en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李金勇,男,1999年生。在读硕士生,构造地质学专业。E-mail:lijinyong214@163.com。

通讯作者:

翟庆国,男,1980年生。博士,研究员,从事青藏高原区域构造与大地构造研究。E-mail:zhaiqingguo@126.com。

参考文献
Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43~55.
参考文献
Blundy J D, Wood B J. 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55: 193~209.
参考文献
Breiter K. 2012. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krusne hory/Erzgebirge Mts. , central Europe. Lithos, 151: 105~121.
参考文献
Cao Yong, Sun Zhiming, Li Haibin, Pei Junling, Liu Dongliang, Zhang Lei, Ye Xiaozhou, Zheng Yong, He Xiangli, Ge Chenglong, Jiang Wan. 2019. New paleomagnetic results from middle Jurassic limestones of the Qiangtang terrane, Tibet: Constraints on the evolution of the Bangong-Nujiang ocean. Tectonics, 38(1): 215~232.
参考文献
Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.
参考文献
Chen Weiwei, Zhang Shihong, Ding Jikai, Zhang Junhong, Zhao Xixi, Zhu Lidong, Yang Wenguang, Yang Tianshui, Li Haiyan, Wu Huaichun. 2017. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet. Gondwana Research, 41: 373~389.
参考文献
Chung Sunlin, Chu Meifei, Zhang Yuquan, Xie Yingwen, Lo Chinghua, Lee Tungyi, Lan Chingying, Li Xianhua, Zhang Qi, Wang Yizhao. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173~196.
参考文献
Collins W J, Richards S W. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36(7): 559~562.
参考文献
Creaser R A, Price R C, Wormald R J. 1991. A-type granites revisited - assessment of a residual-source model. Geology, 19(2): 163~166.
参考文献
Dall'Agnol R, Scaillet B, Pichavant M. 1999. An experimental study of a Lower Proterozoic A-type granite from the eastern Amazonian Craton, Brazil. Journal of Petrology, 40(11): 1673~1698.
参考文献
Douce A E P. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743~746.
参考文献
Eby G N. 1992. Chemical subdivision of the A-type granitoids-petrogenetic and tectonic implications. Geology, 20(7): 641~644.
参考文献
Fan Jianjun. 2016. Temporal and spatial reconstruction of the late Mesozoic convergence and extinction in the mid-western section of Bangong-Nujiang ocean. Doctoral dissertation of Jilin University (in Chinese with English abstract).
参考文献
Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyanocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231~249.
参考文献
Fu Bin, Page F Z, Cavosie A J , Fournelle J, Kita N T, Lackey J S, Wilde S A, Valley J W. 2008. Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology, 156(2): 197~215.
参考文献
Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks. Journalof Petrology, 42(11): 2033~2048.
参考文献
Frost C D, Frost B R. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39~52.
参考文献
Gao Baoshun, Zheng Youye, Wang Jintao, Zhang Zhong, Yang Cheng. 2011. Chronology and geochemistry of intrusive rocks in the Bangor area, Tibet: Constraints on the evolution of the Bangong-Nujiang ocean basin. Acta Petrologica Sinica, 27 (7): 1973~1982 (in Chinese with English abstract).
参考文献
Green T H. 1980. Island arc and continent-building magmatism-A review of petrogenic models based on experimental petrology and geochemistry. Tectonophysics, 63(1): 367~385.
参考文献
Guynn J H, Kapp P, Pullen A, Heizier M, Gehrels G, Ding L. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, Central Tibet. Geology, 34(6): 505~508.
参考文献
Holm P M, Praegel N O. 1988. The Tertiary Kaervensyenite complex, Kangerdlugssuaq, East Greenland-mineral chemistry and geochemistry. Mineralogical Magazine, 52(367): 435~450.
参考文献
Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, eds: Zircon. Mineralogical Society of America, 53: 27~62.
参考文献
Hou Kejun, Li Yanhe, Tian Yourong. 2009. LA-MC-ICP-MS in situ U-Pb dating technique for zircon microareas. Geology of Mineral Deposits, 28 (4): 481~492 (in Chinese with English abstract).
参考文献
Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006. Mineralization in the Tibetan Plateau collisional orogenic belt: Tectonic setting, temporal and spatial distribution and main types. Geology in China, 33(2): 340~351 (in Chinese with English abstract).
参考文献
Hou Zengqian, Duan Lianfeng, Lu Yongjun, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541~1575.
参考文献
Hu Peiyuan, Zhai Qingguo, Jahn Borming, Wang Jun, Li Cai, Chung Sunlin, Lee Haoyang, Tang Suohan. 2017. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Research, 44: 116~138.
参考文献
Hu Peiyuan, Zhai Qingguo, Zhao Guochun, Tang Yue, Zhu Zhicai, Wang Wei, Wu Hao. 2021. Andean orogenic belt on the northern margin of the Gondwana continent: Zircon U-Pb dating and geochemical evidence for the amdo Ordovician granites in the northern Tibet. Acta Petrologica Sinica, 37 (2): 530~544 (in Chinese with English abstract).
参考文献
Hu Xiumian, Ma Anlin, Xue Weiwei, Garzanti Eduardo, Cao Yong, Li Shimin, Sun Gaoyuan, Lai Wen. 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang ocean. Earth-Science Reviews, 229: 104031.
参考文献
Huang He, Zhang Zhaochong, Kusky Timothy, Santosh M, Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan, 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.
参考文献
Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1): 47~69.
参考文献
Ji Weiqiang, Wu Fuyuan Y, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3): 229~245.
参考文献
Jiang Suhua, Jiang Yan, Liu Yiming, Li Sanzhong, Zhang Wen, Wang Gang, Lu Leilei, Somerville Ian. 2021. The Bangong-Nujiang suture zone, Tibet Plateau: Its role in the tectonic evolution of the eastern Tethys ocean. Earth-Science Reviews, 218: 103656.
参考文献
Kapp P, Yin A, Harrison T M, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Societyof America Bulletin, 117(7-8): 865~878.
参考文献
Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Bulletin of the Geological Society of America, 119(7-8): 917~932.
参考文献
Lai Wen, Hu Xiumian, Garzanti Eduardo, Xu Yiwei, Ma Anlin, Li Wei. 2019. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research, 7: 136~152.
参考文献
Leier A L, Decelles P G, Kapp P, Gehrels G E. 2007. Lower cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan plateau. Journal of Sedimentary Research, 77(9-10): 809~825.
参考文献
Leigeois J P. 1998. Preface-some words on the post-collisional magmatism. Lithos, 45(1-4): XV~XVII.
参考文献
Li Jinxiang, Qin Kezhang, Li Guangming, Xiao Bo, Zhao Junxing, Chen Lei. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. Journal of Asian Earth Sciences, 41(6): 525~536.
参考文献
Li Shimin, Wang Qing, Zhu Dicheng, Stern R J, Cawood P A, Sui Qinglin, Zhao Zhidan. 2018. One or two Early Cretaceous arc systems in the Lhasa Terrane, Southern Tibet. Journal of Geophysical Research-Solid Earth. 123(5): 3391~3413.
参考文献
Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyanocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.
参考文献
Lippert P C, Van Hinsbergen D J J, Dupont-Nivet G. 2014. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. In: Nie J S, Horton B K, Hoke G D, eds. Toward An Improved Understanding of Uplift Mechanisms And The Elevation History of The Tibetan Plateau, The Geological Society of America, special paper 507: 1~21.
参考文献
Litvinovsky B A, Jahn B M, Zanvilevich A N, Saunders A, Poulain S, Kuzmin D V, Reichow M K, Titov A V. 2002. Petrogenesis of syenite-granite suites from the Bryansky complex (Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas. Chemical Geology, 189(1-2): 105~133.
参考文献
Liu Deliang, Shi Rendeng, Ding Lin, Huang Qishuai, Zhang Xiaoran, Yue Yahui, Zhang Liyun. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang Tibet: Implications for the subduction of the Bangong-Nujiang Tethyanocean. Gondwana Research, 41: 157~172.
参考文献
Liu Min, Zhu Dicheng, Zhao Zhidan, Mo Xuanxue, Guan Qi, Zhang Liangliang, Yu Feng, Liu Meihua. 2010. Magmatic mixing at the end of early Jurassic and its tectonic significance in the Nierong area, northern Tibet. Acta Petrologica Sinica, 26(10): 3117~3130 (in Chinese with English abstract).
参考文献
Liu Yiming, Li Sanzhong, Santosh M, Cao Huahua, Yu Shengyao, Wang Yuhua, Guo Runhua, Xu Linshan, Zhou Jie, Zhou Zaizheng. 2020. The passive margin of northern Gondwana during Early Paleozoic: Evidence from the central Tibet Plateau. Gondwana Research, 78 : 126~140.
参考文献
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55: 1535~1546.
参考文献
Ludwig K R. 2003. User's Manual for Isoplot/Ex rev. 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center.
参考文献
Ma Anlin, Hu Xiumian, Kapp P, Han Zhong, Lai Wen, BouDagher-Fadel M. 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography Palaeoclimatology Palaeoecology, 506: 30~47.
参考文献
Macdonald R, Davies G R, Bliss C M, Leat P T, Bailey D K, Smith R L. 1987. Geochemistry ofhigh-silica peralkaline rhyolites, Naivasha, Kenya rift valley. Journal of Petrology, 28(6): 979~1008.
参考文献
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.
参考文献
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.
参考文献
Mo Xuanxue, Pan Guitang. 2006. From the Tethys to the formation of the Tibetan Plateau: Constraints of tectono-magmatic events. Earth Science Frontiers, 13(6): 43~51 (in Chinese with English abstract).
参考文献
Mo Xuanxue, Niu Yaoling, Dong Guochen, Zhao Zhidan, Hou Zengqian, Zhou Su, Ke Shan. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 250(1-4): 49~67.
参考文献
Morel M L A, Nebel O, Nebel-Jacobsen Y J, Miller J S, Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231~235.
参考文献
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Temporal and spatial structure and evolution of the Gangdise orogenic belt. Acta Petrologica Sinica, 22 (3): 521~533 (in Chinese with English abstract).
参考文献
Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.
参考文献
Pankhurst M J, Schaefer B F, Turner S P, Argles T, Wade C E. 2013. The source of A-type magmas in two contrasting settings: U-Pb, Lu-Hf and Re-Os isotopic constraints. Chemical Geology, 351: 175~194.
参考文献
Pearce J A, Deng W M. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 327(1594): 215~238.
参考文献
Qu Xiaoming, Xin Hongbo, Du Dedao, Chen Hua. 2012. Age of A-type granites after collision in the middle section of the Bangong-Nujiang suture zone inthe Tibet and its constraints on the closure time of the ocean basin. Geochemistry, 41 (1): 1~14 (in Chinese with English abstract).
参考文献
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.
参考文献
Rudnick R, Gao S. 2003. Composition of thecontinental crust. Treatise on Geochemistry, 3: 1~64.
参考文献
Slam J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.
参考文献
Sun, McDonough. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.
参考文献
Tang Yue, Zhai Qingguo, Hu Peiyuan, Xiao Xuchang, Wang Haotao, Wang Wei, Zhu Zhicai, Wu Hao. 2019. Constraints on the evolution of the Middle Tethyanocean from the Jurassic high-magnesium Andesitic rocks in the middle Bangong-Nujiang suture zone, Tibet. Acta Petrologica Sinica, 35(10): 3097~3114 (in Chinese with English abstract).
参考文献
Tang Yue, Zhai Qingguo, Chung Sunlin, Hu Peiyuan, Wang Jun, Xiao Xuchang, Song Biao, Wang Haitao, Lee Haoyang. 2020a. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau. Geological Societyof America Bulletin, 132(9-10): 2202~2220.
参考文献
Tang Yue, Zhai Qingguo, Hu Peiyuan, Chung Sunlin, Xiao Xuchang, Wang Haitao, Zhu Zhicai, Wang Wei, Wu Hao, Lee Haoyang. 2020b. Southward subduction of the Bangong-Nujiang Tethys Ocean: Insights from ca. 161-129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet. International Journal of Earth Sciences, 109(2): 631~647.
参考文献
Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151~179.
参考文献
Wang Ming, Li Cai, Xie Chaoming, Wu Yanwang, Su Li, Hu Peiyuan. 2012. LA-ICP-MS U-Pb dating of zircons from granitic gneiss in the Nierong microcontinent: Discovery of Neoproterozoic basement rocks and their significance. Acta Petrologica Sinica, 28(12): 4101~4108 (in Chinese with English abstract).
参考文献
Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Fuguang, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyanocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.
参考文献
Wang Wei, Wang Ming, Zhai Qingguo, Xie Chaoming, Hu Peiyuan, Li Cai, Liu Jinheng, Luo Anbo. 2020. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet. Gondwana Research, 78: 77~91.
参考文献
Wang Wei, Zhai Qingguo, Hu Peiyuan, Tang Yue, Zhu Zhicai, Wu Hao. 2021. Cretaceous magmatic rocks in the Nima area, Northern Tibet: Constraints on the evolution of the Bangong-Nujiang suture zone. Acta Petrologica Sinica, 37 (2): 545~562 (in Chinese with English abstract).
参考文献
Wang Xibin, Bao Peisheng, Deng Wanming, Wang Wanguo. 1987. Tectonic Evolution of the Himalayan Lithosphere: Tibetan Ophiolites. Beijing: Geological Publishing House, 138~214 (in Chinese with English abstract).
参考文献
Watson E B, Harrison T M. 1983. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types. Earthand Planetary Science Letters, 64(2): 295~304.
参考文献
Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.
参考文献
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites geochemical characteristics, discrimination and petrogenesis. Contributions To Mineralogy and Petrology, 95(4): 407~419.
参考文献
Wiedenbeck M, Alle P; Corfu F, Griffin W L, Meier M, Oberli F, Vonquadt A, Roddick J C, Speigel W. 1995. 3 natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostandards Newsletter, 19(1): 1~23.
参考文献
Wormald R J, Price R C. 1988. Peralkaline granites near temora, southern new-south-wales- tectonic and petrological implications. Australian Journalof Earth Sciences, 35(2): 209~221.
参考文献
Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105~126.
参考文献
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Some problems on genesis of granites. Acta Petrologica Sinica, 23 (6): 1217~1238 (in Chinese with English abstract).
参考文献
Wu Hao, Li Cai, Hu Peiyuan, Li Xingkui. 2015. Early Cretaceous (100-105 Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiangocean subduction and slab break-off. International Geology Review, 57(9-10): 1172~1188.
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation. Chinese Science Bulletin. 49(16): 1589~1604 (in Chinese with English abstract).
参考文献
Xia Bin, Xu Lifeng, Wei Zhenquan, Zhang Yuquan, Wang Ran, Li Jianfeng, Wang Yanbin. 2008. Zircon SHRIMP dating of the gabbro from Dongqiao ophiolites in the Tibet and its geological significance. Acta Geologica Sinica, 82(4): 528~531 (in Chinese with English abstract).
参考文献
Xie Chaoming. 2013. Tectonic evolution of the Nierong microcontinent on the Tibetan Plateau, Doctoral dissertation of Jilin University (in Chinese with English abstract).
参考文献
Xu Mengjing, Li Cai, Zhang Xingzhou, Wu Yanwang. 2014. Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology. International Geology Review, 56(9): 1072~1096.
参考文献
Xu R H, Scharer U, Allegre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet) - a geochronological study. Journalof Geology, 93(1): 41~57.
参考文献
Xu Zhiqin, Yang Jingsui, Li Haibin, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. Qinghai-Tibet Plateau and continental dynamics: Deep driving forces of terrane consolidation, collisional orogenesis and plateau uplift. Geology of China, 33(2): 221~238 (in Chinese with English abstract).
参考文献
Yan Haoyu, Long Xiaoping, Wang Xuance, Li Jie, Wang Qiang, Yuan Chao, Sun Min. 2016. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Amdo area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang ocean. Lithos, 264: 315~328.
参考文献
Yang Peng, Huang Qiangtai, Xia Bin, Ren Zhanli, Cai Zhourong, Zheng Hao, Lu Xingxin. 2020. Forearc tectonic evolution in the middle of the Bangong-Nujiang Tethysocean: New geochemical evidence of the Lanong ophiolites from the Zangbei lakes region. Geological Journal, 55(5): 3917~3935.
参考文献
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.
参考文献
Yu Yunpeng, Xie Chaoming, Dong Yongsheng, Dong Yuchao, Wang Bin, Duan Menglong, Song Yuhang. 2021. Early Neoproterozoic granitic gneisses in the Amdo micro-continent, Tibet: Petrogenesis and geodynamic implications. International Geology Review, 63(3): 342~356.
参考文献
Zeng Min, Chen Jianping, Wei Chongchong. 2017. Muga Ganggri rock group is an accretive wedge complex in the southern margin of Qiangtang. Earth Science Frontiers, 24 (5): 207~217 (in Chinese with English abstract).
参考文献
Zeng Yunchuan, Xu Jifeng, Chen Jianlin, Wang Baodi, Huang Feng, Xia Xiaoping, Li Mingjian. 2021. Early Cretaceous (similar to 138-134 Ma)forearc ophiolite and tectonomagmatic patterns in central Tibet: Subduction termination and re-initiation of Meso-Tethys ocean caused by collision of an oceanic plateau at the continental margin? Tectonics, 40(3): e2020TC006423.
参考文献
Zhai Qingguo, Jahn Borming, Su Li, Ernst R E, Wang Kuolung, Zhang Ruyuan, Wang Jun, Tang Suohan. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28~43.
参考文献
Zhai Qingguo, Wang Jun, Hu Peiyuan, Lee Haoyang, Tang Yue, Wang Haitao, Tang Suohan, Chung Sunlin. 2018. Late Paleozoic granitoids from central Qiangtang, northern Tibetan plateau: A record of Paleo-Tethys ocean subduction. Journal of Asian Earth Sciences, 167: 139~151.
参考文献
Zhang Bochuan, Fan Jianjun, Luo Anbo, Zeng Xiaowen. 2022. The first identified oceanic core complex in the Bangong-Nujiang suture zone, central Tibet: New insights into the early Mesozoic tectonic evolution of the Meso-Tethys ocean. Journal of Asian Earth Sciences, 233: 105248.
参考文献
Zhang Shu, Zhang Zhaochong. 2010. Petrology and geochemistry of the Huangshan granitic intrusion in Anhui Province, southeast China: Implications for petrogenesis and geodynamics. Acta Geologica Sinica, 84(3): 581~596.
参考文献
Zhang Xiaoran, Shi rendeng, Huang qishuai, Liu deliang, Gong xiaohan, Chen shengsheng, Wu kang, Yi guoding, Sun yali, Ding lin. 2014. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constrainsform zircon U-Pb geochronology of mafic granulites. Gondwana research, 26(3-4): 975~985.
参考文献
Zhang Yichun, Zhang Yujie, Yuan Dongxun, Xu Haipeng, Qiao Feng. 2019. Stratigraphic and paleontological constraints on the opening time of Bangong - Nujiangocean. Acta Petrologica Sinica, 35(10): 3083~3096 (in Chinese with English abstract).
参考文献
Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, Wang Liquan, Liu Yongsheng, Wu Fuyuan. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasaterrane, Tibet. Chemical Geology, 268(3): 298~312.
参考文献
Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasaterrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1): 241~255.
参考文献
Zhu Dicheng, Li Shimin, Cawood P A, Wang Qiang, Zhao Zhidan, Liu Sshengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.
参考文献
Zhu Dicheng, Wang Qiang, Chung Sunlin, Cawood Peter A, Zhao Zhidan. 2019. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society Special Publication, 483: 583~604.
参考文献
Zhu Zhicai, Zhai Qingguo, Hu Peiyuan, Tang Yue, Wang Haitao, Wang Wei, Wu Hao, Huang Zhiqiang. 2020. Time limit of Lasa-Qiangtang terrane collision: Constraints from the Doni Formation in the middle section of Bangong Lake Nujiang suture zone. Journal of Sedimentary, 38 (4): 712~726 (in Chinese with English abstract).
参考文献
范建军. 2016. 班公湖—怒江洋中西段晚中生代汇聚消亡时空重建. 吉林大学博士学位论文.
参考文献
高顺宝, 郑有业, 王进寿, 张众, 杨成. 2011. 西藏班戈地区侵入岩年代学和地球化学: 对班公湖-怒江洋盆演化时限的制约. 岩石学报, 27(7): 1973~1982.
参考文献
侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481~492.
参考文献
侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 340~351.
参考文献
胡培远, 翟庆国, 赵国春, 唐跃, 朱志才, 王伟, 吴昊. 2021. 冈瓦纳大陆北缘安第斯型造山带: 藏北安多奥陶纪花岗岩锆石U-Pb年龄和地球化学证据. 岩石学报, 37(2): 530~544.
参考文献
李华亮, 高成, 李正汉, 张璋, 彭智敏, 关俊雷. 2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(4): 663~673.
参考文献
刘敏, 朱弟成, 赵志丹, 莫宣学, 管琪, 张亮亮, 于枫, 刘美华. 2010. 藏北聂荣地区早侏罗世末期的岩浆混合作用及构造意义. 岩石学报, 26(10): 3117~3130.
参考文献
莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43~51.
参考文献
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.
参考文献
曲晓明, 辛洪波, 杜德道, 陈华. 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1~14.
参考文献
唐跃, 翟庆国, 胡培远, 肖序常, 王海涛, 王伟, 朱志才, 吴昊. 2019. 西藏班公湖-怒江缝合带中段侏罗纪高镁安山质岩石对中特提斯洋演化的制约. 岩石学报, 35(10): 3097~3114.
参考文献
王明, 李才, 解超明, 吴彦旺, 苏犁, 胡培远. 2012. 聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年——新元古代基底岩石的发现及其意义. 岩石学报, 28(12): 4101~4108.
参考文献
王伟, 翟庆国, 胡培远, 唐跃, 朱志才, 吴昊. 2021. 藏北尼玛地区白垩纪岩浆岩对班公湖-怒江缝合带演化的制约. 岩石学报, 37(2): 545~562.
参考文献
王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化: 西藏蛇绿岩. 北京: 地质出版社, 138~214.
参考文献
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217~1238.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528~531.
参考文献
解超明. 2013. 青藏高原聂荣微陆块构造演化, 吉林大学博士学位论文.
参考文献
许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221~238.
参考文献
张以春, 张予杰, 袁东勋, 徐海鹏, 乔枫. 2019. 班公湖-怒江洋打开时间的地层古生物约束. 岩石学报, 35(10): 3083~3096.
参考文献
曾敏, 陈建平, 位冲冲. 2017. 木嘎岗日岩群是羌塘南缘的增生楔杂岩. 地学前缘, 24(5): 207~217.
参考文献
朱志才, 翟庆国, 胡培远, 唐跃, 王海涛, 王伟, 吴昊, 黄智强. 2020. 拉萨—羌塘地体碰撞时限: 来自班公湖—怒江缝合带中段多尼组沉积的约束. 沉积学报, 38(4): 712~726.
目录contents

