en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

史军华,男,1994年生。硕士研究生,主要从事新构造与活动构造研究。E-mail:2272774520@qq.com。

通讯作者:

韩帅,男,1989年生。男,助理研究员,主要从事构造地质学和活动构造研究。E-mail:814224279@qq.com。

参考文献
Allen C R, Gillespie A R, Yuan Han, Sieh K E, Buchun Z, Zhu Chengnan. 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard. Geological Society of America Bulletin, 95(6): 686~700.
参考文献
Bai Yongliang, Wang Xiaoyu, Dong Dongdong, Brune S, Wu Shiguo, Wang Zhenjie. 2020. Symmetry of the South China Sea conjugate margins in a rifting, drifting and collision context. Marine and Petroleum Geology, 117: 104397.
参考文献
Briais A Philippe P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98 (B4): 6299~6328.
参考文献
Cande S C, Dennis V K. 1992. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, B10: 13917~13951.
参考文献
Carter A, Roques D, Bristow C S. 2000. Denudation history of onshore central Vietnam: Constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics, 322(3-4): 265~277.
参考文献
Chang Yuan, Liu Rui, Yang Jia. 2004. Apatite fission track technology and its geological applications: A review. Shanghai Geological, 25 (1): 47~53 (in Chinese with English abstract).
参考文献
Clift P D, Sun Z. 2006. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan Margin, South China Sea: Implication for Tibetan uplift and monsoon intensification. Journal of Geophysical Research: Solid Earth, 111(B6): B06405.
参考文献
Duddy I R, Green P F, Laslet G M. 1988. Thermal aneligofissior tracks in apatite 3. Variable temperature behaviour. Chemnical Geology, 73(1): 25~38.
参考文献
Enkelmann E, Ratschbacher L, Jonckheere R, Nestler R, Fleischer M, Gloaguen R, Hacker B R, Zhang Yueqiao, Ma Yinsheng. 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan basin. Geological Society of America Bulletin, 118(5-6): 651~671.
参考文献
Fu Guoxiang, Fu Cerui, Wang Yingping. 2001. A new advance in the study of the Cretaceous of the Ledong basin on the Hainan Island. Journal of Stratigraphy, 19 (2): 63~68(in Chinese with English abstract).
参考文献
Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P. 2005. Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth and Planetary Science Letters, 237(1-2): 193~208.
参考文献
Ge Xiaoyue, Li Xianhua, Zhou Hanwen. 2003. Geochronologic, geochemistry and Sr-Nd isotopes of the Late Cretaceous mafic dike swarms in southern Hainan Island. Geochimica, 32 (1): 11~20(in Chinese with English abstract).
参考文献
Gleadow A J W, Duddy I R, Green P F, Hegarty K A. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78 (2-3): 245~254.
参考文献
Gleadow A J W, Fitzgerald P G. 1987. Uplift history and structure of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth and Planetary Science Letters, 82(1-2): 1~14.
参考文献
Green P F, Duddy I R, Laslett G M, Hegarty K A, Lovering J F. 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology, 79 (2): 155~182.
参考文献
He Youbin, Gao Zhenzhong. 2006. Sedimentary facies of the Liushagang Fomation of Paleogene in Fushansag of Hainan Island. Journal of Palaeogeography, 8(3): 365~376 (in Chinese with English abstract).
参考文献
Huang Xuemeng, Xu Zhiqin, Zhang Jinjiang. 2017. Cenozoic tectonic transformation and its dynamic mechanism in the Ailaoshan-Honghe fault zone. Acta Geoscientica Sinica, 38 (B11): 7~10 (in Chinese with English abstract).
参考文献
Li Yunzhen, Deng Yunhua, Xu Qiang. 2010. The controlling effect of plate movement on subsidence and filling of Cenozoic basins in China's offshore. Geoscience, 24 (4): 719~726 (in Chinese with English abstract)
参考文献
Liu Ruihua, Zhang Zhongying. 1989. Neotectonic features of Hainan Island. Tropical Geography, 9(2): 174~182 (in Chinese with English abstract).
参考文献
Long Vanhoang, Clift P D, Schwab A M, Huuse M, Nguyen D A, Sun Zhen. 2010. Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geological Society, London, Special Publications, 342: 219~244.
参考文献
Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605~623.
参考文献
Niu Xiaolu, Feng Guangying, Liu Fei, Yang Jingsui. 2022. Geochemical evolution and origin of Late Cenozoic basalts from north Hainan Island (southern China). Acta Geologica Sinica, 96(8): 2705~2724 (in Chinese with English abstract).
参考文献
Replumaz A, Lacassin R, Tapponnier P, Leloup P H. 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China). Journal of Geophysical Research: Solid Earth, 106(B1): 819~836.
参考文献
Shi Hongcai, Xie Hui, Zhao Weina, Liu Tangwei, Kong Deming. 2022. Denudation history of northern Hainan Island since Late Mesozoic-Cenozoic: Evidence from low-temperature thermochronology. Journal of Guangdong Ocean University, 42(1): 78~89 (in Chinese with English abstract).
参考文献
Shi Xiaobin, Spenser S, Kohn B, Guo Xingwei, Yang Xiaoqiu, Li Yamin. 2009. Cryogenic thermochronology constraints on Cenozoic cooling history in southern Hainan Island. Chinese Geophysical Society (in Chinese with English abstract).
参考文献
Shi Xiaobin, Kohn B, Spencer S, Guo Xingwei, Li Yamin, Yang Xiaoqiu, Shi Hongcai, Gleadow A. 2011. Cenozoic denudation history of southern Hainan Island, South China Sea: Constraints from low temperature thermochronology. Tectonophysics, 504(1-4): 100~115.
参考文献
Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.
参考文献
Sibuet J C, Zhao Minghui, Wu Jonny, Lee Chaoshing. 2021. Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny. Tectonophysics, 229050.
参考文献
Sun Weidong. 2016. Initiation and evolution of the South China Sea: An overview. Acta Geochimica, 35(3): 215~225.
参考文献
Trinh P T, Van Liem N, Van Huong N, Vinh H Q, Van Thom B, Thao B T, Tan M T, Hoang N. 2012. Late Quaternary tectonics and seismotectonics along the Red River fault zone, North Vietnam. Earth-Science Reviews, 114(3-4): 224~235.
参考文献
Wang Yaming, Tong Dianjun, Ren Jianye. 2007. The escape rotation of the Indosinian block and the development and evolution of the Yinggehai basin. Fault-Block Oil and Gas Field, 14 (2): 33~36 (in Chinese with English abstract)
参考文献
Wang Ying. 2002. Coastal environmental characteristics of Hainan Island. Marine Geological Performance, (3): 1~9 (in Chinese with English abstract).
参考文献
Westgate J, Sandhu A, Shane P. 1997. Fission-track dating. Chronometric Dating in Archaeology, 2: 127~158.
参考文献
Willett S D. 1997. Inverse modeling of annealing of fission tracks in apatite: 1, A controlled random search method. American Journal of Science, 297(10): 939~969.
参考文献
Yan Quanshu, Metcalfe I, Shi Xuefa. 2017. U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic-Mesozoic tectonic evolution. Gondwana Research, 49: 333~349.
参考文献
Yao Bochu. 1993. A preliminary study of Cenozoic tectonic movement in the northern margin of the South China Sea. Geological Research of South China Sea, (5): 1~12 (in Chinese with English abstract).
参考文献
Yao Bochu, Wu Nengyou. 2004. Cenozoic plate tectonic activity in the Great South China Sea. Geology in China, 31(2): 113~122 (in Chinese with English abstract).
参考文献
Yu Xun, Liu Zhifei. 2020. Non-mantle-plume process caused the initial spreading of the South China Sea. Scientific Reports, 10(1): 8500.
参考文献
Zhang Hunan, Zhao Xitao. 1984. Characteristics of the neotectonic movement in the Hainan Island and Leizhou Peninsula area. Scientia Geologica Sinica, 3: 276~287.
参考文献
Zhang Junlong, Tian Qinjian, Li Feng, Gao Zhanwu, Su Gang. 2008. Study on neotectonic characteristics and its evolution in northwestern Hainan Island. Earthquake, 28(3): 85~94.
参考文献
Zhang Shiping. 2018. Fission track method and its application to orogenic belt uplift. Chemical Enterprise Management, (11): 15~16 (in Chinese with English abstract).
参考文献
常远, 刘锐, 杨嘉. 2004. 磷灰石裂变径迹技术与地学应用综述. 上海地质, 25(1): 47~53.
参考文献
符国祥, 符策锐, 汪迎平. 2001. 海南岛乐东盆地白垩系研究新进展. 地层学杂志, 25(1): 63~68.
参考文献
葛小月, 李献华, 周汉文. 2003. 琼南晚白垩世基性岩墙群的年代学, 元素地球化学和Sr-Nd同位素研究. 地球化学, 32(1): 11~20.
参考文献
何幼斌, 高振中. 2006. 海南岛福山凹陷古近系流沙港组沉积相. 古地理学报, 8(3): 365~376.
参考文献
黄学猛, 许志琴, 张进江. 2017. 哀牢山-红河断裂带新生代构造转换及其动力学机制. 地球学报, 38 (B11): 7~10.
参考文献
李运振, 邓运华, 徐强. 2010. 板块运动对中国近海新生代盆地沉降及充填的控制作用. 现代地质, 24(4): 719~726.
参考文献
刘瑞华, 张仲英. 1989. 海南岛的新构造运动特征. 热带地理, 9(2): 174~182.
参考文献
牛晓露, 冯光英, 刘飞, 杨经绥. 2022. 海南岛北部晚新生代玄武岩成分演化及成因讨论. 地质学报, 96(8): 2705~2724.
参考文献
施小斌, Spenser S, Kohn B, 郭兴伟, 杨小秋, 李亚敏. 2009. 海南岛南部新生代冷却历史的低温热年代学约束. 中国地球物理: 中国地球物理学会.
参考文献
石红才, 谢辉, 赵维娜, 刘唐伟, 孔德明. 2022. 海南岛北部晚中-新生代剥露过程的低温年代学约束. 广东海洋大学学报, 42(1): 78~89.
参考文献
王雅明, 佟殿君, 任建业. 2007. 印支地块的逃逸旋转与莺歌海盆地的发育演化. 断块油气田, 14 (2): 33~36.
参考文献
王颖. 2002. 海南岛海岸环境特征. 海洋地质动态, (3): 1~9.
参考文献
姚伯初. 1993. 南海北部陆缘新生代构造运动初探. 南海地质研究, (5): 1~12.
参考文献
姚伯初, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31 (2): 113~122.
参考文献
张虎男, 赵希涛. 1984. 雷琼地区新构造运动的特征. 地质科学, 3: 276~287.
参考文献
张军龙, 田勤俭, 李峰, 高站武, 苏刚. 2008. 海南岛北西部新构造特征及其演化研究. 地震, 28(3): 85~94.
参考文献
张世平. 2018. 裂变径迹方法及其在造山带隆升中的应用. 化工管理, (11): 15~16.
目录contents

