en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

吴晓冬,男,1994年生。博士研究生,地质学专业,主要从事伸展构造与显微构造研究。E-mail:wuxd_hfut@126.com。

通讯作者:

朱光,男,1959年生。博士,教授,从事断裂构造与动力学及显微构造教学和研究。E-mail:zhuguang59@hotmail.com。

参考文献
Bailey C M, Eyster E L. 2003. General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona. Journal of Structural Geology, 25(11): 1883~1893.
参考文献
Bailey C M, Francis B E, Fahrney E E. 2004. Strain and vorticity analysis of transpressional high-strain zones from the Virginia Piedmont, USA. In: Aslop G I, Holdsworth R E, eds. Flow Processes in Faults and Shear Zones. Geological Society, Special Publications, 224: 249~264.
参考文献
Block L, Royden L H. 1990. Core complex geometries and regional scale flow in the lower crust. Tectonics, 9(4): 557~567.
参考文献
Buck W R. 1988. Flexural rotation of normal faults. Tectonics, 7(5): 959~973.
参考文献
Cheng Chao, Sun Shengsi, Dong Yunpeng, Zhang Bin, Guo Zhao. 2022. Exhumation of plutons controlled by boundary faults: Insights from the kinematics, microfabric, and geochronology of the Taibai shear zone, Qinling Orogen, China. Geological Society of America Bulletin, 134(11-12): 2723~2744.
参考文献
Carosi R, Petroccia A, Iaccarino S, Simonetti M, Langone A, Montomoli C. 2020. Kinematics and timing constraints in a transpressive tectonic regime: The example of the Posada-Asinara shear zone (NE Sardinia, Italy). Geosciences, 10(8): 1~26.
参考文献
Charles N, Gumiaux C, Augier R, Chen Yan, Zhu Rixiang, Lin Wei. 2011. Metamorphiccore complexes vs. synkinematic plutons in continental extension setting: Insights from key structures (Shandong Province, eastern China). Journal of Asian Earth Sciences, 40(1): 261~278.
参考文献
Charles N, Augier R, Gumiaux C, Monié P, Chen Yan, Faure M, Zhu, Rixiang. 2013. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula(China, East Asia). Gondwana Research, 24(1): 412~428.
参考文献
Coney P J. 1980. Cordilleran metamorphic core complexes: An overview. In: Crittenden M D, Coney P J, Davis G H, eds. Cordilleran Metamorphic Core Complexes. Geological Society of America Memoir, 153: 7~31.
参考文献
Coney P J, Harms T A. 1984. Cordilleran metamorphic cre complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 12: 550~554.
参考文献
Davis G A, Lister L S. 1988. Detachment faulting in continental extension: Perspectives from the southwest U. S. Cordillera. Processes in continental lithospheric deformation. Special Paper of the Geological Society of America, 218: 133~159.
参考文献
Davis G H, Coney P J. 1979. Geologic development of the Cordilleran metamorphic core complexes. Geology, 7(3): 120~124.
参考文献
Deng Jun, Liu Xuefei, Wang Qingfei, Dilek Y, Liang Yayun. 2017. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking—Lithospheric extension in the North China craton, eastern Asia. Geological Society of America Bulletin, 129(11-12): 1379~1407.
参考文献
Forte A M, Bailey C M. 2007. Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Journal of Structural Geology, 29: 983~1001.
参考文献
Fossen H, Cavalcante G C G. 2017. Shear zones—A review. Earth Science Reviews, 171: 434~455.
参考文献
Fry N. 1979. Random point distribution and strain measurement in rocks. Tectonophysics, 60(1-2): 89~105.
参考文献
Geng Ke, Wang Ruijiang, Li Hongkui, Shan Wei, Li Dapeng. 2015. Zircon SHRIMP age of diorite-porphyrite in the Beijie gold deposit from the Northwest Jiaodong area and its geological implications. Acta Geologica Sinica, 89(6): 1099~1107 (in Chinese with English abstract).
参考文献
Geng Ke, Wang Ruijiang, Li Hongkui, Liang Taitao, Zhang Yubo. 2016. Zircon SHRIMP U-Pb geochronology of the Congjia granodiorite from the Northwest Jiaodong area. Acta Geoscientica Sinica, 37(1): 90~100 (in Chinese with English abstract).
参考文献
Goldfarb R J, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5(2): 139~153.
参考文献
Goss S C, Wilde S A, Wu Fuyuan, Yang Jinhui. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309~326.
参考文献
Guan Kuang, Luo zhengkuan, Miao Laicheng, Huang jiazhan. 1998. SHRIMP in zircon chronology for the Guojialing suite granite in Jiaodong Zhaoye district. Scientia Geologica Sinica, 33(3): 318~328 (in Chinese with English abstract).
参考文献
Hacker B R, Wallis S R, Ratschbacher L, Grove M, Gehrels G. 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25(5): TC5006.
参考文献
Hetzel R, Passchier C W, Ring U, Dora Ö O. 1995. Bivergent extension in orogenic belts: The Menderes massif (southwestern Turkey). Geology, 23(5): 455~458.
参考文献
Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14(2): 145~159.
参考文献
Jeffery G B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London Series A, 102: 161~179.
参考文献
Jessup M J, Law R D, Frassi C. 2007. The rigid grain net (RGN): An alternative method for estimating mean kinematic vorticity number (Wm). Journal of Structural Geology, 29(3): 411~421.
参考文献
Ji Zhuangyi. 1993. New data of isotope age of the Proterozoic metamorphic rocks from the northern Jiaodong and its geological significance. Geology of Shandong, 9(1): 40~51 (in Chinese with English abstract).
参考文献
Jiang Neng, Chen Jingzhi, Guo Jinghui, Chang Guohu. 2012. In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion. Lithos, 142-143: 84~94.
参考文献
Johnson S E, Lenferink H J, Price N A, Marsh J H, Koons P O, West Jr D P, Beane R. 2009. Clast-based kinematic vorticity gauges: The effects of slip at matrix/clast interfaces. Journal of Structural Geology, 31(11): 1322~1339.
参考文献
Langille J M, Jessup M J, Cottle J M, Newell D, Seward G. 2010a. Kinematic evolution of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the Ama Drime Massif, Tibete-Nepal. Journal of Structural Geology, 32(7): 900~919.
参考文献
Langille J M, Lee J, Hacker B, Seward G. 2010b. Middle crustal ductile deformation patterns in southern Tibet: Insights from vorticity studies in Mabja dome. Journal of Structural Geology, 32(1): 70~85.
参考文献
Law R D, Searle M P, Simpson R L. 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest massif, Tibet. Journal of the Geological Society, 161: 305~320.
参考文献
Li Xinghui, Fan Hongrui, Hu Fangfang, Hollings P, Yang Kuifeng, Liu Xuan. 2018. Linking lithospheric thinning and magmatic evolution of late Jurassic to early cretaceous granitoids in the Jiaobei terrane, southeastern North China craton. Lithos, 324-325: 280~296.
参考文献
Lin Shaoze, Zhu Guang, Yan Lejia, Jiang Qingqing, Zhao Tian. 2013. Discussion on uplifting mechanism of the Linglong batholith in the Jiaodong region. Geological Review, 59(5): 832~844 (in Chinese with English abstract).
参考文献
Lister G S, Davis G A. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U. S. A. Journal of Structural Geology, 11(1-2): 65~94.
参考文献
Luo Xiandong, Yang Xiaoyong, Duan Liuan, Sun Weidong. 2014. Geochemical and geochronological study of the gold related Guojialing pluton and Shangzhuang pluton in Jiaobei block. Acta Geologica Sinica, 88(10): 1874~1888 (in Chinese with English abstract).
参考文献
Ma Liang, Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, Hou Minglan, Pu Wei, Xu Bin. 2013. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 162-163: 251~263.
参考文献
MacCready T. 1996. Misalignment of quartz c-axis fabrics and lineations due to oblique final strain increments in the Ruby Mountains core complex, Nevada. Journal of Structural Geology, 18(6): 765~776.
参考文献
Malavieille J. 1993. Late orogenic extension in mountain belts: Insights from thebasin and range and the late Paleozoic Variscan belt. Tectonics, 12(5): 1115~1130.
参考文献
Mancktelow N S, Pennacchioni G. 2004. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites. Journal of Structural Geology, 26(1): 47~69.
参考文献
Mansouri S M, Keshavarz S, Shahpasandzadeh M, Faghih A. 2021. Strain and vorticity analyses using rotated porphyroclasts in the Tanbour metamorphic rocks: Evidence of transpressional deformation along the Sanandaj-Sirjan metamorphic belt, SW Iran. Journal of Structural Geology, 148: 104358.
参考文献
Means W D. 1994. Rotational quantities in homogeneous flow and the development of smallscale structure. Journal of Structural Geology, 16(4): 437~445.
参考文献
Means W D, Hobbs B E, Lister G S, Williams P F. 1980. Vorticity and non-coaxiality in progressive deformations. Journal of Structural Geology, 2(3): 371~378.
参考文献
Miao Liaocheng, Luo Zhengkuan, Guan Kuang, Huang Jiazhan. 1998. The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite, East Shangdong Province. Acta Petrologica Sinica, 14(2): 198~206 (in Chinese with English abstract).
参考文献
Mulchrone K F. 2007a. An analytical solution in 2D for the motion of rigid elliptical particles with a slipping interface under a general deformation. Journal of Structural Geology, 29(6): 950~960.
参考文献
Mulchrone K F. 2007b. Shape fabrics in populations of rigid objects in 2D: Estimating finite strain and vorticity. Journal of Structural Geology, 29(9): 1558~1570.
参考文献
Passchier C W. 1987. Stable positions of rigid objects in non-coaxial flow—A study in vorticity analysis. Journal of Structural Geology, 9(5): 679~690.
参考文献
Passchier C W. 1988. The use of Mohr circles to describe non-coaxial progressive deformation. Tectonophysics, 149(3): 323~338.
参考文献
Passchier C W. 1997. The fabric attractor. Journal of Structural Geology, 19(1): 113~127.
参考文献
Passchier C W, Trouw R A J. 2005. Microtectonics. Berlin, Germany: Springer Verlag.
参考文献
Platt J P, Behrmann J H. 1986. Structures and fabrics in a crustal scale shear zone, Betic Cordilleras, S. E. Spain. Journal of Structural Geology, 8: 15~34.
参考文献
Qiu Jiansheng, Wang Dezi, Lo Qinghua, Liu Hong. 2001. 40Ar-39Ar dating for volcanic rocks of the Qingshan Formation in the Jiaolai basin, eastern Shandong Province: A case study of the Fenlingshan volcanic apparatus in Wulian County. Geological Journal of China Universities, 7(3): 351~355 (in Chinese with English abstract).
参考文献
Ramsay J G. 1980. Shear zone geometry: A review. Journal of Structural Geology, 2: 83~101.
参考文献
Ramsay J G, Huber M. 1983. The techniques of modern structural geology. Volume I. Strain analysis. Academic Press, London. Earth-Science Reviews, 23(3): 242~243.
参考文献
Rey P, Vanderhaeghe O, Teyssier C. 2001. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 342(3-4): 435~449.
参考文献
Shan Wei, Yu Xuefeng, Li Hongkui, Guo Baokui, Geng ke, Li Dapeng, Zhuo Chuanyuan. 2018. The deep structural characteristics under the middle of the Zhaoping fault zone: Evidences coming from seismic section survey. Shandong Land and Resources, 34(5): 49~58 (in Chinese with English abstract).
参考文献
Simpson C, De Paor D G. 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology 15(1): 1~20.
参考文献
Simpson C, De Paor D G. 1997. Practical analysis of general shear zones using the porphyroclast hyperbolic distribution method: An example from the Scandinavian Caledonides. In: Evolution of Geological Structures in Micro- to Macro-Scales. Berlin: Springer Dordrecht, 169~184.
参考文献
Simonetti M, Carosi R, Montomoli C, Cottle J M, Law R D. 2020a. Transpressive deformation in the Southern European Variscan Belt: Newinsights from the Aiguilles Rouges massif (western Alps). Tectonics, 39(6): e2020TC006153.
参考文献
Simonetti M, Carosi R, Montomoli C, Corsini M, Petroccia A, Cottle J M, Iaccarino A. 2020b. Timing and kinematics of flow in a transpressive dextral shear zone, Maures massif (southern France). International Journal of Earth Sciences, 109: 2261~2285.
参考文献
Spencer J E, Chase C G. 1989. Role of crustal flexure in initiation of low-angle normal faults and implications for structural evolution of the basin and range province. Journal of Geophysical Research, 94(B2): 1765~1775.
参考文献
Stipp M, Stunitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology, 24(12): 1861~1884.
参考文献
Sullivan W A. 2008. Significance of transport-parallel strain variations in part of the Raft River shear zone, Raft River Mountains, Utah, USA. Journal of Structural Geology, 30(2): 138~158.
参考文献
Tang Jun, Zheng Yongfei, Wu Yuanbao, Gong Bing. 2006. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogeny. Implication for tectonic affinity. Precambrian Research, 144(1-2): 1~18.
参考文献
Tang Jun, Zheng Yongfei, Wu Yuanbao, Gong Bing, Liu Xiaoming. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu Orogen. Precambrian Research, 152(1): 48~82.
参考文献
Tikoff B, Fossen H. 1995. The limitations of three-dimensional kinematic vorticity analysis. Journal of Structural Geology, 17(12): 1771~1784.
参考文献
Vanderhaeghe O. 1999. Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: Control of regional deformation. Tectonophysics, 312(1): 35~55.
参考文献
Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks andmagmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477(3): 119~134.
参考文献
Vanderhaeghe O, Teyssier C. 1997. Formation of the Shuswap metamorphic core complex during late-orogenic collapse of the Canadian Cordillera: Role of ductile thinning and partial melting of the mid-to lower crust. Geodinamica Acta, 10(2): 41~58.
参考文献
Vollmer F W. 2018. Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid. Computers & Geosciences, 115: 134~142.
参考文献
Wan Yusheng, Song Biao, Liu Dunyi, Wilde S A, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Paleoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249~271.
参考文献
Wallis S R. 1992. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 14(3): 271~280.
参考文献
Wallis S R. 1995. Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan. Journal of Structural Geology, 17(8): 1077~1093.
参考文献
Wallis S R, Platt J P, Knott S D. 1993. Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian arc and theeastern Alps. American Journal of Science, 293(5): 463~495.
参考文献
Webb L E, Leech M L, Yang Tiannan. 2006. 40Ar/39Ar thermochronology of the Sulu terrane: Late Triassic exhumation of high- and ultrahigh-pressure rocks and implications for Mesozoic tectonics in East Asia. Special Paper of the Geological Society of America, 403: 77~92.
参考文献
Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22(1): 108~125.
参考文献
Wu Fuyuan, Xu Yigang, Zhu Rixiang, Zhang Guowei. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Science China Earth Sciences, 57(12): 2878~2890.
参考文献
Wu Xiaodong, Zhu Guang, Yin Hao, Su Nan, Lu Yuanchao, Zhang Shuai, Xie Chenglong. 2020. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39: e2020TC006132.
参考文献
Xypolias P. 2009. Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. Journal of Structural Geology, 31: 3~10.
参考文献
Xypolias P. 2010. Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology, 32(12): 2072~2092.
参考文献
Xypolias P, Koukouvelas I K. 2001. Kinematic vorticity and strain rate patterns associated with ductile extrusion in the Chelmosshear zone (External Hellenides, Greece). Tectonophysics 338(1): 59~77.
参考文献
Xypolias P, Kokkalas S. 2006. Heterogeneous ductile deformation along a mid-crustal extruding shear zone: An example from the External Hellenides (Greece). Geological Society of London Special Publications, 268(1): 497~516.
参考文献
Yan Jun, Chen Jiangdeng, Xie Zhi, Zhou Taixi. 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China. Chinese Science Bulletin, 48(14): 2139~2144 (in Chinese with English abstract).
参考文献
Yang Kuifeng, Fan Hongrui, Santosh M, Hu Fangfang, Wilde Simon A, Lan Tingguang, Lu Lina, Liu Yongsheng. 2012. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112~127.
参考文献
Yang Liqiang, Dilek Y, Wang Zhongliang, Weinberg, R F, Liu Yue. 2017. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: Lower crustal melting products in the eastern North China craton. Geological Magazine, 155(5): 1040~1062.
参考文献
Yu Xuefeng, Shan Wei, Xiong Yuxin, Geng Ke, Sun Yuqin, Chi Naijie, Guo Baokui, Li Dapeng, Li Hongkui, Song Yingxin, Yang Deping. 2018. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: A new understanding based on high-resolution reflective seismic survey. Acta Geologica Sinica (English Edition), 92(5): 1823~1840.
参考文献
Zhang Huafeng, Li Shengrong, Zhai Mingguo, Guo Jinghui. 2006. Crust uplift and its implications in the Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 22(2): 285~295 (in Chinese with English abstract).
参考文献
Zhang Jinjiang, Zheng Yadong. 1995. Kinematic vorticity, polar Mohr circle and their application in quantitative analysis of general shear zones. Journal of Geomechanics, 14(3): 55~64 (in Chinese with English abstract).
参考文献
Zhang Jinjiang, Zheng Yadong. 1997. Polar Mohr constructions for strain analysis in general shear zones. Journal of Structural Geology, 19: 745~748.
参考文献
Zhang Tian, Zhang Yueqiao. 2007. Geochronological sequence of Mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints. Geological Journal of China Universities, 13(2): 323~336 (in Chinese with English abstract).
参考文献
Zhang Tian, Zhang Yueqiao. 2008. Late Mesozoic tectono-magmatic evolution history of the Jiaobei uplift, Shandong Peninsula. Acta Geologica Sinica, 82(9): 1210~1228 (in Chinese with English abstract).
参考文献
Zhou Jianbo, Wilde S, Zhao Guochun, Zheng Changqing, Jin Wei, Zhang Xingzhou, Cheng Hong. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160(3-4): 323~340.
参考文献
Zhu Guang, Niu Manlan, Xie Chenglong, Wang Yongsheng. 2010. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the East China continental margin. The Journal of Geology, 118(3): 277~293.
参考文献
Zhu Guang, Jiang Dazhi, Zhang Bilong, Chen Yin. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Research, 22: 86~103.
参考文献
关康, 罗镇宽, 苗来成, 黄家展. 1998. 胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究. 地质科学, 33(3): 318~328.
参考文献
耿科, 王瑞江, 李洪奎, 单伟, 李大鹏. 2015. 胶西北地区北截金矿闪长玢岩锆石SHRIMP年龄及其地质意义. 地质学报, 89(6): 1099~1107.
参考文献
耿科, 王瑞江, 李洪奎, 梁太涛, 张玉波. 2016. 胶西北丛家花岗闪长岩体SHRIMP锆石U-Pb年代学研究. 地球学报, 37(1): 11: 90~100.
参考文献
纪壮义. 1993. 胶北元古界变质岩的同位素测年新成果及其地质意义. 山东地质, 9(1): 40~51.
参考文献
林少泽, 朱光, 严乐佳, 姜芹芹, 赵田. 2013. 胶东地区玲珑岩基隆升机制探讨. 地质论评, 59(5): 832~844.
参考文献
罗贤冬, 杨晓勇, 段留安, 孙卫东. 2014. 胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究. 地质学报, 88(10): 1874~1888.
参考文献
苗来成, 罗镇宽, 关康, 黄家展. 1998.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义. 岩石学报, 14(2): 198~206.
参考文献
邱检生, 王德滋, 罗清华, 刘洪. 2001. 鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年——以五莲分岭山火山机构为例. 高校地质学报, 7(3): 351~355.
参考文献
单伟, 于学峰, 李洪奎, 郭宝奎, 耿科, 李大鹏, 禚传源. 2018. 招平断裂带中段深部结构构造——来自地震剖面的证据. 山东国土资源, 34(5): 49~58.
参考文献
闫峻, 陈江峰, 谢智, 周泰禧. 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据. 科学通报, 48(14): 2139~2144.
参考文献
张华锋, 李胜荣, 翟明国, 郭敬辉. 2006. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义. 岩石学报, 22(2): 285~295.
参考文献
张进江, 郑亚东. 1995. 运动学涡度、极摩尔圆及其在一般剪切带定量分析中的应用. 地质力学学报, 14 (3): 55~64.
参考文献
张田, 张岳桥. 2007. 胶东半岛中生代侵入岩浆活动序列及其构造制约. 高校地质学报, 13(2): 323~336.
参考文献
张田, 张岳桥. 2008. 胶北隆起晚中生代构造-岩浆演化历史. 地质学报, 82(9): 1210~1228.
参考文献
朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45: 1153~1168.
目录contents

