en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

程建,男,1984年生。副研究员,主要从事含油气盆地分析、油气资源评价及地球物理等研究。E-mail:274923143@qq.com。

通讯作者:

刘志伟,男,1976年生。正高级工程师,主要从事青藏高原深部探测与羌塘盆地油气地震勘探研究工作。E-mail:zwliu007@cags.ac.cn。

参考文献
Alexander R, Paul K, Barbara C, Peter W R, Jerome G, Ding Lin, Matthew H. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40(2): 187~190.
参考文献
Bendick R, Flesch L. 2007. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet. Geology, 35(10): 895~898.
参考文献
Cao Zhongquan, Zhang Zhi, Tian Xiaobo. 2007. Rock density structure in Bangong-Nujiang suture zone and its significance. Chinese Journal of Geophysics, 50(2): 523~528 (in Chinese with English abstract).
参考文献
Chen Shengsheng, Shi Rendeng, Zou Haibo, Huang Qishuai, Liu Deliang, Gong Xiaohan, Yi Guoding, Wu Kang. 2015. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks. Lithos, 230: 30~45.
参考文献
Ding Wenlong, Wan Huan, Zhang Yeqian, Han Guangzhi. 2013. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang basin of Tibet. Journal of Asian Earth Sciences, 66: 63~72.
参考文献
Du Dedao, Qu Xiaoming, Wang Genhou, Xin Hongbo, Liu Zhibo. 2011. Bidirectional subduction of the middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet: Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites. Acta Petrologica Sinica, 27(7): 1993~2002 (in Chinese with English abstract).
参考文献
Fan Jianjun, Li Cai, Liu Jinheng, Wang Ming, Liu Yiming, Xie Chaoming. 2018. The Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean: Evidence from analyses of OIB-type basalts and OIB-derived phonolites in northern Tibet. International Journal of Earth Sciences, 107: 1755~1775.
参考文献
Gao Rui, Chen Chen, Lu Zhanwu, Larry D B, Xiong Xiaoxong, Li Wenhui, Deng Gong. 2013. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 606: 160~170.
参考文献
Girardeau J, Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamics significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.
参考文献
Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhengqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1): 25~51.
参考文献
Huang Qishuai, Shi Rendeng, Suzanne Y O, Willian L G, Zhang Ming, Liu Deliang, Zhang Xiaoran. 2015. Re-Os isotopic constraints on the evolution of the Bangong-Nujiang Tethyan oceanic mantle, Central Tibet. Lithos, 224-225: 32~45.
参考文献
Jerome H G, Paul K, Alex P, Matthew H, George G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.
参考文献
Kang Zhiqiang, Xu Jifeng, Wang Baodi, Chen Jianlin. 2010. Qushenla formation volcanic rocks in north Lhasha block: Products of Bangong Co-Nujiang Tethy's southward subduction. Acta Petrologica Sinica, 26(10): 3106~3116 (in Chinese with English abstract).
参考文献
Kapp P, Peter G D, George E G, Matthew H, Ding Lin. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917~932.
参考文献
Klemperer L S, Bendick R, Flesch L. 2008. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet: Comment and reply. Geology, 36(1): e180~e181.
参考文献
Kurt D S, Alan G J, Nelson K D, Martyn J U, William F K, Wei Wenbo, Tan Handong, Jin Sheng, Deng Ming, Booker J R, Li S, Bedrosian P. 2005. Structure of the crust in the vicinity of the Bangong-Nujiang suture in central Tibet from INDEPTH magnetotelluric data. Journal of Geophysical Research, 110 (B10102): 1~20.
参考文献
Li Jinxiang, Li Guangming, Qin Kezhang, Xiao Bo. 2008. Geochemistry of porphyries and vocanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Banggonghu belt, Tibet: Constraints on metallogenic tectonic settings. Acta Petrologica Sinica, 24(3): 531~543 (in Chinese with English abstract).
参考文献
Li Shimin, Zhu Dicheng, Wang Qing, Zhao Zhidan, Sui Qinglin, Liu Shengao, Liu Dong, Mo Xuanxue. 2014. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 205: 284~297.
参考文献
Li Shun, Ding Lin, Carl G, Fu Jiajun, Xu Qiang, Yue Yahui, Renato H P. 2017. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics, 702: 42~60.
参考文献
Liu Deliang, Shi Rendeng, Ding Lin, Zou Haibo. 2018. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet. Lithos, 296-299: 452~470.
参考文献
Liu Guocheng, Shang Xuefeng, He Rizheng, Gao Rui, Zou Changqiao, Li Wenhui. 2014. Topography of Moho beneath the central Qiangtang in north Tibet and its geodynamic implication. Chinese Journal of Geophysics, 57(7): 2043~2053 (in Chinese with English abstract).
参考文献
Lu Zhanwu, Gao Rui, Li Yongtie, Xue Aimin, Li Qiusheng, Wang Haiyan, Kuang Chaoyang, Xiong Xiaosong. 2013. The upper crustal structure of the Qiangtang basin revealed by seismic reflection data. Tectonophysics, 606: 171~177.
参考文献
Makovsky Y, Simon K, Lothar R, Larry D B. 1997. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet. Science, 274(5293): 1690.
参考文献
Michael T, Yin An, Frederick J R, Paul K, Ding Lin 2002. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. Tectonics, 22(4): 1801~1821.
参考文献
Pan Guitang, Zhu Dicheng, Wang Liquan, Liao Zhongli, Geng Quanru, Jiang Xinsheng. 2004. Bangong lake-Nu river suture zone, the northern boundary of Gondwana land: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371~382 (in Chinese with English abstract).
参考文献
Shi Danian, Rainer K, James N, Simon L K. 2004. Detection of southward intracontinental subduction of Tibetan lithos along the Bangong-Nujiang suture by P-to-S converted waves. Geology, 32(3): 209~212.
参考文献
Shi Rendeng, Yang Jingsui, Xu Zhiqin, Qi Xuexiang. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences, 32: 438~457.
参考文献
Tian Xiaobo, Chen Yun, Tseng T, Simon L K, Hans T, Liu Zhen, Xu Tao, Liang Xiaofeng, Bai Zhiming, Zhang Xi, Si Shaokun, Sun Changqing, Lan Haiqiang, Wang E, Teng Jiwen. 2015. Weakly coupled lithospheric extension in southern Tibet. Earth and Planetary Science Letters, 430: 171~177.
参考文献
Wang Ming, Peng Shuaiying, Li Cai, Zhang Tianyu. 2019. Palaeontology and U-Pb detrital zircon geochronology of upper Triassic strata on the northern margin of the Bangong Co-Nujiang suture zone, Tibet: Constraints on the age of opening of the Meso-Tethys. Journal of Asian Earth Sciences, 175: 26~34.
参考文献
Wei Shaogang, Tang Juxing, Song Yang, Liu Zhibo, Wang Qin, Lin Bin, He Wen, Feng Jun. 2017. Petrogenesis, Zircon U-Pb geochronology and Sr-Nd-Hf isotopes of the intermediate-felsic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone, Tibet and its tectonic significance. Acta Geologica Sinica, 91(1): 132~150 (in Chinese with English abstract).
参考文献
Wei Wenbo, Unsworth M J, Jones A G, Booker J, Roberts B. 2001. Detection of widespread fluids in the tibetan crust by magnetotelluric studies. Science, 292(5517): 716~719.
参考文献
Wu Qingju, Zeng Rongsheng, Zhao Wenjin. 2004. Upper mantle's tilting structure and continental collision process of Ximalaiya-Tibetan Plateau. Science in China: Earth Sciences, 34(10): 919~925 (in Chinese with English abstract).
参考文献
Wu Wei, Liu Qiyuan, He Rizheng, Qu Zhongdang. 2017. Waveform inversion of S-wave velocity model in the central Qiangtang in north Tibet and its geological implications. Chinese Journal of Geophysics, 60(3): 941~952 (in Chinese with English abstract).
参考文献
Wu Zhenhan, Ye Peisheng, Patrick J B, Hu Daogong, Lu Lu, Zhang Yaoling. 2012. Early Cenozoic mega thrusting in the Qiangtang block of the northern Tibetan Plateau. Acta Geologica Sinica (English Edition), 86(4): 799~809.
参考文献
Zhang Kaijun, Zhang Yuxiu, Tang Xianchun, Xia Bin. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114: 26~249.
参考文献
Zhang Hui, Liu Zhiwei, He Rizheng, Li Qiaoling. 2020. Near surface shear wave velocity structure inversion using multi-order surface wave dispersion curves constructed from deep seismic reflection data: A real case of deep seismic reflection profile across Bangong-Nujiang suture zone. Chinese Journal of Geophysics, 63(12): 4410~4430 (in Chinese with English abstract).
参考文献
Zhang Yan, Cheng Shunyou, Zhao Bingkun, Dong Yunpeng, Han Geming, Zhang Minghua, Yang Yabin, Cui Liyan. 2013. The feature of tectonics in the Tibetan Plateau from new regional gravity signals. Chinese Journal of Geophysics, 56(4): 1369~1380 (in Chinese with English abstract).
参考文献
Zhao Wenjin, Jame M, Larry D B, Guo J, Haines S, Hearn T, Klempere S L, Ma Y S, Meissner R, Nelson K D, Ni J F, Pananont P, Raipine R, Ross A, Saul J. 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophysical Journal International, 145: 486~498.
参考文献
Zhao Wenjin, Xu Guangqi, Wu Zhenhan, Zhao Xun, Liu Kui, Shi Danian, Nelson D, Brown L, Hearn T. 2004. Fine velocity structure of the upper mantle beneath the Xizang Plateau from tomography and its geological interpretation. Chinese Journal of Geophysics, 47(3): 449~455 (in Chinese with English abstract).
参考文献
Zou Changqiao, He Rrizheng, Gao Rui, Zhang Zhi, Zheng Hongwei. 2012. Deep structure of the central uplift belt in the Qiangtang terrane Tibetan Plateau from teleseismic P-wave tomography. Chinese Science Bulletin, 57(28-29): 2729~2739 (in Chinese with English abstract).
参考文献
曹忠权, 张智, 田小波. 2007. 青藏高原班公湖-怒江缝合带域岩石密度及意义. 地球物理学报, 50(2): 523~528.
参考文献
杜德道, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段班怒洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993~2002.
参考文献
康志强, 许继峰, 王保弟, 陈建林. 2010. 拉萨地块北部去伸拉组火山岩: 班公湖-怒江特提斯洋南向俯冲的产物. 岩石学报, 26(10): 3106~3116.
参考文献
李金祥, 李光明, 秦克章, 肖波. 2008. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约. 岩石学报, 24(3): 531~543.
参考文献
刘国成, 尚学峰, 贺日政, 高锐, 邹长桥, 李文辉. 2014. 藏北羌塘盆地中部莫霍面形态及其动力学成因. 地球物理学报, 57(7): 2043~2053.
参考文献
潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371~382.
参考文献
韦少港, 唐菊兴, 宋扬, 刘治博, 王勤, 林彬, 贺文, 冯军. 2017. 西藏班公湖-怒江缝合带美日切错中酸性火山岩锆石U-Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义. 地质学报, 91(1): 132~150.
参考文献
吴庆举, 曾融生, 赵文津. 2004. 喜马拉雅-青藏高原的上地幔倾斜构造与陆-陆碰撞过程. 中国科学D辑-地球科学, 34(10): 919~925.
参考文献
吴蔚, 刘启元, 贺日政, 曲中党. 2017. 羌塘盆地中部地区地壳S波速度结构及构造意义. 地球物理学报, 60(3): 941~952.
参考文献
张辉, 刘志伟, 贺日政, 李巧玲. 2020. 利用深反射地震数据构建的多阶面波频散曲线反演近地表横波速度结构-以跨班公湖-怒江缝合带深反射地震资料为例. 地球物理学报, 63(12): 4410~4430.
参考文献
张燕, 程顺有, 赵炳坤, 董云鹏, 韩革命, 张明华, 杨亚斌, 崔丽艳. 2013. 青藏高原构造结构特点: 新重力异常成果的启示. 地球物理学报, 56(4): 1369~1380.
参考文献
赵文津, 薛光琦, 吴珍汉, 赵逊, 刘葵, 史大年, Mechie J, Nelson D, Brown L, Hearn T. 2004. 西藏高原上地幔的精细结构与构造——地震层析成像给出的启示. 地球物理学报, 47(3): 449~455.
参考文献
邹长桥, 贺日政, 高锐, 张智, 郑宏伟. 2012. 远震P波层析成像研究羌塘中央隆起带深部结构. 科学通报, 57(28-29): 2729~2739.
目录contents

