en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

闫金禹,男,1998年生。硕士研究生,蛇绿岩及深部地幔矿物研究方向。E-mail:978695974@qq.com。

通讯作者:

熊发挥,男,1985年生。博士,研究员,主要从事蛇绿岩和铬铁矿及地幔矿物学研究。E-mail:xiongfahui@126.com。

参考文献
Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277~295.
参考文献
Bébien J. 1980. Magmatismes basiques dits “orogeniques” et “anorogeniques” et teneurs entro 2: Les associations “isotitanees” et “anisotitanfes”. Journal of Volcanology & Geothermal Research, 8(2-4): 337~342.
参考文献
Barth M G, Mason P R, Davies G R, Dijkstra A H, Drury M R. 2003. Geochemistry of the Othris ophiolite, Greece: Evidence for refertilization? Journal of Petrology, 44(10): 1759~1785.
参考文献
Barth M G, Mason P, Davies G R, Drury M R. 2008. The Othris ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge. Lithos, 100(1-4): 234~254.
参考文献
Bao Peisheng, Wang Xibin, Peng Genyong, Chen Fangyuan. 1999. Chromite Deposits in China. Beijing: Science Press, 38: 1127~1130 (in Chinese with English abstract).
参考文献
Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—Questioning about the rock/ melt interaction metallogeny. Geological Bulletin Of China, 28(12): 1741~1761(in Chinese with English abstract).
参考文献
Barnes S, Boyd R, Korneliussen A, Nilsson L, Often M, Pedersen R B. 1988. The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: Examples from Norway. Springer Netherlands, Geo-Platinum, Elsevier: 113~143.
参考文献
Bortolotti V, Chiari M, Marcucci M, Photiades A, Principi G, Saccani E. 2008. New geochemical and age data on the ophiolites from the Othrys area (Greece): Implication for the Triassic evolution of the Vardar ocean. Ofioliti, 33: 135~151.
参考文献
Bai Wenji, Yang Jingsui, Robinson P, Fang Qingsong, Zhang Zhongming, Yan Binggang, Hu Xufeng. 2001. Study of diamonds from chromitites in the Luobusa ophiolite, Tibet. Acta Geologica Sinica, 75(3): 404~409 (in Chinese with English abstract).
参考文献
Bai Wenji, Yang Jingsui, Fang Qingsong, Yan Binggang, Zhang Zhongming. 2002. Ultra-high pressure minerals: FeO, Fe, FeSi, Si and SiO2 assemblage from ophiolite in Tibet and its earth dynamic significance. Acta Geoscientia Sinica, 23(5): 395~402 (in Chinese with English abstract).
参考文献
Bai Wenji, Shi Nicheng, Fang Qingsong, Li Guowu, Yang Jingsui, Xiong Ming, Rong He. 2006. Luobusaite: A new mineral. Acta Geologica Sinica, 80(10): 1487~1490(in Chinese with English abstract).
参考文献
Bai Wenji, Shi Nicheng, Yangjingsui, Fang Qingsong, Ren Yufeng, Rong He, Li Guowu, Ma Zhesheng. 2007. An assemblage of simple oxide minerals from ophiolitic podiform chromitites in Tibet and their ultrahigh pressure origin. Acta Geologica Sinica, 81(11): 1538~1549(in Chinese with English abstract).
参考文献
Bindi L, Zaccarini F, Bonazzi P, Grammatikopoulos T, Garuti G. 2020a. Eliopoulosite, V7S8, a new sulfide from the podiform chromitite of the Othrys ophiolite, Greece. Minerals, 10(3): 245.
参考文献
Bindi L, Zaccarini F, Ifandi E, Tsikouras B, Mauro D. 2020b. Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, (10): 131.
参考文献
Dijkstra A H, Barth M G, Drury M R, Mason P R, Vissers R L. 2003. Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othrisperidotite massif (Greece). Geochemistry, Geophysics, Geosystems, 4(8): 1~24.
参考文献
Dickey J S. 1976. A hypothesis of origin for podiform chromite deposits. In: Chromium: Its Physicochemical Behavior and Petrologic Significance. Oxford: Pergamon Press, 1061~1074.
参考文献
Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387~411.
参考文献
Dobrzhinetskaya L F, Wirth R, Yang Jingsui, Hutcheon I D, Weber P K, Ii H W G. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233~19238.
参考文献
Dobrzhinetskaya L F, Wirth R, Yang J S, Green H W, Hutcheon I D, Weber P K, Grew E S. 2014. Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth's mantle. American Mineralogist, 99(4): 764~772.
参考文献
Economou M. 1986. Chromite deposits of Greece. Chromites, 129~159.
参考文献
Fang Qingsong, Bai Wenji, Yang Jingsui, Xu Xiangzhen, Li Guowu, Shi Nicheng, Xiong Ming, Rong He. 2009. Qusongite (WC): A new mineral. American Mineralogist, 94: 387~390.
参考文献
Fang Qingsong, Bai Wenji, Yang Jingsui, Rong He, Shi Nicheng, Li Guowu, Xiong Ming, Ma Zhesheng. 2013. Titanium, Ti, a new mineral species from Luobusha, Tibet, China. Acta Geologica Sinica (English Edition), 87(5): 1275~1280.
参考文献
Garuti G, Zaccarini F, Economou-Eliopoulos M. 1999a. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os-Ru fractionation in ophiolitic upper mantle of the Balkan peninsula. Mineralium Deposita, 34(3): 312~319.
参考文献
Garuti G, Zaccarini F, Moloshag V P, Alimov V. 1999b. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: An example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Canadian Mineralogist, 37: 1099~1115.
参考文献
Guo Guolin, Yang Jingsui, Robinson P T, Liu Xiaodong, Xu Xiangzhen, Xiong Fahui. 2016. Platinum-group mineral (PGM) and Base-metal sulphide (BMS) inclusions in chromitites of the Zedang ophiolite, southern Tibet, China and their petrogenetic significance. Acta Geologica Sinica (English Edition), 90(3): 900~912.