    摘要

    在胶东半岛西北部,围绕着玲珑岩基所发育的早白垩世伸展构造,属于独特的双向变质核杂岩。这一变质核杂岩的东、西边界上,分别发育了倾斜相背的招平与焦家伸展拆离剪切带。双向变质核杂岩的剥露是否也有均衡隆升的贡献,一直没有明确的认识。本次工作以采自这两条边界拆离剪切带不同部位的糜棱岩样品为分析对象,分别应用刚性残斑长短轴比值法(具体又分别使用了Wallis投图法和刚性颗粒网格法)和石英c轴组构与主应变比值法对同一样品进行了运动学涡度测量。对于招平拆离剪切带,应用刚性残斑长短轴比值法获得的涡度值为0.57~0.73,而应用石英c轴组构与主应变比值法获得的涡度值为0.80~0.93。对于焦家剪切带,应用刚性残斑长短轴比值法获得的涡度值为0.58~0.74,而应用石英c轴组构与主应变比值法获得的涡度值为0.79~0.93。对于剪切带的同一样品,这两种测量方法给出的结果明显不同。应用刚性残斑长短轴比值法数据所获得这两条剪切带的减薄率,也明显高于应用石英c轴组构与主应变比值法数据的计算结果。理论分析与实例表明,刚性残斑长短轴比值法所获得的涡度值代表了剪切带的早期变形,而石英c轴组构与主应变比值法所得结果指示了晚期变形。由此表明,玲珑双向变质核杂岩边界拆离剪切带演化中,伴随着纯剪组分的明显降低,指示了剪切带产状的变陡,为均衡隆升的结果。均衡隆升发生在核杂岩演化的晚阶段,是早白垩世郭家岭期同构造花岗闪长岩侵位的响应。本文结果指示,双向与不对称变质核杂岩具有相似的演化规律,都经历过晚阶段均衡隆升,对中—下地壳的剥露具有重要的贡献。

    Abstract

    Early Cretaceous extensional structures around the Linglong batholith in the northwestern Jiaodong Peninsula belongs to a bivergent metamorphic core complex (MCC). The MCC is bounded by the Zhaoping and Jiaojia detachment shear zones in the east and west respectively. It is not clear whether or not isostatic rising also contributes to exhumation of the bivergent MCC. In this study, kinematic vorticity measurements were conducted to mylonite samples from different localities of the two boundary shear zones by means of the rigid porphyroclast aspect ratio (RPAR) methods, (including therigid grain net and wallis plot methods) and the quartz c-axis fabrics-finite strain ratio (RXZ/β) method. The Zhaoping shear zone gives vorticity values of 0.57~0.73 from the RPAR measurements, and 0.80~0.93 from the RXZ/β measurements. The Jiaojia shear zone yields vorticity values of 0.58~0.74 from the RPAR measurements, and 0.79~0.93 from the RXZ/β measurements. For the same mylonite samples, the two methods give different vorticity values. The two shear zones give higher thinning rates from the RPAR measurements than those from the RXZ/β measurements. Theoretical analysis and other examples suggest that vorticity values obtained from the RPAR measurements represent earlier deformation whereas those obtained from the RXZ/β measurements indicate later deformation. It is suggested therefore that the boundary detachment shear zones in the Linglong bivergent MCC evolved with reduction in pure shear component due to isostatic rising and resultant steepening of the shear zones caused. The isostatic rising took place at a later stage of the Linglong MCC evolution, and resulted from emplacement of the syn-tectonic, Guojialing-stage granodiorites of the Early Cretaceous age. Our results show that both bivergent and asymmetrical MCCs share similar evolution with isostatic rising at their later stages that has important contribution to exhumation of middle-lower crust.

  • 变质核杂岩最早是由Davis and Coney(1979)提出的,是指广泛分布于北美西部科迪勒拉造山带中一套独特的伸展构造和岩石组合,其核部剥露中—下地壳变质-岩浆杂岩。变质核杂岩由上盘未变质的表壳岩、下盘中—下地壳变质-岩浆杂岩及其间的拆离剪切带(包括拆离断层和韧性剪切带)三部分组成。大多数变质核杂岩具有单一的低角度伸展拆离剪切带(Coney,1980; Coney and Harms,1984; Wernicke,1985),也被称为非对称型变质核杂岩。自然界中也有部分变质核杂岩具有相背倾斜的两条边界拆离剪切带,称为双向(bivergent)或对称型变质核杂岩(Malavieille,1993; Hetzel et al.,1995; Vanderhaeghe,19971999)。关于非对称型变质核杂岩,人们已开展了大量的研究,对于其成因分别指出了滚动枢纽(Wernicke,1985)、挠曲隆升(Buck,1988)、地壳流动(Block and Royden,1990)、重力垮塌(Rey et al.,2001)等模式。由于沿低角度或近水平拆离韧性剪切带的伸展运动很难将中—下地壳剥露至地表,因而这些成因模式均认为非对称型变质核杂岩演化的晚阶段发生了均衡隆升,从而导致地壳深部岩石的最终剥露至地表(Davis and Lister,1988; Lister and Davis,1989; Spencer and Chase,1989)。双向变质核杂岩类似于地垒构造,核部是两条相背倾斜伸展拆离剪切带之间的共同上升盘,其结构有利于通过剪切带伸展运动而使核部强烈隆升。因而,关于双向变质核杂岩的形成是否也需要经过均衡隆升一直没有明确的认识。在我国胶东西北部所发育的玲珑双向变质核杂岩,是探究这一重要科学问题的理想对象。

  • 胶东西北部是我国著名的金矿产区,区内大规模金成矿作用发生在早白垩世伸展与岩浆活动之中(朱日祥等,2015)。近年来的研究表明,该区围绕着玲珑岩基所发育的早白垩世伸展构造属于玲珑双向变质核杂岩(Wu Xiaodong et al.,2020),其东、西两侧边界分别为倾向相背的招平与焦家伸展拆离剪切带。然而,这两条伸展拆离剪切带的上盘均没有出现上叠盆地,而是剥露太古宙—古元古代高级变质基底及局部的晚侏罗世岩体。这一现象是因为边界拆离剪切带伸展活动较弱的原因,还是后期区域抬升剥蚀的结果,或者是核杂岩晚阶段均衡隆升所致,至今并不明确。通过这两条边界剪切带变形方式与演化历史的恢复,可以回答这些问题,揭示该核杂岩是否经历过均衡隆升。

  • 基于以上问题,本文以玲珑变质核杂岩边界拆离剪切带为研究对象,主要通过运动学涡度测量与分析的途径,查明剪切带的变形方式及其变化规律,进而探讨玲珑变质核杂岩的整体演化过程,限定其是否发生过均衡隆升。

  • 1 地质背景

  • 胶东半岛位于郯庐断裂带以东,自西向东包括属于华北克拉通的胶北隆起与苏鲁造山带,前者南部被胶莱盆地所覆盖(图1a)。胶北隆起北部大面积出露变质基底,包括太古宇胶东群/杂岩(Tang Jun et al.,2007; Zhou Jianbo et al.,2008; Wu Fuyuan et al.,2014)和古元古代粉子山群/杂岩(纪壮义,1993; Tang Jun et al.,2006; Wan Yusheng et al.,2006)。胶东群主要由TTG (tonalite-trondhjemite-granodiorite)片麻岩、角闪岩、斜长角闪岩与云母片岩组成(Zhou Jianbo et al.,2008)。粉子山群主要由片岩、大理岩等变沉积岩组成(Tang Jun et al.,2006)。胶北隆起南部胶莱盆地,为白垩纪发育的陆相伸展盆地(Zhu Guang et al.,2012)。该盆地自下而上填充了下白垩统莱阳群碎屑岩(Zhu Guang et al.,2012)与青山群火山岩(邱检生等,2001; 张田和张岳桥,2008; Zhu Guang et al.,2010),以及上白垩统王氏组红色碎屑岩(闫峻等,2003)。

