en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张荣臻,男,1987年生。博士生,工程师,主要从事稀有、稀散金属矿床地球化学研究。E-mail:zrzyang@126.com。

通讯作者:

鲍波,男,1988年生。博士,高级工程师,从事成矿作用地球化学方面研究。E-mail:bob_bao24@126.com。

参考文献
Benzaazoua M, Marion L P, Pinto A, Migeon H and Wangnor F E. 2003. Tin and indium mineralogy within selected sampes from the Neves Corvo ore deosit (Portugal): A multidisciplinary study. Mineral Engineering, 16(11): 1291~1302.
参考文献
Bullock L A, Perez M. , Armstrong J G, Parnell J, Still J, Feldmann J. 2018. Selenium and tellurium resources in Kisgruva Proterozoic volcanogenic massive sulphide deposit (Norway). Ore Geology Reviews, 99: 411~424.
参考文献
Chen Cheng, Zhao Taiping. 2021. Metallogenesis of indium in magmatic hydrothermal system. Mineral Deposits, 40(2): 206~220 (in Chinese with English abstract).
参考文献
Cook N J, Sundblad K, Valkama M, Nygård R, Ciobanu C L, Danyushevsky L. 2011. Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology, 284(1-2): 62~73.
参考文献
Dill H G, Garrido M M, Melcher F, Gomez M C, Weber B, Luna L I, Bahr A. 2013. Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) with special reference to the“indium window” in zinc sulfide. Ore Geology Reviews, 51: 103~128.
参考文献
Faure G. 1986. Principles of Isotope Geology. New York: John Wiley & Sons. 183~199.
参考文献
Fretzdorff S, Schwarz-Schampera U, Gibson H L, Garbe-Schonberg C D. 2006. Hydrothermal activity and magma genesis along a propagating back-arc basin: Valu Fa Ridge (southern Lau Basin). Journal of Geophysical Research: Solid Earth, 111(B8): 1~17.
参考文献
Fu Zhiguo, Weng Jichang, Yan Changhai, Gao Shenghuai. 2010. Isotope geochemical characteristics of the Lengshuibeigou lead-zin-siliver ore district in East Qinling. Geophysical & Geochemical Exploration, 34(1): 34~39 (in Chinese with English abstract).
参考文献
Gaskov I V, Vladimirov A G, Khanchuk A I, Pavlova G A, Gvozdev V I. 2017. Distribution of indium in ores of some base metal and tin-sulfide deposits in Siberia and the Russian Far East. Geology of Ore Deposits, 59(1): 56~67.
参考文献
Gu Wenshuai. 2012. Enrichment characteristics of paragenetic and associated elements and their prospecting significance for molybdenum polymetallic deposits in Luanchuan ore concentrated district. Master degree dissertarion of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Hu Ruizhong, Wen Hanjie, Su Wenchang, Peng Jiantang, Bi Xianwu, Chen Youwei. 2014. Some advances in ore deposit geochemistry in last decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 127~144 (in Chinese with English abstract).
参考文献
Hu Shouxi, Lin Qianlong. 1988. The Geology and Metallogeny of the Amalgamation Zone between Ancient North China and South China Plate. Nanjing: Nanjing University Press (in Chinese with English abstract).
参考文献
Ishihara S, Murakami H, Li Xiaofeng. 2011. Indium concentration in zinc ores in plutonic and volcanic environments: Examples at the Du-long and Dachang mines, South China. Bulletin of the Geological Survey of Japan, 62 (7-8): 259~272.
参考文献
Ishihara S, Qin Kezhang, Wang Yuwang. 2008. Resource evaluation of indium in the Dajing tin-polymetallic deposits, Inner Mongolia, China. Resource Geology, 58(1): 72~79.
参考文献
Jorgenson J D, George M W. 2004. Indium. U. S. Geological Survey-Mineral Commodity Profiles, 1~20.
参考文献
Lerouge C, Gloaguen E, Wille G, Bailly L. 2017. Distribution of In and other rare metals in cassiterite and associated minerals in Sn±W ore deposits of the western Variscan Belt. European Journal of Mineralogy, 29(4): 739~753.
参考文献
Li Xiaofeng, Yasushi W, Mao Jingwen. 2007. Research situation and economic value of indium deposits. Mineral Deposits, 26(4): 475~480 (in Chinese with English abstract)
参考文献
Li Xiaofeng, Yang Feng, Chen Zhenyu, Bu Guoji, Wang Yitian. 2010. A tentative discussion on geochemistry and genesis of indium in Dachang tin ore district, Guangxi. Mineral Deposits, 29(5): 903~914 (in Chinese with English abstract).
参考文献
Li Xiaofeng, Zhu Yiting, Xu Jing. 2020. Indium as a critical mineral: A research progress report. China Science Bulletin, 65: 3678~3687(in Chinese).
参考文献
Li Yubang, Tao Yan, Liao Mingyang, Xiong Feng, Deng Xianze. 2014. Occurrence form of indium and composition of rare earth elements of sulfide in Gejiu tin ore deposite. Mineral Deposits, 33(S1): 1177~1178 (in Chinese with English abstract).
参考文献
Li Yubang, Tao Yan, Zhu Feilin, Liao Mingyang, Xiong Fei, Deng Xianze. 2015. Distribution and existing state of indium in the Gejiu tin polymetallic deposit, Yunnan Province, SW China. Chinese Journal of Geochemistry, 34(4): 469~483.
参考文献
Liu Jianping. 2017. Indium mineralization in a Sn-poor skarn deposit: A case study of the Qibaoshan deposit, South China. Minerals, 7(76): 1~16.
参考文献
Liu Tiegeng, Ye Lin, Zhou Jiaxi. 2010. Cd primarily isomorphously replaces Fe but not Zn in sphalerite. Acta Mineralogica Sinica, 30(2): 283~284(in Chinese with English abstract).
参考文献
Liu Yingjun. 1984. Element Geochemistry. Beijing: Science Press (in Chinese).
参考文献
Luo Mingjiu. 1991. Molybdenum Deposits in China. Zhengzhou: Henan Science and Techonoly Press (in Chinese).
参考文献
Mao Jingwen, Ye Huishou, Wang Ruiting, Dai Junzhi, Jian Wei, Xiang Junfeng, Meng Fang, 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling, central China and its implication for prospecting. Geological Bulletin of China, 28(1): 72~79 (in Chinese).
参考文献
Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92(1): 11~26.
参考文献
Pei Qiuming, Zhang Shouting, Cao Huawen, Tang Li, Xu Teng, Li Junjun, Zhang Xuhuang, Guo Nana. 2015. Trace element geochemistry of the Luotuoshan sulfur zinc polymetallic deposit in Luanchuan, western Henan, and its geological implications. Acta Petrologica et Mineralogica, 34(5): 741~754 (in Chinese with English abstract).
参考文献
Seifert T, Sandmann D. 2006. Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geology Reviews, 28(1): 1~31.
参考文献
Sugaki A, Ueno H, Shimada N, Kusaschi I, Kitakaze A, Hayashi K, Kojima S, Sanjines O. 1983. Geological study on the polymetallic ore deposits in the Potosi district, Bolivia. Science Reports, Tohoku University (Series III), 15: 409~460.
参考文献
Tang Li, Zhang Shouting, Cao Huawen, Li Dong, Zhang Xuhuang, Zhang Yunhui, Tian Haohao, Zhang Hao. 2014. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 356~368 (in Chinese with English abstract).
参考文献
Tu Guangchi. 2004. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Beijing: Geological Publishing House (in Chinese).
参考文献
Valkama M, Sundblad K, Nygård R, Cook N. 2016. Mineralogy and geochemistry of indium-bearing polymetallic veins in the Sarvlaxviken area, Lovisa, Finland. Ore Geology Reviews, 75: 206~219.
参考文献
Wang Xiaolei, Jiang Shaoyong, Dai Baozhang, Griffin W L, Dai Mengning, Yang Yueheng. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190(1-4): 35~47.
参考文献
Werner, T T, Mudd, G M, Jowitt, S M. 2017. The world's by-product and critical metal resources part III: A global assessment of indium. Ore Geology Reviews, 86: 939~956.
参考文献
Xiao Xin, Zhou Taofa, White N C, Zhang Lejun, Fan Yu, Wang Fangyue, Chen Xuefeng. 2018. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, eastern China. Lithos, 302-303: 467~479.
参考文献
Xing Bo, Xiang Junfeng, Ye Huishou, Chen Xiaodan, Zhang Guosu, Yang Chenying, Jin Xue, Hu Zhizhong. 2017. Genesis of Luotuoshan sulfur polymetallic deposit in western Henan Province: Evidence from trace elements of sulfide revealed by using LA-ICP-MS in lamellar ores. Mineral Deposits, 36(1): 83~106 (in Chinese with English abstract).
参考文献
Xu Jing, Li Xiaofeng. 2018. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits. Acta Petrologica Sinica, 34(12): 3611~3626 (in Chinese with English abstract).
参考文献
Xu Teng. 2015. Characteristics of ore-forming fluid and significance of prospecting of Luotuoshan sulphur polymetallic deposit in Luanchuan, Western Henan. Master degree dissertarion of China University of Geosciences(Beijing)(in Chinese with English abstract).
参考文献
Yan Changhai. 2004. Inner Struture of Pb-Zn-Ag Metallogenic Systems in Qinling. Beijing: Geological Publishing House (in Chinese).
参考文献
Yan Changhai, Liu Guoyin, Peng Yi, Song Yaowu, Wang Jizhong, Zhao Rongjun, Zeng Xianyou, Lü Wende, Yao Xinnian, Ma Hongwei, He Yuliang. 2009. Pb-Zn-Ag Metallogenic Regularities in Southwest Henan Province. Beijing: Geological Publishing House (in Chinese).
参考文献
Yang Chenying, Ye Huishou, Xiang Junfeng, Chen Xiaodan, Xing Bo, Li Liang, Wang Sai. 2016. Rb-Sr isochron age of sulfide minerals in Luotuoshan pyrite-polymellic deposit of western Henan Province and its geological significance. Mineral Deposits, 35(3): 573~590 (in Chinese with English abstract).
参考文献
Ye Lin, Liu Yuping, Zhang Qian, Bao Tan, He Fang, Wang Xiaojuan, Wang Dapeng, Lan Jiangbo. 2017. Trace and rare earth elements characteristics ofsphalerite in Dulong super large Sn-Zn polymetallic ore deposit, Yunnan Province. Journal of Jinlin University (Earth Science Edtion), 47(3): 734~750 (in Chinese with English abstract).
参考文献
Yun Hui, Guo Bo, Hu Honglei, Zhu Hongyun, Han Jiangwei Yan Haiqi, Li Wei. 2020. Geological characteristics and genesis of the Luotuoshan copper-zinc polymetallic deposit in Luanchuan County. Metal Mine, (11): 152~161(in Chinese with English abstract).
参考文献
Zhang Qian, Liu Zhihao, Zhan Xinzhi, Shao Shuxun. 2003. Specialization of ore deposit types and minerals for enrichment of indium. Mineral Deposits, 22(1): 309~316 (in Chinese with English abstract).
参考文献
Zhu Xiaoqing, Zhang Qian, He Yuliang, Zhu Chaohui. 2006. Relationships between indium and tin, zinc and lead in ore-forming fluid from the indium-rich and -poor deposits in China. Geochimic, 35(1): 6~12 (in Chinese with English abstract).
参考文献
陈程, 赵太平. 2021. 岩浆-热液系统中铟的成矿作用. 矿床地质, 40(2): 206~220.
参考文献
付治国, 翁纪昌, 燕长海, 高胜淮. 2010. 东秦岭冷水北沟铅锌银矿床同位素地球化学特征. 物探与化探, 34(1): 34~39.
参考文献
顾文帅. 2012. 栾川矿集区钼多金属矿床共伴生元素富集特征及找矿意义. 中国地质大学(北京)硕士学位论文.
参考文献
胡瑞忠, 温汉捷, 苏文超, 彭建堂, 毕献武, 陈佑纬. 2014. 矿床地球化学近十年若干研究进展. 矿物岩石地球化学通报, 33(2): 127~144.
参考文献
胡受奚, 林潜龙. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社.
参考文献
李晓峰, Yasushi Watanabe, 毛景文. 2007. 铟矿床研究现状及其展望. 矿床地质, 26(4): 475~480.
参考文献
李晓峰, 杨锋, 陈振宇, 卜国基, 王义天. 2010. 广西大厂锡矿铟的地球化学特征及成因机制初探. 矿床地质, 29(5): 903~914.
参考文献
李晓峰, 朱艺婷, 徐净. 2020. 关键矿产资源铟研究进展. 科学通报, 65(33): 3678~3687.
参考文献
李玉帮, 陶琰, 廖名扬, 熊风, 邓贤泽. 2014. 个旧锡矿铟赋存形式及硫化物稀土元素组成特征. 矿床地质, 33(S1): 1177~1178.
参考文献
刘铁庚, 叶霖, 周家喜. 2010. 闪锌矿中的Cd主要置换Fe而不是Zn. 矿物学报, 30(2): 283~284.
参考文献
刘英俊. 1984. 元素地球化学. 北京: 科学出版社.
参考文献
罗铭玖. 1991. 中国钼矿床. 河南: 河南科学技术出版社.
参考文献
毛景文, 叶会寿, 工瑞廷, 代军治, 简伟, 向君锋, 周坷, 孟芳. 2009. 东秦岭中生代铝铅锌银多金属矿床模型及其找矿评价. 地质通报, 28(1): 72~79.
参考文献
裴秋明, 张寿庭, 曹华文, 唐利, 许腾, 李军军, 张旭晃, 郭娜娜. 2015. 豫西栾川县骆驼山硫锌多金属矿床闪锌矿微量元素地球化学特征及其地质意义. 岩石矿物学杂志, 34(5): 741~754.
参考文献
唐利, 张寿庭, 曹华文, 李冬, 张旭晃, 张云辉, 田浩浩, 张浩. 2014. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征. 成都理工大学学报(自然科学版), 41(3): 356~368.
参考文献
涂光炽. 2004. 分散元素地球化学性质及成矿机制. 北京: 科学出版社.
参考文献
邢波, 向君峰, 叶会寿, 陈小丹, 张国苏, 杨晨英, 金雪, 胡志中. 2017. 豫西骆驼山硫多金属矿床的成因——来自纹层状矿石中硫化物LA-ICP-MS微量元素证据. 矿床地质, 36(1): 83~106.
参考文献
徐净, 李晓峰. 2018. 铟矿床时空分布、成矿背景及其成矿过程. 岩石学报, 34(12): 3611~3626.
参考文献
许腾. 2015. 豫西栾川县骆驼山硫多金属矿床成矿流体特征及其找矿意义. 中国地质大学(北京)硕士学位论文.
参考文献
燕长海. 2004. 东秦岭铅锌银成矿系统内部结构. 北京: 地质出版社.
参考文献
燕长海, 刘国印, 彭翼, 宋要武, 王纪中, 赵荣军, 曾宪友, 吕文德, 姚新年, 马宏卫, 何玉良. 2009. 豫西南地区铅锌银成矿规律. 北京: 地质出版社.
参考文献
杨晨英, 叶会寿, 向君峰, 陈小丹, 邢波, 李亮, 王赛. 2016. 豫西骆驼山多金属硫铁矿床硫化物Rb-Sr等时线年龄及其地质意义. 矿床地质, 35(3): 573~590.
参考文献
叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 2017. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征. 吉林大学学报(地球科学版), 47(3): 734~750.
参考文献
云辉, 郭波, 胡红雷, 朱红运, 韩江伟, 严海麒, 李伟. 2020. 栾川县矿集区骆驼山锌铜多金属矿床地质特征及成因. 金属矿山, (11): 152~161.
参考文献
张乾, 刘志浩, 战新志, 邵树勋. 2003. 分散元素铟富集的矿床类型和矿物专属性. 矿床地质, 22(1): 309~316.
参考文献
朱笑青, 张乾, 何玉良, 祝朝辉. 2006. 富铟及贫铟矿床成矿流体中铟与锡铅锌的关系研究. 地球化学, 35(1): 6~12.
目录contents

