,2019)。晚古生代—三叠纪东昆仑造山带为活动大陆边缘岩浆弧,发生了以花岗质为主的岩浆事件,该期岩浆事件在东昆仑造山带中部发育最为广泛(倪晋宇,2010)。在早古生代时期由于祁漫塔格弧后盆地的打开,东昆仑造山带经历了柴达木地块裂解—拼合的过程,整体处于岛弧构造环境。古生代(474~390 Ma)的花岗岩是东昆仑洋俯冲和祁漫塔格弧后盆地关闭的响应。新元古代的岩体表明东昆仑造山带中部曾卷入 Rodinia超大陆的聚合事件中(李瑞保等,2012)。

  • 阿尔金造山带的岩体主要有2个年龄峰值,分别是1918 Ma和433 Ma,其中433 Ma代表阿尔金山地区主要花岗岩活动时期(潘家伟等,2015Wang Lin et al.,2020),早古生代时期阿尔金板块与塔里木板块碰撞,早古生代柴达木盆地及周缘整体上进入洋盆裂解-闭合、陆内俯冲碰撞、造山后碰撞的构造演化阶段,山间断陷或山前凹陷的局部地区沉积有上泥盆统磨拉石建造,反映了阿尔金造山带强烈的收敛俯冲-板块汇聚作用(陈正乐等,2004),故433 Ma的年龄峰值在阿尔金山前广泛分布。1918 Ma峰值主要反映了 Columbia 超大陆的聚合事件,该时期,阿尔金山周缘的塔里木板块、柴达木地块均经历了此期构造热事件,该年龄在敦煌—库鲁克塔格地区、塔西南区、柴北缘的欧龙布鲁克地块十分常见(叶雨晖等,2021)。

  • 4.2 柴达木盆地E23沉积时期碎屑物源分析

  • 对比柴达木盆地5个E23样品的锆石U-Pb年龄(图5)与周缘造山带碎屑锆石U-Pb年龄(图6),分析柴达木盆地E23的沉积物源。

  • 样品L6-1与XX-1具有5个峰值年龄,分别为2500 Ma、1800~1650 Ma、950~750 Ma、500~435 Ma和249.2~220 Ma。500~435 Ma年龄峰值,对应了与祁连洋闭合期间的大洋俯冲作用及其伴生的岩浆弧有关的早古生代年龄群,且锆石CL图像显示主要为岩浆岩锆石,表明该期碎屑锆石是祁连造山带内部主要产物,L6-1井同时出现了414 Ma年龄峰值,其可能受到柴达木北缘超高压变质岩带年龄的影响,同时值得注意的是,两块样品在249.2~220 Ma年龄范围内也出现了差异,L6-1井的220 Ma峰值也与柴达木北缘超高压变质岩带年龄更为相近,从构造位置看,柴达木北缘超高压变质带更为靠近L6-1井。XX-1井的249.2 Ma的年龄峰值来自赛事腾山西段的少量二叠纪火成岩岩体,该岩体主体年龄值为260±5 Ma左右(高万里等,2019;图6),或南祁连山-赛事腾山山前由于断层逆冲出露的侏罗纪—白垩纪地层(Zhao Junfeng et al.,2020)。需要说明的是,盆地西部的阿尔金山也出露少量300~200 Ma的火成岩体(董增产等,2014Zhao Xudong et al.,2020),但样品L6-1、XX-1所在位置与阿尔金山之间隔以广阔的一里坪凹陷和赛昆断陷(图1)。换言之,阿尔金山南段物质很难跨越湖盆中心搬运至柴达木盆地的东北部。850 Ma年龄峰值主要来自于在南祁连山内部的微地块中。1800~1650 Ma和2500 Ma碎屑锆石虽然是华北板块基底的特征性锆石年龄组分,但由于祁连山及秦岭造山带的阻隔,华北板块物质很难直接到达柴达木盆地内部。因此,我们推测这些元古宙碎屑锆石可能再旋回来自祁连山造山带内的古老基底物质,或者柴北缘构造带以及欧龙布鲁克地块的前寒武纪结晶基底。

  • 图6 柴达木盆地周缘造山带碎屑锆石U-Pb年龄分布(据曾旭等,2019Zhao Junfeng et al.,2020Zhao Xudong et al.,2020

  • Fig.6 U-Pb ages distribution of detrital zircons in the orogenic belt around Qaidam basin (after Zeng Xu et al., 2019; Zhao Junfeng et al., 2020Zhao Xudong et al., 2020)

  • N-109井和N-105井虽然同处于阿尔金山前带,但是其样品的年龄谱特征差别较大(图5),两个样品具有280~260 Ma和440~420 Ma年龄峰值,但N-105井样品中缺乏1865 Ma与2514 Ma年龄峰值的样品。如上所述,280~260 Ma年龄峰值可能来自北侧的赛什腾山,也可能来自西部的阿尔金山,但已有资料数据尚难以确定其具体源区,因此二者都可能作为N-109井和N-105井的潜在源区。在新元古代—早古生代时期,阿尔金造山带中的阿中地块与柴达木地块之间的“南阿尔金洋盆”,在早古生代经历了洋-陆转换过程,469~445 Ma和 411~404 Ma为岩浆活动的高峰期,因此两个样品发育440~420 Ma锆石U-Pb年龄峰值。1900 Ma与2400 Ma年龄峰值的样品主要是来自于中阿尔金地块的中元古代深变质的阿尔金岩群或北部敦煌地块的元古宙—太古宙基底(Feng Wei et al.,2022)。前人的研究表明,阿尔金岩群年龄主要集中于1990~1850 Ma,但是阿尔金岩群本身可能为不同时代、不同性质岩石组成,受后期断裂影响,遭受了不同程度的剥蚀。 N-105井更加靠近阿尔金山前,而N-109井更加靠近盆地内部,因此,N-105井碎屑组分可能受近源的阿尔金山影响更大,N-109井由于靠近盆地内部,则出现了1865 Ma与2514 Ma等代表南祁连山的年龄峰值。但由于目前采样密度小,以及源-汇体系的复杂性,这一认识仅为初步推论,未来尚需更加精细的研究加以证实。综上所述,N-109井和N-105井的物源受阿尔金山及南祁连共同控制,但是阿尔金山对该区的物源影响更大。同时也间接表明,祁连山在此时可能已经开始隆升,物源影响范围较远。

  • YIT-1井的样品年龄谱中具有840 Ma年龄峰值,受Rodinia 超大陆裂解事件的影响,东昆仑山广泛分布着800 Ma年龄的花岗岩,同时锆石CL图像表明YIT-1样品中900~700 Ma年龄段的锆石均为岩浆成因,这指示了840 Ma年龄样品的东昆仑山物源成因。但碎屑锆石U-Pb年龄研究表明东昆山缺乏>1000 Ma的年龄样品(图6),Zhao Junfeng(2020)研究表明柴西侏罗纪地层的物源也主要来自于东昆仑山,同样缺乏>1000 Ma的年龄样品。对比样品的锆石U-Pb年龄与柴达木盆地周缘造山带碎屑锆石U-Pb年龄,我们推测1800 Ma的年龄样品应来自于阿尔金岩群。YIT-1井的物源受东昆仑山及阿尔金山双重控制。

  • 5 柴达木盆地古近系盆山关系探讨

  • 渐新世E23沉积时期处于中喜马拉雅运动时期(侯增谦等,2006)。由于印度板块的持续北移和陆内俯冲,在其与欧亚板块的持续聚敛作用下,青藏高原内部多个刚性块体有序地向北碰撞,陆续拼合挤压形成盆-山相间的复杂构造格局(王伟涛等,2014)。处于柴达木地块与华北板块结合部位的柴达木盆地北部的祁连山再次活化,快速隆升、逆冲、走滑、断陷断裂活动强烈(Yu Jingxing et al.,2019)。YIT-1物源分析表明此时东昆仑山已经作为柴达木盆地重要的沉积物来源,暗示山体开始剧烈的构造活动,这也与低温热年代学揭示的结果一致(Li Chaopeng et al.,2021; Wu Chen et al.,2021)。东昆仑山前大部分地区仍发育粗碎屑沉积物,E23与上覆地层呈角度不整合接触(易立,2020),均是造山带对盆地的构造-沉积响应。青藏高原的演化过程中,本身具有多块断、多因素的特征,由于基底、壳幔结构、先存断裂的差异,往往会导致隆凹相间构造-沉积格局,因此,在青藏高原隆升构造背景下,依然发育可可西里、羌塘、柴达木等大中型盆地。东昆仑山隆升将北部的古柴达木盆地与南部的羌塘北和巴颜喀拉地体已经隔开(Wu Chen et al.,20162021),因此盆地北部N-105、N-109、L6-1等样品中并未见到任何东昆仑山或者羌塘基底的锆石特征。但是柴西E23沉积时期发育多个沉降中心,特别是东昆仑山前—东柴山地区,呈隆凹相间的构造格局,凹陷内细粒沉积物分布广泛,且发育于温暖潮湿的环境当中。在盆山耦合过程中,大规模的山体抬升,往往伴随着盆地内沉积地层中发育的多层生长地层,柴达木盆地阿尔金山前、祁连山前的地震剖面中,在新生代地层中,均可以见到生长地层发育(潘家伟等,2015Luo Liang et al.,2022)。而在昆山山前的地震剖面中,E23—N12地层内未见到明显的生长地层发育(倪祥龙等,2019),表明当时东昆仑山山脉构造抬升有限。因此,可可西里、索木库里与柴西南盆地形成了一个统一的凹陷,3个盆地此时的沉积环境极为相似(Cheng Feng et al.,2014),与此时的柴达木盆地内部各异的沉积环境形成鲜明的对比(图7)。