  • 继三叠纪苏鲁碰撞造山带形成之后(Hacker et al.,2006; Webb et al.,2006),胶东半岛在晚侏罗世和早白垩世发生了强烈的岩浆活动,后者伴生大规模金矿成矿作用(Goldfarb and Santosh,2014; Deng Jun et al.,2017; Yang Liqiang et al.,2017)。胶北隆起西北部目前出露了晚侏罗世玲珑岩基,主要由玲珑黑云母花岗岩、栾家河与郭家店二长花岗岩组成(图1a)。前人锆石U-Pb定年结果表明,玲珑岩体侵位年龄为160~150 Ma(苗来成等,1998; Jiang Neng et al.,2012; Yang Kuifeng et al.,2012; Ma Liang et al.,2013; Yang Liqiang et al.,2017),栾家河岩体侵位年龄为154 Ma(苗来成等,1998),郭家店岩体岩体侵位年龄为163~157 Ma(苗来成等,1998; Jiang Neng et al.,2012; Yang Kuifeng et al.,2012)。玲珑岩基东侧还出露有晚侏罗世必郭岩体(166 Ma; Jiang Neng et al.,2012)。这些晚侏罗世岩体为过铝质岩石,是下地壳熔融的产物(Yang Liqiang et al.,2017)。

  • 玲珑岩基内还发育了早白垩世岩体(图1a),可划分为早、晚两期。早白垩世早期岩体主要出露在岩基北部,包括郭家岭岩体(130 Ma; 关康等,1998)、北截岩体(129 Ma; 耿科等,2015)、上庄岩体(129~126 Ma; 关康等,1998; Yang Kuifeng et al.,2012; 罗东贤等,2014)、以及从家岩体(130~123 Ma; Charles et al.,2013; 耿科等,2016; Wu Xiaodong et al.,2020)。这些岩体均为偏铝质似斑状花岗闪长岩,属于壳幔混熔的产物(Yang Kuifeng et al.,2012)。早白垩世晚期岩体主要为壳融的碱性似斑状二长花岗岩(Li Xinghui et al.,2018),包括艾山岩体(118~115 Ma; Goss,2010; Li Xinghui et al.,2018)、南天门岩体(119 Ma; Charles et al.,2013)和大泽山岩体(108 Ma; 张田和张岳桥,2007)。岩基内还发育了一系列辉绿岩脉、闪长岩脉、花岗岩脉和伟晶岩脉,多呈NE-SW至NNE-SSW向展布,侵位年龄范围为158 Ma至110 Ma(图1; Wu Xiaodong et al.,2020及其引文)。

  • 已有的研究表明,玲珑变质核杂岩的发育时限为137~108 Ma,其中137~123 Ma 为韧性变形阶段,而123~108 Ma为脆性变形阶段(Wu Xiaodong et al.,2020)。该变质核杂岩是区域NW-SE向拉张的产物,其核部发育了一系列NE-SW走向的低角度伸展韧性剪切带、脆-韧性剪切带及高角度正断层(Charles et al.,20112013; 林少泽等,2013; Wu Xiaodong et al.,2020),指示早白垩世经历过递进伸展变形与不断的隆升(Wu Xiaodong et al.,2020)。在此核杂岩发育过程中,伴随有早白垩世岩浆侵位(林少泽等,2013; Wu Xiaodong et al.,2020)。

  • 图1 玲珑变质核杂岩构造简图

  • Fig.1 Structural map of the Linglong metamorphic core complex

  • (a)—玲珑变质核杂岩平面图(据Wu Xiaodong et al.,2020);(b)—玲珑变质核杂岩剖面图

  • (a) —geological map of the Linglong metamorphic core complex (after Wu Xiaodong et al., 2020) ; (b) —cross section of the Linglong metamorphic core complex

  • 2 边界拆离剪切带宏观构造特征

  • 玲珑变质核杂岩整体呈NE-SW向展布,其核部主要由晚侏罗世玲珑岩基以及早白垩世岩体组成(Wu Xiaodong et al.,2020)。招平拆离剪切带与焦家拆离剪切带为玲珑变质核杂岩的边界剪切带(图1a),两者走向相近,倾向相反,对称分布在岩基的东、西两侧。这两条边界剪切带的上盘(外侧)主要出露太古宇胶东群/杂岩与古元古代粉子山群/杂岩,局部见晚侏罗世岩体(图1a)。

  • 2.1 招平拆离剪切带

  • 招平拆离剪切带为玲珑变质核杂岩东侧的边界拆离剪切带,走向NE 20°~40°,倾向南东或者南东东。该剪切带南起平度以东,向北经招远、玲珑进而延入早白垩世郭家岭岩体内,总长约为100 km(图1a)。剪切带南段介于西侧的玲珑岩基与东侧的古元古代粉子山群之间,中段则沿玲珑岩基与太古宇胶东群之间接触带延伸,向北进入晚侏罗世与早白垩世岩体内部(图1a)。

  • 野外观察发现,招平拆离剪切带厚200 m左右,分别切割晚侏罗世岩体、早白垩世岩体以及古元古代或太古宙变质岩(图1b)。这些岩石在该韧性剪切带内成为初糜棱岩或糜棱岩,局部为超糜棱岩(图2a~c)。剪切带糜棱面理倾向SE或者ESE,倾角为25°~35°。其中的矿物拉伸线理平行面理倾向。各类剪切指向标志,如S-C组构、旋转残斑以及变形岩脉或者石英脉,均指示招平拆离剪切带上盘向南东运动,属于伸展型韧性剪切带。

  • 招平拆离剪切带顶部被平行的脆性拆离断层所叠加,主断面产状130°~150°∠27°~35°。这拆离断层的断面上,可见倾向擦痕,阶步及伴生构造均指示其为正断层,与下伏伸展韧性剪切带具有相同的运动学特征。

  • 2.2 焦家拆离剪切带

  • 焦家拆离剪切带为玲珑变质核杂岩西侧的边界拆离剪切带,总体呈NE-SW走向,长约50 km(图1a)。该拆离剪切带主要沿着玲珑岩基与太古宇胶东群接触带分布,北起龙口南部,经焦家与新城向南延伸,终止在苗家附近。该剪切带厚100~200 m,总体倾向北西,倾角22°~27°。剪切带内岩石普遍变成糜棱岩,局部为超糜棱岩。矿物拉伸线理与糜棱面理倾向平行。剪切带内一系列剪切指向标志(如S-C组构和变形岩脉或石英脉),均指示上盘向北西运动(图2d~f),也属于伸展型韧性剪切带。

  • 焦家剪切带顶部也被平行的拆离断层所叠加。拆离断层内发育了碎裂岩与断层角砾岩,形成了80~100 m厚的断层破碎带。脆性拆离断层的断面产状280°~321°∠20°~30°,断面上的倾向擦痕、阶步及伴生构造,均指示其为正断层活动,与下伏韧性剪切带具有相同的运动学,显示两者为递进变形的关系。

  • 值得指出的是,焦家拆离断层在苗家以南仅发育脆性断层,缺失韧性剪切带。该段拆离断层主要呈现为高角度脆性断层带,宽约10~30 m。断层倾向北西,倾角45°~60°。断面上的倾向擦痕、阶步以及伴生构造,均指示上盘向北西运动,仍属于顺倾向滑动的正断层。

  • 3 边界拆离剪切带显微构造特征

  • 为了进一步理解玲珑变质核杂岩边界拆离剪切带的韧性变形,我们对边界拆离剪切带内糜棱岩进行了显微构造分析。观察对象为定向薄片,观察面平行于拉伸线理方位(X轴),垂直于面理面(XY面)。

  • 显微构造观察显示,边界拆离剪切带内岩石均发生了广泛的糜棱岩化。所发育糜棱岩的残斑,主要以长石(钾长石、斜长石)、石英、角闪石以及黑云母为主,而基质则以细粒化的石英颗粒、长石、黑云母以及绢云母为主。这些糜棱岩内石英发生了广泛的动态重结晶,呈现为臌凸式(BLG)与亚颗粒旋转式(SR)动态重结晶共存的现象。而长石颗粒则呈现为塑性拉长与脆性破裂共存的现象,基质中细粒化的长石颗粒主要来自脆性破裂的产物。少数薄片内可见长石局部亚颗粒化现象(图3)。各类微观剪切指向标志,如旋转碎斑系(图3b)、长石书斜构造(图3e)、S-C组构(图3c)以及C'构造(图3f),均指示这两条边界拆离剪切带为上盘向下的伸展运动,与野外观察一致。

  • 糜棱岩内石英与长石的变形行为与变形温度密切关联。根据玲珑边界拆离剪切带内石英与长石的实际变形现象,以及Hirth and Tullis(1992)Stipp et al.(2002)Mancktelow and Pennacchioni(2004)Passchier and Trouw(2005)提出的变形温度估算准则,表明这两条剪切带韧性变形阶段的变形温度为300~400℃。这一变形温度区间相当于绿片岩相变质环境,反映这两条拆离剪切带韧性剪切时处于中地壳层次。

  • 4 边界拆离剪切带运动学涡度分析

  • 韧性剪切带的平面应变形式包括共轴的纯剪切(pure shear)与非共轴的简单剪切(simple shear)两个端元(Passchier,1987),介于其间的应变形式称为一般剪切(general shear),也是自然界最常见的应变形式(Means et al.,1980; Passchier,1988; Simpson and De Paor,1993; 张进江和郑亚东,1995)。为了确定剪切带应变形式,地质学家引入了运动学涡度概念(Wk),是指一参考点瞬时旋转相对于瞬时拉伸的比率,为一无量纲值(Means et al.,1980; Means,1994; Johnson et al.,2009)。运动学涡度值可以定量描述剪切带变形中纯剪切与简单剪切所占的组分,从而确定变形的非共轴程度(Means,1994; Xypolias,2010)。当Wk=0时,表示剪切带完全为纯剪切变形(共轴变形);而Wk=1则表示剪切带完全为简单剪切变形;Wk=0.71代表纯剪切与简单剪切所占组分相等(Tikoff and Fossen,1995; Law et al.,2004),Wk>0.71代表简单剪切为主,Wk<0.71代表纯剪切为主。

  • 图2 玲珑双向变质核杂岩边界拆离剪切带野外照片

  • Fig.2 Photographs of boundary detachment shear zones in the Linglong bivergent metamorphic core complex

  • (a)—变质基底卷入招平拆离剪切带,变形岩脉指示上盘向南东的伸展运动;(b)—玲珑岩基卷入招平拆离剪切带,成为糜棱岩;(c)—招平拆离剪切带内早白垩世岩体变形成眼球状糜棱岩,其中的S-C组构指示上盘向南东的伸展运动;(d)—焦家拆离剪切带内超糜棱岩;(e)—焦家拆离剪切带内糜棱岩,其中的S-C组构指示上盘向北西的伸展运动;(f)—焦家拆离剪切带内递进变形现象,可见矿物拉伸线理与晚阶段擦痕平行,两者具有相同的运动学

  • (a) —metamoriphic basement was rolled into the Zhaoping detachment shear zone, deformed dikes indicate a top-to-the-SE sense of shear; (b) —Linglong batholith was rolled into the Zhaoping detachment shear zone, deformed into mylonite; (c) —augen-mylonite of the Earlier Cretaceous plutons inside the Zhaoping detachement shear zone, S-C fabrics indicate a top-to-the-SE sense of shear; (d) —ultramylonite inside the Jiaojia detachment shear zone; (e) —mylonite inside the Jiaojia detchment shear zone, S-C fabrics indicate a top-to-the-NW sense of shear; (f) —progressive deformation features inside the Jiaojia detachment shear zone, the strench lineation parallel to the later striation showing same kinematic features

  • 严格来说,Wk的本质是剪切活动的瞬时涡度值。自然界中剪切带一般是由非稳定剪切作用形成(Bailey and Eyster,2003),Wk会随着时空的变化而改变。而我们在自然界中观测到的剪切带变形属于变形的最终产物(有限应变),一般情况下不能测量出某一时刻的运动学涡度值。因此,人们一般使用可实际测量的有限应变替代瞬时应变,这样测得的涡度值为剪切变形的平均运动学涡度值WmPasschier,1988; 下文称作运动学涡度值)。

  • 图3 玲珑双向变质核杂岩边界拆离剪切带显微构造照片

  • Fig.3 Photomicrographs of boundary detachment shear zones in the Linglong bivergent metamorphic core complex

  • (a)—招平拆离剪切带内超糜棱岩,石英主要呈臌凸式动态重结晶现象;(b)—招平拆离剪切带内糜棱岩,石英呈臌凸式(BLG)与亚颗粒旋式(SR)转动态重结晶共存现象,长石表现为塑性拉长与晶内破裂;(c)—招平拆离剪切带内糜棱岩发育S-C组构,指示上盘向南东伸展运动;(d)—焦家拆离剪切带内糜棱岩,显示石英臌凸式与亚颗粒旋转式动态重结晶共存,旋转的长石残斑与S-C组构指示剪切带上盘向NW运动;(e)—焦家拆离剪切带内初糜棱岩,石英呈臌凸式与亚颗粒旋转式动态重结晶共存,旋转长石残斑指示上盘向北西伸展运动;(f)—焦家拆离剪切带内糜棱岩发育C'构造,指示上盘向北西伸展运动;(g)、(h)—晶体长短轴及其与剪切面夹角测量示例; Mx—晶体长轴; Mn—晶体短轴; θ—晶体长轴与剪切方向之间的夹角; Qz—石英; Fel—长石; Se—绢云母