    摘要

    骆驼山硫多金属矿床位于华北陆块南缘栾川矿集区,是以硫和锌为主的大型有色金属矿床,并伴生有丰富的In、Cd等资源。本文以铟为重点研究对象,在详细的野外地质调查和室内显微观察的基础上,应用ICP-MS、LA-ICP-MS等分析测试手段,对骆驼山矿床不同类型的围岩、矿石及不同矿物中的In、Zn、Sn、Cd、Cu等元素的含量、分布特征及相关性开展研究,以揭示铟的分布富集规律。结果表明,骆驼山矿床角岩和矽卡岩具有较高的In背景值,In主要以类质同象的形式赋存在铁闪锌矿(平均含量276.79×10-6)和黄铜矿(平均含量89.73×10-6)中,主要由磁黄铁矿、闪锌矿和黄铜矿组成的致密块状矿石(In平均含量63.90×10-6)具有重要的综合利用价值。In与其他成矿物质一样可能来自深部岩浆,其含量在垂向上的分布总体表现出近矽卡岩端较远矽卡岩端高的特点,富集程度受温度控制明显。矿石中In的富集与Zn、Cu、Cd呈正相关关系,与Sn关系不明显。In在铁闪锌矿中与Zn、Cu、Cd含量呈正相关关系,在黄铜矿中与Zn、Sn含量呈弱正相关关系,In在黄铜矿中的富集替换机制有待进一步研究。

    Abstract

    Located in Luanchuan metallogenic concentration area in the southern margin of north China Craton, the Luotuoshan sulfide polymetallic deposit is a large-scale non-ferrous metal deposit mainly composed of sulfur and zinc, accompanied by abundant In, Cd and other resources. In this paper, indium is taken as the key research object. Based on detailed field geological survey and microscopic observation, ICP-MS, LA-ICP-MS and other analysis and test methods are applied to study the contents, distribution characteristics and correlation of In, Zn, Sn, Cd, Cu and other elements in different types of surrounding rocks, ores and different minerals of Luoshuoshan deposit. It aims to reveal the distribution and enrichment rule of indium. The results show that the hornite and skarn of Luotuoshan deposit have high background value of In, which mainly occurs in marmatite (average 276.8×10-6) and chalcopyrite (average 117.7×10-6) in the form of isomorphism, which is closely related to the dense massive ore (average 63.9×10-6). Like other ore-forming materials, In may mainly comes from the deep magma, and its vertical distribution shows that the content of In in near skarn area is higher than that in areas distant from skarn area, and its enrichment degree is obviously controlled by temperature. The concentration of In in the ore was positively correlated with Zn, Cu, Cd, but not with Sn. In in marmatite was positively correlated with Zn, Cu, Cd contents, while In in chalcopyrite shows a weak positive correlation with Zn and Sn contents, the enrichment and replacement mechanism of In in chalcopyrite needs to be further studied.

    关键词

    骆驼山铁闪锌矿富集规律

  • 铟(In)属于稀散元素,在液晶显示器、航空航天和国防安全等领域的用途极为广泛,被西方国家列为“关键金属”,是支撑我国战略性新兴产业发展的战略资源(胡瑞忠等,2014Bullock et al.,2018李晓峰等,2020)。铟的地壳丰度很低(~0.1×10-6),分布分散,较少形成独立矿物,且极少形成铟的独立矿床(涂光炽,2004Lerouge et al.,2017)。已知的富铟矿床多与富锡多金属矿床密切相关,代表性的矿床有中国都龙、个旧(Ishihara et al.,2008; Li Yubang et al.,2015)、玻利维亚(Sugaki et al.,1983)和俄罗斯远东等地区的锡多金属矿床(Gaskov et al.,2017)。虽然目前也有贫锡含铟矿床的报道,如湖南七宝山铜多金属矿(Liu Jianping,2017),但整体上,与锌矿石伴生是铟资源的显著特点(Jorgenson and George,2004; Werner et al.,2017)。近年来,我国加大了战略性矿产资源的地质调查力度,并强调矿山加强共伴生资源的综合利用。加强锌多金属矿床中铟的富集成矿作用研究,促进铟的回收利用,具有重要的社会意义和经济意义。

