en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈旭,男,1986年生。博士,高级工程师,从事地质矿产勘查及研究。E-mail:373193083@qq.com。

通讯作者:

文春华,男,1982年生。博士,正高级工程师,从事地球化学和成矿流体研究。E-mail:herowch2004@163.com。

参考文献
Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51~73.
参考文献
Bas M J L, Maitre R W L, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic-rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745~750.
参考文献
Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243~258.
参考文献
Bowden P, Kinnaird J A. 1984. The petrology and geochemistry of alkaline granites from Nigeria. Physics of the Earth and Planetary Interiors, 35(1-3): 199~211.
参考文献
Brown G C. 1982. Calc-alkaline intrusive rocks: Their diversity, evolution, and relation to volcanic arcs. In: Thorpe R S, ed. Andesites. New York: John Wiley and Sons, 437~464.
参考文献
Cao Chuanghua, Cheng Yuntao, Zou Guangjun, Huang Jianzhong, Liu Junfeng, Wen Chunhua, Meng Debao, Liu Jianxin, Lou Fasheng, Deng Juzhi. 2022. Deep electrical structure of Mufushan Meixian in the north of eastern Hunan and its control on rare metal mineralization. The Chinese Journal of Nonferrous Metals, 32(4): 1175~1186 (in Chinese with English abstract).
参考文献
Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173~174.
参考文献
Chappell B W, Sial A N, Stephens W E, Ferreira V P. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.
参考文献
Charvet J. 2013. The Neoproterozoic-early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences, 74: 198~209.
参考文献
Collins W J. 1996. Lachlan Fold Belt granitoids: Products of three-component mixing. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 171~181.
参考文献
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189200.
参考文献
Deng Teng, Xu Deru, Chi Guoxiang, Zhu Yuhua, Wang Zhilin, Chen Genwen, Li Zenghua, Zhang Junling, Ye Tingwei, Yu Deshui. 2019. Revisiting the ca. 845-820 Ma S-type granitic magmatism in the Jiangnan Orogen: New insights on the Neoproterozoic tectono-magmatic evolution of South China. International Geology Review, 61(4): 383~403.
参考文献
Duan Zheng, Xing Guangfu, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui. 2017. Compositional difference from the sources of Jiuling Neoproterozoic granite complex in eastern segment of the Jiangnan Orogen: Constraints from geochemistry and Hf isotope of zircons. Acta Petrologica Sinica, 33(11): 3610~3634 (in Chinese with English abstract).
参考文献
Duan Zheng, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui, Shu Xujie, Li Changbo. 2019. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance. Geology in China, 46(3): 493~516 (in Chinese with English abstract).
参考文献
Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X, Zhou X. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237~269.
参考文献
Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231~282.
参考文献
Harris N B, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67~81.
参考文献
Hu Peiyuan, Zhai Qingguo, Jahn B M, Wang Jun, Li Cai, Lee H Y, Tang Suohan. 2015. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos, 220: 318~338.
参考文献
Hu Zhaochu, Liu Yongsheng, Gao Shan, Liu Wengui, Zhang Wen, Tong Xirun, Lin Lin, Zong Keqing, Li Ming, Chen Haihong, Zhou Lian, Yang Lu. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391~1399.
参考文献
Hu Zhaochu, Zhang Wen, Liu Yongsheng, Gao Shan, Li Ming, Zong Keqing, Chen Honghai, Hu Shenghong. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152~1157.
参考文献
Huang He, Zhang Zhaochong, Timothy M Kusky, Zhang Dongyang, Hou Tong, Liu Junlai, Zhao Zhidan. 2012. Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth. Lithos, 140-141: 66~85.
参考文献
Huang Zhibiao, Li Peng, Zhou Fangchun, Liu Xiang, Li Jiankang, Xiao Guoqiang, Zhang Liping, Chen Hu, Wang Xuanmin. 2018. Geochemical characteristics and genesis of the Neoproterozoic granite in Mufushan area. Journal of Guilin University of Technology, 38(4): 614~624 (in Chinese with English abstract).
参考文献
Jia Baohua, Huang Jianzhong, Liu Yaorong, Sun Haiqing, Liu Wei, Meng Debao, Huang Gefei, Chen Jun, Wang Xianhui, Zhang Xiaoyang, Chen Duping, Bai Daoyuan, Ma Tieqiu, Rao Jiarong, Tan Yihe, Xiao Haiyun, Shen Guichang, Yin Ruxin, Xiang Ke. 2017. Regional Geology of China, Hunan Chronicle. Beijing: Geological Publishing House (in Chinese with English abstract).
参考文献
Jiang Xingfu, Peng Songbai, Kusky T M, Wang Lu, Deng Hao. 2018. Petrogenesis and geotectonic significance of Early-Neoproterzoic olivine-gabbro within the Yangtze Craton: Constrains from the mineral composition, U-Pb age and Hf isotopes of zircons. Journal of Earth Science, 29(1): 93~102.
参考文献
Jiang Xingfu, Peng Songbai, Han Qingsen. 2021. Petrogenesis and geological significance of ca. 860 Ma dikes in southern Huangling anticline, Yangtze craton. Earth Science, 46(6): 2117~2132 (in Chinese with English abstract).
参考文献
Jung S, Pfänder J A. 2007. Source composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19(6): 859~870.
参考文献
Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980~983.
参考文献
Kinny P D, Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327~341.
参考文献
Kocak K, Zedef V, Kansun G. 2011. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: Evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1): 149~167.
参考文献
Kou Caihua, Liu Yanxue, Huang He, Li Tingdong, Ding Xiaozhong, Zhang Heng. 2018. The Neoproterozoic arc-type and OIB-type mafic-ultramafic rocks in the western Jiangnan orogen: Implications for tectonic settings. Lithos, 312: 38~56.
参考文献
Kumar S, Rino V. 2006. Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: Evidence of magma mixing, mingling, and chemical equilibration. Contributions to Mineralogy and Petrology, 152(5): 591~609.
参考文献
Li Pengchun, Chen Guanghao, Xu Deru, He Zhuanli, Fu Jianli 2007. Petrological and geochemical characteristics and petrogenesis of Neoproterozoic peraluminous granites in Northeastern Hunan Province. Geotectonica et Metallogenia, 30(1): 126~136 (in Chinese with English abstract).
参考文献
Li Pengchuan, Li Jiankang, Liu Xiang, Li Chao, Huang Zhibiao, Zhou Fangchun. 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China. Ore Geology Reviews, 116: 103237.
参考文献
Li Tong, Yuan Huaiyu, Wu Shengxi, Cheng Xianfu. 1999. Regional element abundances of continental crustobodies in China. Geotectonics et Metallogenia, 23(2): 101~107 (in Chinese with English abstract).
参考文献
Li Xianhua, Li Zhengxiang, Ge Wenchun, Zhou Hanwen, Li Wuxian, Liu Ying. 2001. U-Pb zircon ages of Neoproterozoic granitoids in South China and their tectonic implications. Bulletin of Mineralogy and Geochemistry, 20(4): 271~273 (in Chinese with English abstract).
参考文献
Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341~357.
参考文献
Li Xianhua, Wang Xuance, Li Wuxian, Li Zhengxiang. 2008. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China: From orogenesis to intracontinental rifting. Geochemica, 37(4): 382~398 (in Chinese with English abstract).
参考文献
Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang Shihong, Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85~109.
参考文献
Liu Xiang, Zhou Fangchun, Li Peng, Li Jiankang, Huang Zhibiao, Shi Weike, Huang Xiaoqiang, Zhang Liping, Su Junnan. 2019. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance. Mineral Deposits, 38 (4): 771~791 (in Chinese with English abstract).
参考文献
Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.
参考文献
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.
参考文献
Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center.
参考文献
Ma Tieqiu, Chen Lixin, Bai Daoyuan, Zhou Kejun, Li Gang, Wang Xianhui. 2009. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in northeastern Hunan. Geology in China, 36(1): 65~73 (in Chinese with English abstract).
参考文献
Meng Qingxiu, Zhang Jian, Geng Jianzhen, Zhang Chuanlin, Huang Wencheng. 2013. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi Groups in middle Hunan Province: Implications for the Neoproterozoic tectonic evolution in South China. Geology in China, 40(1): 191~216 (in Chinese with English abstract).
参考文献
Middlemost E A. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3-4): 215~224.
参考文献
Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529~532.
参考文献
Pearce J A, Harris N B, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.
参考文献
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.
参考文献
Shan Liang, Ke Xianzhong, Pang Yingchun, Liu Jiajun, Zhao Xinmin, Wang Jing, Kang Bo, Zhang Kun. 2017. Zircon LA-ICP-MS U-Pb chronology, Lu-Hf isotopic characteristics and its geological significance of the Neoproterozoic magma activity in Lishan area from the Northeastern Hunan Province. Geological Science and Technology Information, 36(6): 32~42 (in Chinese with English abstract).
参考文献
Shand S J. 1943. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore Deposits, with a Chapter on Meteorites. New York: Wiley.
参考文献
Shu Liangshu. 2021. Principal features of intracontinental orogenic belt and discussions on its dynamics. Acta Geologica Sinica, 95 (1): 98~106 (in Chinese with English abstract).
参考文献
Shu Liangshu, Charvet J. 1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: With HP metamorphism and ophiolitic melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291~302.
参考文献
Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311~324.
参考文献
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication, 42(1): 313~345.
参考文献
Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29~44.
参考文献
Vervoort J D, Patchett P J, Albarede F, Blichert-Toft J, Rudnick R, Downes H. 2000. Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 181(1-2): 115~129.
参考文献
Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Gao Jianfeng. 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: Implications for the evolution of the western Jiangnan orogen. Precambrian Research, 135(1-2): 79~103.
参考文献
Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Gao Jianfeng. 2004. Petrogenesis of Neoproterozoic peraluminous granites from northeastern Hunan Province: Chronological and geochemical constraints. Geological Review, 50(1): 65~76 (in Chinese with English abstract).
参考文献
Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Zhang Wenlan, Liu Xiaoming, Zhang Guilin. 2006. Petrogenesis of the Neoproterozoic strongly peraluminons granitoids from Northern Guangxi: Constraints from zircon geochronology and Hf isotopes. Acta Petrologica Sinica, 22(2): 326~342 (in Chinese with English abstract).
参考文献
Wang Xiaolei, Zhou Jincheng, Wan Yusheng, Kitajima K, Wang Di, Bonamici C, Qiu Jiansheng, Sun Tao. 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth and Planetary Science Letters, 366: 71~82.
参考文献
Wang Xiaolei, Zhou Jincheng, Griffin W L, Zhao Guochun, Yu Jinhai, Qiu Jiansheng, Zhang Yanjie, Xing Guangfu. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154~171.
参考文献
Wang Xiaolei, Zhou Jincheng, Chen Xin, Zhang Fengfeng, Sun Ziming. 2017. Formation and evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714~735 (in Chinese with English abstract).
参考文献
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295~304.
参考文献
Wei Shoudong. 2020. Petrogenesis and tectonic implications of the Neoproterozoic magmatic rocks in the western Jiangnan Orogen, South China. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).
参考文献
Wen Chunhua, Chen Jianfeng, Luo Xiaoya, Li Shengmiao. 2016. Geochemical features of the Chuanziyuan rare metal pegmatite in northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geochemistry, 35 (1): 171~177 (in Chinese with English abstract).
参考文献
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.
参考文献
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrological Sinica, 23(2): 185~220 (in Chinese with English abstract).
参考文献
Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).
参考文献
Xia Yan, Xu Xisheng, Zou Haibo, Liu Lei. 2014. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites. Lithos, 184: 416~435.
参考文献
Xin Yujia, Li Jianhua, Dong Shuwen, Zhang Yueqiao, Wang Wenbao, Sun Hanshen. 2017. Neoproterozoic post-collisional extension of the central Jiangnan Orogen: Geochemical, geochronological, and Lu-Hf isotopic constraints from the ca. 820-800 Ma magmatic rocks. Precambrian Research, 294: 91~110.
参考文献
Yan Chaolei. 2018. The Neoproterozoic tectonic evolution of the western Jiangnan orogenic belt and its Early Paleozoic-Mesozoic tectonic reworking. Doctoral dissertation of Nanjing University (in Chinese with English abstract).
参考文献
Yang Xue, Zhang Yuzhi, Cui Xiang, Yu Pengpeng, Xu Wenjing. 2020. Geochemistry and detrital zircon U-Pb ages of sedimentary rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province. Earth Science, 45(9): 3461~3474 (in Chinese with English abstract).
参考文献
Zhang Feifei, Wang Yuejun, Fan Weiming, Zhang Aimei, Zhang Yuzhi. 2011. Zircon U-Pb geochronology and Hf isotopes of Neoproterozoic granites in the central of Jiangnan uplift. Geotectonics et Metallogenia, 35 (1): 73~84 (in Chinese with English abstract).
参考文献
Zhang Jianjun, Wang Tao, Castro A, Zhang Lei, Shi Xingjun, Tong Ying, Zhang Zhaochong, Guo Lei, Yang Qidi, Laccheri L M. 2016. Multiple mixing and hybridization from magma source to final emplacement in the Permian Yamatu pluton, the northern Alxa block, China. Journal of Petrology, 57(5): 933~980.
参考文献
Zhang Wen, Hu Zhaochun. 2020. Spectroscopy A. Estimation of isotopic reference values for pure materials and geological reference materials. Atomic Spectroscopy, 41(3): 93~102.
参考文献
Zhao Junhong, Zhou Meifu, Yan Danping, Zheng Jianping, Li Jianwei. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299~302.
参考文献
Zhou Fangchun, Liu Xiang, Li Jiankang, Huang Zhibiao, Xiao Guoqiang, Li Peng, Zhou Houxiang, Shi Weike, Tan liming, Su Junnan, Chen Hu, Wang Xuanmin. 2019. Metallogenic characteristics and prospecting direction of Renli super-large rare metal deposit in Hunan Province, China. Geotectonica et Metallogenia, 43 (1): 77~91 (in Chinese with English abstract).
参考文献
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.
参考文献
Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, Wang Liquan, Pan Guitang, Wu Fuyuan. 2009. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 469(1-4): 48~60.
参考文献
Zong Keqing, Klemd R, Yuan Yu, He Zhenyu, Guo Jingliang, Shi Xiaoli, Liu Yongsheng, Hu Zhaochu, Zhang Zeming. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32~48.
参考文献
Zorpi M J, Coulon C, Orsini J B, Cocirta C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4): 315~329.
参考文献
曹创华, 程云涛, 邹光均, 黄建中, 刘俊峰, 文春华, 孟德保, 柳建新, 楼法生, 邓居智. 2022. 湘东北幕阜山-梅仙深部电性结构及其对稀有金属成矿的控制作用. 中国有色金属学报, 32(4): 1175~1186.
参考文献
段政, 邢光福, 廖圣兵, 褚平利, 黄文成, 朱延辉. 2017. 江南造山带东段九岭新元古代复式花岗岩源区性质的差异: 来自地球化学及锆石Hf同位素的制约. 岩石学报, 33(11): 3610~3634.
参考文献
段政, 廖圣兵, 褚平利, 黄文成, 朱延辉, 舒徐洁, 李长波. 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义. 中国地质, 46(3): 493~516.
参考文献
贾宝华, 黄建中, 刘耀荣, 孙海清, 刘伟, 孟德保, 黄革非, 陈俊, 王先辉, 张晓阳, 陈渡平, 柏道远, 马铁球, 饶家荣, 谭宜和, 肖海云, 沈桂昌, 殷如新, 向轲. 2017. 中国区域地质志·湖南志. 北京: 地质出版社.
参考文献
黄志飚, 李鹏, 周芳春, 刘翔, 李建康, 肖国强, 张立平, 陈虎, 汪宣民. 2018. 幕阜山地区新元古代花岗岩地球化学特征及成因探讨. 桂林理工大学学报, 38(4): 614~624.
参考文献
蒋幸福, 彭松柏, 韩庆森. 2021. 扬子克拉通黄陵背斜南部~860 Ma岩墙的成因及地质意义. 地球科学, 46(6): 2117~2132.
参考文献
黎彤, 袁怀雨, 吴胜昔, 程先富. 1999. 中国大陆壳体的区域元素丰度. 大地构造与成矿学, 23(2): 101~107.
参考文献
李鹏春, 陈广浩, 许德如, 贺转利, 符巩固. 2007. 湘东北新元古代过铝质花岗岩的岩石地球化学特征及其成因讨论. 大地构造与成矿学, 30(1): 126~136.
参考文献
李献华, 李正祥, 葛文春, 周汉文, 李武显, 刘颖. 2001. 华南新元古代花岗岩的锆石U-Pb年龄及其构造意义. 矿物岩石地球化学通报, 20(4): 271~273.
参考文献
李献华, 王选策, 李武显, 李正祥. 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382~398.
参考文献
刘翔, 周芳春, 李鹏, 李建康, 黄志飚, 石威科, 黄小强, 张立平, 苏俊男. 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771~791.
参考文献
马铁球, 陈立新, 柏道远, 周柯军, 李纲, 王先辉. 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65~73.
参考文献
孟庆秀, 张健, 耿建珍, 张传林, 黄文成. 2013. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义. 中国地质, 40(1): 191~216.
参考文献
陕亮, 柯贤忠, 庞迎春, 刘家军, 赵辛敏, 王晶, 康博, 张鲲. 2017. 湘东北栗山地区新元古代岩浆活动及其地质意义: 锆石U-Pb年代学、Lu-Hf同位素证据. 地质科技情报, 36(6): 32~42.
参考文献
舒良树. 2021. 陆内造山带特征及其动力学讨论. 地质学报, 95(1): 98~106.
参考文献
王孝磊, 周金城, 邱检生, 高剑峰. 2004. 湘东北新元古代强过铝花岗岩的成因: 年代学和地球化学证据. 地质论评, 50(1): 65~76.
参考文献
王孝磊, 周金城, 邱检生, 张文兰, 柳小明, 张桂林. 2006. 桂北新元古代强过铝花岗岩的成因: 锆石年代学和Hf同位素制约. 岩石学报, 22(2): 326~342.
参考文献
王孝磊, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714~735.
参考文献
韦守东. 2020. 江南造山带西段新元古代岩浆岩成因及地质意义. 中国地质大学(武汉)博士学位论文.
参考文献
文春华, 陈剑锋, 罗小亚, 李胜苗. 湘东北传梓源稀有金属花岗伟晶岩地球化学特征. 2016. 矿物岩石地球化学通报, 35(1): 171~177.
参考文献
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.
参考文献
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.
参考文献
颜朝磊. 2018. 江南造山带西段新元古代构造演化及其早古生代-中生代地质再造. 南京大学博士学位论文.
参考文献
杨雪, 张玉芝, 崔翔, 虞鹏鹏, 徐文景. 2020. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学. 地球科学, 45(9): 3461~3474.
参考文献
张菲菲, 王岳军, 范蔚茗, 张爱梅, 张玉芝. 2011. 江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究. 大地构造与成矿学, 35(1): 73~84.
参考文献
周芳春, 刘翔, 李建康, 黄志飚, 肖国强, 李鹏, 周厚祥, 石威科, 谭黎明, 苏俊男, 陈虎, 汪宣民. 2019. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型. 大地构造与成矿学, 43(1): 77~91.
目录contents