参考文献
Guo Guolin, Yang Jingsui, Liu Xiaodong, Xu Xiangzhen, Wu Yong. 2016. In situ research on PGM in Luobusa ophiolitic chromitites, Tibet: Implications for the crystallization of the chromite. Acta Petrologica Sinica, 32(12): 3673~3684(in Chinese with English abstract).
参考文献
Grebby S, Cunningham D, Naden J, Tansey K. 2010. Lithological mapping of the Troodos ophiolite, Cyprus, using airborne lidar topographic data. Remote Sensing of Environment, 114(4): 713~724.
参考文献
Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, Gonzalez-Jimenez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O'Reilly S Y. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655~684.
参考文献
Hagemann J W, Rothfus J A. 1983. Polymorphism and transformation energetics of saturated monoacid triglycerides from differential scanning calorimetry and theoretical modeling. Journal of the American Oil Chemists' Society, 60(6): 1123~1131.
参考文献
Ifandi E, Zaccarini F, Tsikouras B, Grammatikopoulos T, Hatzipanagiotou K. 2018. First occurrences of Ni-V-Co phosphides in chromitite from the agios stefanos mine, Othrys ophiolite, Greece. Ofioliti, 43(2): 131~145.
参考文献
Irvine T N. 1965. Chromian spinel as a petrogenetic indicator: Part 1. theory. CanadianJournal of Earth Sciences, 2(6): 648~672.
参考文献
Li C Y, Yu Z H, Liu H Z, Lü T Q. 2013. The crystallographic stability and anisotropic compressibility of C54-type TiSi2 under high pressure. Journal of Physics and Chemistry of Solids, 74(9): 1291~1294.
参考文献
Li Guowu, Fang Qingsong, Shi Nicheng, Bai Wenji, Yang Jingsui, Xiong Ming, Ma Zhesheng, Rong He. 2009. Zangboite, TiFeSi2, a new mineral species from Luobusa, Tibet, China, and its crystal structure. The Canadian Mineralogist, 47(5): 1265~1274.
参考文献
Li Guowu, Bai Wenji, Shi Nicheng, Fang Qingsong, Xiong Ming, Yang Jingsui, Ma Zhesheng, Rong He. 2012. Linzhiite, FeSi2, a redefined and revalidated new mineral species from Luobusha, Tibet, China. European Journal of Mineralogy, 24(6): 1047~1052.
参考文献
Li Guowu, Shi Nicheng, Bai Wenji, Fang Qingsong, Xiong Ming. 2015. Seven new intermetallic minerals found in Luobusa, Tibet, China. Acta Mieralogica Sinica, (1): 13~18 (in Chinese with English abstract).
参考文献
Li Jinyang, Yang Jingsui, Ba Dengzhu, Xu Xiangzhen, Meng Fancong, Li Tianfu. 2012. Origin of different dunites in the Luobusa ophiolite, Tibet. Acta Petrologica Sinica, 28(6): 1829~1845(in Chinese with English abstract).
参考文献
Melcher F, Grum W, Simon G, Thalhammer T V, Stumpfl E F. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. Journal of Petrology, 38(10): 1419~1458.
参考文献
Mitsis I, Economou-Eliopoulos M. 2001. Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece. American Mineralogist, 86(10): 1143~1150.
参考文献
Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters, 203(1): 235~243.
参考文献
Ohnenstetter D, Watkinson D H, Talkington R W. 1986. Cryptic compositional variation in laurite and enclosing chromite from the bird river sill, Manitoba. Economic Geology, 81(5): 1159~1168.
参考文献
Photiades A, Saccani E, Tassinari R. 2003. Petrogenesis and tectonic setting of volcanic rocksfrom the subpelagonian ophiolitic mélange in the agoriani area (Othris, Greece). Ofioliti, 28(2): 121~135.
参考文献
Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 16(1): 77~94.
参考文献
Proenza J, Gervilla F, Melgarejo J, Bodinier J L. 1999. Al- andCr-rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94(4): 547~566.
参考文献
Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1~67.
参考文献
Reyntjens S, Puers R. 2001. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 1157(11): 287~300.
参考文献
Saccani E, Photiades A. 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, 73(3-4): 229~253.
参考文献
Shi Nicheng, Bai Wenji, Li Guowu, Xiong Ming, Fang Qingsong, Yang Jingsui, Ma Zhesheng, Rong He. 2009. Yarlongite: anew metallic carbide mineral. Acta Geologica Sinica, 83(1): 25~30(in Chinese with English abstract).
参考文献
Shi Nicheng, Bai Wenji, Li Guowu, Xiong Ming, Yang Jingsui, Ma Zhesheng, Rong He. 2012. Naquite, FeSi, a new mineral species from Luobusa, Tibet, western China. Acta Geologica Sinica (English Edition), 86(3): 533~538.
参考文献
Shi Rendeng. 2005. Comment on theprogress in and problems on ophiolite study. Geological Review, 51(6): 681~693(in Chinese with English abstract).
参考文献
Spence J, Crewe A V. 2003. High-resolution electron microscopy. Physics Today, 34(9).
参考文献
Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, CuiMengmeng, Peng Qingshan. 2018a. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37(6): 1035~1046(in Chinese with English abstract).
参考文献
Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan. 2018b. Potential applications of Fe and Mg isotopes in genesis of chromite deposits in ophiolites. Earth Sciences, 43(4): 1011~1024.
参考文献
Su Benxun, Liu Xia, Chen Chen, Xiao Yan, Zhou Meifu, Bai Yang, Zhang Pengfei. 2021. A new model for chromitite formation in ophiolites: fluid immiscibility. Science China Earth Sciences, 64(2): 220~230 (in Chinese).
参考文献