    摘要

    海南岛是南海地块的重要组成部分,其构造演化很大程度上能够反映整个南海的构造活动特征。新生代,海南岛在新构造运动作用下,断块差异升降比较明显,形成了大致以王五-文教断裂为界,北为沉降区,南为断隆区的构造格局。对断隆区隆升过程的研究能够帮助揭示海南岛新构造活动历史,但至今为止,琼中南山地隆升的原因和时限仍存在争议。为了厘清海南岛中部的剥露隆升事件,本文选择琼中南地区海拔最高、高差最大的五指山为研究区,采集8组高程岩石样品,高程范围为203.55~1153.52 m。对采集的样品进行了磷灰石裂变径迹测试和热历史模拟分析,结果表明海南岛五指山地区新生代主要经历了两期快速隆升剥露。第一期为渐新世—中新世(32~17 Ma):隆升速率较快,此时期太平洋板块向欧亚板块俯冲后撤,南海正经历第二次扩张,使得海南岛拉张,活动强烈,造成琼中山地区快速隆升,直到中中新世转为缓慢隆升。第二期为中新世末期(5 Ma)的快速剥蚀隆升阶段:南海扩张已经结束,随着菲律宾板块俯冲亚洲板块,南海北部陆缘整体处于加速热沉降阶段,且全球气候变化加快,造成了海南岛广泛的隆起和加速剥蚀。

    Abstract

    Hainan Island is an important part of the South China Sea block, and its tectonic evolution can largely reflect the tectonic activity characteristics of the entire South China Sea. During the Cenozoic period, under the neotectonic movement of Hainan Island, the differential rise and fall of fault blocks was relatively obvious, forming a tectonic pattern roughly bounded by the Wangwu-Wenjiao fault, with the subsidence area to the north and the fault-uplift area to the south. Research on the uplift process of the faulted uplift area can reveal the history of neotectonic activity in the Hainan Island, but so far, the cause and timing of the uplift of the southern Qiongzhong Mountains are still controversial. In order to clarify the exfoliation and uplift events in the central part of Hainan Island, this paper selected the Wuzhi Mountain with the highest elevation and the largest elevation difference in the southern Qiongzhong area as the study area, and collected 8 sets of rock elevation samples in this area, with an elevation range of 203.55~1153.52 m. A large number of apatite fission track tests and thermal history simulation analysis were carried out on the collected samples. The results show that the Cenozoic in the Wuzhi Mountain area of the Hainan Island mainly experienced two periods of rapid uplift and exfoliation. The first period is from Oligocene to Miocene (32~17 Ma) when the uplift rate was relatively fast. During this period, the Pacific plate subducted and retreated to the Eurasian plate, and the South China Sea experienced the second expansion, making Hainan Island stretched. The activity was intense, causing the Qiongzhongshan area to uplift rapidly until it turned into a slow uplift during the Middle Miocene. The second stage is the stage of rapid denudation and uplift at the end of the Miocene (5 Ma) when the expansion of South China Sea had ended. With the subduction of the Asian plate under the Philippine plate, the entire northern continental margin of South China Sea was in the stage of accelerated thermal subsidence, and the global climate change was accelerated, resulting in extensive uplift and accelerated denudation in Hainan Island.