    摘要

    班公湖-怒江缝合带及其两侧广泛分布早白垩世岩浆岩,它们是班公湖-怒江洋俯冲消减及拉萨地块与南羌塘地块碰撞过程的直接响应,为研究特提斯大洋演化、青藏高原早期陆块聚合提供了重要素材。本文报道了班公湖-怒江缝合带中段那曲地区黑云母二长花岗岩的锆石U-Pb定年、岩石地球化学和锆石Hf同位素分析结果。锆石LA-ICP-MS U-Pb定年结果表明,黑云母二长花岗岩形成于114~113 Ma(早白垩世晚期)。地球化学分析表明,岩石显示出高钾钙碱性—钾玄岩系列特征,同时具有高的Ga/Al×10000比值(介于2.02~3.15之间,平均为2.61)和Zr+Nb+Ce+Y含量(平均为524.87×10-6)。此外,锆饱和温度和锆石Ti温度计共同指示岩浆形成于高温的环境 (>800℃),这些特征与典型的A型花岗岩相一致。黑云母二长花岗岩中锆石具有低的εHf(t)值(10.1~6.4),对应的Hf同位素二阶段模式年龄(tDM2)为1852~1547 Ma,指示其岩浆可能源自安多微陆块中下地壳古老结晶基底的部分熔融。结合区域研究成果,认为那曲地区黑云母二长花岗岩可能形成于后碰撞伸展的构造背景,早白垩世晚期伴随着拉萨和南羌塘地块的拼合,班公湖-怒江中特提斯洋中段地区已经闭合。

    Abstract

    Cretaceous magmas are widely distributed within and on both sides of the Bangonghu-Nujiang suture zone. These magmatic rocks record the process of the subduction of the Bangonghu-Nujiang ocean and the collision between the Lhasa and Qiangtang terranes. In this study, we report new zircon U-Pb dating, petrogeochemistry, and zircon Hf isotopic analysis of biotite monzogranites from the Naqu area in the middle of the Bangong-Nujiang suture zone. Zircon LA-ICP-MS dating results show that biotite monzogranites were formed at the Early Cretaceous (114~113 Ma). All samples have high-K calc-alkaline or potassic basaltic affinities. They also show high Ga/Al×10000 ratios (in the range of 2.02~3.15, with an average of 2.61) and Zr+Nb+Ce+Y contents (with an average of 524.87×10-6, much higher than 350×10-6) with high zirconium saturation temperature and Ti-in-zircon thermometer (>800℃). These features suggest that these samples belong to the A-type granites. The zircons in the granites have low εHf(t) values (10.1~6.4) and ancient two-stage Hf model ages (tDM2) (1852~1547 Ma), indicating that the magma was originated from anatexis of the middle-lower crustal crystallization basement of the Amdo microcontinent. Combined with previous works, we suggest that the Naqu biotite monzogranites may have been formed in post-collisional setting. At the late Early Cretaceous, the Bangong-Nujiang Meso-Tethyan ocean have been closed by the Lhasa and Southern Qiangtang collision.