Sudraud P. 1988. Focused-ion-beam milling, scanning-electron microscopy, and focused droplet deposition in a single microcircuit surgery tool. Journal of Vacuum Science & Technology, 6(1): 234~238.
参考文献
Tang Xu, Li Jinhua. 2021. Transmission electron microscopy: New advances and applications for earth and planetary sciences. Earth Science, 46(4): 1374~1415(in Chinese with English abstract).
参考文献
Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guelman-soridag district, Turkey. Economic Geology, 59(8): 1497~1524.
参考文献
Thayer T P. 1970. Chromite segregations as petrogenetic indicators. Geological Society of South Africa Special Publications, 380~390.
参考文献
Tsikouras B, Karipi S, Rigopoulos I, Perraki M, Pomonis P, Hatzipanagiotou K. 2009. Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos, 113(3-4): 540~554.
参考文献
Tsikouras B, Karipi S, Hatzipanagiotou K. 2013. Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (central Greece). Lithos, 175: 16~29.
参考文献
Tsikouras B, Ifandi E, Karipi S, Grammatikopoulos T A, Hatzipanagiotou K. 2016. Investigation of platinum group minerals (PGM) from Othrys chromitites (Greece) using superpanning concentrates. Minerals, 6(3): 94.
参考文献
Vincent R, Midgley P A. 1994. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53(3): 271~282.
参考文献
Wang Cunzhi, Jiang Yang, Xing Guangfu. 2011. Recent situation of researches on ophiolites and some problems concerning the ophiolites in south China. Resources Survey & Environment, 32(4): 235~246.
参考文献
Wang Hengsheng. 1983. Chromite deposits and their genesis in China. Science Press (in Chinese).
参考文献
Wirth R. 2004. Focused ion beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16(6): 863~876.
参考文献
Wirth R, Kaminsky F, Matsyuk S, Schreiber A. 2009. Unusual micro- and nano-inclusions in diamonds from the Juina area, brazil. Earth and Planetary Science Letters, 286(1-2): 292~303.
参考文献
Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits—A case study of the Luobosa chromite deposit, Tibet. Chinese Journal of Geology, 22(2): 166~181. (in Chinese with English abstract).
参考文献
Xiao Xuchang, Wang Fangguo. 1984. An introduction to the ophiolite of China. Bulletin of the Chinese Academy of Geological Sciences, 9: 19~30(in Chinese).
参考文献
Xiong Fahui. 2013. Multi-stage formation of the podiform chromitite. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).
参考文献
Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromitite. Geology in China, 40(3): 820~839(in Chinese with English abstract).
参考文献
Xiong Fahui, Yang Jingsui, Ba Dengzhu, Liu Zhao, Xu Xiangzhen, Feng Guangying, Niu Xiaolu, Xu Jifeng. 2014. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet. Acta Petrologica Sinica, 30(8): 2137~2163(in Chinese with English abstract).
参考文献
Xiong Fahui, Yang Jingsui, Robinson P T, Xu Xiangzhen, Liu Zhao, Li Yuan, Li Jinyang, Chen Songyong. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2): 525~542.
参考文献
Xiong Fahui, Xu Xiangzhen, Mugnaioli E, Gemmi M, Yang Jingsui. 2020. Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: Is this evidence for super-reduced mantle-derived fluids? European Journal of Mineralogy, 32: 557~574.
参考文献
Xiong Fahui, Zoheir B, Wirth R, Milushi I, Qiu Tian, Yang Jingsui. 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398: 106305.
参考文献
Xiong Fahui, Xu Xiangshen, Mugnaioli E, Gemmi M, Robinson P T. 2022a. Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron. American Mineralogist, 107(1): 43~53.
参考文献
Xiong Fahui, Xu Xiangzhen, Mugnaioli E, Gemmi M, Wirth R, Yang Jingsui, Grew E S. 2022b. Wenjiite, Ti10(Si, P, □)7, and kangjinlaite, Ti11(Si, P)10, new minerals in the ternary Ti-P-Si system from the Luobusa ophiolite, Tibet, China. American Mineralogist, doi. org/10. 2138/am-2022-8226.
参考文献
Xiong Qing, Griffin W L, Huang Jinxiang, Gain S E M, Toledo V, Pearson N J, O'Reilly S Y. 2017. Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from mount carmel. European Journal of Mineralogy, 29(4): 557~570.
参考文献
Xu Xiangzhen. 2009. Origin of the Kangjinla podiform chromite deposit and mantle peridotite, southern Tibet. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).
参考文献
Xu Xiangzhen, Yang Jingsui, Ba Dengzhu, Guo Guolin, Robinson P T, Li Jinyang. 2011. Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, southern Tibet. Journal of Asian Earth Sciences, 42(4): 553~568.
参考文献
Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green II H W. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875~878.
参考文献
Yang Jingsui, Bai Wenji, Fang Qingsong, Rong He. 2008. Ultra-high pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 12 (in Chinese with English abstract).
参考文献
Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, Rong He, Li Yuan, Xiong Fahui, Liang Fenghua, Liu Zhao, Liu Fei, Li Jinyang, Li Zhaoli, Chen Songyong, Guo Guolin, Robinson P. 2013. Ophiolite-type diamond and deep genesis of chromitite. Acta Geoscientica Sinica, 34(6): 11 (in Chinese with English abstract).
参考文献