    摘要

    梅仙花岗岩体位于幕阜山复式花岗岩基西南部,其成岩时代、岩石成因对湘东北地区新元古代花岗岩带成因研究以及其构造背景有着重要的指示意义。本次研究对梅仙岩体中粗粒、细粒两种结构的黑云母花岗岩分别开展了LA-ICP-MS锆石U-Pb定年、锆石Hf同位素和全岩地球化学测试。分析结果显示,中粗粒和细粒花岗岩年龄分别为819.6±4.6 Ma和810.4±4.7 Ma,证实梅仙岩体形成于新元古代,代表江南造山带中段新元古代构造-岩浆活动高峰的结束。梅仙岩体的中粗粒花岗岩εHf (t)=5.4~10.1, tDM2=1.31~1.04 Ga,细粒花岗岩εHf (t)=5.0~9.9, tDM2=1.33~1.06 Ga。梅仙花岗岩具有正的εHf (t)值,且其Hf二阶段模式年龄接近冷家溪群碎屑锆石Hf二阶段模式年龄峰值(1.4~1.0 Ga),暗示其母岩浆有新生地壳物质的参与。梅仙花岗岩具有富硅铝、高钠、中低钾、弱过铝质,较富集Rb、Th、U、Li、LREE等元素,亏损Ba、Nb、Sr、Sm等元素的特征,以及复杂的Eu异常(δEu=0.58~1.61)特征,属于或近似于火山弧花岗岩。梅仙花岗岩的Mg#值(45~59)明显高于地壳熔体的Mg#值(17~38),又暗示其母岩浆可能混入一定比例幔源物质。结合前人研究,本文认为梅仙花岗岩应是幔源岩浆底侵导致新生火成岩地壳部分熔融形成的非典型I型、I-S型花岗岩,其形成于扬子-华夏板块陆陆碰撞后期,江南造山带构造背景由挤压向伸展转换的特殊时期。

    Abstract

    The Meixian granitic pluton is located in the southwest of Mufushan granitic batholith. Its diagenetic age and petrogenesis are of great significance to study of the genesis of Neoproterozoic granite belt and its tectonic background in northeast Hunan. In this study, LA-ICP-MS zircon U-Pb dating, zircon Hf isotope, and whole-rock geochemistry were carried out for medium-coarse-grained and fine-grained biotite granites from the Meixian pluton. The analysis results show that the ages of medium-coarse-grained and fine-grained granites are 819.6±4.6 Ma and 810.4±4.7 Ma, respectively. Thus, it is confirmed that the Meixian pluton was formed in the Neoproterozoic and represent the end of the Neoproterozoic tectono-magmatic activities peak in the middle of the Jiangnan Orogen. The Meixian medium-coarse-grained granite has εHf (t)=5.4~10.1, tDM2=1.31~1.04 Ga, and the fine-grained granite has εHf (t)=5.0~9.9, tDM2=1.33~1.06 Ga. The Meixian granites have positive εHf (t) values, and its Hf two-stage model ages are close to the peak values of Hf two-stage model ages (1.4~1.0 Ga) of clastic zircons in the Lengjiaxi group, suggesting that its parent magma has the involvement of new crustal materials. In terms of geochemical composition, The Meixian granites are characterized by silica-alumina-rich, high sodium, medium-low potassium, weak peraluminosity, more enriched in Rb, Th, U, Li and LREE, deficient in Ba, Nb, Sr and Sm, and complex Eu anomalies (δEu=0.58~1.61), belonging to or similar to volcanic arc granites. The Mg# values of the Meixian granites (45~59) are significantly higher than those of crustal melt (17~38), suggesting that their parent magma may be mixed with a certain proportion of mantle-derived materials. Combined with previous studies, this paper suggests that the Meixian granites should be atypical I- and I-S-type granites formed by partial melting of the neogenic igneous crust caused by the underplating of mantle-derived magma. They were formed at the late stage of continental collision between the Yangtze and Cathaysia blocks, and the special period when the tectonic background of the Jiangnan Orogen was transformed from compression to extension.

  • 江南造山带中段幕阜山-雪峰山岩浆岩带的早新元古代侵入岩主要沿雪峰弧分布,其中酸性侵入岩集中分布在雪峰弧北东端的浏阳—平江一带,尤其是湘东北地区。在幕阜山地区,也有新元古代酸性侵入岩产出,主要为出露于幕阜山复式岩体西南侧的梅仙岩体、团山铺岩体,南侧的三墩岩体、钟洞岩体等,主要岩性为花岗闪长岩、云英闪长岩、二云母花岗岩(贾宝华等,2017)。前人已对江南造山带中段新元古代花岗岩带开展较多研究,但由于其复杂的成岩特征和构造背景,人们在花岗岩类型、成岩时代、岩浆物源和构造背景等方面尚存在不同认识甚至较大分歧,这限制了我们对江南造山带中段乃至整个江南造山带构造演化的认识。目前主要有以下几种学术观点:① 汇聚板块边缘俯冲带产物。如有学者认为形成于816±4.6 Ma的张帮源岩体黑云母花岗闪长岩为壳幔混合成因的过铝质钙碱性花岗岩,主要起源于亏损地幔,可能是四堡运动中汇聚板块边缘俯冲带产物(马铁球等,2009);形成于854 Ma的三墩岩体二云母花岗岩(湖南省地质矿产局,1987)、838.6±5.6 Ma的三墩岩体黑云母花岗闪长岩(陕亮等,2017)属I型花岗岩,为大陆火山弧构造背景下,格林威尔造山运动中汇聚板块边缘俯冲带的产物(黄志飚等,2018)。② 同碰撞构造背景下产物。长三背、大围山(锆石U-Pb年龄分别为837±6 Ma,805±4 Ma; Wang Xiaolei et al.,2014)和葛藤岭(锆石U-Pb年龄845±4 Ma; Deng Teng et al.,2019)等岩体属于过铝质花岗岩,形成于同碰撞板块会聚环境下冷家溪群变泥质沉积岩的部分熔融或重熔(Wang Xiaolei et al.,2004; 李鹏春等,2007)。③ 地幔柱活动产物。形成于818±10 Ma的九岭岩体堇青石花岗闪长岩是地幔柱活动下,中元古代泥质变质沉积岩重熔的产物(李献华等,2001)。④ 陆壳伸展背景下产物。九岭岩体S型花岗质岩石侵位于824~819 Ma,为陆壳伸展背景下砂泥质上地壳部分熔融的产物(段政等,20172019)。