  • 骆驼山矿床是河南栾川矿集区内一个大型矽卡岩型硫多金属矿床,目前已探获锌金属量95.1×104 t(平均品位3.3%)、铜金属量8.3×104 t(平均品位0.34%),伴生有丰富的In、Cd等资源,有望成为一个超大型铜锌多金属矿床(云辉等,2020)。前人最早认为骆驼山矿床属于喷流沉积矿床(SEDEX型),并受后期岩浆热液叠加改造的影响(胡受奚等,1988燕长海等,2004);随着成岩成矿年代学、同位素特征、流体包裹体以及矿物微区分析等方面研究,目前学者们一致认为该矿床与南泥湖矿田中的南泥湖-三道庄钨钼矿、上房沟钼矿、冷水北沟铅锌矿共同构成一个以燕山期花岗斑岩为中心、时空密切联系的钼钨铅锌多金属成矿系统,为岩浆热液交代成因的矽卡岩型矿床(唐利等;2014;裴秋明等,2015杨晨英等,2016邢波等,2017;云辉等;2020)。在矿物微区研究过程中,裴秋明等(2015)邢波等(2017)初步发现了铟在铁闪锌矿中有明显的富集现象,平均含量达到321×10-6,但没有对铟的分布特征和富集规律进一步研究。因此,本文以骆驼山矿床中的铟为主要研究对象,进行野外地质调查和室内镜下观察,通过电感耦合等离子体质谱(ICP-MS)、激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)等分析测试手段,讨论铟的赋存特征、空间分布规律及其与主成矿元素的关系,揭示其富集规律。

  • 1 矿区地质

  • 骆驼山硫多金属矿床整体上位于华北陆块南缘栾川矿集区内,是南泥湖钼(钨)多金属矿田的一部分(图1)。矿区出露的地层主要为新元古界栾川群,少量第四系。栾川群自下而上分别为白术沟组、三川组、南泥湖组和煤窑沟组(图2)。白术沟组主要分布在矿区北部,岩性为黑色薄层状含绢云碳质千枚岩;三川组分布在矿区中部,下段以石英岩、石英片岩和云母片岩为主,上段以大理岩为主,夹薄层钙质片岩;南泥湖组分布在矿区中南部,下段以石英岩为主,夹绢云黑云片岩,中段主要为黑云长英质角岩、透辉长英质角岩夹石英片岩,上段主要为条带状黑云大理岩;煤窑沟组仅分布在矿区南部,岩性主要为黑云母石英大理岩,局部夹千枚岩和石煤层。

  • 图1 栾川矿集区构造位置图(a)及地质简图(b)(据毛景文等,2009

  • Fig.1 Tectonic location (a) and simplified geological map (b) of the Luanchuan ore concentration area (modified after Mao Jingwen et al., 2009

  • 图2 骆驼山硫多金属矿床地质简图(据燕长海等,2009

  • Fig.2 Regional geological map of the Luotuoshan sulfur polymetallic deposit (after Yan Changhai et al., 2009)

  • 矿区整体位于上房沟向斜北翼(图1),褶皱构造不发育,仅有骆驼山背斜和局部一些小型揉皱。断裂构造主要发育NWW、NNE和NEE向3组断裂,含矿矽卡岩的形成与分布主要受NWW向层间断裂控制。区内岩浆岩主要分为变辉长岩和花岗岩两类,其中新元古代辉长岩(~830 Ma; Wang Xiaolei et al.,2011)在矿区西南部侵入栾川群,出露宽度300~700 m,局部与大理岩发生接触交代作用,形成矽卡岩化带。在矿区西部,花岗斑岩脉(145±0.9 Ma,未刊数据)呈岩墙状产出,沿北北东向压扭性断裂侵入。经过最新钻探工程控制,矿区深部仍有花岗斑岩脉隐伏产出,均无明显蚀变或矿化现象。

  • 2 矿床地质特征

  • 目前矿区共圈有4个硫多金属矿体(L-1、L-2、L-3、L-4),均呈层状、似层状、透镜状产出,严格受矽卡岩控制,与地层产状一致(图3)。其中L-1号矿体为主要矿体,产于栾川群南泥湖组大理岩、石英岩之间,长约600 m,沿倾向延伸300~840 m,厚度2~54 m。矿石主要有用组分:S含量14.2%~17.97%,平均17.63%;Zn含量1.83%~3.84%,平均3.03%;Cu含量0.33%~0.49%,平均0.39%;WO3含量0.14%~0.29%,平均0.21%(云辉等,2020)。

  • 根据矿石组构特征及产出空间位置,矿石类型划分为致密块状硫化物矿石和细脉状矿石2种,前者多分布在矿体中心,黄铁矿、磁黄铁矿及闪锌矿等硫化物呈稠密浸染状或纹层状产出,后者常分布于前者边缘,以细脉状产出在矽卡岩中。镜下鉴定发现,致密块状矿石中金属矿物以磁黄铁矿、黄铁矿和闪锌矿为主,白钨矿、黄铜矿等次之。脉状矿石中金属矿物以雌黄铁矿、黄铁矿和闪锌矿为主,少量黄铜矿,几乎不见白钨矿。两种矿石类型中脉石矿物主要有钙铁榴石、透辉石、钾长石、石英、阳起石、方解石等。矿石构造有致密块状构造(图4a)、稠密浸染状构造、纹层状构造和脉状构造(图4b)等。矿石结构有半自形—他形粒状结构、固溶体分离结构、交代结构、充填结构等。围岩蚀变主要有矽卡岩化、钾长石化、绿泥石化、硅化和碳酸盐化等,其中以矽卡岩化发育最为广泛。根据矿石矿物结构构造及矿物组合,骆驼山硫多金属矿的成矿期次可以划分为:矽卡岩阶段、石英-硫化物阶段和碳酸盐阶段(许腾,2015邢波等,2017)。其中矽卡岩阶段形成硅灰石、石榴子石、透辉石、阳起石等矿物;石英-硫化物阶段金属矿物有磁黄铁矿、黄铁矿、铁闪锌矿、黄铜矿等硫化物,脉石矿物主要有石英、萤石等矿物;碳酸盐阶段基本无矿化,以出现石英、方解石等矿物为主要特征。

  • 图3 骆驼山矿床样品采集位置图

  • Fig.3 Sampling locations in the Luotuoshan deposit

  • 3 采样位置及分析测试方法

  • 3.1 采样位置

  • 为系统研究骆驼山矿床中铟的空间分布规律,岩石样品采集主要依托钻孔ZK0528分别在不同地层连续取样19件;矿石样品在巷道不同中段对主矿体的不同位置取样8件。进行12项微量元素(Ga、In、Re、Se、Cd、Tl、Te、Ge、Sn、Cu、W、Zn)测定,并利用代表性矿石磨制激光片进行金属硫化物(闪锌矿、黄铜矿、黄铁矿、磁黄铁矿)和氧化物(白钨矿)的微区分析测试及LA-ICP-MS面扫描。采样位置见图3。

  • 3.2 样品处理与分析

  • 岩石和矿石微量元素分析在廊坊市中铁物探勘查有限公司进行,矿石中的Cu、Zn、Mo、WO3采用岩石化学方法分析,测试方法根据国标GB/T14352.1-2010和GB/T14353-2010执行,相对误差<5%;Be、Ga、In、Cd、Tl、Pb、Te、Re、Sn等元素含量测试采用硅酸盐岩石化学分析方法,相对误差<0.1%;Ge含量测定依据电感耦合等离子体质谱法,相对误差<0.1%;Se含量测试采用原子荧光光谱质谱法,相对误差<0.1%。以上样品均磨至粉末状,检测环境20~25℃,相对湿度10%~30%。

  • 典型矿石经手标本鉴定后,磨制成激光片,再进行镜下观察和选点。激光剥蚀等离子体质谱(LA-ICP-MS)实验在南京聚谱检测科技有限公司完成,分别对闪锌矿、黄铜矿、黄铁矿、磁黄铁矿、白钨矿进行测试。使用仪器为Thermo Element II 等离子质谱仪,激光剥蚀系统为Geolas193.实验过程中采用He作为剥蚀物质载体,激光波长为193 nm,束斑为40 μm,脉冲频率10 Hz,能量为6 J/cm2。单个样点分析115 s,包含空白背景采集30 s,然后进行样品连续剥蚀采集40 s,停止剥蚀后继续吹扫进样系统45 s。测试前采用NIST612标准调谐仪器至最佳状态。实验采用美国地调局标准样品MASS-1的标样值来校正,并以Fe作为内标元素来进行元素含量计算。硫化物微量元素测试精度优于10%,检出限为10-9。激光面扫描的激光斑束为15~40 μm,剥蚀频率为10 Hz,剥蚀能量为2~3 J/cm2。扫描样品开始与结束时对外标样(NIST610或GSE-1G)进行40 s的点剥蚀。数据分析与成像采用实验室软件LIMS完成(Xiao Xin et al.,2018)。

  • 图4 骆驼山矿床矿石标本及显微镜下照片

  • Fig.4 Photographs of samples from the Luotuoshan polymetallic deposit

  • (a)—纹层构造致密块状矿石;(b)—细脉状矿石;(c)—矽卡岩化大理岩;(d)、(e)—黄铜矿与磁黄铁矿共生;(f)—黄铜矿出溶结构;(g)—闪锌矿、磁黄铁矿和黄铁矿细脉;(h)、(i)—白钨矿与闪锌矿、黄铜矿共生; Sp-闪锌矿; Po-磁黄铁矿; Ccp-黄铜矿; Py-黄铁矿; Sch-白钨矿

  • (a) —laminated dense massive ore; (b) —veined ore; (c) —skarnization marble; (d) , (e) —chalcopyrite associated with pyrrhotite; (f) —dissolution structure of chalcopyrite; (g) —sphalerite, pyrrhotite and pyrite veins; (h) , (i) —scheelite and sphalerite associated with chalcopyrite; Sp—sphalerite; Po—pyrrhotite; Ccp—chalcopyrite; Py—pyrite; Sch—scheelite