  • (a) —ultramylonite inside the Zhaoping detachment shear zone, showing dynamic recrystallization of quartz by bulging (BLG) ; (b) —mylonite inside the Zhaoping detachment shear zone, showing dynamic recrystallization of quartz by bulging (BLG) and subgrain rotation (SR) as well as feldspar plastic elongation and transgranular fracturing; (c) —mylonite inside the Zhaoping detachment shear zone, showing a S-C fabric with a top-to-the-SE-sense of shear; (d) —mylonite inside the Jiaojia detachment shear zone, showing dynamic recrystallization of quartz by bulging (BLG) and subgrain rotation (SR) , the rotated feldspar porphyroclast and S-C fabric indicate a top-to-the NW sense of shear; (e) —protomylonite inside the Jiaojia detachment shear zone, showing dynamic recrystallization of quartz by bulging (BLG) and subgrain rotation (SR) , rotated feldspar porphyroclast indicate a top-to-the NW sense of shear; (f) —mylonite inside the Jiaojia detachment shear zone, the C' fabric indicate a top-to-the-NW sense of shear; (g) , (h) —example of grain axis and angle measurement; Mx—long axis of grain; Mn—short axis of grain; θ—angle between long axis and the shear plane; Qz—quartz; Fel—feldspar; Se—sericite

  • 为了确定玲珑变质核杂岩边界拆离剪切带的变形型式及其变化,我们在两条边界拆离剪切带的不同部位进行了运动学涡度值测量。针对这两条边界拆离剪切带糜棱岩的变形特点,我们分别采用了刚性残斑比值法以及石英c轴组构与主应变比值法,对糜棱岩样品进行了涡度值测量。对于每一个样品,我们用这两种测量方法分别获得涡度值,目的是相互对照,发现演化规律(Xypolias and Koukouvelas,2001; Law et al.,2004)。具体的涡度值测量对象为边界拆离剪切带内糜棱岩定向薄片,采样位置见图1a,测量结果见表1。

  • 4.1 刚性残斑长短轴比值法

  • 利用剪切带内刚性残斑作为标志物来测量运动学涡度值由Passchier(1987)提出,称为刚性残斑长短轴比值法。该方法基于Jeffery(1922)所提出的假设:① 所有的矿物残斑均为刚性椭球体;② 所有的刚性残斑均“镶嵌”在基质内;③ 基质表现为牛顿黏性流体性质。在简单剪切过程中,所有的刚性椭球体(一般为长石颗粒)均顺着剪切方向持续旋转。但是,在一般剪切过程中并非所有的刚性椭球体都能自由旋转或者顺剪切方向持续旋转(Passchier,1987; Xypolias,2010)。在变形过程中,能够自由旋转的刚性椭球体一般具有较低的长短轴比值,其取向随机分散;而产生优选方位的刚性椭球体一般会具有较高的长短轴比值。具有优选方位的刚性残斑与随机分散的刚性残斑之间会存有一临界长短轴比值(Rc),通过此临界长短轴比值就可求出运动学涡度值(Passchier,1987; Jessup et al.,2007; Xypolias,2010)。根据这一特点,前人分别提出了不同的投图法来获得运动学涡度值,常见的有Wallis投图法(Wallis,1993)、刚性颗粒网格法(RGN)(Jessup et al.,2007)、Passchier投图法(Passchier,1987)以及双曲线网格法(PHD)(Simpson and De Paor,19931997)。刚性残斑长短轴比值法无需考虑残斑拖尾以及残斑旋转方式,只需记录残斑取向与长短轴比值,消除了人为判断对结果的影响。为了验证测试结果的准确性,本文分别使用Wallis投图法与刚性颗粒网格法对同一样品进行了测量(Jessup et al.,2007; Xypolias,2010)。实际测量中,均借助偏光显微镜以及AxioVision SE64 Rel.4.9软件测量长石残斑的长短轴与取向。选择了未发生破裂与塑性变形的长石残斑进行测量,实测区域基质呈均匀变形(Jessup et al.,2007; Langille et al.,2010a2010b),未见基质与残斑之间发生相对滑动现象(Mulchrone,2007a2007b; Carosi et al.,2020; Simonetti et al.,2020a2020b)。

  • 4.1.1 Wallis投图法

  • Wallis投图法是通过测量均匀变形基质内的刚性残斑取向θ(残斑长轴与剪切带C面理之间的夹角,与剪切方向呈锐角为正值,与剪切方向呈钝角为负值)与其长短轴比值(R=长轴/短轴)来求得剪切带运动学涡度值。将两组数据投到以残斑取向(θ)为纵坐标轴、残斑长短轴比值(R)为横坐标的坐标系内,由此Wallis图可求出残斑长短轴比的临界值RcWallis et al.,1993)。小于临界值的残斑处于顺剪切方向持续旋转的过程中,其取向较为分散,在Wallis图中表现为残斑具有较大范围的θ值。而大于临界值的残斑,其长轴取向则趋于稳定状态,表现为θ值逐渐趋于稳定且逐渐靠近横坐标轴分布。通过Wallis图上的投点分布状态,可求得残斑长短轴比值的临界值Rc。根据(1)式可求得运动学涡度数值WmPasschier,1987; Wallis et al.,1993; Fossen and Cavalcante,2017)。

  • Wm=Rc2-1Rc2+1
    (1)
  • 本次工作中,使用Wallis投图法测量了两个边界拆离剪切带内10个糜棱岩样品的涡度值(表1,图4)。结果表明,招平拆离剪切带运动学涡度值为0.58~0.73(对应纯剪切所占组分48.0%~60.7%);焦家拆离剪切带运动学涡度值为0.58~0.73(对应纯剪切所占组分48.0%~60.7%)。

  • 4.1.2 刚性颗粒网格法

  • 刚性颗粒网格法是测量残斑取向(θ)与残斑形态因子B(根据(2)式求得),然后将所测数据投到以残斑取向θ为纵坐标轴、残斑形态因子B为横坐标轴的坐标系内。在此投图中,残斑取向由随机分布突变为优选分布所对应的B值为临界形态因子B*,该值即为运动学涡度数值WmJessup et al.,2007),其理论计算公式为:

  • B=Mx2-Mn2Mx2+Mn2
    (2)
  • 其中,Mx为所测刚性残斑的长轴,Mn为所测刚性残斑的短轴。

  • 如图4所示,刚性颗粒网格法投图的高密度数据点簇落在由两条临界曲线限制的区域内。在临界曲线左侧,数据点具有较大的θ值取值范围,表明这些矿物残斑在变形过程中发生了持续的自由旋转。而在临界曲线的右侧,数据点θ值趋于稳定,表明这些矿物残斑在剪切变形过程中已经处于稳定取向状态。使用该方法测得的招平拆离剪切带的运动学涡度值为0.57~0.73(对应纯剪切所占组分48.0%~61.5%);焦家拆离剪切带的运动学涡度值为0.58~0.74(对应纯剪切所占组分47.5%~60.7%)。

  • 图4 Wallis投图法与刚性颗粒网格法计算玲珑变质核杂岩边界拆离剪切带涡度值投图

  • Fig.4 Plots of vorticity estimate data from Linglong MCC boundary detachment shear zones by using the Wallis plot and RGN plot

  • (a)~(f)—招平拆离剪切带糜棱岩样品涡度值投图;(g)~(j)—焦家拆离剪切带糜棱岩样品涡度值投图;左列刚性颗粒网格法图内红色虚线为临界形态因子值B*,右列Wallis投图红色虚线为临界长短轴比值,黄色实线为Mulchrone理论曲线(Mulchrone,2007a2007b); 数据点的分布与其不相关,表明残斑相对于基质未发生滑动; n—所测试残斑数目; Rc min—临界长短轴比最小值; Rc max—临界长短轴比最大值

  • (a) ~ (f) —plots of vorticity estimate results from the Zhaoping detachment shear zone; (g) ~ (j) —plots of vorticity estimate results from the Jiaojia detachment shear zone; the left column plots belong to RGN method, where the critical shape factor B* is shown as red dash curves; the right column plots belong to Wallis plots method in which the red vertical dashed lines represent the estimated ranged for the critical aspect ratio Rc; yellow lines in the Wallis plots represent the theoretical Mulchrone curves (Mulchrone, 2007a, 2007b) , showing the distribution of porphyroclasts irrelevant to the Mulchrone curves which indicate that the porphyroclast didn't slip with respect to the matrix; n—number of grains measured; Rc min—minimum value of critical aspect ratio; Rc max—maximum value of critical aspect ratio

  • 4.2 石英c轴组构与主应变比值法

  • 石英在韧性变形过程中晶面会沿着特定的滑移系滑动,从而产生结晶优选方位,在石英c轴组构图像上表现为大圆环带或正交环带。在一般剪切变形过程中,随着应变增加,应变椭球体的长轴会向着剪切面(A1)旋转(Ramsay,1980; Passchier,1997),由此形成的石英c轴组构中心环带垂直于剪切面 (A1)(图5a; Platt and Behrmann,1986; Wallis,19921995; Xypolias,20092010)。因此,石英c轴组构中心环带的垂面为剪切面(A1),其与面理(SA)的夹角β(图5c)等于剪切方向与有限应变压扁面(XY面)之间的夹角(图5a; Wallis,1992)。依据这一原理,Wallis(19921995)提出利用石英c轴组构垂面和XZ面交角(β)与有限应变比值(RXZ)之间的关系测量涡度的方法(RXZ/β法)。该方法只需测量XZ面上的主应变比值(RXZ)以及石英c轴组构图上的β值,即可求出运动学涡度值,其计算公式如(3)式所示。值得注意的是,该方法对β角度的改变非常灵敏,因此,若测试样品的具有较高的主应变比值和较小的β值(RXZ>10; β< 5°),使用该方法测量的结果则会有较大的误差值(Bailey et al.,2004; Law et al.,2004)。

  • 表1 玲珑变质核杂岩边界拆离剪切带运动学涡度测量结果

  • Table1 Vorticity analysis data from boundary detachment shear zones of the Linglong metamorphic core complex

  • 注: RXZ—应变比值; β—剪切面与石英面理面之间的夹角,据Wu Xiaodong et al.(2020)

  • Wm=sintan-1sin(2β)RXZ+1/RXZ-1-cos(2β)×RXZ+1RXZ-1
    (3)
  • 本次工作中,对于剪切带沿XZ面的主应变比值(RXZ),是通过Fry法(Fry,1979; Ramsay and Huber,1983; Carosi et al.,2020)获得。测量过程使用EllipseFit 3.8.2软件,测量原理以及测量方法详见Vollmer(2018)。应变测量结果表明,招平拆离剪切带RXZ比值为1.73~3.15,焦家拆离剪切带RXZ比值为1.70~3.11(表1,图6)。β值则根据Wu Xiaodong et al.(2020)所给的石英c轴组构数据测出(图7)。使用所测得的RXZβ值,根据(3)式可求得Wm(表1)。应用石英c轴组构与主应变比值法测得的招平拆离剪切带运动学涡度值为0.80~0.93,对应的纯剪切组分为25.3%~41.5%;焦家拆离剪切带运动学涡度值为0.79~0.93,对应的纯剪切组分为25.3%~42.3%。

  • 5 讨论

  • 5.1 边界拆离剪切带运动学涡度值变化原因

  • 对于玲珑变质核杂岩两条边界拆离剪切带同一个样品,本次工作分别应用了刚性残斑长短轴比值法中的两种投图法(Wallis投图法和刚性颗粒网格法)进行了涡度值测量。通过对比这两种投图法对于同一样品的涡度测量结果,可见结果基本一致(表1),一方面表明这两种测量方法都是可靠的,另一方面也验证了所测涡度值是可信的。

  • 然而,对比刚性残斑长短轴比值法(包括Wallis投图法和刚性颗粒网格法)与石英c轴组构与主应变比值法对于同一样品的涡度测量结果,显示了明显的差异(表1,图8)。应用刚性残斑长短轴比值法测得的招平拆离剪切带运动学涡度值为0.57~0.73(纯剪切组分:48%~61.5%),焦家拆离剪切带为0.58~0.74(纯剪切组分:47.5%~60.7%)。而应用石英c轴组构与主应变比值法测得招平拆离剪切带运动学涡度值为0.80~0.93(纯剪切组分:25.3%~41.5%),焦家拆离剪切带为0.79~0.93(纯剪切组分:25.3%~42.3%)。显然,刚性残斑法测得的涡度值明显小于石英c轴组构与主应变比值法所得结果,这种差异超出了涡度测量的理论误差(±0.05; Tikoff and Fossen,1995)。

  • 图5 一般剪切变形中各变形要素及其与石英c轴组构之间的关系(据Xypolias,2009

  • Fig.5 Elements of the general shear deformation and its' relationships with quartz c-axis fabrics

  • (a)—剪切变形过程中瞬时应变主轴(ISA1、ISA3)、流脊线(A1、A2)以及有限应变主轴(XZ)之间的关系;(b)—主面理(SA)与倾斜面理(SB)以及剪切面之间的关系;(c)—石英c轴组构与剪切面及面理之间的关系

  • (a) —the relationship between instantaneous strain axes (ISA1, ISA3) , flow apophyses (A1, A2) , and the principle strain axis (X, Z) ; (b) —the relationship between main foliation (SA) and the oblique-grain-shape fabric (SB) ; (c) —the relationship between the quartz c fabric, the shear plane and the foliation

  • 刚性残斑长短轴比值法,是通过测量刚性残斑长短轴以及长轴与剪切带边界之间夹角,再通过投图的方式获得临界长短轴比值,以此临界长短轴比值最终求得运动学涡度值(Passchier,1987; Jessup et al.,2007; Xypolias,2010)。前人的研究表明,若长石残斑与基质之间发生了相对滑动(解耦),会造成应用刚性残斑长短轴比值法获得的涡度值比实际偏小(Johnson et al.,2009)。然而,图4显示本次实测数据点的分布与Mulchrone理论曲线不相关,表明样品内刚性残斑与基质之间未发生相对滑动(Mulchrone,2007a2007b),实测涡度值是可靠的。韧性剪切带的形成一般会经历初始加速、峰期稳态变形、晚期减速变形三个阶段(张进江和郑亚东,1995; Zhang Jinjiang and Zheng Yadong,1997)。在早期加速阶段,变形程度较高,旋转的长石残斑会随着涡度值的变化很容易达到平衡状态(Bailey et al.,2004; Sullivan,2008)。而在晚期减速阶段,由于变形程度降低,长石残斑对剪切变形的响应程度也随之降低。因此,刚性残斑长短轴比值法所测结果,理论上会更多体现剪切变形早期阶段的运动学涡度值(Wallis,1995; Law et al.,2004; Xypolias,2009; Langille et al.,2010a)。