Yang Jingsui, Robinson P T, Xu Xiangzhen, Xiong Fahui, Lian Dongyang. 2018. Diamond in oceanic peridotites and chromitites: evidence for deep recycled mantle in the global ophiolite record. Acta Geologica Sinica (English Edition), 92(sup. 2): 42.
参考文献
Yuan Peng, Du Peixin, Zhou Junming, Wang Shun. 2019. Insights into the geological and resource significance of aluminosilicate nanominerals. Acta Petrologica Sinica, 35(1): 164~176 (in Chinese with English abstract).
参考文献
Zaccarini F, Bindi L, Ifandi, Elena. 2019. Tsikourasite, Mo3Ni2P1+x(x<0. 25), a new phosphide from the chromitite of the othrys ophiolite, Greece. Minerals, 9(4): 248.
参考文献
Zaccarini F, Bindi L, Tsikouras B, Grammatikopoulos T, Stanley C J, Garuti G. 2020. Arsenotuč ekite, Ni18Sb3AsS16, a new mineral from the Tsangli chromitites, Othrys ophiolite, Greece. Mineralogy and Petrology, 114(5): 435~442.
参考文献
Zhang Chang, Liu Chuanzhou, Wu Fuyuan, Zhang Liangliang, Ji Weiqiang, Wang Jiangang, Yang Liuyang. 2014. Formation age and origin of gabbro in Luobusa ophiolite, southern Tibet. 2014 China Joint Academic Meeting of Geosciences—Topic 34: Essays on Geological Evolution and Mineralization of the Tethys-Qinghai-Xizang Plateau.
参考文献
Zhang Pengfei, Uysal I, Zhou Meifu, Su Benxun, Avc1 E. 2016. Subduction initiation for the formation of high-Cr chromitites in the Kop ophiolite, NE Turkey. Lithos, 260: 345~355.
参考文献
Zhang Pengfei, Zhou Meifu, Yumul G P, Wang Yan. 2021. Geodynamic setting of high-Cr chromite mineralization in nascent subduction zones: Li isotopic and REE constraints from the Zambales ophiolite, Philippines. Lithos, 384-385: 105975.
参考文献
Zhong Lifeng, Xia Bin, Zhou Guoqing, Zhang Yuquan, Wang Ran, Wei Dongliang, Yang Qingzhi. 2006. SHRIMP age determination of the diabase in luobusa ophiolite, southern Xizang (Tibet). Geological Review, 52(2): 224~229.
参考文献
Zhou Meifu, Robinson P, Bai Wenji. 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita, 29(1): 98~101.
参考文献
Zhou Meifu, Robinson P T, Malpas J, Li Zijin. 1996. Podiform chromitites in the Luobusa ophiolite (southerntibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3~21.
参考文献
Zhou Meifu, Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92(2): 259~262.
参考文献
Zhou Meifu, Sun Min, Keays R R, Kerrich R W. 1998. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677~688.
参考文献
Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615~639.
参考文献
Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262~283.
参考文献
鲍佩声, 王希斌, 彭根永, 陈方远. 1999. 中国铬铁矿床. 北京: 科学出版社, 38, 1127~1130.
参考文献
鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28(12): 1741~1761.
参考文献
白文吉, 杨经绥, Robinson P, 方青松, 张仲明, 颜秉刚, 胡旭峰. 2001. 西藏罗布莎蛇绿岩铬铁矿中金刚石的研究. 地质学报, 75(3): 404~409.
参考文献
白文吉, 杨经绥, 方青松, 颜秉刚, 张仲明. 2002. 西藏蛇绿岩的超高压矿物: FeO, Fe, FeSi, Si和SiO2组合及其地球动力学意义. 地球学报, 23(5), 23(5): 395~402.
参考文献
白文吉, 施倪承, 方青松, 李国武, 杨经绥, 熊明, 戎合. 2006. 新矿物: 罗布莎矿. 地质学报, 80(10): 1487~1490.
参考文献
白文吉, 施倪承, 杨经绥, 方青松, 任玉峰, 戎合, 李国武, 马喆生. 2007. 西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其超高压成因. 地质学报, 81(11): 1538~1549.
参考文献
郭国林, 徐向珍, 李金阳. 2011. 西藏普兰地幔橄榄岩中尖晶石内的钙长石包裹体及其成因. 岩石学报, 27(11), 27(11): 3197~3206.
参考文献
郭国林, 杨经绥, 刘晓东, 徐向珍, 武勇. 2016. 西藏罗布莎铬铁矿中的原位铂族矿物研究: 铬铁矿结晶环境的指示. 岩石学报, 32(12): 3673~3684.
参考文献
李国武, 施倪承, 白文吉, 方青松, 熊明. 2015. 西藏罗布莎铬铁矿中发现的七种金属互化物新矿物. 矿物学报, (1): 13~18.
参考文献
李金阳, 杨经绥, 巴登珠, 徐向珍, 孟繁聪, 李天福. 2012. 西藏罗布莎蛇绿岩中不同产出的纯橄岩及成因探讨. 岩石学报, 28(6): 1829~1828.
参考文献
施倪承, 白文吉, 李国武, 熊明, 方青松, 杨经绥, 马喆生, 戎合. 2009. 雅鲁矿: 一种金属碳化物新矿物. 地质学报, 83(1): 25~30.
参考文献
史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考. 地质论评, 51(6): 681~693.
参考文献
苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018a. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37(6): 1035~1046.
参考文献
苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山. 2018b. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43(4): 1011~1024.
参考文献
苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型: 流体不混溶作用. 中国科学: 地球科学, 51(2): 250~260.
参考文献
唐旭, 李金华. 2021. 透射电子显微镜技术新进展及其在地球和行星科学研究中的应用. 地球科学, 46(4): 1374~1415.
参考文献
王存智, 姜杨, 邢光福. 2011. 蛇绿岩研究现状及华南蛇绿岩问题. 资源调查与环境, 32(4): 235~246.
参考文献
王恒升. 1983. 中国铬铁矿床及成因. 科学出版社.
参考文献
王希斌, 鲍佩声. 1987. 豆荚状铬铁矿床的成因——以西藏自治区罗布莎铬铁矿床为例. 地质科学, 22(2): 166~181.
参考文献
熊发挥. 2013. 豆荚状铬铁矿的形成过程. 中国地质科学院博士学位论文.
参考文献
熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 2014. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论. 岩石学报, 30(8): 2137~2163.
参考文献
熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 820~839.
参考文献
肖序常, 王方国. 1984. 中国蛇绿岩概论. 中国地质科学院院报, 9: 19~30.
参考文献
徐向珍. 2009. 藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究. 中国地质科学院博士学位论文.
参考文献
杨经绥, 白文吉, 方青松, 戎合. 2008. 西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述). 地球学报, 29(3): 263~274.
参考文献
杨经绥, 徐向珍, 张仲明, 戎合, 李源, 熊发挥, 梁风华, 刘钊, 刘飞, 李金阳, 李兆丽, 陈松永, 郭国林, Robinson P. 2013. 蛇绿岩型金刚石和铬铁矿深部成因. 地球学报, 34(6): 643~653.
参考文献
袁鹏, 杜培鑫, 周军明, 王顺. 2019. 铝硅酸盐纳米矿物的地质意义和资源价值再认识. 岩石学报, 35(1): 164~176.
参考文献
张畅, 刘传周, 吴福元, 张亮亮, 纪伟强, 王建刚, 杨刘杨. 2014. 藏南罗布莎蛇绿岩中辉长岩的形成时代与成因. 2014 年中国地球科学联合学术年会——专题 34: 特提斯—青藏高原地质演化与成矿论文集.
参考文献
钟立峰, 夏斌, 周国庆, 张玉泉, 王冉, 韦栋梁, 杨之青. 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224~229.
目录contents

