en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

余星,男,1981年生。研究员,从事岩石大地构造学研究。E-mail:yuxing@sio.org.cn。

参考文献
Bernard A, Munschy M, Rotstein Y, Sauter D. 2005. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data. Geophysical Journal International, 162(3): 765~778.
参考文献
Blakey R, Wong T. 2003. Carboniferous-Permian paleogeography of the assembly of Pangaea. In: Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, 443~456.
参考文献
Collier J S, Sansom V, Ishizuka O, Taylor R N, Minshull T A, Whitmarsh R B. 2008. Age of Seychelles-India break-up. Earth and Planetary Science Letters, 272(1-2): 264~277.
参考文献
Dergunov A, Zaytsev N, Mossakovskiy A, Perfilyev A. 1971. The Hercynides of Mongolia and the problem of the Paleo-Tethys. Problemy Teoretycheskoji Regionalnoj Tectoniki: Moscow, Nauka Press (in Russian), 87~103.
参考文献
Ding Lin, Maksatbek S, Cai Fulong, Wang Houqi, Song Peiping, Ji Weiqiang, Xu Qiang, Zhang Liyun, Muhammad Q, Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Science China Earth Sciences, 60: 635~651 (in Chinese with English abstract).
参考文献
Flügel H. 1972. The development of the Proto-tethys during the Paleozoic of Near East. Neues Jahrbuch für Geologie und Palaontologie, 10: 602~610.
参考文献
Gibbons A, Zahirovic S, Müller R, Whittaker J, Yatheesh V. 2015. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Research, 28(2): 451~492.
参考文献
Heine C, Müller R. 2005. Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52(1): 27~39.
参考文献
Huang Feng, Xu Jifeng, Wang Baodi, Zeng Yunchuan, Liu Xijun, Liu Han, Yu Hongxia. 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785~2804 (in Chinese with English abstract).
参考文献
Huang Wentao, van Hinsbergen D J J, Dekkers M J, Garzanti E, Dupont-Nivet G, Lippert P C, Li Xiaochun, Maffione M, Langereis C G, Hu Xiumian, Guo Zhaojie, Kapp P. 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochemistry, Geophysics, Geosystems, 16(1): 77~100.
参考文献
Jokat W, Boebel T, König M, Meyer U. 2003. Timing and geometry of early Gondwana breakup. Journal of Geophysical Research: Solid Earth, 108(B9): 2428, doi: 10. 1029/2002JB001802.
参考文献
Li Jianghai, Zhang Huatian, Li Honglin. 2015. The tectonic setting and evolution of Indian Ocean—research progress of tectonic map of Indian Ocean. Haiyang Xuebao, 37(7): 1~14 (in Chinese with English abstract).
参考文献
Li Sanzhong, Suo Yanhui, Yu Shan, Zhao Shujuan, Dai Liming, Cao Huahua, Zhang Zhen, Liu Weiyong, Zhang Guoyin. 2015. Morphotectonics and tectonic processes of the Southwest Indian Ocean. Geotectonica et Metallogenia, 39(1): 15~29 (in Chinese with English abstract).
参考文献
Li Sanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Saocong, Yan Zhen, Li Zonghui, Yu Shengyao, Lan Haoyuan. 2016. Proto-Tethys Ocean in East Asia(I): northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609~2627 (in Chinese with English abstract).
参考文献
Li Zhenyu, Ding Lin, Song Peiping, Fu Jiajun, Yue Yahui. 2017. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous: implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia. Gondwana Research, 41: 352~372.
参考文献
Meng Yuanku, Yuan Haoqi, Wei Youqing, Zhang Shukai, Liu Jinqing. 2022. Research progress and prospect of the Gangdese magmatic belt in southern Tibet. Geological Journal of China Universities, 28(1): 1~31 (in Chinese with English abstract).
参考文献
Metcalfe I. 1994. Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes. Journal of South American Earth Sciences, 7(3-4): 333~347.
参考文献
Metcalfe I. 2021. Multiple Tethyan Ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.
参考文献
Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006, doi: 10. 1029/2007GC001743.
参考文献
Neumayr M. 1885. Die geographische Verbreitung der Juraformation. In: Band F, ed. Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenscaftliche Classe, Volume 50. Wien: Kaiserlich-königliche Hof- und Staatsdruckerei, 57~144.
参考文献
Richards J P. 2015, Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70: 323~345.
参考文献
Scotese C R, McKerrow W S. 1990. Revised world maps and introduction. Geological Society, London, Memoirs, 12(1): 1~21.
参考文献
Şengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic tethys and its implications. Nature, 279: 590~593.
参考文献
Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4): 212~270.
参考文献
Stampfli G M, Borel G. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17~33.
参考文献
Stöcklin J. 1974. Possible ancient continental margins in Iran. The Geology of Continental Margins. New York: Springer, 873~887.
参考文献
Storey B C, Leat P T, Ferris J K. 2001. The location of mantle plume centers during the initial stages of Gondwana breakup. Mantle Plumes: Their Identification Through Time, 71~80.
参考文献
Suess E. 1893. Are great ocean depths permanent?. Natural Science: a Monthly Review of Scientific Progress, 2: 180~187.
参考文献
Van Hinsbergen D J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences, 109(20): 7659~7664.
参考文献
von Raumer J F, Stampfli G M. 2008. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461(1-4): 9~20.
参考文献
Wan Bo, Wu Fuyuan, Chen Ling, Zhao Liang, Liang Xiaofeng, Xiao Wenjiao, Zhu Rixiang. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics. Science China Earth Sciences, 62: 2005~2016(in Chinese).
参考文献
Whittington H B, Hughes C P. 1972. Ordovician geography and faunal provinces deduced from trilobite distribution. Philosophical Transactions of the Royal Society B, 263(850): 235~278.
参考文献
Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627~1674 (in Chinese with English abstract).
参考文献
Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
参考文献
Yu Xing, Han Xiqiu, Qiu Zhongyan, Wang Yejiang, Tang Limei. 2019a. Definition of northwest Indian Ridge and its geologic and tectonic signature. Earth Science, 44: 626~639 (in Chinese with English abstract).
参考文献
Yu Xing, Han Xiqiu, Tang Limei, Liu Jiqiang, Zhang Pingping. 2019b. The geotectonic features of the Southeast Indian Ridge and its current research progress. Chinese Science Bulletin, 64: 1~18 (in Chinese with English abstract).
参考文献
Yu Xing, Dick Henry, Li Xiaohu, Chu Fengyou, Dong Yanhui, Hu Hang. 2020. The geotectonic features of the Southwest Indian ridge and its geodynamic implications. Chinese Journal of Geophysics, 63(10): 3585~3603 (in Chinese with English abstract).
参考文献
Zhang Shuangquan, Mahoney J J, Mo Xuanxue, Ghazi A M, Milani L, Crawford A J, Guo Tieying, Zhao Zhidan. 2005. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics, Journal of Petrology, 46(4): 829~858.
参考文献
Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Shen Kun. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17: 615~631.
参考文献
Zhu Dicheng, Wang Qing, Chung Sun-Lin, Cawood P A, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483: 583~604.
参考文献
丁林, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云. 2017. 印度与欧亚大陆初始碰撞时限, 封闭方式和过程. 中国科学: 地球科学, 47(3): 293~309.
参考文献
黄丰, 许继峰, 王保弟, 曾云川, 刘希军, 刘函, 余红霞. 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785~2804.
参考文献
李江海, 张华添, 李洪林. 2015. 印度洋大地构造背景及其构造演化——印度洋底大地构造图研究进展. 海洋学报, 37(7): 1~14.
参考文献
李三忠, 索艳慧, 刘鑫, 赵淑娟, 余珊, 戴黎明, 许立青, 张臻, 刘为勇, 李怀明. 2015. 印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示. 大地构造与成矿学, 39(1): 30~43.
参考文献
李三忠, 赵淑娟, 李玺瑶, 曹花花, 郭晓玉, 肖文交, 赖少聪, 闫臻, 李宗会. 2016. 东亚原特提斯洋 (Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609~2627.
参考文献
孟元库, 袁昊岐, 魏友卿, 张书凯, 刘金庆. 2022. 藏南冈底斯岩浆带研究进展与展望. 高校地质学报, 28(1): 1~31.
参考文献
万博, 吴福元, 陈凌, 赵亮, 梁晓峰, 肖文交, 朱日祥. 2019. 重力驱动的特提斯单向裂解-聚合动力学. 中国科学: 地球科学, 49(12): 2004~2017.
参考文献
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627~1674.
参考文献
余星, 韩喜球, 邱中炎, 王叶剑, 唐立梅. 2019a. 西北印度洋脊的厘定及其地质构造特征. 地球科学, 44(2): 626~639.
参考文献
余星, 韩喜球, 唐立梅, 刘吉强, 张平萍. 2019b. 东南印度洋中脊地质构造特征及研究进展. 科学通报, 64(17): 47~64.
参考文献
余星, 迪克·亨利, 李小虎, 初凤友, 董彦辉, 胡航. 2020. 西南印度洋中脊地质构造特征及其地球动力学意义. 地球物理学报, 63(10): 3585~3603.
目录contents