  • 海南岛位于南海北部大陆边缘,四周被新生代裂谷盆地所包围,其新生代的构造演化一直广受关注。以东西向的王五-文教断裂为界,断裂带南北两侧的新构造运动和地貌形态截然不同。海南岛北的琼北断陷区表现为地面沉降、地震活动和火山喷发,形成了东西向展布的玄武岩被,以及沿海岸带的海积地貌和河流两岸的河积地貌景观,而南面的五指山隆起区地震活动较弱,无火山活动,主要表现为地表抬升和地热活动,多处温泉涌出。因此,研究海南岛的隆升历史,不仅能反映岛内南北地区构造-地貌格局的演化及空间差异性,还可为理解南海北部陆缘的演化和周围盆地边界断层活动提供有用信息(Shi Xiaobin et al .,2011)。目前,对于海南岛新生代的冷却-隆升历史的研究比较有限。施小斌等(2009)认为海南岛南部在中渐新世经历了较快的冷却,地表岩石经历了大致相似的热历史(Shi Xiaobin et al .,2011)。石红才等(2022)认为海南岛北部在渐新世至中新世晚期经历了缓慢冷却。由此可见,琼中山体新生代的隆升历史对于认识海南岛南北地区冷却/隆升的差异以及盆山耦合关系具有至关重要的作用。尽管如此,目前对于琼中地区低温热年代学的研究较为薄弱,这也极大限制了我们对上述问题的认知。

  • 裂变径迹法自20世纪80年代以来在地学研究中得到广泛应用,尤其适用于对缺乏有效沉积纪录地区的低温构造演化分析(张世平,2018)。该方法以封闭温度理论为基础,结合计算机模拟,有效地对地表到下地壳岩石的低温热历史进行约束,从而探讨山体的形成、抬升、剥蚀历史。磷灰石裂变径迹封闭温度低,是测定中上地壳剥露作用强有力的方法(常远等,2004)。另外,通过分析低温热年代学数据和高程之间的关系,可以找到斜率之间的拐点,而拐点年龄往往能够代表区域冷却、剥露事件的启动年龄。

  • 五指山是海南岛中部海拔最高、高差最大的山体,缺少新生代地层沉积,记录了该地区最完整的隆升历史。基于此点,本文在前人研究的基础上,选取了五指山作为研究对象,开展详细的磷灰石裂变径迹年龄测定。通过分析样品高程-年龄分布以及热历史模拟,结合区域构造历史与变形特征,系统探明了海南岛中部新生代以来的构造演化历史,从而为认识该区以及南海北部复杂的大地构造背景和地球动力学过程提供依据。

  • 1 地质背景

  • 海南岛位于华南陆块和印支地块之间相对独立的陆块,被雷州半岛、北部湾盆地、莺歌海盆地、琼东南盆地所包围,是南海地块体系的组成部分。其面积约35400 km2,地貌特征为中部分布着山区(最高海拔1876 m),周围环绕着低矮的丘陵,宽阔的玄武质台地(在岛的北部)和沿海的阶地(王颖,2002),由于第四系覆盖较厚,海南岛的诸多地质研究仍有待明确(Metcalfe,1996)。

  • 海南岛经历了多次构造运动,如中岳期、晋宁期、加里东期、海西期、印支期、燕山期和喜马拉雅期运动,每次运动都在海南岛形成了相应的构造特征。自喜马拉雅期运动以来,海南岛新的构造运动活跃且频繁,强烈的断裂活动不断发生。这些构造在后期演化中形成了岛上近东西向、北东向和北西向3组主要断裂(图1;刘瑞华和张仲英,1989)。其中,以近东西向的断裂发育最多,规模最大,并形成了相间排列的抬升区和沉降区(张虎男和赵希涛,1984)。

  • 新生代以来,南海经历了两次海底扩张和三期构造运动(姚伯初,1993)。第二次海底扩张发生在32~17 Ma,由于太平洋板块向欧亚板块俯冲,导致南海发生南北向海底扩张。第三次构造运动发生在中新世末期,南海新生代洋盆形成后,对南部产生挤压,引起该地区沉积物的变形;北部运动方向为NW-SE向,即东沙运动(姚伯初和吴能友,2004)。南海北部为裂谷型大陆边缘,晚白垩世以来经历了多次幕式裂谷,并演变为小规模的被动大陆边缘(Sun Weidong,2016)。海底扩张始于~30 Ma,终于~16 Ma(Cande et al.,1992; Briais et al.,1993)。随着南海扩张及新构造运动,南海北缘同时也发育了多个新生代裂谷盆地,其中NE向的北部湾、珠江口、琼东南盆地和NW向的莺歌海等盆地紧邻海南岛(Shi Xiaobin et al.,2009),岛内也形成了东西向的雷琼裂陷、长昌盆地、长坡盆地。

  • 岩浆岩在海南分布广泛,花岗岩约占裸露岩石的40%,其中约60%形成于晚华力西期和印支期,其余形成于燕山期;此外镁铁质岩脉表明,白垩纪(约140~80 Ma)海南岛及华南地区处于伸展环境(葛小月等,2003Yan Quanshu et al.,2017)。同时,一些山区出露的红层序列(符国祥等,2001牛晓露等,2022)则被认为是新生代断裂作用和隆起的结果。何幼斌和高振中(2006)认为,中始新世末期沉积格局的变化是海南岛南部抬升的结果。分布于不同高度的海平面之上的更新世海岸阶地、珊瑚礁和河流阶地,指示了晚更新世—全新世的构造抬升(张军龙,2008)。新生代和前新生代的EW、NNE、NNW向断层不同程度地复活,并在EW向断层与其他两组断层的相交处发育温泉。

  • 2 研究方法及样品采集

  • 裂变径迹法是一种基于放射性衰变进行函数定年的同位素测年方法。通过统计矿物中因自发裂变产生的径迹个数和长度,推断岩石的热事件年龄。随着时间和温度的作用,裂变径迹的密度和长度会发生变化。其中磷灰石的裂变径迹是研究最为成熟,也是应用最广泛的低温热年代学定年技术(Green et al.,1989; Westgate et al.,1997)。

  • 裂变径迹的初始平均长度最长为16.3 μm,标准差约为0.9 μm(Gleadow et al .,1986),其数量和长度在60~110℃的温度范围内较为稳定。在随后的时间经历缓慢退火后,径迹的长度逐渐变短,当温度高于110℃时,裂变径迹完全消失,即完全退火(Gleadow et al.,1986)。在低于60℃的温度下,裂变径迹数目和长度会保持不变,并可能有新的径迹生成(Duddy et al.,1988; Green et al.,1989)。近年来,磷灰石定年技术在研究伸展构造环境和山体热演化过程方面取得了重要成果。基于山体的隆升是导致岩石冷却的主要因素的基本假设,可以利用磷灰石中裂变径迹对温度的敏感特性,对岩石在隆升剥露方面进行约束,从而分析山体的隆升剥露过程(Gleadow et al.,1987; Duddy et al.,1988; Green et al.,1989; Enkelmann et al.,2006)。

  • 五指山位于海南岛中部(图2),从大地构造位置来看,属于华南褶皱系五指山褶皱带。该区域地层出露较多,主要由长城系抱板群的峨文岭组组成,是构成海南岛结晶基底的重要组成部分,其中出露最多的是早白垩世流纹质火山岩。本次研究旨在揭示五指山地区的隆升演化历史,进而解释海南岛新生代以来的构造活动与南海运动之间的关系。本次共选取了五指山地区不同海拔的8组岩浆岩样品进行了研究,并在采样过程中记录了详细的高程信息,采样高度范围203~1153 m。除B-01为火山岩外,其余7个样品均是花岗岩。