  • 阿尔金山地区中、新元古界分布广泛,厚度巨大,构成了阿尔金山脉的主体,经过吕梁旋回,地壳刚性显著增强,从中元古代开始进入了一个新的相对稳定的演化阶段。但对于阿尔金断裂喜马拉雅运动的构造演化阶段,主要存在两种观点:① 阿尔金断裂有两阶段构造演化模式,第一阶段以左行走滑运动为主,属于埋藏沉积期(Gao Shibao et al.,2022),渐新世—早中新世时期受印度板块的挤压,盆地向东侧向迁移,阿尔金断裂作为区域调节性质断裂,第二阶段为中中新世以来,青藏高原北部地区整体的地壳缩短、加厚,特别是大部分走滑调节分量传递至垂向上的运动,阿尔金山发生构造隆升(Jolivet et al.,2003Yin An et al.,2008霍斐斐,2019Gao Shibao et al.,2022);② 36~15 Ma时期阿尔金山构造隆升,15 Ma至今,阿尔金断裂左行走滑移动(吴磊等,2012)。阿尔金断裂在渐新世—早中新世时期受印度板块的挤压发生左行走滑,这一认识得到多数学者的认可,构造、沉积、地震资料及年代学资料较为丰富(表2)。本文通过对阿尔金山前带的N-105、N-109及YIT-1井的碎屑锆石U-Pb年龄分析表明,渐新世(40~30 Ma)以来阿尔金山极有可能已经发生阶段性隆升,并且控制了山前带的构造-沉积格局。这3口井的碎屑锆石U-Pb年龄存在一定的差异,这是由于阿尔金山断裂带强烈的走滑作用,致使隆升过程中为多断块式隆升,形成了一系列的走滑拉分凹陷及隆起,向两侧盆地提供碎屑物质,造成锆石年龄宏观上相对统一,却又差异较大。阿尔金山古近系的隆升致使柴达木盆地整体向北压缩,在南阿尔金山中段的临海套以南形成了一个大型凹陷(茫崖凹陷),该凹陷发育了一套以石膏、暗色泥页岩、灰岩、泥粉晶白云岩为主的咸化湖盆沉积建造,气候整体为干旱寒冷,蒸发作用强,长期处于半咸化—咸化环境,同时受周缘三角洲沉积体系充足的陆源输入和补给的影响,导致区内矿物成分复杂多样、横向变化较大(李林林等,2015)。该凹陷的边界正是位于YIT-1井以南地区,在东昆仑山物源波及范围内。阿尔金山及东昆仑山有限、分块式的隆升使得茫崖凹陷既处在了一个相对安静的构造环境,发育了大量的细粒沉积物,陆源碎屑波及强度小,范围有限;同时大规模的隆升启动,使得其又处于高海拔环境内,干旱且强烈蒸发(图7)。

  • 图7 柴达木盆地周缘造山带E23沉积期以来地貌演化

  • Fig.7 Geomorphic evolution of the Qaidam basin since E23

  • 由于华北板块和阿拉善地块刚性块体的阻挡作用,祁连山作为青藏高原向北东扩展的前锋部位,在新生代早期受到印度-欧亚板块的碰撞的远程效应,发生十分强烈的变形-造山活动,构造样式以强烈的冲断为主。一些学者认为南祁连山最初的抬升时间是始新世(Yin An et al.,2008Qi Bangshen et al.,2016Cheng Feng et al.,2019),而另一些学者则认为南祁连山初始隆升时间是中新世中晚期(Wang Weitao et al.,2017; Pang Jianzhan et al.,2019;Yu Jingxing et al.,2019Nie Junsheng et al.,2020)。此次发现N-109井已经受到祁连山物源体系的影响,可见祁连山在渐新世已经开始大规模隆升,并提供物源,加之L6-1与XX-1井年龄存在部分差异,表明山前的地貌受隆升影响也存在了一定差异。同时,E23沉积时期,祁连山前河流-三角洲体系十分发育,湖泊沉积体系也较为发育,并且向南波及范围较远(图7)。

  • 表2 柴达木盆地及周缘造山带隆升挤压时间统计

  • Table2 Uplift and compression time statistics of Qaidam basin and its surrounding orogenic belts

  • 6 结论

  • (1)综合柴达木盆地内山前凹陷典型钻井E23砂岩样品锆石U-Pb定年研究,结合周缘山系主要锆石U-Pb年龄,明确了柴达木盆地E23的沉积物源信息,对祁连山、东昆仑山及阿尔金山E23沉积时期的古地貌进行了约束。柴达木盆地内祁连山、东昆仑山及阿尔金山前E23碎屑锆石U-Pb年龄跨度较大,以早寒武世—早泥盆世和早三叠世两个年龄群为主。祁连山前L6-1井与XX-1井E23锆石U-Pb主要峰值年龄为249 Ma和415~499 Ma,盆地西部沉降中心YIT-1井E23锆石U-Pb主要峰值年龄为255 Ma和423 Ma,阿尔金山前E23锆石U-Pb主要峰值年龄为259 Ma和422 Ma。

  • (2)通过与周缘山系主要物源年龄对比,柴达木盆地不同构造带E23的物源差异较大,祁连山前的冷湖地区的物源主要来自于祁连山内部;阿尔金山前牛东地区的物源主体来自于阿尔金山内部,但盆地西北部存在祁连山物源贡献;柴西坳陷内部的物源受祁连山及东昆仑山的共同控制。

  • (3)祁连山在古近纪末期已大规模隆升,并且作为青藏高原北部边界为柴达木盆地持续提供物源;阿尔金山及昆仑山在E23沉积时期已经形成雏形,但并未大规模隆升,造成了山前带复杂的物源体系。祁连山、东昆仑山及阿尔金山迥异的构造演化特征造成了现今柴达木盆地E23沉积时期特殊的沉积面貌。

  • 附件:本文附件(附表1)详见http://www.geojournals.cn/dzxb/dzxb/article/abstract/202401094?st=article_issue

  • 参考文献

    • Alison R D, Marin K C, Eric K, Kenneth A F, William H C, Li Chuanyou, Yuan Daoyang. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics, 32(5): 1190~1211.

    • Chang Hong, Li Leyi, Qiang Xiaoke, Carmala N G, Alexander Pullen, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.

    • Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Pei Lei, Liu Zhanqing, Chen Yuxin, Liu Chengjun, Gao Jingmin, Wei Fanghui. 2013. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Cocoe A'Long quartz diorites body from the Hongshuichuan area in East Kunlun. Acta Geologica Sinica, 87(2): 178~196 (in Chinese with English abstract).

    • Chen Xuanhua, Yin An, Gehrels G, Li Li, Jiang Rongbao. 2011. Chemical geodynamics of granitic magmatism in the basement of the eastern Qaidam basin, northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 85(2): 157~171 (in Chinese with English abstract).

    • Chen Yan, Lei Tao, Zhang Guoqing, Yuan Li, Wang Duo, Wu Zhixiong, Chen Jinghua, Yang Qianxia. 2019. The geological conditions, resource potential and exploration direction of oil in Qaidam basin. Marine Origin Petroleum Geology, 24(2): 64~74 (in Chinese with English abstract).

    • Chen Zhengle, Gong Hongliang, Li Li, Wang Xiaofeng, Chen Bolin, Chen Xuanhua. 2004. Cenozoic uplifting and exhumation process of the Altyn Tagh Mountains. Earth Science Frontiers, (4): 91~102 (in Chinese with English abstract).

    • Cheng Feng, Jolivet M, Fu Suotang, Zhang Qiquan, Guan Shuwei, Yu Xiangjiang, Guo Zhaojie. 2014. Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam basin, Tectonophysics, 632: 32~47.

    • Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2015a. Source to sink relation between the eastern Kunlun range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128(1-2): B31260. 1.

    • Cheng Feng, Jolivet M, Dupont-Nivet G, Wang Lin, Yu Xiangjiang, Guo Zhaojie. 2015b. Lateral extrusion along the Altyn Tagh fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget. Terra Nova, 27: 416~425.

    • Cheng Feng, Jolivet Marc, Hallot Erwan, Zhang Daowei, Zhang Changhao, Guo Zhaojie. 2017. Tectono-magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Research, 49: 248~263.

    • Cheng Feng, Garzione C N, Mitra G, Jolivet M, Guo Zhaojie, Lu Huayu, Li Xiangzhong, Zhang Bo, Zhang Daowei, Zhang Changhao, Zhang H, Wang L. 2019. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau. Earth-Science Reviews, 198(C): 102945.

    • Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Cheng Bin, Zhao Guochun, Li Jianhua. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.

    • Dong Zengchan, Gu Pingyang, Jiao He, Zha Xianfeng, Chen Ruiming, Zhang Haidi. 2014. Geochemistry and chronology of Yanchangbeishan gabrro in Lenghu area at the west segment of the north margin of Qaidam. Chinese Journal of Geology, 49(4): 1132~1149 (in Chinese with English abstract).

    • Feng Wei, Song Chunhui, Meng Qingquan, He Pengju, Fang Xiaomin, Chen Wenqi, Wang Xinghong, Wang Qiaoxin. 2022. Cenozoic multi-stage deformation of the Qilian Shan orogenic belt, northern Tibetan Plateau: Insights from a detrital zircon provenance study of an Oligocene-Miocene intermontane basin sedimentary succession. Journal of Asian Earth Sciences, 224: 105039.

    • Fu Ling, Guan Ping, Jian Xing, Liu Ruijuan, Feng Fan, An Qun, Fan Chaofeng. 2012. Sedimentary genetic types of coarse fragment of Paleogene Lulehe Formation in Qaidam basin and time limit of the Tibetan Plateau uplift. Natural Gas Geoscience, 23(5): 833~840 (in Chinese with English abstract).

    • Fu Suotang, Ma Dade, Chen Yan, Zhang Guoqing, Wu Kunyu. 2016. New advance of petroleum and gas exploration in Qaidam basin. Acta Petrolei Sinica, 37(S1): 1~10 (in Chinese with English abstract).

    • Gao Shibao, Cowgill E, Wu Lei, Lin Xiubin, Cheng Xiaogan, Yang Rong, Soares C, Ketcham R A, An Kaixuan, Gong Junfeng, Song Xingtong, Tang Jianchao, Chen Hanlin, Yang Shufeng. 2022. From left slip to transpression: Cenozoic tectonic evolution of the North Altyn fault, NW margin of the Tibetan Plateau. Tectonics, 41(3): e2021TC006962.

    • Gao Wanli, Wang Zongxiu, Li Leilei, Cui Mingming, Qian Tao, Hu Junjie. 2019. Discovery of the Permian granite in Saishiteng Mountain of the northern Qaidam basin and its tectonic significance. Acta Geologica Sinica, 93(4): 816~829 (in Chinese with English abstract).

    • Ge Xiaohong, Zhang Meisheng, Liu Yongjiang, Ye Huiwen, Shi Caidong. 1998. Scientific problems and thought for research of the Altun fault. Geoscience, (3): 2~5 (in Chinese with English abstract).

    • Guo Zhaojie, Lu Jiemin, Zhang Zhicheng. 2009. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau: Constraints from sedimentological and apatite fission-track data. Acta Geologica Sinica (English Edition), 83 (3): 562~579.