    摘要

    特提斯最初是指欧亚大陆南缘的古海洋,后逐渐引申出从元古宙、古生代到中生代的一系列位于劳亚大陆与冈瓦纳大陆之间的古大洋,如原特提斯洋、古特提斯洋和新特提斯洋,不同大洋在时间上前后交叠。如今横亘在冈瓦纳大陆(南极洲)和欧亚大陆之间的是印度洋,是新特提斯洋的继承者,可以另称为“全新特提斯洋”。这一概念的引申直接体现了印度洋与特提斯构造域一脉相承的关系,有助于将今论古、由此及彼,更直观地了解特提斯构造域的演化过程。本文按时间序列梳理了印度洋的大地构造演化和岩浆作用过程,识别了印度洋在155 Ma、120 Ma、90~84 Ma、76 Ma、65 Ma、52 Ma、45 Ma、38 Ma等关键时期的异常海底扩张记录,这些扩张事件将为标定新特提斯构造域的演化提供参照。其中155 Ma可能指示了新特提斯洋的鼎盛期,90 Ma指示了新特提斯洋的洋中脊俯冲,76~52 Ma是非洲-阿拉伯大陆与欧亚大陆初始碰撞-主碰撞(即新特提斯洋西部关闭)的时期,65~45 Ma是印度次大陆与欧亚大陆初始碰撞-主碰撞(即新特提斯洋中部关闭)的时期,38 Ma是澳大利亚北部大洋开始净俯冲(即新提斯洋东部开始消减)的时间。印度洋扩张历史的研究为理解新特提斯洋消亡提供参考标尺。站在“后方”印度洋的角度,可以更清晰地透视“前线”特提斯构造域的演化过程,为理解板块构造活动规律提供支撑。

    Abstract

    The Tethys originally refers to the ancient ocean in the southern margin of Eurasia, but gradually extends to a series of ancient oceans from the Proterozoic, Paleozoic to Mesozoic, such as the Proto-Tethys, the Paleo-Tethys and the Neo-Tethys, in which different oceans overlap in time. Now what is stretching between Gondwana (Antarctica) and Eurasia is the Indian Ocean, the successor to the Neo-Tethys, namely the “Holo-Tethys”. The extension of this concept literally reflects the continuous relationship between the Indian Ocean and the Tethyan tectonic domain, which is helpful to understand the evolution process of the Tethyan tectonic domain more intuitively by studying the present process. In this paper, the tectonic evolution and magmatic processes of the Indian Ocean are summarized according to the time series, and the key seafloor spreading events at 155 Ma, 120 Ma, 90~84 Ma, 76 Ma, 65 Ma, 52 Ma, 45 Ma and 38 Ma are identified. These spreading events will provide references for the evolution of the Neo-Tethyan tectonic domain. The width of Neo-Tethys Ocean may culminate around 155 Ma, while 90 Ma may indicate the subduction of the mid-ocean ridge of Neo-Tethys. 76~52 Ma is the time of initial collision and the main collision between African-Arab and Eurasia (i.e.,the western Neo-Tethys was closed), while 65~45 Ma is time for the initial collision and the main collision between India and Eurasia (i.e.,the central Neo-Tethys was closed). And the eastern part of Neo-Tethys north of Australia may initiate its subduction at 38 Ma. The study of Indian Ocean spreading history provides a reference for understanding the extinction of the Neo-Tethys Ocean and the process of the India-Asia collision. From the perspective of the “rear” Indian Ocean, the evolution process of the “front” Tethyan tectonic domain can be more clearly understood. The movement of plates and the mechanism of plate tectonics can be further constrained by the study of generalized Tethyan tectonic domain.

  • 特提斯构造域是欧亚大陆上最显著的造山带,西起地中海西部,东至印支半岛,全长约12000 km(Richards,2015)。这一构造域被认为是原特提斯洋(Proto-Tethys)、古特提斯洋(Paleo-Tethys)和新特提斯洋(Neo-Tethys)多期多块体碰撞拼合的结果(Neumayr,1885; Suess,1893; Stöcklin,1974; Şengör,1979)。关于这一区域各块体的属性、缝合带位置、碰撞拼合历史等科学问题得到了地质学家们的广泛关注(Yin An et al.,2000; Huang Wentao et al.,2015; Gibbons et al.,2015; Li Zhenyu et al.,2017; Zhu Dicheng et al.,2018; 万博等,2019; 吴福元等,2020; 黄丰等,2020; Metcalfe,2021)。但由于特提斯洋演化的长期性和穿时性,加之多期构造运动的叠加效应,使这一复杂构造单元的地质演化历史仍存在诸多争议。

  • 目前处于欧亚大陆和南极洲之间的印度洋,其打开源自印度次大陆从冈瓦纳大陆的裂解。印度次大陆在持续北移过程中,与欧亚大陆发生碰撞,致使新特提斯洋逐渐消减并关闭。因此,印度洋与新特提斯洋一脉相承,与特提斯构造域密切关联。跳出特提斯构造域,从“后方”审视“前线”,根据印度洋的构造演化史来透视特提斯构造域的演化,可以直观地揭示新特提斯洋的消亡过程,为特提斯构造域的演化提供有效证据。