  • 4 分析结果

  • 4.1 不同类型围岩、矿石中铟的分布

  • 骆驼山不同类型围岩微量元素测试结果见表1。黑云石英片岩、石英岩、碳质板岩和花岗斑岩中In均低于地壳中的丰度(0.05×10-6),如在黑云石英片岩中为0.03×10-6~0.05×10-6(0.04×10-6)、石英岩中为0.01×10-6~0.05×10-6(平均0.03×10-6)、碳质板岩中为0.04×10-6。3件花岗岩样品中In含量为0.03×10-6~0.04×10-6(平均0.04×10-6),低于南泥湖岩体In的平均值0.10×10-6顾文帅,2012)。角岩和矽卡岩中In含量明显高于In的地壳丰度,角岩中为0.10×10-6~0.96×10-6(平均0.38×10-6)、矽卡岩中为0.16×10-6~1.96×10-6(平均0.65×10-6)。与之相对应的,Sn在角岩、矽卡岩中的含量也较高,分别达到1.07×10-6~6.07×10-6(平均3.81×10-6)、2.28×10-6~37.55×10-6(平均12.27×10-6),说明In与Sn呈明显正相关(图5)。各岩性围岩中除Ga普遍>10×10-6以外,其他分散元素(Ge、Cd、Tl、Se、Re等)含量均很低。在靠近岩体的围岩中,In的含量有明显的增加,如钻孔ZK0528的1100 m碳质板岩到矽卡岩中In含量由0.04×10-6增高至0.16×10-6。因此,In含量在垂向上的分布总体表现出近矽卡岩端较远矽卡岩端高的特点(图5)。

  • 表1 骆驼山硫多金属矿不同类型围岩微量元素(×10-6)含量和Zn、W、Cu含量(%)

  • Table1 Trace elements (×10-6) and Zn, W, Cu (%) concentrations of wallrocks in the Luotuoshan deposit

  • 注:“/”代表低于检测下限。

  • 表2 骆驼山硫多金属矿矿石微量元素(×10-6)含量和Zn、W、Cu含量(%)

  • Table2 Trace elements (×10-6) and Zn, W, Cu (%) concentrations of ores in the Luotuoshan deposit

  • 注:“/”代表低于检测下限。

  • 对骆驼山不同类型矿石分析测试结果(表2)发现,Zn、Cu、In在致密块状硫化物矿石中含量较高,In为22.59×10-6~120.83×10-6(平均63.9×10-6),Zn为2.52%~11.79%,平均6.67%,Cu为0.07%~0.64%,平均0.42%,而Sn含量变化不大,介于2.10×10-6~3.81×10-6之间,平均2.81×10-6。脉状矿石中Zn、In、Cu含量较低,In为0.09×10-6~9.12×10-6(平均3.03×10-6),Zn为0.02%~0.76%(平均0.21%),Cu为0.00%~0.76%(平均0.2%);Sn元素含量变化较大,为1.72×10-6~78.10×10-6之间,平均23.51×10-6。总体上,不同矿石类型中In的含量和矿石中Zn、Cu、Cd的含量呈正相关关系,与Sn含量的关系不明显(图6)。根据一般工业指标,致密块状硫化物矿石中的In普遍超过多金属硫化物矿石In回收利用指标(5×10-6~10×10-6),具有重要的经济利用价值。

  • 4.2 铟及相关元素在不同金属硫(氧)化物中的含量

  • 闪锌矿分析点测试结果见表3,主、微量元素组成特征表明闪锌矿明显富集Fe、Mn、In、Cd。其中,Fe含量为 76210.64×10-6~89092.09×10-6,平均82778.94×10-6,属于铁闪锌矿;Mn含量普遍较高,介于10078.85×10-6~13756.13×10-6之间,平均11954.15×10-6;In含量较稳定,介于232.79×10-6~314.54×10-6之间,平均276.79×10-6;Cd含量较高,介于936.81× 10-6~1081.33×10-6之间,平均993.00×10-6。Cu元素除一个点含量异常高外(5246.95×10-6),其余Cu含量较稳定,介于150.04×10-6~351.24×10-6之间,平均281.31×10-6;其余元素(如Ga、Ge、As、Se、Sn、Sb、Te、Cs)含量普遍较低,通常位于检测限附近,如Sn介于0.03×10-6~1.93×10-6之间,平均0.81×10-6。可见骆驼山矿床中闪锌矿以富集Fe、Mn、In、Cd元素为特征,Cu元素含量较稳定。

  • 图5 骆驼山ZK0528不同岩性段微量元素含量特征

  • Fig.5 Content of trace element in different lithologic members in ZK0528 from the Luotuoshan deposit

  • 黄铜矿明显富Fe、Cu。Fe含量介于280603.93×10-6~347455.04×10-6,平均303688.12×10-6,Cu介于285869.20×10-6~333177.45×10-6,平均323950.88×10-6。值得注意的是,In在不同矿石组构黄铜矿中的含量具有明显差异,脉状矿石黄铜矿中In含量介于34.53×10-6~43.77×10-6,平均34.78×10-6,而致密块状构造矿石的黄铜矿中In含量介于94.47×10-6~127.76×10-6,平均115.86×10-6,高出脉状矿石一个数量级。Sn含量较为稳定,为29.47×10-6~100.31×10-6,平均61.78×10-6,高于闪锌矿中的Sn含量(平均0.81×10-6)。其余元素(如Ga、Ge、As、Se、Cd、Sb、Te、Cs)含量较低,一般在检测限附近。可见该矿床黄铜矿In含量较高,尤以致密块状矿石中黄铜矿富In最为明显。

  • 黄铁矿中主、微量元素含量由高到低分别是Fe、Mn、Zn、Ge、Se、Cu、Te、Cs、Sb、Cd、Zn等。其中,Fe、Mn元素含量较高,Mn介于2.86×10-6~25.00×10-6,平均18.46×10-6,Fe介于515445.83×10-6~536109.05×10-6,平均520628.67。Zn、Ge、Se含量较稳定,Zn为3.99×10-6~11.25×10-6(平均6.99×10-6),Ge为1.69×10-6~2.14×10-6(平均1.90×10-6),Se为1.13×10-6~1.91×10-6(平均1.65×10-6)。其余元素含量较低,如In为0~0.01×10-6(平均0.01×10-6)。

  • 磁黄铁矿中主、微量元素含量由高到低分别是Fe、Mn、Zn、Se、Ge、Cu、Te、Cs、Sb、Sn、Cd等。其中,Fe、Mn元素含量较高,Mn介于0.66×10-6~63.56×10-6之间,平均23.98×10-6,Fe介于572254.99×10-6~664474.98×10-6,平均617229.74×10-6。Ge、Se含量较稳定,Ge为0.46×10-6~2.37×10-6(平均1.51×10-6),Se为1.58×10-6~6.25×10-6(平均3.83×10-6)。Zn含量范围较大,Zn为0.56×10-6~65.37×10-6(平均12.02×10-6),其余元素含量较低,如In为0.01×10-6~0.03×10-6(平均0.01×10-6)。对与闪锌矿、黄铜矿共生的白钨矿(图4h)进行10个LA-ICP-MS点测试,主量元素特征表明白钨矿主要由WO3和CaO组成,WO3含量为74.19%~79.15%(平均76.43%),CaO为19.40%~20.58%(平均19.93%)。微量元素含量由高到低依次是As、Ga、Cd、Zn、Ge、Cu、Sn、In,其中As为1.81×10-6~3.18×10-6(平均2.55×10-6),其余元素含量均较低,多在检测限附近。

  • 表3 骆驼山主要金属硫化物元素(×10-6)分析结果

  • Table3 Element analyses (×10-6) of main metal sulfides in the Luotuoshan deposit

  • 注:“/”代表低于检测下限。

  • 通过对以上金属硫化物和氧化物的微区分析测试初步发现,闪锌矿和黄铜矿是骆驼山矿床主要的含In矿物(图7),可以作为重要的回收利用对象。磁黄铁矿、黄铁矿、白钨矿几乎不含In。

  • 表4 白钨矿主元素(CaO,WO3,%)、微量元素(×10-6)分析结果

  • Table4 Major (CaO, WO3, %) and trace (×10-6) element analyses of scheelite in the Luotuoshan deposit

  • 注:“/”代表低于检测下限。

  • 图6 骆驼山矿床围岩及矿石中In与Sn(a、b)、Zn(c、d)、Cu(e)、Cd(f)的关系

  • Fig.6 Relationship between In and Sn (a, b) , Zn (c, d) , Cu (e) , Cd (f) in ores and wallrocks in the Luotuoshan deposit

  • 4.3 铟及相关元素在闪锌矿和黄铜矿中的分布

  • 为进一步查明铟在闪锌矿、黄铜矿中的赋存状态和分布特征,在点分析的基础上,选择铟含量比较高的闪锌矿和黄铜矿单矿物进行LA-ICP-MS面扫描。闪锌矿面扫描图像显示(图8a),Zn、In、Cd元素在闪锌矿中含量较高且分布均匀(图8b、c、e),在面扫描图上分布规律基本一致,图像特征类似,说明三者可能存在相关性。Sn、Cu在闪锌矿中分布不均匀,其中Cu在闪锌矿边缘部位富集(图8f)可能跟黄铜矿交代闪锌矿有关,局部呈条带状分布可能与类质同象有关。Sn在闪锌矿中含量很低,LA-ICP-MS点和面分析表明Sn以类质同象存在闪锌矿中,其富集程度与In、Zn无明显相关性。

  • 图7 骆驼山矿床In在不同硫化物中的含量特征

  • Fig.7 In concentrations in different sulfide minerals in the Luotuoshan deposit

  • (a)—黄铁矿;(b)—黄铜矿;(c)—闪锌矿;(d)—磁黄铁矿

  • (a) —pyrite; (b) —chalcopyrite; (c) —sphalerite; (d) —pyrrhotite

  • 图8 骆驼山矿床闪锌矿的反射光图像(a)及部分主微量元素含量LA-ICP-MS扫面(b~f)

  • Fig.8 Reflected light (a) and LA-ICP-MS mapping of major and trace elements (b~f) of sphalerite in the Luotuoshan deposit

  • 黄铜矿面扫描图像显示(图9a),Cu分布均匀,Cd、Zn、In在黄铜矿中分布特征相似,局部富集明显(图9c、e、f),Cd、Zn最高分别达到84.08×10-6、56261.71×10-6,说明黄铜矿中可能存在闪锌矿微细包体;而In在黄铜矿的边缘较核部富集明显,可能与热液活动有关。整体上,Sn在黄铜矿中的含量明显高于闪锌矿,且分布面积占比高于闪锌矿,可能与黄铜矿富闪锌矿微细包体有关(图9d)。

  • 图9 骆驼山矿床黄铜矿的反射光图像(a)及部分主微量元素含量LA-ICP-MS扫面(b~f)

  • Fig.9 Reflected light (a) and LA-ICP-MS mapping of major and trace elements (b~f) of chalcopyrite in the Luotuoshan deposit