    摘要

    揭示班公湖-怒江(班怒)缝合带Moho(莫霍面)结构对于认识中特提斯洋壳俯冲和南羌塘坳陷成因具有重要地球动力学意义。基于横跨班怒缝合带的深反射地震数据(88°30′E),本文采用了中长波长静校正、噪声压制、优化叠加和叠前深度偏移(PSDM)等地震处理技术,获得了深度域地震反射偏移剖面、层速度场和高分辨率Moho结构。由深度域剖面显示,班怒缝合带Moho位于地表以下65~80 km,呈不连续北向抬升趋势,指示在拉萨地块与南羌塘地块之间存在岩石圈上地幔断阶,最大阶步可达15 km。综合分析缝合带两侧的Moho形态认为,这些断阶受南侧拉萨地体的岩石圈上地幔以19.5°北倾俯冲与北侧南羌塘地块的上地壳抬升驱动,可能与深部存在局部熔融相关。班怒缝合带下的Moho结构表明,随着晚侏罗世—早白垩世中特提斯洋闭合,南羌塘地体由边缘海沉积向前陆盆地转换,形成南羌塘坳陷。

    Abstract

    Knowledge of the Moho in the Bangong-Nujiang suture (BNS) is geodynamically of importance to understand the subduction of Meso-Tethys oceanic crust and the genesis of southern Qiangtang depression. Based on deep-reflection seismic data (88°30′E) across the BNS, depth-domain seismic profile and velocity field with high-resolution Moho geometry are obtained by deep-reflection seismic imaging using such techniques as mid/long wavelength static correction, noise elimination, optimal stacking, and PSDM. The depth-domain imaging shows that the Moho of the BNS located at a depth of 65~80 km tends to discontinuously uplift northwards, indicating a few lithospheric mantle terraces (up to 15 km) developed between the Lhasa and Qiangtang terranes. The geometry of the Moho in the BNS demonstrates that the terraces have been driven by southern lithospheric mantle subduction at 19.5° northward and northern crustal uplifting of southern Qiangtang basin due to possible deep partial melting. The Moho structure suggests that southern Qiangtang basin was evolved from marginal marine into foreland basin during the Late Jurassic to the Early Cretaceous along with the Meso-Tethys closure.

  • 班公湖-怒江(班怒)缝合带位于青藏高原中部,代表晚侏罗世—早白垩世中特提斯洋闭合、拉萨-羌塘地体碰撞的遗迹(Girardeau et al.,1984; Shi Danian et al.,2004; Kapp et al.,2007)。作为板块碰撞响应和壳幔作用窗口,识别其Moho结构为确定中特提斯洋俯冲极性、南羌塘坳陷成因提供重要的大地构造背景(Zhao Wenjin et al.,2001; Hou Zengqian et al.,2009; Gao Rui et al.,2013; Ding Wenlong et al.,2013)。最近研究表明,南羌塘坳陷、伦坡拉盆地油气成藏与班怒缝合带壳幔构造相关,其中Moho结构关系到含油气盆地形成与演化过程(李金祥等,2008; Gao Rui et al.,2013)。目前,关于班怒缝合带Moho的认识,不同学科领域还存在分歧。构造与地球化学分析(潘桂堂等,2004)认为,班公湖-怒江洋(班怒洋)在中生代中晚期存在北向、南向、双向俯冲三种模式(潘桂堂等,2004; 杜德道等,2011)。地震接收函数、层析成像和深反射地震剖面等地球物理手段揭示的班怒缝合带及壳幔结构却存在一定的差异,Moho结构呈现向北、向南、水平抬升三种构造样式(Shi Danian et al.,2004)。可见,班公湖-怒江缝合带Moho结构对于认识南羌塘含油气盆地的深部成因将产生重要影响。

  • 地震学接收函数、层析成像和深反射地震剖面造成班怒缝合带Moho认识存在差异,其原因之一是三种手段所用的地震波场照明范围、分辨尺度不同。受限于波场速度模型精度,深反射地震剖面经时间-深度转换后降低了壳内界面及Moho的准确性;同时,时间域反射波组与深度域岩性分层存在差异,导致横向深大断裂和褶皱的地质解释偏离实际。尽管如此,与地震接收函数和层析成像相比,深反射地震成像仍是获得较高分辨率Moho结构有效探测技术之一(Gao Rui et al.,2013)。过去数十年油气勘探经验表明,在复杂地质构造区,时间域地震解释通常与钻探结果存在偏差。为了提高深地震反射解释的可靠性与准确度,这就要求深反射地震成像必须开展叠前深度偏移(prestack depth migration,PSDM)处理,进而降低深部构造解释多解性。考虑到PSDM要求较高精度的速度模型输入,通过速度建模与构造解释之间不断的迭代与优化,深反射地震PSDM成像应该具有一定的可行性。因此,对深反射地震数据开展PSDM成像试验,不仅在一定程度上可以降低壳幔结构解释的多解性,而且为未来深地震反射数据处理与解释提供技术示范。

  • 本文选择横跨班怒缝合带的SinoProbe-02剖面(图1)深反射地震数据(Gao Rui et al.,2013)开展PSDM试验,通过多次迭代、优化参数和数据处理流程,获得了信噪比较高的深度域地震剖面,清晰揭示了缝合带Moho断阶。在此基础上,结合班怒缝合带区域构造特征,开展了Moho构造解释。最后,也讨论了时间域、深度域剖面和广角地震剖面中Moho差异以及缝合带深部可能存在的亮点构造,以增强对板块构造深部壳幔作用的认识。

  • 图1 班公湖-怒江缝合带中段构造纲要图及深反射地震剖面位置(改自吴珍汉等,2012)

  • Fig.1 Geologic map of the central BNS and location of deep reflection seismic line (modified after Wu Zhenhan et al., 2012)

  • 1 —第四系; 2—新近纪河湖相沉积; 3—古近纪湖相沉积; 4—上白垩统陆相红层; 5—下白垩统海相灰岩、砂岩、页岩; 6—侏罗系灰岩、白云岩、砂岩、泥岩; 7—三叠系页岩、砂岩、灰岩; 8—二叠系白云岩、灰岩、砂岩夹火山岩; 9—古生代变质岩; 10—蛇绿混杂岩; 11—白垩纪花岗岩; DRS1—深反射地震线1; DRS2—深反射地震线2; DQT—多玛-其香错逆冲断裂; SZT—赛布错-扎加藏布逆冲断裂; NST—色林错逆冲断裂; BCF—崩错右行走滑断裂