  • 1 传统“特提斯”概况

  • 最初提出的特提斯(Tethys)概念是指晚古生代末期以来横贯欧亚大陆向东开口的古海洋,位于北方安加拉(Angara)大陆与南方冈瓦纳(Gondwana)大陆之间(Suess,1893; 吴福元等,2020),时代上相当于新特提斯洋,发育有侏罗纪海相地层。在新特提斯洋形成之前,该区域存在的古大洋称为古特提斯洋(Dergunov et al.,1971; Stocklin,1974; Sengör,1979),古特提斯洋之前可能还存在更早的原特提斯洋(Whittington and Hughes,1972; Flügel,1972; Stampfli et al.,2002)。传统特提斯构造域的形成贯穿着原特提斯洋(Proto-Tethys)、古特提斯洋(Paleo-Tethys)和新特提斯洋(Neo-Tethys)这三期大洋的演化(图1)。

  • 1.1 原特提斯洋(550~330 Ma)

  • 原特提斯洋的概念存在较大争议,一般认为原特提斯洋位于劳亚大陆(Laurasia)和匈奴地块(Hunia)之间(Stampfli et al.,2002; Blakey et al.,2003; 李三忠等,2016)。劳亚大陆包括劳伦(Laurentia,即北美)、波罗的(Baltica)和西伯利亚(Siberia)等古陆,这些古陆在原特提斯洋发育时是否已经拼合仍不清楚。匈奴地块曾经为冈瓦纳大陆的一部分,包括华北、印支、塔里木、哈萨克斯坦和波西米亚等。劳亚大陆在合并之前,北美和波罗的古陆之间的古大洋为亚匹特斯洋(Iapetus Ocean),北美和非洲古陆之间的古大洋为赛克洋(Theic Ocean),波罗的和非洲古陆之间的古大洋为瑞克洋(Rheic Ocean)(Blakey et al.,2003)。因此,亚匹特斯洋在北部,赛克洋在西部,瑞克洋在东部,三者在时间上可能存在交叠。基于前人的研究,推测原特提斯洋应位于瑞克洋的东部,或与瑞克洋融为一体(Blakey et al.,2003)。这可以解释欧美地区常沿用亚匹特斯洋、瑞克洋和赛克洋的概念,而在中东和东亚地区常沿用原特提斯洋概念。原特提斯洋活动时间约为550~330 Ma(von Raumer et al.,2008),在晚奥陶世—中志留世达到鼎盛期,大洋最宽阔。~440 Ma时,匈奴地块从冈瓦纳大陆北缘分离,向北漂移,原特提斯洋不断缩小,直至早石炭世(~330 Ma前后)消亡于匈奴地块与西伯利亚古陆的完全拼合(Stampfli et al.,2002; 吴福元等,2020)。

  • 1.2 古特提斯洋(440~200 Ma)

  • 古特提斯洋形成于匈奴地块与基梅里(Cimmerian)陆块之间,其中基梅里陆块曾经为冈瓦纳大陆的一部分,包括中缅马苏、羌塘、阿富汗赫尔曼德、伊朗、拉萨等地块(Scotese et al.,1990)。古特提斯洋活动时间约为440~200 Ma(Metcalfe,2021),在早二叠世(~280 Ma)达到鼎盛期。~440 Ma,原特提斯洋的洋壳向南部匈奴地块之下俯冲时,引起弧后扩张,使匈奴地块从基梅里陆块分离并北移,在其南侧打开了古特提斯洋(Stampfli et al.,2002)。~280 Ma时,基梅里陆块也开始从冈瓦纳大陆裂解并向北漂移,使古特提斯洋不断缩小,并在早侏罗世(~200 Ma)消亡于基梅里陆块与劳亚大陆的完全拼合(Metcalfe,2021)。据推断,在约440~330 Ma之间,古特提斯洋呈现与原特提斯洋并存的阶段(图1)。

  • 1.3 新特提斯洋(280~65 Ma)

  • 新特提斯洋形成于基梅里陆块与非洲-印度-澳大利亚之间,后者曾经是冈瓦纳大陆的一部分。新特提斯洋活动时间约为280~65 Ma(Stampfli et al.,2002)。早二叠世早期(~280 Ma),基梅里陆块从冈瓦纳大陆分离,在其南侧形成新特提斯洋。在~200 Ma时,基梅里陆块已与北部的劳亚大陆拼合,并在南侧发育海沟,新特提斯洋的洋壳开始向北俯冲。不过,只要大洋洋中脊扩张速率大于俯冲速率,大洋仍然可以持续扩张。在~150 Ma时,新特提斯洋板片俯冲速率开始超过洋中脊扩张速率,新特提斯洋面积不断缩小(Stampfli et al.,2002)。由盛而衰的新特提斯洋为新大洋(如印度洋)的产生提供了空间。65 Ma时印度次大陆与欧亚大陆拼合,新特提斯洋基本完全关闭,仅残留有地中海、里海和死海等地区。新特提斯洋在青藏高原的残留遗迹为拉萨地块南部的印度河-雅鲁藏布江缝合带。有观点认为拉萨地块北部的班公湖-怒江缝合带为中特提斯洋(Meso-Tethys)遗迹(Metcalfe,1994),不过蛇绿岩年龄与新特提斯洋相当。也有观点认为,澳大利亚西北部的印度洋中尚存在少量未俯冲的新特提斯洋残留洋壳(Zhang Shuangquan et al.,2005)。可见,新特提斯洋的遗迹仍然广泛分布,为了解特提斯构造域演化提供了重要窗口。

  • 2 “全新特提斯洋”概念与广义特提斯构造域

  • 在新特提斯洋消亡的过程中,非洲-印度-澳大利亚先后与南极洲分离,形成了印度洋(Stampfli et al.,2002)。印度洋形成的背景、分布位置及演化过程均与历次的特提斯洋相似。不同块体从冈瓦纳大陆依次剥离,形成一系列大洋。原特提斯洋、古特提斯洋、新特提斯洋和印度洋一脉相承,印度洋是新特提斯洋的继承,因此可将印度洋视为“全新特提斯洋(Holo-Tethys)”。全新特提斯洋,即印度洋,起始于~155 Ma,目前仍处于增长阶段,尚未达到鼎盛期(图1)。

  • “全新特提斯洋”概念的提出,是对特提斯洋概念的继承,是对印度洋概念的外延,其意义重在直观展示不同地质实体之间的内在联系,增进对不同对象的统一认识。相对陆域特提斯构造带的复杂性,印度洋底的演化历史相对简单,并且洋底清晰的磁异常条带可以指示扩张的年龄,转换断层的展布痕迹可以指示板块的运动方向,通过对印度洋形成与演化的研究,将为理解特提斯构造域多期次多块体拼合的复杂构造历史提供了更为简洁和清晰的视角。

  • 图1 特提斯构造域各期大洋演化序列示意图

  • Fig.1 Schematic evolution diagram of each ocean within the Tethyan tectonic domain

  • 各大洋活动时间据前人研究结果推断,各大洋鼎盛期基本对应新大洋开始孕育的时间,全新特提斯洋目前仍在洋壳增长期; 各期大洋:Proto-Tethys—原特提斯洋; Paleo-Tethys—古特提斯洋; Neo-Tethys—新特提斯洋; Holo-Tethys(Indian Ocean)—全新特提斯洋(印度洋); 各大陆块体: Laurentia-Baltica-Siberia—劳伦-波罗的-西伯利亚古陆; Hunia-N.China—匈奴-华北陆块; Cimmerian—基梅里陆块; Africa-Arab—非洲-阿拉伯大陆; India-Australia—印度-澳大利亚大陆; Antarctic(Gondwana)—南极洲(冈瓦纳)大陆