  • 江南造山带中段湘东北地区梅仙岩体岩性多样,除粗粒片麻状黑云母花岗岩外,还见有中粗粒、细粒黑云母(二长)花岗岩,可作为我们研究江南造山带中段新元古代构造演化历史的重要研究对象。此外,近年来人们在梅仙岩体东侧发现了仁里-传梓源超大型铌钽矿床(刘翔等,2019; 周芳春等,2019),因此,对梅仙岩体的研究,可为区内铌钽铍矿床研究提供重要的基础地质信息。本文拟对梅仙花岗岩体进行LA-ICP-MS锆石U-Pb定年、锆石Hf同位素和全岩地球化学分析,结合前人研究成果,探讨梅仙岩体成岩时代和岩石成因,揭示江南造山带中段湘东北地区新元古代构造演化过程,为其深部动力学机制提供约束。

  • 1 地质背景

  • 湘东北地区位于扬子地块与华夏地块交接部江南造山带中段,是我国重要的多金属矿集区,也是幕阜山-雪峰山岩浆岩带中新元古代中酸性侵入岩重要分布地区。梅仙岩体(本文仅指梅仙镇南东侧出露面积约11 km2的岩体)地理位置上处于湘、赣、鄂三省交界的幕阜山地区,大地构造位置位于北东走向的幕阜-望湘断隆带南东侧和长平深大断裂北西侧,毗邻幕阜山侏罗纪(燕山期)花岗岩主体(图1b、c),出露面积约11 km2。梅仙岩体周边出露地层主要有新元古界冷家溪群、震旦系、寒武系、白垩系及第四系。冷家溪群以陆源碎屑浊积岩为主,夹有火山碎屑岩,由一套板岩、砂质板岩、凝灰质板岩及变质砂岩等组成,在岩体外接触带则形成环带状分布的片岩、千枚岩带,其沉积年龄集中于860~820 Ma(孟庆秀等,2013; Wang Xiaolei et al.,2014; 王孝磊等,2017杨雪等,2020);震旦系—寒武系主要为浅海相、滨海相的碳泥质、钙硅质及碳酸盐沉积建造;白垩系为一套内陆盆地红色砂砾岩建造,岩性主要为砂砾岩夹粉砂岩、泥岩等;第四系一般分布于山谷、河流两侧等低洼地形中,主要为松散冲积物、堆积物。梅仙岩体周边区域上矿产资源较为丰富,产有铀、铜、铅、锌、锰、砂金及稀有金属矿等。

  • 2 样品及测试

  • 2.1 样品特征

  • 本次研究的新鲜花岗岩样品采自梅仙岩体东部某采石场,采集坐标为东经113°38′05″,北纬28°49′52″(图1c)。梅仙岩体地表露头风化强烈,采石场及小路旁新鲜石料以灰白色中粗粒黑云母花岗岩为主,部分花岗岩具弱片麻状结构,黑云母呈弱定向排列蝌蚪状(图2a)。本次研究样品为灰白色中粗粒、细粒黑云母花岗岩,两种结构的花岗岩接触界线明显,但细粒花岗岩极少,推测后者以岩脉、岩枝形式侵入前者(图2b~d)。中粗粒花岗岩中常见椭圆状、脉状暗色包体(图2b),中粗粒结构,块状构造,其中石英含量为28%~32%,粒径变化范围较大,斜长石为38%~41%,发育聚片双晶,钾长石为8%~12%,见高岭石化,长石类矿物常包裹石英、黑云母等,黑云母为5%~10%,常见弱绿泥石化,偶见次生白云母,造岩矿物包裹少量其他副矿物如锆石、磷灰石等(图2e)。相比中粗粒花岗岩,细粒花岗岩主要矿物组成与之相同,但石英(30%~40%)、钾长石(7%~17%)含量略多,斜长石(20%~40%)、黑云母(3%~6%)略少,且局部矿物组成分布不均(图2c、d)。

  • 2.2 测试方法

  • 先选取中粗粒、细粒两种代表性花岗岩样品,经粉碎、重力和磁法筛选后,在双目镜下尽量挑选出晶形完整、无裂隙、无包体的锆石颗粒制成矿物靶,最后进行LA-ICP-MS锆石原位U-Pb同位素和Hf同位素分析。通过仔细观察和筛选,选择合适的花岗岩样品,经无污染碎样后磨制为200目粉末,再进行全岩地球化学分析。

  • 2.2.1 锆石U-Pb同位素分析

  • 锆石制靶、透射光和反射光照相委托南昌华地科技有限公司完成,锆石阴极发光(CL)拍照、U-Pb同位素定年在武汉上谱分析科技有限责任公司完成。结合锆石靶的光学和阴极发光图像,选择环带发育良好,无裂纹、无包裹体的位置进行U-Pb同位素及部分微量元素分析,详细的仪器参数和分析流程可参考Zong Keqing et al.(2017)。实验采用的GeolasPro激光剥蚀系统由COMPexPro 102 ArF193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。本次分析的激光束斑和频率分别为 24 μm或32 μm、5 Hz。U-Pb同位素定年和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作外标分别进行同位素和微量元素分馏校正。每个时间分辨分析数据包括大约20~30 s空白信号和50 s样品信号。对分析数据的离线处理采用软件ICPMSDataCal(Liu Yongsheng et al.,20082010)完成。U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3(Ludwig,2003)完成。

  • 图1 湘东北大地构造位置图(a)、湘东北新元古代花岗岩分布示意图(b)及梅仙岩体地质略图(c)(据湖南省地质矿产局四○二队区域调查分队,1989❷❸

  • Fig.1 Geotectonic location map of NE Hunan (a) , schematic map of Neoproterozoic granites in NE Hunan (b) , and simplified geological map of the Meixian granitic pluton (c) (after No.402 Geological Survey Team of the Hunan Geology and Mining Bureau, 1989❷❸)

  • 图2 梅仙岩体花岗岩手标本(a~d)及显微照片(e、f)

  • Fig.2 Photographs (a~d) and micrographs (e, f) of granitic samples from the Meixian granite pluton

  • (a)—粗粒片麻状黑云母花岗岩,蝌蚪状黑云母定向分布;(b)—发育暗色包体的中粗粒黑云母花岗岩;(c)—细粒黑云母花岗岩;(d)—中粗粒与细粒花岗岩接触界面;(e)—中粗粒黑云母花岗岩(正交光);(f)—细粒黑云母花岗岩(正交光);Pl—斜长石;Kfs—钾长石;Qtz—石英;Bt—黑云母;Zrn—锆石;Ap—磷灰石;Chl—绿泥石;Kln—高岭石

  • (a) —tadpole biotite directionally distributed in coarse-grained gneissic biotite granite; (b) —medium-coarse grained biotite granite with dark inclusions; (c) —fine-grained biotite granite; (d) —contact interface of medium-coarse-grained and fine-grained granites; (e) —medium-coarse grained biotite granites (crossed nicols) ; (f) —fine-grained biotite granite (crossed nicols) ; Pl—plagioclase; Kfs—K-feldspar; Qtz—quartz; Bt—biotite; Zrn—zircon; Ap—apatite; Chl—chlorite; Kln—kaolinite

  • 2.2.2 锆石Hf同位素分析

  • 锆石原位Hf同位素分析同样在武汉上谱分析科技有限责任公司利用激光剥蚀多接收杯等离子体质谱仪(LA-MC-ICP-MS)完成,详细仪器操作条件和分析方法可参照Hu Zhaochu et al.(2012)。Hf同位素分析点少于U-Pb同位素分析点,全部选择U-Pb同位素分析点位置进行覆盖式分析。激光剥蚀系统为Geolas HD(Coherent,德国),MC-ICP-MS为Neptune Plus(Thermo Fisher Scientific,德国)。分析过程同时配备了信号平滑装置以提高信号稳定性和同位素比值测试精密度(Hu Zhaochu et al.,2015)。载气使用氦气,并在剥蚀池之后引入少量氮气以提高Hf元素灵敏度(Hu Zhaochu et al.,2012)。分析采用Neptune Plus新设计高性能锥组合。激光输出能量密度为~7.0 J/cm2。根据锆石颗粒大小,单点剥蚀束斑选择32 μm或44 μm。实验中采用Plešovice、91500和GJ-1三个国际锆石标准与实际样品同时分析,Plešovice用于进行外标校正以进一步优化分析测试结果,91500和GJ-1作为第二标样监控数据校正质量。Plešovice、91500和GJ-1的外部精密度(2SD)优于0.000020,测试值与推荐值确保在误差范围内一致。以上标样推荐值可参考Zhang Wen et al.(2020)

  • 2.2.3 全岩地球化学分析

  • 全岩主微量元素的定量分析均委托武汉上谱分析科技有限责任公司完成。分析主量元素的实验仪器型号为日本理学(Rigaku)的ZSX Primus Ⅱ型波长色散X射线荧光光谱仪(XRF),粉末样品前处理采用熔融法制作玻璃熔片,助熔剂为四硼酸锂-偏硼酸锂-氟化锂(45∶10∶5),氧化剂为硝酸铵,脱模剂为溴化锂。熔融温度1050℃、熔样时长15 min。XRF配4.0 kW端窗铑靶X射线光管,测试条件为:电压50 kV,电流60 mA,各主量元素分析谱线均为Kα,标准曲线使用国家标准物质岩石系列GBW07101-14建立。数据校正采用理论α系数法,测试相对标准偏差(RSD)<2%。分析微量元素的实验仪器型号为美国的Agilent 7700e ICP-MS,样品分析过程:将粉末样品置于105℃烘箱中烘干12 h。称取50 mg粉末样品放入Teflon溶样弹,先后分别缓慢加入1 mL高纯HNO3、1 mL高纯HF,将Teflon溶样弹放入钢套,拧紧后放入190℃烘箱中加热24 h以上,待溶样弹冷却,开盖后置于140℃电热板上蒸干,加入1 mL HNO3后再次蒸干。加入1 mL高纯HNO3、1 mL的MQ水和1mL内标In(浓度1×10-6),再次将Teflon溶样弹放入钢套,拧紧后放入190℃烘箱中加热12 h以上,将溶液转入聚乙烯料瓶中,并用2% HNO3稀释至100 g以备ICP-MS测试。实验的标准参考物质为国际标样BCR-2、BHVO-2和RGM-2,微量元素分析精度和准确度一般优于5%。

  • 3 分析结果

  • 3.1 锆石U-Pb年龄

  • 本次研究对梅仙岩体代表性中粗粒花岗岩样品(MX10)和细粒花岗岩样品(MX11)的锆石靶进行测年,LA-ICP-MS锆石U-Pb同位素分析结果列于表1,代表性锆石颗粒的CL图像及测点位置见图3,锆石U-Pb年龄谐和图及加权平均年龄图见图4。选择测试的锆石多为晶形较好的长柱、短柱状,大小比较均一,长度在80~120 μm,长宽比在2∶1~3∶1。CL图像显示锆石韵律环带清晰,为典型的岩浆成因(图3)。表1分析结果显示,样品MX10锆石测点的Th/U比值(0.39~0.94)和样品MX11锆石测点的Th/U比值(0.50~1.08)均大于0.1,同样指示其为岩浆锆石(吴元保等,2004)。样品MX10锆石靶的20个测点206Pb/238U的加权平均年龄为819.6±4.6 Ma(图4a);样品MX11锆石靶的23个测点206Pb/238U加权平均年龄为810.4±4.7 Ma(图4b),两个样品锆石谐和年龄(818.9±3.9 Ma、810.4±3.7 Ma)和各自加权平均年龄在误差范围内一致,表明梅仙岩体形成于新元古代。

  • 3.2 锆石Hf同元素

  • 样品MX10、MX11的锆石Lu-Hf同位素组成及相关参数计算结果列于表2。分析结果显示,锆石176Lu/177Hf比值极低(最大0.0026),表明锆石放射成因Hf极少,其形成时的176Lu/177Hf比值可用分析结果代表(吴福元等,2007)。样品εHf(0)、εHft)、tDM1tDM2fLu/Hf在计算过程中采用的参数值:176Lu衰变常数λ为1.867×10-11a-1。(Söderlund et al.,2004);现今球粒陨石和亏损地幔的176Hf/177Hf和176Lu/177Hf比值分别为0.282772和0.0332,以及0.28325和0.0384(Blichert et al.,1997; Griffin et al.,2004);现今大陆地壳的176Lu/177Hf平均比值为0.015(Griffin et al.,2002)。样品MX10锆石的176Hf/177Hf比值为0.282438~0.282575,176Lu/177Hf比值为0.001547~0.002623,εHft)值为5.4~10.1,平均值为7.2,单阶段Hf模式年龄(tDM1)为1.18~0.99 Ga,二阶段Hf模式年龄(tDM2)为1.31~1.04 Ga;样品MX11锆石的176Hf/177Hf比值为0.282267~0.282568,176Lu/177Hf比值为 0.001129~0.002494,εHft)值为5.0~9.9,平均值为7.2,tDM1值为1.19~1.00 Ga,tDM2值为1.33~1.06 Ga。两个样品的εHft)、tDM1tDM2值各自较为接近,然而其fLu/Hf值较为稳定(-0.96~-0.92,平均0.94)且明显小于现今平均大陆壳的fLu/Hf(-0.55; Griffin et al.,2002),因此样品的tDM2更能反映其源区物质与亏损地幔的分离时间。