  • 1 —Quaternary; 2—Neogene lacustrine and fluvial deposits; 3—Paleogene lacustrine sediments; 4—Upper Cretaceous red beds; 5—Lower Cretaceous limestone, mudstone and sandstone; 6—Jurassic limestone, dolostone, sandstone and mudstone; 7—Triassic shale, sandstone and limestone; 8—Permian dolostone, limestone and volcanic-sedimentary strata; 9—Paleozoic metamorphic rocks; 10—ophiolite; 11—Cretaceous granite; DRS1—deep reflection seismic line1; DRS2—deep reflection seismic line2; DQT—Doma-Qixiangco thrust; SZT—Saibuco-Zagya Zangbu thrust; NST—Nima-Selinco thrust; BCF—Bengco dextral strike-slip fault

  • 1 地质-地球物理背景

  • 20 世纪80年代,国内外学者以青藏高原中部东巧—戈严错为重点地区识别出了多个蛇绿岩套,提出班公湖—怒江一带形成于大洋中脊和洋内俯冲环境的证据(Girardeau et al.,1984)。21世纪初,在该带构造混杂岩中发现塔仁本玄武岩具有海底爆发相与远洋放射虫硅质岩相,结合锆石年龄,厘定班公湖—怒江一带存在古洋壳、属于板块缝合带(Jerome et al.,2006; Shi Rendeng et al.,2008; Huang Qishuai et al.,2015)。随着地质调查研究深入,众学者趋向将班怒缝合带分为西、中和东三段,缝合带中段地表是由赛不错-扎加藏布逆冲断裂(SZT)、尼玛-色林错逆冲断裂(NST)和崩错断裂(BCF)组成的新生代共轭走滑断裂系统(Wu Zhenhan et al.,2012),综合显示了BNS缝合带中段经历了东西延展、南北缩短后期改造(Michael et al.,2002; Kapp et al.,2007)。第三系、第四系陆相砂砾岩分布在侏罗系和白垩系海相灰岩夹砂泥岩之间。另外在吴如错北缘出露了呈单斜构造特征的上三叠统日干配错群(Wu Zhenhan et al.,2012; Wang Ming et al.,2019)。而岩浆岩地球化学数据研究限定了班怒洋俯冲时代与极性。缝合带西段南、北花岗岩微量元素与锆石时代指示了缝合带西段内分布的花岗岩浆具有地幔楔局部熔融、俯冲板片与沉积熔体交代成因,进而推测班怒洋存在“晚侏罗世北向、早白垩世南向”的双向俯冲(杜德道等,2011; Li Shimin et al.,2014; Huang Qishuai et al.,2015)。而缝合带中段南缘的曲申拉组火山岩年龄(107~103 Ma)及其形成环境表明早白垩世晚期班怒洋仍向北俯冲(康志强等,2010; Zhang Kaijun et al.,2012; 韦少港等,2017; Fan Jianjun et al.,2018)。而南羌塘坳陷阿布山组年龄(101.9~73.09 Ma)和其地球化学特征更进一步综合指示了班怒洋在早白垩世曾以低角度北向俯冲,在拉萨地块和羌塘地块之间可能存在区别于传统的缝合带西段的双向俯冲模式(Li Shimin et al.,2014; Liu Deliang et al.,2018)。另据缝合带中段北缘中生代古生物特征、碎屑锆石年龄及全岩地球化学特征揭示缝合带中段的拉萨地块-羌塘地块初始碰撞被限定在晚侏罗世晚期(150 Ma),而同时期的南羌塘坳陷位于活动大陆边缘且具有B型俯冲环境(Ding Wenlong et al.,2013; Chen Shengsheng et al.,2015; Li Shun et al.,2017; Wang Ming et al.,2019)。综上所述,班怒缝合带及其两侧的构造变形与班怒洋壳俯冲、羌塘-拉萨陆陆碰撞关系密切,更暗示了班怒缝合带下的Moho结构更加复杂。

  • 在班怒缝合带岩石圈结构之地球物理探测方面取得了大量进展。最新1∶500万布格重力异常揭示缝合带构成了高原内部最高异常带(曹忠权等,2007; 张燕等,2013)。而INDEPTH-III大地电磁测深剖面电性结构(Wei Wenbo et al.,2001; 李金祥等,2008)显示缝合带下的地壳具有高阻上地壳、低阻下地壳,壳间存在滑脱断裂(Wei Wenbo et al.,2001),推测班怒洋可能早期向南俯冲、晚期向北俯冲,并形成塔仁本火山岩岛弧(Zhao Wenjin et al.,2001; Kurt et al.,2005)。Bendick et al.(2007)认为高原北部岩石圈壳幔黏滞性差异小归因于班怒缝合带正处向北挤入的印度岩石圈前缘顶部(Bendick et al.,2007),但Klemperer et al.(2008)予以否定。

  • INDEPTH-III广角地震剖面(赵文津等,2004)显示缝合带下的Moho位于地下65±5 km处,自南向北抬升2~3 km,不存在深地震反射获得Moho断阶(Gao Rui et al.,2013)和低速带。通过设定地壳平均P波速度6.26 km/s进行时深转换,SinoProbe深反射地震剖面(PSTM处理,prestack time migration)揭示,班怒缝合带Moho自南向北从75.1 km抬升至68.9 km,存在一个6.2 km断阶(sharp offset);羌塘盆地南部Moho平缓地从68.9 km升至62.6 km(Gao Rui et al.,2013; Lu Zhanwu et al.,2013),至羌中隆起又抬升近6.3 km,几乎等于Moho断阶深度。天然地震P波接收函数显示,缝合带Moho转换震相不连续、变化幅度大,60~180 km深存在南倾的地幔转换断层(SMC),与北倾的地幔转换断层(NMC)构成印度-欧亚板块碰撞逆冲楔(Shi Danian et al.,2004; 吴庆举等,2004; 赵文津等,2004)。横跨羌塘盆地和班怒缝合带的宽频地震接收函数发现,缝合带Moho呈现一个南深北浅、断距约10 km台阶(刘国成等,2014),南羌塘坳陷低速层比北羌塘更深(吴蔚等,2017),这种特征可能与班怒洋向北俯冲有关。而接收函数、广角地震和深反射地震剖面各揭示出BNS带下的不同Moho结构特征,即除了Moho深度有所区别外,最大不同是BNS带下的Moho是否存在断阶(若有,其规模与幅度又怎样)。

  • 班怒缝合带下的Moho的形态及其深度代表了班公湖-怒江洋及其两侧地体演化机制。班怒缝合带结构特征及其动力学演化认识差异如此大原因之一在于班怒缝合带下Moho结构特征非常复杂。为此,如何利用宝贵的深反射地震资料(Gao Rui et al.,2013)开展提高深地震反射成像精度试验,进而精细揭示班怒缝合带Moho结构具有重要意义。

  • 2 深反射地震PSDM处理过程

  • SinoProbe-02专项横跨羌塘盆地沿东经88.5°实施约310 km深反射地震数据采集,其地震采集参数详见相关文献(Gao Rui et al.,2013; Lu Zhanwu et al.,2013),其南段穿过班怒缝合带(图1b)。地震测线经略地貌包括湖泊、河谷、冻土和山地,地形起伏较大(高程4400~4900 m),近地表非均质性特征明显(张辉等,2020)。本次深反射地震处理目标试图利用PSDM成像技术获得的高精度的深度域Moho形态。鉴于不可能获得深地震反射下的全深度钻井资料,偏移速度分析(MVA)主要依据时间域的同相轴“拉平”准则,以致质控强烈依赖共中心点(CMP)或共反射点(CRP)道集的信噪比,为此要求预处理尽可能提高CMP道集信噪比和速度分析精度。可见,提高叠前道集信噪比和建立合理的速度模型是实现深反射地震处理PSDM成像的关键,这不仅要求处理流程设计合理和参数准确选取,还要兼顾利于实现PSDM。笔者从数据分析与流程设计、中/长波长静校正、噪声压制、叠前道集优化叠加和叠前深度偏移等五个方面详细介绍相关处理过程并对比成像质量,以保证班怒缝合带Moho成像精度。

  • 2.1 数据分析及处理流程

  • 一般而言,高原内部的复杂近地表、出露老地层和永久冻土层导致了低信噪比的单炮记录,如直达波和折射波初至随地形剧烈变化,远、近偏移距反射波“双曲线”畸变严重等,通常会影响到地震记录底端、甚至污染了Moho处反射信号。其次,振幅衰减曲线、分频滤波发现,深部反射振幅与频率衰减严重,低频面波和次生折射波几乎“遮蔽”有效反射波,风动、车辆和野值等环境干扰严重。再次,频率扫描显示Moho反射无论是倾角还是主频都与噪声相近,而由近地表引起的子波幅频差异导致炮间地表一致性问题严重。最后,班怒缝合带壳内复杂深部结构特征使得断面波、绕射波、侧面波等十分发育,更加困难地有效识别中下地壳和上地幔内部反射波组。为了最大程度辨识Moho处的反射信号,通过反复测试与试验,总结得到CMP预处理流程能够显著改善并提高CMP道集的信噪比(图2a)。除了提高CMP道集信噪比之外,作者经过试验认为,深反射地震PSDM成像应分MVA和成像两个阶段,因而制定图2b、c流程图。图2b中MVA目标是实现深度域速度建模,通过叠加速度、均方根(RMS)速度、时间域层速度分析等逐渐提升建模精度,Kirchhoff叠前时间/深度偏移为质量控制输出CRP道集,通过检验反射波是否“拉平”验证速度。针对深反射地震大排列、长记录、低覆盖、目标深等特点,图2c流程分共偏移距道集准备和速度修正两步。因此,班公湖-怒江缝合带深反射地震Moho深度域成像涉及四项关键处理技术及其QC过程,即中长波长静校正、噪声压制、优化叠加和PSDM,下面予以简介和对比。