  • The time span for each ocean is estimated according to previous research work; the peak period of each ocean basically corresponds to the time when the new ocean begins to develop; the Holo-Tethys Ocean is still in the period of oceanic crust accretion; the oceans at different stages within the Tethyan tectonic domain are Proto-Tethys, Paleo-Tethys, Neo-Tethys, and Holo-Tethys (Indian Ocean) successively, the continental blocks adjacent to each ocean are listed in the orange box, namely Laurentia-Baltica-Siberia, Hunia-N.China, Cimmerian, Africa-Arab, India-Australia, Antarctic (Gondwana)

  • 同时,“全新特提斯洋”概念的引入,将特提斯构造域概念拓展到了包括印度洋在内的广义特提斯域构造域。广义特提斯构造域可以理解为劳亚大陆与冈瓦纳大陆之间一系列块体的分离和聚合过程,其间的要素包括分离地块、新生大洋、俯冲带、缝合带和造山带等,从元古宙持续至今,幕式演化,此起彼伏,此消彼长。劳亚大陆与冈瓦纳大陆之间依次出现了原特提斯洋、古特提斯洋、新特提斯洋,以及现今的全新特提斯洋,即印度洋。这些大洋的发生、发展与消亡共同构成了广义特提斯构造域。劳亚大陆不断拼合新的块体变大,而冈瓦纳大陆不断裂解缩小,目前仅存南极洲(图1)。

  • 3 印度洋扩张历史及其对新特提斯洋活动的指示

  • 古地磁证据显示拉萨地块和南极大陆自晚侏罗世以来古纬度位置比较稳定(van Hinsbergen et al.,2011; Li Zhenyu et al.,2017),即欧亚大陆和南极大陆相对稳定,因此印度洋和新特提斯洋的总活动空间变化不大,南北宽约8000~10000 km。印度洋和新特提斯洋此消彼长,印度洋的生长史即是新特提斯洋的消亡史。从俯冲-碰撞-造山,在新特提斯洋前线发生的任何大事件理论上均可能被精确记录在后方印度洋的海底洋壳中,并由洋壳磁条带提供年龄约束。印度洋洋中脊扩张的构造-岩浆活动记录即是新特提斯洋消亡的编年史。

  • 基于印度洋洋底磁异常条带和洋壳年龄模型(Müller et al.,2008),结合重力异常和海底地形所揭示的地幔流向线(断裂带)展布,可以计算各时期各洋脊段的扩张参数,包括扩张方向、速率和共轭点等信息(图2)。

  • 综合前人关于印度洋演化历史的研究结果(Jokat et al.,2003; Bernard et al.,2005; 李三忠等,2015; 李江海等,2015; 余星等,2019a2019b2020),发现印度洋扩张具有多期性、多变性特点,各洋中脊的演化可以划分为多个阶段,洋中脊扩张存在减速、加速、转向等变化特征(图3)。

  • 3.1 印度洋早期扩张(155~120 Ma)

  • 印度洋最早的海底扩张开始于~155 Ma,因为印度洋中可识别的最古老洋壳磁异常条带为M24N,对应155 Ma(Jokat et al.,2003; Heine et al.,2005)。不过,在海底扩张之前可能经历了长时间的大陆裂谷作用,如185~180 Ma期间非洲南部的Karoo裂谷和火山作用(Storey et al.,2001),160 Ma前后发生在印度-澳大利亚与南极洲之间的裂谷作用(Seton et al.,2012)。这些裂谷作用和初始扩张指示了新特提斯洋开始由盛转衰,即俯冲消亡作用大于洋壳增生作用。同时,也暗示新特提斯洋的北向俯冲起始时间应该不晚于185 Ma,这与冈底斯大陆岩浆弧的研究结果相符(孟元库等,2022)。

  • 图2 印度洋海底扩张时间序列示意图

  • Fig.2 Schematic diagram of the ocean floor spreading sequence in Indian Ocean

  • 白线为洋中脊扩张中心,红色虚线为残留洋脊,黑色细线为5 Ma间隔等时线,棕色线为地幔流向线(断裂带),黑色粗虚线为各洋中脊的作用域边界; SWIR—西南印度洋中脊; SEIR—东南印度洋中脊; NWIR—西北印度洋中脊(包括CR—卡尔斯伯格脊,CIR—中印度洋脊); WSB—西索马里海盆; MB—马斯克林海盆; WB—沃顿海盆; CMLR—查戈斯-马尔代夫-拉卡代夫海脊; MP—马斯克林海底高原; MadP—马达加斯加海底高原; MozP—莫桑比克海底高原; AP—厄加勒斯海底高原; CP—克罗泽海底高原; ConR—康拉德隆起; KP—凯尔盖朗海底高原; BR—Broken海脊; NER—东经90°海岭; BTJ—布维三联点; RTJ—罗德里格斯三联点

  • The white line is the spreading center of the mid-ocean ridge, while the red dotted line is the residual ridge; the black thin line is the5 Ma interval isochron; the brown line is the mantle flow line (fault zone) , and the thick dotted black line is the boundary of the realm of each mid-ocean ridge; SWIR—southwest Indian ridge; SEIR—southeast Indian ridge; NWIR—northwest Indian ridge (including CR—Carlsberg ridge and CIR—central Indian ridge) ; WSB—West Somali basin; MB—Mascarene basin; WB—Wharton basin; CMLR—Chagos-Maldive-Lacadive ridge; MP—Mascarene Plateau; MadP—Madagascar Plateau; MozP—Mozambique Plateau; AP—Agulhas Plateau; CP—Krozet Plateau; ConR—Conrad rise; KP—Kerguelen Plateau; BR—Broken ridge; NER—90°E ridge; BTJ—Bouvet triple junction; RTJ—Rodriguez triple junction

  • 图3 150 Ma以来印度洋及新特提斯洋演化过程示意图(a~f)

  • Fig.3 Schematic diagrams of the evolution of the Indian Ocean and Neo-Tethyan Ocean since150 Ma (a~f)

  • SR—索马里洋脊; MR—马斯克林洋脊; WR—沃顿洋脊; SWIR—西南印度洋中脊; SEIR—东南印度洋中脊; NWIR—西北印度洋中脊; RTJ—罗德里格斯三联点; S—塞舌尔微陆块; M—马达加斯加微陆块; Ara—阿拉伯微陆块; Afr非洲大陆; Ind—印度次大陆; GI—大印度; Aus—澳大利亚大陆; Ant—南极洲大陆

  • SR—Somali ridge; MR—Mascarene ridge; WR—Wharton ridge; SWIR—southwest Indian ridge; SEIR—southeast Indian ridge; NWIR—northwest Indian ridge; RTJ—Rodriguez triple junction; S—Seychelles microcontinent; M—Madagascar microcontinent; Ara—Arabia microcontinent; Afr—Africa continent; Ind—Indian subcontinent; GI—Greater India; Aus—Australia continent; Ant—Antarctica continent

  • 在155~120 Ma,非洲与马达加斯加之间的西索马里海盆形成,累积南北向扩张~1800 km,直至120 Ma停止。同期,非洲南部相对南极洲南北向扩张~1800 km。因此这一时期,马达加斯加与南极洲基本属于一个整体,印度半岛夹持于马达加斯加与南极洲之间,它们同为残留冈瓦纳大陆的一部分,相对位移较小,仅存在块体的旋转。印度次大陆(主要是北部的大印度)与澳大利亚之间北西—南东向(N45°E)扩张~600 km,北向扩张分量~400 km。由于澳大利亚尚未与南极洲分离,则印度次大陆的北端相对南极洲北移~400 km,印度次大陆发生逆时针旋转(~15°)(图3、图4)。可以推断,在120 Ma之前,非洲最先脱离冈瓦纳大陆北移,新特提斯洋的缩减主要集中在西段(即非洲-阿拉伯以北),而中段(印度以北)和东段(澳大利亚以北)则缩减有限。