  • 5 讨论

  • 5.1 铟的物质来源

  • 目前多数研究表明,铟的来源与岩浆热液系统密切相关(李晓峰等,20072010Cook et al.,2011; Ishihara et al.,2011; 徐净和李晓峰,2018)。李晓峰等(2010)发现中国广西大厂矿区岩墙具有高铟含量(>0.14×10-6),初步认为铟来源于花岗岩相关的岩浆源区;芬兰Sarvlaxviken地区奥环花岗岩中高的铟含量也暗示了其具有铟矿化的潜力(Valkama et al.,2016)。矽卡岩型矿床的进一步研究表明,铟矿化与岩浆系统有明显的成因关系,例如中国大厂和都龙矽卡岩型锡多金属矿床的形成与花岗岩关系密切,且这些花岗岩往往具有高度分异演化的特点(Wener et al.,2017)。

  • 骆驼山矿床石英片岩、石英岩和碳质板岩等不同围岩中铟的含量均低于地壳丰度,而矽卡岩和角岩中铟的含量明显高于地壳丰度,且越靠近矽卡岩和角岩,岩石中铟的含量逐渐增加,说明铟不大可能来自围岩。虽然骆驼山矿区花岗斑岩中铟含量低于地壳丰度,但南泥湖花岗斑岩铟含量与地壳丰度相当,暗示骆驼山中的铟可能与南泥湖岩体有关,其在接触变质或热液交代过程中发生富集。本次研究发现,骆驼山矿床中的铟矿化主要形成在Zn-Cu-S多金属成矿阶段,且主要赋存在闪锌矿和黄铜矿中,说明铟与闪锌矿或黄铜矿有密切的成因关系。骆驼山矿床中15个硫化物样品的δ34S 值为1.4‰~3.0‰,平均2.35‰(杨晨英等,2016),与冷水北沟铅锌矿石的δ34S 值(0.7‰~3.8‰,平均2.35‰)(付治国等,2010)与三道庄-南泥湖矿床的成矿流体总硫δ34S∑S(2.75‰)(罗铭玖等,1991)接近,说明南泥湖矿田内的硫主要为深源硫。此外,这些金属硫化物的初始锶同位素比值(87Sr/86Sr)i介于0.71323~0.71332之间,平均0.71325(杨晨英,2016),不同于壳源(>0.7190)(Palmer et al.,1989)和幔源(<0.7040)(Faure,1986)。因此,推断骆驼山矿床中的铟可能与其他成矿物质一样主要来自深部岩浆。

  • 5.2 铟的赋存状态与空间分布特征

  • 铟在骆驼山的空间分布是不均匀的。宏观上,In在垂向上的分布总体表现出近矽卡岩端In含量较远矽卡岩端高的特点,角岩和矽卡岩中出现了铟的高度富集,可能是在成矿过程中受到了含矿热液的影响。铟在致密块状硫化物矿石中的含量最高(平均63.9×10-6),脉状矿石中铟含量最低(平均1×10-6),说明致密块状矿石是金属铟的主要来源,且In的含量由矿体中心向矿体边缘逐渐降低。微观上,铟在不同金属硫化物中分布也是不均匀的,闪锌矿、黄铜矿为骆驼山矿床主要的含铟矿物,其中In在闪锌矿中平均含量276.79×10-6、In在致密块状矿石黄铜矿中平均含量115.86×10-6。值得注意的是,In在脉状矿石黄铜矿中含量介于34.53×10-6~43.77×10-6之间,平均值18.74×10-6,明显低于In在致密块状矿石黄铜矿中的平均值,可能暗示着铟在不同热液阶段黄铜矿中的分布也是不均匀的。

  • 已有研究表明,铟在自然界的赋存具有明显的矿物专属性,主要以类质同象形式赋存在闪锌矿、黄铜矿、黄锡矿和锌黄锡矿等四面体结构的硫化物中,其中又以闪锌矿最为重要(张乾等,2003Werner et al.,2017)。当闪锌矿含量较少时,铟通常赋存在锡的硫盐类矿物中(Benzaazoua et al.,2003),但极少见到铟以独立矿物形式存在。Valkama et al.(2016)认为当矿石中In(×10-6)/Zn(%)比值>50,In含量>40×10-6时,才有利于铟矿物的形成。骆驼山矿石中In(×10-6)/Zn(%)比值为4.5~67.2(平均16.3),In含量为0.09×10-6~120.8×10-6(平均33.5×10-6),不利于铟独立矿物的形成;LA-ICP-MS面分析显示闪锌矿中的铟分布非常均匀(图8c),说明铟可能以类质同象的形式赋存,而铟仅在黄铜矿中局部富集,考虑到局部元素丰度最高125.8×10-6,推测可能与闪锌矿微粒包体有关。综上,骆驼山矿床中的铟可能主要以类质同象形式赋存在闪锌矿和黄铜矿中,暂未发现铟的独立矿物。

  • 5.3 铟的富集规律

  • 锡在铟的富集和迁移过程中起着非常重要的作用,富铟与贫铟矿床的显著差别就是Sn的存在与否或者含量多少,一般情况下富铟矿床往往都是富锡矿床(朱笑青等,2006陈程和赵太平,2021)。骆驼山矿床尚无含锡独立矿物的报道,岩石矿物微量元素测试发现其是贫锡的,但矿石中铟含量最高可达120.83×10-6,表现出重要的工业利用价值。因此该类型矿床铟的富集规律值得商榷。

  • 大多数情况下高温条件有利于铟的富集(刘英俊,1984张乾等,2003)。Fretzdorff et al.(2006)在研究西南太平洋盆地的时候发现随着温度的升高,铟在热液系统中的富集系数会相应升高。在280~350℃范围内,随着温度的升高,从矿体边缘到中心铟的含量逐渐升高。这是由于随着温度的变化,成矿流体的物理化学条件也发生了一定的变化并引起深部矿石中铟含量较浅部高。骆驼山矿床石英-硫化物阶段成矿温度大致集中在280~400℃,从早矽卡岩至碳酸盐阶段,成矿流体温度整体呈递减趋势(许腾,2015杨晨英,2016)。骆驼山矿床致密块状矿石中In含量最高,且In在垂向上的含量分布总体表现出近矽卡岩端较远矽卡岩端高的特点,说明该矿床中铟的富集与成矿温度呈正相关关系。

  • 研究认为铟在富集成矿过程中还受“铟窗”和“铟爆”效应影响(Dill et al.,2013李晓峰等,2020),当Cd含量在0.2%~0.6%时,闪锌矿晶体结构会发生变形,此时的闪锌矿具有最高的铟含量(Dill et al.,2013);此外,闪锌矿中Cd主要置换Fe(刘铁庚等,2010),高铁闪锌矿才往往具有较高的铟含量(Seifert et al.,2006Li Yubang et al.,2015)。骆驼山矿床中In与矿石矿物中Zn、Cu、Cd呈正相关,与Sn关系不明显(图5),说明矿石中Cu、Zn、Cd等元素的含量越高,In富集程度越高。铁闪锌矿中Sn和Cd含量很低(平均值分别0.81×10-6、993×10-6),明显低于大厂(李晓峰等,2010)、都龙(叶霖等,2017)和个旧(李玉帮等,2014)等富锡多金属矿床的Cd含量(普遍>0.2%)。In在铁闪锌矿中与Zn、Cd的含量呈弱正相关关系,与Sn、Cu的关系不明显。一般认为,In在闪锌矿中替换机制有(Cu++In3+2Zn2+,这与骆驼山闪锌矿的特点基本一致(图8c)。LA-ICP-MS分析(图10)表明,骆驼山铁闪锌矿中存在大量黄铜矿显微包体,导致本次测试点几乎全部位于Cu-In=1∶1线上方,说明Cu在闪锌矿中过饱和。黄铜矿中Sn含量平均61.8×10-6,高于闪锌矿(平均0.81×10-6),且In与Zn、Sn呈正相关关系,与Cd的关系不明显。限于已有研究程度,In在不同热液阶段黄铜矿中的差异富集有待进一步研究。

  • 图10 骆驼山矿床不同硫化物中In与Zn(a)、Sn(b)、Cu(c)、Cd(d)的关系

  • Fig.10 Relationship between In concentration and Zn (a) , Sn (b) , Cu (c) , Cd (d) concentrations in different sulfide minerals in the Luotuoshan deposit

  • 6 结论

  • (1)骆驼山矿床的In矿化与岩浆热液系统密切相关,与其他成矿物质一样可能主要来自深部岩浆。

  • (2)In可能主要以类质同象形式赋存在铁闪锌矿(平均276.79×10-6)和黄铜矿(平均117.73×10-6)中。主要由磁黄铁矿、铁闪锌矿和黄铜矿组成的致密块状矿石(In含量63.90×10-6)是重要的含铟矿石类型,具有明显的经济利用价值。

  • (3)In在骆驼山矿床的矽卡岩和角岩中含量较高,在垂向上的分布总体表现出近矽卡岩端In含量较远矽卡岩端高的特点,富集程度受成矿温度影响较明显。

  • (4)矿石中In的富集与Zn、Cu、Cd呈正相关关系,与Sn关系不明显;In在铁闪锌矿中与Zn、Cu、Cd含量呈正相关关系,Cu主要与In双替代Zn赋存在铁闪锌矿中;In在黄铜矿中与Zn、Sn含量呈弱正相关关系,其富集和替换机制有待进一步研究。

  • 参考文献

    • Benzaazoua M, Marion L P, Pinto A, Migeon H and Wangnor F E. 2003. Tin and indium mineralogy within selected sampes from the Neves Corvo ore deosit (Portugal): A multidisciplinary study. Mineral Engineering, 16(11): 1291~1302.

    • Bullock L A, Perez M. , Armstrong J G, Parnell J, Still J, Feldmann J. 2018. Selenium and tellurium resources in Kisgruva Proterozoic volcanogenic massive sulphide deposit (Norway). Ore Geology Reviews, 99: 411~424.

    • Chen Cheng, Zhao Taiping. 2021. Metallogenesis of indium in magmatic hydrothermal system. Mineral Deposits, 40(2): 206~220 (in Chinese with English abstract).

    • Cook N J, Sundblad K, Valkama M, Nygård R, Ciobanu C L, Danyushevsky L. 2011. Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology, 284(1-2): 62~73.