    • Hou Zengqian, Yang Zhusen, Xu Wenyi, Mo Xuanxue, Ding Lin, Gao Yongfeng, Dong Fangliu, Li Guangming, Qu Xiaoming, Li Guangming, Zhao Zhidan, Jiang Sihong, Meng Xiangjin, Li Zhenqing, Qin Kezhang, Yang Zhiming. 2006. Metallogenesis in Tibetan collisional orogenic belt: I. Mineralization in main collisional orogenic setting. Mineral Deposits, (4): 337~358 (in Chinese with English abstract).

    • Huo Feifei. 2019. Paleomagnetic results of the Mesozoic-Cenozoic strata in the northeastern Tibetan Plateau and their tectonic implications. Doctoral dissertation of Northwestern University (in Chinese with English abstract).

    • Ji Junliang, Zhang Kexin, Peter D C, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.

    • Jiang Gaolei, Zhang Simin, Liu Kunfeng, Zhang Kexin. 2014. Evolution of Neoproterozoic-Mesozoic sedimentary basins in Qilian-Qaidam-East Kunlun area. Earth Science (Journal of China University of Geosciences), 39(8): 1000~1016 (in Chinese with English abstract).

    • Jolivet M, Brunel M, Seward D, Xu Zhenbo, Yang Juncheng, Malavieille J, Roger F, Leyreloup A, Arnaud Z, Wu Cyndi. 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun fault. Tectonics, 22(5): 1052.

    • Li Chaopeng, Zheng Dewen, Zhou Renjie, Yu Jingxing, Wang Yizhou, Pang Jianzhang, Wang Ying, Hao Yuqi, Li Youjuan. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e91281.

    • Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Chevalier M-L, Wang Huan, Lu Haijian, Zheng Yong, Li Chunrui. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213 (in Chinese with English abstract).

    • Li Linlin, Guo Zhaojie, Guan Shuwei, Zhou Suping, Wang Mingzhen, Fang Yanan, Zhang Chenchen. 2015. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam basin. Science China: Earth Sciences, 45(6): 780~798+1~6 (in Chinese with English abstract).

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Liu Zhanqing, Chen Guochao, Chen Youxin, Wei Fanghui, Gao Jingmin, Liu Chengjun, Pei Lei. 2012. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244~254 (in Chinese with English abstract).

    • Liu Chiyang, Fu Suotang, Zhang Daowei, Chen Yan, Huang Lei, Shi Yajun. 2020. Determination of giant hydrocarbon enrichment area in Qaidam basin and its exploration results: An example for source-controlling of original basin and reform-controlling reservoir in a reformed basin. Acta Petrolei Sinica, 41(12): 1527~1537 (in Chinese with English abstract).

    • Liu Liang, Kang Lei, Cao Yuting, Yang Wengqiang. 2015. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China. Science China: Earth Sciences, 45(8): 1126~1137 (in Chinese with English abstract).

    • Liu Yongshun, Yu Haifeng, Xin Houtian, Lu Songnian, Xiu Qunye, Li Quan. 2009. Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China. Geological Bulletin of China, 28(10): 1430~1438 (in Chinese with English abstract).

    • Liu Yongshun, Yu Haifeng, Xiu Qunye, Yang Junquan, Li Quan. 2010. Characteristics and tectonic implications of eclogites in southern Altun area. Acta Petrologica et Mineralogica, 29(2): 166~174 (in Chinese with English abstract).

    • Liu Yuhua, Wang Xiang, Zhang Min, Peng Dehua. 2010. Study on hydrocarbon generation conditions of the dark mudstone in well Lvcan 1 in southwest Qaidam basin. Special Oil & Gas Reservoirs, 17(4): 50~52 (in Chinese with English abstract).

    • Lu Haijian, Ye Jiacan, Guo Licheng, Pan Jiawei, Xiong Shangfa, Li Haibing. 2019. Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam basin. Lithosphere, 11(2): 252~272.

    • Luo Liang, John Geissman, Zeng Xu, Wang Bo, Zhou Fei, Zhang Yi, Yang Shaohang, Zhou Yangfan. 2022. Geometry and kinematics of the western part of the NE Qaidam basin: Implications for the growth of the Tibetan Plateau. Tectonophysics, 822: 229154.

    • Lv Baofeng, Zhang Yueqing, Yang Shuyi. 2011. Characteristics of structural system and its implication for formation dynamics in Qaidam basin. Geological Review, 57(2): 167~174 (in Chinese with English abstract).

    • Ma Dade, Wang Yanqing. 2015. New understandings and exploration discovery of Paleogene reservoirs of Kunbei fault terrace belt, Qaidam basin, NW China. Petroleum Exploration and Development, 42(4): 529~537 (in Chinese with English abstract).

    • Mao Liguang, Xiao Ancheng, Wu Lei, Li Benliang, Wang Liqun, Lou Qianqian, Dong Youpu, Qin Suhua. 2014. Cenozoic tectonic and sedimentary evolution of southern Qaidam basin, NE Tibetan Plateau and its implication for the rejuvenation of eastern Kunlun Mountains. Science China (Earth Sciences), 57(11): 2726~2739.

    • Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planet Science Letters, 171: 107~122.

    • Ni Jinyu. 2010. Zircon U-Pb age and tectonic setting of Permian-Triassic volcanic rock in East Kunlun orogenic belt. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Ni Xianglong, Wang Jiangong, Guo Jiajia, Du Binshan, Yi Dinghong, Long Guohui, Li Zhiming, Hui Yuanyuan. 2019. Reservoir-controlling effect of basement faults and favorable exploration zones in southwestern Qaidam basin. Lithologic Reservoirs, 31(4): 32~41 (in Chinese with English abstract).

    • Nie Junsheng, Ren Xueping, Saylor J E, Su Qingda, Horton B K, Bush M A, Chen Wenhan, Pfaff K. 2020. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2): 310~320.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pan Jiawei, Li Haibing, Sun Zhiming, Liu Dongliang, Wu Chan, Yu Changqing. 2015. Tectonic responses in the Qaidam basin induced by Cenozoic activities of the Altyn Tagh fault. Acta Petrologica Sinica, 31(12): 3701~3712 (in Chinese with English abstract).

    • Pang Jianzhang, Yu Jingxing, Zheng Dewen, Wang Yizhou, Zhang Huiping, Li Chaopeng, Wang Weitao, Hao Yuqi. 2019. Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 181: 103909.

    • Peng Yinbiao, Yu Shengyao, Li Sanzhong, Zhang Jianxin, Liu Yongjiang, Li Yunshuai, Santosh M. 2019. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent. Earth-Science Reviews, 199(C): 102954.

    • Peng Yuan, Ma Yinsheng, Liu Chenglin, Sun Jiaopeng, Hu Zhongya, Mou Hongliang, Zheng Ce. 2016. SHRIMP zircon ages of the Dagangou volcanic rocks in the eastern Kunlun orogenic belt and their implications. Geological Bulletin of China, 35(Z1): 356~363 (in Chinese with English abstract).

    • Qi Bangshen, Hu Daogong, Yang Xiaoxiao, Zhang Yaoling, Tan Chengxuan, Zhang Peng, Feng Chengjun. 2016. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene. Journal of Asian Earth Sciences, 124: 28~41.

    • Song Bowen, Spicer R A, Zhang Kexin, Ji Junliang, Farnsworth A, Hughes A C, Yang Yibo, Han Fang, Xu Yadong, Spicer T, Shen Tianyi, Lunt D J, Shi Gongle. 2020. Qaidam basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth and Planetary Science Letters, 537: 116175.

    • Song Shuguang, Su Li, Li Xianhua, Niu Yaoling, Zhang Lifei. 2012. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Research, 220-221: 9~22.

    • Su Zhenguo. 2019. Geological characteristics, provenance analysis and tectonic evolution of the volcanic-sedimentary strata of the Maoniushan Formation in the Hongshuihe area of the eastern Kunlun orogenic belt. Master's thesis of Chang'an University (in Chinese with English abstract).

    • Tang Liangjie, Jin Zhijun, Zhang Mingli, Zhang Bingshan, You Fubao, Luo Jing. 1999. Tectonic evolution of Qaidam basin in Sinian-Triassic. Chinese Journal of Geology, (3): 289~300 (in Chinese with English abstract).

    • Wang Chengshan, Dai Jinggen, Liu Zhifei, Zhu Lidong, Li Yalin, Jia Guodong. 2009. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review. Earth Science Frontiers, 16(3): 1~30 (in Chinese with English abstract).

    • Wang Fei, Luo Qinghua, Li Qi, Wan Jinglin, Zheng Dewen, Li Daming, Wang Yu. 2002. Cooling event around 30 Ma in the northern edge of the Qaidam basin: Constraints from 40Ar/39Ar and fission track thermochronology. Geological Review, 48(S1): 88~96 (in Chinese with English abstract).

    • Wang Fei, Feng Huile, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhang Zhigang, Zhu Rixiang. 2016. Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 675: 196~208.

    • Wang Lin, Scott A M, Cheng Feng. 2020. From a proximal-deposition-dominated basin sink to a significant sediment source to the Chinese Loess Plateau: Insight from the quantitative provenance analysis on the Cenozoic sediments in the Qaidam basin, northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology. 556: 109883.

    • Wang Tao, Hong Dawei, Jahn Borming, Tong Ying, Wang Yanbin, Han Baofu, Wang Xiaoxia. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735~751.

    • Wang Weitao, Zhang Peizhen, Zheng Dewen, Pang Jianzhang. 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau. Earth Science Frontiers, 21(4): 266~274 (in Chinese with English abstract).

    • Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby Eric, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8(1): 15887.

    • Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.

    • Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.

    • Wu Chen, Yin An, Zuza Andrew V, Zhang Jinyu, Liu Wencan, Ding Lin. 2016. Pre-Cenozic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8(3): 254~292.

    • Wu Chen, Li Jie, Ding Lin. 2021. Low-temperature thermochronology constraints on the evolution of the eastern Kunlun Range, northern Tibetan Plateau. Geosphere, 17(4): 1193~1213.

    • Wu Lei, Xiao Ancheng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China: Earth Sciences, 42(12): 1863~1876 (in Chinese with English abstract).

    • Wu Lei, Gong Qinglin, Qin Suhua. 2013. When did Cenozoic left-slip along the Altyn Tagh fault initiate? A comprehensive approach. Acta Petrologica Sinica, 29(8): 2837~2850 (in Chinese with English abstract).