  • 图3 梅仙花岗岩代表性锆石CL图像及测点

  • Fig.3 Zircon CL images and analysis spots of the Meixian granites

  • 3.3 岩石主量元素

  • 梅仙花岗岩主微量元素组成及相关参数计算结果列于表3。中粗粒样品(MX08、MX10、MX10-1~MX10-3)的SiO2含量为70.9%~71.8%,(Na2O+K2O)含量为6.2%~6.4%,Al2O3含量为15.0%~15.5%。该中粗粒样品系列在岩性划分上落入花岗岩区域(图5a);在K2O-SiO2判别图中(图5b),落入中钾钙碱性系列区域内,靠近低钾拉斑系列区域;A/CNK稳定于1.02,属于弱过铝质花岗岩(图5c);Mg#比较集中,介于45~47之间,里特曼指数σ(1.33~1.48)<3.3,也指示中粗粒样品系列属于钙碱性花岗岩。细粒样品(MX11~MX17、MX11-1)的SiO2含量为72.3%~76.3%,(Na2O+K2O)含量为5.7%~7.1%,Al2O3含量为12.6%~14.8%。该细粒样品系列在岩性划分上也落入花岗岩区域(图5a);在K2O-SiO2判别图中(图5b),大部分落入中钾钙碱性系列区域,部分(MX11-1及MX12)落入低钾拉斑系列区域;A/CNK介于1.01~1.05之间,也属于弱过铝质花岗岩(图5c);Mg#比较集中,介于45~47之间,里特曼指数σ(0.96~1.56)<3.3,指示细粒样品系列应属于钙碱性花岗岩。综合图5投图结果来看,梅仙花岗岩可能为弱过铝质中钾钙碱性-低钾拉斑I型花岗岩,而湘东北其他新元古代花岗岩主要为强过铝质中-高钾钙碱性I型或S型花岗岩。

  • 表1 梅仙花岗岩锆石U-Pb同位素定年分析结果

  • Table1 Zircon U-Pb isotopic dating of the Meixian granites

  • 注:未列出206Pb/238U年龄介于855~1541 Ma的明显不谐和的7个继承锆石测点。

  • 表2 梅仙花岗岩锆石Hf同位素组成

  • Table2 Zircon Hf isotopic values of the Meixian granites

  • 注:未列出176Hf/177Hf、176Yb/177Hf值分析结果明显异常的2个测点;后5列数据的计算公式可参考吴福元等(2007)

  • 图4 梅仙花岗岩锆石U-Pb年龄谐和图及其206Pb/238U加权平均年龄图

  • Fig.4 Zircon concordia diagrams and weighted mean 206Pb/238U ages diagrams of the Meixian granites

  • 3.4 岩石微量元素

  • 梅仙花岗岩与北西侧、东侧、南东侧的多处新元古代岩体花岗岩具有相似的微量元素组成和配分型式(图6),均显示了较强的Rb、Th、U、La、Ce、Li正异常和较强的Ba、Nb、Sr、Sm负异常。梅仙花岗岩Rb/Ba为0.07~0.30、Rb/Sr为0.17~0.40,其他湘东北新元古代花岗岩Rb/Ba为0.29~3.08、Rb/Sr为0.40~4.25,梅仙花岗岩更接近中国大陆壳体(0.25和0.22;黎彤等,1999)。梅仙花岗岩与其他湘东北新元古代花岗岩的稀土元素配分模式基本相似,都呈明显的富LREE右倾型(图6c、d)。梅仙花岗岩 ∑REE为27.30×10-6~113.06×10-6,LREE/HREE比值为2.99~12.53,δCe为0.96~1.04,δEu为0.58~1.61,尤其细粒花岗岩(MX11~MX17)Eu异常变化幅度大(表3)。Eu一般富集于斜长石,结合中粗粒花岗岩中出现的少量椭圆状、脉状等具有塑性流变特征的暗色包体(图2b),推测梅仙花岗岩母岩浆在源区发生斜长石分离结晶,形成负Eu异常残余熔浆后,又有脉动岩浆重熔源区残留斜长石形成正Eu异常岩浆,也可能发生岩浆混合(样品TFeO含量与MgO含量呈显著线性负相关;Zorpi et al.,1989),最终形成具有复杂Eu异常的花岗岩。

  • 图5 梅仙花岗岩TAS(a),湘东北新元古代花岗岩K2O-SiO2(b)、A/NK-A/CNK(c)和Na2O-K2O(d)图解

  • Fig.5 Diagrams of TAS of the Meixian granites (a) , K2O vs. SiO2 (b) , A/NK vs. A/CNK (c) and Na2O vs. K2O (d) of the Neoproterozoic granites in NE Hunan Province

  • (a)底图据Middlemost,1994;(b)底图据Peccerillo et al.,1976;(c)底图据Shand,1943;(d)底图据Collins et al.,1982; 梅仙北西侧、东侧和南东侧新元古代花岗岩数据分别引自湖北省地质调查院,2013; 黄志飚等,2018; 李鹏春等,2007

  • (a) after Middlemost, 1994; (b) after Peccerillo et al., 1976; (c) after Shand, 1943; (d) after Collins et al., 1982; the data of Neoproterozoic granites in the NW, E and SE of Meixian granite pluton are from Hubei Geological Survey, 2013, Huang Zhibiao et al., 2018, Li Pengchun et al., 2007, respectively

  • 表3 梅仙花岗岩主量元素(%)和微量元素(×10-6)组成

  • Table3 Major (%) and trace (×10-6) elements contents of the Meixian granites

  • 续表3

  • 注:铝饱和指数A/CNK=Al2O3/(CaO+Na2O+K2O)(摩尔含量比值);Mg#=100Mg/(Mg+∑Fe2+);里特曼指数σ=(Na2O+K2O)2/(SiO2-43);TAl-Ti为全岩Al-Ti温度,计算方法据Jung et al.,2007TZr为锆石饱和温度,计算方法据Watson et al.,1983; δCe=CeN/(LaN×PrN1/2; δEu=EuN/(SmN×GdN1/2;球粒陨石标准化值据Sun et al.,1989

  • 图6 梅仙花岗岩、湘东北新元古代花岗岩原始地幔标准化微量元素蛛网图(a、 b)和球粒陨石标准化稀土元素配分图(c、 d)(原始地幔与球粒陨石标准化值均据Sun et al.,1989; 新元古代花岗岩数据来源同图5)

  • Fig.6 Primitive-mantle normalized trace element spidergrams (a, b) and chondrite-normalized REE patterns (c, d) of the Meixian granites and the Neoproterozoic granites in NE Hunan (the primitive-mantle and chondrite data for normalization are from Sun et al., 1989; the data source of Neoproterozoic granites is the same as that in Fig.5)

  • 4 讨论

  • 4.1 岩体形成时代

  • 江南造山带广泛存在新元古代岩浆活动(集中于870~750 Ma; 王孝磊等,20042006Zhao Junhong et al.,2011; Wang Xiaolei et al.,20132014; Kou Caihua et al.,2018; Jiang Xingfu et al.,20182021)。湘东北位于江南造山带中段,区内新元古代花岗岩的年龄具有代表性和启示意义。前人对湘东北及周边新元古代花岗岩体开展了大量定年工作,若仅考虑高精度SHRIMP或LA-ICP-MS锆石U-Pb定年结果,可以发现这些花岗岩形成于845~804 Ma(张菲菲等,2011; 陕亮等,2017Deng Teng et al.,2019),包括本次研究获得的梅仙中粗粒、细粒花岗岩年龄819.6±4.6 Ma和810.4±4.7 Ma,显示了江南造山带新元古代构造-岩浆作用时段多样性。

  • 4.2 岩石成因类型

  • 岩石类型是花岗岩研究的重要内容,对其岩石成因及地球动力学背景具有重要指示意义。从以往区调成果来看,江南造山带湘东北新元古代花岗岩以花岗闪长岩类为主,梅仙岩体周边的团山铺、三墩岩体也发育花岗闪长岩类。本次研究的中粗粒、细粒黑云母(斜长)花岗岩,应该代表了梅仙地区最晚的两个侵入(或结晶分异)期次,相比湘东北其他同期花岗岩,表现出相对高硅铝、低钾、高钠及弱过铝质的地球化学特征。I型花岗岩一般为准铝质—弱过铝质花岗岩(A/CNK<1.1),暗色矿物以黑云母和角闪石为主,缺乏典型的过铝质矿物,成岩温度通常大于750℃(Miller et al.,2003; Zhou Xinmin et al.,2006; Huang He et al.,2012; Xia Yan et al.,2014)。综合前人研究成果和本次研究结果,我们认为梅仙中粗粒、细粒花岗岩应该属于未分异的非典型I型花岗岩,证据有:① 处于长平深大断裂以北且邻近梅仙岩体的新元古代岩体(如张帮源、罗里、谓洞、三墩岩体)均为闪长岩类I型花岗岩;② 与梅仙岩体同源的三墩花岗岩体是典型I型花岗岩(陕亮等,2017; 黄志飚等,2018; 曹创华等,2022),因此,我们推测梅仙花岗岩也应属于I型花岗岩;③ 镜下观察发现,梅仙花岗岩虽不含角闪石,但也不含S型花岗岩的标志性矿物堇青石,相当于九岭岩体早期岩浆,具有I型花岗岩特征(Wang Xiaolei et al.,2013);④ 与周边新元古代I型花岗岩相似,梅仙中粗粒花岗岩中存在少量椭圆状、水滴状暗色包体,类似包体成分的暗色脉体,且包体锆石U-Pb年龄、εHft)值、REE组成均与寄主花岗岩相近(未发表数据),表明包体不大可能是同源岩浆源区残留的难熔地壳物质或堆积的早期结晶矿物,很可能是岩浆混合成因(Kumar and Rino,2006; Kocak et al.,2011; Zhang Jianjun et al.,2016);⑤ 梅仙花岗岩在区域花岗闪长岩类之后形成,其全岩Al-Ti温度(平均845℃)、锆石饱和温度(平均733℃)超过或接近I型花岗岩成岩温度下限;⑥ 多个地球化学判别图均显示梅仙花岗岩属于I型花岗岩范畴。如在主量元素判别图中,弱过铝质高钠的梅仙花岗岩投点均落入I型花岗岩区域(图5c、d);在微量元素判别图中,梅仙花岗岩及周边新元古代花岗岩投点全部或基本落入未分异I-S型花岗岩区域,同时排除A型花岗岩可能性(图7a、b),在花岗岩Q-A-P判别图中,梅仙花岗岩投点基本落入I型花岗岩区域,少量细粒花岗岩投点落入I-S型花岗岩过渡区域(图7c);梅仙花岗岩P2O5含量低且与SiO2呈较明显负相关(图7d),基本符合I型花岗岩浆分异演化特征(Chappell et al.,1999)。

  • 4.3 岩浆源区

  • 锆石同位素体系封闭温度较高,锆石Lu-Hf同位素体系是理想的岩浆源区示踪剂,可有效地判别花岗岩物质来源和壳幔作用(Vervoort et al.,2000; Kinny et al.,2003; Kemp et al.,2007)。在t-εHft)图解中,梅仙、三墩、长三背、大围山岩体所有投点,葛藤岭、西园坑岩体和冷家溪群片岩部分投点落于球粒陨石和亏损地幔的演化线之间(图8a)。梅仙花岗岩与三墩花岗闪长岩有着相同或相近的正εHft)值和tDM2,且其Mg#值(45~59)明显高于地壳熔体(约17~38,Hu Peiyuan et al.,2015),表明它们的岩浆源区可能来自新生地壳,同时有幔源物质的参与。新生地壳来自冷家溪群的理由:① 幕阜山地区冷家溪群片岩εHft)主要在10~10,tDM2两个高峰区间在2.0~1.5 Ga和1.4~1.0 Ga(Li Pengchun et al.,2020),与梅仙花岗岩的εHft)(5.0~10.1)、tDM2(1.31~1.06)有重叠(图8b);② 富火山岩碎屑的冷家溪群沉积年龄(860~820 Ma)略大于梅仙花岗岩年龄(820~810 Ma);③ 紧邻梅仙岩体的南东侧长三背、大围山、葛藤岭、西园坑等岩体均为冷家溪群部分熔融形成的S型花岗岩(Wang Xiaolei et al.,2013),梅仙花岗岩中存在1541~855 Ma年龄的继承锆石。花岗岩源区性质判别图(图9)显示,梅仙花岗岩岩浆源区具有壳幔源物质共同参与特征,梅仙花岗岩及同源三墩花岗岩的岩浆源区投点分布复杂,既有部分落入贫黏土变质玄武岩或变质英云闪长岩部分熔融区,也有部分落入杂砂岩、泥岩部分熔融区,而湘东北其他新元古代花岗岩岩浆源区投点主要落入(较)富黏土沉积变质岩部分熔融区。