  • 青藏高原由多个源自冈瓦纳大陆北缘的陆块依次向北拼贴于欧亚大陆形成,记录了古、中、新特提斯多个洋盆的演化过程,也是现今碰撞仍在进行中的造山带,对于研究洋-陆转化及其地球动力学过程具有着重要意义,因而一直是国内外地学研究的热点地区(Xu et al.,1985; Yin et al.,2000; 莫宣学等,2006; 许志琴等,2006; Pan Guitang et al.,2012)。大规模岩浆活动往往对应于俯冲或者碰撞等地质过程,因而相应的岩浆岩往往记录了特定构造背景下的一些地质特征(如:形成的温度、压力、源区特征等)。近年来,许多研究者对青藏高原内部俯冲、碰撞相关岩浆岩开展了系统研究,针对不同背景下岩浆作用的成因机制及深部动力学过程等作了探索,并基于岩浆岩的年代学和岩石成因研究对洋-陆转换过程做了精细约束(如:Chung Sunlin et al.,2005; Mo Xuanxue et al.,2008; Ji Weiqiang et al.,2009; Zhu Dicheng et al.,2019)。

  • 班公湖-怒江缝合带位于青藏高原中部,代表了中特提斯洋在青藏高原闭合的残余,是探索中特提斯洋构造演化及高原内部早期陆块拼合历史的重要窗口之一(潘桂棠等,2006; Metcalf,2013; Zhu Dicheng et al.,2016; Hu Xiumian et al.,2022)。目前,关于班公湖-怒江洋的闭合时限仍然存有争议。部分学者基于早白垩世洋岛、洋底高原、复理石沉积及俯冲相关岩浆作用等认为班公湖-怒江洋盆最终闭合发生在晚白垩世,且具有东早西晚的穿时性特征(Li Jinxiang et al.,2011; Wu Hao et al.,2015; Fan Jianjun et al.,2018; Yang Peng et al.,2020; Zeng Yunchuan et al.,2021); 另一种观点是洋盆关闭起始于晚侏罗世,并在早白垩世早期已经完全闭合(Kapp et al.,20052007; Leier et al.,2007; Zhu Dicheng et al.,2016; Hu Xiumian et al.,2022)。二者争议的核心在于对早白垩世地质记录的认识,即他们能否代表大洋闭合的产物。

  • 班公湖-怒江缝合带内部及其周缘广泛发育了早白垩世岩浆岩,为研究早白垩世班公湖-怒江中特提斯洋演化及两侧陆块拼合过程提供了关键素材。本文报道了新近在班公湖-怒江缝合带中段那曲地区发现的A型花岗岩的研究工作,通过岩石学、地球化学、锆石U-Pb年代学及Hf同位素分析结果,探讨了其岩石成因及可能的形成构造背景,为约束班公湖-怒江洋中段洋盆闭合时限提供了新的证据。

  • 1 区域地质背景

  • 班公湖-怒江缝合带横亘于青藏高原中部,西起克什米尔地区,向东经班公湖、改则、丁青等地而后转折向南东延伸至怒江,全长超过2000 km,主要由蛇绿岩、弧岩浆岩、微陆块、俯冲增生杂岩和磨拉石等组成(Xu Mengjing et al.,2014; Zhu Dicheng et al.,2016; Wang Baodi et al.,2016; Li Shun et al.,2019)。已有研究表明,班公湖-怒江洋开启于早二叠世,并在三叠纪末达到最大规模,(Zhai Qingguo et al.,2013; 张以春等,2019; Cao Yong et al.,2019; Hu Xiumian et al.,2022; Zhang Bochuan et al.,2022)。侏罗纪以来,伴随着大洋的快速俯冲消减,形成了广泛的俯冲相关蛇绿岩(SSZ蛇绿岩; Wang Baodi et al.,2016; Qian Qing et al.,2020)、俯冲增生杂岩和岛弧岩浆岩(Zhu Dicheng et al.,2016; Ma Anlin et al.,2018; Hu Xiumian et al.,2022)。班公湖-怒江缝合带中段,也称藏北湖区,是整个缝合带内蛇绿岩出露南北最宽,构造演化最为复杂的区域(王希斌等,1987; Tang Yue et al.,2020b),自北向南分布三条蛇绿岩亚带:东巧-安多、北拉-拉弄和永珠-纳木错蛇绿岩亚带,它们代表了班公湖-怒江洋多阶段、多分支洋盆演化的记录(唐跃等,2019)。这些分支蛇绿岩亚带夹持地质单元包括安多微陆块及侏罗纪—早白垩世早期俯冲增生杂岩、岛弧岩浆岩、复理石沉积等(Pearce and Deng,1988; Guynn et al.,2006; 夏斌等,2008; Tang Yue et al.,2020a)。安多微陆块夹持于东巧-安多和北拉-拉弄蛇绿岩亚带之间,是一个具有中—新元古代结晶基底的古老陆块,最新的研究表明其可能与拉萨地块更具亲缘性(Hu Peiyuan et al.,2021; Yu Yunpeng et al.,2021)。

  • 研究区位于缝合带中段安多微陆块内部,那曲县城以北(图1)。区内可见侏罗纪蛇绿岩、念青唐古拉岩群(AnЄ)、侏罗纪—白垩纪侵入岩和中—新生代沉积岩。念青唐古拉岩群主要由新元古代—早古生代斜长角闪岩、黑云斜长片麻岩及二长片麻岩等变质岩系组成,代表了剥露的安多微陆块结晶基底(王明等,2012; 解超明等,2013; 胡培远等,2021)。侏罗纪—白垩纪侵入岩以中酸性岩浆岩为主,主要分布在安多微陆块中北部地区,是班公湖-怒江洋多期次俯冲—闭合的产物(Guynn et al.,2006; 刘敏等,2010; Zhang Xiaoran et al.,2014; Yan Haoyu et al.,2016)。沉积地层单元主要出露于研究区南部,包括:侏罗系木嘎岗日岩群(JM)、上侏罗统—下白垩统沙木罗组(J3K1s)和下白垩统多尼组(K1d)。木嘎岗日岩群沉积可能始于晚三叠世,并一直持续到早白垩世早期,以泥页岩、砂岩和砾岩为主,夹有外来岩块(包括蛇绿岩块、灰岩及岛弧火山岩块等),是班公湖-怒江洋北向俯冲的产物(范建军,2016; 曾敏等,2017; Ma Anlin et al.,2018)。沙木罗组以石英砂岩、钙质杂砂岩为主; 多尼组红层以砾岩、砂岩为主,角度不整合覆盖于木嘎岗日岩群和蛇绿岩之上,并被新生代沉积不整合覆盖,可能是大洋最终闭合的沉积响应,与晚白垩世竞柱山组共同代表了拉萨地块与南羌塘地块碰撞拼合及随后造山过程中形成的磨拉石建造(李华亮等,2016; Ma Anlin et al.,2018; 朱志才等,2020)。

  • 本项研究的花岗质岩体位于那曲县城以北,走向近EW向,呈不规则岩株状侵入到新元古代念青唐古拉岩群副片麻岩中,出露面积约80 km2(图1)。岩体受后期构造作用及风化影响,表面多破碎成不同规模的岩块,部分岩块后期风化呈椭球状或浑圆状(图2a)。野外调查表明,该岩体岩性变化不显著,主体为中—粗粒黑云母二长花岗岩,新鲜面呈浅肉红色—灰白色。岩体边部与围岩接触部位可见矿物粒度逐渐变细,以细粒黑云母二长花岗岩和细粒二长花岗岩为主,暗色包体不发育。本次研究的样品采自岩体中部露头相对新鲜的部位,岩石具有明显花岗结构,由于差异性风化,局部可见相对自形且突出的斜长石颗粒。野外和显微镜下观察表明,样品呈粗粒结构,块状构造(图2b~d),矿物组成包括:黑云母(5%~8%)、斜长石(30%~40%)、钾长石(25%~35%)和石英(20%~30%),副矿物主要为锆石、磷灰石和榍石,根据Q-A-P命名图解可知样品为典型的(黑云母)二长花岗岩(Le Maitre et al.,1989)。斜长石相对自形,具有短柱状—长柱状晶形,可见明显的聚片双晶,部分矿物颗粒边缘发生不规则绢云母化蚀变。钾长石主要为半自形—他形柱状,环带不显著,部分可见卡式双晶。黑云母呈片状,多色性明显,可见一组完全解理,部分发生绿泥石化。石英则多呈半自形—他形颗粒充填在斜长石和暗色矿物之间(图2c、d)。

  • 图1 青藏高原中部构造简图(a,改自Hu Peiyuan et al.,2017)和西藏那曲地区地质简图(b,据西藏自治区地质调查院,2004修改)

  • Fig.1 Structural schematic map of central Tibet Plateau (a, modified after Hu Peiyuan et al., 2017) and structural schematic map of Naqu area in Tibet (b, modified after Tibet Institute of Geolgical Survey, 2004)

  • JSSZ—金沙江缝合带; LSSZ—龙木错-双湖缝合带; BNSZ—班公湖-怒江缝合带; IYZSZ—印度河-雅鲁藏布江缝合带

  • JSSZ—Jinshajiang suture zone; LSSZ—Longmucuo-Shuanghu suture zone; BNSZ—Bangong-Nujiang suture zone; IYZSZ—Indus-Yalung Zangbo River suture zone

  • 2 分析方法

  • 本文对两件黑云母二长花岗岩进行锆石U-Pb和Lu-Hf同位素分析。选择12件样品进行全岩主量和微量元素分析。样品薄片和全岩粉末的制备以及锆石的分选在河北省区域地质调查队完成,锆石制靶在北京中兴美科科技有限公司完成,锆石透反射和阴极发光图像(CL)的采集在中国地质科学院地质研究所完成。

  • 图2 西藏那曲地区黑云母二长花岗岩野外露头及显微镜下照片(正交偏光)

  • Fig.2 Field photographs and microphotographs (crossed polarizers) of the biotite monzogranites in the Naqu area, Tibet

  • (a)—黑云母二长花岗岩野外露头示岩体不规则侵入到围岩(念青唐古拉岩群变质沉积岩);(b)—黑云母二长花岗岩野外照片,显示岩石呈浅肉红色,局部发育似斑状结构,可见钾长石斑晶;(c)、(d)—黑云母二长花岗岩正交偏光镜下照片,示岩石具有典型花岗结构,钾长石和斜长石相对自形,局部发生不同程度蚀变,斜长石具有明显的聚片双晶,石英呈不规则他形分布于长石之间; Q—石英; Bi—黑云母; Kfs—钾长石; Pl—斜长石

  • (a) —field occurrence of the biotite monzogranites, showing an intrusive contact relationship; (b) —field occurrence of the biotite monzogranites, patchy structure can be seen locally and potassium feldspar phenocrysts can be seen; (c) , (d) —photomicrograph of the biotite monzogranites, showing typical granitic texture; the feldspar crystallization degree is high and quartz is heteromorphic and distributed between feldspars; Q—quartz; Bi—biotite; Kfs—orthoclase; Pl—plagioclase

  • 2.1 锆石U-Pb定年

  • 锆石测年在北京科荟测试技术有限公司完成,采用激光剥蚀等离子质谱仪对锆石进行U-Th-Pb同位素体系分析,仪器由ESI公司的NWR 193 nm激光剥蚀进样系统和AnlyitikJena公司的PQMS Elite型四级杆等离子体质谱仪联合构成,分析流程和仪器运行条件见相关文献(侯可军等,2009)。本次分析中,193 nm激光器工作频率为10 Hz; 测试点束斑直径为25 μm,剥蚀采样时间为45 s。标准锆石GJ-1作为内部标样用于对分析过程中的同位素分馏进行校正,PLE和91500作为外部标样用于监测仪器稳定性。测试过程中,每5或10个样品点插入一组GJ-1(两个点)、一个91500和一个PLE。分析结果表明,GJ-1测试年龄加权平均值为601 ± 3 Ma(2SD,n = 16),91500测试年龄加权平均值为1060 ± 5 Ma(2SD,n = 8),PLE测试年龄加权平均值为337 ± 2 Ma(2SD,n = 8),上述结果与对应推荐值在误差范围内相一致(Wiedenbeck et al.,1995; Jackson et al.,2004; Slama et al.,2008)。标准锆石SRM 610用于微量元素含量校正。锆石U-Pb年龄、普通Pb校正使用ICPMSDataCal 8.0数据处理软件处理(Liu Yongsheng et al.,2010),加权平均年龄的谐和图绘制使用ISOPLOT 3.0程序(Ludwig,2003)。

  • 2.2 锆石Lu-Hf同位素分析

  • 锆石Lu-Hf同位素分析在北京科荟测试技术有限公司完成,采用激光剥蚀等离子质谱仪对锆石Lu-Hf同位素体系分析,测试仪器为Thermo Fisher公司的Neptune Plus多接收电感耦合等离子质谱仪(MC-ICPMS)和NWR213 nm激光取样系统,分析流程及仪器运行条件见相关文献(Wu Fuyuan et al.,2006),分析点位置与年龄测点重合或在其附近,采用单点剥蚀模式。本次分析中,束斑直径为45 μm,剥蚀能量为11 J/cm2,脉冲频率为6 Hz。标准锆石GJ-1作为外部标样监测仪器数据可靠性,其测试值为0.282004 ± 0.000003(2SD,n = 146)与推荐值在误差范围内一致(Morel et al.,2008)。