    • Wu Zhenhan, Jiang Wan, Zhou Jirong, Li Jixiang. 2001. Thermal-chronological dating on the thermal history of plutons and tectonic-landform evolution of the central Tibetan Plateau. Acta Geologica Sinica, 75(4): 468~476 (in Chinese with English abstract).

    • Wu Zhenhan, Wu Zhonghai, Hu Daogong, Ye Peisheng, Zhou Chunjing. 2007. Geological evidences for the Tibetan Plateau uplifted in Late Oligocene. Acta Geologica Sinica, 81(5): 577~587 (in Chinese with English abstract).

    • Xiao Ancheng, Yu Long, Xiong Guangyao, Zhang Junyong, Zhang Yongshu, Wu Lei, Zhao Haifeng, Tan Suhua. 2021. Triassic retroarc foreland basin in southern Qilian area: Evidence from sedimentary filling and tectonics. Acta Petrologica Sinica, 37(8): 2385~2400 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zeming, Ceng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China, 43(1): 1~42 (in Chinese with English abstract).

    • Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65~94 (in Chinese with English abstract).

    • Yan Zhen, Fu Changlei, Aitchison J C, Buckman S, Niu Manlan, Cao Bo, Sun Yi, Guo Xianqing, Wang Zongqi, Zhou Renjie. 2019. Retro-foreland basin development in response to Proto-Tethyan Ocean closure, NE Tibet Plateau. Tectonics, 38(12): 4229~4248.

    • Yang Jingsui, Shi Rendeng, Wu Cailai, Su Dechen, Chen Songyong, Wang Xibin, Wooden Joseph. 2008. Petrology and SHRIMP age of the Honeliugou ophiolite at Milan, north Altun, at the northern margin of the Tibetan plateau. Acta Petrologica Sinica, 24(7): 1567~1584 (in Chinese with English abstract).

    • Ye Yuhui. 2021. Cenozoic tectonic activity of the North Altyn fault: Evidence from geomorphological analysis and thermochronology. Master's thesis of Zhejiang University (in Chinese with English abstract).

    • Yi Li. 2020. Effect of the Tibetan Plateau uplift on the hydrocarbon accumulation of Cenozoic Qaidam basin. Doctoral dissertation of China University of Petroleum (Beijing) (in Chinese with English abstract).

    • Yin An, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Qing, Zhou Xianqiang, Wang Xiaofeng, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10): 1257~1295.

    • Yin An, Dang Yuqi, Wang Licun, Jiang Wuming, Zhou Suping, Chen Xuanhua, Gehrels G E, McRivette M W. 2008. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120(7-8): 813~846.

    • Yu Jingxing, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Liu Caicai, Wang Weitao, Li Youjuan, Li Chaopeng, Xiao Lin. 2019. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere, 15(2): 423~432.

    • Yue Yongjun, Bradley D R, Stephan A G, Joseph L W, George E G, Zhang Zhicheng. 2004. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters, 217(1): 111~122.

    • Yue Yongjun, Stephan A G, Bradley D R, Joseph L W. 2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault. Tectonophysics, 406: 165~178.

    • Zeng Xu, Lin Tong, Wang Wei, Yan Zhandong, Hao Cuiguo, Bian Yingying, Wang Jun. 2019. Detrital zircon dating of LA-ICP-MS in the Upper Jurassic and indicative significance of the Qaidam basin. Natural Gas Geoscience, 30(5): 662~672 (in Chinese with English abstract).

    • Zhang Jianxin, Yu Shengyao, Li Yunshuai, Yu Xingxing, Lin Yihui, Mao Xiaohong. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531~3554 (in Chinese with English abstract).

    • Zhang Jianxin, Lu Zenglong, Mao Xiaohong, Teng Xia, Zhou Guisheng, Wu Yawei, Guo Qi. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74~102 (in Chinese with English abstract).

    • Zhang Jinming, Fu Yanwen, Tian Chengxiu, Lei Xiaoqing. 2021. Lithofacies paleogeography and genesis of salt rock in the Late Eocene of western Qaidam basin. Journal of Stratigraphy, 45(4): 545~553 (in Chinese with English abstract).

    • Zhang Kexin, Wang Guocan, Hong Hanlie, Xu Yadong, Wang An, Cao Kai, Luo Mansheng, Ji Junliang, Xiao Guoqiao, Lin Xiao. 2013. The study of the Cenozoic uplift in the Tibetan Plateau: A review. Geological Bulletin of China, 32(1): 1~18 (in Chinese with English abstract).

    • Zhang Shiming, Zhang Xiaojun, Wang Jiangong, Zhang Tingjing, Cui Jun, Wang Chao, Fu Juorong. 2022. Characteristics and their controlling factors of mixed sediments in saline lakes: A case study of lower Ganchaigou Formation in the western Qaidam basin. Journal of China University of Mining & Technology, 51(1): 160~173 (in Chinese with English abstract).

    • Zhang Tao, Song Chunhui, Wang Yadong, Zheng Haijun, Zhang Zhigao, Wu Song, Meng Qingquan, Fang Xiaomin. 2012. The Late Cenozoic tectonic deformation in the western Qaidam basin and its implications. Earth Science Frontiers, 19(5): 312~321 (in Chinese with English abstract).

    • Zhang Yueqiao, Li Hailong. 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion-related orogenic system. Geology in China, 43(6): 1829~1852 (in Chinese with English abstract).

    • Zhao Feifei, Sun Fengyue, Liu Jinglong. 2017. Zircon U-Pb geochronology and geochemistry of the gneissic granodiorite in Manite area from East Kunlun, with implications for geodynamic setting. Earth Science, 42(6): 927~940+1044 (in Chinese with English abstract).

    • Zhao Junfeng, Zeng Xu, Tian Jixian, Hu Chao, Wang Di, Yan Zhandong, Wang Ke, Zhao Xudong. 2020. Provenance and paleogeography of the Jurassic northwestern Qaidam basin (NW China): Evidence from sedimentary records and detrital zircon geochronology. Journal of Asian Earth Sciences, 190(C): 104060.

    • Zhao Xudong, Zhao Junfeng, Zeng Xu, Tian Jixian, Guo Zeqing, Wang Chao, Wang Di, Hu Chao. 2020. Early-Middle Jurassic paleogeography reconstruction in the western Qaidam basin: Insights from sedimentology and detrital zircon geochronology. Marine and Petroleum Geology, 118: 104445.

    • 陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178~196.

    • 陈宣华, 尹安, Gehrels G, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157~171.

    • 陈琰, 雷涛, 张国卿, 袁莉, 王铎, 吴志雄, 陈景华, 杨乾霞. 2019. 柴达木盆地石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(2): 64~74.

    • 陈正乐, 宫红良, 李丽, 王小凤, 陈柏林, 陈宣华. 2004. 阿尔金山脉新生代隆升-剥露过程. 地学前缘, (4): 91~102.

    • 董增产, 辜平阳, 焦和, 查显锋, 陈锐明, 张海迪. 2014. 柴北缘西端冷湖盐场北山辉长岩地球化学及年代学研究. 地质科学, 49(4): 1132~1149.

    • 付玲, 关平, 简星, 刘瑞娟, 冯帆, 安群, 范朝峰. 2012. 柴达木盆地路乐河组粗碎屑沉积成因与青藏高原隆升时限. 天然气地球科学, 23(5): 833~840.

    • 付锁堂, 马达德, 陈琰, 张国卿, 伍坤宇. 2016. 柴达木盆地油气勘探新进展. 石油学报, 37(S1): 1~10.

    • 高万里, 王宗秀, 李磊磊, 崔明明, 钱涛, 胡俊杰. 2019. 柴达木盆地北缘小赛什腾山二叠纪花岗岩的发现及其构造意义. 地质学报, 93(4): 816~829.

    • 葛肖虹, 张梅生, 刘永江, 叶慧文, 石采东. 1998. 阿尔金断裂研究的科学问题与研究思路. 现代地质, (3): 2~5.

    • 侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 2006. 青藏高原碰撞造山带: i. 主碰撞造山成矿作用. 矿床地质, (4): 337~358.

    • 霍斐斐. 2019. 青藏高原东北部中-新生代地层古地磁研究及构造意义. 西北大学博士学位论文.

    • 姜高磊, 张思敏, 柳坤峰, 张克信. 2014. 祁连-柴达木-东昆仑新元古-中生代沉积盆地演化. 地球科学(中国地质大学学报), 39(8): 1000~1016.

    • 李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M-L, 王焕, 卢海建, 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.

    • 李林林, 郭召杰, 管树巍, 周苏平, 王明振, 房亚男, 张晨晨. 2015. 柴达木盆地西南缘新生代碎屑重矿物组合特征及其古地理演化. 中国科学: 地球科学, 45(6): 780~798+1~6.

    • 李瑞保, 裴先治, 李佐臣, 刘战庆, 陈国超, 陈有炘, 魏方辉, 高景民, 刘成军, 裴磊. 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244~254.

    • 刘池洋, 付锁堂, 张道伟, 陈琰, 黄雷, 石亚军. 2020. 柴达木盆地巨型油气富集区的确定及勘探成效——改造型盆地原盆控源、改造控藏之范例. 石油学报, 41(12): 1527~1537.

    • 刘良, 康磊, 曹玉亭, 杨文强. 2015. 杨文强. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用. 中国科学: 地球科学, 45(8): 1126~1137.

    • 刘永顺, 于海峰, 辛后田, 陆松年, 修群业, 李铨. 2009. 阿尔金山地区构造单元划分和前寒武纪重要地质事件. 地质通报, 28(10): 1430~1438.

    • 刘永顺, 于海峰, 修群业, 杨俊泉, 李铨. 2010. 南阿尔金地区榴辉岩特征及意义. 岩石矿物学杂志, 29(2): 166~174.

    • 刘玉华, 王祥, 张敏, 彭德华. 2010. 柴达木盆地西部南区绿参1井暗色泥岩生烃条件研究. 特种油气藏, 17(4): 50~52.

    • 吕宝凤, 张越青, 杨书逸. 2011. 柴达木盆地构造体系特征及其成盆动力学意义. 地质论评, 57(2): 167~174.

    • 马达德, 王艳清. 2015. 柴达木盆地昆北断阶带古近系储集层新认识与勘探发现. 石油勘探与开发, 42(4): 529~537.

    • 倪晋宇. 2010. 东昆仑造山带二叠纪-三叠纪火山岩锆石U-Pb年龄与构造环境. 中国地质科学院博士学位论文.