  • 图7 梅仙花岗岩成因类型判别图(图例同图5)

  • Fig.7 Discrimination diagrams of genetic type for the Meixian granites (the legend is the same as Fig.5)

  • (a)—(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)图解(底图据Whalen et al.,1987);(b)—TFeO/MgO-(Zr+Nb+Ce+Y)图解(底图据Whalen et al.,1987);(c)—Q-A-P图解(据Bowden et al.,1984);(d)—P2O5-SiO2图解; AG—A型花岗岩; FG—分异的长英质花岗岩; OGT—未分异的I、S、M型花岗岩

  • (a) — (Na2O+K2O) /CaO vs. (Zr+Nb+Ce+Y) diagram (after Whalen et al., 1987) ; (b) —TFeO/MgO vs. (Zr+Nb+Ce+Y) diagram (after Whalen et al., 1987) ; (c) —Q-A-P diagram (after Bowden et al., 1984) ; (d) — P2O5 vs. SiO2 diagram; AG—A-type granite; FG—fractionated felsic granite; OGT—unfractionated M-, I-and S-type granite

  • 前人研究表明江南造山带新元古代岩体的空间演化具有一定规律。Wang Xiaolei et al.(2013,2014)认为江南造山带新元古代花岗岩岩浆锆石的正εHft)值表明其东段地壳主要由新生物质组成,西段地壳主要由再循环较老物质(砂泥质沉积物)组成,而中段地壳特征介于东西段。陕亮等(2017)指出,江南造山带从东段→中段→西段,新元古代花岗岩岩浆源区的新生地壳物质加入比例逐渐降低,相应Hf模式年龄特征也表明地幔物质贡献程度逐渐降低。I型花岗岩可形成于变质火成岩地壳的部分熔融(Chappell et al.,1974; Bas et al.,1986),也可形成于幔源岩浆对沉积物质的改造(Kemp et al.,2007)。S型花岗岩的岩浆可以通过不同程度的地壳同化和岩浆混合从I型岩浆演化而来(Collins,1996; Zhu Dicheng et al.,2009)。结合前人认识和本次研究,梅仙花岗岩可能是新生的再循环火成岩地壳物质快速再造的产物,即富火山岩碎屑贫黏土冷家溪群部分熔融(可能混入一定幔源物质)形成的非典型I型、I-S型花岗岩。

  • 4.4 地球动力学背景

  • 前人已有大量研究认为,江南造山带由扬子板块与华夏板块在新元古代碰撞拼合而成,历经大洋俯冲、弧陆碰撞和碰撞后伸展等多个构造发展阶段(如Shu Liangshu et al.,1996; 李献华等,2008; Charvet,2013; 王孝磊等,2017; Kou Caihua et al.,2018; 舒良树,2021)。近年来,有关江南造山带的年代学研究已取得较一致的认识:扬子-华夏板块自865~860 Ma开始碰撞拼合,于825~820 Ma结束陆陆碰撞形成江南造山带,区域构造背景从820~810 Ma开始由挤压向伸展阶段转换,伴随着区域造山垮塌、过铝质S型花岗岩大规模侵位、岩石圈持续伸展等重大地质事件, 810~800 Ma之后进入陆内裂谷盆地发育期(Xin Yujia et al.,2017; 颜朝磊,2018; 韦守东,2020; 舒良树,2021)。这些研究成果为解析湘东北新元古代花岗岩的深部动力学背景奠定了理论基础。梅仙岩体位于湘东北新元古代岩浆带中部、长平断裂北西近侧,其成岩特征有很好的承前启后代表性。在花岗岩构造环境判别图解上,梅仙等湘东北新元古代花岗岩基本归类于火山弧花岗岩、后碰撞型花岗岩,形成于碰撞后构造环境(图10)。梅仙花岗岩与东侧三墩花岗岩的岩石结构变化(局部片麻状、粗粒→中粗粒→细粒)及其结晶年龄区间(839 Ma→820 Ma→810 Ma),较好地对应了其构造环境从碰撞晚期到碰撞后期,从挤压到伸展的变化趋势。

  • 图8 梅仙花岗岩锆石U-Pb年龄-εHft)协变图(a)及Hf同位素tDM2频数图(b)

  • Fig.8 Zircon U-Pb age vs.εHf (t) (a) and zircon tDM2 (b) for the the Meixian granites

  • 三墩、长三背、大围山、葛藤岭、西园坑、冷家溪群数据分别据陕亮等,2017; Wang Xiaoleiet al.,2014; Deng Teng et al.,2019; 张菲菲等,2011; Li Pengchuan et al.,2020

  • The data of Sandun, Changsanbei, Daweishan, Getengling, Xiyuankeng granites and Lenjiaxi Group are from Shan Liang et al., 2017; Wang Xiaoleiet al., 2014; Deng Teng et al., 2019; Zhang Feifei et al., 2011; Li Pengchuan et al., 2020, respectively

  • 图9 梅仙花岗岩源区性质判别图(图例同图5)

  • Fig.9 Discrimination diagrams of the sources for the Meixian granites (the legend is the same as Fig.5)

  • (a)—A/MF-C/MF图(底图a据Altherr et al.,2000);(b)—Rb/Ba-Rb/Sr图(据Sylvester,1998

  • (a) —A/MF vs. C/MF diagram (after Altherr et al., 2000) ; (b) —Rb/Ba vs. Rb/Sr diagram (after Sylvester, 1998)

  • 综合前人研究成果和本次研究,认为梅仙花岗岩形成于江南造山带中段构造背景由挤压向伸展变化过渡期,是地壳伸展减薄构造背景下,幔源岩浆底侵导致新生火成岩地壳部分熔融的产物,代表或对应了江南造山带新元古代构造-岩浆活动从高峰期到低谷期(静默期)的转换。主要理由有:① 研究区850~820 Ma的长英质岩浆作用为同碰撞-碰撞后花岗岩(Deng Teng et al.,2019);② 扬子板块与华夏板块之间的早新元古代构造-岩浆活动在约820 Ma达到最高峰(Li Zhengxiang et al.,2003),主要形成花岗闪长岩类和少量基性岩,江南造山带造山活动随即进入转折阶段,构造背景开始由挤压向伸展转换;③ 江南造山带在约815~795 Ma进入后造山期陆内伸展构造环境,软流圈幔源岩浆上升底侵诱发地壳发生部分熔融,岩浆活动以不整合在褶皱基底上的火山岩为主(Wang Xiaolei et al.,2014);④ 湘东北长平坳陷带(断裂)以南的新元古代岩体主要位于浏阳-衡东断隆带,区域断裂非常发育且以压扭性、压性断裂为主,梅仙岩体位于幕阜-望湘断隆带,区域断裂相对较少且以张扭性为主,我们推测长平坳陷带(断裂)是江南造山带中段在新元古代构造背景由挤压向伸展转换的代表性区域;⑤ 梅仙岩体与三墩岩体深部相连,应具有相同或相似的岩浆源区。三墩花岗岩是典型I型花岗岩(文春华等,2016; 陕亮等,2017),但更年轻的梅仙花岗岩有从I型向I-S型演化趋势(图7c)。梅仙岩体南东侧发育I-S型、S型花岗岩,北西侧和东侧发育I型花岗岩,这种岩石类型具有分带规律的原因可能是:在长平断裂北西侧地区(幕阜-望湘断隆带),软流圈上侵导致以部分熔融冷家溪群为主要物质来源的岩浆源区混入较多幔源物质,最终主要形成I型花岗岩;而在南东侧地区(浏阳-衡东断隆带),岩浆源区物质更多来自九岭岩体的大岩浆房,主要来源于部分熔融的源岩tDM2相对老(2.0~1.5 Ga)的冷家溪群(段政等,2017),最终主要形成S型花岗岩。长平坳陷带(断裂)南西侧的这些I-S型、S型花岗岩对应了陆陆碰撞后伸展构造背景下更强烈的造山垮塌事件;⑥ 梅仙花岗岩与湘东北其他强过铝质新元古代花岗岩具有相似的微量元素组成特征,如富大离子亲石元素、LREE,贫HREE,强烈亏损Nb,具有火山弧花岗岩特征,但梅仙花岗岩又呈弱过铝质、高钠、中低钾钙碱性-低钾拉斑、多变Eu异常等较复杂的地球化学组成特征,应是在碰撞后期更晚阶段,由多种岩浆混合形成的非典型I型、I-S型花岗岩。

  • 图10 梅仙花岗岩Rb-(Y+Nb)(a)、Ta-Yb(b)、Rb/30-Hf-3Ta(c)和lg[CaO/(Na2O+K2O)]-SiO2(d)构造背景判别图解(图例同图5;底图a、b据Pearce,1984;底图c据Harris et al.,1986;底图d据Brown,1982

  • Fig.10 Tectonic discrimination diagrams of Rb vs. (Y+Nb) (a) , Ta vs. Yb (b) , Rb/30-Hf-3Ta (c) and lg[CaO/ (Na2O+K2O) ] vs. SiO2 (d) for the Meixian granites (the legend is the same as Fig.5; a, b, after Pearce, 1984; c, after Harris et al., 1986; d, after Brown, 1982)

  • 5 结论

  • (1)梅仙岩体发育结晶年龄为819.6±4.6 Ma的中粗粒黑云母花岗岩、810.4±4.7 Ma的细粒黑云母花岗岩,均是新元古代时期岩浆活动的产物。

  • (2)梅仙中粗粒、细粒花岗岩的母岩浆形成于新生火成岩地壳物质的部分熔融,可能混入一定比例幔源物质。地壳物质主要来自部分熔融的富火山碎屑贫黏土冷家溪群,具有相对年轻的二阶段Hf模式年龄(1.4~1.0 Ga)。相比其他同时代花岗岩,梅仙花岗岩地球化学组成更为复杂,表现为高钠、中钾钙碱性-低钾拉斑、弱过铝质、正负Eu异常皆有等特征,可能是岩浆混合成因的未经分异的非典型I型、I-S型花岗岩。

  • (3)梅仙花岗岩体在江南造山带中段结束板块碰撞挤压,向拉张伸展构造背景转换的过渡期形成。

  • 致谢:中南大学的袁玲玲副教授对本文提出建设性意见,三位匿名审稿人及编委审阅全文并提出了宝贵的修改意见,在此一并表示诚挚谢意。

  • 注释

  • ❶ 湖南省地质矿产局.1987.1∶5万平江幅区域地质矿产调查报告.

  • ❷ 湖南省地质矿产局四○二队区域地质调查分队.1989.1∶5万南江桥幅矿产图H-49-120-A.

  • ❸ 湖南省地质矿产局四○二队区域地质调查分队.1989.1∶5万平江幅矿产图H-49-120-C.

  • ❹ 湖北省地质调查院.2013.1∶50万通城县区幅区域地质调查报告.

  • 参考文献

    • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51~73.

    • Bas M J L, Maitre R W L, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic-rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745~750.

    • Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243~258.

    • Bowden P, Kinnaird J A. 1984. The petrology and geochemistry of alkaline granites from Nigeria. Physics of the Earth and Planetary Interiors, 35(1-3): 199~211.

    • Brown G C. 1982. Calc-alkaline intrusive rocks: Their diversity, evolution, and relation to volcanic arcs. In: Thorpe R S, ed. Andesites. New York: John Wiley and Sons, 437~464.

    • Cao Chuanghua, Cheng Yuntao, Zou Guangjun, Huang Jianzhong, Liu Junfeng, Wen Chunhua, Meng Debao, Liu Jianxin, Lou Fasheng, Deng Juzhi. 2022. Deep electrical structure of Mufushan Meixian in the north of eastern Hunan and its control on rare metal mineralization. The Chinese Journal of Nonferrous Metals, 32(4): 1175~1186 (in Chinese with English abstract).

    • Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173~174.

    • Chappell B W, Sial A N, Stephens W E, Ferreira V P. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.

    • Charvet J. 2013. The Neoproterozoic-early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences, 74: 198~209.