  • 3.2 印度与南极洲分离(120~90 Ma)

  • 在120~90 Ma,非洲继续北移~1500 km,而澳大利亚仍然与南极洲接触。印度次大陆与澳大利亚之间北西向(N45°W)扩张~1750 km,印度次大陆北向位移分量为~1200 km,并逆时针旋转了~10°(图4)。因此,在90 Ma之前,新特提斯洋的西段仍然快速缩减,中段开始加速缩减,而澳大利亚对应的东段则基本上未缩减。这指示两种可能的机制:一是新特提斯洋的俯冲速率存在东西差异,西部快,东部慢; 二是新特提斯洋东西部洋中脊发育不一致,西段和中段可能已经完成洋中脊俯冲,而东段仍然存在活动的洋中脊。这与Zhang Zeming et al.(2010)基于西藏冈底斯埃达克岩认为的100~80 Ma新特提斯洋中段洋中脊俯冲相吻合。

  • 3.3 印度洋主扩张期(90~45 Ma)

  • 在东印度洋区,90~45 Ma,沃顿洋中脊及其西侧的古东南印度洋中脊(罗德里格斯三联点至东经90°断裂带之间)以N30°E方向扩张(现今洋底磁条带显示的南北向扩张是后期洋壳旋转造成的),两者扩张量~4500 km,北向分量~3900 km,即印度次大陆东南侧相对南极洲北移~3900 km(图4)。此外,古东南印度洋中脊显示扩张加速和减速过程,从~90 Ma至~65 Ma扩张加速,磁条带逐渐变宽(图2)。表明这一时期新特提斯洋中段缩减加速,这可能与新特提斯洋中段洋中脊的俯冲有关。65~45 Ma古东南印度洋中脊扩张减速,磁条带变窄,表明新特提斯洋中段缩减减速,这可能与印度次大陆与欧亚大陆的碰撞有关。丁林等(2017)认为印度与欧亚大陆在雅鲁藏布江缝合带发生正向碰撞的时间为65~63 Ma,与印度洋中磁条带反应的结果相一致。

  • 在西北印度洋区,84~62 Ma,塞舌尔-印度次大陆与马达加斯加分离,即马斯克林海盆发生北东—南西向(N40°E)扩张,南部扩张快(扩张量~2000 km),北部较慢(扩张量~1000 km),因此塞舌尔-印度次大陆相对马达加斯加逆时针旋转(20°~30°),平均扩张量1500 km,北向分量~1150 km。62~45 Ma,西北印度洋中脊以北偏东约22°方向扩张,扩张量1200 km,北向分量~1100 km。因此,印度次大陆西南侧在84~45 Ma期间相对非洲-马达加斯加北向位移~2250 km。

  • 在西南印度洋区,90~45 Ma,西南印度洋中脊平均北向扩张量~1500 km,即非洲相对南极洲北移~1500 km。由此可估算印度次大陆西南侧相对南极北移~3750 km(图4),略小于东南侧的北移量(~3900 km),显示印度次大陆的逆时针旋转特点,旋转角度约18°。期间,西南印度洋中脊发生两次扩张方向的转变,~76 Ma发生逆时针方向旋转,从NNE向转至NNW向,在~52 Ma顺时针方向旋转,重新恢复至NNE向。这一过程可能指示了非洲-阿拉伯大陆在76 Ma前后与欧亚大陆中东地区的碰撞,使非洲北东向运动受阻或减缓,从而使西南印度洋中脊扩张发生旋转。因而,可以推测新特提斯洋西段的主碰撞期在76~52 Ma,早于中段的主碰撞期。

  • 3.4 澳大利亚与南极洲分离(45~0 Ma)

  • 45Ma是印度洋洋中脊扩张最重要的转折期。西北印度洋中脊(包括卡尔斯伯格脊和中印度洋中脊)的扩张方向发生改变,从近NS向转为NE-SW向,扩张速度明显减慢(Collier et al.,2008)。古东南印度洋中脊扩张速度逐渐减慢,扩张方向从N30°E转为N45°E。卡尔斯伯格脊-中印度洋中脊-古东南印度洋中脊的整体减速,表明其北侧的印度次大陆受到强大的阻力,推断为印度次大陆与欧亚大陆的硬碰撞作用。扩张方向的顺时针旋转,表明北东方向阻力较小,指示班达-爪哇俯冲带的活动,印度洋洋壳开始往北东方向消减。丁林等(2017)认为印度与欧亚大陆碰撞发生时间不晚于45 Ma,45 Ma时已发生全面的“硬碰撞”,这与印度洋磁条带反映的结果相符。

  • 45~0 Ma,非洲相对南极洲继续北移约900 km,非洲与印度之间的西北印度洋中脊扩张~1100 km,北向分量~770 km,则印度次大陆相对南极洲北移~1670 km。同一时期,罗德里格斯三联点附近的东南印度洋中脊北东方向扩张量~2500 km,北向分量~1767 km。因此可以推断在45 Ma之后印度次大陆在碰撞后继续北移~1700 km,同时伴有逆时针旋转(~11°)(图4)。

  • 图4 早白垩世以来印度次大陆北移路径

  • Fig.4 Northward migration of the Indian subcontinent since the Early Cretaceous

  • 各时期印度次大陆的轨迹为相对南极大陆的位置和方向,印度次大陆的旋转角度根据各时期大陆上固定两点的连线估算

  • The location and orientation of the Indian subcontinent is plotted with respect to the Antarctic continent; the rotation of the Indian subcontinent is estimated according to the orientation of two fixed points on the continent in different stage

  • 在45~0 Ma期间,38 Ma具有重要的标志性意义。马斯克林海底高原和查戈斯-马尔代夫-拉卡代夫海脊在~38 Ma分离,使卡尔斯伯格脊和中印度洋中脊贯穿,形成现今的西北印度洋中脊(余星等,2019a)。沃顿洋中脊在~38 Ma跃迁至Broken海脊和Kerguelen海台之间,与西部的古东南印度洋中脊相接,并向东延伸到澳大利亚-南极洲之间,形成现今的东南印度洋中脊。澳大利亚在约38 Ma开始快速北移,累计北移~3000 km,其位移量接近同时期印度次大陆的2倍,这可能与澳大利亚北侧的新特提斯洋持续净俯冲(俯冲量减去扩张量)有关,平均净俯冲速度达7.9 cm/a。这指示了在38 Ma前后新特提斯洋东段的洋中脊已经完成俯冲,因此澳大利亚大陆快速北移。

  • 综合看来,印度洋的扩张以印度次大陆的北移为主要特征。从155 Ma以来,印度次大陆累积北向位移达~7100 km,逆时针旋转~54°(图4)。新特提斯洋的关闭从西向东依次进行,西段在52 Ma完全关闭,即非洲-阿拉伯与欧亚大陆完全硬碰撞; 45 Ma中段关闭,即印度与欧亚大陆完全硬碰撞; 东段在38 Ma开始快速缩减,即澳大利亚北部新提斯洋开始净俯冲,或发生洋中脊俯冲。不过,新提斯洋东段至今仍未发生硬碰撞,澳大利亚大陆仍在持续快速北移。