  • 2.3 全岩主量和微量元素分析

  • 全岩主量、微量元素分析是在北京科荟测试技术有限公司完成。利用X荧光光谱法(XRF)对主量元素进行分析,仪器为SHIMADZU公司的XRF-1800型X射线荧光光谱仪。样品烧失量采用马弗炉加热烧失法测量。微量元素分析利用等离子体质谱仪(ICP-MS)完成,将处理好的样品称取50 mg,用HF和HNO3酸溶后放入高压釜中密封加热48 h,开盖蒸干后使用HNO3再次酸溶,并送入ICP-MS中测定微量元素含量。GSP-2、BCR-2、AGV-2和RGM-2作为参考样。本次分析精度优于5%,数据见表2。

  • 3 分析结果

  • 3.1 锆石U-Pb年龄

  • 对两件黑云母二长花岗岩样品开展了锆石U-Pb定年,结果见表1。样品透反射和阴极发光图像显示锆石内部结构及晶体形态相似,裂隙和包体均不发育,为短柱状至长柱状,半自形—自形晶体,具有明显的振荡环带(图3)。粒径范围为150~350 μm,长宽比介于1∶1~3∶1。锆石Th/U比值分别介于0.57~2.87和0.55~3.80之间(表1),以上特征指示这些锆石为岩浆成因(Hoskin et al.,2003; 吴元保和郑永飞,2004)。在U-Pb年龄谐和图上,样品点均落在谐和线上及其附近,两件样品年龄加权平均值分别为114 ± 1 Ma(MSWD = 1.0,n = 19)和113± 1 Ma(MSWD = 1.3,n = 23),在误差范围内基本一致(图4a、b),共同代表了岩浆结晶年龄,表明该岩体形成于早白垩世晚期。

  • 3.2 全岩地球化学

  • 12件黑云母二长花岗岩样品全岩主量、微量和稀土元素分析结果见表2。黑云母二长花岗岩SiO2含量为66.41%~74.98%,Al2O3为13.38%~15.57%,同时样品具有较高的K2O(3.52%~5.70%)、Na2O(2.60%~3.49%)含量,低的TiO2(0.23%~0.77%)、P2O5(0.06%~0.22%)和MgO(0.27%~1.36%)含量,Mg#介于34.8~42.2。样品A/CNK值为0.88~1.33,平均值为1.03,介于准铝质—过铝质之间(图5a)。在K2O-SiO2图解中,样品显示出高钾钙碱性—钾玄质特征(图5b)。

  • 样品轻重稀土分异明显(图6a),呈现出轻稀土相对富集,重稀土相对亏损的右倾模式((La/Yb)N为24.6~60.6),且具有明显的Eu负异常(Eu/Eu*为0.14~0.20)。稀土总体含量相对较高(∑REE=87.1×10-6~609×10-6,平均为342×10-6)。在原始地幔标准化的微量元素蛛网图(图6b)中,样品明显富集Rb、Pb和K等大离子亲石元素(LILE); 亏损Nb、Ta、Ti等高场强元素(HFSE)。

  • 图3 西藏那曲地区黑云母二长花岗岩锆石阴极发光图像

  • Fig.3 Cathodoluminescence image of representative zircon of biotite monzogranites in the Naqu area, Tibet

  • 表1 西藏那曲地区黑云母二长花岗岩锆石U-Th-Pb同位素数据

  • Table1 LA-ICP-MS U-Th-Pb data of zircons from the biotite monzogranites in the Naqu area, Tibet

  • 3.3 锆石Hf同位素

  • 对两件测年样品(18T566、18T590)进行锆石Lu-Hf同位素分析,分析结果见表3。两件样品中锆石的初始176Hf/177Hf值分别为0.282420~0.282536和0.282474~0.282520,εHft)值为10.1~6.9和8.9~6.4,对应的二阶段模式年龄(tDM2)分别为1852~1547 Ma和1740~1581 Ma。

  • 表2 西藏那曲地区黑云母二长花岗岩全岩主量(%)和微量(×10-6)元素分析结果

  • Table2 Major (%) and trace (×10-6) elements data of the biotite monzogranite in the Naqu area, Tibet

  • 4 讨论

  • 4.1 岩石成因

  • 花岗岩可以分为I、S、M和A型。相较于本研究的样品,S型花岗岩通常为强过铝质,M型花岗岩往往具有较低的K2O含量(图5b)(Frost et al.,2001; Litvinovsky et al.,2002; Breiter,2012)。高Ga低Al是A型花岗岩的典型特征,因此高的Ga/Al比值(10000×Ga/Al>2.6)是区别A型花岗岩与非A型花岗岩的重要指标(Whalen et al.,1987; 吴福元等,2007)。研究区内黑云母二长花岗岩Ga/Al×10000介于2.02~3.15,平均值为2.61,此外黑云母二长花岗岩中Zr+Nb+Ce+Y平均为524.87×10-6(远高于350×10-6),与A型花岗岩特征一致,有别于I型和S型花岗岩(图7a、b)(Whalen et al.,1987)。此外,相较于I型和S型花岗岩,A型花岗岩最突出的特点是高温(吴福元等,2007)。因为锆石是岩浆中较早结晶出的矿物,可以近似代表岩浆形成的温度,通过锆饱和温度(Watson et al.,1983)计算出岩浆结晶温度在760~842℃之间,平均为805℃,高于I型与S型花岗岩的形成温度(600~800℃)。样品微量元素中Zr、Hf的正异常则可能由锆石发生熔融引起,推测岩浆源区的温度更高,生热元素Th和K的正异常也指示了较高的岩浆温度。此外,锆石的透反射和阴极发光图像表明其具有较好的结晶形态,缺乏继承核(图3),有别于典型的S型花岗岩(如Zhai et al.,2018)。进一步锆石Ti温度计指示(Watson et al.,2006)黑云母二长花岗岩中锆石形成于633~822℃,平均温度为700℃,也进一步支持上述认识(Fu Bin et al.,2008)。因此,本研究的黑云母二长花岗岩属于A型花岗岩,形成于高温的地质背景。

  • 表3 西藏那曲地区黑云母二长花岗岩锆石Hf同位素分析结果

  • Table3 Zircon Hf isotopic data of the biotite monzogranites in the Nagqu area, Tibet

  • 图4 西藏那曲地区黑云母二长花岗岩LA-ICP-MS锆石U-Pb年龄谐和图(a、b)

  • Fig.4 LA-ICP-MS zircon U-Pb concordant diagrams (a, b) of biotite monzogranites in the Naqu area, Tibet

  • 图5 西藏那曲地区黑云母二长花岗岩的A/NK-A/CNK(a,底图修改自Maniar and Piccoli,1989)和K2O-SiO2图解(b,底图修改自Rickwood,1989

  • Fig.5 A/NK vs. A/CNK (a, after Maniar and Piccoli, 1989) and K2O vs. SiO2 (b, after Rickwood, 1989) of biotite monzogranites in the Naqu area, Tibet

  • 图6 西藏那曲地区黑云母二长花岗岩的稀土元素球粒陨石标准化配分曲线(a)和微量元素原始地幔标准化蛛网图(b)(标准化数据引自Sun and MacDonald,1989)

  • Fig.6 Chondrite normalized REE patterns (a) and primitive mantle normalized trace elements spidergrams (b) for biotite monzogranites in the Naqu region, Tibet (normalized to the primitive mantle and chondrite compositions of Sun and MacDonald, 1989)

  • 图7 那曲地区黑云母二长花岗岩(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)(a,据Whalen et al.,1987)、 Zr-10000×Ga/Al(b,据Whalen et al.,1987)图解

  • Fig.7 (Na2O+K2O) /CaO- (Zr+Nb+Ce+Y) (a, after Whalen et al., 1987) , Zr-10000×Ga/Al (b, after Whalen et al., 1987) plots for biotite monzogranite in the Nagqu area

  • 花岗质岩浆源区可以分为幔源、壳源和壳-幔混合三种(Turner et al.,1992; Chappell,1999; Collins,2008; Pankhurst et al.,2013)。研究区内同期岩浆活动以花岗质岩浆岩为主,少见基性岩浆作用。样品较低的MgO(平均为0.76%),Cr(平均为9.25×10-6),Co(平均为4.08×10-6)和Ni(4.08×10-6)以及较富集的锆石Hf同位素组成进一步表明该A型花岗岩不可能通过幔源岩浆的分异直接产生。花岗岩体中暗色包体不发育,野外和镜下特征(图2)也同样缺乏岩浆混合的证据,暗示其形成与壳幔混合作用关系不大。黑云母二长花岗岩以高钾钙碱(碱玄岩)为特征(图5b),并富集Th、U、大离子亲石元素、轻稀土元素((La/Yb)N为24.6~60.6),亏损Nb、Ta和Ti等高场强元素(图6b),与中下地壳成分特征相一致(Rudnick et al.,2003),而亏损Sr、Ba等元素可能与岩浆结晶过程中钾长石等矿物分离结晶有关(Green,1980)。此外,黑云母二长花岗岩与安多微陆块内部发育的早白垩世花岗岩具有相似的主量元素和亲石元素组成(Liu Deliang et al.,2017),指示其不太可能是熔体或挥发分抽离后下地壳的重熔,因为残余物质发生重熔时不可能产生与先期熔体相似地球化学特征(Creaser et al.,1991)。负的锆石εHft)值(10.1~6.9和8.9~6.4)以及较古老的二阶段模式年龄(1852~1547 Ma)(表3),与前人报道的安多微陆块结晶基底的岩浆岩和变质作用时代相近似,同时与安多微陆块新元古代—寒武纪岩浆岩的锆石Hf同位素特征相似,进一步指示岩浆可能源于安多微陆块古老地壳物质的部分熔融(解超明等,2013; Liu Yiming et al.,2020; Hu Peiyuan et al.,2021)。此外,班公湖-怒江缝合带内及周缘的沉积岩主要源自俯冲和碰撞作用,多形成于侏罗纪—白垩纪,具“新生”的特征,其部分熔融产生的岩浆岩多继承了其中源区相对亏损的特征而有别于本次报道的黑云母二长花岗岩(Hou Zengqian et al.,2015; Zhu Dicheng et al.,2016; Li Shimin et al.,2018)。相较于A型花岗岩的实验分析以及熔体元素组成(Douce,1997; Dall'Agnol et al.,1999)与Fe-index-SiO2演化(Frost et al.,2011),结合锆饱和温度计、锆石及微量元素指示的高温特征,我们认为源岩可能为英云闪长质,在800~900℃、0.3~0.4 GPa条件下发生部分熔融(Douce,1997; Dall'Agnol et al.,1999)。高温的背景可能与伸展背景下强烈的壳幔相互作用过程有关(见4.2讨论),这与班公湖-怒江缝合带早白垩世岩浆作用的研究结论相吻合(Zhu Dicheng et al.,2016)。综合上述讨论,我们认为该花岗岩源区主要为安多微陆块古老的中下地壳结晶基底。

  • 中酸性岩浆在侵位过程中往往伴随着岩浆的结晶分异和同化混染。本项研究的花岗岩样品锆石εHft)值的变化范围较小,暗示岩石在形成过程中未经历明显的同化混染作用(王伟等,2021)。微量元素Sr、Ba和Eu的负异常(图6b)一般指示钾长石、斜长石等矿物的结晶分异(Blundy et al.,1991)。此外,样品高硅、低镁、低Mg#等特征也暗示岩浆侵位过程可能经历了镁铁质矿物的分离结晶(如角闪石)。因此,我们认为早白垩世黑云母二长花岗岩起源于相对高温背景下安多微陆块古老中下地壳物质部分熔融,且在岩浆侵位过程中发生了不同程度的结晶分异。

  • 4.2 构造意义

  • A型花岗岩多形成于高温、低压的构造背景,在大洋、板内和造山带中均有发育,其形成常与地幔柱/热点、大陆裂谷或者后碰撞/造山后伸展有关(Macdonald et al.,1987; Holm,1988; Wormald et al.,1988; Zhang Shu et al.,2010; Huang He et al.,2012)。目前研究多认为班公湖-怒江缝合带闭合存在东西向穿时性,即东部闭合早,并逐渐向西迁移(Zhu Dicheng et al.,2016; Fan Jianjun et al.,2018; Li Shun et al.,2019)。研究区地处班公湖-怒江缝合带中段,已有研究表明该地区及南北两侧的羌塘地块南缘和拉萨地块北缘均广泛发育早白垩世岩浆岩,代表了早白垩世岩浆“大爆发”,一般认为它们与班公湖-怒江洋闭合过程伴随的南向俯冲板片断离或岩石圈拆沉有关(Zhu Dicheng et al.,2009; Wu Hao et al.,2015; Hu Peiyuan et al.,2017),但南向俯冲的板片断离模型并不能很好地解释这种跨缝合带面状分布(南北跨度大于200 km)的岩浆作用(Hu Peiyuan et al.,2017)。区域资料表明,除拉萨地块北缘广泛发育的早白垩世岩浆作用外,缝合带中段地区及南羌塘南缘同样发育近同期的陆相火山岩、侵入岩和碎屑岩,指示该时期缝合带可能已经完全闭合,并且南北两侧物源开始向缝合带内汇聚(Lai Wen et al.,2019; 朱志才等,2020),蛇绿岩和重力异常分析同样指示班公湖-怒江洋中段闭合及随后的碰撞变形发生于早白垩世(Jiang Suhua et al.,2021)。那曲地区古地磁数据也表明,早白垩世早期拉萨和南羌塘地块具有相似的古纬度,即两个块体已经拼合(Leier et al.,2007; Lippert et al.,2014; Chen Weiwei et al.,2017)。早白垩世陆相红层不整合覆盖于蛇绿岩及俯冲增生杂岩之上,也进一步表明班公湖-怒江洋中段地区早白垩世已经由大洋转变为陆相环境(Kapp et al.,2005; Zhu Zhicai et al.,2019)。