    • Collins W J. 1996. Lachlan Fold Belt granitoids: Products of three-component mixing. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 171~181.

    • Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189200.

    • Deng Teng, Xu Deru, Chi Guoxiang, Zhu Yuhua, Wang Zhilin, Chen Genwen, Li Zenghua, Zhang Junling, Ye Tingwei, Yu Deshui. 2019. Revisiting the ca. 845-820 Ma S-type granitic magmatism in the Jiangnan Orogen: New insights on the Neoproterozoic tectono-magmatic evolution of South China. International Geology Review, 61(4): 383~403.

    • Duan Zheng, Xing Guangfu, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui. 2017. Compositional difference from the sources of Jiuling Neoproterozoic granite complex in eastern segment of the Jiangnan Orogen: Constraints from geochemistry and Hf isotope of zircons. Acta Petrologica Sinica, 33(11): 3610~3634 (in Chinese with English abstract).

    • Duan Zheng, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui, Shu Xujie, Li Changbo. 2019. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance. Geology in China, 46(3): 493~516 (in Chinese with English abstract).

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X, Zhou X. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237~269.

    • Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231~282.

    • Harris N B, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67~81.

    • Hu Peiyuan, Zhai Qingguo, Jahn B M, Wang Jun, Li Cai, Lee H Y, Tang Suohan. 2015. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos, 220: 318~338.

    • Hu Zhaochu, Liu Yongsheng, Gao Shan, Liu Wengui, Zhang Wen, Tong Xirun, Lin Lin, Zong Keqing, Li Ming, Chen Haihong, Zhou Lian, Yang Lu. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391~1399.

    • Hu Zhaochu, Zhang Wen, Liu Yongsheng, Gao Shan, Li Ming, Zong Keqing, Chen Honghai, Hu Shenghong. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152~1157.

    • Huang He, Zhang Zhaochong, Timothy M Kusky, Zhang Dongyang, Hou Tong, Liu Junlai, Zhao Zhidan. 2012. Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth. Lithos, 140-141: 66~85.

    • Huang Zhibiao, Li Peng, Zhou Fangchun, Liu Xiang, Li Jiankang, Xiao Guoqiang, Zhang Liping, Chen Hu, Wang Xuanmin. 2018. Geochemical characteristics and genesis of the Neoproterozoic granite in Mufushan area. Journal of Guilin University of Technology, 38(4): 614~624 (in Chinese with English abstract).

    • Jia Baohua, Huang Jianzhong, Liu Yaorong, Sun Haiqing, Liu Wei, Meng Debao, Huang Gefei, Chen Jun, Wang Xianhui, Zhang Xiaoyang, Chen Duping, Bai Daoyuan, Ma Tieqiu, Rao Jiarong, Tan Yihe, Xiao Haiyun, Shen Guichang, Yin Ruxin, Xiang Ke. 2017. Regional Geology of China, Hunan Chronicle. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Jiang Xingfu, Peng Songbai, Kusky T M, Wang Lu, Deng Hao. 2018. Petrogenesis and geotectonic significance of Early-Neoproterzoic olivine-gabbro within the Yangtze Craton: Constrains from the mineral composition, U-Pb age and Hf isotopes of zircons. Journal of Earth Science, 29(1): 93~102.

    • Jiang Xingfu, Peng Songbai, Han Qingsen. 2021. Petrogenesis and geological significance of ca. 860 Ma dikes in southern Huangling anticline, Yangtze craton. Earth Science, 46(6): 2117~2132 (in Chinese with English abstract).

    • Jung S, Pfänder J A. 2007. Source composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19(6): 859~870.

    • Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980~983.

    • Kinny P D, Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327~341.

    • Kocak K, Zedef V, Kansun G. 2011. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: Evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1): 149~167.

    • Kou Caihua, Liu Yanxue, Huang He, Li Tingdong, Ding Xiaozhong, Zhang Heng. 2018. The Neoproterozoic arc-type and OIB-type mafic-ultramafic rocks in the western Jiangnan orogen: Implications for tectonic settings. Lithos, 312: 38~56.

    • Kumar S, Rino V. 2006. Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: Evidence of magma mixing, mingling, and chemical equilibration. Contributions to Mineralogy and Petrology, 152(5): 591~609.

    • Li Pengchun, Chen Guanghao, Xu Deru, He Zhuanli, Fu Jianli 2007. Petrological and geochemical characteristics and petrogenesis of Neoproterozoic peraluminous granites in Northeastern Hunan Province. Geotectonica et Metallogenia, 30(1): 126~136 (in Chinese with English abstract).

    • Li Pengchuan, Li Jiankang, Liu Xiang, Li Chao, Huang Zhibiao, Zhou Fangchun. 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China. Ore Geology Reviews, 116: 103237.

    • Li Tong, Yuan Huaiyu, Wu Shengxi, Cheng Xianfu. 1999. Regional element abundances of continental crustobodies in China. Geotectonics et Metallogenia, 23(2): 101~107 (in Chinese with English abstract).

    • Li Xianhua, Li Zhengxiang, Ge Wenchun, Zhou Hanwen, Li Wuxian, Liu Ying. 2001. U-Pb zircon ages of Neoproterozoic granitoids in South China and their tectonic implications. Bulletin of Mineralogy and Geochemistry, 20(4): 271~273 (in Chinese with English abstract).

    • Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341~357.

    • Li Xianhua, Wang Xuance, Li Wuxian, Li Zhengxiang. 2008. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China: From orogenesis to intracontinental rifting. Geochemica, 37(4): 382~398 (in Chinese with English abstract).

    • Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang Shihong, Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85~109.

    • Liu Xiang, Zhou Fangchun, Li Peng, Li Jiankang, Huang Zhibiao, Shi Weike, Huang Xiaoqiang, Zhang Liping, Su Junnan. 2019. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance. Mineral Deposits, 38 (4): 771~791 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center.

    • Ma Tieqiu, Chen Lixin, Bai Daoyuan, Zhou Kejun, Li Gang, Wang Xianhui. 2009. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in northeastern Hunan. Geology in China, 36(1): 65~73 (in Chinese with English abstract).

    • Meng Qingxiu, Zhang Jian, Geng Jianzhen, Zhang Chuanlin, Huang Wencheng. 2013. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi Groups in middle Hunan Province: Implications for the Neoproterozoic tectonic evolution in South China. Geology in China, 40(1): 191~216 (in Chinese with English abstract).

    • Middlemost E A. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3-4): 215~224.

    • Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529~532.

    • Pearce J A, Harris N B, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.

    • Shan Liang, Ke Xianzhong, Pang Yingchun, Liu Jiajun, Zhao Xinmin, Wang Jing, Kang Bo, Zhang Kun. 2017. Zircon LA-ICP-MS U-Pb chronology, Lu-Hf isotopic characteristics and its geological significance of the Neoproterozoic magma activity in Lishan area from the Northeastern Hunan Province. Geological Science and Technology Information, 36(6): 32~42 (in Chinese with English abstract).

    • Shand S J. 1943. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore Deposits, with a Chapter on Meteorites. New York: Wiley.

    • Shu Liangshu. 2021. Principal features of intracontinental orogenic belt and discussions on its dynamics. Acta Geologica Sinica, 95 (1): 98~106 (in Chinese with English abstract).

    • Shu Liangshu, Charvet J. 1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: With HP metamorphism and ophiolitic melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291~302.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311~324.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication, 42(1): 313~345.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29~44.

    • Vervoort J D, Patchett P J, Albarede F, Blichert-Toft J, Rudnick R, Downes H. 2000. Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 181(1-2): 115~129.

    • Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Gao Jianfeng. 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: Implications for the evolution of the western Jiangnan orogen. Precambrian Research, 135(1-2): 79~103.

    • Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Gao Jianfeng. 2004. Petrogenesis of Neoproterozoic peraluminous granites from northeastern Hunan Province: Chronological and geochemical constraints. Geological Review, 50(1): 65~76 (in Chinese with English abstract).

    • Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Zhang Wenlan, Liu Xiaoming, Zhang Guilin. 2006. Petrogenesis of the Neoproterozoic strongly peraluminons granitoids from Northern Guangxi: Constraints from zircon geochronology and Hf isotopes. Acta Petrologica Sinica, 22(2): 326~342 (in Chinese with English abstract).

    • Wang Xiaolei, Zhou Jincheng, Wan Yusheng, Kitajima K, Wang Di, Bonamici C, Qiu Jiansheng, Sun Tao. 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth and Planetary Science Letters, 366: 71~82.

    • Wang Xiaolei, Zhou Jincheng, Griffin W L, Zhao Guochun, Yu Jinhai, Qiu Jiansheng, Zhang Yanjie, Xing Guangfu. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154~171.

    • Wang Xiaolei, Zhou Jincheng, Chen Xin, Zhang Fengfeng, Sun Ziming. 2017. Formation and evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714~735 (in Chinese with English abstract).

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295~304.

    • Wei Shoudong. 2020. Petrogenesis and tectonic implications of the Neoproterozoic magmatic rocks in the western Jiangnan Orogen, South China. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).

    • Wen Chunhua, Chen Jianfeng, Luo Xiaoya, Li Shengmiao. 2016. Geochemical features of the Chuanziyuan rare metal pegmatite in northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geochemistry, 35 (1): 171~177 (in Chinese with English abstract).

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrological Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Xia Yan, Xu Xisheng, Zou Haibo, Liu Lei. 2014. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites. Lithos, 184: 416~435.

    • Xin Yujia, Li Jianhua, Dong Shuwen, Zhang Yueqiao, Wang Wenbao, Sun Hanshen. 2017. Neoproterozoic post-collisional extension of the central Jiangnan Orogen: Geochemical, geochronological, and Lu-Hf isotopic constraints from the ca. 820-800 Ma magmatic rocks. Precambrian Research, 294: 91~110.

    • Yan Chaolei. 2018. The Neoproterozoic tectonic evolution of the western Jiangnan orogenic belt and its Early Paleozoic-Mesozoic tectonic reworking. Doctoral dissertation of Nanjing University (in Chinese with English abstract).

    • Yang Xue, Zhang Yuzhi, Cui Xiang, Yu Pengpeng, Xu Wenjing. 2020. Geochemistry and detrital zircon U-Pb ages of sedimentary rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province. Earth Science, 45(9): 3461~3474 (in Chinese with English abstract).

    • Zhang Feifei, Wang Yuejun, Fan Weiming, Zhang Aimei, Zhang Yuzhi. 2011. Zircon U-Pb geochronology and Hf isotopes of Neoproterozoic granites in the central of Jiangnan uplift. Geotectonics et Metallogenia, 35 (1): 73~84 (in Chinese with English abstract).

    • Zhang Jianjun, Wang Tao, Castro A, Zhang Lei, Shi Xingjun, Tong Ying, Zhang Zhaochong, Guo Lei, Yang Qidi, Laccheri L M. 2016. Multiple mixing and hybridization from magma source to final emplacement in the Permian Yamatu pluton, the northern Alxa block, China. Journal of Petrology, 57(5): 933~980.

    • Zhang Wen, Hu Zhaochun. 2020. Spectroscopy A. Estimation of isotopic reference values for pure materials and geological reference materials. Atomic Spectroscopy, 41(3): 93~102.

    • Zhao Junhong, Zhou Meifu, Yan Danping, Zheng Jianping, Li Jianwei. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299~302.

    • Zhou Fangchun, Liu Xiang, Li Jiankang, Huang Zhibiao, Xiao Guoqiang, Li Peng, Zhou Houxiang, Shi Weike, Tan liming, Su Junnan, Chen Hu, Wang Xuanmin. 2019. Metallogenic characteristics and prospecting direction of Renli super-large rare metal deposit in Hunan Province, China. Geotectonica et Metallogenia, 43 (1): 77~91 (in Chinese with English abstract).

    • Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.

    • Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, Wang Liquan, Pan Guitang, Wu Fuyuan. 2009. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 469(1-4): 48~60.

    • Zong Keqing, Klemd R, Yuan Yu, He Zhenyu, Guo Jingliang, Shi Xiaoli, Liu Yongsheng, Hu Zhaochu, Zhang Zeming. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32~48.

    • Zorpi M J, Coulon C, Orsini J B, Cocirta C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4): 315~329.

    • 曹创华, 程云涛, 邹光均, 黄建中, 刘俊峰, 文春华, 孟德保, 柳建新, 楼法生, 邓居智. 2022. 湘东北幕阜山-梅仙深部电性结构及其对稀有金属成矿的控制作用. 中国有色金属学报, 32(4): 1175~1186.

    • 段政, 邢光福, 廖圣兵, 褚平利, 黄文成, 朱延辉. 2017. 江南造山带东段九岭新元古代复式花岗岩源区性质的差异: 来自地球化学及锆石Hf同位素的制约. 岩石学报, 33(11): 3610~3634.