  • 2.2 中长波长静校正

  • 众所周知,由于采样不够或假设条件不适,在复杂构造区求解近地表模型参数属于非线性问题,以致中、长波长静校正难度大。针对深反射地震采集炮点稀疏、覆盖次数低情况,依赖全偏初至层析反演获得近地表模型,可有效解决长波长静校问题。同时,层析反演误差往往体现在局部初至“非平”现象,这密切相关中波长静校量。实际处理中,深反射地震具有较大偏移距,可获得可靠的中、长波长信息。作者进行高程、折射、层析反演静校正方法对比(统一校正基准面5500 m、替换速度3500 m/s),效果见图3。从初至平滑程度和反射波连续性来看,全偏层析静校能有效解决中波长问题,但存在长波长误差。如图3所示的效果发现,通过高程静校低频分量解决长波长静校,而以层析静校高频分量解决中波长静校,取得良好效果。图3a、c、e分别是浅、中、深层应用层析静校量结果,而图3b、d、f是应用高程、层析组合静校后效果。从中可见,单一层析静校解决了大部分中、长波长问题,局部低降速带变化还存在残差,例如单炮初至变化和中层8.0~8.5 s范围畸变的 “双曲线”反射。相比之下,应用高程、层析组合静校后,单炮初至更加平滑、反射波整体变得连续、双曲线特征明显,特别在深层20.0~20.5 s附近弱反射变得突出。由此可见,处理采用的中长波长静校正方法是合适的。

  • 2.3 噪声压制

  • 班怒缝合带班公湖-怒江缝合带构造带下的深反射地震噪声复杂多样,可能是造成地震数据低信噪比的主要原因之一。考虑到较大道间距(50 m)引起较低的空间假频(<15 Hz)、反射波与浅部线性噪声在主频、倾角方面相近。作者采用了时变的自适应面波衰减方法压制面波,特别在Moho区选择了较低主频(4 Hz)。针对线性噪声,采用了不受空间假频限制、具有良好保幅性的径向道变换方法。实际处理表明,径向道时变滤波除了增加一定空间道数外,应选择较低的截止频率,本次研究选择了4 Hz压制低频线性噪声,较好地保护Moho反射。针对异常振幅、频率噪声,采用基于统计学原理的多域迭代、分频去噪方法,通过固定频率陷波、设定较小门槛值压制50 Hz干扰,有效地保留了Moho区的低频波场信息。图4展示班公湖-怒江缝合带南段的一个小炮(FFID 3)应用面波、线性噪声和异常振幅/频率噪声压制前后的效果。图4a、b分别显示该炮振幅补偿后浅层0~10 s和Moho区10~20 s范围的记录,从图4a中可见各种类型的噪声,尤以深部最为严重,几乎“遮蔽”了所有有效反射。图4c、d分别显示面波和振幅野值压制后的效果,综合显示无论Moho区还是浅层,在图4a、b箭头所指面波和异常振幅都得到了显著衰减,但在深层仍存在部分异常频率噪声。而通过综合噪声压制后(图4e、f),其中声波、随机噪声和异常频率均得到有效压制,既保护了浅层近偏移距“双曲”反射,又保留了远偏移距近线性反射特征。此外,图4还展示了深至15~17 s反射波与浅部绕射波混叠在一起,这些绕射波可能来自Moho。

  • 图2 班公湖-怒江缝合带深反射地震数据处理关键流程图

  • Fig.2 Key flows used in deep reflection seismic processing for BNS imaging

  • (a)、(b)、(c)分别指CMP道集预处理、偏移速度分析和叠前深度偏移处理流程,每个流程仅列出代表性模块,不包括其他常规滤波、增益、参数试验和质量控制流程

  • The flows shown in (a) , (b) and (c) point to CMP prestack reprocessing, MVA and PSDM respectively, inside listing typical processing modules and not including conventional filters, gains, parameter tests and quality control

  • 2.4 优化叠加

  • 为了提高叠前道集信噪比和MVA建模精度,本文采用非等权优化叠加和共反射面元叠加(CRS)进行质控和输出叠前道集。非等权优化叠加分时窗考虑道集振幅、频率、偏移距等因素对信噪比的影响,通过减小低信噪比道的权值改善叠加效果和输出优质叠前道集。CRS基于射线理论和第一菲涅尔带叠加原理,突破水平层状介质前提,在深反射地震预处理中明显提高了CMP道集信噪比,改善了MVA中速度谱的质量。本文CRS处理采用关键参数包括:绕射偏移孔径10000 m、时域最大地层倾角45°、3倍CMP间距的最大菲涅尔带。图5a、b展示优化叠加前、后深反射地震剖面中、深层效果对比。正如兰色与紫色箭头所指,应用非等权优化叠加后,剖面中层(6.5~11 s)弱反射信号得以加强,深部绕射波信噪比提升明显。同时,针对Moho区(15.5~20 s)反射波而言,应用非等权优化叠加后有效反射并不突出,提高信噪比有限;在此基础上,应用CRS获得的地震剖面如图5d,从中可见一些深至17 s的低频弱反射。除此之外,利用优化叠加后的叠前道集开展速度分析,速度谱能量团进一步聚焦,处理拾取时间-速度对较为容易。综合表明,本文采取的非等权优化叠加与CRS联合处理方案,对深反射地震PSDM成像前的道集预处理和MVA是有效的、必要的。

  • 图3 应用不同静校正效果单炮对比

  • Fig.3 Contrast in a shot after different static corrections

  • 左侧(a)、(c)、(e)分别是浅、中、深层应用层析静校正后的效果,右侧(b)、(d)、(f)是应用高程+层析组合静校正后的效果

  • Left records shown in (a) , (c) and (e) point to the shallow, middle and deep parts after tomostatics, right records shown in (b) , (d) and (f) display a result after joint elevation statics and tomostatics

  • 2.5 叠前深度偏移

  • 自INDEPTH项目伊始,深反射地震成像多采用叠后时间偏移方法,近年在高信噪比数据上试验PSTM处理,取得一定进展(Gao Rui et al.,2013)。然而,PSTM基于时间域波动方程解,剖面解释仍需精度较低的时深转换,因此,转换速度模型在PSTM处理中非常关键。针对班怒缝合带深反射地震数据,实现叠前深度偏移还必须面临如何建立深度速度模型和消除深部偏移“画弧”两大难点。由于缺乏井约束资料,深度-速度建模只能依赖CRP道集和广角地震速度模型,速度判别主要采用远、近偏移距反射波是否“拉平”准则。考虑到深反射地震大偏移动校正“曲棍球杆”特征,本文采用近偏移距“拉平”与PSTM/PSDM迭代求取RMS速度、时间域层速度和深度域层速度,逐步建立速度模型。而对于深部偏移“画弧”,本文通过三类经典波动方程偏移算法(FK法、差分法和绕射叠加法)试验分析,表明差分法最弱、FK法其次、绕射叠加法最严重。因而,PSDM处理流程采用了基于MVA的共偏移距差分法偏移,差分法偏移参数为400 m延拓步长、高频截至奈奎斯特频率、低频截止4 Hz。

  • 图4 噪声压制前后效果单炮对比

  • Fig.4 Contrast in a shot before and after noises attenuation

  • 左侧(a)、(c)、(e)分别是浅层0~10 s内振幅补偿后、面波压制、异常振幅压制后单炮,右侧(b)、(d)、(f)分别是深层10~20 s振幅补偿后、面波压制、异常振幅压制后单炮

  • Left records shown in (a) , (c) and (e) point to compensating amplitude, eliminating ground-rolling waves and suppressing abnormal amplitudes/frequencies in a shallow part 0~10 s, and right records shown in (b) , (d) and (f) display them in a deep part 10~20 s

  • 图5 非等权叠加与CRS优化叠加前后叠加效果剖面对比

  • Fig.5 Contrast in a segment of profile after non-equal weight stacking and CRS stacking

  • (a)—中层CMP叠加剖面;(b)—中层非等权优化叠加后剖面;(c)—深层非等权优化叠加后剖面;(d)—深层非等权叠加与CRS优化叠加剖面)

  • (a) —conventional CMP stacking shown in 6.5~11 s; (b) —non-equal weight stacking in 6.5~11 s; (c) —non-equal weight stacking shown in 15.5~20 s; (d) —CRS stacking in 15.5~20 s

  • 在班怒缝合带深反射地震PSDM成像过程中,通过时间/深度MVA与叠前Kirchhoff PSTM/PSDM迭代处理,获得较准确的深度域层速度剖面,质控如图6所示。图6a、c、e分别展示RMS速度、时间域层速度和深度域层速度剖面,RMS速度与层速度剖面存在差异,尤其是RMS速度在25 s以下变小。实际处理中,RMS速度强烈依赖未经偏移的CMP道集和直射线PSTM 后CRP道集同相轴的信噪比,为降低偏移“划弧”程度,深部速度拾取时人为取值偏低,造成RMS速度值深部较低。在层速度剖面中,时间域与深度域具有一致性,但也存在细微差别,例如在CDP750位置,深度剖面比时间剖面更加光滑。针对黑色虚线框范围,图6b、d、f分别展示不同速度类型的叠加、时间与深度偏移结果,对应CMP叠加剖面、PSTM剖面和PSDM剖面。对比图6b和图6d,时间域偏移前后最大变化体现在①界面反射上,CMP叠加中①反射为北倾高陡界面,PSTM成像时该界面向南更陡倾方向归位,而在偏移剖面中消失;其他②、③、④界面产生了位置和倾角变化,其中③界面向北归位,高陡倾角收敛、变缓。对比PSTM和PSDM剖面,如图6d、f所示,深度剖面中②、③、④界面仍然存在,但深度域内的错断距离相对时间域减小。对比未偏移的CMP叠加剖面,剖面中高陡反射偏移后得到归位,例如在深度域剖面中CDP150~CDP400(18~20 s)①反射向南偏出剖面范围,深度剖面CDP450~CDP500(20~21 s)②反射来自于剖面北侧,深度位于地下72 km。此外,图6b剖面中部的南倾绕射③在深度剖面中向北偏移,横向距离变短、倾角变陡;图6b剖面北侧的④反射形态在深度域剖面几乎保持不变,深度约72 km。因此,班怒缝合带深反射地震PSDM实现了深度成像,获得了可靠的Moho深部结构。