  • 韧性剪切带形成中,石英晶体会沿着特定的滑移系滑动而形成晶格优选方位。如前所述,石英c轴组构图案的中心环带垂直于剪切面(Wallis,19921995; Law; 2004; Xypolias,20092010; Langille et al.,2010a; Fossen and Cavalcante,2017),剪切面与主面理之间的夹角β(图5)代表了剪切面与有限应变压扁面之间的夹角(Wallis,1992; Xypolias,2009)。依据β值及主应变比(RXZ),根据(3)式可求出运动学涡度值。由此可见,石英c轴组构与主应变比值法(RXZ/ β法)测量涡度的关键为主面理与石英c轴组构方位(Xypolias,2010)。随着剪切带的演化,β角不断变小,至晚期减速变形阶段会达到最小值。因而,石英c轴组构与主应变比值法所测运动学涡度更多的体现了剪切变形晚期的特征。另外,石英在剪切带内属于低强度矿物,对韧性变形的响应较为灵敏(Law et al.,2004; Johnson,2009; Xypolias,2009)。特别是石英的晶内滑移系,对于韧性变形极其敏感(MacCready,1996),在剪切变形晚期还仍在活动,仍然改变着石英c轴组构的定向。从这个角度看,石英c轴组构与主应变比值法所测运动学涡度也主要体现递进变形晚期的非共轴程度。国际上也有大量运动学涡度研究实例与本文分析结果类似,如Sanbagawa Belt(Wallis,1995)、Rongbuk Valley(Law et al.,2004)和South Peloponnese(Xypolias and Kokkalas,2006)等,均表明刚性残斑长短轴比值法以及石英c轴组构与主应变比值法所测涡度值分别代表了剪切带演化早、晚期的变形特征。

  • 综上所述,本次应用刚性残斑长短轴比值法(包括Wallis投图法和刚性颗粒网格法)所测涡度值,主要代表了玲珑变质核杂岩边界拆离剪切带早期变形特征。所测结果表明(图8),招平拆离剪切带(涡度值为0.57~0.73)和焦家拆离剪切带(涡度值为0.58~0.74),的早期变形是纯剪切为主的一般剪切。应用石英c轴组构与主应变比值法(RXZ/β)测得涡度值,代表了这两条剪切带晚期变形特征。应用这一方法所测结果表明(图8),招平拆离剪切带(涡度值为0.80~0.93)和焦家拆离剪切带(涡度值为0.79~0.93)晚期变形是简单剪切为主的一般剪切。本次运动学涡度分析表明,玲珑变质核杂岩的两条边界拆离剪切带经历了相似的递进变形过程,早阶段为纯剪切变形占主导地位,而晚阶段转变为简单剪切占主导地位。

  • 图6 应用Fry法测量玲珑变质核杂岩边界拆离剪切带主应变比(RXZ)结果图

  • Fig.6 Results of the principle strain ratioof the Linglong MCC boundary detachment shear zones by using the Fry method (RXZ)

  • (a)~(h)—招平拆离剪切带;(i)~(o)—焦家拆离剪切带

  • (a) ~ (h) —Zhaoping detachment shear zone; (i) ~ (o) —Jiaojia detachment shear zone

  • 图7 应用石英c轴组构(据Wu Xiaodong et al.,2020)测量β值结果图

  • Fig.7 Estimated angle β by using the quartz c-axis fabric data (after Wu Xiaodong et al., 2020)

  • (a)~(g)—招平拆离剪切带;(h)~(l)—焦家拆离剪切带

  • (a) ~ (g) —Zhaoping detachment shear zone; (h) ~ (l) —Jiaojia detachment shear zone

  • 5.2 边界拆离剪切带厚度变化

  • 玲珑变质核杂岩的边界拆离剪切带,其所有样品的运动学涡度值均小于1(表1),表明剪切带的变形属于一般剪切(纯剪切与简单剪切叠加),沿垂直剪切带方向上发生了减薄。这两条边界拆离剪切带运动学涡度值沿走向上出现的一定变化,指示剪切带经历过不均一的减薄过程(Wallis,1995)。依据运动学涡度值Wm与主应变比值 RXZ,应用(4)式(Wallis et al.,1993; Law et al.,2004; Langille et al.,2010a2010b; Mansouri et al.,2021; Cheng Chao et al.,2022)可以计算出垂直剪切带(剪切面)方向上的主拉伸量S(平行剪切带方向上的主拉伸量为S-1):

  • S=0.51-Wm20.5RXZ+RXZ-1+21+Wm21-Wm20.5+RXZ+RXZ-1-20.5-1
    (4)
  • 通过计算垂直剪切带方向上的主拉伸量S,可求出剪切带在变形过程中沿着有限应变Z轴方向上产生的韧性减薄率。同理,通过计算S-1可求得有限应变X轴方向上产生的韧性伸长率(表2,图8)。

  • 表2 玲珑变质核杂岩边界拆离剪切带韧性减薄率与伸长率计算结果

  • Table2 Ductile shortening and extension of the boundary detachment shear zones of the Linglong metamorphic core complex

  • 依据刚性残斑长短轴比值法测试值代表早期变形,而石英c轴组构与主应变比值法(RXZ/β)代表晚期变形,表2结果指示招平拆离剪切带早期减薄与伸长率分别为27.5%~36.0%和38.0%~56.1%,而晚期减薄与伸长率分别为9.7%~29.9%和10.7%~42.7%(表2)。焦家拆离剪切带早期减薄与伸长率分别为30.0%~35.9%和42.9%~56.0%,晚期减薄和伸长率分别为9.4%~28.3%和10.3%~39.4%(表2)。对比测试结果表明(图9),这两条边界拆离剪切带发育过程中的早期减薄率均高于晚期,与运动学涡度指示的早期纯剪组分大于晚期相吻合。众所周知,剪切带变形过程中纯剪切组分大小是决定剪切带减薄量的关键因素。纯剪切组分(垂直剪切带缩短)越大,剪切带减薄越强(Law et al.,2004)。因此,玲珑变质核杂岩两条边界拆离剪切带递进变形过程中,不但纯剪组分在降低,垂直于剪切带的减薄率也在降低,指示了明显的变化。

  • 5.3 玲珑变质核杂岩的均衡隆升

  • 玲珑变质核杂岩为双向变质核杂岩,东、西边界上分别发育了招平与焦家拆离剪切带(图1)。向南东倾斜的招平伸展拆离剪切带,其出露地表的倾角为25°~35°。而北西倾斜的焦家伸展拆离剪切带,其出露地表的倾角为22°~27°。依据地震反射剖面资料(单伟等,2018; Yu Xuefeng et al.,2018),这两条边界剪切带在地下2.0~2.5 km深处变为近水平,呈现为上陡下缓铲型。这种产状是保持在整个剪切带发育过程中,还是经历过演变,以往没有定论。这两条边界剪切带及其间核部韧性构造的显微构造分析,指示了300~400℃的变形温度(Wu Xiaodong et al.,2020)。由此指示所出露核杂岩原先的形成深度为10~13 km(按25℃/km平均地热增温率计算),经历过12~16 km的抬升。依据早白垩世郭家岭花岗闪长岩体角闪石压力计计算,也指示玲珑变质核杂岩北部经历过10~15 km的抬升(张华锋等,2006)。该核杂岩形成过程中经历过从韧性、脆-韧性至脆性的递进变形,也反映了同伸展活动中的抬升。然而,这种大幅度隆升是两条倾向相背的边界剪切带伸展运动的结果(地垒式上升),还是有均衡隆升的贡献,以往也没有定论。

  • 图8 玲珑变质核杂岩边界拆离剪切带不同方法实测运动学涡度值及纯剪切和简单剪切所占比例对比图(据Forte et al.,2007

  • Fig.8 Plot of estimated kinematic vorticity data and the proportion of pure shear and simple shear of boundary detachment shear zones of the Linglong metamorphic core complex by using different methods (after Forte et al., 2007)

  • 本文运动学涡度分析表明,招平与焦家拆离剪切带的早期变形以纯剪切为主,而晚期变形转变为以简单剪切为主。两者在垂直剪切带方向上的减薄率由早至晚也明显减小。这两方面均指示了剪切带演化过程中伴随着纯剪组分的降低。在区域伸展背景下最大主应力(σ1)直立,来自于上盘岩层的压力σvσ1=σv)。倾斜剪切带的法向应力或正应力(σn)大小决定了纯剪变形的强弱。这一正应力(σn)与σv成正比(即与深度成正比),与剪切带的倾角成反比。在同一深度上,σn主要取决于剪切带的倾角。本次工作是对同一样品(等效于同一深度)用不同方法获得的早期与晚期变形涡度值,从而排除了深度的影响。由此所获得的涡度值变化只能是剪切带倾角变化所致,从而指示了这两条边界剪切带在演化过程中伴随着倾角变陡。对于变质核杂岩所发育的大型铲形断层,当伸展活动与剥蚀同时进行时,也会出现晚阶段剥露产状较缓的铲形断层或剪切带部分。在这种情况下,拆离剪切带各部的产状始终保持不变(随着抬升只是埋深变浅,但原始产状不变),所记录的纯剪组分也始终保持不变。然而,玲珑变质核杂岩的拆离剪切带,是在同一深度上记录了随着抬升而纯剪切组分降低,指示了剪切带同一部位由早到晚的变陡,与被动抬升明显不同。

  • 图9 玲珑变质核杂岩边界拆离剪切带韧性减薄率与伸长率投图(a~d)

  • Fig.9 Plots (a~d) showing the ductile shortening and extension of boundary detachment shear zones of the Linglong metamorphic core complex

  • 综上所述,玲珑变质核杂岩的隆升,是边界剪切带伸展运动与均衡隆升共同作用的结果。两条边界剪切带递进变形过程所指示的倾角变陡,还指示均衡隆升发生在核杂岩发育的晚阶段,而不是出现在核杂岩形成之后。这两条边界剪切带上陡下缓的铲状形态,是伸展活动过程中演变的结果(均衡隆升所致),并非原始的产状。伸展活动晚阶段发生的均衡隆升,因其较大的影响范围(波及伸展剪切带下盘及其周边的上盘),不但会加速下盘的抬升,还会使附近上盘也发生隆升,导致早阶段可能发育的上叠盆地被剥蚀掉,从而在现今玲珑变质核杂岩上盘完全缺失盆地(图1,图10)。

  • 国际上典型的变质核杂岩发育过程皆伴随有同构造岩浆活动。正是这些岩浆活动加热地壳,从而诱发均衡隆升,加速中—下地壳的最终剥露(Vanderhaeghe and Teyssier,1997; Vanderhaeghe,19992009)。玲珑变质核杂岩的核部,在苗家、三元以北出露了小型韧性伸展剪切带(图1),以南仅发育有脆性伸展断层(招平剪切带除外)。焦家拆离剪切带的韧性变形带,也只是在北段发育,南段仅有脆性构造(Wu Xiaodong et al.,2020)。这些现象表明,该核杂岩北部剥露较深。与此相对应的是,早白垩世郭家岭期(130~127 Ma)花岗闪长岩(郭家岭、从家、北截、上庄岩体)也仅出露在北部(图1),并且卷入了韧性、脆-韧性至脆性递进伸展变形(Wu Xiaodong et al.,2020)。核杂岩南部仅局部出露早白垩世末艾山期(118~108 Ma)花岗岩。玲珑变质核杂岩的形成时限为137~108 Ma,在123~108 Ma期间全部转变为脆性变形(Wu Xiaodong et al.,2020),指示剥露至浅部脆性域。由此表明,郭家岭期花岗闪长岩的侵位(130~127 Ma),在时、空上与核杂岩的隆升密切关联。前人通过对玲珑地区郭家岭型花岗闪长岩单矿物40Ar/39Ar年代学研究,表明该岩体隆升时冷却速率可达100℃/Ma(Charles et al.,2013)。若取地温梯度为25℃/km,那么其隆升速率为4 km/Ma。这表明由岩浆侵位而诱发的均衡隆升为一个快速隆升过程。另外,玲珑变质核杂岩南侧与北侧隆升的差异性,表明均衡隆升具有不均一的特征,均衡隆升的强度受控于岩浆侵位活动的强度。由此可见,在玲珑变质核杂岩的发育过程中,正是多个郭家岭型花岗闪长岩的侵位,加热地壳,显著增加地壳的浮力,从而导致了核杂岩的均衡隆升。

  • 图10 玲珑变质核杂岩演化与均衡隆升模式图

  • Fig.10 Evolution processes and isostatic rebound model of Linglong metamorphic core complex

  • 左图为演化模式,右图为边界拆离剪切带运动学涡度(Wm)与法向应力(σn)随时间变化曲线

  • Left part is evolution model of the Linglong metamorphic core complex, while the right part is the relationship between the kinematic vorticity (Wm) of boundary detachment shear zones and the normal stress (σn) change with time

  • 玲珑变质核杂岩的实例表明,双向变质核杂岩发育的晚阶段,也发生了均衡隆升,与不对称核杂岩具有相似性。显然,双向变质核杂岩的核部剥露,是两条边界剪切带伸展运动与均衡隆升的共同作用结果。伸展活动中的岩浆活动,是诱发均衡隆升的关键因素。无论是双向变质核杂岩,还是不对称变质核杂岩,常伴生岩浆活动(Vanderhaeghe and Teyssier,1997; Vanderhaeghe,19992009),从而多发生过均衡隆升。

  • 6 结论

  • 通过对早白垩世玲珑变质核杂岩边界拆离剪切带的变形与运动学涡度分析,本文得出以下结论:

  • (1)对于招平拆离剪切带,应用刚性残斑长短轴比值法(包括Wallis投图法与刚性颗粒网格法)获得的运动学涡度值为0.57~0.73(对应纯剪切组分为48.0%~61.5%);而应用石英c轴组构与主应变比值法获得的涡度值为0.80~0.93(对应纯剪切组分为25.3%~41.5%)。对于焦家拆离剪切带应用刚性残斑长短轴比值法获得的涡度值为0.58~0.74(对应纯剪切组分为47.5%~60.7%;而应用石英c轴组构与主应变比值法获得的涡度值为0.79~0.93(对应纯剪切组分为25.3%~42.3%)。应用刚性残斑长短轴比值法获得的这两条边界剪切带的涡度值,指示了纯剪为主的一般剪切变形。而应用石英c轴组构与主应变比值法获得的涡度值却指示简单剪切为主的一般剪切变形。对于同一样品,两类方法获得结果明显不同。

  • (2)应用涡度值与应变测量结果,可以算出招平拆离剪切带在垂直剪切带方向上减薄率为9.7%~36.0%,平行剪切带方向上的伸长率为10.7%~56.1%。焦家拆离剪切带的减薄率为9.4%~35.9%,伸长率为10.3%~56.0%。应用刚性残斑长短轴比值法得出的减薄率,也明显大于石英c轴组构与主应变比值法所得结果。

  • (3)理论分析与国际上相关研究实例证明,刚性残斑长短轴比值法所获得的涡度值代表了剪切带的早期变形,而石英c轴组构与主应变比值法所得结果指示了晚期变形。由此表明,玲珑变质核杂岩边界剪切带演化中伴随着纯剪组分的明显降低,是剪切带变陡的结果,指示发生过同伸展期的均衡隆升。这一均衡隆升发生在核杂岩演化的晚阶段,是早白垩世郭家岭期同构造花岗闪长岩侵位的响应。由此可见,双向与不对称变质核杂岩具有相似的演化规律,都经历过晚阶段均衡隆升,对中—下地壳的剥露具有重要的贡献。

  • 致谢:本文写作过程中得到了河海大学地球科学与工程学院李云剑老师的有益讨论,感谢评审专家和地质学报责任编辑对本文修改提出的宝贵意见。

  • 参考文献

    • Bailey C M, Eyster E L. 2003. General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona. Journal of Structural Geology, 25(11): 1883~1893.