  • 4 结论与展望

  • 本文通过系统整理特提斯演化脉络和印度洋的扩张时间序列,结合前人的研究成果,提出“全新特提斯洋”及广义特提斯构造域的概念,获得以下初步认识和推论,待后续研究不断修正和完善。

  • (1)根据印度洋构造演化特征和特提斯活动历史,认为现今的印度洋与原特提斯洋、古特提斯洋、新特提斯洋一脉相承,因此可以称为“全新特提斯洋”。传统特提斯构造域加上全新特提斯洋以及其间的块体共同构成了广义的特提斯构造域,时间跨度从前寒武纪晚期一直延续至今。

  • (2)综合前人的研究成果,认为原特提斯洋、古特提斯洋、新特提斯洋和全新特提斯洋(印度洋)的活动时间分别为550~330 Ma、440~200 Ma、280~65 Ma、155~0 Ma,平均寿命~220 Ma。目前的全新特提斯洋(印度洋)正处于不断扩张的阶段。

  • (3)从印度洋和特提斯构造域的活动关系,可以认为一个大洋的活动周期基本包括大陆裂谷、初始扩张、开始俯冲、净俯冲(俯冲大于扩张)、洋脊俯冲、初始碰撞、主碰撞(硬碰撞)等几个关键过程。各大洋之间存在时间交叠关系,新大洋产生于古大洋由盛转衰之时,此消彼长。

  • (4)印度洋海底扩张记录了155 Ma、120 Ma、90~84 Ma、76 Ma、65 Ma、52 Ma、45 Ma、38 Ma等关键时期的异常扩张事件,这些扩张事件将为标定新特提斯构造域的演化提供参照。印度洋初始扩张期155 Ma可能指示了新特提斯洋的鼎盛期,印度洋90 Ma前已经开始的加速扩张可能指示了新特提斯洋中段的洋中脊俯冲已经完成,76~52 Ma是非洲-阿拉伯与欧亚大陆初始碰撞-主碰撞(即新特提斯洋西段关闭)的时间,65~45 Ma是印度与欧亚大陆初始碰撞-主碰撞(即新特提斯洋中段关闭)的时间,38 Ma是澳大利亚北部新提斯洋东段开始净俯冲(或洋中脊完成俯冲)的时间。

  • (5)对印度洋概念和特提斯构造域概念的引申,有助于从更大尺度和维度上理解超大陆裂解、多块体聚合、大洋增生消亡等板块运动过程及规律。另一方面,由于新认识、新假说和新概念的提出,新的科学问题将不断涌现。比如,印度洋下的软流圈地幔与特提斯地幔有何异同,如何演化?特提斯洋岩石圈地幔是否循环到了印度洋的软流圈地幔?印度洋Dupal异常的发育是印度洋扩张的印记还是古老特提斯洋扩张或俯冲的痕迹?印度洋的打开机制对特提斯洋的形成有何借鉴意义?印度洋内的海岭对于新特提斯洋的演化有何影响?等等。这一系列的问题将为特提斯构造域和印度洋的研究提供了新的动力和挑战。

  • 致谢:感谢美国伍兹霍尔海洋研究所Henry Dick和意大利帕多瓦大学Christine Meyzen在印度洋大地构造演化方面的有益讨论和指导。感谢评审人对本文提出的宝贵修改意见。

  • 参考文献

    • Bernard A, Munschy M, Rotstein Y, Sauter D. 2005. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data. Geophysical Journal International, 162(3): 765~778.

    • Blakey R, Wong T. 2003. Carboniferous-Permian paleogeography of the assembly of Pangaea. In: Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, 443~456.

    • Collier J S, Sansom V, Ishizuka O, Taylor R N, Minshull T A, Whitmarsh R B. 2008. Age of Seychelles-India break-up. Earth and Planetary Science Letters, 272(1-2): 264~277.

    • Dergunov A, Zaytsev N, Mossakovskiy A, Perfilyev A. 1971. The Hercynides of Mongolia and the problem of the Paleo-Tethys. Problemy Teoretycheskoji Regionalnoj Tectoniki: Moscow, Nauka Press (in Russian), 87~103.

    • Ding Lin, Maksatbek S, Cai Fulong, Wang Houqi, Song Peiping, Ji Weiqiang, Xu Qiang, Zhang Liyun, Muhammad Q, Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Science China Earth Sciences, 60: 635~651 (in Chinese with English abstract).

    • Flügel H. 1972. The development of the Proto-tethys during the Paleozoic of Near East. Neues Jahrbuch für Geologie und Palaontologie, 10: 602~610.

    • Gibbons A, Zahirovic S, Müller R, Whittaker J, Yatheesh V. 2015. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Research, 28(2): 451~492.

    • Heine C, Müller R. 2005. Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52(1): 27~39.

    • Huang Feng, Xu Jifeng, Wang Baodi, Zeng Yunchuan, Liu Xijun, Liu Han, Yu Hongxia. 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785~2804 (in Chinese with English abstract).

    • Huang Wentao, van Hinsbergen D J J, Dekkers M J, Garzanti E, Dupont-Nivet G, Lippert P C, Li Xiaochun, Maffione M, Langereis C G, Hu Xiumian, Guo Zhaojie, Kapp P. 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochemistry, Geophysics, Geosystems, 16(1): 77~100.

    • Jokat W, Boebel T, König M, Meyer U. 2003. Timing and geometry of early Gondwana breakup. Journal of Geophysical Research: Solid Earth, 108(B9): 2428, doi: 10. 1029/2002JB001802.

    • Li Jianghai, Zhang Huatian, Li Honglin. 2015. The tectonic setting and evolution of Indian Ocean—research progress of tectonic map of Indian Ocean. Haiyang Xuebao, 37(7): 1~14 (in Chinese with English abstract).

    • Li Sanzhong, Suo Yanhui, Yu Shan, Zhao Shujuan, Dai Liming, Cao Huahua, Zhang Zhen, Liu Weiyong, Zhang Guoyin. 2015. Morphotectonics and tectonic processes of the Southwest Indian Ocean. Geotectonica et Metallogenia, 39(1): 15~29 (in Chinese with English abstract).

    • Li Sanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Saocong, Yan Zhen, Li Zonghui, Yu Shengyao, Lan Haoyuan. 2016. Proto-Tethys Ocean in East Asia(I): northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609~2627 (in Chinese with English abstract).

    • Li Zhenyu, Ding Lin, Song Peiping, Fu Jiajun, Yue Yahui. 2017. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous: implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia. Gondwana Research, 41: 352~372.

    • Meng Yuanku, Yuan Haoqi, Wei Youqing, Zhang Shukai, Liu Jinqing. 2022. Research progress and prospect of the Gangdese magmatic belt in southern Tibet. Geological Journal of China Universities, 28(1): 1~31 (in Chinese with English abstract).

    • Metcalfe I. 1994. Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes. Journal of South American Earth Sciences, 7(3-4): 333~347.

    • Metcalfe I. 2021. Multiple Tethyan Ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.

    • Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006, doi: 10. 1029/2007GC001743.