  • 图6 深反射地震PSDM处理MVA速度剖面及其偏移叠加剖面

  • Fig.6 Velocity fields from MVA and corresponding deep stacking and migrated profiles

  • (a)—均方根速度;(b)—未偏移CMP叠加;(c)—时间域层速度;(d)—叠前时间偏移;(e)—深度域层速度;(f)—叠前深度偏移; ①、②、③、④分别表示来自Moho的反射波

  • (a) —RMS velocity; (b) —CMP stacking after CRS; (c) —interval velocity in time domain; (d) —CRP stacking after PSTM; (e) —interval velocity in depth domain; (f) —CRP stacking after PSDM; ①, ②, ③, ④ marked the reflections from the Moho, respectively

  • 3 Moho结构

  • 深反射地震PSDM获得的层速度与剖面详见图7a、b,其中剖面原图见图6f。结合速度模型中8.0~8.1 km/s临界与剖面65~72 km范围的断续反射波,作者认为这些断续同相轴即是班怒缝合带Moho反射,如图7b。同时,在图7a速度模型中,从地表断至中下地壳的NST、SZT,可在速度剖面中找到相应速度变化;图7b中羌南坳陷中下地壳“背型”隆升(CDP1640,30~40 km)与速度剖面相关深度高速“凸起”存在对应关系。

  • 考虑到缝合带平均海拔4500 m,地震处理基准面5500 m,图7中纵向深度标记需减掉1 km才映射真实地下深度。从图7b可见,班怒缝合带Moho位于地下65~80 km范围,由南至北呈不连续分布,中间最大隔断位置位于NST、BCF断裂之下,垂向隔断距离超过15 km。缝合带南侧Moho“下插”趋势明显,代表着拉萨地块岩石圈地幔向北俯冲。CDP20~CDP585, Moho从66.5 km增加至71.5 km,增加了约5 km,俯冲倾角为19.5°(arctan(5 km÷(585-20)×25 m÷1000 m/km);CDP585~CDP830, Moho陡然增深至80 km,俯冲角约为52.5°(arctan(8 km÷(830-585)×25 m÷1000 m/km)。而在缝合带北侧、自CDP830向北,75 km以深不见反射同相轴向下延深,而浅部65 km深度又出现幅频特性类似缝合带南缘的反射,作者认为该反射波组代表缝合带北侧Moho。北侧Moho逐渐从65 km向北加深至72 km,中间也存在隔断,最大隔断距离小于5 km。除此之外,PSDM地震剖面各段Moho界面曲率变化向南呈现“向形”趋势,终止于CDP830位置;而向北至南羌塘盆地呈水平趋势,各段水平长度向北增加。这种“向形”一方面可能与PSDM偏移中残余“画弧”相关,另一方面更可能代表羌塘地块岩石圈上地幔向南抬升破裂、变形所致。图7b中①和②标记了广角地震和深反射地震PSTM成像获得的Moho结构,比较三者除了深度存在变化外,Moho连续形态明显存在差异。总体而言,班怒缝合带地壳构造形态和层速度剖面表明,班怒缝合带经历挤压、北部地块隆升作用,验证了前人的基本认识(Zhao et al.,2001; Gao et al.,2013; Lu et al.,2013)。

  • 此外,在CDP585~CDP830之间,Moho以上20~25 km范围内存在“白色”反射区,如图7b中红色圆圈标记,该区地震波阻抗差较小,与周围形成对比。由此向上,南北两侧地震波组倾斜角度存在变化,南侧北倾、北侧水平。结合图7a层速度变化趋势,作者认为该区存在北倾延至Moho的深大断裂,如图7a中红色线段标记,断裂内部“白色”反射区可能代表侵入体存在。在CDP830以北,50 km深度以上明显呈现挤压褶皱构造变形,褶皱不连续处向上可以追踪到NST/BCF和SZT等地表断裂,这些逆冲断裂在速度剖面中也可以看到相应变化。

  • 综合地震解释认为,现今班怒缝合带存在北倾深大断裂,断裂以南、46 km以深存在巨厚(约20 km)向北下插的反射体,认为该地体属于晚侏罗世—早白垩世残余中特提斯俯冲增厚洋壳,地震波速7.2~7.5 km/s,其下岩石圈地幔以大于19.5°角度向北俯冲。如此大角度俯冲一方面造成南部岩石圈地幔破裂,向下拆沉,造成软流圈物质上涌和中下地壳局部熔融(Hou Zengqian et al.,2009; Tian Xiaobo et al.,2015);另一方面造成早白垩世以来南羌塘地块地壳抬升、岩石圈地幔破裂,结合Moho以上中、下地壳结构,表明南羌塘坳陷具有地幔隆升、上地壳拉张成因。班怒缝合带南侧Moho普遍具有北倾特征,而北侧Moho最初受南部上地幔俯冲拖拽产生隆升,呈现出向南抬升、南倾特征,二者汇聚于缝合带南部深大断裂处,两侧岩体呈现出扭曲(Gao Rui et al.,2013)。推测认为,在晚白垩世班怒洋闭合后,班怒缝合带下地壳及上地幔经过重熔冷凝形成新的Moho面又受到了南北挤压作用(推测与印度-拉萨板块碰撞有关)(Shi Danian et al.,2004; Hou Zengqian et al.,2009; 邹长桥等,2012; Wang Ming et al.,2019),而且挤压程度较弱尚不足以改变Moho整体结构形态,仅在微观上Moho面内部反射形态产生破裂或者其他变化。

  • 班怒缝合带Moho结构表明,自晚侏罗世以来拉萨从南至北向羌塘汇聚、班怒洋洋壳向北俯冲,导致南羌塘坳陷抬升、由边缘海沉积向前陆盆地转换,班怒洋壳是否发生双向俯冲还有待进一步认识。班怒缝合带下地壳的“白色”反射表明,在班怒洋闭合过程中,南羌塘下地壳产生部分熔融,熔融能量可能源自洋-陆俯冲产生的巨大挤压应力,或者软流圈物质沿深大断裂上涌热能(Zhao Wenjin et al.,2001; Shi Danian et al.,2004; Bendick et al.,2007; Hou Zengqian et al.,2009)。自早白垩世末期,挤压作用逐渐减弱,软流圈深部橄榄岩逐渐形成了新Moho,此时Moho结构较为平缓。至白垩纪晚期—新生代早期,受新特提斯洋洋壳向北俯冲影响,拉萨地块进一步北移,加剧拉萨-羌塘碰撞效应,新生Moho受到南北强烈挤压作用产生一定变化,但不足以改变晚白垩世Moho整体形态。但随着早第三纪中晚期拉萨-印度强烈碰撞,班怒缝合带上地幔开始产生破裂,现今Moho呈现南侧北倾、北侧南倾反射特征表明,缝合带仍处于挤压过程中,而下地壳及上地幔构造差异可能表征“亮点”构造和大规模局部熔融的存在,这与大地电磁剖面具有一定的对比性(Wei Wenbo et al.,2001; Zhao Wenjin et al.,2001; Alexander et al.,2012)。

  • 图7 班公湖-怒江缝合带深反射地震PSDM处理层速度剖面及地震剖面构造解释

  • Fig.7 Structral interpretation on interval velocity field derived from PSDM processing and depth-domain seismic profile in the BNS

  • (a)—110 km范围深度域层速度场剖面;(b)—含Moho 30~80 km深度地震剖面构造解释; ①—广角地震获得的Moho深度(Zhao et al.,2001);②—深反射地震PSTM处理获得的Moho深度(Gao et al.,2013);NST、 BCF、 SZT详见图1

  • (a) —depth-domain interval velocity; (b) —structral interpretation of depth-domain seismic profile 30~80 km including the Moho; ①—Moho derived from wide-angle seismic survey (Zhao et al., 2001) ; ②—Moho derived from PSTM imaging of deep-reflection seismic data (Gao et al., 2013) ; NST, BCF and SZT seen in Fig.1

  • 4 讨论

  • 4.1 深反射地震数据PSDM成像与班公湖-怒江缝合带Moho断阶的思考

  • 本文通过深反射地震PSDM成像,获得了不同于以往的班怒缝合带Moho结构,与INDEPTH III广角地震和SinoProbe-02深反射地震PSTM结果存在差异。作者认为,广角地震通过折射波旅行时反演岩层速度和深度,依赖远偏移距折射波的波至定位,这与远偏折射波信噪比密切相关;而深反射地震PSTM剖面采用时间域成像、时深转换,Moho结构在转换前后具有纵、横向差异。受大偏移距折射波信噪比限制,广角速度反演在低信噪比段横向分辨率下降,不能体现Moho小尺度横向变化,未能精确识别Moho断阶。同时,由深反射地震时域RMS速度和层速度表明,缝合带壳内存在强横向速度变化(图6),以致采用单点速度进行时深转换,可能会产生深度误差。例如,在PSTM时深转换剖面中,受拉萨地块岩石圈上地幔(Moho 75.1 km)北向俯冲拖拽,从班怒缝合带(68.9 km深)至南羌塘坳陷(62.6 km深),在横向25 km范围内Moho界面“塑性”上升6.3 km,以致羌塘上地幔屈服角度近14.2°(Gao Rui et al.,2013)。在这种情况下,极有可能造成羌塘岩石圈上地幔破裂,继而不存在连续的“塑性”Moho。相比而言,PSDM地震剖面上的Moho深度与结构处于二者之下、呈多断阶形态;考虑到班怒缝合带花岗岩和火山岩中含幔源物质(晚于晚白垩世)(Zhao Wenjin et al.,2001; Kurt et al.,2005),表明缝合带处的Moho界面可能为一个壳幔物质与能量的交换通道。