    • 倪祥龙, 王建功, 郭佳佳, 杜斌山, 易定红, 龙国徽, 李志明, 惠媛媛. 2019. 柴达木盆地西南地区基底断裂的控藏作用与有利区带. 岩性油气藏, 31(4): 32~41.

    • 潘家伟, 李海兵, 孙知明, 刘栋梁, 吴婵, 于常青. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应. 岩石学报, 31(12): 3701~3712.

    • 彭渊, 马寅生, 刘成林, 孙娇鹏, 胡忠亚, 牟宏良, 郑策. 2016. 东昆仑大干沟火山岩SHRIMP锆石U-Pb测年及其地质意义. 地质通报, 35(Z1): 356~363.

    • 苏朕国. 2019. 东昆仑东段洪水河地区牦牛山组火山-沉积地层地质特征、物源分析和构造演化. 长安大学硕士学位论文.

    • 汤良杰, 金之钧, 张明利, 张兵山, 由福报, 骆静. 1999. 柴达木震旦纪—三叠纪盆地演化研究. 地质科学, (3): 289~300.

    • 王成善, 戴紧根, 刘志飞, 朱利东, 李亚林, 贾国东. 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展. 地学前缘, 16(3): 1~30.

    • 王非, 罗清华, 李齐, 万景林, 郑德文, 李大明, 王瑜. 2002. 柴达木盆地北缘30 Ma前的快速冷却事件及构造意义——40Ar/39Ar及FT热年代学制约. 地质论评, 48(S1): 88~96.

    • 王伟涛, 张培震, 郑德文, 庞建章. 2014. 青藏高原东北缘海原断裂带晚新生代构造变形. 地学前缘, 21(4): 266~274.

    • 吴磊, 肖安成, 汪立群, 毛黎光, 王亮, 董有浦, 徐波. 2012. 阿尔金断裂中段南侧东西向隆起的形成及对阿尔金山新生代隆升机制的启示. 中国科学: 地球科学, 42(12): 1863~1876.

    • 吴磊, 巩庆霖, 覃素华. 2013. 阿尔金断裂新生代大规模走滑起始时间的厘定. 岩石学报, 29(8): 2837~2850.

    • 吴珍汉, 江万, 周继荣, 李冀湘. 2001. 青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析. 地质学报, 75(4): 468~476.

    • 吴珍汉, 吴中海, 胡道功, 叶培盛, 周春景. 2007. 青藏高原渐新世晚期隆升的地质证据. 地质学报, 81(5): 577~587.

    • 肖安成, 余龙, 熊光耀, 张军勇, 张永庶, 吴磊, 赵海峰, 覃素华. 2021. 祁连山南部地区三叠纪弧后前陆盆地——基于沉积填充与大地构造的证据. 岩石学报, 37(8): 2385~2400.

    • 许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展. 中国地质, 43(1): 1~42.

    • 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.

    • 杨经绥, 史仁灯, 吴才来, 苏德辰, 陈松永, 王希斌, Wooden Joseph. 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年. 岩石学报, 24(7): 1567~1584.

    • 叶雨晖. 2021. 北阿尔金断裂新生代构造活动特征及意义: 来自地貌分析与热年代学的证据. 浙江大学硕士学位论文.

    • 易立. 2020. 青藏高原隆升对柴达木盆地新生界油气成藏的控制作用. 中国石油大学(北京)博士学位论文.

    • 曾旭, 林潼, 王薇, 闫占冬, 郝翠果, 边滢滢, 王军. 2019. 柴达木盆地上侏罗统碎屑锆石LA-ICP-MS定年及指示意义. 天然气地球科学, 30(5): 662~672.

    • 张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531~3554.

    • 张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74~102.

    • 张金明, 付彦文, 田成秀, 雷晓清. 2021. 柴达木盆地西部始新世晚期岩相古地理特征及盐岩成因. 地层学杂志, 45(4): 545~553.

    • 张克信, 王国灿, 洪汉烈, 徐亚东, 王岸, 曹凯, 骆满生, 季军良, 肖国桥, 林晓. 2013. 青藏高原新生代隆升研究现状. 地质通报, 32(1): 1~18.

    • 张世铭, 张小军, 王建功, 张婷静, 崔俊, 王超, 伏珏蓉. 2022. 咸化湖盆混合沉积特征及控制因素分析——以柴达木盆地西部地区古近系下干柴沟组为例. 中国矿业大学学报, 51(1): 160~173.

    • 张涛, 宋春晖, 王亚东, 郑海军, 张志高, 吴松, 孟庆泉, 方小敏. 2012. 柴达木盆地西部地区晚新生代构造变形及其意义. 地学前缘, 19(5): 312~321.

    • 张岳桥, 李海龙. 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系. 中国地质, 43(6): 1829~1852.

    • 赵菲菲, 孙丰月, 刘金龙. 2017. 东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景. 地球科学, 42(6): 927~940.

  • 参考文献

    • Alison R D, Marin K C, Eric K, Kenneth A F, William H C, Li Chuanyou, Yuan Daoyang. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics, 32(5): 1190~1211.

    • Chang Hong, Li Leyi, Qiang Xiaoke, Carmala N G, Alexander Pullen, An Zhisheng. 2015. Magnetostratigraphy of Cenozoic deposits in the western Qaidam basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau. Earth and Planetary Science Letters, 430: 271~283.

    • Chen Guochao, Pei Xianzhi, Li Ruibao, Li Zuochen, Pei Lei, Liu Zhanqing, Chen Yuxin, Liu Chengjun, Gao Jingmin, Wei Fanghui. 2013. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Cocoe A'Long quartz diorites body from the Hongshuichuan area in East Kunlun. Acta Geologica Sinica, 87(2): 178~196 (in Chinese with English abstract).

    • Chen Xuanhua, Yin An, Gehrels G, Li Li, Jiang Rongbao. 2011. Chemical geodynamics of granitic magmatism in the basement of the eastern Qaidam basin, northern Qinghai-Tibet Plateau. Acta Geologica Sinica, 85(2): 157~171 (in Chinese with English abstract).

    • Chen Yan, Lei Tao, Zhang Guoqing, Yuan Li, Wang Duo, Wu Zhixiong, Chen Jinghua, Yang Qianxia. 2019. The geological conditions, resource potential and exploration direction of oil in Qaidam basin. Marine Origin Petroleum Geology, 24(2): 64~74 (in Chinese with English abstract).

    • Chen Zhengle, Gong Hongliang, Li Li, Wang Xiaofeng, Chen Bolin, Chen Xuanhua. 2004. Cenozoic uplifting and exhumation process of the Altyn Tagh Mountains. Earth Science Frontiers, (4): 91~102 (in Chinese with English abstract).

    • Cheng Feng, Jolivet M, Fu Suotang, Zhang Qiquan, Guan Shuwei, Yu Xiangjiang, Guo Zhaojie. 2014. Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam basin, Tectonophysics, 632: 32~47.

    • Cheng Feng, Fu Suotang, Jolivet M, Zhang Changhao, Guo Zhaojie. 2015a. Source to sink relation between the eastern Kunlun range and the Qaidam basin, northern Tibetan Plateau, during the Cenozoic. Geological Society of America Bulletin, 128(1-2): B31260. 1.

    • Cheng Feng, Jolivet M, Dupont-Nivet G, Wang Lin, Yu Xiangjiang, Guo Zhaojie. 2015b. Lateral extrusion along the Altyn Tagh fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget. Terra Nova, 27: 416~425.

    • Cheng Feng, Jolivet Marc, Hallot Erwan, Zhang Daowei, Zhang Changhao, Guo Zhaojie. 2017. Tectono-magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Research, 49: 248~263.

    • Cheng Feng, Garzione C N, Mitra G, Jolivet M, Guo Zhaojie, Lu Huayu, Li Xiangzhong, Zhang Bo, Zhang Daowei, Zhang Changhao, Zhang H, Wang L. 2019. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau. Earth-Science Reviews, 198(C): 102945.

    • Dong Yunpeng, He Dengfeng, Sun Shengsi, Liu Xiaoming, Zhou Xiaohu, Zhang Feifei, Yang Zhao, Cheng Bin, Zhao Guochun, Li Jianhua. 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231~261.

    • Dong Zengchan, Gu Pingyang, Jiao He, Zha Xianfeng, Chen Ruiming, Zhang Haidi. 2014. Geochemistry and chronology of Yanchangbeishan gabrro in Lenghu area at the west segment of the north margin of Qaidam. Chinese Journal of Geology, 49(4): 1132~1149 (in Chinese with English abstract).

    • Feng Wei, Song Chunhui, Meng Qingquan, He Pengju, Fang Xiaomin, Chen Wenqi, Wang Xinghong, Wang Qiaoxin. 2022. Cenozoic multi-stage deformation of the Qilian Shan orogenic belt, northern Tibetan Plateau: Insights from a detrital zircon provenance study of an Oligocene-Miocene intermontane basin sedimentary succession. Journal of Asian Earth Sciences, 224: 105039.

    • Fu Ling, Guan Ping, Jian Xing, Liu Ruijuan, Feng Fan, An Qun, Fan Chaofeng. 2012. Sedimentary genetic types of coarse fragment of Paleogene Lulehe Formation in Qaidam basin and time limit of the Tibetan Plateau uplift. Natural Gas Geoscience, 23(5): 833~840 (in Chinese with English abstract).

    • Fu Suotang, Ma Dade, Chen Yan, Zhang Guoqing, Wu Kunyu. 2016. New advance of petroleum and gas exploration in Qaidam basin. Acta Petrolei Sinica, 37(S1): 1~10 (in Chinese with English abstract).

    • Gao Shibao, Cowgill E, Wu Lei, Lin Xiubin, Cheng Xiaogan, Yang Rong, Soares C, Ketcham R A, An Kaixuan, Gong Junfeng, Song Xingtong, Tang Jianchao, Chen Hanlin, Yang Shufeng. 2022. From left slip to transpression: Cenozoic tectonic evolution of the North Altyn fault, NW margin of the Tibetan Plateau. Tectonics, 41(3): e2021TC006962.

    • Gao Wanli, Wang Zongxiu, Li Leilei, Cui Mingming, Qian Tao, Hu Junjie. 2019. Discovery of the Permian granite in Saishiteng Mountain of the northern Qaidam basin and its tectonic significance. Acta Geologica Sinica, 93(4): 816~829 (in Chinese with English abstract).