    摘要

    向着地球深部进军是未来地质科学研究的战略目标之一,微区则是探寻深部地幔元素迁移和物质循环的关键。分子、原子级矿物的分析研究将在解密深部地幔物理化学条件、物质组成中扮演重要角色。蛇绿岩中豆荚状铬铁矿是微米级矿物的主要载体之一。近年来,随着单晶衍射仪、微区衍射和透射电镜等实验技术的发展和应用,在豆荚状铬铁矿中发现了一系列微米级矿物,为揭示地幔物质组成和演化历史提供重要信息。铬铁矿中发现新矿物的矿床包括中国西藏的罗布莎铬铁矿矿床和希腊中部Othrys矿床。其中,罗布莎铬铁矿矿床中发现包括罗布莎矿、林芝矿、那曲矿、藏布矿、雅鲁矿、曲松矿、自然钛、青松矿、巴登珠矿、志琴矿、经绥矿、康金拉矿及文吉矿在内的13种新矿物;Othrys蛇绿岩的Agios Stefanos矿床发现的新矿物有arsenotučekite、eliopoulosite、tsikourasite和grammatikopoulosite。这些新矿物以过渡族元素(Fe、Cr、Ni、Mo、V等)、钛的硅化物、碳化物、镍的磷化物等自然元素及金属化合物为主。它们多以矿物发现地或为地学研究做过卓越贡献的科学家名字命名。微米级矿物的发现拓展人类对地幔矿物的晶体结构和晶体化学的认知,为进一步解释深部地幔与还原性流体的高温反应及还原环境下矿物的蚀变作用奠定了基础。

    Abstract

    The earth's microscopic minerals, even molecular and atomic minerals, play an important role in revealing the history of the earth's development and the evolution of the mantle crust. As an important carrier of micro-geological action mechanism, micro scale minerals can solve the problem of migration and circulation of crust and mantle materials. In order to focus on this view, we need to turn our attention to one of the carriers of these micro-sized minerals: podiform chromitite. Podiform chromitites are the main source of chromium and rare mineral species in China. In recent years, with the application of experimental techniques such as single crystal diffractometer, micro-area and micro-diffraction and the progress of computer science and technology, many new achievements have been made in the mineralogical research of podiform chromitites. Deposits where micro scale minerals have been discovered include the Luobusa chromite deposit in Tibet, China, the Othrys deposit in central Greece, and the Loma Peguera deposit in the Dominican Republic. Thirteen micro scale minerals including luobusaite, linzhiite, naquite, zangboite, yarlongite, qusongite, titanium, qingsongite, badengzhuite, zhiqinite, wenjiite, kangjinlaite and jingsuite have been discovered in the Luobusa chromitite, and four micro scale minerals such as arsenotuekite, eliopoulosite, tsikourasite, grammatikopoulosite have been discovered in the Othrys ophiolite. They have been formally approved as new minerals by the Committee on New Minerals, Nomenclature and Classification of the International Mineralogical Society (IMA-CNMNC). The new minerals are named according to the place names of mineral discovery areas and their adjacent areas or scientists who have made outstanding contributions to geoscience research, and are mainly composed of transition elements (Fe, Cr, Ni, Mo, V, etc.), titanium silicide, carbide, nickel phosphide and natural elements. Through the study of the mineral chemical composition and crystal structure of these micro-nano minerals, and with the help of Focused Ion Beam (FIB) technology, we reflect the characteristics of micro minerals from BSE images, crystal structure images and other investigations. These discoveries greatly expand human understanding of the crystal structure and chemistry of mantle minerals and provide a basis for further interpretation of the physical and chemical properties of the mantle. The reduction environment produced by these ultra-high pressure micro-nano minerals will provide new insights into the physical and chemical conditions and material composition of podiform chromite and even the deep mantle we have studied, and at the same time, the composition of micro minerals will also give a reasonable explanation for the study of crust-mantle material cycle.

  • 微观是宏观的反映,对微米级矿物的研究是当前地球科学发展的趋势之一。地球微观矿物乃至分子、原子级矿物对揭示地球发展历史、幔壳演化规律有着举足轻重的意义。微米级矿物作为微观地质作用机制的重要载体,对解决元素等地球物质的迁移和循环问题至关重要(袁鹏等,2019)。因此,我们需要将目光聚焦微米级矿物,探寻其成因及内部结构。近年来,单晶衍射、微区衍射等实验科学技术飞速发展,深入研究微米级矿物成为可能。豆荚状铬铁矿作为深部地幔矿物的重要载体,获得越来越多研究者的重视。寄存在豆荚状铬铁矿中的微米级矿物是了解和探寻深部地幔组成、壳幔物质循环的重要窗口,见微知著,其亦为探究蛇绿岩的岩浆活动、洋底扩张和板块运动的钥匙。越来越多的研究表明豆荚状铬铁矿中微米级矿物的形成过程涉及变质作用、岩浆作用、壳幔循环和熔-流体不混溶等(Zhou Meifu et al.,2014Arai et al.,2016Zhang Pengfei et al.,2016Yang Jingsui et al.,2018苏本勋等,2021)。