  • 4.2 班公湖-怒江缝合带壳内结构特征

  • 班怒缝合带PSDM地震剖面Moho以上(CDP585~CDP830,55~75 km)存在低波阻抗“白色”反射区,对比该区顶界与初至波极性(Makovsky et al.,1997),发现“白色”区顶界反射系数具有负极性,即由高阻抗到低波阻抗介质。结合时频谱分析,Moho区在10 Hz及以下反射能量最强、频率增高至15 Hz时能量迅速衰减,表明该区可能存在低频阴影。INDEPTH-III 大地电磁电阻率模型(Wei Wenbo et al.,2001; Zhao Wenjin et al.,2001; Hou Zengqian et al.,2009)显示班怒缝合带及南侧存在大规模连续低阻体分布,且有向下延伸至上地幔趋势,认为很可能是地壳部分熔融或者部分熔融与地下流体共同所致,即班怒缝合带存在壳幔热交换通道。此外,INDEPTH-III接收函数(89.14°)显示,拉萨地块北部来自Moho 的P-to-s转换震相振幅变化较大,弱振幅能量分布范围广,呈不连续性,其位置与深反射地震剖面“白色反射区”恰好一致(Shi Danian et al.,2004)。班怒缝合带今天位置未必代表拉萨-羌塘地块之间在深部碰撞位置(Shi Danian et al.,2004; Bendick et al.,2007)。因此,深反射地震剖面中南部Moho应属于班怒洋闭合后产生的新生Moho。通过深反射地震剖面、天然地震接受函数以及大地电磁探测综合推测,班怒缝合带Moho界面上下所存在亮点构造应该反映了下地壳、壳幔边界处存在局部熔融。

  • 5 结论

  • 基于班怒缝合带深部复杂构造和深反射地震数据品质,深反射地震成像采用了有针对性的叠前深度偏移处理技术系列,经过处理技术分析和效果对比,最终获得具有一定信噪比的深度域剖面和高分辨率Moho结构。由PSDM地震剖面揭示:① 班怒缝合带Moho位于地表以下65~80 km范围,向北“下插”趋势明显,代表着拉萨地块岩石圈地幔向北俯冲。② 班怒缝合带Moho呈不连续向北抬升趋势,中间存在多个断阶,内部表现为反射波异常、波速降低等特征,最大隔断位置位于色林错逆冲断裂之下,纵向断距超过15 km。③ 缝合带两侧Moho形态显示,这些断阶受南侧岩石圈上地幔以19.5°北倾俯冲与北侧南羌塘上地壳挤压抬升驱动,可能与深部存在局部熔融相关。班怒缝合带Moho结构揭示,随着晚侏罗世—早白垩世中特提斯洋闭合,南羌塘由边缘海沉积向弧前盆地转化,佐证南羌塘由三叠世—晚侏罗世边缘海沉积转向晚侏罗世—白垩世弧前盆地构造,进而发展成坳陷盆地。

  • 致谢:本文处理试验的深反射地震数据来源于国家地球深部探测专项(SinoProbe-02),由中国地质科学院地球深部探测中心共享。作者以崇敬的心情致谢在地震采集中奔赴在青藏高原的专家学者及技术人员,并对SinoProbe和INDEPTH项目成员关于深反射地震处理解释所提建议和意见表示感谢。同时,感谢中国地质大学(北京)地球物理与信息技术学院研究生在初至拾取和C++程序编制中付出的辛苦工作。在深反射地震解释中,中国地质科学院地质研究所卢占武研究员提出了许多思路和建议,中国地质科学院陈宣华研究员、贺日政研究员给予很大帮助和指导,笔者表示衷心感谢。

  • 参考文献

    • Alexander R, Paul K, Barbara C, Peter W R, Jerome G, Ding Lin, Matthew H. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40(2): 187~190.

    • Bendick R, Flesch L. 2007. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet. Geology, 35(10): 895~898.

    • Cao Zhongquan, Zhang Zhi, Tian Xiaobo. 2007. Rock density structure in Bangong-Nujiang suture zone and its significance. Chinese Journal of Geophysics, 50(2): 523~528 (in Chinese with English abstract).

    • Chen Shengsheng, Shi Rendeng, Zou Haibo, Huang Qishuai, Liu Deliang, Gong Xiaohan, Yi Guoding, Wu Kang. 2015. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks. Lithos, 230: 30~45.

    • Ding Wenlong, Wan Huan, Zhang Yeqian, Han Guangzhi. 2013. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang basin of Tibet. Journal of Asian Earth Sciences, 66: 63~72.

    • Du Dedao, Qu Xiaoming, Wang Genhou, Xin Hongbo, Liu Zhibo. 2011. Bidirectional subduction of the middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet: Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites. Acta Petrologica Sinica, 27(7): 1993~2002 (in Chinese with English abstract).

    • Fan Jianjun, Li Cai, Liu Jinheng, Wang Ming, Liu Yiming, Xie Chaoming. 2018. The Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean: Evidence from analyses of OIB-type basalts and OIB-derived phonolites in northern Tibet. International Journal of Earth Sciences, 107: 1755~1775.

    • Gao Rui, Chen Chen, Lu Zhanwu, Larry D B, Xiong Xiaoxong, Li Wenhui, Deng Gong. 2013. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 606: 160~170.

    • Girardeau J, Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamics significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.

    • Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhengqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1): 25~51.

    • Huang Qishuai, Shi Rendeng, Suzanne Y O, Willian L G, Zhang Ming, Liu Deliang, Zhang Xiaoran. 2015. Re-Os isotopic constraints on the evolution of the Bangong-Nujiang Tethyan oceanic mantle, Central Tibet. Lithos, 224-225: 32~45.

    • Jerome H G, Paul K, Alex P, Matthew H, George G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.

    • Kang Zhiqiang, Xu Jifeng, Wang Baodi, Chen Jianlin. 2010. Qushenla formation volcanic rocks in north Lhasha block: Products of Bangong Co-Nujiang Tethy's southward subduction. Acta Petrologica Sinica, 26(10): 3106~3116 (in Chinese with English abstract).

    • Kapp P, Peter G D, George E G, Matthew H, Ding Lin. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917~932.

    • Klemperer L S, Bendick R, Flesch L. 2008. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet: Comment and reply. Geology, 36(1): e180~e181.

    • Kurt D S, Alan G J, Nelson K D, Martyn J U, William F K, Wei Wenbo, Tan Handong, Jin Sheng, Deng Ming, Booker J R, Li S, Bedrosian P. 2005. Structure of the crust in the vicinity of the Bangong-Nujiang suture in central Tibet from INDEPTH magnetotelluric data. Journal of Geophysical Research, 110 (B10102): 1~20.

    • Li Jinxiang, Li Guangming, Qin Kezhang, Xiao Bo. 2008. Geochemistry of porphyries and vocanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Banggonghu belt, Tibet: Constraints on metallogenic tectonic settings. Acta Petrologica Sinica, 24(3): 531~543 (in Chinese with English abstract).

    • Li Shimin, Zhu Dicheng, Wang Qing, Zhao Zhidan, Sui Qinglin, Liu Shengao, Liu Dong, Mo Xuanxue. 2014. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 205: 284~297.

    • Li Shun, Ding Lin, Carl G, Fu Jiajun, Xu Qiang, Yue Yahui, Renato H P. 2017. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics, 702: 42~60.

    • Liu Deliang, Shi Rendeng, Ding Lin, Zou Haibo. 2018. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet. Lithos, 296-299: 452~470.

    • Liu Guocheng, Shang Xuefeng, He Rizheng, Gao Rui, Zou Changqiao, Li Wenhui. 2014. Topography of Moho beneath the central Qiangtang in north Tibet and its geodynamic implication. Chinese Journal of Geophysics, 57(7): 2043~2053 (in Chinese with English abstract).

    • Lu Zhanwu, Gao Rui, Li Yongtie, Xue Aimin, Li Qiusheng, Wang Haiyan, Kuang Chaoyang, Xiong Xiaosong. 2013. The upper crustal structure of the Qiangtang basin revealed by seismic reflection data. Tectonophysics, 606: 171~177.

    • Makovsky Y, Simon K, Lothar R, Larry D B. 1997. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet. Science, 274(5293): 1690.

    • Michael T, Yin An, Frederick J R, Paul K, Ding Lin 2002. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. Tectonics, 22(4): 1801~1821.

    • Pan Guitang, Zhu Dicheng, Wang Liquan, Liao Zhongli, Geng Quanru, Jiang Xinsheng. 2004. Bangong lake-Nu river suture zone, the northern boundary of Gondwana land: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371~382 (in Chinese with English abstract).

    • Shi Danian, Rainer K, James N, Simon L K. 2004. Detection of southward intracontinental subduction of Tibetan lithos along the Bangong-Nujiang suture by P-to-S converted waves. Geology, 32(3): 209~212.

    • Shi Rendeng, Yang Jingsui, Xu Zhiqin, Qi Xuexiang. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences, 32: 438~457.

    • Tian Xiaobo, Chen Yun, Tseng T, Simon L K, Hans T, Liu Zhen, Xu Tao, Liang Xiaofeng, Bai Zhiming, Zhang Xi, Si Shaokun, Sun Changqing, Lan Haiqiang, Wang E, Teng Jiwen. 2015. Weakly coupled lithospheric extension in southern Tibet. Earth and Planetary Science Letters, 430: 171~177.