  • 本项研究表明早白垩世黑云母二长花岗岩具有A型花岗岩的典型特征,与班戈区域内报道的A型花岗岩共同指示了此时该区域可能处于高温、伸展的构造背景(高顺宝等,2011; 曲晓明等,2012; Zhu Dicheng et al.,2016)。在R1-R2图解中(图8a),样品点主要落在后碰撞环境中,在A型花岗岩构造环境判别图解中样品落入A1型区域(图8b、8c),结合早白白垩纪研究区的构造背景以及后碰撞到板内环境的演化过程(Leigeois,1998; 侯增谦等,2006),本文认为该黑云母二长花岗岩可能形成于后碰撞晚期向板内环境演化阶段。同时,区域内也广泛发育同期的I型、S型花岗岩,复杂的岩浆作用和同位素组成指示了强烈的壳幔相互作用(高顺宝等,2011; Zhu Dicheng et al.,20112016; Wang Wei et al.,2020)。这些岩浆作用可能与后碰撞伸展背景下的构造调整和拆沉作用有关(Hu Peiyuan et al.,2017)。

  • 图8 那曲地区黑云母二长花岗岩R1-R2(a,底图据Batchelor and Bowden,1985)、Nb-Y-Ga(b)和Nb-Y-Ce(c)图解(b和c底图据Eby et al.,1992)(R1 = 4Si11(Na+K)2(Fe+Ti); R2 = 6Ca+2Mg+Al)

  • Fig.8 R1-R2 (a, after Batchelor and Bowden, 1985) , Nb-Y-Ga (b) and Nb-Y-Ce (c) plots (b and c after Eby et al., 1992) of biotite monzogranites in the Nagqu area (R1 = 4Si11 (Na+K) 2 (Fe+Ti) ; R2 = 6Ca+2Mg+Al)

  • 基于上述认识,我们认为晚侏罗世至早白垩世,班公湖-怒江洋中段逐渐闭合,随后发生了拉萨地块与安多微陆块和南羌塘地块的碰撞。早白垩世晚期,随着岩石圈拆沉,软流圈上涌,引发广泛的幔源岩浆上涌和壳幔相互作用。高温的幔源岩浆上涌过程中烘烤中下地壳物质,使其发生部分熔融并形成了横跨缝合带的大规模中酸性岩浆作用。

  • 5 结论

  • (1)锆石U-Pb定年指示那曲北部黑云母二长花岗岩形成于114~113 Ma,即早白垩世晚期。

  • (2)黑云母二长花岗岩显示出A型花岗岩的特征,可能形成于伸展背景下安多微陆块古老中下地壳组分的部分熔融,岩浆侵位过程中发生了一定程度结晶分离作用。

  • (3)研究区内早白垩世晚期岩浆作用形成于后碰撞伸展的构造背景,可能与岩石圈拆沉有关,进一步印证了班公湖-怒江洋中段在早白垩世已经闭合。

  • 致谢:锆石U-Pb、Lu-Hf同位素分析得到了北京科荟测试技术有限公司实验室孔德为老师和查明霞老师的帮助; 野外工作中得到了朱志才、吴昊的帮助; 编委和审稿专家对本文修改提出了许多建设性意见,在此致以衷心的感谢。

  • 注释

  • ❶ 西藏自治区地质调查院.2004. 那曲县幅1∶25万区域地质图.

  • 参考文献

    • Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43~55.

    • Blundy J D, Wood B J. 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55: 193~209.

    • Breiter K. 2012. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krusne hory/Erzgebirge Mts. , central Europe. Lithos, 151: 105~121.

    • Cao Yong, Sun Zhiming, Li Haibin, Pei Junling, Liu Dongliang, Zhang Lei, Ye Xiaozhou, Zheng Yong, He Xiangli, Ge Chenglong, Jiang Wan. 2019. New paleomagnetic results from middle Jurassic limestones of the Qiangtang terrane, Tibet: Constraints on the evolution of the Bangong-Nujiang ocean. Tectonics, 38(1): 215~232.

    • Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.

    • Chen Weiwei, Zhang Shihong, Ding Jikai, Zhang Junhong, Zhao Xixi, Zhu Lidong, Yang Wenguang, Yang Tianshui, Li Haiyan, Wu Huaichun. 2017. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet. Gondwana Research, 41: 373~389.

    • Chung Sunlin, Chu Meifei, Zhang Yuquan, Xie Yingwen, Lo Chinghua, Lee Tungyi, Lan Chingying, Li Xianhua, Zhang Qi, Wang Yizhao. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173~196.

    • Collins W J, Richards S W. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36(7): 559~562.

    • Creaser R A, Price R C, Wormald R J. 1991. A-type granites revisited - assessment of a residual-source model. Geology, 19(2): 163~166.

    • Dall'Agnol R, Scaillet B, Pichavant M. 1999. An experimental study of a Lower Proterozoic A-type granite from the eastern Amazonian Craton, Brazil. Journal of Petrology, 40(11): 1673~1698.

    • Douce A E P. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743~746.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids-petrogenetic and tectonic implications. Geology, 20(7): 641~644.

    • Fan Jianjun. 2016. Temporal and spatial reconstruction of the late Mesozoic convergence and extinction in the mid-western section of Bangong-Nujiang ocean. Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyanocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231~249.

    • Fu Bin, Page F Z, Cavosie A J , Fournelle J, Kita N T, Lackey J S, Wilde S A, Valley J W. 2008. Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology, 156(2): 197~215.

    • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks. Journalof Petrology, 42(11): 2033~2048.

    • Frost C D, Frost B R. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39~52.

    • Gao Baoshun, Zheng Youye, Wang Jintao, Zhang Zhong, Yang Cheng. 2011. Chronology and geochemistry of intrusive rocks in the Bangor area, Tibet: Constraints on the evolution of the Bangong-Nujiang ocean basin. Acta Petrologica Sinica, 27 (7): 1973~1982 (in Chinese with English abstract).

    • Green T H. 1980. Island arc and continent-building magmatism-A review of petrogenic models based on experimental petrology and geochemistry. Tectonophysics, 63(1): 367~385.

    • Guynn J H, Kapp P, Pullen A, Heizier M, Gehrels G, Ding L. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, Central Tibet. Geology, 34(6): 505~508.

    • Holm P M, Praegel N O. 1988. The Tertiary Kaervensyenite complex, Kangerdlugssuaq, East Greenland-mineral chemistry and geochemistry. Mineralogical Magazine, 52(367): 435~450.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, eds: Zircon. Mineralogical Society of America, 53: 27~62.

    • Hou Kejun, Li Yanhe, Tian Yourong. 2009. LA-MC-ICP-MS in situ U-Pb dating technique for zircon microareas. Geology of Mineral Deposits, 28 (4): 481~492 (in Chinese with English abstract).

    • Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006. Mineralization in the Tibetan Plateau collisional orogenic belt: Tectonic setting, temporal and spatial distribution and main types. Geology in China, 33(2): 340~351 (in Chinese with English abstract).

    • Hou Zengqian, Duan Lianfeng, Lu Yongjun, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541~1575.

    • Hu Peiyuan, Zhai Qingguo, Jahn Borming, Wang Jun, Li Cai, Chung Sunlin, Lee Haoyang, Tang Suohan. 2017. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Research, 44: 116~138.

    • Hu Peiyuan, Zhai Qingguo, Zhao Guochun, Tang Yue, Zhu Zhicai, Wang Wei, Wu Hao. 2021. Andean orogenic belt on the northern margin of the Gondwana continent: Zircon U-Pb dating and geochemical evidence for the amdo Ordovician granites in the northern Tibet. Acta Petrologica Sinica, 37 (2): 530~544 (in Chinese with English abstract).

    • Hu Xiumian, Ma Anlin, Xue Weiwei, Garzanti Eduardo, Cao Yong, Li Shimin, Sun Gaoyuan, Lai Wen. 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang ocean. Earth-Science Reviews, 229: 104031.

    • Huang He, Zhang Zhaochong, Kusky Timothy, Santosh M, Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan, 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.

    • Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1): 47~69.

    • Ji Weiqiang, Wu Fuyuan Y, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3): 229~245.

    • Jiang Suhua, Jiang Yan, Liu Yiming, Li Sanzhong, Zhang Wen, Wang Gang, Lu Leilei, Somerville Ian. 2021. The Bangong-Nujiang suture zone, Tibet Plateau: Its role in the tectonic evolution of the eastern Tethys ocean. Earth-Science Reviews, 218: 103656.

    • Kapp P, Yin A, Harrison T M, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Societyof America Bulletin, 117(7-8): 865~878.

    • Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Bulletin of the Geological Society of America, 119(7-8): 917~932.

    • Lai Wen, Hu Xiumian, Garzanti Eduardo, Xu Yiwei, Ma Anlin, Li Wei. 2019. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research, 7: 136~152.

    • Leier A L, Decelles P G, Kapp P, Gehrels G E. 2007. Lower cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan plateau. Journal of Sedimentary Research, 77(9-10): 809~825.

    • Leigeois J P. 1998. Preface-some words on the post-collisional magmatism. Lithos, 45(1-4): XV~XVII.

    • Li Jinxiang, Qin Kezhang, Li Guangming, Xiao Bo, Zhao Junxing, Chen Lei. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. Journal of Asian Earth Sciences, 41(6): 525~536.

    • Li Shimin, Wang Qing, Zhu Dicheng, Stern R J, Cawood P A, Sui Qinglin, Zhao Zhidan. 2018. One or two Early Cretaceous arc systems in the Lhasa Terrane, Southern Tibet. Journal of Geophysical Research-Solid Earth. 123(5): 3391~3413.

    • Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyanocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.

    • Lippert P C, Van Hinsbergen D J J, Dupont-Nivet G. 2014. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. In: Nie J S, Horton B K, Hoke G D, eds. Toward An Improved Understanding of Uplift Mechanisms And The Elevation History of The Tibetan Plateau, The Geological Society of America, special paper 507: 1~21.

    • Litvinovsky B A, Jahn B M, Zanvilevich A N, Saunders A, Poulain S, Kuzmin D V, Reichow M K, Titov A V. 2002. Petrogenesis of syenite-granite suites from the Bryansky complex (Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas. Chemical Geology, 189(1-2): 105~133.

    • Liu Deliang, Shi Rendeng, Ding Lin, Huang Qishuai, Zhang Xiaoran, Yue Yahui, Zhang Liyun. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang Tibet: Implications for the subduction of the Bangong-Nujiang Tethyanocean. Gondwana Research, 41: 157~172.

    • Liu Min, Zhu Dicheng, Zhao Zhidan, Mo Xuanxue, Guan Qi, Zhang Liangliang, Yu Feng, Liu Meihua. 2010. Magmatic mixing at the end of early Jurassic and its tectonic significance in the Nierong area, northern Tibet. Acta Petrologica Sinica, 26(10): 3117~3130 (in Chinese with English abstract).

    • Liu Yiming, Li Sanzhong, Santosh M, Cao Huahua, Yu Shengyao, Wang Yuhua, Guo Runhua, Xu Linshan, Zhou Jie, Zhou Zaizheng. 2020. The passive margin of northern Gondwana during Early Paleozoic: Evidence from the central Tibet Plateau. Gondwana Research, 78 : 126~140.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55: 1535~1546.

    • Ludwig K R. 2003. User's Manual for Isoplot/Ex rev. 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center.

    • Ma Anlin, Hu Xiumian, Kapp P, Han Zhong, Lai Wen, BouDagher-Fadel M. 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography Palaeoclimatology Palaeoecology, 506: 30~47.

    • Macdonald R, Davies G R, Bliss C M, Leat P T, Bailey D K, Smith R L. 1987. Geochemistry ofhigh-silica peralkaline rhyolites, Naivasha, Kenya rift valley. Journal of Petrology, 28(6): 979~1008.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.

    • Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.

    • Mo Xuanxue, Pan Guitang. 2006. From the Tethys to the formation of the Tibetan Plateau: Constraints of tectono-magmatic events. Earth Science Frontiers, 13(6): 43~51 (in Chinese with English abstract).