  • 豆荚状铬铁矿及其伴生矿物的形成过程迄今仍然存在争论,岩浆的结晶分异观点认为豆荚状铬铁矿是幔源岩浆在岩浆演化的晚期发生结晶分异作用和重力分选作用的产物(Thayer,1964Dickey,1976王恒升,1983);浅部地幔部分熔融残余观点则认为豆荚状铬铁矿是原始地幔岩高度熔融再造的产物,残余地幔橄榄岩中铬尖晶石的Cr#随部分熔融程度的增加而增加(鲍佩声,19992009),当熔融程度达50%,铬尖晶石发生一系列变化最终在地幔剪切作用下汇聚成矿(王希斌等,1987鲍佩声,2009)。Zhou and Robinson(1994,1997)和Zhou et al.(1996)的熔岩反应模式认为深部地幔在高压下形成的原始熔体在上升过程中与地幔浅部的地幔橄榄岩发生熔体-岩石反应,辉石不一致熔融而形成富SiO2的熔体,使铬铁矿的成分受到熔体成分的影响。玻安质熔体对应的产物为高铬型铬铁矿,玄武质熔体对应的产物为高铝型铬铁矿(Zhou Meifu et al.,19941996199719982005Melcher et al.,1997Proenza et al.,1999);另有一些学者认为岩浆中存在不混溶的流体,铬铁矿的结晶可能源自流体不混溶作用,铬尖晶石微晶吸附这些流体形成不混溶的液滴,在不断聚集后结晶成矿并释放流体(Matveev et al.,2002苏本勋等,2018a2021)。近年来,在地幔橄榄岩和铬铁矿中柯石英、金刚石和碳硅石等超高压矿物发现的基础上(Yang Jingsui et al.,2008Dobrzhinetskaya et al.,2009),提出豆荚状铬铁矿可能形成于深部地幔的观点,认为在成矿初期有强还原性的地幔流体参与(杨经绥等,2008熊发挥等,2014)。在前人研究基础上,熊发挥(2013)提出豆荚状铬铁矿的形成可能经历4个阶段:铬元素的来源阶段、铬尖晶石及超高压矿物的结晶阶段、铬铁矿的成矿阶段和铬铁矿的就位阶段。豆荚状铬铁矿形成阶段的研究对深层次探究地幔物质循环、微米级矿物的形成具有积极作用。

  • 在蛇绿岩型地幔橄榄岩和铬铁矿中目前发现了多种含壳源物质的微米级矿物,对揭示壳幔物质循环过程具有重要意义。除此之外,在橄榄岩及铬铁矿中发现的金刚石、柯石英和碳硅石等超高压矿物及自然金属等还原性矿物进一步推动了对深部地幔物理化学条件的研究。然而,目前人们对豆荚状铬铁矿中微米级矿物的认识还较为有限。这些新矿物产出、晶体结构、矿物成因和地质意义仍不清楚。本文从豆荚状铬铁矿中微米级矿物的地质背景、晶体结构特征等方面入手,从而探讨铬铁矿中地幔微米级矿物形成背景和条件。

  • 1 地质背景

  • 蛇绿岩被认为是“产于扩张脊的洋壳+地幔序列的岩石组合”,是古大洋岩石圈的残留(张旗等,2001)。这套岩石组合以Troodos蛇绿岩剖面为典型(图1)。

  • 图1 Troodos蛇绿岩剖面与大洋岩石圈剖面对比图(据Grebby et al.,2010王存智等,2011修改)

  • Fig.1 Comparison between Troodos ophiolite profile and oceanic lithosphere profile (after Grebby et al., 2010; Wang Cunzhi et al., 2011)

  • 结合不同地球动力环境下因岩石学、地球化学及构造变化等造成的蛇绿岩结构和地球化学特征多样性,可以将蛇绿岩的主要构造环境分为两种:俯冲带型(SSZ)和洋中脊型(MOR),俯冲带环境又包括位于其上的岛弧、弧前及弧后盆地(Pearce et al.,1984史仁灯,2005)。与俯冲有关的蛇绿岩包括俯冲带型和火山弧型,其演化受板块脱水和伴随的地幔交代、俯冲沉积物熔融及交代橄榄岩的反复部分熔融等条件控制;与俯冲无关的蛇绿岩包括大陆边缘蛇绿岩、大洋中脊蛇绿岩及地幔柱型,通常由大洋中脊玄武岩(MORB)组成,其发展与裂谷漂移及海底扩张有关(Pearce et al.,1984Dilek et al.,2011)。两种类型蛇绿岩的形成机制为:SSZ型蛇绿岩为洋-陆俯冲在弧后盆地中、或者洋内俯冲在弧前盆地中形成的新大洋岩石圈;而MOR型蛇绿岩的成因则比较简单,为大洋岩石圈发生仰冲而保留在大陆造山带的残余部分。蛇绿岩以及关于它们在地球上起源及意义的讨论,对重建古大洋演化历史、揭示地球内部演化过程具有重要意义(史仁灯,2005Dilek et al.,2011)。蛇绿岩地质背景的探究对不同类型微米矿物成因的鉴别具有重要意义。

  • 1.1 西藏罗布莎蛇绿岩地质背景

  • 雅鲁藏布江缝合带和班公湖-怒江缝合带是两条横贯青藏高原的铬铁矿成矿带,其中雅鲁藏布江蛇绿岩带是新特提斯洋壳和地幔的残余,蛇绿岩呈东西向近线状展布约2000 km,并发育较为完整的蛇绿岩层序(肖序常,1984),以洋中脊型(MOR)岩石组合为主,代表白垩纪特提斯洋的最后闭合带,被认为是中生代劳亚-冈瓦纳大陆分裂重新拼接的一条缝合带(肖序常,1984王希斌等,1987)。罗布莎铬铁矿矿床分布于雅鲁藏布江蛇绿岩带东段,是我国目前最大的铬铁矿矿床(王恒升,1983Zhou Meifu et al.,1996熊发挥等,2014)。

  • 罗布莎蛇绿岩岩体呈近东西向展布,全长约41 km,最宽为4 km,出露面积为70 km2,其南侧与三叠系呈断层关系,北侧被第三系不整合所覆盖(图2;王恒升,1983)。岩体主要由地幔橄榄岩、堆晶岩和少量熔岩组成,被肢解的火山岩和硅质岩作为混杂岩出露在堆晶岩的北侧。地幔橄榄岩主要为含铬铁矿的方辉橄榄岩和纯橄岩,少量二辉橄榄岩;堆晶岩主要由辉石岩、辉长岩、异剥橄榄岩和纯橄岩组成(图3;王希斌等,1987白文吉等,20012007)。罗布莎铬铁矿赋存于方辉橄榄岩中,呈透镜状、豆荚状,具有块状、豆状、浸染状和条带状结构(徐向珍等,2009熊发挥等,2014)。罗布莎蛇绿岩岩体起初形成于MOR环境,后期可能经过多次SSZ环境改造等多阶段的演化过程(Xu Xiangzhen et al.,2011Xiong Fahui et al.,2015)。