    • 段政, 廖圣兵, 褚平利, 黄文成, 朱延辉, 舒徐洁, 李长波. 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义. 中国地质, 46(3): 493~516.

    • 贾宝华, 黄建中, 刘耀荣, 孙海清, 刘伟, 孟德保, 黄革非, 陈俊, 王先辉, 张晓阳, 陈渡平, 柏道远, 马铁球, 饶家荣, 谭宜和, 肖海云, 沈桂昌, 殷如新, 向轲. 2017. 中国区域地质志·湖南志. 北京: 地质出版社.

    • 黄志飚, 李鹏, 周芳春, 刘翔, 李建康, 肖国强, 张立平, 陈虎, 汪宣民. 2018. 幕阜山地区新元古代花岗岩地球化学特征及成因探讨. 桂林理工大学学报, 38(4): 614~624.

    • 蒋幸福, 彭松柏, 韩庆森. 2021. 扬子克拉通黄陵背斜南部~860 Ma岩墙的成因及地质意义. 地球科学, 46(6): 2117~2132.

    • 黎彤, 袁怀雨, 吴胜昔, 程先富. 1999. 中国大陆壳体的区域元素丰度. 大地构造与成矿学, 23(2): 101~107.

    • 李鹏春, 陈广浩, 许德如, 贺转利, 符巩固. 2007. 湘东北新元古代过铝质花岗岩的岩石地球化学特征及其成因讨论. 大地构造与成矿学, 30(1): 126~136.

    • 李献华, 李正祥, 葛文春, 周汉文, 李武显, 刘颖. 2001. 华南新元古代花岗岩的锆石U-Pb年龄及其构造意义. 矿物岩石地球化学通报, 20(4): 271~273.

    • 李献华, 王选策, 李武显, 李正祥. 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382~398.

    • 刘翔, 周芳春, 李鹏, 李建康, 黄志飚, 石威科, 黄小强, 张立平, 苏俊男. 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771~791.

    • 马铁球, 陈立新, 柏道远, 周柯军, 李纲, 王先辉. 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65~73.

    • 孟庆秀, 张健, 耿建珍, 张传林, 黄文成. 2013. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义. 中国地质, 40(1): 191~216.

    • 陕亮, 柯贤忠, 庞迎春, 刘家军, 赵辛敏, 王晶, 康博, 张鲲. 2017. 湘东北栗山地区新元古代岩浆活动及其地质意义: 锆石U-Pb年代学、Lu-Hf同位素证据. 地质科技情报, 36(6): 32~42.

    • 舒良树. 2021. 陆内造山带特征及其动力学讨论. 地质学报, 95(1): 98~106.

    • 王孝磊, 周金城, 邱检生, 高剑峰. 2004. 湘东北新元古代强过铝花岗岩的成因: 年代学和地球化学证据. 地质论评, 50(1): 65~76.

    • 王孝磊, 周金城, 邱检生, 张文兰, 柳小明, 张桂林. 2006. 桂北新元古代强过铝花岗岩的成因: 锆石年代学和Hf同位素制约. 岩石学报, 22(2): 326~342.

    • 王孝磊, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714~735.

    • 韦守东. 2020. 江南造山带西段新元古代岩浆岩成因及地质意义. 中国地质大学(武汉)博士学位论文.

    • 文春华, 陈剑锋, 罗小亚, 李胜苗. 湘东北传梓源稀有金属花岗伟晶岩地球化学特征. 2016. 矿物岩石地球化学通报, 35(1): 171~177.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 颜朝磊. 2018. 江南造山带西段新元古代构造演化及其早古生代-中生代地质再造. 南京大学博士学位论文.

    • 杨雪, 张玉芝, 崔翔, 虞鹏鹏, 徐文景. 2020. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学. 地球科学, 45(9): 3461~3474.

    • 张菲菲, 王岳军, 范蔚茗, 张爱梅, 张玉芝. 2011. 江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究. 大地构造与成矿学, 35(1): 73~84.

    • 周芳春, 刘翔, 李建康, 黄志飚, 肖国强, 李鹏, 周厚祥, 石威科, 谭黎明, 苏俊男, 陈虎, 汪宣民. 2019. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型. 大地构造与成矿学, 43(1): 77~91.

  • 参考文献

    • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51~73.

    • Bas M J L, Maitre R W L, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic-rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745~750.

    • Blichert-Toft J, Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243~258.

    • Bowden P, Kinnaird J A. 1984. The petrology and geochemistry of alkaline granites from Nigeria. Physics of the Earth and Planetary Interiors, 35(1-3): 199~211.

    • Brown G C. 1982. Calc-alkaline intrusive rocks: Their diversity, evolution, and relation to volcanic arcs. In: Thorpe R S, ed. Andesites. New York: John Wiley and Sons, 437~464.

    • Cao Chuanghua, Cheng Yuntao, Zou Guangjun, Huang Jianzhong, Liu Junfeng, Wen Chunhua, Meng Debao, Liu Jianxin, Lou Fasheng, Deng Juzhi. 2022. Deep electrical structure of Mufushan Meixian in the north of eastern Hunan and its control on rare metal mineralization. The Chinese Journal of Nonferrous Metals, 32(4): 1175~1186 (in Chinese with English abstract).

    • Chappell B W, White A J R. 1974. Two contrasting granite types. Pacific Geology, 8: 173~174.

    • Chappell B W, Sial A N, Stephens W E, Ferreira V P. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535~551.

    • Charvet J. 2013. The Neoproterozoic-early Paleozoic tectonic evolution of the South China Block: An overview. Journal of Asian Earth Sciences, 74: 198~209.

    • Collins W J. 1996. Lachlan Fold Belt granitoids: Products of three-component mixing. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 171~181.

    • Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189200.

    • Deng Teng, Xu Deru, Chi Guoxiang, Zhu Yuhua, Wang Zhilin, Chen Genwen, Li Zenghua, Zhang Junling, Ye Tingwei, Yu Deshui. 2019. Revisiting the ca. 845-820 Ma S-type granitic magmatism in the Jiangnan Orogen: New insights on the Neoproterozoic tectono-magmatic evolution of South China. International Geology Review, 61(4): 383~403.

    • Duan Zheng, Xing Guangfu, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui. 2017. Compositional difference from the sources of Jiuling Neoproterozoic granite complex in eastern segment of the Jiangnan Orogen: Constraints from geochemistry and Hf isotope of zircons. Acta Petrologica Sinica, 33(11): 3610~3634 (in Chinese with English abstract).

    • Duan Zheng, Liao Shengbing, Chu Pingli, Huang Wencheng, Zhu Yanhui, Shu Xujie, Li Changbo. 2019. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance. Geology in China, 46(3): 493~516 (in Chinese with English abstract).

    • Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X, Zhou X. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237~269.

    • Griffin W L, Belousova E A, Shee S R, Pearson N J, O'Reilly S Y. 2004. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131(3-4): 231~282.

    • Harris N B, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. Geological Society, London, Special Publications, 19(1): 67~81.

    • Hu Peiyuan, Zhai Qingguo, Jahn B M, Wang Jun, Li Cai, Lee H Y, Tang Suohan. 2015. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos, 220: 318~338.

    • Hu Zhaochu, Liu Yongsheng, Gao Shan, Liu Wengui, Zhang Wen, Tong Xirun, Lin Lin, Zong Keqing, Li Ming, Chen Haihong, Zhou Lian, Yang Lu. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391~1399.

    • Hu Zhaochu, Zhang Wen, Liu Yongsheng, Gao Shan, Li Ming, Zong Keqing, Chen Honghai, Hu Shenghong. 2015. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Analytical Chemistry, 87(2): 1152~1157.

    • Huang He, Zhang Zhaochong, Timothy M Kusky, Zhang Dongyang, Hou Tong, Liu Junlai, Zhao Zhidan. 2012. Geochronology and geochemistry of the Chuanwulu complex in the South Tianshan, western Xinjiang, NW China: Implications for petrogenesis and Phanerozoic continental growth. Lithos, 140-141: 66~85.

    • Huang Zhibiao, Li Peng, Zhou Fangchun, Liu Xiang, Li Jiankang, Xiao Guoqiang, Zhang Liping, Chen Hu, Wang Xuanmin. 2018. Geochemical characteristics and genesis of the Neoproterozoic granite in Mufushan area. Journal of Guilin University of Technology, 38(4): 614~624 (in Chinese with English abstract).

    • Jia Baohua, Huang Jianzhong, Liu Yaorong, Sun Haiqing, Liu Wei, Meng Debao, Huang Gefei, Chen Jun, Wang Xianhui, Zhang Xiaoyang, Chen Duping, Bai Daoyuan, Ma Tieqiu, Rao Jiarong, Tan Yihe, Xiao Haiyun, Shen Guichang, Yin Ruxin, Xiang Ke. 2017. Regional Geology of China, Hunan Chronicle. Beijing: Geological Publishing House (in Chinese with English abstract).

    • Jiang Xingfu, Peng Songbai, Kusky T M, Wang Lu, Deng Hao. 2018. Petrogenesis and geotectonic significance of Early-Neoproterzoic olivine-gabbro within the Yangtze Craton: Constrains from the mineral composition, U-Pb age and Hf isotopes of zircons. Journal of Earth Science, 29(1): 93~102.

    • Jiang Xingfu, Peng Songbai, Han Qingsen. 2021. Petrogenesis and geological significance of ca. 860 Ma dikes in southern Huangling anticline, Yangtze craton. Earth Science, 46(6): 2117~2132 (in Chinese with English abstract).

    • Jung S, Pfänder J A. 2007. Source composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19(6): 859~870.

    • Kemp A I S, Hawkesworth C J, Foster G L, Paterson B A, Woodhead J D, Hergt J M, Gray C M, Whitehouse M J. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980~983.

    • Kinny P D, Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327~341.

    • Kocak K, Zedef V, Kansun G. 2011. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: Evidence from mafic microgranular enclaves. Mineralogy and Petrology, 103(1): 149~167.

    • Kou Caihua, Liu Yanxue, Huang He, Li Tingdong, Ding Xiaozhong, Zhang Heng. 2018. The Neoproterozoic arc-type and OIB-type mafic-ultramafic rocks in the western Jiangnan orogen: Implications for tectonic settings. Lithos, 312: 38~56.

    • Kumar S, Rino V. 2006. Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: Evidence of magma mixing, mingling, and chemical equilibration. Contributions to Mineralogy and Petrology, 152(5): 591~609.

    • Li Pengchun, Chen Guanghao, Xu Deru, He Zhuanli, Fu Jianli 2007. Petrological and geochemical characteristics and petrogenesis of Neoproterozoic peraluminous granites in Northeastern Hunan Province. Geotectonica et Metallogenia, 30(1): 126~136 (in Chinese with English abstract).

    • Li Pengchuan, Li Jiankang, Liu Xiang, Li Chao, Huang Zhibiao, Zhou Fangchun. 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb-Ta deposit in Hunan, China. Ore Geology Reviews, 116: 103237.

    • Li Tong, Yuan Huaiyu, Wu Shengxi, Cheng Xianfu. 1999. Regional element abundances of continental crustobodies in China. Geotectonics et Metallogenia, 23(2): 101~107 (in Chinese with English abstract).

    • Li Xianhua, Li Zhengxiang, Ge Wenchun, Zhou Hanwen, Li Wuxian, Liu Ying. 2001. U-Pb zircon ages of Neoproterozoic granitoids in South China and their tectonic implications. Bulletin of Mineralogy and Geochemistry, 20(4): 271~273 (in Chinese with English abstract).

    • Li Xianhua, Li Wuxian, Li Zhengxiang, Liu Ying. 2008. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos, 102(1-2): 341~357.

    • Li Xianhua, Wang Xuance, Li Wuxian, Li Zhengxiang. 2008. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China: From orogenesis to intracontinental rifting. Geochemica, 37(4): 382~398 (in Chinese with English abstract).

    • Li Zhengxiang, Li Xianhua, Kinny P D, Wang Jian, Zhang Shihong, Zhou Hanwen. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1-4): 85~109.

    • Liu Xiang, Zhou Fangchun, Li Peng, Li Jiankang, Huang Zhibiao, Shi Weike, Huang Xiaoqiang, Zhang Liping, Su Junnan. 2019. Geological characteristics and metallogenic age of Renli rare metal orefield in Hunan and its prospecting significance. Mineral Deposits, 38 (4): 771~791 (in Chinese with English abstract).

    • Liu Yongsheng, Hu Zhaochu, Gao Shan, Günther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34~43.

    • Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology, 51(1-2): 537~571.

    • Ludwig K R. 2003. ISOPLOT 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center.

    • Ma Tieqiu, Chen Lixin, Bai Daoyuan, Zhou Kejun, Li Gang, Wang Xianhui. 2009. Zircon SHRIMP dating and geochemical characteristics of Neoproterozoic granites in northeastern Hunan. Geology in China, 36(1): 65~73 (in Chinese with English abstract).