    • Ge Xiaohong, Zhang Meisheng, Liu Yongjiang, Ye Huiwen, Shi Caidong. 1998. Scientific problems and thought for research of the Altun fault. Geoscience, (3): 2~5 (in Chinese with English abstract).

    • Guo Zhaojie, Lu Jiemin, Zhang Zhicheng. 2009. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau: Constraints from sedimentological and apatite fission-track data. Acta Geologica Sinica (English Edition), 83 (3): 562~579.

    • Hou Zengqian, Yang Zhusen, Xu Wenyi, Mo Xuanxue, Ding Lin, Gao Yongfeng, Dong Fangliu, Li Guangming, Qu Xiaoming, Li Guangming, Zhao Zhidan, Jiang Sihong, Meng Xiangjin, Li Zhenqing, Qin Kezhang, Yang Zhiming. 2006. Metallogenesis in Tibetan collisional orogenic belt: I. Mineralization in main collisional orogenic setting. Mineral Deposits, (4): 337~358 (in Chinese with English abstract).

    • Huo Feifei. 2019. Paleomagnetic results of the Mesozoic-Cenozoic strata in the northeastern Tibetan Plateau and their tectonic implications. Doctoral dissertation of Northwestern University (in Chinese with English abstract).

    • Ji Junliang, Zhang Kexin, Peter D C, Zhuang Guangsheng, Song Bowen, Ke Xue, Xu Yadong. 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the northern Qaidam basin: Implications for the growth of the northeastern Tibetan Plateau. Gondwana Research, 46: 141~155.

    • Jiang Gaolei, Zhang Simin, Liu Kunfeng, Zhang Kexin. 2014. Evolution of Neoproterozoic-Mesozoic sedimentary basins in Qilian-Qaidam-East Kunlun area. Earth Science (Journal of China University of Geosciences), 39(8): 1000~1016 (in Chinese with English abstract).

    • Jolivet M, Brunel M, Seward D, Xu Zhenbo, Yang Juncheng, Malavieille J, Roger F, Leyreloup A, Arnaud Z, Wu Cyndi. 2003. Neogene extension and volcanism in the Kunlun fault zone, northern Tibet: New constraints on the age of the Kunlun fault. Tectonics, 22(5): 1052.

    • Li Chaopeng, Zheng Dewen, Zhou Renjie, Yu Jingxing, Wang Yizhou, Pang Jianzhang, Wang Ying, Hao Yuqi, Li Youjuan. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e91281.

    • Li Haibing, Pan Jiawei, Sun Zhiming, Si Jialiang, Pei Junling, Liu Dongliang, Chevalier M-L, Wang Huan, Lu Haijian, Zheng Yong, Li Chunrui. 2021. Continental tectonic deformation and seismic activity: A case study from the Tibetan Plateau. Acta Geologica Sinica, 95(1): 194~213 (in Chinese with English abstract).

    • Li Linlin, Guo Zhaojie, Guan Shuwei, Zhou Suping, Wang Mingzhen, Fang Yanan, Zhang Chenchen. 2015. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam basin. Science China: Earth Sciences, 45(6): 780~798+1~6 (in Chinese with English abstract).

    • Li Ruibao, Pei Xianzhi, Li Zuochen, Liu Zhanqing, Chen Guochao, Chen Youxin, Wei Fanghui, Gao Jingmin, Liu Chengjun, Pei Lei. 2012. Geological characteristics of Late Palaeozoic-Mesozoic unconformities and their response to some significant tectonic events in eastern part of Eastern Kunlun. Earth Science Frontiers, 19(5): 244~254 (in Chinese with English abstract).

    • Liu Chiyang, Fu Suotang, Zhang Daowei, Chen Yan, Huang Lei, Shi Yajun. 2020. Determination of giant hydrocarbon enrichment area in Qaidam basin and its exploration results: An example for source-controlling of original basin and reform-controlling reservoir in a reformed basin. Acta Petrolei Sinica, 41(12): 1527~1537 (in Chinese with English abstract).

    • Liu Liang, Kang Lei, Cao Yuting, Yang Wengqiang. 2015. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn, NW China. Science China: Earth Sciences, 45(8): 1126~1137 (in Chinese with English abstract).

    • Liu Yongshun, Yu Haifeng, Xin Houtian, Lu Songnian, Xiu Qunye, Li Quan. 2009. Tectonic units division and Precambrian significant geological events in Altyn Tagh Mountain, China. Geological Bulletin of China, 28(10): 1430~1438 (in Chinese with English abstract).

    • Liu Yongshun, Yu Haifeng, Xiu Qunye, Yang Junquan, Li Quan. 2010. Characteristics and tectonic implications of eclogites in southern Altun area. Acta Petrologica et Mineralogica, 29(2): 166~174 (in Chinese with English abstract).

    • Liu Yuhua, Wang Xiang, Zhang Min, Peng Dehua. 2010. Study on hydrocarbon generation conditions of the dark mudstone in well Lvcan 1 in southwest Qaidam basin. Special Oil & Gas Reservoirs, 17(4): 50~52 (in Chinese with English abstract).

    • Lu Haijian, Ye Jiacan, Guo Licheng, Pan Jiawei, Xiong Shangfa, Li Haibing. 2019. Towards a clarification of the provenance of Cenozoic sediments in the northern Qaidam basin. Lithosphere, 11(2): 252~272.

    • Luo Liang, John Geissman, Zeng Xu, Wang Bo, Zhou Fei, Zhang Yi, Yang Shaohang, Zhou Yangfan. 2022. Geometry and kinematics of the western part of the NE Qaidam basin: Implications for the growth of the Tibetan Plateau. Tectonophysics, 822: 229154.

    • Lv Baofeng, Zhang Yueqing, Yang Shuyi. 2011. Characteristics of structural system and its implication for formation dynamics in Qaidam basin. Geological Review, 57(2): 167~174 (in Chinese with English abstract).

    • Ma Dade, Wang Yanqing. 2015. New understandings and exploration discovery of Paleogene reservoirs of Kunbei fault terrace belt, Qaidam basin, NW China. Petroleum Exploration and Development, 42(4): 529~537 (in Chinese with English abstract).

    • Mao Liguang, Xiao Ancheng, Wu Lei, Li Benliang, Wang Liqun, Lou Qianqian, Dong Youpu, Qin Suhua. 2014. Cenozoic tectonic and sedimentary evolution of southern Qaidam basin, NE Tibetan Plateau and its implication for the rejuvenation of eastern Kunlun Mountains. Science China (Earth Sciences), 57(11): 2726~2739.

    • Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth and Planet Science Letters, 171: 107~122.

    • Ni Jinyu. 2010. Zircon U-Pb age and tectonic setting of Permian-Triassic volcanic rock in East Kunlun orogenic belt. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Ni Xianglong, Wang Jiangong, Guo Jiajia, Du Binshan, Yi Dinghong, Long Guohui, Li Zhiming, Hui Yuanyuan. 2019. Reservoir-controlling effect of basement faults and favorable exploration zones in southwestern Qaidam basin. Lithologic Reservoirs, 31(4): 32~41 (in Chinese with English abstract).

    • Nie Junsheng, Ren Xueping, Saylor J E, Su Qingda, Horton B K, Bush M A, Chen Wenhan, Pfaff K. 2020. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam basin, NE Tibetan Plateau. Geological Society of America Bulletin, 132(1-2): 310~320.

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pan Jiawei, Li Haibing, Sun Zhiming, Liu Dongliang, Wu Chan, Yu Changqing. 2015. Tectonic responses in the Qaidam basin induced by Cenozoic activities of the Altyn Tagh fault. Acta Petrologica Sinica, 31(12): 3701~3712 (in Chinese with English abstract).

    • Pang Jianzhang, Yu Jingxing, Zheng Dewen, Wang Yizhou, Zhang Huiping, Li Chaopeng, Wang Weitao, Hao Yuqi. 2019. Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 181: 103909.

    • Peng Yinbiao, Yu Shengyao, Li Sanzhong, Zhang Jianxin, Liu Yongjiang, Li Yunshuai, Santosh M. 2019. Early Neoproterozoic magmatic imprints in the Altun-Qilian-Kunlun region of the Qinghai-Tibet Plateau: Response to the assembly and breakup of Rodinia supercontinent. Earth-Science Reviews, 199(C): 102954.

    • Peng Yuan, Ma Yinsheng, Liu Chenglin, Sun Jiaopeng, Hu Zhongya, Mou Hongliang, Zheng Ce. 2016. SHRIMP zircon ages of the Dagangou volcanic rocks in the eastern Kunlun orogenic belt and their implications. Geological Bulletin of China, 35(Z1): 356~363 (in Chinese with English abstract).

    • Qi Bangshen, Hu Daogong, Yang Xiaoxiao, Zhang Yaoling, Tan Chengxuan, Zhang Peng, Feng Chengjun. 2016. Apatite fission track evidence for the Cretaceous-Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene. Journal of Asian Earth Sciences, 124: 28~41.

    • Song Bowen, Spicer R A, Zhang Kexin, Ji Junliang, Farnsworth A, Hughes A C, Yang Yibo, Han Fang, Xu Yadong, Spicer T, Shen Tianyi, Lunt D J, Shi Gongle. 2020. Qaidam basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth and Planetary Science Letters, 537: 116175.

    • Song Shuguang, Su Li, Li Xianhua, Niu Yaoling, Zhang Lifei. 2012. Grenville-age orogenesis in the Qaidam-Qilian block: The link between South China and Tarim. Precambrian Research, 220-221: 9~22.

    • Su Zhenguo. 2019. Geological characteristics, provenance analysis and tectonic evolution of the volcanic-sedimentary strata of the Maoniushan Formation in the Hongshuihe area of the eastern Kunlun orogenic belt. Master's thesis of Chang'an University (in Chinese with English abstract).

    • Tang Liangjie, Jin Zhijun, Zhang Mingli, Zhang Bingshan, You Fubao, Luo Jing. 1999. Tectonic evolution of Qaidam basin in Sinian-Triassic. Chinese Journal of Geology, (3): 289~300 (in Chinese with English abstract).

    • Wang Chengshan, Dai Jinggen, Liu Zhifei, Zhu Lidong, Li Yalin, Jia Guodong. 2009. The uplift history of the Tibetan Plateau and Himalaya and its study approaches and techniques: A review. Earth Science Frontiers, 16(3): 1~30 (in Chinese with English abstract).