  • 图1 海南岛地质概图(据海南省地质矿产勘查局1∶50万地质图修改)

  • Fig.1 Geological overview of Hainan Island (according to the revision of the1∶500000 geological map of the Hainan Provincial Bureau of Geology and Mineral Exploration)

  • ①—王五-文教断裂; ②—昌江-琼海断裂; ③—尖峰-吊罗断裂; ④—九所-陵水断裂; ⑤—铺前-清澜断裂;⑥—长流-仙沟断裂; ⑦—马袅-铺前断裂

  • ①—Wangwu-Wenjiao fault; ②—Changjiang-Qionghai fault; ③—Jianfeng-Diaoluo fault; ④—Jiusuo-Lingshui fault ⑤—Puqian-Qinglan fault; ⑥—Changliu-Xiangou fault; ⑦—Maniao-Puqian fault

  • 样品岩性分别为:样品B-01,流纹质角砾凝灰岩,为角砾凝灰结构,块状构造,主要由火山角砾、凝灰物组成;样品B-03,中细粒二长花岗岩,结构为变余中细粒花岗结构,块状构造,主要成分为斜长石、钾长石、石英、黑云母;样品B-04,变质中细粒花岗闪长岩,为变余中细粒半自形结构,似片麻状构造,岩石主由斜长石、钾长石、石英、黑云母、角闪石组成;样品B-06,花岗斑岩,为斑状,块状构造;样品B-07,变质细粒斑状二长花岗岩,结构为变余似斑状-基质细粒花岗结构,似片麻状构造;样品B-09,变质细粒二长花岗岩,变余细粒花岗结构,似片麻状构造,岩石主由斜长石、钾长石、石英、黑云母、角闪石组成;样品B-10,变质中细粒斑状二长花岗岩,为变余似斑状-基质中细粒花岗结构,似片麻状构造,主要组成成分为斑晶、基质;样品B-11,变质中细粒二长花岗岩,似片麻状构造,岩石主由斜长石、钾长石、石英、黑云母、白云母组成(表1,图3)。

  • 图2 海南岛中部区域地质图及裂变径迹样品分布

  • Fig.2 Geological map and distribution of fission track samples in the central part of Hainan Island

  • 表1 五指山样品采集信息

  • Table1 Apatite sampling data for the Wuzhi Mountains

  • 3 实验结果

  • 8 个岩石样品的磷灰石裂变径迹年龄及相应的封闭径迹长度见表2。

  • 通过对样品中各单颗粒年龄进行χ2统计分析,当测得样品的Pχ2)值大于5%时,说明通过了χ2检验,表示样品矿物的各单颗粒年龄差别在允许的统计误差范围内。并且年龄直方图呈单峰样式,表明各样品的单颗粒年龄属于同一年龄组分,此时采用池年龄。当样品的Pχ2)值小于5%时,表示为混合年龄,此时应采用中心年龄。本次裂变径迹测试过程中,除样品B-03外,其余样品的磷灰石单颗粒测量数目均大于20,这就较好地达到了年龄统计要求。除样品B-10的Pχ2)<5%外,其余样品均通过了χ2统计检验,说明年龄为单一时限组分。各样品的径迹年龄都是在同一的构造热事件的反映,有确切的地质意义。

  • 3.1 数据分析

  • 岩石中会有不断的新磷灰石裂变径迹产生,且径迹的初始平均长度最长为16.3 μm,标准差约为0.9 μm(Gleadow et al .,1986),在随后的时间经历缓慢退火后,会使得径迹的长度逐渐变短甚至消失。从测试结果可以看出,本次采集的8件样品的封闭径迹长度均呈单峰式分布,且封闭径迹平均长度较长(图4)。这表明径迹矿物在完全退火后没有受到其他异常热事件干扰,而是慢慢累积形成的。封闭径迹长度主要集中在12.2~13.5 μm之间,误差为1.7~2.5 μm,小于初始的诱发径迹长度。大多数径迹长度分布在较长的范围内,占比较大。这种单峰式分布的特点说明了样品中磷灰石矿物的径迹在形成后没有经历长时间的退火,而是经历了较快的冷却,且在后期的地质历史时期未受到其他热事件的影响。

  • 图3 五指山岩石样品显微照片

  • Fig.3 Photomicrographs of rock samples from the Wuzhi Mountains

  • (a)—B-01流纹质角砾凝灰岩;(b)—B-03中细粒二长花岗岩;(c)—B-04变质中细粒花岗闪长岩;(d)—B-06花岗斑岩;(e)—B-07变质细粒斑状二长花岗岩;(f)—B-09变质细粒二长花岗岩;(g)—B-10变质中细粒斑状二长花岗岩;(h)—B-11变质中细粒二长花岗岩

  • (a) —B-01 rhyolitic breccia tuff; (b) —B-03 medium fine grained monzonite granite; (c) —B-04 metamorphic medium-fine granodiorite; (d) —B-06 granite porphyry; (e) —B-07 metamorphic fine-grained porphyritic monzonitic granite; (f) —B-09 metamorphic fine grained monzonite granite; (g) —B-10 metamorphic medium-fine grained porphyritic monzonitic granite; (h) —B-11 metamorphic medium-fine grained monzonitic granite

  • 图5展示了8个裂变径迹样品的岩性、高程海拔以及年龄分布。根据图中不同样品的海拔和热年龄数据可以估算山体的隆升剥露速率。可以看出,取样高度与年龄呈线性正相关。海拔越高,样品的年龄也随之增加,说明山体的抬升模式比较单一,没有出现反转。根据斜率计算,18.5~13 Ma期间的剥蚀速率约为0.039 mm/a,32~18.5 Ma期间的剥蚀速率为0.084 mm/a。值得注意的是,本文所测的样品都处于剥露的部分退火带,其表观年龄并不是快速冷却年龄。而且,冷却历史是一个多阶段的过程,因此由斜率推导的剥蚀速率仅作为视剥露速率,并不等同于真实剥露速率。

  • 此外,通过寻找海拔-年龄斜率中出现急剧改变的拐点,可以推导快速冷却(剥露)事件的发生时间(Gallagher et al.,2005)。拐点样品B-04附近的年龄指示,快速冷却事件发生的时间约为17 Ma,该年龄同样记录了隆升剥蚀的转变时间。由于只有一个拐点,结合封闭径迹的长度和分布特征以及Pχ2)值,可以得出样品岩石在32~13 Ma期间只经历了一次较快的冷却事件。

  • 3.2 热史模拟

  • 在对实验数据进行分析的基础上,结合以往的地质资料,利用磷灰石裂变径迹模拟软件AFTSolve对样品进行地质热史反演模拟。相关参数的赋值可以设置为:Dpar初始值为2.0,模拟次数大多为10000次。经过多次模拟后,得出了可接受热史模拟区间、较佳热史模拟区间和最佳模拟曲线,模拟结果见图6。

  • 图4 海南岛五指山地区磷灰石裂变径迹封闭径迹长度直方图

  • Fig.4 Closed track length histograms of apatite fission track in Wuzhishan area, Hainan Island