    • Mo Xuanxue, Niu Yaoling, Dong Guochen, Zhao Zhidan, Hou Zengqian, Zhou Su, Ke Shan. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 250(1-4): 49~67.

    • Morel M L A, Nebel O, Nebel-Jacobsen Y J, Miller J S, Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231~235.

    • Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Temporal and spatial structure and evolution of the Gangdise orogenic belt. Acta Petrologica Sinica, 22 (3): 521~533 (in Chinese with English abstract).

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pankhurst M J, Schaefer B F, Turner S P, Argles T, Wade C E. 2013. The source of A-type magmas in two contrasting settings: U-Pb, Lu-Hf and Re-Os isotopic constraints. Chemical Geology, 351: 175~194.

    • Pearce J A, Deng W M. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 327(1594): 215~238.

    • Qu Xiaoming, Xin Hongbo, Du Dedao, Chen Hua. 2012. Age of A-type granites after collision in the middle section of the Bangong-Nujiang suture zone inthe Tibet and its constraints on the closure time of the ocean basin. Geochemistry, 41 (1): 1~14 (in Chinese with English abstract).

    • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.

    • Rudnick R, Gao S. 2003. Composition of thecontinental crust. Treatise on Geochemistry, 3: 1~64.

    • Slam J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.

    • Sun, McDonough. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.

    • Tang Yue, Zhai Qingguo, Hu Peiyuan, Xiao Xuchang, Wang Haotao, Wang Wei, Zhu Zhicai, Wu Hao. 2019. Constraints on the evolution of the Middle Tethyanocean from the Jurassic high-magnesium Andesitic rocks in the middle Bangong-Nujiang suture zone, Tibet. Acta Petrologica Sinica, 35(10): 3097~3114 (in Chinese with English abstract).

    • Tang Yue, Zhai Qingguo, Chung Sunlin, Hu Peiyuan, Wang Jun, Xiao Xuchang, Song Biao, Wang Haitao, Lee Haoyang. 2020a. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau. Geological Societyof America Bulletin, 132(9-10): 2202~2220.

    • Tang Yue, Zhai Qingguo, Hu Peiyuan, Chung Sunlin, Xiao Xuchang, Wang Haitao, Zhu Zhicai, Wang Wei, Wu Hao, Lee Haoyang. 2020b. Southward subduction of the Bangong-Nujiang Tethys Ocean: Insights from ca. 161-129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet. International Journal of Earth Sciences, 109(2): 631~647.

    • Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151~179.

    • Wang Ming, Li Cai, Xie Chaoming, Wu Yanwang, Su Li, Hu Peiyuan. 2012. LA-ICP-MS U-Pb dating of zircons from granitic gneiss in the Nierong microcontinent: Discovery of Neoproterozoic basement rocks and their significance. Acta Petrologica Sinica, 28(12): 4101~4108 (in Chinese with English abstract).

    • Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Fuguang, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyanocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.

    • Wang Wei, Wang Ming, Zhai Qingguo, Xie Chaoming, Hu Peiyuan, Li Cai, Liu Jinheng, Luo Anbo. 2020. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet. Gondwana Research, 78: 77~91.

    • Wang Wei, Zhai Qingguo, Hu Peiyuan, Tang Yue, Zhu Zhicai, Wu Hao. 2021. Cretaceous magmatic rocks in the Nima area, Northern Tibet: Constraints on the evolution of the Bangong-Nujiang suture zone. Acta Petrologica Sinica, 37 (2): 545~562 (in Chinese with English abstract).

    • Wang Xibin, Bao Peisheng, Deng Wanming, Wang Wanguo. 1987. Tectonic Evolution of the Himalayan Lithosphere: Tibetan Ophiolites. Beijing: Geological Publishing House, 138~214 (in Chinese with English abstract).

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types. Earthand Planetary Science Letters, 64(2): 295~304.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites geochemical characteristics, discrimination and petrogenesis. Contributions To Mineralogy and Petrology, 95(4): 407~419.

    • Wiedenbeck M, Alle P; Corfu F, Griffin W L, Meier M, Oberli F, Vonquadt A, Roddick J C, Speigel W. 1995. 3 natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostandards Newsletter, 19(1): 1~23.

    • Wormald R J, Price R C. 1988. Peralkaline granites near temora, southern new-south-wales- tectonic and petrological implications. Australian Journalof Earth Sciences, 35(2): 209~221.

    • Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105~126.

    • Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Some problems on genesis of granites. Acta Petrologica Sinica, 23 (6): 1217~1238 (in Chinese with English abstract).

    • Wu Hao, Li Cai, Hu Peiyuan, Li Xingkui. 2015. Early Cretaceous (100-105 Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiangocean subduction and slab break-off. International Geology Review, 57(9-10): 1172~1188.

    • Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation. Chinese Science Bulletin. 49(16): 1589~1604 (in Chinese with English abstract).

    • Xia Bin, Xu Lifeng, Wei Zhenquan, Zhang Yuquan, Wang Ran, Li Jianfeng, Wang Yanbin. 2008. Zircon SHRIMP dating of the gabbro from Dongqiao ophiolites in the Tibet and its geological significance. Acta Geologica Sinica, 82(4): 528~531 (in Chinese with English abstract).

    • Xie Chaoming. 2013. Tectonic evolution of the Nierong microcontinent on the Tibetan Plateau, Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Xu Mengjing, Li Cai, Zhang Xingzhou, Wu Yanwang. 2014. Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology. International Geology Review, 56(9): 1072~1096.

    • Xu R H, Scharer U, Allegre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet) - a geochronological study. Journalof Geology, 93(1): 41~57.

    • Xu Zhiqin, Yang Jingsui, Li Haibin, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. Qinghai-Tibet Plateau and continental dynamics: Deep driving forces of terrane consolidation, collisional orogenesis and plateau uplift. Geology of China, 33(2): 221~238 (in Chinese with English abstract).

    • Yan Haoyu, Long Xiaoping, Wang Xuance, Li Jie, Wang Qiang, Yuan Chao, Sun Min. 2016. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Amdo area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang ocean. Lithos, 264: 315~328.

    • Yang Peng, Huang Qiangtai, Xia Bin, Ren Zhanli, Cai Zhourong, Zheng Hao, Lu Xingxin. 2020. Forearc tectonic evolution in the middle of the Bangong-Nujiang Tethysocean: New geochemical evidence of the Lanong ophiolites from the Zangbei lakes region. Geological Journal, 55(5): 3917~3935.

    • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Yu Yunpeng, Xie Chaoming, Dong Yongsheng, Dong Yuchao, Wang Bin, Duan Menglong, Song Yuhang. 2021. Early Neoproterozoic granitic gneisses in the Amdo micro-continent, Tibet: Petrogenesis and geodynamic implications. International Geology Review, 63(3): 342~356.

    • Zeng Min, Chen Jianping, Wei Chongchong. 2017. Muga Ganggri rock group is an accretive wedge complex in the southern margin of Qiangtang. Earth Science Frontiers, 24 (5): 207~217 (in Chinese with English abstract).

    • Zeng Yunchuan, Xu Jifeng, Chen Jianlin, Wang Baodi, Huang Feng, Xia Xiaoping, Li Mingjian. 2021. Early Cretaceous (similar to 138-134 Ma)forearc ophiolite and tectonomagmatic patterns in central Tibet: Subduction termination and re-initiation of Meso-Tethys ocean caused by collision of an oceanic plateau at the continental margin? Tectonics, 40(3): e2020TC006423.

    • Zhai Qingguo, Jahn Borming, Su Li, Ernst R E, Wang Kuolung, Zhang Ruyuan, Wang Jun, Tang Suohan. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28~43.

    • Zhai Qingguo, Wang Jun, Hu Peiyuan, Lee Haoyang, Tang Yue, Wang Haitao, Tang Suohan, Chung Sunlin. 2018. Late Paleozoic granitoids from central Qiangtang, northern Tibetan plateau: A record of Paleo-Tethys ocean subduction. Journal of Asian Earth Sciences, 167: 139~151.

    • Zhang Bochuan, Fan Jianjun, Luo Anbo, Zeng Xiaowen. 2022. The first identified oceanic core complex in the Bangong-Nujiang suture zone, central Tibet: New insights into the early Mesozoic tectonic evolution of the Meso-Tethys ocean. Journal of Asian Earth Sciences, 233: 105248.

    • Zhang Shu, Zhang Zhaochong. 2010. Petrology and geochemistry of the Huangshan granitic intrusion in Anhui Province, southeast China: Implications for petrogenesis and geodynamics. Acta Geologica Sinica, 84(3): 581~596.

    • Zhang Xiaoran, Shi rendeng, Huang qishuai, Liu deliang, Gong xiaohan, Chen shengsheng, Wu kang, Yi guoding, Sun yali, Ding lin. 2014. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constrainsform zircon U-Pb geochronology of mafic granulites. Gondwana research, 26(3-4): 975~985.

    • Zhang Yichun, Zhang Yujie, Yuan Dongxun, Xu Haipeng, Qiao Feng. 2019. Stratigraphic and paleontological constraints on the opening time of Bangong - Nujiangocean. Acta Petrologica Sinica, 35(10): 3083~3096 (in Chinese with English abstract).

    • Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, Wang Liquan, Liu Yongsheng, Wu Fuyuan. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasaterrane, Tibet. Chemical Geology, 268(3): 298~312.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasaterrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1): 241~255.

    • Zhu Dicheng, Li Shimin, Cawood P A, Wang Qiang, Zhao Zhidan, Liu Sshengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • Zhu Dicheng, Wang Qiang, Chung Sunlin, Cawood Peter A, Zhao Zhidan. 2019. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society Special Publication, 483: 583~604.

    • Zhu Zhicai, Zhai Qingguo, Hu Peiyuan, Tang Yue, Wang Haitao, Wang Wei, Wu Hao, Huang Zhiqiang. 2020. Time limit of Lasa-Qiangtang terrane collision: Constraints from the Doni Formation in the middle section of Bangong Lake Nujiang suture zone. Journal of Sedimentary, 38 (4): 712~726 (in Chinese with English abstract).

    • 范建军. 2016. 班公湖—怒江洋中西段晚中生代汇聚消亡时空重建. 吉林大学博士学位论文.

    • 高顺宝, 郑有业, 王进寿, 张众, 杨成. 2011. 西藏班戈地区侵入岩年代学和地球化学: 对班公湖-怒江洋盆演化时限的制约. 岩石学报, 27(7): 1973~1982.

    • 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481~492.

    • 侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 340~351.

    • 胡培远, 翟庆国, 赵国春, 唐跃, 朱志才, 王伟, 吴昊. 2021. 冈瓦纳大陆北缘安第斯型造山带: 藏北安多奥陶纪花岗岩锆石U-Pb年龄和地球化学证据. 岩石学报, 37(2): 530~544.

    • 李华亮, 高成, 李正汉, 张璋, 彭智敏, 关俊雷. 2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(4): 663~673.

    • 刘敏, 朱弟成, 赵志丹, 莫宣学, 管琪, 张亮亮, 于枫, 刘美华. 2010. 藏北聂荣地区早侏罗世末期的岩浆混合作用及构造意义. 岩石学报, 26(10): 3117~3130.

    • 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43~51.

    • 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.

    • 曲晓明, 辛洪波, 杜德道, 陈华. 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1~14.

    • 唐跃, 翟庆国, 胡培远, 肖序常, 王海涛, 王伟, 朱志才, 吴昊. 2019. 西藏班公湖-怒江缝合带中段侏罗纪高镁安山质岩石对中特提斯洋演化的制约. 岩石学报, 35(10): 3097~3114.

    • 王明, 李才, 解超明, 吴彦旺, 苏犁, 胡培远. 2012. 聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年——新元古代基底岩石的发现及其意义. 岩石学报, 28(12): 4101~4108.

    • 王伟, 翟庆国, 胡培远, 唐跃, 朱志才, 吴昊. 2021. 藏北尼玛地区白垩纪岩浆岩对班公湖-怒江缝合带演化的制约. 岩石学报, 37(2): 545~562.

    • 王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化: 西藏蛇绿岩. 北京: 地质出版社, 138~214.

    • 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217~1238.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528~531.

    • 解超明. 2013. 青藏高原聂荣微陆块构造演化, 吉林大学博士学位论文.

    • 许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221~238.

    • 张以春, 张予杰, 袁东勋, 徐海鹏, 乔枫. 2019. 班公湖-怒江洋打开时间的地层古生物约束. 岩石学报, 35(10): 3083~3096.

    • 曾敏, 陈建平, 位冲冲. 2017. 木嘎岗日岩群是羌塘南缘的增生楔杂岩. 地学前缘, 24(5): 207~217.

    • 朱志才, 翟庆国, 胡培远, 唐跃, 王海涛, 王伟, 吴昊, 黄智强. 2020. 拉萨—羌塘地体碰撞时限: 来自班公湖—怒江缝合带中段多尼组沉积的约束. 沉积学报, 38(4): 712~726.

  • 参考文献

    • Batchelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48(1-4): 43~55.

    • Blundy J D, Wood B J. 1991. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55: 193~209.

    • Breiter K. 2012. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krusne hory/Erzgebirge Mts. , central Europe. Lithos, 151: 105~121.