    • Wang Ming, Peng Shuaiying, Li Cai, Zhang Tianyu. 2019. Palaeontology and U-Pb detrital zircon geochronology of upper Triassic strata on the northern margin of the Bangong Co-Nujiang suture zone, Tibet: Constraints on the age of opening of the Meso-Tethys. Journal of Asian Earth Sciences, 175: 26~34.

    • Wei Shaogang, Tang Juxing, Song Yang, Liu Zhibo, Wang Qin, Lin Bin, He Wen, Feng Jun. 2017. Petrogenesis, Zircon U-Pb geochronology and Sr-Nd-Hf isotopes of the intermediate-felsic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone, Tibet and its tectonic significance. Acta Geologica Sinica, 91(1): 132~150 (in Chinese with English abstract).

    • Wei Wenbo, Unsworth M J, Jones A G, Booker J, Roberts B. 2001. Detection of widespread fluids in the tibetan crust by magnetotelluric studies. Science, 292(5517): 716~719.

    • Wu Qingju, Zeng Rongsheng, Zhao Wenjin. 2004. Upper mantle's tilting structure and continental collision process of Ximalaiya-Tibetan Plateau. Science in China: Earth Sciences, 34(10): 919~925 (in Chinese with English abstract).

    • Wu Wei, Liu Qiyuan, He Rizheng, Qu Zhongdang. 2017. Waveform inversion of S-wave velocity model in the central Qiangtang in north Tibet and its geological implications. Chinese Journal of Geophysics, 60(3): 941~952 (in Chinese with English abstract).

    • Wu Zhenhan, Ye Peisheng, Patrick J B, Hu Daogong, Lu Lu, Zhang Yaoling. 2012. Early Cenozoic mega thrusting in the Qiangtang block of the northern Tibetan Plateau. Acta Geologica Sinica (English Edition), 86(4): 799~809.

    • Zhang Kaijun, Zhang Yuxiu, Tang Xianchun, Xia Bin. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114: 26~249.

    • Zhang Hui, Liu Zhiwei, He Rizheng, Li Qiaoling. 2020. Near surface shear wave velocity structure inversion using multi-order surface wave dispersion curves constructed from deep seismic reflection data: A real case of deep seismic reflection profile across Bangong-Nujiang suture zone. Chinese Journal of Geophysics, 63(12): 4410~4430 (in Chinese with English abstract).

    • Zhang Yan, Cheng Shunyou, Zhao Bingkun, Dong Yunpeng, Han Geming, Zhang Minghua, Yang Yabin, Cui Liyan. 2013. The feature of tectonics in the Tibetan Plateau from new regional gravity signals. Chinese Journal of Geophysics, 56(4): 1369~1380 (in Chinese with English abstract).

    • Zhao Wenjin, Jame M, Larry D B, Guo J, Haines S, Hearn T, Klempere S L, Ma Y S, Meissner R, Nelson K D, Ni J F, Pananont P, Raipine R, Ross A, Saul J. 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophysical Journal International, 145: 486~498.

    • Zhao Wenjin, Xu Guangqi, Wu Zhenhan, Zhao Xun, Liu Kui, Shi Danian, Nelson D, Brown L, Hearn T. 2004. Fine velocity structure of the upper mantle beneath the Xizang Plateau from tomography and its geological interpretation. Chinese Journal of Geophysics, 47(3): 449~455 (in Chinese with English abstract).

    • Zou Changqiao, He Rrizheng, Gao Rui, Zhang Zhi, Zheng Hongwei. 2012. Deep structure of the central uplift belt in the Qiangtang terrane Tibetan Plateau from teleseismic P-wave tomography. Chinese Science Bulletin, 57(28-29): 2729~2739 (in Chinese with English abstract).

    • 曹忠权, 张智, 田小波. 2007. 青藏高原班公湖-怒江缝合带域岩石密度及意义. 地球物理学报, 50(2): 523~528.

    • 杜德道, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段班怒洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993~2002.

    • 康志强, 许继峰, 王保弟, 陈建林. 2010. 拉萨地块北部去伸拉组火山岩: 班公湖-怒江特提斯洋南向俯冲的产物. 岩石学报, 26(10): 3106~3116.

    • 李金祥, 李光明, 秦克章, 肖波. 2008. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约. 岩石学报, 24(3): 531~543.

    • 刘国成, 尚学峰, 贺日政, 高锐, 邹长桥, 李文辉. 2014. 藏北羌塘盆地中部莫霍面形态及其动力学成因. 地球物理学报, 57(7): 2043~2053.

    • 潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371~382.

    • 韦少港, 唐菊兴, 宋扬, 刘治博, 王勤, 林彬, 贺文, 冯军. 2017. 西藏班公湖-怒江缝合带美日切错中酸性火山岩锆石U-Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义. 地质学报, 91(1): 132~150.

    • 吴庆举, 曾融生, 赵文津. 2004. 喜马拉雅-青藏高原的上地幔倾斜构造与陆-陆碰撞过程. 中国科学D辑-地球科学, 34(10): 919~925.

    • 吴蔚, 刘启元, 贺日政, 曲中党. 2017. 羌塘盆地中部地区地壳S波速度结构及构造意义. 地球物理学报, 60(3): 941~952.

    • 张辉, 刘志伟, 贺日政, 李巧玲. 2020. 利用深反射地震数据构建的多阶面波频散曲线反演近地表横波速度结构-以跨班公湖-怒江缝合带深反射地震资料为例. 地球物理学报, 63(12): 4410~4430.

    • 张燕, 程顺有, 赵炳坤, 董云鹏, 韩革命, 张明华, 杨亚斌, 崔丽艳. 2013. 青藏高原构造结构特点: 新重力异常成果的启示. 地球物理学报, 56(4): 1369~1380.

    • 赵文津, 薛光琦, 吴珍汉, 赵逊, 刘葵, 史大年, Mechie J, Nelson D, Brown L, Hearn T. 2004. 西藏高原上地幔的精细结构与构造——地震层析成像给出的启示. 地球物理学报, 47(3): 449~455.

    • 邹长桥, 贺日政, 高锐, 张智, 郑宏伟. 2012. 远震P波层析成像研究羌塘中央隆起带深部结构. 科学通报, 57(28-29): 2729~2739.

  • 参考文献

    • Alexander R, Paul K, Barbara C, Peter W R, Jerome G, Ding Lin, Matthew H. 2012. Thermochronologic evidence for plateau formation in central Tibet by 45 Ma. Geology, 40(2): 187~190.

    • Bendick R, Flesch L. 2007. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet. Geology, 35(10): 895~898.

    • Cao Zhongquan, Zhang Zhi, Tian Xiaobo. 2007. Rock density structure in Bangong-Nujiang suture zone and its significance. Chinese Journal of Geophysics, 50(2): 523~528 (in Chinese with English abstract).

    • Chen Shengsheng, Shi Rendeng, Zou Haibo, Huang Qishuai, Liu Deliang, Gong Xiaohan, Yi Guoding, Wu Kang. 2015. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone (central Tibet): Geological, geochemical and chronological evidence from volcanic rocks. Lithos, 230: 30~45.

    • Ding Wenlong, Wan Huan, Zhang Yeqian, Han Guangzhi. 2013. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang basin of Tibet. Journal of Asian Earth Sciences, 66: 63~72.

    • Du Dedao, Qu Xiaoming, Wang Genhou, Xin Hongbo, Liu Zhibo. 2011. Bidirectional subduction of the middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet: Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites. Acta Petrologica Sinica, 27(7): 1993~2002 (in Chinese with English abstract).

    • Fan Jianjun, Li Cai, Liu Jinheng, Wang Ming, Liu Yiming, Xie Chaoming. 2018. The Middle Triassic evolution of the Bangong-Nujiang Tethyan Ocean: Evidence from analyses of OIB-type basalts and OIB-derived phonolites in northern Tibet. International Journal of Earth Sciences, 107: 1755~1775.

    • Gao Rui, Chen Chen, Lu Zhanwu, Larry D B, Xiong Xiaoxong, Li Wenhui, Deng Gong. 2013. New constraints on crustal structure and Moho topography in Central Tibet revealed by SinoProbe deep seismic reflection profiling. Tectonophysics, 606: 160~170.

    • Girardeau J, Marcoux J, Allègre C J, Bassoullet J P, Tang Youking, Xiao Xuchang, Zao Yougong, Wang Xibin. 1984. Tectonic environment and geodynamics significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307(5946): 27~31.

    • Hou Zengqian, Yang Zhiming, Qu Xiaoming, Meng Xiangjin, Li Zhengqing, Beaudoin G, Rui Zongyao, Gao Yongfeng, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post collisional extension in the Tibetan Orogen. Ore Geology Reviews, 36(1): 25~51.

    • Huang Qishuai, Shi Rendeng, Suzanne Y O, Willian L G, Zhang Ming, Liu Deliang, Zhang Xiaoran. 2015. Re-Os isotopic constraints on the evolution of the Bangong-Nujiang Tethyan oceanic mantle, Central Tibet. Lithos, 224-225: 32~45.

    • Jerome H G, Paul K, Alex P, Matthew H, George G, Ding Lin. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34(6): 505~508.

    • Kang Zhiqiang, Xu Jifeng, Wang Baodi, Chen Jianlin. 2010. Qushenla formation volcanic rocks in north Lhasha block: Products of Bangong Co-Nujiang Tethy's southward subduction. Acta Petrologica Sinica, 26(10): 3106~3116 (in Chinese with English abstract).

    • Kapp P, Peter G D, George E G, Matthew H, Ding Lin. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geological Society of America Bulletin, 119(7-8): 917~932.

    • Klemperer L S, Bendick R, Flesch L. 2008. Reconciling lithospheric deformation and lower crustal flow beneath central Tibet: Comment and reply. Geology, 36(1): e180~e181.