    • Meng Qingxiu, Zhang Jian, Geng Jianzhen, Zhang Chuanlin, Huang Wencheng. 2013. Zircon U-Pb age and Hf isotope compositions of Lengjiaxi and Baxi Groups in middle Hunan Province: Implications for the Neoproterozoic tectonic evolution in South China. Geology in China, 40(1): 191~216 (in Chinese with English abstract).

    • Middlemost E A. 1994. Naming materials in the magma/igneous rock system. Earth Science Reviews, 37(3-4): 215~224.

    • Miller C F, McDowell S M, Mapes R W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529~532.

    • Pearce J A, Harris N B, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956~983.

    • Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63~81.

    • Shan Liang, Ke Xianzhong, Pang Yingchun, Liu Jiajun, Zhao Xinmin, Wang Jing, Kang Bo, Zhang Kun. 2017. Zircon LA-ICP-MS U-Pb chronology, Lu-Hf isotopic characteristics and its geological significance of the Neoproterozoic magma activity in Lishan area from the Northeastern Hunan Province. Geological Science and Technology Information, 36(6): 32~42 (in Chinese with English abstract).

    • Shand S J. 1943. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore Deposits, with a Chapter on Meteorites. New York: Wiley.

    • Shu Liangshu. 2021. Principal features of intracontinental orogenic belt and discussions on its dynamics. Acta Geologica Sinica, 95 (1): 98~106 (in Chinese with English abstract).

    • Shu Liangshu, Charvet J. 1996. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone: With HP metamorphism and ophiolitic melange (Jiangnan Region, South China). Tectonophysics, 267(1-4): 291~302.

    • Söderlund U, Patchett P J, Vervoort J D, Isachsen C E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311~324.

    • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society Special Publication, 42(1): 313~345.

    • Sylvester P J. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29~44.

    • Vervoort J D, Patchett P J, Albarede F, Blichert-Toft J, Rudnick R, Downes H. 2000. Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 181(1-2): 115~129.

    • Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Gao Jianfeng. 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: Implications for the evolution of the western Jiangnan orogen. Precambrian Research, 135(1-2): 79~103.

    • Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Gao Jianfeng. 2004. Petrogenesis of Neoproterozoic peraluminous granites from northeastern Hunan Province: Chronological and geochemical constraints. Geological Review, 50(1): 65~76 (in Chinese with English abstract).

    • Wang Xiaolei, Zhou Jincheng, Qiu Jiansheng, Zhang Wenlan, Liu Xiaoming, Zhang Guilin. 2006. Petrogenesis of the Neoproterozoic strongly peraluminons granitoids from Northern Guangxi: Constraints from zircon geochronology and Hf isotopes. Acta Petrologica Sinica, 22(2): 326~342 (in Chinese with English abstract).

    • Wang Xiaolei, Zhou Jincheng, Wan Yusheng, Kitajima K, Wang Di, Bonamici C, Qiu Jiansheng, Sun Tao. 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth and Planetary Science Letters, 366: 71~82.

    • Wang Xiaolei, Zhou Jincheng, Griffin W L, Zhao Guochun, Yu Jinhai, Qiu Jiansheng, Zhang Yanjie, Xing Guangfu. 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242: 154~171.

    • Wang Xiaolei, Zhou Jincheng, Chen Xin, Zhang Fengfeng, Sun Ziming. 2017. Formation and evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714~735 (in Chinese with English abstract).

    • Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295~304.

    • Wei Shoudong. 2020. Petrogenesis and tectonic implications of the Neoproterozoic magmatic rocks in the western Jiangnan Orogen, South China. Doctoral dissertation of China University of Geosciences (in Chinese with English abstract).

    • Wen Chunhua, Chen Jianfeng, Luo Xiaoya, Li Shengmiao. 2016. Geochemical features of the Chuanziyuan rare metal pegmatite in northeastern Hunan, China. Bulletin of Mineralogy, Petrology and Geochemistry, 35 (1): 171~177 (in Chinese with English abstract).

    • Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407~419.

    • Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrological Sinica, 23(2): 185~220 (in Chinese with English abstract).

    • Wu Yuanbao, Zheng Yongfei. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(16): 1589~1604 (in Chinese).

    • Xia Yan, Xu Xisheng, Zou Haibo, Liu Lei. 2014. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites. Lithos, 184: 416~435.

    • Xin Yujia, Li Jianhua, Dong Shuwen, Zhang Yueqiao, Wang Wenbao, Sun Hanshen. 2017. Neoproterozoic post-collisional extension of the central Jiangnan Orogen: Geochemical, geochronological, and Lu-Hf isotopic constraints from the ca. 820-800 Ma magmatic rocks. Precambrian Research, 294: 91~110.

    • Yan Chaolei. 2018. The Neoproterozoic tectonic evolution of the western Jiangnan orogenic belt and its Early Paleozoic-Mesozoic tectonic reworking. Doctoral dissertation of Nanjing University (in Chinese with English abstract).

    • Yang Xue, Zhang Yuzhi, Cui Xiang, Yu Pengpeng, Xu Wenjing. 2020. Geochemistry and detrital zircon U-Pb ages of sedimentary rocks from Neoproterozoic Lengjiaxi Group in NE Hunan Province. Earth Science, 45(9): 3461~3474 (in Chinese with English abstract).

    • Zhang Feifei, Wang Yuejun, Fan Weiming, Zhang Aimei, Zhang Yuzhi. 2011. Zircon U-Pb geochronology and Hf isotopes of Neoproterozoic granites in the central of Jiangnan uplift. Geotectonics et Metallogenia, 35 (1): 73~84 (in Chinese with English abstract).

    • Zhang Jianjun, Wang Tao, Castro A, Zhang Lei, Shi Xingjun, Tong Ying, Zhang Zhaochong, Guo Lei, Yang Qidi, Laccheri L M. 2016. Multiple mixing and hybridization from magma source to final emplacement in the Permian Yamatu pluton, the northern Alxa block, China. Journal of Petrology, 57(5): 933~980.

    • Zhang Wen, Hu Zhaochun. 2020. Spectroscopy A. Estimation of isotopic reference values for pure materials and geological reference materials. Atomic Spectroscopy, 41(3): 93~102.

    • Zhao Junhong, Zhou Meifu, Yan Danping, Zheng Jianping, Li Jianwei. 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny. Geology, 39(4): 299~302.

    • Zhou Fangchun, Liu Xiang, Li Jiankang, Huang Zhibiao, Xiao Guoqiang, Li Peng, Zhou Houxiang, Shi Weike, Tan liming, Su Junnan, Chen Hu, Wang Xuanmin. 2019. Metallogenic characteristics and prospecting direction of Renli super-large rare metal deposit in Hunan Province, China. Geotectonica et Metallogenia, 43 (1): 77~91 (in Chinese with English abstract).

    • Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26~33.

    • Zhu Dicheng, Mo Xuanxue, Niu Yaoling, Zhao Zhidan, Wang Liquan, Pan Guitang, Wu Fuyuan. 2009. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa terrane, southern Tibet: Implications for Permian collisional orogeny and paleogeography. Tectonophysics, 469(1-4): 48~60.

    • Zong Keqing, Klemd R, Yuan Yu, He Zhenyu, Guo Jingliang, Shi Xiaoli, Liu Yongsheng, Hu Zhaochu, Zhang Zeming. 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32~48.

    • Zorpi M J, Coulon C, Orsini J B, Cocirta C. 1989. Magma mingling, zoning and emplacement in calc-alkaline granitoid plutons. Tectonophysics, 157(4): 315~329.

    • 曹创华, 程云涛, 邹光均, 黄建中, 刘俊峰, 文春华, 孟德保, 柳建新, 楼法生, 邓居智. 2022. 湘东北幕阜山-梅仙深部电性结构及其对稀有金属成矿的控制作用. 中国有色金属学报, 32(4): 1175~1186.

    • 段政, 邢光福, 廖圣兵, 褚平利, 黄文成, 朱延辉. 2017. 江南造山带东段九岭新元古代复式花岗岩源区性质的差异: 来自地球化学及锆石Hf同位素的制约. 岩石学报, 33(11): 3610~3634.

    • 段政, 廖圣兵, 褚平利, 黄文成, 朱延辉, 舒徐洁, 李长波. 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义. 中国地质, 46(3): 493~516.

    • 贾宝华, 黄建中, 刘耀荣, 孙海清, 刘伟, 孟德保, 黄革非, 陈俊, 王先辉, 张晓阳, 陈渡平, 柏道远, 马铁球, 饶家荣, 谭宜和, 肖海云, 沈桂昌, 殷如新, 向轲. 2017. 中国区域地质志·湖南志. 北京: 地质出版社.

    • 黄志飚, 李鹏, 周芳春, 刘翔, 李建康, 肖国强, 张立平, 陈虎, 汪宣民. 2018. 幕阜山地区新元古代花岗岩地球化学特征及成因探讨. 桂林理工大学学报, 38(4): 614~624.

    • 蒋幸福, 彭松柏, 韩庆森. 2021. 扬子克拉通黄陵背斜南部~860 Ma岩墙的成因及地质意义. 地球科学, 46(6): 2117~2132.

    • 黎彤, 袁怀雨, 吴胜昔, 程先富. 1999. 中国大陆壳体的区域元素丰度. 大地构造与成矿学, 23(2): 101~107.

    • 李鹏春, 陈广浩, 许德如, 贺转利, 符巩固. 2007. 湘东北新元古代过铝质花岗岩的岩石地球化学特征及其成因讨论. 大地构造与成矿学, 30(1): 126~136.

    • 李献华, 李正祥, 葛文春, 周汉文, 李武显, 刘颖. 2001. 华南新元古代花岗岩的锆石U-Pb年龄及其构造意义. 矿物岩石地球化学通报, 20(4): 271~273.

    • 李献华, 王选策, 李武显, 李正祥. 2008. 华南新元古代玄武质岩石成因与构造意义: 从造山运动到陆内裂谷. 地球化学, 37(4): 382~398.

    • 刘翔, 周芳春, 李鹏, 李建康, 黄志飚, 石威科, 黄小强, 张立平, 苏俊男. 2019. 湖南仁里稀有金属矿田地质特征、成矿时代及其找矿意义. 矿床地质, 38(4): 771~791.

    • 马铁球, 陈立新, 柏道远, 周柯军, 李纲, 王先辉. 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65~73.

    • 孟庆秀, 张健, 耿建珍, 张传林, 黄文成. 2013. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义. 中国地质, 40(1): 191~216.

    • 陕亮, 柯贤忠, 庞迎春, 刘家军, 赵辛敏, 王晶, 康博, 张鲲. 2017. 湘东北栗山地区新元古代岩浆活动及其地质意义: 锆石U-Pb年代学、Lu-Hf同位素证据. 地质科技情报, 36(6): 32~42.

    • 舒良树. 2021. 陆内造山带特征及其动力学讨论. 地质学报, 95(1): 98~106.

    • 王孝磊, 周金城, 邱检生, 高剑峰. 2004. 湘东北新元古代强过铝花岗岩的成因: 年代学和地球化学证据. 地质论评, 50(1): 65~76.

    • 王孝磊, 周金城, 邱检生, 张文兰, 柳小明, 张桂林. 2006. 桂北新元古代强过铝花岗岩的成因: 锆石年代学和Hf同位素制约. 岩石学报, 22(2): 326~342.

    • 王孝磊, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714~735.

    • 韦守东. 2020. 江南造山带西段新元古代岩浆岩成因及地质意义. 中国地质大学(武汉)博士学位论文.

    • 文春华, 陈剑锋, 罗小亚, 李胜苗. 湘东北传梓源稀有金属花岗伟晶岩地球化学特征. 2016. 矿物岩石地球化学通报, 35(1): 171~177.

    • 吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185~220.

    • 吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589~1604.

    • 颜朝磊. 2018. 江南造山带西段新元古代构造演化及其早古生代-中生代地质再造. 南京大学博士学位论文.

    • 杨雪, 张玉芝, 崔翔, 虞鹏鹏, 徐文景. 2020. 湘东北新元古代冷家溪群沉积岩的地球化学特征和碎屑锆石U-Pb年代学. 地球科学, 45(9): 3461~3474.

    • 张菲菲, 王岳军, 范蔚茗, 张爱梅, 张玉芝. 2011. 江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究. 大地构造与成矿学, 35(1): 73~84.

    • 周芳春, 刘翔, 李建康, 黄志飚, 肖国强, 李鹏, 周厚祥, 石威科, 谭黎明, 苏俊男, 陈虎, 汪宣民. 2019. 湖南仁里超大型稀有金属矿床的成矿特征与成矿模型. 大地构造与成矿学, 43(1): 77~91.