    • Cao Yong, Sun Zhiming, Li Haibin, Pei Junling, Liu Dongliang, Zhang Lei, Ye Xiaozhou, Zheng Yong, He Xiangli, Ge Chenglong, Jiang Wan. 2019. New paleomagnetic results from middle Jurassic limestones of the Qiangtang terrane, Tibet: Constraints on the evolution of the Bangong-Nujiang ocean. Tectonics, 38(1): 215~232.

    • Chappell B W. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.

    • Chen Weiwei, Zhang Shihong, Ding Jikai, Zhang Junhong, Zhao Xixi, Zhu Lidong, Yang Wenguang, Yang Tianshui, Li Haiyan, Wu Huaichun. 2017. Combined paleomagnetic and geochronological study on Cretaceous strata of the Qiangtang terrane, central Tibet. Gondwana Research, 41: 373~389.

    • Chung Sunlin, Chu Meifei, Zhang Yuquan, Xie Yingwen, Lo Chinghua, Lee Tungyi, Lan Chingying, Li Xianhua, Zhang Qi, Wang Yizhao. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173~196.

    • Collins W J, Richards S W. 2008. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology, 36(7): 559~562.

    • Creaser R A, Price R C, Wormald R J. 1991. A-type granites revisited - assessment of a residual-source model. Geology, 19(2): 163~166.

    • Dall'Agnol R, Scaillet B, Pichavant M. 1999. An experimental study of a Lower Proterozoic A-type granite from the eastern Amazonian Craton, Brazil. Journal of Petrology, 40(11): 1673~1698.

    • Douce A E P. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 25(8): 743~746.

    • Eby G N. 1992. Chemical subdivision of the A-type granitoids-petrogenetic and tectonic implications. Geology, 20(7): 641~644.

    • Fan Jianjun. 2016. Temporal and spatial reconstruction of the late Mesozoic convergence and extinction in the mid-western section of Bangong-Nujiang ocean. Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Fan Jianjun, Li Cai, Wang Ming, Xie Chaoming. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyanocean in the Tibetan Plateau. International Journal of Earth Sciences, 107(1): 231~249.

    • Fu Bin, Page F Z, Cavosie A J , Fournelle J, Kita N T, Lackey J S, Wilde S A, Valley J W. 2008. Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology, 156(2): 197~215.

    • Frost B R, Barnes C G, Collins W J, Arculus R J, Ellis D J, Frost C D. 2001. A geochemical classification for granitic rocks. Journalof Petrology, 42(11): 2033~2048.

    • Frost C D, Frost B R. 2011. On ferroan (A-type) granitoids: Their compositional variability and modes of origin. Journal of Petrology, 52(1): 39~52.

    • Gao Baoshun, Zheng Youye, Wang Jintao, Zhang Zhong, Yang Cheng. 2011. Chronology and geochemistry of intrusive rocks in the Bangor area, Tibet: Constraints on the evolution of the Bangong-Nujiang ocean basin. Acta Petrologica Sinica, 27 (7): 1973~1982 (in Chinese with English abstract).

    • Green T H. 1980. Island arc and continent-building magmatism-A review of petrogenic models based on experimental petrology and geochemistry. Tectonophysics, 63(1): 367~385.

    • Guynn J H, Kapp P, Pullen A, Heizier M, Gehrels G, Ding L. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, Central Tibet. Geology, 34(6): 505~508.

    • Holm P M, Praegel N O. 1988. The Tertiary Kaervensyenite complex, Kangerdlugssuaq, East Greenland-mineral chemistry and geochemistry. Mineralogical Magazine, 52(367): 435~450.

    • Hoskin P W O, Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar J M, Hoskin P W O, eds: Zircon. Mineralogical Society of America, 53: 27~62.

    • Hou Kejun, Li Yanhe, Tian Yourong. 2009. LA-MC-ICP-MS in situ U-Pb dating technique for zircon microareas. Geology of Mineral Deposits, 28 (4): 481~492 (in Chinese with English abstract).

    • Hou Zengqian, Mo Xuanxue, Yang Zhiming, Wang Anjian, Pan Guitang, Qu Xiaoming, Nie Fengjun. 2006. Mineralization in the Tibetan Plateau collisional orogenic belt: Tectonic setting, temporal and spatial distribution and main types. Geology in China, 33(2): 340~351 (in Chinese with English abstract).

    • Hou Zengqian, Duan Lianfeng, Lu Yongjun, Zheng Yuanchuan, Zhu Dicheng, Yang Zhiming, Yang Zhusen, Wang Baodi, Pei Yingru, Zhao Zhidan, McCuaig T C. 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541~1575.

    • Hu Peiyuan, Zhai Qingguo, Jahn Borming, Wang Jun, Li Cai, Chung Sunlin, Lee Haoyang, Tang Suohan. 2017. Late Early Cretaceous magmatic rocks (118-113 Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Research, 44: 116~138.

    • Hu Peiyuan, Zhai Qingguo, Zhao Guochun, Tang Yue, Zhu Zhicai, Wang Wei, Wu Hao. 2021. Andean orogenic belt on the northern margin of the Gondwana continent: Zircon U-Pb dating and geochemical evidence for the amdo Ordovician granites in the northern Tibet. Acta Petrologica Sinica, 37 (2): 530~544 (in Chinese with English abstract).

    • Hu Xiumian, Ma Anlin, Xue Weiwei, Garzanti Eduardo, Cao Yong, Li Shimin, Sun Gaoyuan, Lai Wen. 2022. Exploring a lost ocean in the Tibetan Plateau: Birth, growth, and demise of the Bangong-Nujiang ocean. Earth-Science Reviews, 229: 104031.

    • Huang He, Zhang Zhaochong, Kusky Timothy, Santosh M, Zhang Shu, Zhang Dongyang, Liu Junlai, Zhao Zhidan, 2012. Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism. Lithos, 155: 49~66.

    • Jackson S E, Pearson N J, Griffin W L, Belousova E A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1): 47~69.

    • Ji Weiqiang, Wu Fuyuan Y, Chung Sunlin, Li Jinxiang, Liu Chuanzhou. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3): 229~245.

    • Jiang Suhua, Jiang Yan, Liu Yiming, Li Sanzhong, Zhang Wen, Wang Gang, Lu Leilei, Somerville Ian. 2021. The Bangong-Nujiang suture zone, Tibet Plateau: Its role in the tectonic evolution of the eastern Tethys ocean. Earth-Science Reviews, 218: 103656.

    • Kapp P, Yin A, Harrison T M, Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Societyof America Bulletin, 117(7-8): 865~878.

    • Kapp P, DeCelles P G, Gehrels G E, Heizler M, Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Bulletin of the Geological Society of America, 119(7-8): 917~932.

    • Lai Wen, Hu Xiumian, Garzanti Eduardo, Xu Yiwei, Ma Anlin, Li Wei. 2019. Early Cretaceous sedimentary evolution of the northern Lhasa terrane and the timing of initial Lhasa-Qiangtang collision. Gondwana Research, 7: 136~152.

    • Leier A L, Decelles P G, Kapp P, Gehrels G E. 2007. Lower cretaceous strata in the Lhasa Terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan plateau. Journal of Sedimentary Research, 77(9-10): 809~825.

    • Leigeois J P. 1998. Preface-some words on the post-collisional magmatism. Lithos, 45(1-4): XV~XVII.

    • Li Jinxiang, Qin Kezhang, Li Guangming, Xiao Bo, Zhao Junxing, Chen Lei. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. Journal of Asian Earth Sciences, 41(6): 525~536.

    • Li Shimin, Wang Qing, Zhu Dicheng, Stern R J, Cawood P A, Sui Qinglin, Zhao Zhidan. 2018. One or two Early Cretaceous arc systems in the Lhasa Terrane, Southern Tibet. Journal of Geophysical Research-Solid Earth. 123(5): 3391~3413.

    • Li Shun, Yin Changqing, Guilmette C, Ding Lin, Zhang Jian. 2019. Birth and demise of the Bangong-Nujiang Tethyanocean: A review from the Gerze area of central Tibet. Earth-Science Reviews, 198: 102907.

    • Lippert P C, Van Hinsbergen D J J, Dupont-Nivet G. 2014. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. In: Nie J S, Horton B K, Hoke G D, eds. Toward An Improved Understanding of Uplift Mechanisms And The Elevation History of The Tibetan Plateau, The Geological Society of America, special paper 507: 1~21.

    • Litvinovsky B A, Jahn B M, Zanvilevich A N, Saunders A, Poulain S, Kuzmin D V, Reichow M K, Titov A V. 2002. Petrogenesis of syenite-granite suites from the Bryansky complex (Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas. Chemical Geology, 189(1-2): 105~133.

    • Liu Deliang, Shi Rendeng, Ding Lin, Huang Qishuai, Zhang Xiaoran, Yue Yahui, Zhang Liyun. 2017. Zircon U-Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang Tibet: Implications for the subduction of the Bangong-Nujiang Tethyanocean. Gondwana Research, 41: 157~172.

    • Liu Min, Zhu Dicheng, Zhao Zhidan, Mo Xuanxue, Guan Qi, Zhang Liangliang, Yu Feng, Liu Meihua. 2010. Magmatic mixing at the end of early Jurassic and its tectonic significance in the Nierong area, northern Tibet. Acta Petrologica Sinica, 26(10): 3117~3130 (in Chinese with English abstract).

    • Liu Yiming, Li Sanzhong, Santosh M, Cao Huahua, Yu Shengyao, Wang Yuhua, Guo Runhua, Xu Linshan, Zhou Jie, Zhou Zaizheng. 2020. The passive margin of northern Gondwana during Early Paleozoic: Evidence from the central Tibet Plateau. Gondwana Research, 78 : 126~140.

    • Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55: 1535~1546.

    • Ludwig K R. 2003. User's Manual for Isoplot/Ex rev. 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center.

    • Ma Anlin, Hu Xiumian, Kapp P, Han Zhong, Lai Wen, BouDagher-Fadel M. 2018. The disappearance of a Late Jurassic remnant sea in the southern Qiangtang Block (Shamuluo Formation, Najiangco area): Implications for the tectonic uplift of central Tibet. Palaeogeography Palaeoclimatology Palaeoecology, 506: 30~47.

    • Macdonald R, Davies G R, Bliss C M, Leat P T, Bailey D K, Smith R L. 1987. Geochemistry ofhigh-silica peralkaline rhyolites, Naivasha, Kenya rift valley. Journal of Petrology, 28(6): 979~1008.

    • Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635~643.

    • Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1~33.

    • Mo Xuanxue, Pan Guitang. 2006. From the Tethys to the formation of the Tibetan Plateau: Constraints of tectono-magmatic events. Earth Science Frontiers, 13(6): 43~51 (in Chinese with English abstract).

    • Mo Xuanxue, Niu Yaoling, Dong Guochen, Zhao Zhidan, Hou Zengqian, Zhou Su, Ke Shan. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology, 250(1-4): 49~67.

    • Morel M L A, Nebel O, Nebel-Jacobsen Y J, Miller J S, Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology, 255(1-2): 231~235.

    • Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Temporal and spatial structure and evolution of the Gangdise orogenic belt. Acta Petrologica Sinica, 22 (3): 521~533 (in Chinese with English abstract).

    • Pan Guitang, Wang Liquan, Li Rongshe, Yuan Sihua, Ji Wenhua, Yin Fuguang, Zhang Wanping, Wang Baodi. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3~14.

    • Pankhurst M J, Schaefer B F, Turner S P, Argles T, Wade C E. 2013. The source of A-type magmas in two contrasting settings: U-Pb, Lu-Hf and Re-Os isotopic constraints. Chemical Geology, 351: 175~194.

    • Pearce J A, Deng W M. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 327(1594): 215~238.

    • Qu Xiaoming, Xin Hongbo, Du Dedao, Chen Hua. 2012. Age of A-type granites after collision in the middle section of the Bangong-Nujiang suture zone inthe Tibet and its constraints on the closure time of the ocean basin. Geochemistry, 41 (1): 1~14 (in Chinese with English abstract).

    • Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247~263.

    • Rudnick R, Gao S. 2003. Composition of thecontinental crust. Treatise on Geochemistry, 3: 1~64.

    • Slam J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1~35.

    • Sun, McDonough. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publications, 42(1): 313~345.

    • Tang Yue, Zhai Qingguo, Hu Peiyuan, Xiao Xuchang, Wang Haotao, Wang Wei, Zhu Zhicai, Wu Hao. 2019. Constraints on the evolution of the Middle Tethyanocean from the Jurassic high-magnesium Andesitic rocks in the middle Bangong-Nujiang suture zone, Tibet. Acta Petrologica Sinica, 35(10): 3097~3114 (in Chinese with English abstract).

    • Tang Yue, Zhai Qingguo, Chung Sunlin, Hu Peiyuan, Wang Jun, Xiao Xuchang, Song Biao, Wang Haitao, Lee Haoyang. 2020a. First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau. Geological Societyof America Bulletin, 132(9-10): 2202~2220.