    • Neumayr M. 1885. Die geographische Verbreitung der Juraformation. In: Band F, ed. Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenscaftliche Classe, Volume 50. Wien: Kaiserlich-königliche Hof- und Staatsdruckerei, 57~144.

    • Richards J P. 2015, Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70: 323~345.

    • Scotese C R, McKerrow W S. 1990. Revised world maps and introduction. Geological Society, London, Memoirs, 12(1): 1~21.

    • Şengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic tethys and its implications. Nature, 279: 590~593.

    • Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4): 212~270.

    • Stampfli G M, Borel G. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17~33.

    • Stöcklin J. 1974. Possible ancient continental margins in Iran. The Geology of Continental Margins. New York: Springer, 873~887.

    • Storey B C, Leat P T, Ferris J K. 2001. The location of mantle plume centers during the initial stages of Gondwana breakup. Mantle Plumes: Their Identification Through Time, 71~80.

    • Suess E. 1893. Are great ocean depths permanent?. Natural Science: a Monthly Review of Scientific Progress, 2: 180~187.

    • Van Hinsbergen D J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences, 109(20): 7659~7664.

    • von Raumer J F, Stampfli G M. 2008. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461(1-4): 9~20.

    • Wan Bo, Wu Fuyuan, Chen Ling, Zhao Liang, Liang Xiaofeng, Xiao Wenjiao, Zhu Rixiang. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics. Science China Earth Sciences, 62: 2005~2016(in Chinese).

    • Whittington H B, Hughes C P. 1972. Ordovician geography and faunal provinces deduced from trilobite distribution. Philosophical Transactions of the Royal Society B, 263(850): 235~278.

    • Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627~1674 (in Chinese with English abstract).

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Yu Xing, Han Xiqiu, Qiu Zhongyan, Wang Yejiang, Tang Limei. 2019a. Definition of northwest Indian Ridge and its geologic and tectonic signature. Earth Science, 44: 626~639 (in Chinese with English abstract).

    • Yu Xing, Han Xiqiu, Tang Limei, Liu Jiqiang, Zhang Pingping. 2019b. The geotectonic features of the Southeast Indian Ridge and its current research progress. Chinese Science Bulletin, 64: 1~18 (in Chinese with English abstract).

    • Yu Xing, Dick Henry, Li Xiaohu, Chu Fengyou, Dong Yanhui, Hu Hang. 2020. The geotectonic features of the Southwest Indian ridge and its geodynamic implications. Chinese Journal of Geophysics, 63(10): 3585~3603 (in Chinese with English abstract).

    • Zhang Shuangquan, Mahoney J J, Mo Xuanxue, Ghazi A M, Milani L, Crawford A J, Guo Tieying, Zhao Zhidan. 2005. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics, Journal of Petrology, 46(4): 829~858.

    • Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Shen Kun. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17: 615~631.

    • Zhu Dicheng, Wang Qing, Chung Sun-Lin, Cawood P A, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483: 583~604.

    • 丁林, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云. 2017. 印度与欧亚大陆初始碰撞时限, 封闭方式和过程. 中国科学: 地球科学, 47(3): 293~309.

    • 黄丰, 许继峰, 王保弟, 曾云川, 刘希军, 刘函, 余红霞. 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785~2804.

    • 李江海, 张华添, 李洪林. 2015. 印度洋大地构造背景及其构造演化——印度洋底大地构造图研究进展. 海洋学报, 37(7): 1~14.

    • 李三忠, 索艳慧, 刘鑫, 赵淑娟, 余珊, 戴黎明, 许立青, 张臻, 刘为勇, 李怀明. 2015. 印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示. 大地构造与成矿学, 39(1): 30~43.

    • 李三忠, 赵淑娟, 李玺瑶, 曹花花, 郭晓玉, 肖文交, 赖少聪, 闫臻, 李宗会. 2016. 东亚原特提斯洋 (Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609~2627.

    • 孟元库, 袁昊岐, 魏友卿, 张书凯, 刘金庆. 2022. 藏南冈底斯岩浆带研究进展与展望. 高校地质学报, 28(1): 1~31.

    • 万博, 吴福元, 陈凌, 赵亮, 梁晓峰, 肖文交, 朱日祥. 2019. 重力驱动的特提斯单向裂解-聚合动力学. 中国科学: 地球科学, 49(12): 2004~2017.

    • 吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627~1674.

    • 余星, 韩喜球, 邱中炎, 王叶剑, 唐立梅. 2019a. 西北印度洋脊的厘定及其地质构造特征. 地球科学, 44(2): 626~639.

    • 余星, 韩喜球, 唐立梅, 刘吉强, 张平萍. 2019b. 东南印度洋中脊地质构造特征及研究进展. 科学通报, 64(17): 47~64.

    • 余星, 迪克·亨利, 李小虎, 初凤友, 董彦辉, 胡航. 2020. 西南印度洋中脊地质构造特征及其地球动力学意义. 地球物理学报, 63(10): 3585~3603.

  • 参考文献

    • Bernard A, Munschy M, Rotstein Y, Sauter D. 2005. Refined spreading history at the Southwest Indian Ridge for the last 96 Ma, with the aid of satellite gravity data. Geophysical Journal International, 162(3): 765~778.

    • Blakey R, Wong T. 2003. Carboniferous-Permian paleogeography of the assembly of Pangaea. In: Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Utrecht, 443~456.

    • Collier J S, Sansom V, Ishizuka O, Taylor R N, Minshull T A, Whitmarsh R B. 2008. Age of Seychelles-India break-up. Earth and Planetary Science Letters, 272(1-2): 264~277.

    • Dergunov A, Zaytsev N, Mossakovskiy A, Perfilyev A. 1971. The Hercynides of Mongolia and the problem of the Paleo-Tethys. Problemy Teoretycheskoji Regionalnoj Tectoniki: Moscow, Nauka Press (in Russian), 87~103.

    • Ding Lin, Maksatbek S, Cai Fulong, Wang Houqi, Song Peiping, Ji Weiqiang, Xu Qiang, Zhang Liyun, Muhammad Q, Upendra B. 2017. Processes of initial collision and suturing between India and Asia. Science China Earth Sciences, 60: 635~651 (in Chinese with English abstract).

    • Flügel H. 1972. The development of the Proto-tethys during the Paleozoic of Near East. Neues Jahrbuch für Geologie und Palaontologie, 10: 602~610.

    • Gibbons A, Zahirovic S, Müller R, Whittaker J, Yatheesh V. 2015. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Research, 28(2): 451~492.

    • Heine C, Müller R. 2005. Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52(1): 27~39.

    • Huang Feng, Xu Jifeng, Wang Baodi, Zeng Yunchuan, Liu Xijun, Liu Han, Yu Hongxia. 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785~2804 (in Chinese with English abstract).

    • Huang Wentao, van Hinsbergen D J J, Dekkers M J, Garzanti E, Dupont-Nivet G, Lippert P C, Li Xiaochun, Maffione M, Langereis C G, Hu Xiumian, Guo Zhaojie, Kapp P. 2015. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks. Geochemistry, Geophysics, Geosystems, 16(1): 77~100.

    • Jokat W, Boebel T, König M, Meyer U. 2003. Timing and geometry of early Gondwana breakup. Journal of Geophysical Research: Solid Earth, 108(B9): 2428, doi: 10. 1029/2002JB001802.