    • Dill H G, Garrido M M, Melcher F, Gomez M C, Weber B, Luna L I, Bahr A. 2013. Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) with special reference to the“indium window” in zinc sulfide. Ore Geology Reviews, 51: 103~128.

    • Faure G. 1986. Principles of Isotope Geology. New York: John Wiley & Sons. 183~199.

    • Fretzdorff S, Schwarz-Schampera U, Gibson H L, Garbe-Schonberg C D. 2006. Hydrothermal activity and magma genesis along a propagating back-arc basin: Valu Fa Ridge (southern Lau Basin). Journal of Geophysical Research: Solid Earth, 111(B8): 1~17.

    • Fu Zhiguo, Weng Jichang, Yan Changhai, Gao Shenghuai. 2010. Isotope geochemical characteristics of the Lengshuibeigou lead-zin-siliver ore district in East Qinling. Geophysical & Geochemical Exploration, 34(1): 34~39 (in Chinese with English abstract).

    • Gaskov I V, Vladimirov A G, Khanchuk A I, Pavlova G A, Gvozdev V I. 2017. Distribution of indium in ores of some base metal and tin-sulfide deposits in Siberia and the Russian Far East. Geology of Ore Deposits, 59(1): 56~67.

    • Gu Wenshuai. 2012. Enrichment characteristics of paragenetic and associated elements and their prospecting significance for molybdenum polymetallic deposits in Luanchuan ore concentrated district. Master degree dissertarion of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Hu Ruizhong, Wen Hanjie, Su Wenchang, Peng Jiantang, Bi Xianwu, Chen Youwei. 2014. Some advances in ore deposit geochemistry in last decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 127~144 (in Chinese with English abstract).

    • Hu Shouxi, Lin Qianlong. 1988. The Geology and Metallogeny of the Amalgamation Zone between Ancient North China and South China Plate. Nanjing: Nanjing University Press (in Chinese with English abstract).

    • Ishihara S, Murakami H, Li Xiaofeng. 2011. Indium concentration in zinc ores in plutonic and volcanic environments: Examples at the Du-long and Dachang mines, South China. Bulletin of the Geological Survey of Japan, 62 (7-8): 259~272.

    • Ishihara S, Qin Kezhang, Wang Yuwang. 2008. Resource evaluation of indium in the Dajing tin-polymetallic deposits, Inner Mongolia, China. Resource Geology, 58(1): 72~79.

    • Jorgenson J D, George M W. 2004. Indium. U. S. Geological Survey-Mineral Commodity Profiles, 1~20.

    • Lerouge C, Gloaguen E, Wille G, Bailly L. 2017. Distribution of In and other rare metals in cassiterite and associated minerals in Sn±W ore deposits of the western Variscan Belt. European Journal of Mineralogy, 29(4): 739~753.

    • Li Xiaofeng, Yasushi W, Mao Jingwen. 2007. Research situation and economic value of indium deposits. Mineral Deposits, 26(4): 475~480 (in Chinese with English abstract)

    • Li Xiaofeng, Yang Feng, Chen Zhenyu, Bu Guoji, Wang Yitian. 2010. A tentative discussion on geochemistry and genesis of indium in Dachang tin ore district, Guangxi. Mineral Deposits, 29(5): 903~914 (in Chinese with English abstract).

    • Li Xiaofeng, Zhu Yiting, Xu Jing. 2020. Indium as a critical mineral: A research progress report. China Science Bulletin, 65: 3678~3687(in Chinese).

    • Li Yubang, Tao Yan, Liao Mingyang, Xiong Feng, Deng Xianze. 2014. Occurrence form of indium and composition of rare earth elements of sulfide in Gejiu tin ore deposite. Mineral Deposits, 33(S1): 1177~1178 (in Chinese with English abstract).

    • Li Yubang, Tao Yan, Zhu Feilin, Liao Mingyang, Xiong Fei, Deng Xianze. 2015. Distribution and existing state of indium in the Gejiu tin polymetallic deposit, Yunnan Province, SW China. Chinese Journal of Geochemistry, 34(4): 469~483.

    • Liu Jianping. 2017. Indium mineralization in a Sn-poor skarn deposit: A case study of the Qibaoshan deposit, South China. Minerals, 7(76): 1~16.

    • Liu Tiegeng, Ye Lin, Zhou Jiaxi. 2010. Cd primarily isomorphously replaces Fe but not Zn in sphalerite. Acta Mineralogica Sinica, 30(2): 283~284(in Chinese with English abstract).

    • Liu Yingjun. 1984. Element Geochemistry. Beijing: Science Press (in Chinese).

    • Luo Mingjiu. 1991. Molybdenum Deposits in China. Zhengzhou: Henan Science and Techonoly Press (in Chinese).

    • Mao Jingwen, Ye Huishou, Wang Ruiting, Dai Junzhi, Jian Wei, Xiang Junfeng, Meng Fang, 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling, central China and its implication for prospecting. Geological Bulletin of China, 28(1): 72~79 (in Chinese).

    • Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92(1): 11~26.

    • Pei Qiuming, Zhang Shouting, Cao Huawen, Tang Li, Xu Teng, Li Junjun, Zhang Xuhuang, Guo Nana. 2015. Trace element geochemistry of the Luotuoshan sulfur zinc polymetallic deposit in Luanchuan, western Henan, and its geological implications. Acta Petrologica et Mineralogica, 34(5): 741~754 (in Chinese with English abstract).

    • Seifert T, Sandmann D. 2006. Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geology Reviews, 28(1): 1~31.

    • Sugaki A, Ueno H, Shimada N, Kusaschi I, Kitakaze A, Hayashi K, Kojima S, Sanjines O. 1983. Geological study on the polymetallic ore deposits in the Potosi district, Bolivia. Science Reports, Tohoku University (Series III), 15: 409~460.

    • Tang Li, Zhang Shouting, Cao Huawen, Li Dong, Zhang Xuhuang, Zhang Yunhui, Tian Haohao, Zhang Hao. 2014. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 356~368 (in Chinese with English abstract).

    • Tu Guangchi. 2004. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Beijing: Geological Publishing House (in Chinese).

    • Valkama M, Sundblad K, Nygård R, Cook N. 2016. Mineralogy and geochemistry of indium-bearing polymetallic veins in the Sarvlaxviken area, Lovisa, Finland. Ore Geology Reviews, 75: 206~219.

    • Wang Xiaolei, Jiang Shaoyong, Dai Baozhang, Griffin W L, Dai Mengning, Yang Yueheng. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190(1-4): 35~47.

    • Werner, T T, Mudd, G M, Jowitt, S M. 2017. The world's by-product and critical metal resources part III: A global assessment of indium. Ore Geology Reviews, 86: 939~956.

    • Xiao Xin, Zhou Taofa, White N C, Zhang Lejun, Fan Yu, Wang Fangyue, Chen Xuefeng. 2018. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, eastern China. Lithos, 302-303: 467~479.

    • Xing Bo, Xiang Junfeng, Ye Huishou, Chen Xiaodan, Zhang Guosu, Yang Chenying, Jin Xue, Hu Zhizhong. 2017. Genesis of Luotuoshan sulfur polymetallic deposit in western Henan Province: Evidence from trace elements of sulfide revealed by using LA-ICP-MS in lamellar ores. Mineral Deposits, 36(1): 83~106 (in Chinese with English abstract).

    • Xu Jing, Li Xiaofeng. 2018. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits. Acta Petrologica Sinica, 34(12): 3611~3626 (in Chinese with English abstract).

    • Xu Teng. 2015. Characteristics of ore-forming fluid and significance of prospecting of Luotuoshan sulphur polymetallic deposit in Luanchuan, Western Henan. Master degree dissertarion of China University of Geosciences(Beijing)(in Chinese with English abstract).

    • Yan Changhai. 2004. Inner Struture of Pb-Zn-Ag Metallogenic Systems in Qinling. Beijing: Geological Publishing House (in Chinese).

    • Yan Changhai, Liu Guoyin, Peng Yi, Song Yaowu, Wang Jizhong, Zhao Rongjun, Zeng Xianyou, Lü Wende, Yao Xinnian, Ma Hongwei, He Yuliang. 2009. Pb-Zn-Ag Metallogenic Regularities in Southwest Henan Province. Beijing: Geological Publishing House (in Chinese).

    • Yang Chenying, Ye Huishou, Xiang Junfeng, Chen Xiaodan, Xing Bo, Li Liang, Wang Sai. 2016. Rb-Sr isochron age of sulfide minerals in Luotuoshan pyrite-polymellic deposit of western Henan Province and its geological significance. Mineral Deposits, 35(3): 573~590 (in Chinese with English abstract).

    • Ye Lin, Liu Yuping, Zhang Qian, Bao Tan, He Fang, Wang Xiaojuan, Wang Dapeng, Lan Jiangbo. 2017. Trace and rare earth elements characteristics ofsphalerite in Dulong super large Sn-Zn polymetallic ore deposit, Yunnan Province. Journal of Jinlin University (Earth Science Edtion), 47(3): 734~750 (in Chinese with English abstract).

    • Yun Hui, Guo Bo, Hu Honglei, Zhu Hongyun, Han Jiangwei Yan Haiqi, Li Wei. 2020. Geological characteristics and genesis of the Luotuoshan copper-zinc polymetallic deposit in Luanchuan County. Metal Mine, (11): 152~161(in Chinese with English abstract).

    • Zhang Qian, Liu Zhihao, Zhan Xinzhi, Shao Shuxun. 2003. Specialization of ore deposit types and minerals for enrichment of indium. Mineral Deposits, 22(1): 309~316 (in Chinese with English abstract).

    • Zhu Xiaoqing, Zhang Qian, He Yuliang, Zhu Chaohui. 2006. Relationships between indium and tin, zinc and lead in ore-forming fluid from the indium-rich and -poor deposits in China. Geochimic, 35(1): 6~12 (in Chinese with English abstract).

    • 陈程, 赵太平. 2021. 岩浆-热液系统中铟的成矿作用. 矿床地质, 40(2): 206~220.

    • 付治国, 翁纪昌, 燕长海, 高胜淮. 2010. 东秦岭冷水北沟铅锌银矿床同位素地球化学特征. 物探与化探, 34(1): 34~39.

    • 顾文帅. 2012. 栾川矿集区钼多金属矿床共伴生元素富集特征及找矿意义. 中国地质大学(北京)硕士学位论文.