  • 1.2 希腊Othrys蛇绿岩地质背景

  • 近年来世界范围内蛇绿岩的研究也发现了赋存于铬铁矿中的地幔新矿物,其中以希腊中部的Othrys蛇绿岩(图4)为典型。Othrys蛇绿岩是一套发育完整、蚀变较强的蛇绿岩,岩体主要由地幔橄榄岩、上覆堆晶岩(主要由辉石岩和辉长岩组成)、镁铁质岩墙以及一套从MORBs到岛弧玄武岩和玻安岩的喷出岩序列组成(Bebien et al.,1980;Zaccarini et al.,2020)。它位于希腊的中东部,沿SE-NW方向延伸约500 km,由Vourinos、Pindos、Albanides等镁铁质-超镁铁质岩体组成,被认为是中生代特提斯洋的残留,储存了巴尔干半岛中大部分的铬铁矿(多数在Tropojia、Bulqiza、Vourinos矿床中)(Bindi et al.,2020a2020b)。

  • Othrys地幔橄榄岩由方辉橄榄岩、二辉橄榄岩和少量纯橄岩组成,主要的铬铁矿床有两个,分别是Domokos矿床和Eretria矿床,多为豆荚状、透镜状,产量可达104 t(Economou et al.,1986)。铬铁矿主要产于方辉橄榄岩-纯橄岩带中,含Fe、Ni、V等硫化物、磷化物。Othrys蛇绿岩中发现的大型铬铁矿矿床表明,它们的成岩演化可能发生在俯冲带构造背景下,由大洋扩张中心向弧前和弧后环境演化的大地构造体系(Ohnenstetter,1986Robertson et al.,2002)。

  • 图2 西藏罗布莎地区地质概图(据Bai Wenji et al.,2001; Xiong Fahui et al.,2014修改)

  • Fig.2 Geological outline of Luobusa ophiolite, Tibet (after Bai Wenji et al., 2001; Xiong Fahui et al., 2014)

  • 图3 罗布莎蛇绿岩中不同岩石照片

  • Fig.3 Field photographs of different rocks in Luobusa ophiolite

  • (a)—罗布莎地区辉长岩露头;(b)—香卡山8矿区方辉橄榄岩露头;(c)—康金拉11号矿致密块状铬铁矿;(d)—康金拉11号矿豆荚状铬铁矿

  • (a) —gabbro outcrop in Luobusa chromite deposit; (b) —harzburgite outcrop in Xiangkashan No.8 mining area; (c) —dense massive chromitite in Kangjinla No.11 mine; (d) —podiform chromitite in Kangjinla No.11 mine

  • 2 确定新矿物的分析方法

  • 聚焦离子束(Focused Ion Beam,FIB)和透射电镜(TEM)相结合可以确定研究区样品中所含矿物信息。聚焦离子束(FIB)是指扫描电镜在可视条件下使用极细的镓(Ga)离子束对试样进行定点显微切割的技术(Wirth,20042009)。其原理为通过静电透镜将离子源产生的离子束进行会聚,加速离子轰击样品使其表面原子发生溅射,实现样品的加工和减薄,同时离子束照射样品产生的二次电子和二次离子被相应的探测器收集并用于成像,最终实现电子束成像和离子束加工(Sudraud et al.,1988Reyntjens et al.,2001唐旭等,2021)。

  • 透射电镜(TEM)的常规功能是利用电子束穿透样品而给物体“照相”,从而反映其表面形貌以及内部结构信息(唐旭等,2021)。电子显微镜可以从纳米尺度对矿物的形态结构进行剖析,还可以用于样品的化学元素分析等(如EDXS或EELS)。透射电镜通过散射电子或能量信号携带了样品的特征信息,在经过物镜、中间镜和投影镜的三级放大作用,最终将样品的信息投射到荧光屏上成像和拍照,最终得到实验结果,如明场像、暗场像、电子衍射谱图、高分辨率图像和化学信息等(Hagemann et al.,1983Spence,2003唐旭等,2021)。

  • 根据聚焦离子束和透射电镜得到矿物信息之后,通过散焦光束,在STEM模式下进行3D ED以便使样品有一个平行光线照明。通过插入5 μm的C2孔径聚光器,来获得150 nm的光束,以避免样品出现任何的非晶化过程。在实验过程中,光束围绕光轴以1°来进行转动,总倾角范围分别为73°和80°,有效倾斜范围受到FIB薄层厚度的限制(Vincent et al.,1994)。每次倾斜后,采集衍射图,并通过离焦STEM成像跟踪晶体位置,衍射图由ASI Timepix相机记录。通过ADT3D软件实现3D ED 数据的可视化,之后采用Vesta将所得数据制成晶体结构图(Xiong Fahui et al.,2020)。在处理晶体过程中最重要的是获取X晶体衍射数据。利用单晶衍射仪、配备Photon II CCD探头的Bruker D8 Venture来获取完整的粉晶衍射数据。具体过程为在单晶衍射仪用单颗粒拍摄粉晶德拜图的方法获取衍射数据,通过一系列完整的X射线衍射数据确定矿物晶体的结构特征,从而确定矿物的结晶学数据(李国武等,2015)。

  • 图4 希腊Othrys蛇绿岩地质概图(据Barth et al.,2003

  • Fig.4 Geological outline in Othrys ophiolite, Greece (after Barth et al., 2003)

  • 3 铬铁矿中十七种新矿物的矿物学数据

  • 3.1 罗布莎矿(luobusaite)