    • Li Jianghai, Zhang Huatian, Li Honglin. 2015. The tectonic setting and evolution of Indian Ocean—research progress of tectonic map of Indian Ocean. Haiyang Xuebao, 37(7): 1~14 (in Chinese with English abstract).

    • Li Sanzhong, Suo Yanhui, Yu Shan, Zhao Shujuan, Dai Liming, Cao Huahua, Zhang Zhen, Liu Weiyong, Zhang Guoyin. 2015. Morphotectonics and tectonic processes of the Southwest Indian Ocean. Geotectonica et Metallogenia, 39(1): 15~29 (in Chinese with English abstract).

    • Li Sanzhong, Zhao Shujuan, Li Xiyao, Cao Huahua, Liu Xin, Guo Xiaoyu, Xiao Wenjiao, Lai Saocong, Yan Zhen, Li Zonghui, Yu Shengyao, Lan Haoyuan. 2016. Proto-Tethys Ocean in East Asia(I): northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609~2627 (in Chinese with English abstract).

    • Li Zhenyu, Ding Lin, Song Peiping, Fu Jiajun, Yue Yahui. 2017. Paleomagnetic constraints on the paleolatitude of the Lhasa block during the Early Cretaceous: implications for the onset of India-Asia collision and latitudinal shortening estimates across Tibet and stable Asia. Gondwana Research, 41: 352~372.

    • Meng Yuanku, Yuan Haoqi, Wei Youqing, Zhang Shukai, Liu Jinqing. 2022. Research progress and prospect of the Gangdese magmatic belt in southern Tibet. Geological Journal of China Universities, 28(1): 1~31 (in Chinese with English abstract).

    • Metcalfe I. 1994. Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes. Journal of South American Earth Sciences, 7(3-4): 333~347.

    • Metcalfe I. 2021. Multiple Tethyan Ocean basins and orogenic belts in Asia. Gondwana Research, 100: 87~130.

    • Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006, doi: 10. 1029/2007GC001743.

    • Neumayr M. 1885. Die geographische Verbreitung der Juraformation. In: Band F, ed. Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenscaftliche Classe, Volume 50. Wien: Kaiserlich-königliche Hof- und Staatsdruckerei, 57~144.

    • Richards J P. 2015, Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70: 323~345.

    • Scotese C R, McKerrow W S. 1990. Revised world maps and introduction. Geological Society, London, Memoirs, 12(1): 1~21.

    • Şengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic tethys and its implications. Nature, 279: 590~593.

    • Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113(3-4): 212~270.

    • Stampfli G M, Borel G. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196(1-2): 17~33.

    • Stöcklin J. 1974. Possible ancient continental margins in Iran. The Geology of Continental Margins. New York: Springer, 873~887.

    • Storey B C, Leat P T, Ferris J K. 2001. The location of mantle plume centers during the initial stages of Gondwana breakup. Mantle Plumes: Their Identification Through Time, 71~80.

    • Suess E. 1893. Are great ocean depths permanent?. Natural Science: a Monthly Review of Scientific Progress, 2: 180~187.

    • Van Hinsbergen D J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proceedings of the National Academy of Sciences, 109(20): 7659~7664.

    • von Raumer J F, Stampfli G M. 2008. The birth of the Rheic Ocean-Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics, 461(1-4): 9~20.

    • Wan Bo, Wu Fuyuan, Chen Ling, Zhao Liang, Liang Xiaofeng, Xiao Wenjiao, Zhu Rixiang. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: subduction-driven plate tectonics. Science China Earth Sciences, 62: 2005~2016(in Chinese).

    • Whittington H B, Hughes C P. 1972. Ordovician geography and faunal provinces deduced from trilobite distribution. Philosophical Transactions of the Royal Society B, 263(850): 235~278.

    • Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao, Zhu Rixiang. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627~1674 (in Chinese with English abstract).

    • Yin An, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Yu Xing, Han Xiqiu, Qiu Zhongyan, Wang Yejiang, Tang Limei. 2019a. Definition of northwest Indian Ridge and its geologic and tectonic signature. Earth Science, 44: 626~639 (in Chinese with English abstract).

    • Yu Xing, Han Xiqiu, Tang Limei, Liu Jiqiang, Zhang Pingping. 2019b. The geotectonic features of the Southeast Indian Ridge and its current research progress. Chinese Science Bulletin, 64: 1~18 (in Chinese with English abstract).

    • Yu Xing, Dick Henry, Li Xiaohu, Chu Fengyou, Dong Yanhui, Hu Hang. 2020. The geotectonic features of the Southwest Indian ridge and its geodynamic implications. Chinese Journal of Geophysics, 63(10): 3585~3603 (in Chinese with English abstract).

    • Zhang Shuangquan, Mahoney J J, Mo Xuanxue, Ghazi A M, Milani L, Crawford A J, Guo Tieying, Zhao Zhidan. 2005. Evidence for a widespread Tethyan upper mantle with Indian-Ocean-type isotopic characteristics, Journal of Petrology, 46(4): 829~858.

    • Zhang Zeming, Zhao Guochun, Santosh M, Wang Jinli, Dong Xin, Shen Kun. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17: 615~631.

    • Zhu Dicheng, Wang Qing, Chung Sun-Lin, Cawood P A, Zhao Zhidan. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society, London, Special Publications, 483: 583~604.

    • 丁林, 蔡福龙, 王厚起, 宋培平, 纪伟强, 许强, 张利云. 2017. 印度与欧亚大陆初始碰撞时限, 封闭方式和过程. 中国科学: 地球科学, 47(3): 293~309.

    • 黄丰, 许继峰, 王保弟, 曾云川, 刘希军, 刘函, 余红霞. 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785~2804.

    • 李江海, 张华添, 李洪林. 2015. 印度洋大地构造背景及其构造演化——印度洋底大地构造图研究进展. 海洋学报, 37(7): 1~14.

    • 李三忠, 索艳慧, 刘鑫, 赵淑娟, 余珊, 戴黎明, 许立青, 张臻, 刘为勇, 李怀明. 2015. 印度洋构造过程重建与成矿模式: 西南印度洋洋中脊的启示. 大地构造与成矿学, 39(1): 30~43.

    • 李三忠, 赵淑娟, 李玺瑶, 曹花花, 郭晓玉, 肖文交, 赖少聪, 闫臻, 李宗会. 2016. 东亚原特提斯洋 (Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609~2627.

    • 孟元库, 袁昊岐, 魏友卿, 张书凯, 刘金庆. 2022. 藏南冈底斯岩浆带研究进展与展望. 高校地质学报, 28(1): 1~31.

    • 万博, 吴福元, 陈凌, 赵亮, 梁晓峰, 肖文交, 朱日祥. 2019. 重力驱动的特提斯单向裂解-聚合动力学. 中国科学: 地球科学, 49(12): 2004~2017.

    • 吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627~1674.

    • 余星, 韩喜球, 邱中炎, 王叶剑, 唐立梅. 2019a. 西北印度洋脊的厘定及其地质构造特征. 地球科学, 44(2): 626~639.

    • 余星, 韩喜球, 唐立梅, 刘吉强, 张平萍. 2019b. 东南印度洋中脊地质构造特征及研究进展. 科学通报, 64(17): 47~64.

    • 余星, 迪克·亨利, 李小虎, 初凤友, 董彦辉, 胡航. 2020. 西南印度洋中脊地质构造特征及其地球动力学意义. 地球物理学报, 63(10): 3585~3603.