    • Bailey C M, Francis B E, Fahrney E E. 2004. Strain and vorticity analysis of transpressional high-strain zones from the Virginia Piedmont, USA. In: Aslop G I, Holdsworth R E, eds. Flow Processes in Faults and Shear Zones. Geological Society, Special Publications, 224: 249~264.

    • Block L, Royden L H. 1990. Core complex geometries and regional scale flow in the lower crust. Tectonics, 9(4): 557~567.

    • Buck W R. 1988. Flexural rotation of normal faults. Tectonics, 7(5): 959~973.

    • Cheng Chao, Sun Shengsi, Dong Yunpeng, Zhang Bin, Guo Zhao. 2022. Exhumation of plutons controlled by boundary faults: Insights from the kinematics, microfabric, and geochronology of the Taibai shear zone, Qinling Orogen, China. Geological Society of America Bulletin, 134(11-12): 2723~2744.

    • Carosi R, Petroccia A, Iaccarino S, Simonetti M, Langone A, Montomoli C. 2020. Kinematics and timing constraints in a transpressive tectonic regime: The example of the Posada-Asinara shear zone (NE Sardinia, Italy). Geosciences, 10(8): 1~26.

    • Charles N, Gumiaux C, Augier R, Chen Yan, Zhu Rixiang, Lin Wei. 2011. Metamorphiccore complexes vs. synkinematic plutons in continental extension setting: Insights from key structures (Shandong Province, eastern China). Journal of Asian Earth Sciences, 40(1): 261~278.

    • Charles N, Augier R, Gumiaux C, Monié P, Chen Yan, Faure M, Zhu, Rixiang. 2013. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula(China, East Asia). Gondwana Research, 24(1): 412~428.

    • Coney P J. 1980. Cordilleran metamorphic core complexes: An overview. In: Crittenden M D, Coney P J, Davis G H, eds. Cordilleran Metamorphic Core Complexes. Geological Society of America Memoir, 153: 7~31.

    • Coney P J, Harms T A. 1984. Cordilleran metamorphic cre complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 12: 550~554.

    • Davis G A, Lister L S. 1988. Detachment faulting in continental extension: Perspectives from the southwest U. S. Cordillera. Processes in continental lithospheric deformation. Special Paper of the Geological Society of America, 218: 133~159.

    • Davis G H, Coney P J. 1979. Geologic development of the Cordilleran metamorphic core complexes. Geology, 7(3): 120~124.

    • Deng Jun, Liu Xuefei, Wang Qingfei, Dilek Y, Liang Yayun. 2017. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking—Lithospheric extension in the North China craton, eastern Asia. Geological Society of America Bulletin, 129(11-12): 1379~1407.

    • Forte A M, Bailey C M. 2007. Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Journal of Structural Geology, 29: 983~1001.

    • Fossen H, Cavalcante G C G. 2017. Shear zones—A review. Earth Science Reviews, 171: 434~455.

    • Fry N. 1979. Random point distribution and strain measurement in rocks. Tectonophysics, 60(1-2): 89~105.

    • Geng Ke, Wang Ruijiang, Li Hongkui, Shan Wei, Li Dapeng. 2015. Zircon SHRIMP age of diorite-porphyrite in the Beijie gold deposit from the Northwest Jiaodong area and its geological implications. Acta Geologica Sinica, 89(6): 1099~1107 (in Chinese with English abstract).

    • Geng Ke, Wang Ruijiang, Li Hongkui, Liang Taitao, Zhang Yubo. 2016. Zircon SHRIMP U-Pb geochronology of the Congjia granodiorite from the Northwest Jiaodong area. Acta Geoscientica Sinica, 37(1): 90~100 (in Chinese with English abstract).

    • Goldfarb R J, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5(2): 139~153.

    • Goss S C, Wilde S A, Wu Fuyuan, Yang Jinhui. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309~326.

    • Guan Kuang, Luo zhengkuan, Miao Laicheng, Huang jiazhan. 1998. SHRIMP in zircon chronology for the Guojialing suite granite in Jiaodong Zhaoye district. Scientia Geologica Sinica, 33(3): 318~328 (in Chinese with English abstract).

    • Hacker B R, Wallis S R, Ratschbacher L, Grove M, Gehrels G. 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25(5): TC5006.

    • Hetzel R, Passchier C W, Ring U, Dora Ö O. 1995. Bivergent extension in orogenic belts: The Menderes massif (southwestern Turkey). Geology, 23(5): 455~458.

    • Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14(2): 145~159.

    • Jeffery G B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London Series A, 102: 161~179.

    • Jessup M J, Law R D, Frassi C. 2007. The rigid grain net (RGN): An alternative method for estimating mean kinematic vorticity number (Wm). Journal of Structural Geology, 29(3): 411~421.

    • Ji Zhuangyi. 1993. New data of isotope age of the Proterozoic metamorphic rocks from the northern Jiaodong and its geological significance. Geology of Shandong, 9(1): 40~51 (in Chinese with English abstract).

    • Jiang Neng, Chen Jingzhi, Guo Jinghui, Chang Guohu. 2012. In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion. Lithos, 142-143: 84~94.

    • Johnson S E, Lenferink H J, Price N A, Marsh J H, Koons P O, West Jr D P, Beane R. 2009. Clast-based kinematic vorticity gauges: The effects of slip at matrix/clast interfaces. Journal of Structural Geology, 31(11): 1322~1339.

    • Langille J M, Jessup M J, Cottle J M, Newell D, Seward G. 2010a. Kinematic evolution of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the Ama Drime Massif, Tibete-Nepal. Journal of Structural Geology, 32(7): 900~919.

    • Langille J M, Lee J, Hacker B, Seward G. 2010b. Middle crustal ductile deformation patterns in southern Tibet: Insights from vorticity studies in Mabja dome. Journal of Structural Geology, 32(1): 70~85.

    • Law R D, Searle M P, Simpson R L. 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest massif, Tibet. Journal of the Geological Society, 161: 305~320.

    • Li Xinghui, Fan Hongrui, Hu Fangfang, Hollings P, Yang Kuifeng, Liu Xuan. 2018. Linking lithospheric thinning and magmatic evolution of late Jurassic to early cretaceous granitoids in the Jiaobei terrane, southeastern North China craton. Lithos, 324-325: 280~296.

    • Lin Shaoze, Zhu Guang, Yan Lejia, Jiang Qingqing, Zhao Tian. 2013. Discussion on uplifting mechanism of the Linglong batholith in the Jiaodong region. Geological Review, 59(5): 832~844 (in Chinese with English abstract).

    • Lister G S, Davis G A. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U. S. A. Journal of Structural Geology, 11(1-2): 65~94.

    • Luo Xiandong, Yang Xiaoyong, Duan Liuan, Sun Weidong. 2014. Geochemical and geochronological study of the gold related Guojialing pluton and Shangzhuang pluton in Jiaobei block. Acta Geologica Sinica, 88(10): 1874~1888 (in Chinese with English abstract).

    • Ma Liang, Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, Hou Minglan, Pu Wei, Xu Bin. 2013. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 162-163: 251~263.

    • MacCready T. 1996. Misalignment of quartz c-axis fabrics and lineations due to oblique final strain increments in the Ruby Mountains core complex, Nevada. Journal of Structural Geology, 18(6): 765~776.

    • Malavieille J. 1993. Late orogenic extension in mountain belts: Insights from thebasin and range and the late Paleozoic Variscan belt. Tectonics, 12(5): 1115~1130.

    • Mancktelow N S, Pennacchioni G. 2004. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites. Journal of Structural Geology, 26(1): 47~69.

    • Mansouri S M, Keshavarz S, Shahpasandzadeh M, Faghih A. 2021. Strain and vorticity analyses using rotated porphyroclasts in the Tanbour metamorphic rocks: Evidence of transpressional deformation along the Sanandaj-Sirjan metamorphic belt, SW Iran. Journal of Structural Geology, 148: 104358.

    • Means W D. 1994. Rotational quantities in homogeneous flow and the development of smallscale structure. Journal of Structural Geology, 16(4): 437~445.

    • Means W D, Hobbs B E, Lister G S, Williams P F. 1980. Vorticity and non-coaxiality in progressive deformations. Journal of Structural Geology, 2(3): 371~378.

    • Miao Liaocheng, Luo Zhengkuan, Guan Kuang, Huang Jiazhan. 1998. The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite, East Shangdong Province. Acta Petrologica Sinica, 14(2): 198~206 (in Chinese with English abstract).

    • Mulchrone K F. 2007a. An analytical solution in 2D for the motion of rigid elliptical particles with a slipping interface under a general deformation. Journal of Structural Geology, 29(6): 950~960.

    • Mulchrone K F. 2007b. Shape fabrics in populations of rigid objects in 2D: Estimating finite strain and vorticity. Journal of Structural Geology, 29(9): 1558~1570.

    • Passchier C W. 1987. Stable positions of rigid objects in non-coaxial flow—A study in vorticity analysis. Journal of Structural Geology, 9(5): 679~690.

    • Passchier C W. 1988. The use of Mohr circles to describe non-coaxial progressive deformation. Tectonophysics, 149(3): 323~338.

    • Passchier C W. 1997. The fabric attractor. Journal of Structural Geology, 19(1): 113~127.

    • Passchier C W, Trouw R A J. 2005. Microtectonics. Berlin, Germany: Springer Verlag.

    • Platt J P, Behrmann J H. 1986. Structures and fabrics in a crustal scale shear zone, Betic Cordilleras, S. E. Spain. Journal of Structural Geology, 8: 15~34.

    • Qiu Jiansheng, Wang Dezi, Lo Qinghua, Liu Hong. 2001. 40Ar-39Ar dating for volcanic rocks of the Qingshan Formation in the Jiaolai basin, eastern Shandong Province: A case study of the Fenlingshan volcanic apparatus in Wulian County. Geological Journal of China Universities, 7(3): 351~355 (in Chinese with English abstract).

    • Ramsay J G. 1980. Shear zone geometry: A review. Journal of Structural Geology, 2: 83~101.

    • Ramsay J G, Huber M. 1983. The techniques of modern structural geology. Volume I. Strain analysis. Academic Press, London. Earth-Science Reviews, 23(3): 242~243.

    • Rey P, Vanderhaeghe O, Teyssier C. 2001. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 342(3-4): 435~449.

    • Shan Wei, Yu Xuefeng, Li Hongkui, Guo Baokui, Geng ke, Li Dapeng, Zhuo Chuanyuan. 2018. The deep structural characteristics under the middle of the Zhaoping fault zone: Evidences coming from seismic section survey. Shandong Land and Resources, 34(5): 49~58 (in Chinese with English abstract).

    • Simpson C, De Paor D G. 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology 15(1): 1~20.

    • Simpson C, De Paor D G. 1997. Practical analysis of general shear zones using the porphyroclast hyperbolic distribution method: An example from the Scandinavian Caledonides. In: Evolution of Geological Structures in Micro- to Macro-Scales. Berlin: Springer Dordrecht, 169~184.

    • Simonetti M, Carosi R, Montomoli C, Cottle J M, Law R D. 2020a. Transpressive deformation in the Southern European Variscan Belt: Newinsights from the Aiguilles Rouges massif (western Alps). Tectonics, 39(6): e2020TC006153.

    • Simonetti M, Carosi R, Montomoli C, Corsini M, Petroccia A, Cottle J M, Iaccarino A. 2020b. Timing and kinematics of flow in a transpressive dextral shear zone, Maures massif (southern France). International Journal of Earth Sciences, 109: 2261~2285.

    • Spencer J E, Chase C G. 1989. Role of crustal flexure in initiation of low-angle normal faults and implications for structural evolution of the basin and range province. Journal of Geophysical Research, 94(B2): 1765~1775.

    • Stipp M, Stunitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology, 24(12): 1861~1884.

    • Sullivan W A. 2008. Significance of transport-parallel strain variations in part of the Raft River shear zone, Raft River Mountains, Utah, USA. Journal of Structural Geology, 30(2): 138~158.

    • Tang Jun, Zheng Yongfei, Wu Yuanbao, Gong Bing. 2006. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogeny. Implication for tectonic affinity. Precambrian Research, 144(1-2): 1~18.

    • Tang Jun, Zheng Yongfei, Wu Yuanbao, Gong Bing, Liu Xiaoming. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu Orogen. Precambrian Research, 152(1): 48~82.

    • Tikoff B, Fossen H. 1995. The limitations of three-dimensional kinematic vorticity analysis. Journal of Structural Geology, 17(12): 1771~1784.

    • Vanderhaeghe O. 1999. Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: Control of regional deformation. Tectonophysics, 312(1): 35~55.

    • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks andmagmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477(3): 119~134.