    • 胡瑞忠, 温汉捷, 苏文超, 彭建堂, 毕献武, 陈佑纬. 2014. 矿床地球化学近十年若干研究进展. 矿物岩石地球化学通报, 33(2): 127~144.

    • 胡受奚, 林潜龙. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社.

    • 李晓峰, Yasushi Watanabe, 毛景文. 2007. 铟矿床研究现状及其展望. 矿床地质, 26(4): 475~480.

    • 李晓峰, 杨锋, 陈振宇, 卜国基, 王义天. 2010. 广西大厂锡矿铟的地球化学特征及成因机制初探. 矿床地质, 29(5): 903~914.

    • 李晓峰, 朱艺婷, 徐净. 2020. 关键矿产资源铟研究进展. 科学通报, 65(33): 3678~3687.

    • 李玉帮, 陶琰, 廖名扬, 熊风, 邓贤泽. 2014. 个旧锡矿铟赋存形式及硫化物稀土元素组成特征. 矿床地质, 33(S1): 1177~1178.

    • 刘铁庚, 叶霖, 周家喜. 2010. 闪锌矿中的Cd主要置换Fe而不是Zn. 矿物学报, 30(2): 283~284.

    • 刘英俊. 1984. 元素地球化学. 北京: 科学出版社.

    • 罗铭玖. 1991. 中国钼矿床. 河南: 河南科学技术出版社.

    • 毛景文, 叶会寿, 工瑞廷, 代军治, 简伟, 向君锋, 周坷, 孟芳. 2009. 东秦岭中生代铝铅锌银多金属矿床模型及其找矿评价. 地质通报, 28(1): 72~79.

    • 裴秋明, 张寿庭, 曹华文, 唐利, 许腾, 李军军, 张旭晃, 郭娜娜. 2015. 豫西栾川县骆驼山硫锌多金属矿床闪锌矿微量元素地球化学特征及其地质意义. 岩石矿物学杂志, 34(5): 741~754.

    • 唐利, 张寿庭, 曹华文, 李冬, 张旭晃, 张云辉, 田浩浩, 张浩. 2014. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征. 成都理工大学学报(自然科学版), 41(3): 356~368.

    • 涂光炽. 2004. 分散元素地球化学性质及成矿机制. 北京: 科学出版社.

    • 邢波, 向君峰, 叶会寿, 陈小丹, 张国苏, 杨晨英, 金雪, 胡志中. 2017. 豫西骆驼山硫多金属矿床的成因——来自纹层状矿石中硫化物LA-ICP-MS微量元素证据. 矿床地质, 36(1): 83~106.

    • 徐净, 李晓峰. 2018. 铟矿床时空分布、成矿背景及其成矿过程. 岩石学报, 34(12): 3611~3626.

    • 许腾. 2015. 豫西栾川县骆驼山硫多金属矿床成矿流体特征及其找矿意义. 中国地质大学(北京)硕士学位论文.

    • 燕长海. 2004. 东秦岭铅锌银成矿系统内部结构. 北京: 地质出版社.

    • 燕长海, 刘国印, 彭翼, 宋要武, 王纪中, 赵荣军, 曾宪友, 吕文德, 姚新年, 马宏卫, 何玉良. 2009. 豫西南地区铅锌银成矿规律. 北京: 地质出版社.

    • 杨晨英, 叶会寿, 向君峰, 陈小丹, 邢波, 李亮, 王赛. 2016. 豫西骆驼山多金属硫铁矿床硫化物Rb-Sr等时线年龄及其地质意义. 矿床地质, 35(3): 573~590.

    • 叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 2017. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征. 吉林大学学报(地球科学版), 47(3): 734~750.

    • 云辉, 郭波, 胡红雷, 朱红运, 韩江伟, 严海麒, 李伟. 2020. 栾川县矿集区骆驼山锌铜多金属矿床地质特征及成因. 金属矿山, (11): 152~161.

    • 张乾, 刘志浩, 战新志, 邵树勋. 2003. 分散元素铟富集的矿床类型和矿物专属性. 矿床地质, 22(1): 309~316.

    • 朱笑青, 张乾, 何玉良, 祝朝辉. 2006. 富铟及贫铟矿床成矿流体中铟与锡铅锌的关系研究. 地球化学, 35(1): 6~12.

  • 参考文献

    • Benzaazoua M, Marion L P, Pinto A, Migeon H and Wangnor F E. 2003. Tin and indium mineralogy within selected sampes from the Neves Corvo ore deosit (Portugal): A multidisciplinary study. Mineral Engineering, 16(11): 1291~1302.

    • Bullock L A, Perez M. , Armstrong J G, Parnell J, Still J, Feldmann J. 2018. Selenium and tellurium resources in Kisgruva Proterozoic volcanogenic massive sulphide deposit (Norway). Ore Geology Reviews, 99: 411~424.

    • Chen Cheng, Zhao Taiping. 2021. Metallogenesis of indium in magmatic hydrothermal system. Mineral Deposits, 40(2): 206~220 (in Chinese with English abstract).

    • Cook N J, Sundblad K, Valkama M, Nygård R, Ciobanu C L, Danyushevsky L. 2011. Indium mineralisation in A-type granites in southeastern Finland: Insights into mineralogy and partitioning between coexisting minerals. Chemical Geology, 284(1-2): 62~73.

    • Dill H G, Garrido M M, Melcher F, Gomez M C, Weber B, Luna L I, Bahr A. 2013. Sulfidic and non-sulfidic indium mineralization of the epithermal Au-Cu-Zn-Pb-Ag deposit San Roque (Provincia Rio Negro, SE Argentina) with special reference to the“indium window” in zinc sulfide. Ore Geology Reviews, 51: 103~128.

    • Faure G. 1986. Principles of Isotope Geology. New York: John Wiley & Sons. 183~199.

    • Fretzdorff S, Schwarz-Schampera U, Gibson H L, Garbe-Schonberg C D. 2006. Hydrothermal activity and magma genesis along a propagating back-arc basin: Valu Fa Ridge (southern Lau Basin). Journal of Geophysical Research: Solid Earth, 111(B8): 1~17.

    • Fu Zhiguo, Weng Jichang, Yan Changhai, Gao Shenghuai. 2010. Isotope geochemical characteristics of the Lengshuibeigou lead-zin-siliver ore district in East Qinling. Geophysical & Geochemical Exploration, 34(1): 34~39 (in Chinese with English abstract).

    • Gaskov I V, Vladimirov A G, Khanchuk A I, Pavlova G A, Gvozdev V I. 2017. Distribution of indium in ores of some base metal and tin-sulfide deposits in Siberia and the Russian Far East. Geology of Ore Deposits, 59(1): 56~67.

    • Gu Wenshuai. 2012. Enrichment characteristics of paragenetic and associated elements and their prospecting significance for molybdenum polymetallic deposits in Luanchuan ore concentrated district. Master degree dissertarion of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Hu Ruizhong, Wen Hanjie, Su Wenchang, Peng Jiantang, Bi Xianwu, Chen Youwei. 2014. Some advances in ore deposit geochemistry in last decade. Bulletin of Mineralogy, Petrology and Geochemistry, 33(2): 127~144 (in Chinese with English abstract).

    • Hu Shouxi, Lin Qianlong. 1988. The Geology and Metallogeny of the Amalgamation Zone between Ancient North China and South China Plate. Nanjing: Nanjing University Press (in Chinese with English abstract).

    • Ishihara S, Murakami H, Li Xiaofeng. 2011. Indium concentration in zinc ores in plutonic and volcanic environments: Examples at the Du-long and Dachang mines, South China. Bulletin of the Geological Survey of Japan, 62 (7-8): 259~272.

    • Ishihara S, Qin Kezhang, Wang Yuwang. 2008. Resource evaluation of indium in the Dajing tin-polymetallic deposits, Inner Mongolia, China. Resource Geology, 58(1): 72~79.

    • Jorgenson J D, George M W. 2004. Indium. U. S. Geological Survey-Mineral Commodity Profiles, 1~20.

    • Lerouge C, Gloaguen E, Wille G, Bailly L. 2017. Distribution of In and other rare metals in cassiterite and associated minerals in Sn±W ore deposits of the western Variscan Belt. European Journal of Mineralogy, 29(4): 739~753.

    • Li Xiaofeng, Yasushi W, Mao Jingwen. 2007. Research situation and economic value of indium deposits. Mineral Deposits, 26(4): 475~480 (in Chinese with English abstract)

    • Li Xiaofeng, Yang Feng, Chen Zhenyu, Bu Guoji, Wang Yitian. 2010. A tentative discussion on geochemistry and genesis of indium in Dachang tin ore district, Guangxi. Mineral Deposits, 29(5): 903~914 (in Chinese with English abstract).

    • Li Xiaofeng, Zhu Yiting, Xu Jing. 2020. Indium as a critical mineral: A research progress report. China Science Bulletin, 65: 3678~3687(in Chinese).

    • Li Yubang, Tao Yan, Liao Mingyang, Xiong Feng, Deng Xianze. 2014. Occurrence form of indium and composition of rare earth elements of sulfide in Gejiu tin ore deposite. Mineral Deposits, 33(S1): 1177~1178 (in Chinese with English abstract).

    • Li Yubang, Tao Yan, Zhu Feilin, Liao Mingyang, Xiong Fei, Deng Xianze. 2015. Distribution and existing state of indium in the Gejiu tin polymetallic deposit, Yunnan Province, SW China. Chinese Journal of Geochemistry, 34(4): 469~483.

    • Liu Jianping. 2017. Indium mineralization in a Sn-poor skarn deposit: A case study of the Qibaoshan deposit, South China. Minerals, 7(76): 1~16.

    • Liu Tiegeng, Ye Lin, Zhou Jiaxi. 2010. Cd primarily isomorphously replaces Fe but not Zn in sphalerite. Acta Mineralogica Sinica, 30(2): 283~284(in Chinese with English abstract).

    • Liu Yingjun. 1984. Element Geochemistry. Beijing: Science Press (in Chinese).

    • Luo Mingjiu. 1991. Molybdenum Deposits in China. Zhengzhou: Henan Science and Techonoly Press (in Chinese).

    • Mao Jingwen, Ye Huishou, Wang Ruiting, Dai Junzhi, Jian Wei, Xiang Junfeng, Meng Fang, 2009. Mineral deposit model of Mesozoic porphyry Mo and vein-type Pb-Zn-Ag ore deposits in the eastern Qinling, central China and its implication for prospecting. Geological Bulletin of China, 28(1): 72~79 (in Chinese).