    • Tang Yue, Zhai Qingguo, Hu Peiyuan, Chung Sunlin, Xiao Xuchang, Wang Haitao, Zhu Zhicai, Wang Wei, Wu Hao, Lee Haoyang. 2020b. Southward subduction of the Bangong-Nujiang Tethys Ocean: Insights from ca. 161-129 Ma arc volcanic rocks in the north of Lhasa terrane, Tibet. International Journal of Earth Sciences, 109(2): 631~647.

    • Turner S P, Foden J D, Morrison R S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151~179.

    • Wang Ming, Li Cai, Xie Chaoming, Wu Yanwang, Su Li, Hu Peiyuan. 2012. LA-ICP-MS U-Pb dating of zircons from granitic gneiss in the Nierong microcontinent: Discovery of Neoproterozoic basement rocks and their significance. Acta Petrologica Sinica, 28(12): 4101~4108 (in Chinese with English abstract).

    • Wang Baodi, Wang Liquan, Chung Sunlin, Chen Jianlin, Yin Fuguang, Liu Han, Li Xiaobo, Chen Lingkang. 2016. Evolution of the Bangong-Nujiang Tethyanocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18~33.

    • Wang Wei, Wang Ming, Zhai Qingguo, Xie Chaoming, Hu Peiyuan, Li Cai, Liu Jinheng, Luo Anbo. 2020. Transition from oceanic subduction to continental collision recorded in the Bangong-Nujiang suture zone: Insights from Early Cretaceous magmatic rocks in the north-central Tibet. Gondwana Research, 78: 77~91.

    • Wang Wei, Zhai Qingguo, Hu Peiyuan, Tang Yue, Zhu Zhicai, Wu Hao. 2021. Cretaceous magmatic rocks in the Nima area, Northern Tibet: Constraints on the evolution of the Bangong-Nujiang suture zone. Acta Petrologica Sinica, 37 (2): 545~562 (in Chinese with English abstract).

    • Wang Xibin, Bao Peisheng, Deng Wanming, Wang Wanguo. 1987. Tectonic Evolution of the Himalayan Lithosphere: Tibetan Ophiolites. Beijing: Geological Publishing House, 138~214 (in Chinese with English abstract).

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited-temperature and composition effects in a variety of crustal magma types. Earthand Planetary Science Letters, 64(2): 295~304.

    • Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413~433.

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites geochemical characteristics, discrimination and petrogenesis. Contributions To Mineralogy and Petrology, 95(4): 407~419.

    • Wiedenbeck M, Alle P; Corfu F, Griffin W L, Meier M, Oberli F, Vonquadt A, Roddick J C, Speigel W. 1995. 3 natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostandards Newsletter, 19(1): 1~23.

    • Wormald R J, Price R C. 1988. Peralkaline granites near temora, southern new-south-wales- tectonic and petrological implications. Australian Journalof Earth Sciences, 35(2): 209~221.

    • Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105~126.

    • Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Some problems on genesis of granites. Acta Petrologica Sinica, 23 (6): 1217~1238 (in Chinese with English abstract).

    • Wu Hao, Li Cai, Hu Peiyuan, Li Xingkui. 2015. Early Cretaceous (100-105 Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiangocean subduction and slab break-off. International Geology Review, 57(9-10): 1172~1188.

    • Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy and its constraints on U-Pb age interpretation. Chinese Science Bulletin. 49(16): 1589~1604 (in Chinese with English abstract).

    • Xia Bin, Xu Lifeng, Wei Zhenquan, Zhang Yuquan, Wang Ran, Li Jianfeng, Wang Yanbin. 2008. Zircon SHRIMP dating of the gabbro from Dongqiao ophiolites in the Tibet and its geological significance. Acta Geologica Sinica, 82(4): 528~531 (in Chinese with English abstract).

    • Xie Chaoming. 2013. Tectonic evolution of the Nierong microcontinent on the Tibetan Plateau, Doctoral dissertation of Jilin University (in Chinese with English abstract).

    • Xu Mengjing, Li Cai, Zhang Xingzhou, Wu Yanwang. 2014. Nature and evolution of the Neo-Tethys in central Tibet: synthesis of ophiolitic petrology, geochemistry, and geochronology. International Geology Review, 56(9): 1072~1096.

    • Xu R H, Scharer U, Allegre C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet) - a geochronological study. Journalof Geology, 93(1): 41~57.

    • Xu Zhiqin, Yang Jingsui, Li Haibin, Zhang Jianxin, Zeng Lingsen, Jiang Mei. 2006. Qinghai-Tibet Plateau and continental dynamics: Deep driving forces of terrane consolidation, collisional orogenesis and plateau uplift. Geology of China, 33(2): 221~238 (in Chinese with English abstract).

    • Yan Haoyu, Long Xiaoping, Wang Xuance, Li Jie, Wang Qiang, Yuan Chao, Sun Min. 2016. Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Amdo area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang ocean. Lithos, 264: 315~328.

    • Yang Peng, Huang Qiangtai, Xia Bin, Ren Zhanli, Cai Zhourong, Zheng Hao, Lu Xingxin. 2020. Forearc tectonic evolution in the middle of the Bangong-Nujiang Tethysocean: New geochemical evidence of the Lanong ophiolites from the Zangbei lakes region. Geological Journal, 55(5): 3917~3935.

    • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211~280.

    • Yu Yunpeng, Xie Chaoming, Dong Yongsheng, Dong Yuchao, Wang Bin, Duan Menglong, Song Yuhang. 2021. Early Neoproterozoic granitic gneisses in the Amdo micro-continent, Tibet: Petrogenesis and geodynamic implications. International Geology Review, 63(3): 342~356.

    • Zeng Min, Chen Jianping, Wei Chongchong. 2017. Muga Ganggri rock group is an accretive wedge complex in the southern margin of Qiangtang. Earth Science Frontiers, 24 (5): 207~217 (in Chinese with English abstract).

    • Zeng Yunchuan, Xu Jifeng, Chen Jianlin, Wang Baodi, Huang Feng, Xia Xiaoping, Li Mingjian. 2021. Early Cretaceous (similar to 138-134 Ma)forearc ophiolite and tectonomagmatic patterns in central Tibet: Subduction termination and re-initiation of Meso-Tethys ocean caused by collision of an oceanic plateau at the continental margin? Tectonics, 40(3): e2020TC006423.

    • Zhai Qingguo, Jahn Borming, Su Li, Ernst R E, Wang Kuolung, Zhang Ruyuan, Wang Jun, Tang Suohan. 2013. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications. Lithos, 174: 28~43.

    • Zhai Qingguo, Wang Jun, Hu Peiyuan, Lee Haoyang, Tang Yue, Wang Haitao, Tang Suohan, Chung Sunlin. 2018. Late Paleozoic granitoids from central Qiangtang, northern Tibetan plateau: A record of Paleo-Tethys ocean subduction. Journal of Asian Earth Sciences, 167: 139~151.

    • Zhang Bochuan, Fan Jianjun, Luo Anbo, Zeng Xiaowen. 2022. The first identified oceanic core complex in the Bangong-Nujiang suture zone, central Tibet: New insights into the early Mesozoic tectonic evolution of the Meso-Tethys ocean. Journal of Asian Earth Sciences, 233: 105248.

    • Zhang Shu, Zhang Zhaochong. 2010. Petrology and geochemistry of the Huangshan granitic intrusion in Anhui Province, southeast China: Implications for petrogenesis and geodynamics. Acta Geologica Sinica, 84(3): 581~596.

    • Zhang Xiaoran, Shi rendeng, Huang qishuai, Liu deliang, Gong xiaohan, Chen shengsheng, Wu kang, Yi guoding, Sun yali, Ding lin. 2014. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constrainsform zircon U-Pb geochronology of mafic granulites. Gondwana research, 26(3-4): 975~985.

    • Zhang Yichun, Zhang Yujie, Yuan Dongxun, Xu Haipeng, Qiao Feng. 2019. Stratigraphic and paleontological constraints on the opening time of Bangong - Nujiangocean. Acta Petrologica Sinica, 35(10): 3083~3096 (in Chinese with English abstract).

    • Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, Wang Liquan, Liu Yongsheng, Wu Fuyuan. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasaterrane, Tibet. Chemical Geology, 268(3): 298~312.

    • Zhu Dicheng, Zhao Zhidan, Niu Yaoling, Mo Xuanxue, Chung Sunlin, Hou Zengqian, Wang Liquan, Wu Fuyuan. 2011. The Lhasaterrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1): 241~255.

    • Zhu Dicheng, Li Shimin, Cawood P A, Wang Qiang, Zhao Zhidan, Liu Sshengao, Wang Liquan. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7~17.

    • Zhu Dicheng, Wang Qiang, Chung Sunlin, Cawood Peter A, Zhao Zhidan. 2019. Gangdese magmatism in southern Tibet and India-Asia convergence since 120 Ma. Geological Society Special Publication, 483: 583~604.

    • Zhu Zhicai, Zhai Qingguo, Hu Peiyuan, Tang Yue, Wang Haitao, Wang Wei, Wu Hao, Huang Zhiqiang. 2020. Time limit of Lasa-Qiangtang terrane collision: Constraints from the Doni Formation in the middle section of Bangong Lake Nujiang suture zone. Journal of Sedimentary, 38 (4): 712~726 (in Chinese with English abstract).

    • 范建军. 2016. 班公湖—怒江洋中西段晚中生代汇聚消亡时空重建. 吉林大学博士学位论文.

    • 高顺宝, 郑有业, 王进寿, 张众, 杨成. 2011. 西藏班戈地区侵入岩年代学和地球化学: 对班公湖-怒江洋盆演化时限的制约. 岩石学报, 27(7): 1973~1982.

    • 侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质, 28(4): 481~492.

    • 侯增谦, 莫宣学, 杨志明, 王安建, 潘桂棠, 曲晓明, 聂凤军. 2006. 青藏高原碰撞造山带成矿作用: 构造背景、时空分布和主要类型. 中国地质, 33(2): 340~351.

    • 胡培远, 翟庆国, 赵国春, 唐跃, 朱志才, 王伟, 吴昊. 2021. 冈瓦纳大陆北缘安第斯型造山带: 藏北安多奥陶纪花岗岩锆石U-Pb年龄和地球化学证据. 岩石学报, 37(2): 530~544.

    • 李华亮, 高成, 李正汉, 张璋, 彭智敏, 关俊雷. 2016. 西藏班公湖地区竟柱山组时代及其构造意义. 大地构造与成矿学, 40(4): 663~673.

    • 刘敏, 朱弟成, 赵志丹, 莫宣学, 管琪, 张亮亮, 于枫, 刘美华. 2010. 藏北聂荣地区早侏罗世末期的岩浆混合作用及构造意义. 岩石学报, 26(10): 3117~3130.

    • 莫宣学, 潘桂棠. 2006. 从特提斯到青藏高原形成: 构造-岩浆事件的约束. 地学前缘, 13(6): 43~51.

    • 潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521~533.

    • 曲晓明, 辛洪波, 杜德道, 陈华. 2012. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束. 地球化学, 41(1): 1~14.

    • 唐跃, 翟庆国, 胡培远, 肖序常, 王海涛, 王伟, 朱志才, 吴昊. 2019. 西藏班公湖-怒江缝合带中段侏罗纪高镁安山质岩石对中特提斯洋演化的制约. 岩石学报, 35(10): 3097~3114.

    • 王明, 李才, 解超明, 吴彦旺, 苏犁, 胡培远. 2012. 聂荣微陆块花岗片麻岩锆石LA-ICP-MS U-Pb定年——新元古代基底岩石的发现及其意义. 岩石学报, 28(12): 4101~4108.

    • 王伟, 翟庆国, 胡培远, 唐跃, 朱志才, 吴昊. 2021. 藏北尼玛地区白垩纪岩浆岩对班公湖-怒江缝合带演化的制约. 岩石学报, 37(2): 545~562.

    • 王希斌, 鲍佩声, 邓万明, 王方国. 1987. 喜马拉雅岩石圈构造演化: 西藏蛇绿岩. 北京: 地质出版社, 138~214.

    • 吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217~1238.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 夏斌, 徐力峰, 韦振权, 张玉泉, 王冉, 李建峰, 王彦斌. 2008. 西藏东巧蛇绿岩中辉长岩锆石SHRIMP定年及其地质意义. 地质学报, 82(4): 528~531.

    • 解超明. 2013. 青藏高原聂荣微陆块构造演化, 吉林大学博士学位论文.

    • 许志琴, 杨经绥, 李海兵, 张建新, 曾令森, 姜枚. 2006. 青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221~238.

    • 张以春, 张予杰, 袁东勋, 徐海鹏, 乔枫. 2019. 班公湖-怒江洋打开时间的地层古生物约束. 岩石学报, 35(10): 3083~3096.

    • 曾敏, 陈建平, 位冲冲. 2017. 木嘎岗日岩群是羌塘南缘的增生楔杂岩. 地学前缘, 24(5): 207~217.

    • 朱志才, 翟庆国, 胡培远, 唐跃, 王海涛, 王伟, 吴昊, 黄智强. 2020. 拉萨—羌塘地体碰撞时限: 来自班公湖—怒江缝合带中段多尼组沉积的约束. 沉积学报, 38(4): 712~726.