  • 表2 五指山磷灰石裂变径迹分析结果

  • Table2 Analytical results of apatite fission track from the Wuzhi Mountains

  • 注:n—测量的磷灰石颗粒数; ρs—自发径迹密度; ρi—诱发径迹密度; ρd—铀标准玻璃对应外探测器的诱发径迹密度;Ns—自发裂变径迹条数;Ni—诱发裂变径迹条数;Nd—铀玻璃诱发径迹条数; L—径迹长度;N—测量封闭径迹长度的径迹条数。

  • 热模拟曲线中,左边是样品的时间-温度模拟曲线,右边是径迹长度模拟直方图。在温度-时间模拟曲线中,纵坐标表示温度,横坐标表示时间,绿色区域表示可接受的模拟范围,红色区域表示较好的模拟范围,而黑色曲线则是最佳的模拟路径。“年龄GOF”值和“K-S检验”值分别代表了与实测年龄与实测径迹长度的接近程度。当年龄“GOF”值和“K-S检验”值均大于0.5时,表示模拟结果可接受;当二者均大于0.9时,表示模拟结果较为理想,拟合度较高(Willett,1997)。从图中可以看出,8个样品的“K-S检验”值和“年龄GOF”值都大于0.5,且接近1。这表明所有样品的模拟结果与实测值非常接近,拟合度高,模拟结果较好,在允许的误差范围内,所得数据均可使用。

  • 图5 海南岛五指山地区内低温热年代学年龄-高程

  • Fig.5 Age-elevation plots of low-temperature thermochronometric data in Wuzhishan area, Hainan Island

  • 根据模拟结果,可以得知这8件样品普遍经历了2次构造隆升事件,以及2个演化阶段过程。第一阶段是较快冷却剥露,发生在32~17 Ma之间;第二阶段是快速隆升剥蚀阶段,大约在5 Ma左右开始,并一直延续至今。样品的裂变径迹年龄和温度-时间最佳拟合曲线可见图7。这表明海南五指山地区的隆升在时间上具有明显的均一性。

  • 4 讨论

  • 样品裂变径迹年龄和温度-时间最佳拟合曲线揭示(图7),海南五指山地段隆升在时间上具有明显的均一性,分为两个阶段的快速隆升。

  • (1)较快冷却隆升:五指山地区在渐新世至中新世(32~17 Ma)期间,进入较快冷却阶段。样品的温度从120℃迅速冷却至约100℃,考虑到30℃/km的地温梯度和20℃的地表温度,可以推断此时期样品埋藏深度由地下约3.33 km抬升至约2.67 km,历时5~2 Ma,计算得出冷却隆升速率为0.132~0.33 mm/a。前人研究表明,海南岛地区的构造运动既与太平洋板块向欧亚大陆的俯冲有关,还与印度-欧亚大陆的碰撞有关(姚伯初和吴能友,2004)。在渐新世-中新世时期(34~20 Ma),印度-澳大利亚板块与欧亚板块之间的碰撞已经开始,并引发了多种响应:红河断裂开始左旋走滑运动(Allen et al.,1984; Replumaz et al.,2001; Trinh et al.,2012),印支地块沿该断裂顺时针向南东方向旋转挤出,与华南地块之间形成了强烈的拉张区(王雅明等,2007),地壳随之减薄;古南海持续地向南部婆罗洲俯冲 (Bai Yongliang et al.,2020),对俯冲板块的拖曳作用形成了古南海拖曳构造区,致使南海北部陆缘出现广泛伸展,并导致洋壳出露;与此同时,地幔柱上涌抵达岩石圈底部并发生侧向流动,与地壳减薄地带(古缝合线或张性断裂)发生相互作用(Yu Xun and Liu Zhifei,2020),更进一步促进洋盆的打开,扩张方向近S-N。在以上诸多动力作用的影响下,南海开始第二次海底扩张(Sibuet et al.,2016),扩张轴为近E-W向,并在海域形成了一系列E-W、NEE向的坳陷、隆起和右旋走滑断裂,并波及到北部的陆缘区域。海南岛在张扭应力下发生顺时针旋转,断块活动加剧,东西向断裂拉张形成断陷、断隆区,并造成琼中南地区的隆升。

  • 图6 海南岛五指山地区样品热模拟图

  • Fig.6 Thermal simulation map of samples in the Wuzhishan area of Hainan Island

  • 图7 海南岛五指山地区样品裂变径迹热模拟最佳温度-时间曲线

  • Fig.7 Optimum temperature-time curve for thermal simulation of sample fission track in the Wuzhishan area of Hainan Island

  • (2)快速冷却剥蚀:中新世末期(5 Ma)时期,五指山再次开始快速隆升。样品的温度从70℃快速冷却到20℃左右。在此期间,样品埋藏深度由地下约1.6 km抬升至地表,历时5 Ma,由此计算的隆升速率约为0.32 mm/a。从中新世晚期至第四纪(约5 Ma)伊始,南海海底扩张活动已经结束。造成该阶段快速隆升的原因可能是印澳板块前缘与巽他大陆碰撞,导致南海地区的应力场由右行张扭转为左行压扭(Briais et al.,1993)。与此同时,红河断裂由左旋走滑转为右旋走滑(黄学猛等,2017),菲律宾板块前缘吕宋岛弧与东亚大陆发生碰撞(Sibuet et al.,2021)。这些碰撞事件导致南海及周边地区形成了大规模的岩浆活动(Carter et al.,2000; Clift et al.,2006; Long et al.,2010)。此外,南海北部陆缘整体处于加速热沉降阶段(李运振等,2010),岩石圈冷却增重,下沉至软流圈发生拆沉作用,被地幔物质取代,岩石圈由于均衡补偿而抬升。另外,上新世(5 Ma)以来,全球气候频繁变化(Clift et al.,2006),导致大陆岩石物理风化与化学风化作用加强,剥蚀作用强烈,进一步促进了琼中南山体的快速剥露(Shi Xiaobin et al.,2011)。

  • 5 结论

  • (1)利用磷灰石裂变径迹的测年方法,确定了五指山地区的径迹年龄和径迹长度。五指山样品的年龄范围在16±2~27±3 Ma之间,表明五指山的隆升至少开始于渐新世晚期,一直延续到中新世。径迹长度在10±2~13±3 μm之间,表明不同时期经历了不同的退火速率。

  • (2)利用AFTSolve裂变径迹数据处理软件进行温度-时间热历史反演模拟,模拟结果表明,五指山在新生代时期发生整体性抬升,隆升的时间主要集中在32~17 Ma。而从5 Ma至今的快速冷却事件发生在退火温度以下(60℃),只能通过AFT反演得出五指山地区至今仍处在快速隆升的阶段。由此推测,海南岛现今的构造格局主要形成于5 Ma以后。

  • (3)海南岛新生代的构造演化受到了多次构造运动的影响,这些构造运动主要发生在渐新世至上新世期间,主要包括两次大的隆升事件。第一次发生在渐新世—中新世,该时段正好是南海发生第二次扩张运动的时期。由于南海的扩张,海南岛处于伸展环境下,岩石圈减薄,软流圈物质上涌,在琼北浅表形成断陷,并导致琼中南深部地壳物质的隆升。第二次隆升发生在中新世末至上新世初,一直延续至今。这个时期,太平洋的俯冲以及红河断裂的右旋走滑运动共同造成海南岛持续向南运移,且断块活动加剧,处于裂后加速热沉降阶段。岩石圈冷却增重下沉,由于均衡补偿造成了琼中山体的隆升。同时,自上新世以来,全球气候变化加剧,夏季季风等地质应力对陆缘盆地和山体进行物理和化学风化,也对琼中山体的隆升起到了一定的作用。

  • 致谢:中国地质科学院孙伟等参与野外取样工作,磷灰石裂变径迹测试由北京市泽康恩科技有限公司完成,谨表谢意。

  • 参考文献

    • Allen C R, Gillespie A R, Yuan Han, Sieh K E, Buchun Z, Zhu Chengnan. 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard. Geological Society of America Bulletin, 95(6): 686~700.