    • Palmer M R, Edmond J M. 1989. The strontium isotope budget of the modern ocean. Earth and Planetary Science Letters, 92(1): 11~26.

    • Pei Qiuming, Zhang Shouting, Cao Huawen, Tang Li, Xu Teng, Li Junjun, Zhang Xuhuang, Guo Nana. 2015. Trace element geochemistry of the Luotuoshan sulfur zinc polymetallic deposit in Luanchuan, western Henan, and its geological implications. Acta Petrologica et Mineralogica, 34(5): 741~754 (in Chinese with English abstract).

    • Seifert T, Sandmann D. 2006. Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: Implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geology Reviews, 28(1): 1~31.

    • Sugaki A, Ueno H, Shimada N, Kusaschi I, Kitakaze A, Hayashi K, Kojima S, Sanjines O. 1983. Geological study on the polymetallic ore deposits in the Potosi district, Bolivia. Science Reports, Tohoku University (Series III), 15: 409~460.

    • Tang Li, Zhang Shouting, Cao Huawen, Li Dong, Zhang Xuhuang, Zhang Yunhui, Tian Haohao, Zhang Hao. 2014. Metallogenic system and evolutionary characteristics of Mo-W-Pb-Zn-Ag polymetallic metallogenic concentration area in Luanchuan, Henan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 41(3): 356~368 (in Chinese with English abstract).

    • Tu Guangchi. 2004. The Geochemistry and Ore-Forming Mechanism of the Dispersed Elements. Beijing: Geological Publishing House (in Chinese).

    • Valkama M, Sundblad K, Nygård R, Cook N. 2016. Mineralogy and geochemistry of indium-bearing polymetallic veins in the Sarvlaxviken area, Lovisa, Finland. Ore Geology Reviews, 75: 206~219.

    • Wang Xiaolei, Jiang Shaoyong, Dai Baozhang, Griffin W L, Dai Mengning, Yang Yueheng. 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton. Precambrian Research, 190(1-4): 35~47.

    • Werner, T T, Mudd, G M, Jowitt, S M. 2017. The world's by-product and critical metal resources part III: A global assessment of indium. Ore Geology Reviews, 86: 939~956.

    • Xiao Xin, Zhou Taofa, White N C, Zhang Lejun, Fan Yu, Wang Fangyue, Chen Xuefeng. 2018. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, eastern China. Lithos, 302-303: 467~479.

    • Xing Bo, Xiang Junfeng, Ye Huishou, Chen Xiaodan, Zhang Guosu, Yang Chenying, Jin Xue, Hu Zhizhong. 2017. Genesis of Luotuoshan sulfur polymetallic deposit in western Henan Province: Evidence from trace elements of sulfide revealed by using LA-ICP-MS in lamellar ores. Mineral Deposits, 36(1): 83~106 (in Chinese with English abstract).

    • Xu Jing, Li Xiaofeng. 2018. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits. Acta Petrologica Sinica, 34(12): 3611~3626 (in Chinese with English abstract).

    • Xu Teng. 2015. Characteristics of ore-forming fluid and significance of prospecting of Luotuoshan sulphur polymetallic deposit in Luanchuan, Western Henan. Master degree dissertarion of China University of Geosciences(Beijing)(in Chinese with English abstract).

    • Yan Changhai. 2004. Inner Struture of Pb-Zn-Ag Metallogenic Systems in Qinling. Beijing: Geological Publishing House (in Chinese).

    • Yan Changhai, Liu Guoyin, Peng Yi, Song Yaowu, Wang Jizhong, Zhao Rongjun, Zeng Xianyou, Lü Wende, Yao Xinnian, Ma Hongwei, He Yuliang. 2009. Pb-Zn-Ag Metallogenic Regularities in Southwest Henan Province. Beijing: Geological Publishing House (in Chinese).

    • Yang Chenying, Ye Huishou, Xiang Junfeng, Chen Xiaodan, Xing Bo, Li Liang, Wang Sai. 2016. Rb-Sr isochron age of sulfide minerals in Luotuoshan pyrite-polymellic deposit of western Henan Province and its geological significance. Mineral Deposits, 35(3): 573~590 (in Chinese with English abstract).

    • Ye Lin, Liu Yuping, Zhang Qian, Bao Tan, He Fang, Wang Xiaojuan, Wang Dapeng, Lan Jiangbo. 2017. Trace and rare earth elements characteristics ofsphalerite in Dulong super large Sn-Zn polymetallic ore deposit, Yunnan Province. Journal of Jinlin University (Earth Science Edtion), 47(3): 734~750 (in Chinese with English abstract).

    • Yun Hui, Guo Bo, Hu Honglei, Zhu Hongyun, Han Jiangwei Yan Haiqi, Li Wei. 2020. Geological characteristics and genesis of the Luotuoshan copper-zinc polymetallic deposit in Luanchuan County. Metal Mine, (11): 152~161(in Chinese with English abstract).

    • Zhang Qian, Liu Zhihao, Zhan Xinzhi, Shao Shuxun. 2003. Specialization of ore deposit types and minerals for enrichment of indium. Mineral Deposits, 22(1): 309~316 (in Chinese with English abstract).

    • Zhu Xiaoqing, Zhang Qian, He Yuliang, Zhu Chaohui. 2006. Relationships between indium and tin, zinc and lead in ore-forming fluid from the indium-rich and -poor deposits in China. Geochimic, 35(1): 6~12 (in Chinese with English abstract).

    • 陈程, 赵太平. 2021. 岩浆-热液系统中铟的成矿作用. 矿床地质, 40(2): 206~220.

    • 付治国, 翁纪昌, 燕长海, 高胜淮. 2010. 东秦岭冷水北沟铅锌银矿床同位素地球化学特征. 物探与化探, 34(1): 34~39.

    • 顾文帅. 2012. 栾川矿集区钼多金属矿床共伴生元素富集特征及找矿意义. 中国地质大学(北京)硕士学位论文.

    • 胡瑞忠, 温汉捷, 苏文超, 彭建堂, 毕献武, 陈佑纬. 2014. 矿床地球化学近十年若干研究进展. 矿物岩石地球化学通报, 33(2): 127~144.

    • 胡受奚, 林潜龙. 1988. 华北与华南古板块拼合带地质和成矿. 南京: 南京大学出版社.

    • 李晓峰, Yasushi Watanabe, 毛景文. 2007. 铟矿床研究现状及其展望. 矿床地质, 26(4): 475~480.

    • 李晓峰, 杨锋, 陈振宇, 卜国基, 王义天. 2010. 广西大厂锡矿铟的地球化学特征及成因机制初探. 矿床地质, 29(5): 903~914.

    • 李晓峰, 朱艺婷, 徐净. 2020. 关键矿产资源铟研究进展. 科学通报, 65(33): 3678~3687.

    • 李玉帮, 陶琰, 廖名扬, 熊风, 邓贤泽. 2014. 个旧锡矿铟赋存形式及硫化物稀土元素组成特征. 矿床地质, 33(S1): 1177~1178.

    • 刘铁庚, 叶霖, 周家喜. 2010. 闪锌矿中的Cd主要置换Fe而不是Zn. 矿物学报, 30(2): 283~284.

    • 刘英俊. 1984. 元素地球化学. 北京: 科学出版社.

    • 罗铭玖. 1991. 中国钼矿床. 河南: 河南科学技术出版社.

    • 毛景文, 叶会寿, 工瑞廷, 代军治, 简伟, 向君锋, 周坷, 孟芳. 2009. 东秦岭中生代铝铅锌银多金属矿床模型及其找矿评价. 地质通报, 28(1): 72~79.

    • 裴秋明, 张寿庭, 曹华文, 唐利, 许腾, 李军军, 张旭晃, 郭娜娜. 2015. 豫西栾川县骆驼山硫锌多金属矿床闪锌矿微量元素地球化学特征及其地质意义. 岩石矿物学杂志, 34(5): 741~754.

    • 唐利, 张寿庭, 曹华文, 李冬, 张旭晃, 张云辉, 田浩浩, 张浩. 2014. 河南栾川矿集区钼钨铅锌银多金属矿成矿系统及演化特征. 成都理工大学学报(自然科学版), 41(3): 356~368.

    • 涂光炽. 2004. 分散元素地球化学性质及成矿机制. 北京: 科学出版社.

    • 邢波, 向君峰, 叶会寿, 陈小丹, 张国苏, 杨晨英, 金雪, 胡志中. 2017. 豫西骆驼山硫多金属矿床的成因——来自纹层状矿石中硫化物LA-ICP-MS微量元素证据. 矿床地质, 36(1): 83~106.

    • 徐净, 李晓峰. 2018. 铟矿床时空分布、成矿背景及其成矿过程. 岩石学报, 34(12): 3611~3626.

    • 许腾. 2015. 豫西栾川县骆驼山硫多金属矿床成矿流体特征及其找矿意义. 中国地质大学(北京)硕士学位论文.

    • 燕长海. 2004. 东秦岭铅锌银成矿系统内部结构. 北京: 地质出版社.

    • 燕长海, 刘国印, 彭翼, 宋要武, 王纪中, 赵荣军, 曾宪友, 吕文德, 姚新年, 马宏卫, 何玉良. 2009. 豫西南地区铅锌银成矿规律. 北京: 地质出版社.

    • 杨晨英, 叶会寿, 向君峰, 陈小丹, 邢波, 李亮, 王赛. 2016. 豫西骆驼山多金属硫铁矿床硫化物Rb-Sr等时线年龄及其地质意义. 矿床地质, 35(3): 573~590.

    • 叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 2017. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征. 吉林大学学报(地球科学版), 47(3): 734~750.

    • 云辉, 郭波, 胡红雷, 朱红运, 韩江伟, 严海麒, 李伟. 2020. 栾川县矿集区骆驼山锌铜多金属矿床地质特征及成因. 金属矿山, (11): 152~161.

    • 张乾, 刘志浩, 战新志, 邵树勋. 2003. 分散元素铟富集的矿床类型和矿物专属性. 矿床地质, 22(1): 309~316.

    • 朱笑青, 张乾, 何玉良, 祝朝辉. 2006. 富铟及贫铟矿床成矿流体中铟与锡铅锌的关系研究. 地球化学, 35(1): 6~12.