    • Kurt D S, Alan G J, Nelson K D, Martyn J U, William F K, Wei Wenbo, Tan Handong, Jin Sheng, Deng Ming, Booker J R, Li S, Bedrosian P. 2005. Structure of the crust in the vicinity of the Bangong-Nujiang suture in central Tibet from INDEPTH magnetotelluric data. Journal of Geophysical Research, 110 (B10102): 1~20.

    • Li Jinxiang, Li Guangming, Qin Kezhang, Xiao Bo. 2008. Geochemistry of porphyries and vocanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Banggonghu belt, Tibet: Constraints on metallogenic tectonic settings. Acta Petrologica Sinica, 24(3): 531~543 (in Chinese with English abstract).

    • Li Shimin, Zhu Dicheng, Wang Qing, Zhao Zhidan, Sui Qinglin, Liu Shengao, Liu Dong, Mo Xuanxue. 2014. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos, 205: 284~297.

    • Li Shun, Ding Lin, Carl G, Fu Jiajun, Xu Qiang, Yue Yahui, Renato H P. 2017. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet. Tectonophysics, 702: 42~60.

    • Liu Deliang, Shi Rendeng, Ding Lin, Zou Haibo. 2018. Late Cretaceous transition from subduction to collision along the Bangong-Nujiang Tethys: New volcanic constraints from central Tibet. Lithos, 296-299: 452~470.

    • Liu Guocheng, Shang Xuefeng, He Rizheng, Gao Rui, Zou Changqiao, Li Wenhui. 2014. Topography of Moho beneath the central Qiangtang in north Tibet and its geodynamic implication. Chinese Journal of Geophysics, 57(7): 2043~2053 (in Chinese with English abstract).

    • Lu Zhanwu, Gao Rui, Li Yongtie, Xue Aimin, Li Qiusheng, Wang Haiyan, Kuang Chaoyang, Xiong Xiaosong. 2013. The upper crustal structure of the Qiangtang basin revealed by seismic reflection data. Tectonophysics, 606: 171~177.

    • Makovsky Y, Simon K, Lothar R, Larry D B. 1997. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet. Science, 274(5293): 1690.

    • Michael T, Yin An, Frederick J R, Paul K, Ding Lin 2002. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. Tectonics, 22(4): 1801~1821.

    • Pan Guitang, Zhu Dicheng, Wang Liquan, Liao Zhongli, Geng Quanru, Jiang Xinsheng. 2004. Bangong lake-Nu river suture zone, the northern boundary of Gondwana land: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371~382 (in Chinese with English abstract).

    • Shi Danian, Rainer K, James N, Simon L K. 2004. Detection of southward intracontinental subduction of Tibetan lithos along the Bangong-Nujiang suture by P-to-S converted waves. Geology, 32(3): 209~212.

    • Shi Rendeng, Yang Jingsui, Xu Zhiqin, Qi Xuexiang. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences, 32: 438~457.

    • Tian Xiaobo, Chen Yun, Tseng T, Simon L K, Hans T, Liu Zhen, Xu Tao, Liang Xiaofeng, Bai Zhiming, Zhang Xi, Si Shaokun, Sun Changqing, Lan Haiqiang, Wang E, Teng Jiwen. 2015. Weakly coupled lithospheric extension in southern Tibet. Earth and Planetary Science Letters, 430: 171~177.

    • Wang Ming, Peng Shuaiying, Li Cai, Zhang Tianyu. 2019. Palaeontology and U-Pb detrital zircon geochronology of upper Triassic strata on the northern margin of the Bangong Co-Nujiang suture zone, Tibet: Constraints on the age of opening of the Meso-Tethys. Journal of Asian Earth Sciences, 175: 26~34.

    • Wei Shaogang, Tang Juxing, Song Yang, Liu Zhibo, Wang Qin, Lin Bin, He Wen, Feng Jun. 2017. Petrogenesis, Zircon U-Pb geochronology and Sr-Nd-Hf isotopes of the intermediate-felsic volcanic rocks from the Duolong deposit in the Bangonghu-Nujiang suture zone, Tibet and its tectonic significance. Acta Geologica Sinica, 91(1): 132~150 (in Chinese with English abstract).

    • Wei Wenbo, Unsworth M J, Jones A G, Booker J, Roberts B. 2001. Detection of widespread fluids in the tibetan crust by magnetotelluric studies. Science, 292(5517): 716~719.

    • Wu Qingju, Zeng Rongsheng, Zhao Wenjin. 2004. Upper mantle's tilting structure and continental collision process of Ximalaiya-Tibetan Plateau. Science in China: Earth Sciences, 34(10): 919~925 (in Chinese with English abstract).

    • Wu Wei, Liu Qiyuan, He Rizheng, Qu Zhongdang. 2017. Waveform inversion of S-wave velocity model in the central Qiangtang in north Tibet and its geological implications. Chinese Journal of Geophysics, 60(3): 941~952 (in Chinese with English abstract).

    • Wu Zhenhan, Ye Peisheng, Patrick J B, Hu Daogong, Lu Lu, Zhang Yaoling. 2012. Early Cenozoic mega thrusting in the Qiangtang block of the northern Tibetan Plateau. Acta Geologica Sinica (English Edition), 86(4): 799~809.

    • Zhang Kaijun, Zhang Yuxiu, Tang Xianchun, Xia Bin. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114: 26~249.

    • Zhang Hui, Liu Zhiwei, He Rizheng, Li Qiaoling. 2020. Near surface shear wave velocity structure inversion using multi-order surface wave dispersion curves constructed from deep seismic reflection data: A real case of deep seismic reflection profile across Bangong-Nujiang suture zone. Chinese Journal of Geophysics, 63(12): 4410~4430 (in Chinese with English abstract).

    • Zhang Yan, Cheng Shunyou, Zhao Bingkun, Dong Yunpeng, Han Geming, Zhang Minghua, Yang Yabin, Cui Liyan. 2013. The feature of tectonics in the Tibetan Plateau from new regional gravity signals. Chinese Journal of Geophysics, 56(4): 1369~1380 (in Chinese with English abstract).

    • Zhao Wenjin, Jame M, Larry D B, Guo J, Haines S, Hearn T, Klempere S L, Ma Y S, Meissner R, Nelson K D, Ni J F, Pananont P, Raipine R, Ross A, Saul J. 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophysical Journal International, 145: 486~498.

    • Zhao Wenjin, Xu Guangqi, Wu Zhenhan, Zhao Xun, Liu Kui, Shi Danian, Nelson D, Brown L, Hearn T. 2004. Fine velocity structure of the upper mantle beneath the Xizang Plateau from tomography and its geological interpretation. Chinese Journal of Geophysics, 47(3): 449~455 (in Chinese with English abstract).

    • Zou Changqiao, He Rrizheng, Gao Rui, Zhang Zhi, Zheng Hongwei. 2012. Deep structure of the central uplift belt in the Qiangtang terrane Tibetan Plateau from teleseismic P-wave tomography. Chinese Science Bulletin, 57(28-29): 2729~2739 (in Chinese with English abstract).

    • 曹忠权, 张智, 田小波. 2007. 青藏高原班公湖-怒江缝合带域岩石密度及意义. 地球物理学报, 50(2): 523~528.

    • 杜德道, 曲晓明, 王根厚, 辛洪波, 刘治博. 2011. 西藏班公湖-怒江缝合带西段班怒洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报, 27(7): 1993~2002.

    • 康志强, 许继峰, 王保弟, 陈建林. 2010. 拉萨地块北部去伸拉组火山岩: 班公湖-怒江特提斯洋南向俯冲的产物. 岩石学报, 26(10): 3106~3116.

    • 李金祥, 李光明, 秦克章, 肖波. 2008. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约. 岩石学报, 24(3): 531~543.

    • 刘国成, 尚学峰, 贺日政, 高锐, 邹长桥, 李文辉. 2014. 藏北羌塘盆地中部莫霍面形态及其动力学成因. 地球物理学报, 57(7): 2043~2053.

    • 潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371~382.

    • 韦少港, 唐菊兴, 宋扬, 刘治博, 王勤, 林彬, 贺文, 冯军. 2017. 西藏班公湖-怒江缝合带美日切错中酸性火山岩锆石U-Pb年龄、Sr-Nd-Hf同位素、岩石成因及其构造意义. 地质学报, 91(1): 132~150.

    • 吴庆举, 曾融生, 赵文津. 2004. 喜马拉雅-青藏高原的上地幔倾斜构造与陆-陆碰撞过程. 中国科学D辑-地球科学, 34(10): 919~925.

    • 吴蔚, 刘启元, 贺日政, 曲中党. 2017. 羌塘盆地中部地区地壳S波速度结构及构造意义. 地球物理学报, 60(3): 941~952.

    • 张辉, 刘志伟, 贺日政, 李巧玲. 2020. 利用深反射地震数据构建的多阶面波频散曲线反演近地表横波速度结构-以跨班公湖-怒江缝合带深反射地震资料为例. 地球物理学报, 63(12): 4410~4430.

    • 张燕, 程顺有, 赵炳坤, 董云鹏, 韩革命, 张明华, 杨亚斌, 崔丽艳. 2013. 青藏高原构造结构特点: 新重力异常成果的启示. 地球物理学报, 56(4): 1369~1380.

    • 赵文津, 薛光琦, 吴珍汉, 赵逊, 刘葵, 史大年, Mechie J, Nelson D, Brown L, Hearn T. 2004. 西藏高原上地幔的精细结构与构造——地震层析成像给出的启示. 地球物理学报, 47(3): 449~455.

    • 邹长桥, 贺日政, 高锐, 张智, 郑宏伟. 2012. 远震P波层析成像研究羌塘中央隆起带深部结构. 科学通报, 57(28-29): 2729~2739.