    • Wang Fei, Luo Qinghua, Li Qi, Wan Jinglin, Zheng Dewen, Li Daming, Wang Yu. 2002. Cooling event around 30 Ma in the northern edge of the Qaidam basin: Constraints from 40Ar/39Ar and fission track thermochronology. Geological Review, 48(S1): 88~96 (in Chinese with English abstract).

    • Wang Fei, Feng Huile, Shi Wenbei, Zhang Weibin, Wu Lin, Yang Liekun, Wang Yinzhi, Zhang Zhigang, Zhu Rixiang. 2016. Relief history and denudation evolution of the northern Tibet margin: Constraints from 40Ar/39Ar and (U-Th)/He dating and implications for far-field effect of rising plateau. Tectonophysics, 675: 196~208.

    • Wang Lin, Scott A M, Cheng Feng. 2020. From a proximal-deposition-dominated basin sink to a significant sediment source to the Chinese Loess Plateau: Insight from the quantitative provenance analysis on the Cenozoic sediments in the Qaidam basin, northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology. 556: 109883.

    • Wang Tao, Hong Dawei, Jahn Borming, Tong Ying, Wang Yanbin, Han Baofu, Wang Xiaoxia. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735~751.

    • Wang Weitao, Zhang Peizhen, Zheng Dewen, Pang Jianzhang. 2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan Plateau. Earth Science Frontiers, 21(4): 266~274 (in Chinese with English abstract).

    • Wang Weitao, Zheng Wenjun, Zhang Peizhen, Li Qiang, Kirby Eric, Yuan Daoyang, Zheng Dewen, Liu Caicai, Wang Zhicai, Zhang Huiping, Pang Jianzhang. 2017. Expansion of the Tibetan Plateau during the Neogene. Nature Communications, 8(1): 15887.

    • Wang Weitao, Zhang Peizhen, Garzione Carmala N, Liu Caicai, Zhang Zhuqi, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Zheng Wenjun, Zhang Huiping. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proceedings of the National Academy of Sciences, 119(8): e2120364119.

    • Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.

    • Wu Chen, Yin An, Zuza Andrew V, Zhang Jinyu, Liu Wencan, Ding Lin. 2016. Pre-Cenozic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8(3): 254~292.

    • Wu Chen, Li Jie, Ding Lin. 2021. Low-temperature thermochronology constraints on the evolution of the eastern Kunlun Range, northern Tibetan Plateau. Geosphere, 17(4): 1193~1213.

    • Wu Lei, Xiao Ancheng, Wang Liqun, Mao Liguang, Wang Liang, Dong Youpu, Xu Bo. 2012. EW-trending uplifts along the southern side of the central segment of the Altyn Tagh fault, NW China: Insight into the rising mechanism of the Altyn Mountain during the Cenozoic. Science China: Earth Sciences, 42(12): 1863~1876 (in Chinese with English abstract).

    • Wu Lei, Gong Qinglin, Qin Suhua. 2013. When did Cenozoic left-slip along the Altyn Tagh fault initiate? A comprehensive approach. Acta Petrologica Sinica, 29(8): 2837~2850 (in Chinese with English abstract).

    • Wu Zhenhan, Jiang Wan, Zhou Jirong, Li Jixiang. 2001. Thermal-chronological dating on the thermal history of plutons and tectonic-landform evolution of the central Tibetan Plateau. Acta Geologica Sinica, 75(4): 468~476 (in Chinese with English abstract).

    • Wu Zhenhan, Wu Zhonghai, Hu Daogong, Ye Peisheng, Zhou Chunjing. 2007. Geological evidences for the Tibetan Plateau uplifted in Late Oligocene. Acta Geologica Sinica, 81(5): 577~587 (in Chinese with English abstract).

    • Xiao Ancheng, Yu Long, Xiong Guangyao, Zhang Junyong, Zhang Yongshu, Wu Lei, Zhao Haifeng, Tan Suhua. 2021. Triassic retroarc foreland basin in southern Qilian area: Evidence from sedimentary filling and tectonics. Acta Petrologica Sinica, 37(8): 2385~2400 (in Chinese with English abstract).

    • Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zeming, Ceng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau. Geology in China, 43(1): 1~42 (in Chinese with English abstract).

    • Xu Zhiqin, Li Guangwei, Zhang Zeming, Li Haibing, Wang Yuejun, Peng Miao, Hu Xiumian, Yi Zhiyu, Zheng Bihai. 2022. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica. Acta Geologica Sinica, 96(1): 65~94 (in Chinese with English abstract).

    • Yan Zhen, Fu Changlei, Aitchison J C, Buckman S, Niu Manlan, Cao Bo, Sun Yi, Guo Xianqing, Wang Zongqi, Zhou Renjie. 2019. Retro-foreland basin development in response to Proto-Tethyan Ocean closure, NE Tibet Plateau. Tectonics, 38(12): 4229~4248.

    • Yang Jingsui, Shi Rendeng, Wu Cailai, Su Dechen, Chen Songyong, Wang Xibin, Wooden Joseph. 2008. Petrology and SHRIMP age of the Honeliugou ophiolite at Milan, north Altun, at the northern margin of the Tibetan plateau. Acta Petrologica Sinica, 24(7): 1567~1584 (in Chinese with English abstract).

    • Ye Yuhui. 2021. Cenozoic tectonic activity of the North Altyn fault: Evidence from geomorphological analysis and thermochronology. Master's thesis of Zhejiang University (in Chinese with English abstract).

    • Yi Li. 2020. Effect of the Tibetan Plateau uplift on the hydrocarbon accumulation of Cenozoic Qaidam basin. Doctoral dissertation of China University of Petroleum (Beijing) (in Chinese with English abstract).

    • Yin An, Rumelhart P E, Butler R, Cowgill E, Harrison T M, Foster D A, Ingersoll R V, Zhang Qing, Zhou Xianqiang, Wang Xiaofeng, Hanson A, Raza A. 2002. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin, 114(10): 1257~1295.

    • Yin An, Dang Yuqi, Wang Licun, Jiang Wuming, Zhou Suping, Chen Xuanhua, Gehrels G E, McRivette M W. 2008. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geological Society of America Bulletin, 120(7-8): 813~846.

    • Yu Jingxing, Pang Jianzhang, Wang Yizhou, Zheng Dewen, Liu Caicai, Wang Weitao, Li Youjuan, Li Chaopeng, Xiao Lin. 2019. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere, 15(2): 423~432.

    • Yue Yongjun, Bradley D R, Stephan A G, Joseph L W, George E G, Zhang Zhicheng. 2004. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth and Planetary Science Letters, 217(1): 111~122.

    • Yue Yongjun, Stephan A G, Bradley D R, Joseph L W. 2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault. Tectonophysics, 406: 165~178.

    • Zeng Xu, Lin Tong, Wang Wei, Yan Zhandong, Hao Cuiguo, Bian Yingying, Wang Jun. 2019. Detrital zircon dating of LA-ICP-MS in the Upper Jurassic and indicative significance of the Qaidam basin. Natural Gas Geoscience, 30(5): 662~672 (in Chinese with English abstract).

    • Zhang Jianxin, Yu Shengyao, Li Yunshuai, Yu Xingxing, Lin Yihui, Mao Xiaohong. 2015. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531~3554 (in Chinese with English abstract).

    • Zhang Jianxin, Lu Zenglong, Mao Xiaohong, Teng Xia, Zhou Guisheng, Wu Yawei, Guo Qi. 2021. Revisiting the Precambrian micro-continental blocks within the Early Paleozoic orogenic system of the northeastern Qinghai-Tibet Plateau: Insight into the origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74~102 (in Chinese with English abstract).

    • Zhang Jinming, Fu Yanwen, Tian Chengxiu, Lei Xiaoqing. 2021. Lithofacies paleogeography and genesis of salt rock in the Late Eocene of western Qaidam basin. Journal of Stratigraphy, 45(4): 545~553 (in Chinese with English abstract).

    • Zhang Kexin, Wang Guocan, Hong Hanlie, Xu Yadong, Wang An, Cao Kai, Luo Mansheng, Ji Junliang, Xiao Guoqiao, Lin Xiao. 2013. The study of the Cenozoic uplift in the Tibetan Plateau: A review. Geological Bulletin of China, 32(1): 1~18 (in Chinese with English abstract).

    • Zhang Shiming, Zhang Xiaojun, Wang Jiangong, Zhang Tingjing, Cui Jun, Wang Chao, Fu Juorong. 2022. Characteristics and their controlling factors of mixed sediments in saline lakes: A case study of lower Ganchaigou Formation in the western Qaidam basin. Journal of China University of Mining & Technology, 51(1): 160~173 (in Chinese with English abstract).

    • Zhang Tao, Song Chunhui, Wang Yadong, Zheng Haijun, Zhang Zhigao, Wu Song, Meng Qingquan, Fang Xiaomin. 2012. The Late Cenozoic tectonic deformation in the western Qaidam basin and its implications. Earth Science Frontiers, 19(5): 312~321 (in Chinese with English abstract).

    • Zhang Yueqiao, Li Hailong. 2016. Late Cenozoic tectonic events in east Tibetan Plateau and extrusion-related orogenic system. Geology in China, 43(6): 1829~1852 (in Chinese with English abstract).

    • Zhao Feifei, Sun Fengyue, Liu Jinglong. 2017. Zircon U-Pb geochronology and geochemistry of the gneissic granodiorite in Manite area from East Kunlun, with implications for geodynamic setting. Earth Science, 42(6): 927~940+1044 (in Chinese with English abstract).

    • Zhao Junfeng, Zeng Xu, Tian Jixian, Hu Chao, Wang Di, Yan Zhandong, Wang Ke, Zhao Xudong. 2020. Provenance and paleogeography of the Jurassic northwestern Qaidam basin (NW China): Evidence from sedimentary records and detrital zircon geochronology. Journal of Asian Earth Sciences, 190(C): 104060.

    • Zhao Xudong, Zhao Junfeng, Zeng Xu, Tian Jixian, Guo Zeqing, Wang Chao, Wang Di, Hu Chao. 2020. Early-Middle Jurassic paleogeography reconstruction in the western Qaidam basin: Insights from sedimentology and detrital zircon geochronology. Marine and Petroleum Geology, 118: 104445.

    • 陈国超, 裴先治, 李瑞保, 李佐臣, 裴磊, 刘战庆, 陈有炘, 刘成军, 高景民, 魏方辉. 2013. 东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义. 地质学报, 87(2): 178~196.

    • 陈宣华, 尹安, Gehrels G, 李丽, 蒋荣宝. 2011. 柴达木盆地东部基底花岗岩类岩浆活动的化学地球动力学. 地质学报, 85(2): 157~171.