    • Bai Yongliang, Wang Xiaoyu, Dong Dongdong, Brune S, Wu Shiguo, Wang Zhenjie. 2020. Symmetry of the South China Sea conjugate margins in a rifting, drifting and collision context. Marine and Petroleum Geology, 117: 104397.

    • Briais A Philippe P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98 (B4): 6299~6328.

    • Cande S C, Dennis V K. 1992. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, B10: 13917~13951.

    • Carter A, Roques D, Bristow C S. 2000. Denudation history of onshore central Vietnam: Constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics, 322(3-4): 265~277.

    • Chang Yuan, Liu Rui, Yang Jia. 2004. Apatite fission track technology and its geological applications: A review. Shanghai Geological, 25 (1): 47~53 (in Chinese with English abstract).

    • Clift P D, Sun Z. 2006. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan Margin, South China Sea: Implication for Tibetan uplift and monsoon intensification. Journal of Geophysical Research: Solid Earth, 111(B6): B06405.

    • Duddy I R, Green P F, Laslet G M. 1988. Thermal aneligofissior tracks in apatite 3. Variable temperature behaviour. Chemnical Geology, 73(1): 25~38.

    • Enkelmann E, Ratschbacher L, Jonckheere R, Nestler R, Fleischer M, Gloaguen R, Hacker B R, Zhang Yueqiao, Ma Yinsheng. 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan basin. Geological Society of America Bulletin, 118(5-6): 651~671.

    • Fu Guoxiang, Fu Cerui, Wang Yingping. 2001. A new advance in the study of the Cretaceous of the Ledong basin on the Hainan Island. Journal of Stratigraphy, 19 (2): 63~68(in Chinese with English abstract).

    • Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P. 2005. Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth and Planetary Science Letters, 237(1-2): 193~208.

    • Ge Xiaoyue, Li Xianhua, Zhou Hanwen. 2003. Geochronologic, geochemistry and Sr-Nd isotopes of the Late Cretaceous mafic dike swarms in southern Hainan Island. Geochimica, 32 (1): 11~20(in Chinese with English abstract).

    • Gleadow A J W, Duddy I R, Green P F, Hegarty K A. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78 (2-3): 245~254.

    • Gleadow A J W, Fitzgerald P G. 1987. Uplift history and structure of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth and Planetary Science Letters, 82(1-2): 1~14.

    • Green P F, Duddy I R, Laslett G M, Hegarty K A, Lovering J F. 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology, 79 (2): 155~182.

    • He Youbin, Gao Zhenzhong. 2006. Sedimentary facies of the Liushagang Fomation of Paleogene in Fushansag of Hainan Island. Journal of Palaeogeography, 8(3): 365~376 (in Chinese with English abstract).

    • Huang Xuemeng, Xu Zhiqin, Zhang Jinjiang. 2017. Cenozoic tectonic transformation and its dynamic mechanism in the Ailaoshan-Honghe fault zone. Acta Geoscientica Sinica, 38 (B11): 7~10 (in Chinese with English abstract).

    • Li Yunzhen, Deng Yunhua, Xu Qiang. 2010. The controlling effect of plate movement on subsidence and filling of Cenozoic basins in China's offshore. Geoscience, 24 (4): 719~726 (in Chinese with English abstract)

    • Liu Ruihua, Zhang Zhongying. 1989. Neotectonic features of Hainan Island. Tropical Geography, 9(2): 174~182 (in Chinese with English abstract).

    • Long Vanhoang, Clift P D, Schwab A M, Huuse M, Nguyen D A, Sun Zhen. 2010. Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geological Society, London, Special Publications, 342: 219~244.

    • Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605~623.

    • Niu Xiaolu, Feng Guangying, Liu Fei, Yang Jingsui. 2022. Geochemical evolution and origin of Late Cenozoic basalts from north Hainan Island (southern China). Acta Geologica Sinica, 96(8): 2705~2724 (in Chinese with English abstract).

    • Replumaz A, Lacassin R, Tapponnier P, Leloup P H. 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China). Journal of Geophysical Research: Solid Earth, 106(B1): 819~836.

    • Shi Hongcai, Xie Hui, Zhao Weina, Liu Tangwei, Kong Deming. 2022. Denudation history of northern Hainan Island since Late Mesozoic-Cenozoic: Evidence from low-temperature thermochronology. Journal of Guangdong Ocean University, 42(1): 78~89 (in Chinese with English abstract).

    • Shi Xiaobin, Spenser S, Kohn B, Guo Xingwei, Yang Xiaoqiu, Li Yamin. 2009. Cryogenic thermochronology constraints on Cenozoic cooling history in southern Hainan Island. Chinese Geophysical Society (in Chinese with English abstract).

    • Shi Xiaobin, Kohn B, Spencer S, Guo Xingwei, Li Yamin, Yang Xiaoqiu, Shi Hongcai, Gleadow A. 2011. Cenozoic denudation history of southern Hainan Island, South China Sea: Constraints from low temperature thermochronology. Tectonophysics, 504(1-4): 100~115.

    • Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.

    • Sibuet J C, Zhao Minghui, Wu Jonny, Lee Chaoshing. 2021. Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny. Tectonophysics, 229050.

    • Sun Weidong. 2016. Initiation and evolution of the South China Sea: An overview. Acta Geochimica, 35(3): 215~225.

    • Trinh P T, Van Liem N, Van Huong N, Vinh H Q, Van Thom B, Thao B T, Tan M T, Hoang N. 2012. Late Quaternary tectonics and seismotectonics along the Red River fault zone, North Vietnam. Earth-Science Reviews, 114(3-4): 224~235.

    • Wang Yaming, Tong Dianjun, Ren Jianye. 2007. The escape rotation of the Indosinian block and the development and evolution of the Yinggehai basin. Fault-Block Oil and Gas Field, 14 (2): 33~36 (in Chinese with English abstract)

    • Wang Ying. 2002. Coastal environmental characteristics of Hainan Island. Marine Geological Performance, (3): 1~9 (in Chinese with English abstract).

    • Westgate J, Sandhu A, Shane P. 1997. Fission-track dating. Chronometric Dating in Archaeology, 2: 127~158.

    • Willett S D. 1997. Inverse modeling of annealing of fission tracks in apatite: 1, A controlled random search method. American Journal of Science, 297(10): 939~969.

    • Yan Quanshu, Metcalfe I, Shi Xuefa. 2017. U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic-Mesozoic tectonic evolution. Gondwana Research, 49: 333~349.

    • Yao Bochu. 1993. A preliminary study of Cenozoic tectonic movement in the northern margin of the South China Sea. Geological Research of South China Sea, (5): 1~12 (in Chinese with English abstract).

    • Yao Bochu, Wu Nengyou. 2004. Cenozoic plate tectonic activity in the Great South China Sea. Geology in China, 31(2): 113~122 (in Chinese with English abstract).