    • Vanderhaeghe O, Teyssier C. 1997. Formation of the Shuswap metamorphic core complex during late-orogenic collapse of the Canadian Cordillera: Role of ductile thinning and partial melting of the mid-to lower crust. Geodinamica Acta, 10(2): 41~58.

    • Vollmer F W. 2018. Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid. Computers & Geosciences, 115: 134~142.

    • Wan Yusheng, Song Biao, Liu Dunyi, Wilde S A, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Paleoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249~271.

    • Wallis S R. 1992. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 14(3): 271~280.

    • Wallis S R. 1995. Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan. Journal of Structural Geology, 17(8): 1077~1093.

    • Wallis S R, Platt J P, Knott S D. 1993. Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian arc and theeastern Alps. American Journal of Science, 293(5): 463~495.

    • Webb L E, Leech M L, Yang Tiannan. 2006. 40Ar/39Ar thermochronology of the Sulu terrane: Late Triassic exhumation of high- and ultrahigh-pressure rocks and implications for Mesozoic tectonics in East Asia. Special Paper of the Geological Society of America, 403: 77~92.

    • Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22(1): 108~125.

    • Wu Fuyuan, Xu Yigang, Zhu Rixiang, Zhang Guowei. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Science China Earth Sciences, 57(12): 2878~2890.

    • Wu Xiaodong, Zhu Guang, Yin Hao, Su Nan, Lu Yuanchao, Zhang Shuai, Xie Chenglong. 2020. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39: e2020TC006132.

    • Xypolias P. 2009. Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. Journal of Structural Geology, 31: 3~10.

    • Xypolias P. 2010. Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology, 32(12): 2072~2092.

    • Xypolias P, Koukouvelas I K. 2001. Kinematic vorticity and strain rate patterns associated with ductile extrusion in the Chelmosshear zone (External Hellenides, Greece). Tectonophysics 338(1): 59~77.

    • Xypolias P, Kokkalas S. 2006. Heterogeneous ductile deformation along a mid-crustal extruding shear zone: An example from the External Hellenides (Greece). Geological Society of London Special Publications, 268(1): 497~516.

    • Yan Jun, Chen Jiangdeng, Xie Zhi, Zhou Taixi. 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China. Chinese Science Bulletin, 48(14): 2139~2144 (in Chinese with English abstract).

    • Yang Kuifeng, Fan Hongrui, Santosh M, Hu Fangfang, Wilde Simon A, Lan Tingguang, Lu Lina, Liu Yongsheng. 2012. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112~127.

    • Yang Liqiang, Dilek Y, Wang Zhongliang, Weinberg, R F, Liu Yue. 2017. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: Lower crustal melting products in the eastern North China craton. Geological Magazine, 155(5): 1040~1062.

    • Yu Xuefeng, Shan Wei, Xiong Yuxin, Geng Ke, Sun Yuqin, Chi Naijie, Guo Baokui, Li Dapeng, Li Hongkui, Song Yingxin, Yang Deping. 2018. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: A new understanding based on high-resolution reflective seismic survey. Acta Geologica Sinica (English Edition), 92(5): 1823~1840.

    • Zhang Huafeng, Li Shengrong, Zhai Mingguo, Guo Jinghui. 2006. Crust uplift and its implications in the Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 22(2): 285~295 (in Chinese with English abstract).

    • Zhang Jinjiang, Zheng Yadong. 1995. Kinematic vorticity, polar Mohr circle and their application in quantitative analysis of general shear zones. Journal of Geomechanics, 14(3): 55~64 (in Chinese with English abstract).

    • Zhang Jinjiang, Zheng Yadong. 1997. Polar Mohr constructions for strain analysis in general shear zones. Journal of Structural Geology, 19: 745~748.

    • Zhang Tian, Zhang Yueqiao. 2007. Geochronological sequence of Mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints. Geological Journal of China Universities, 13(2): 323~336 (in Chinese with English abstract).

    • Zhang Tian, Zhang Yueqiao. 2008. Late Mesozoic tectono-magmatic evolution history of the Jiaobei uplift, Shandong Peninsula. Acta Geologica Sinica, 82(9): 1210~1228 (in Chinese with English abstract).

    • Zhou Jianbo, Wilde S, Zhao Guochun, Zheng Changqing, Jin Wei, Zhang Xingzhou, Cheng Hong. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160(3-4): 323~340.

    • Zhu Guang, Niu Manlan, Xie Chenglong, Wang Yongsheng. 2010. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the East China continental margin. The Journal of Geology, 118(3): 277~293.

    • Zhu Guang, Jiang Dazhi, Zhang Bilong, Chen Yin. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Research, 22: 86~103.

    • 关康, 罗镇宽, 苗来成, 黄家展. 1998. 胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究. 地质科学, 33(3): 318~328.

    • 耿科, 王瑞江, 李洪奎, 单伟, 李大鹏. 2015. 胶西北地区北截金矿闪长玢岩锆石SHRIMP年龄及其地质意义. 地质学报, 89(6): 1099~1107.

    • 耿科, 王瑞江, 李洪奎, 梁太涛, 张玉波. 2016. 胶西北丛家花岗闪长岩体SHRIMP锆石U-Pb年代学研究. 地球学报, 37(1): 11: 90~100.

    • 纪壮义. 1993. 胶北元古界变质岩的同位素测年新成果及其地质意义. 山东地质, 9(1): 40~51.

    • 林少泽, 朱光, 严乐佳, 姜芹芹, 赵田. 2013. 胶东地区玲珑岩基隆升机制探讨. 地质论评, 59(5): 832~844.

    • 罗贤冬, 杨晓勇, 段留安, 孙卫东. 2014. 胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究. 地质学报, 88(10): 1874~1888.

    • 苗来成, 罗镇宽, 关康, 黄家展. 1998.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义. 岩石学报, 14(2): 198~206.

    • 邱检生, 王德滋, 罗清华, 刘洪. 2001. 鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年——以五莲分岭山火山机构为例. 高校地质学报, 7(3): 351~355.

    • 单伟, 于学峰, 李洪奎, 郭宝奎, 耿科, 李大鹏, 禚传源. 2018. 招平断裂带中段深部结构构造——来自地震剖面的证据. 山东国土资源, 34(5): 49~58.

    • 闫峻, 陈江峰, 谢智, 周泰禧. 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据. 科学通报, 48(14): 2139~2144.

    • 张华锋, 李胜荣, 翟明国, 郭敬辉. 2006. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义. 岩石学报, 22(2): 285~295.

    • 张进江, 郑亚东. 1995. 运动学涡度、极摩尔圆及其在一般剪切带定量分析中的应用. 地质力学学报, 14 (3): 55~64.

    • 张田, 张岳桥. 2007. 胶东半岛中生代侵入岩浆活动序列及其构造制约. 高校地质学报, 13(2): 323~336.

    • 张田, 张岳桥. 2008. 胶北隆起晚中生代构造-岩浆演化历史. 地质学报, 82(9): 1210~1228.

    • 朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45: 1153~1168.

  • 参考文献

    • Bailey C M, Eyster E L. 2003. General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona. Journal of Structural Geology, 25(11): 1883~1893.

    • Bailey C M, Francis B E, Fahrney E E. 2004. Strain and vorticity analysis of transpressional high-strain zones from the Virginia Piedmont, USA. In: Aslop G I, Holdsworth R E, eds. Flow Processes in Faults and Shear Zones. Geological Society, Special Publications, 224: 249~264.

    • Block L, Royden L H. 1990. Core complex geometries and regional scale flow in the lower crust. Tectonics, 9(4): 557~567.

    • Buck W R. 1988. Flexural rotation of normal faults. Tectonics, 7(5): 959~973.

    • Cheng Chao, Sun Shengsi, Dong Yunpeng, Zhang Bin, Guo Zhao. 2022. Exhumation of plutons controlled by boundary faults: Insights from the kinematics, microfabric, and geochronology of the Taibai shear zone, Qinling Orogen, China. Geological Society of America Bulletin, 134(11-12): 2723~2744.

    • Carosi R, Petroccia A, Iaccarino S, Simonetti M, Langone A, Montomoli C. 2020. Kinematics and timing constraints in a transpressive tectonic regime: The example of the Posada-Asinara shear zone (NE Sardinia, Italy). Geosciences, 10(8): 1~26.

    • Charles N, Gumiaux C, Augier R, Chen Yan, Zhu Rixiang, Lin Wei. 2011. Metamorphiccore complexes vs. synkinematic plutons in continental extension setting: Insights from key structures (Shandong Province, eastern China). Journal of Asian Earth Sciences, 40(1): 261~278.

    • Charles N, Augier R, Gumiaux C, Monié P, Chen Yan, Faure M, Zhu, Rixiang. 2013. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula(China, East Asia). Gondwana Research, 24(1): 412~428.

    • Coney P J. 1980. Cordilleran metamorphic core complexes: An overview. In: Crittenden M D, Coney P J, Davis G H, eds. Cordilleran Metamorphic Core Complexes. Geological Society of America Memoir, 153: 7~31.

    • Coney P J, Harms T A. 1984. Cordilleran metamorphic cre complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 12: 550~554.

    • Davis G A, Lister L S. 1988. Detachment faulting in continental extension: Perspectives from the southwest U. S. Cordillera. Processes in continental lithospheric deformation. Special Paper of the Geological Society of America, 218: 133~159.

    • Davis G H, Coney P J. 1979. Geologic development of the Cordilleran metamorphic core complexes. Geology, 7(3): 120~124.

    • Deng Jun, Liu Xuefei, Wang Qingfei, Dilek Y, Liang Yayun. 2017. Isotopic characterization and petrogenetic modeling of Early Cretaceous mafic diking—Lithospheric extension in the North China craton, eastern Asia. Geological Society of America Bulletin, 129(11-12): 1379~1407.

    • Forte A M, Bailey C M. 2007. Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Journal of Structural Geology, 29: 983~1001.

    • Fossen H, Cavalcante G C G. 2017. Shear zones—A review. Earth Science Reviews, 171: 434~455.

    • Fry N. 1979. Random point distribution and strain measurement in rocks. Tectonophysics, 60(1-2): 89~105.

    • Geng Ke, Wang Ruijiang, Li Hongkui, Shan Wei, Li Dapeng. 2015. Zircon SHRIMP age of diorite-porphyrite in the Beijie gold deposit from the Northwest Jiaodong area and its geological implications. Acta Geologica Sinica, 89(6): 1099~1107 (in Chinese with English abstract).

    • Geng Ke, Wang Ruijiang, Li Hongkui, Liang Taitao, Zhang Yubo. 2016. Zircon SHRIMP U-Pb geochronology of the Congjia granodiorite from the Northwest Jiaodong area. Acta Geoscientica Sinica, 37(1): 90~100 (in Chinese with English abstract).

    • Goldfarb R J, Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique? Geoscience Frontiers, 5(2): 139~153.

    • Goss S C, Wilde S A, Wu Fuyuan, Yang Jinhui. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309~326.

    • Guan Kuang, Luo zhengkuan, Miao Laicheng, Huang jiazhan. 1998. SHRIMP in zircon chronology for the Guojialing suite granite in Jiaodong Zhaoye district. Scientia Geologica Sinica, 33(3): 318~328 (in Chinese with English abstract).

    • Hacker B R, Wallis S R, Ratschbacher L, Grove M, Gehrels G. 2006. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25(5): TC5006.

    • Hetzel R, Passchier C W, Ring U, Dora Ö O. 1995. Bivergent extension in orogenic belts: The Menderes massif (southwestern Turkey). Geology, 23(5): 455~458.

    • Hirth G, Tullis J. 1992. Dislocation creep regimes in quartz aggregates. Journal of Structural Geology, 14(2): 145~159.

    • Jeffery G B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London Series A, 102: 161~179.

    • Jessup M J, Law R D, Frassi C. 2007. The rigid grain net (RGN): An alternative method for estimating mean kinematic vorticity number (Wm). Journal of Structural Geology, 29(3): 411~421.

    • Ji Zhuangyi. 1993. New data of isotope age of the Proterozoic metamorphic rocks from the northern Jiaodong and its geological significance. Geology of Shandong, 9(1): 40~51 (in Chinese with English abstract).

    • Jiang Neng, Chen Jingzhi, Guo Jinghui, Chang Guohu. 2012. In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion. Lithos, 142-143: 84~94.

    • Johnson S E, Lenferink H J, Price N A, Marsh J H, Koons P O, West Jr D P, Beane R. 2009. Clast-based kinematic vorticity gauges: The effects of slip at matrix/clast interfaces. Journal of Structural Geology, 31(11): 1322~1339.

    • Langille J M, Jessup M J, Cottle J M, Newell D, Seward G. 2010a. Kinematic evolution of the Ama Drime detachment: Insights into orogen-parallel extension and exhumation of the Ama Drime Massif, Tibete-Nepal. Journal of Structural Geology, 32(7): 900~919.

    • Langille J M, Lee J, Hacker B, Seward G. 2010b. Middle crustal ductile deformation patterns in southern Tibet: Insights from vorticity studies in Mabja dome. Journal of Structural Geology, 32(1): 70~85.

    • Law R D, Searle M P, Simpson R L. 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest massif, Tibet. Journal of the Geological Society, 161: 305~320.

    • Li Xinghui, Fan Hongrui, Hu Fangfang, Hollings P, Yang Kuifeng, Liu Xuan. 2018. Linking lithospheric thinning and magmatic evolution of late Jurassic to early cretaceous granitoids in the Jiaobei terrane, southeastern North China craton. Lithos, 324-325: 280~296.

    • Lin Shaoze, Zhu Guang, Yan Lejia, Jiang Qingqing, Zhao Tian. 2013. Discussion on uplifting mechanism of the Linglong batholith in the Jiaodong region. Geological Review, 59(5): 832~844 (in Chinese with English abstract).

    • Lister G S, Davis G A. 1989. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, U. S. A. Journal of Structural Geology, 11(1-2): 65~94.

    • Luo Xiandong, Yang Xiaoyong, Duan Liuan, Sun Weidong. 2014. Geochemical and geochronological study of the gold related Guojialing pluton and Shangzhuang pluton in Jiaobei block. Acta Geologica Sinica, 88(10): 1874~1888 (in Chinese with English abstract).