    • 陈琰, 雷涛, 张国卿, 袁莉, 王铎, 吴志雄, 陈景华, 杨乾霞. 2019. 柴达木盆地石油地质条件、资源潜力及勘探方向. 海相油气地质, 24(2): 64~74.

    • 陈正乐, 宫红良, 李丽, 王小凤, 陈柏林, 陈宣华. 2004. 阿尔金山脉新生代隆升-剥露过程. 地学前缘, (4): 91~102.

    • 董增产, 辜平阳, 焦和, 查显锋, 陈锐明, 张海迪. 2014. 柴北缘西端冷湖盐场北山辉长岩地球化学及年代学研究. 地质科学, 49(4): 1132~1149.

    • 付玲, 关平, 简星, 刘瑞娟, 冯帆, 安群, 范朝峰. 2012. 柴达木盆地路乐河组粗碎屑沉积成因与青藏高原隆升时限. 天然气地球科学, 23(5): 833~840.

    • 付锁堂, 马达德, 陈琰, 张国卿, 伍坤宇. 2016. 柴达木盆地油气勘探新进展. 石油学报, 37(S1): 1~10.

    • 高万里, 王宗秀, 李磊磊, 崔明明, 钱涛, 胡俊杰. 2019. 柴达木盆地北缘小赛什腾山二叠纪花岗岩的发现及其构造意义. 地质学报, 93(4): 816~829.

    • 葛肖虹, 张梅生, 刘永江, 叶慧文, 石采东. 1998. 阿尔金断裂研究的科学问题与研究思路. 现代地质, (3): 2~5.

    • 侯增谦, 杨竹森, 徐文艺, 莫宣学, 丁林, 高永丰, 董方浏, 李光明, 曲晓明, 李光明, 赵志丹, 江思宏, 孟祥金, 李振清, 秦克章, 杨志明. 2006. 青藏高原碰撞造山带: i. 主碰撞造山成矿作用. 矿床地质, (4): 337~358.

    • 霍斐斐. 2019. 青藏高原东北部中-新生代地层古地磁研究及构造意义. 西北大学博士学位论文.

    • 姜高磊, 张思敏, 柳坤峰, 张克信. 2014. 祁连-柴达木-东昆仑新元古-中生代沉积盆地演化. 地球科学(中国地质大学学报), 39(8): 1000~1016.

    • 李海兵, 潘家伟, 孙知明, 司家亮, 裴军令, 刘栋梁, Chevalier M-L, 王焕, 卢海建, 郑勇, 李春锐. 2021. 大陆构造变形与地震活动——以青藏高原为例. 地质学报, 95(1): 194~213.

    • 李林林, 郭召杰, 管树巍, 周苏平, 王明振, 房亚男, 张晨晨. 2015. 柴达木盆地西南缘新生代碎屑重矿物组合特征及其古地理演化. 中国科学: 地球科学, 45(6): 780~798+1~6.

    • 李瑞保, 裴先治, 李佐臣, 刘战庆, 陈国超, 陈有炘, 魏方辉, 高景民, 刘成军, 裴磊. 2012. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应. 地学前缘, 19(5): 244~254.

    • 刘池洋, 付锁堂, 张道伟, 陈琰, 黄雷, 石亚军. 2020. 柴达木盆地巨型油气富集区的确定及勘探成效——改造型盆地原盆控源、改造控藏之范例. 石油学报, 41(12): 1527~1537.

    • 刘良, 康磊, 曹玉亭, 杨文强. 2015. 杨文强. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用. 中国科学: 地球科学, 45(8): 1126~1137.

    • 刘永顺, 于海峰, 辛后田, 陆松年, 修群业, 李铨. 2009. 阿尔金山地区构造单元划分和前寒武纪重要地质事件. 地质通报, 28(10): 1430~1438.

    • 刘永顺, 于海峰, 修群业, 杨俊泉, 李铨. 2010. 南阿尔金地区榴辉岩特征及意义. 岩石矿物学杂志, 29(2): 166~174.

    • 刘玉华, 王祥, 张敏, 彭德华. 2010. 柴达木盆地西部南区绿参1井暗色泥岩生烃条件研究. 特种油气藏, 17(4): 50~52.

    • 吕宝凤, 张越青, 杨书逸. 2011. 柴达木盆地构造体系特征及其成盆动力学意义. 地质论评, 57(2): 167~174.

    • 马达德, 王艳清. 2015. 柴达木盆地昆北断阶带古近系储集层新认识与勘探发现. 石油勘探与开发, 42(4): 529~537.

    • 倪晋宇. 2010. 东昆仑造山带二叠纪-三叠纪火山岩锆石U-Pb年龄与构造环境. 中国地质科学院博士学位论文.

    • 倪祥龙, 王建功, 郭佳佳, 杜斌山, 易定红, 龙国徽, 李志明, 惠媛媛. 2019. 柴达木盆地西南地区基底断裂的控藏作用与有利区带. 岩性油气藏, 31(4): 32~41.

    • 潘家伟, 李海兵, 孙知明, 刘栋梁, 吴婵, 于常青. 2015. 阿尔金断裂带新生代活动在柴达木盆地中的响应. 岩石学报, 31(12): 3701~3712.

    • 彭渊, 马寅生, 刘成林, 孙娇鹏, 胡忠亚, 牟宏良, 郑策. 2016. 东昆仑大干沟火山岩SHRIMP锆石U-Pb测年及其地质意义. 地质通报, 35(Z1): 356~363.

    • 苏朕国. 2019. 东昆仑东段洪水河地区牦牛山组火山-沉积地层地质特征、物源分析和构造演化. 长安大学硕士学位论文.

    • 汤良杰, 金之钧, 张明利, 张兵山, 由福报, 骆静. 1999. 柴达木震旦纪—三叠纪盆地演化研究. 地质科学, (3): 289~300.

    • 王成善, 戴紧根, 刘志飞, 朱利东, 李亚林, 贾国东. 2009. 西藏高原与喜马拉雅的隆升历史和研究方法: 回顾与进展. 地学前缘, 16(3): 1~30.

    • 王非, 罗清华, 李齐, 万景林, 郑德文, 李大明, 王瑜. 2002. 柴达木盆地北缘30 Ma前的快速冷却事件及构造意义——40Ar/39Ar及FT热年代学制约. 地质论评, 48(S1): 88~96.

    • 王伟涛, 张培震, 郑德文, 庞建章. 2014. 青藏高原东北缘海原断裂带晚新生代构造变形. 地学前缘, 21(4): 266~274.

    • 吴磊, 肖安成, 汪立群, 毛黎光, 王亮, 董有浦, 徐波. 2012. 阿尔金断裂中段南侧东西向隆起的形成及对阿尔金山新生代隆升机制的启示. 中国科学: 地球科学, 42(12): 1863~1876.

    • 吴磊, 巩庆霖, 覃素华. 2013. 阿尔金断裂新生代大规模走滑起始时间的厘定. 岩石学报, 29(8): 2837~2850.

    • 吴珍汉, 江万, 周继荣, 李冀湘. 2001. 青藏高原腹地典型岩体热历史与构造-地貌演化过程的热年代学分析. 地质学报, 75(4): 468~476.

    • 吴珍汉, 吴中海, 胡道功, 叶培盛, 周春景. 2007. 青藏高原渐新世晚期隆升的地质证据. 地质学报, 81(5): 577~587.

    • 肖安成, 余龙, 熊光耀, 张军勇, 张永庶, 吴磊, 赵海峰, 覃素华. 2021. 祁连山南部地区三叠纪弧后前陆盆地——基于沉积填充与大地构造的证据. 岩石学报, 37(8): 2385~2400.

    • 许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展. 中国地质, 43(1): 1~42.

    • 许志琴, 李广伟, 张泽明, 李海兵, 王岳军, 彭淼, 胡修棉, 易治宇, 郑碧海. 2022. 再探青藏高原十大关键地学科学问题——《地质学报》百年华诞纪念. 地质学报, 96(1): 65~94.

    • 杨经绥, 史仁灯, 吴才来, 苏德辰, 陈松永, 王希斌, Wooden Joseph. 2008. 北阿尔金地区米兰红柳沟蛇绿岩的岩石学特征和SHRIMP定年. 岩石学报, 24(7): 1567~1584.

    • 叶雨晖. 2021. 北阿尔金断裂新生代构造活动特征及意义: 来自地貌分析与热年代学的证据. 浙江大学硕士学位论文.

    • 易立. 2020. 青藏高原隆升对柴达木盆地新生界油气成藏的控制作用. 中国石油大学(北京)博士学位论文.

    • 曾旭, 林潼, 王薇, 闫占冬, 郝翠果, 边滢滢, 王军. 2019. 柴达木盆地上侏罗统碎屑锆石LA-ICP-MS定年及指示意义. 天然气地球科学, 30(5): 662~672.

    • 张建新, 于胜尧, 李云帅, 喻星星, 林宜慧, 毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金-祁连-柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531~3554.

    • 张建新, 路增龙, 毛小红, 滕霞, 周桂生, 武亚威, 郭祺. 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识——兼谈原特提斯洋的起源. 岩石学报, 37(1): 74~102.

    • 张金明, 付彦文, 田成秀, 雷晓清. 2021. 柴达木盆地西部始新世晚期岩相古地理特征及盐岩成因. 地层学杂志, 45(4): 545~553.

    • 张克信, 王国灿, 洪汉烈, 徐亚东, 王岸, 曹凯, 骆满生, 季军良, 肖国桥, 林晓. 2013. 青藏高原新生代隆升研究现状. 地质通报, 32(1): 1~18.

    • 张世铭, 张小军, 王建功, 张婷静, 崔俊, 王超, 伏珏蓉. 2022. 咸化湖盆混合沉积特征及控制因素分析——以柴达木盆地西部地区古近系下干柴沟组为例. 中国矿业大学学报, 51(1): 160~173.

    • 张涛, 宋春晖, 王亚东, 郑海军, 张志高, 吴松, 孟庆泉, 方小敏. 2012. 柴达木盆地西部地区晚新生代构造变形及其意义. 地学前缘, 19(5): 312~321.

    • 张岳桥, 李海龙. 2016. 青藏高原东部晚新生代重大构造事件与挤出造山构造体系. 中国地质, 43(6): 1829~1852.

    • 赵菲菲, 孙丰月, 刘金龙. 2017. 东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景. 地球科学, 42(6): 927~940.