    • Yu Xun, Liu Zhifei. 2020. Non-mantle-plume process caused the initial spreading of the South China Sea. Scientific Reports, 10(1): 8500.

    • Zhang Hunan, Zhao Xitao. 1984. Characteristics of the neotectonic movement in the Hainan Island and Leizhou Peninsula area. Scientia Geologica Sinica, 3: 276~287.

    • Zhang Junlong, Tian Qinjian, Li Feng, Gao Zhanwu, Su Gang. 2008. Study on neotectonic characteristics and its evolution in northwestern Hainan Island. Earthquake, 28(3): 85~94.

    • Zhang Shiping. 2018. Fission track method and its application to orogenic belt uplift. Chemical Enterprise Management, (11): 15~16 (in Chinese with English abstract).

    • 常远, 刘锐, 杨嘉. 2004. 磷灰石裂变径迹技术与地学应用综述. 上海地质, 25(1): 47~53.

    • 符国祥, 符策锐, 汪迎平. 2001. 海南岛乐东盆地白垩系研究新进展. 地层学杂志, 25(1): 63~68.

    • 葛小月, 李献华, 周汉文. 2003. 琼南晚白垩世基性岩墙群的年代学, 元素地球化学和Sr-Nd同位素研究. 地球化学, 32(1): 11~20.

    • 何幼斌, 高振中. 2006. 海南岛福山凹陷古近系流沙港组沉积相. 古地理学报, 8(3): 365~376.

    • 黄学猛, 许志琴, 张进江. 2017. 哀牢山-红河断裂带新生代构造转换及其动力学机制. 地球学报, 38 (B11): 7~10.

    • 李运振, 邓运华, 徐强. 2010. 板块运动对中国近海新生代盆地沉降及充填的控制作用. 现代地质, 24(4): 719~726.

    • 刘瑞华, 张仲英. 1989. 海南岛的新构造运动特征. 热带地理, 9(2): 174~182.

    • 牛晓露, 冯光英, 刘飞, 杨经绥. 2022. 海南岛北部晚新生代玄武岩成分演化及成因讨论. 地质学报, 96(8): 2705~2724.

    • 施小斌, Spenser S, Kohn B, 郭兴伟, 杨小秋, 李亚敏. 2009. 海南岛南部新生代冷却历史的低温热年代学约束. 中国地球物理: 中国地球物理学会.

    • 石红才, 谢辉, 赵维娜, 刘唐伟, 孔德明. 2022. 海南岛北部晚中-新生代剥露过程的低温年代学约束. 广东海洋大学学报, 42(1): 78~89.

    • 王雅明, 佟殿君, 任建业. 2007. 印支地块的逃逸旋转与莺歌海盆地的发育演化. 断块油气田, 14 (2): 33~36.

    • 王颖. 2002. 海南岛海岸环境特征. 海洋地质动态, (3): 1~9.

    • 姚伯初. 1993. 南海北部陆缘新生代构造运动初探. 南海地质研究, (5): 1~12.

    • 姚伯初, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31 (2): 113~122.

    • 张虎男, 赵希涛. 1984. 雷琼地区新构造运动的特征. 地质科学, 3: 276~287.

    • 张军龙, 田勤俭, 李峰, 高站武, 苏刚. 2008. 海南岛北西部新构造特征及其演化研究. 地震, 28(3): 85~94.

    • 张世平. 2018. 裂变径迹方法及其在造山带隆升中的应用. 化工管理, (11): 15~16.

  • 参考文献

    • Allen C R, Gillespie A R, Yuan Han, Sieh K E, Buchun Z, Zhu Chengnan. 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard. Geological Society of America Bulletin, 95(6): 686~700.

    • Bai Yongliang, Wang Xiaoyu, Dong Dongdong, Brune S, Wu Shiguo, Wang Zhenjie. 2020. Symmetry of the South China Sea conjugate margins in a rifting, drifting and collision context. Marine and Petroleum Geology, 117: 104397.

    • Briais A Philippe P, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98 (B4): 6299~6328.

    • Cande S C, Dennis V K. 1992. A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, B10: 13917~13951.

    • Carter A, Roques D, Bristow C S. 2000. Denudation history of onshore central Vietnam: Constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics, 322(3-4): 265~277.

    • Chang Yuan, Liu Rui, Yang Jia. 2004. Apatite fission track technology and its geological applications: A review. Shanghai Geological, 25 (1): 47~53 (in Chinese with English abstract).

    • Clift P D, Sun Z. 2006. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan Margin, South China Sea: Implication for Tibetan uplift and monsoon intensification. Journal of Geophysical Research: Solid Earth, 111(B6): B06405.

    • Duddy I R, Green P F, Laslet G M. 1988. Thermal aneligofissior tracks in apatite 3. Variable temperature behaviour. Chemnical Geology, 73(1): 25~38.

    • Enkelmann E, Ratschbacher L, Jonckheere R, Nestler R, Fleischer M, Gloaguen R, Hacker B R, Zhang Yueqiao, Ma Yinsheng. 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan basin. Geological Society of America Bulletin, 118(5-6): 651~671.

    • Fu Guoxiang, Fu Cerui, Wang Yingping. 2001. A new advance in the study of the Cretaceous of the Ledong basin on the Hainan Island. Journal of Stratigraphy, 19 (2): 63~68(in Chinese with English abstract).

    • Gallagher K, Stephenson J, Brown R, Holmes C, Fitzgerald P. 2005. Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth and Planetary Science Letters, 237(1-2): 193~208.

    • Ge Xiaoyue, Li Xianhua, Zhou Hanwen. 2003. Geochronologic, geochemistry and Sr-Nd isotopes of the Late Cretaceous mafic dike swarms in southern Hainan Island. Geochimica, 32 (1): 11~20(in Chinese with English abstract).

    • Gleadow A J W, Duddy I R, Green P F, Hegarty K A. 1986. Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78 (2-3): 245~254.

    • Gleadow A J W, Fitzgerald P G. 1987. Uplift history and structure of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth and Planetary Science Letters, 82(1-2): 1~14.

    • Green P F, Duddy I R, Laslett G M, Hegarty K A, Lovering J F. 1989. Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chemical Geology, 79 (2): 155~182.

    • He Youbin, Gao Zhenzhong. 2006. Sedimentary facies of the Liushagang Fomation of Paleogene in Fushansag of Hainan Island. Journal of Palaeogeography, 8(3): 365~376 (in Chinese with English abstract).

    • Huang Xuemeng, Xu Zhiqin, Zhang Jinjiang. 2017. Cenozoic tectonic transformation and its dynamic mechanism in the Ailaoshan-Honghe fault zone. Acta Geoscientica Sinica, 38 (B11): 7~10 (in Chinese with English abstract).

    • Li Yunzhen, Deng Yunhua, Xu Qiang. 2010. The controlling effect of plate movement on subsidence and filling of Cenozoic basins in China's offshore. Geoscience, 24 (4): 719~726 (in Chinese with English abstract)

    • Liu Ruihua, Zhang Zhongying. 1989. Neotectonic features of Hainan Island. Tropical Geography, 9(2): 174~182 (in Chinese with English abstract).