    • Ma Liang, Jiang Shaoyong, Dai Baozhang, Jiang Yaohui, Hou Minglan, Pu Wei, Xu Bin. 2013. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 162-163: 251~263.

    • MacCready T. 1996. Misalignment of quartz c-axis fabrics and lineations due to oblique final strain increments in the Ruby Mountains core complex, Nevada. Journal of Structural Geology, 18(6): 765~776.

    • Malavieille J. 1993. Late orogenic extension in mountain belts: Insights from thebasin and range and the late Paleozoic Variscan belt. Tectonics, 12(5): 1115~1130.

    • Mancktelow N S, Pennacchioni G. 2004. The influence of grain boundary fluids on the microstructure of quartz-feldspar mylonites. Journal of Structural Geology, 26(1): 47~69.

    • Mansouri S M, Keshavarz S, Shahpasandzadeh M, Faghih A. 2021. Strain and vorticity analyses using rotated porphyroclasts in the Tanbour metamorphic rocks: Evidence of transpressional deformation along the Sanandaj-Sirjan metamorphic belt, SW Iran. Journal of Structural Geology, 148: 104358.

    • Means W D. 1994. Rotational quantities in homogeneous flow and the development of smallscale structure. Journal of Structural Geology, 16(4): 437~445.

    • Means W D, Hobbs B E, Lister G S, Williams P F. 1980. Vorticity and non-coaxiality in progressive deformations. Journal of Structural Geology, 2(3): 371~378.

    • Miao Liaocheng, Luo Zhengkuan, Guan Kuang, Huang Jiazhan. 1998. The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite, East Shangdong Province. Acta Petrologica Sinica, 14(2): 198~206 (in Chinese with English abstract).

    • Mulchrone K F. 2007a. An analytical solution in 2D for the motion of rigid elliptical particles with a slipping interface under a general deformation. Journal of Structural Geology, 29(6): 950~960.

    • Mulchrone K F. 2007b. Shape fabrics in populations of rigid objects in 2D: Estimating finite strain and vorticity. Journal of Structural Geology, 29(9): 1558~1570.

    • Passchier C W. 1987. Stable positions of rigid objects in non-coaxial flow—A study in vorticity analysis. Journal of Structural Geology, 9(5): 679~690.

    • Passchier C W. 1988. The use of Mohr circles to describe non-coaxial progressive deformation. Tectonophysics, 149(3): 323~338.

    • Passchier C W. 1997. The fabric attractor. Journal of Structural Geology, 19(1): 113~127.

    • Passchier C W, Trouw R A J. 2005. Microtectonics. Berlin, Germany: Springer Verlag.

    • Platt J P, Behrmann J H. 1986. Structures and fabrics in a crustal scale shear zone, Betic Cordilleras, S. E. Spain. Journal of Structural Geology, 8: 15~34.

    • Qiu Jiansheng, Wang Dezi, Lo Qinghua, Liu Hong. 2001. 40Ar-39Ar dating for volcanic rocks of the Qingshan Formation in the Jiaolai basin, eastern Shandong Province: A case study of the Fenlingshan volcanic apparatus in Wulian County. Geological Journal of China Universities, 7(3): 351~355 (in Chinese with English abstract).

    • Ramsay J G. 1980. Shear zone geometry: A review. Journal of Structural Geology, 2: 83~101.

    • Ramsay J G, Huber M. 1983. The techniques of modern structural geology. Volume I. Strain analysis. Academic Press, London. Earth-Science Reviews, 23(3): 242~243.

    • Rey P, Vanderhaeghe O, Teyssier C. 2001. Gravitational collapse of the continental crust: Definition, regimes and modes. Tectonophysics, 342(3-4): 435~449.

    • Shan Wei, Yu Xuefeng, Li Hongkui, Guo Baokui, Geng ke, Li Dapeng, Zhuo Chuanyuan. 2018. The deep structural characteristics under the middle of the Zhaoping fault zone: Evidences coming from seismic section survey. Shandong Land and Resources, 34(5): 49~58 (in Chinese with English abstract).

    • Simpson C, De Paor D G. 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology 15(1): 1~20.

    • Simpson C, De Paor D G. 1997. Practical analysis of general shear zones using the porphyroclast hyperbolic distribution method: An example from the Scandinavian Caledonides. In: Evolution of Geological Structures in Micro- to Macro-Scales. Berlin: Springer Dordrecht, 169~184.

    • Simonetti M, Carosi R, Montomoli C, Cottle J M, Law R D. 2020a. Transpressive deformation in the Southern European Variscan Belt: Newinsights from the Aiguilles Rouges massif (western Alps). Tectonics, 39(6): e2020TC006153.

    • Simonetti M, Carosi R, Montomoli C, Corsini M, Petroccia A, Cottle J M, Iaccarino A. 2020b. Timing and kinematics of flow in a transpressive dextral shear zone, Maures massif (southern France). International Journal of Earth Sciences, 109: 2261~2285.

    • Spencer J E, Chase C G. 1989. Role of crustal flexure in initiation of low-angle normal faults and implications for structural evolution of the basin and range province. Journal of Geophysical Research, 94(B2): 1765~1775.

    • Stipp M, Stunitz H, Heilbronner R, Schmid S M. 2002. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. Journal of Structural Geology, 24(12): 1861~1884.

    • Sullivan W A. 2008. Significance of transport-parallel strain variations in part of the Raft River shear zone, Raft River Mountains, Utah, USA. Journal of Structural Geology, 30(2): 138~158.

    • Tang Jun, Zheng Yongfei, Wu Yuanbao, Gong Bing. 2006. Zircon SHRIMP U-Pb dating, C and O isotopes for impure marbles from the Jiaobei terrane in the Sulu orogeny. Implication for tectonic affinity. Precambrian Research, 144(1-2): 1~18.

    • Tang Jun, Zheng Yongfei, Wu Yuanbao, Gong Bing, Liu Xiaoming. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu Orogen. Precambrian Research, 152(1): 48~82.

    • Tikoff B, Fossen H. 1995. The limitations of three-dimensional kinematic vorticity analysis. Journal of Structural Geology, 17(12): 1771~1784.

    • Vanderhaeghe O. 1999. Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: Control of regional deformation. Tectonophysics, 312(1): 35~55.

    • Vanderhaeghe O. 2009. Migmatites, granites and orogeny: Flow modes of partially-molten rocks andmagmas associated with melt/solid segregation in orogenic belts. Tectonophysics, 477(3): 119~134.

    • Vanderhaeghe O, Teyssier C. 1997. Formation of the Shuswap metamorphic core complex during late-orogenic collapse of the Canadian Cordillera: Role of ductile thinning and partial melting of the mid-to lower crust. Geodinamica Acta, 10(2): 41~58.

    • Vollmer F W. 2018. Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid. Computers & Geosciences, 115: 134~142.

    • Wan Yusheng, Song Biao, Liu Dunyi, Wilde S A, Wu Jiashan, Shi Yuruo, Yin Xiaoyan, Zhou Hongying. 2006. SHRIMP U-Pb zircon geochronology of Paleoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Paleoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249~271.

    • Wallis S R. 1992. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. Journal of Structural Geology, 14(3): 271~280.

    • Wallis S R. 1995. Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan. Journal of Structural Geology, 17(8): 1077~1093.

    • Wallis S R, Platt J P, Knott S D. 1993. Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian arc and theeastern Alps. American Journal of Science, 293(5): 463~495.

    • Webb L E, Leech M L, Yang Tiannan. 2006. 40Ar/39Ar thermochronology of the Sulu terrane: Late Triassic exhumation of high- and ultrahigh-pressure rocks and implications for Mesozoic tectonics in East Asia. Special Paper of the Geological Society of America, 403: 77~92.

    • Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Canadian Journal of Earth Sciences, 22(1): 108~125.

    • Wu Fuyuan, Xu Yigang, Zhu Rixiang, Zhang Guowei. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Science China Earth Sciences, 57(12): 2878~2890.

    • Wu Xiaodong, Zhu Guang, Yin Hao, Su Nan, Lu Yuanchao, Zhang Shuai, Xie Chenglong. 2020. Origin of low-angle ductile/brittle detachments: Examples from the Cretaceous Linglong metamorphic core complex in eastern China. Tectonics, 39: e2020TC006132.

    • Xypolias P. 2009. Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. Journal of Structural Geology, 31: 3~10.

    • Xypolias P. 2010. Vorticity analysis in shear zones: A review of methods and applications. Journal of Structural Geology, 32(12): 2072~2092.

    • Xypolias P, Koukouvelas I K. 2001. Kinematic vorticity and strain rate patterns associated with ductile extrusion in the Chelmosshear zone (External Hellenides, Greece). Tectonophysics 338(1): 59~77.

    • Xypolias P, Kokkalas S. 2006. Heterogeneous ductile deformation along a mid-crustal extruding shear zone: An example from the External Hellenides (Greece). Geological Society of London Special Publications, 268(1): 497~516.

    • Yan Jun, Chen Jiangdeng, Xie Zhi, Zhou Taixi. 2003. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China. Chinese Science Bulletin, 48(14): 2139~2144 (in Chinese with English abstract).

    • Yang Kuifeng, Fan Hongrui, Santosh M, Hu Fangfang, Wilde Simon A, Lan Tingguang, Lu Lina, Liu Yongsheng. 2012. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112~127.

    • Yang Liqiang, Dilek Y, Wang Zhongliang, Weinberg, R F, Liu Yue. 2017. Late Jurassic, high Ba-Sr Linglong granites in the Jiaodong Peninsula, East China: Lower crustal melting products in the eastern North China craton. Geological Magazine, 155(5): 1040~1062.

    • Yu Xuefeng, Shan Wei, Xiong Yuxin, Geng Ke, Sun Yuqin, Chi Naijie, Guo Baokui, Li Dapeng, Li Hongkui, Song Yingxin, Yang Deping. 2018. Deep structural framework and genetic analysis of gold concentration areas in the northwestern Jiaodong Peninsula, China: A new understanding based on high-resolution reflective seismic survey. Acta Geologica Sinica (English Edition), 92(5): 1823~1840.

    • Zhang Huafeng, Li Shengrong, Zhai Mingguo, Guo Jinghui. 2006. Crust uplift and its implications in the Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 22(2): 285~295 (in Chinese with English abstract).

    • Zhang Jinjiang, Zheng Yadong. 1995. Kinematic vorticity, polar Mohr circle and their application in quantitative analysis of general shear zones. Journal of Geomechanics, 14(3): 55~64 (in Chinese with English abstract).

    • Zhang Jinjiang, Zheng Yadong. 1997. Polar Mohr constructions for strain analysis in general shear zones. Journal of Structural Geology, 19: 745~748.

    • Zhang Tian, Zhang Yueqiao. 2007. Geochronological sequence of Mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints. Geological Journal of China Universities, 13(2): 323~336 (in Chinese with English abstract).

    • Zhang Tian, Zhang Yueqiao. 2008. Late Mesozoic tectono-magmatic evolution history of the Jiaobei uplift, Shandong Peninsula. Acta Geologica Sinica, 82(9): 1210~1228 (in Chinese with English abstract).

    • Zhou Jianbo, Wilde S, Zhao Guochun, Zheng Changqing, Jin Wei, Zhang Xingzhou, Cheng Hong. 2008. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160(3-4): 323~340.

    • Zhu Guang, Niu Manlan, Xie Chenglong, Wang Yongsheng. 2010. Sinistral to normal faulting along the Tan-Lu fault zone: Evidence for geodynamic switching of the East China continental margin. The Journal of Geology, 118(3): 277~293.

    • Zhu Guang, Jiang Dazhi, Zhang Bilong, Chen Yin. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Research, 22: 86~103.

    • 关康, 罗镇宽, 苗来成, 黄家展. 1998. 胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究. 地质科学, 33(3): 318~328.

    • 耿科, 王瑞江, 李洪奎, 单伟, 李大鹏. 2015. 胶西北地区北截金矿闪长玢岩锆石SHRIMP年龄及其地质意义. 地质学报, 89(6): 1099~1107.

    • 耿科, 王瑞江, 李洪奎, 梁太涛, 张玉波. 2016. 胶西北丛家花岗闪长岩体SHRIMP锆石U-Pb年代学研究. 地球学报, 37(1): 11: 90~100.

    • 纪壮义. 1993. 胶北元古界变质岩的同位素测年新成果及其地质意义. 山东地质, 9(1): 40~51.

    • 林少泽, 朱光, 严乐佳, 姜芹芹, 赵田. 2013. 胶东地区玲珑岩基隆升机制探讨. 地质论评, 59(5): 832~844.

    • 罗贤冬, 杨晓勇, 段留安, 孙卫东. 2014. 胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究. 地质学报, 88(10): 1874~1888.

    • 苗来成, 罗镇宽, 关康, 黄家展. 1998.玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义. 岩石学报, 14(2): 198~206.

    • 邱检生, 王德滋, 罗清华, 刘洪. 2001. 鲁东胶莱盆地青山组火山岩的40Ar-39Ar定年——以五莲分岭山火山机构为例. 高校地质学报, 7(3): 351~355.

    • 单伟, 于学峰, 李洪奎, 郭宝奎, 耿科, 李大鹏, 禚传源. 2018. 招平断裂带中段深部结构构造——来自地震剖面的证据. 山东国土资源, 34(5): 49~58.

    • 闫峻, 陈江峰, 谢智, 周泰禧. 2003. 鲁东晚白垩世玄武岩中的幔源捕虏体: 对中国东部岩石圈减薄时间制约的新证据. 科学通报, 48(14): 2139~2144.

    • 张华锋, 李胜荣, 翟明国, 郭敬辉. 2006. 胶东半岛早白垩世地壳隆升剥蚀及其动力学意义. 岩石学报, 22(2): 285~295.

    • 张进江, 郑亚东. 1995. 运动学涡度、极摩尔圆及其在一般剪切带定量分析中的应用. 地质力学学报, 14 (3): 55~64.

    • 张田, 张岳桥. 2007. 胶东半岛中生代侵入岩浆活动序列及其构造制约. 高校地质学报, 13(2): 323~336.

    • 张田, 张岳桥. 2008. 胶北隆起晚中生代构造-岩浆演化历史. 地质学报, 82(9): 1210~1228.

    • 朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学: 地球科学, 45: 1153~1168.