    • Long Vanhoang, Clift P D, Schwab A M, Huuse M, Nguyen D A, Sun Zhen. 2010. Large-scale erosional response of SE Asia to monsoon evolution reconstructed from sedimentary records of the Song Hong-Yinggehai and Qiongdongnan basins, South China Sea. Geological Society, London, Special Publications, 342: 219~244.

    • Metcalfe I. 1996. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605~623.

    • Niu Xiaolu, Feng Guangying, Liu Fei, Yang Jingsui. 2022. Geochemical evolution and origin of Late Cenozoic basalts from north Hainan Island (southern China). Acta Geologica Sinica, 96(8): 2705~2724 (in Chinese with English abstract).

    • Replumaz A, Lacassin R, Tapponnier P, Leloup P H. 2001. Large river offsets and Plio-Quaternary dextral slip rate on the Red River fault (Yunnan, China). Journal of Geophysical Research: Solid Earth, 106(B1): 819~836.

    • Shi Hongcai, Xie Hui, Zhao Weina, Liu Tangwei, Kong Deming. 2022. Denudation history of northern Hainan Island since Late Mesozoic-Cenozoic: Evidence from low-temperature thermochronology. Journal of Guangdong Ocean University, 42(1): 78~89 (in Chinese with English abstract).

    • Shi Xiaobin, Spenser S, Kohn B, Guo Xingwei, Yang Xiaoqiu, Li Yamin. 2009. Cryogenic thermochronology constraints on Cenozoic cooling history in southern Hainan Island. Chinese Geophysical Society (in Chinese with English abstract).

    • Shi Xiaobin, Kohn B, Spencer S, Guo Xingwei, Li Yamin, Yang Xiaoqiu, Shi Hongcai, Gleadow A. 2011. Cenozoic denudation history of southern Hainan Island, South China Sea: Constraints from low temperature thermochronology. Tectonophysics, 504(1-4): 100~115.

    • Sibuet J C, Yeh Y C, Lee C S. 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98~119.

    • Sibuet J C, Zhao Minghui, Wu Jonny, Lee Chaoshing. 2021. Geodynamic and plate kinematic context of South China Sea subduction during Okinawa trough opening and Taiwan orogeny. Tectonophysics, 229050.

    • Sun Weidong. 2016. Initiation and evolution of the South China Sea: An overview. Acta Geochimica, 35(3): 215~225.

    • Trinh P T, Van Liem N, Van Huong N, Vinh H Q, Van Thom B, Thao B T, Tan M T, Hoang N. 2012. Late Quaternary tectonics and seismotectonics along the Red River fault zone, North Vietnam. Earth-Science Reviews, 114(3-4): 224~235.

    • Wang Yaming, Tong Dianjun, Ren Jianye. 2007. The escape rotation of the Indosinian block and the development and evolution of the Yinggehai basin. Fault-Block Oil and Gas Field, 14 (2): 33~36 (in Chinese with English abstract)

    • Wang Ying. 2002. Coastal environmental characteristics of Hainan Island. Marine Geological Performance, (3): 1~9 (in Chinese with English abstract).

    • Westgate J, Sandhu A, Shane P. 1997. Fission-track dating. Chronometric Dating in Archaeology, 2: 127~158.

    • Willett S D. 1997. Inverse modeling of annealing of fission tracks in apatite: 1, A controlled random search method. American Journal of Science, 297(10): 939~969.

    • Yan Quanshu, Metcalfe I, Shi Xuefa. 2017. U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic-Mesozoic tectonic evolution. Gondwana Research, 49: 333~349.

    • Yao Bochu. 1993. A preliminary study of Cenozoic tectonic movement in the northern margin of the South China Sea. Geological Research of South China Sea, (5): 1~12 (in Chinese with English abstract).

    • Yao Bochu, Wu Nengyou. 2004. Cenozoic plate tectonic activity in the Great South China Sea. Geology in China, 31(2): 113~122 (in Chinese with English abstract).

    • Yu Xun, Liu Zhifei. 2020. Non-mantle-plume process caused the initial spreading of the South China Sea. Scientific Reports, 10(1): 8500.

    • Zhang Hunan, Zhao Xitao. 1984. Characteristics of the neotectonic movement in the Hainan Island and Leizhou Peninsula area. Scientia Geologica Sinica, 3: 276~287.

    • Zhang Junlong, Tian Qinjian, Li Feng, Gao Zhanwu, Su Gang. 2008. Study on neotectonic characteristics and its evolution in northwestern Hainan Island. Earthquake, 28(3): 85~94.

    • Zhang Shiping. 2018. Fission track method and its application to orogenic belt uplift. Chemical Enterprise Management, (11): 15~16 (in Chinese with English abstract).

    • 常远, 刘锐, 杨嘉. 2004. 磷灰石裂变径迹技术与地学应用综述. 上海地质, 25(1): 47~53.

    • 符国祥, 符策锐, 汪迎平. 2001. 海南岛乐东盆地白垩系研究新进展. 地层学杂志, 25(1): 63~68.

    • 葛小月, 李献华, 周汉文. 2003. 琼南晚白垩世基性岩墙群的年代学, 元素地球化学和Sr-Nd同位素研究. 地球化学, 32(1): 11~20.

    • 何幼斌, 高振中. 2006. 海南岛福山凹陷古近系流沙港组沉积相. 古地理学报, 8(3): 365~376.

    • 黄学猛, 许志琴, 张进江. 2017. 哀牢山-红河断裂带新生代构造转换及其动力学机制. 地球学报, 38 (B11): 7~10.

    • 李运振, 邓运华, 徐强. 2010. 板块运动对中国近海新生代盆地沉降及充填的控制作用. 现代地质, 24(4): 719~726.

    • 刘瑞华, 张仲英. 1989. 海南岛的新构造运动特征. 热带地理, 9(2): 174~182.

    • 牛晓露, 冯光英, 刘飞, 杨经绥. 2022. 海南岛北部晚新生代玄武岩成分演化及成因讨论. 地质学报, 96(8): 2705~2724.

    • 施小斌, Spenser S, Kohn B, 郭兴伟, 杨小秋, 李亚敏. 2009. 海南岛南部新生代冷却历史的低温热年代学约束. 中国地球物理: 中国地球物理学会.

    • 石红才, 谢辉, 赵维娜, 刘唐伟, 孔德明. 2022. 海南岛北部晚中-新生代剥露过程的低温年代学约束. 广东海洋大学学报, 42(1): 78~89.

    • 王雅明, 佟殿君, 任建业. 2007. 印支地块的逃逸旋转与莺歌海盆地的发育演化. 断块油气田, 14 (2): 33~36.

    • 王颖. 2002. 海南岛海岸环境特征. 海洋地质动态, (3): 1~9.

    • 姚伯初. 1993. 南海北部陆缘新生代构造运动初探. 南海地质研究, (5): 1~12.

    • 姚伯初, 吴能友. 2004. 大南海地区新生代板块构造活动. 中国地质, 31 (2): 113~122.

    • 张虎男, 赵希涛. 1984. 雷琼地区新构造运动的特征. 地质科学, 3: 276~287.

    • 张军龙, 田勤俭, 李峰, 高站武, 苏刚. 2008. 海南岛北西部新构造特征及其演化研究. 地震, 28(3): 85~94.

    • 张世平. 2018. 裂变径迹方法及其在造山带隆升中的应用. 化工管理, (11): 15~16.