  • 罗布莎矿(图5a)于2006年8月经国际新矿物和矿物命名委员会批准成为新矿物,以罗布莎铬铁矿矿床来命名,矿物基本数据见表1。罗布莎矿基于Si为2的化学式Fe0.8Si2,属于斜方晶系(图6a),空间群为Cmca,晶胞参数a=0.9874±0.0014 nm,b=0.7784±0.0005 nm,c=0.7829±0.0007 nm,V=0.6017±0.0009 nm3Z=16。晶体结构中 Fe、Si两种原子呈互层状分布,Si原子层堆积紧密,Fe原子层分散,存在明显空隙(白文吉等,2006)。平均化学组成:44.40%Fe,55.24%Si;Cr和Al的含量较少,最大可达0.6%。五条最强粉晶衍射线(晶面间距d(单位nm)(Iobs/I0)): 3.06(80); 1.977(40); 1.889(60); 1.865(40); 1.844(100)(白文吉等,2006)。

  • 图5 西藏罗布莎蛇绿岩七种新矿物扫描电子显微镜图(据白文吉等,2006Li Guowu et al.,20092012; Shi Nicheng et al.,20092012Fang Qingsong et al.,20092013修改)

  • Fig.5 Seven new mineral SEM images in Luobusa ophiolite, Tibet (after Bai Wenji et al., 2006Li Guowu et al., 2009, 2012Shi Nicheng et al., 2009, 2012Fang Qingsong et al., 2009, 2013)

  • (a)—罗布莎矿(Fe0.8Si2);(b)—林芝矿(FeSi2);(c)—那曲矿(FeSi);(d)—雅鲁矿((Cr4Fe4Ni)Σ9C4);(e)—藏布矿(TiFeSi2);(f)—曲松矿(WC);(g)—自然钛(Ti)

  • (a) —luobusaite (Fe0.8Si2) ; (b) —linzhiite (FeSi2) ; (c) —naquite (FeSi) ; (d) —yarlongite ( (Cr4Fe4Ni) Σ9C4) ; (e) —zangboite (TiFeSi2) ; (f) —qusongite (WC) ; (g) —titanium (Ti)

  • 罗布莎矿与自然硅和其他类型的FeSi合金密切伴生,形态为不规则粒状,粒度较细,粒径为0.1~0.2 mm,由40~50 μm的细粒集合体组成,多寄生于豆荚状铬铁矿中。矿物颜色呈深灰色,金属光泽,黑色条痕,不透明、无荧光。计算密度为4.55 g/cm3,无解理,脆性,具贝壳状断口,莫氏硬度为7(白文吉等,2006)。

  • 图6 西藏罗布莎蛇绿岩中部分新矿物晶体结构图(据白文吉等,2006Li Guowu et al.,20092012Shi Nicheng et al.,20092012Fang Qingsong et al.,20092013修改)

  • Fig.6 Crystal structure diagram of some new minerals in Luobusa ophiolite, Tibet (after Bai Wenji et al., 2006; Li Guowu et al., 2009, 2012Shi Nicheng et al., 2009, 2012Fang Qingsong et al., 2009, 2013)

  • (a)—罗布莎矿(Fe0.8Si2);(b)—林芝矿(FeSi2);(c)—那曲矿(FeSi);(d)—雅鲁矿((Cr4Fe4Ni)Σ9C4);(e)—藏布矿(TiFeSi2);(f)—曲松矿(WC);(g)—自然钛(Ti)

  • (a) —luobusaite (Fe0.8Si2) ; (b) —linzhiite (FeSi2) ; (c) —naquite (FeSi) ; (d) —yarlongite ( (Cr4Fe4Ni) Σ9C4) ; (e) —zangboite (TiFeSi2) ; (f) —qusongite (WC) ; (g) —titanium (Ti)

  • 3.2 林芝矿(linzhiite)

  • 林芝矿(图5b)于2010年经国际新矿物和矿物命名委员会批准成为新矿物,以林芝地区来命名。林芝矿发现于罗布莎矿区31号矿区中,林芝矿与罗布莎矿互为同质多象体,化学式为FeSi2,属于四方晶系(图6b),晶体结构由单晶X射线衍射修饰所得R=0.043,空间群为P4/mmm,晶胞参数 a=0.2696±0.0001 nm,b=0.2696±0.0001 nm,c=0.5147±0.0006 nm,V=0.03741±0.0014 nm3Z=1(Li Guowu et al.,2012)。与罗布莎矿不同的是林芝矿可以看作是堆积层状结构,堆积层沿(001)展开,硅铁原子呈立方体心式堆积,硅原子位于立方体的四个顶点,铁原子占据立方体的中心位置。由于Fe原子半径比Si原子半径大,所以将 Si组成立方最紧密堆积。理想化学组成为:49.85%Fe,50.15%Si。五条最强的粉晶衍射线为(晶面间距d(单位nm)(Iobs/I0)):5.136(96),2.374(81),1.896(55),1.849(100),和1.086(36)(Li Guowu et al.,2012)。

  • 林芝矿以粒状或板状晶体形式产出,粒径为0.04~0.5 mm,颜色呈深灰色,具有金属光泽,灰黑色条痕,不透明。密度为4.972 g/cm3,无解理,脆性,具有贝壳状断口,莫氏硬度为6.5(Li Guowu et al.,2012)。

  • 3.3 那曲矿(naquite)

  • 那曲矿(图5c)于2010年经国际新矿物和矿物命名委员会批准成为新矿物,以西藏那曲地区来命名。那曲矿化学式为FeSi,属于等轴晶系(图6c),空间群为P213,其晶胞参数分别为 a=0.4486±0.0004 nm,V=0.09028±0.0006 nm3Z=4(Shi Nicheng et al.,2012)。那曲矿内部原子排列不规则,Fe原子和Si原子分别呈三角键状连接。那曲矿的理想化学组成为:65.65%Fe,32.57%Si,1.78%Al。五条最强的粉晶衍射线为(晶面间距d(单位nm)(Iobs/I0)):0.31742(110)(40), 0.25917(111)(43),0.20076(210)(100),0.18307(211)(65),0.11990(321)(36)(Shi Nicheng et al.,2012)。

  • 那曲矿呈粒状结构或板状结构,粒径15~50 μm,有些颗粒甚至可达100 μm,其颜色呈深灰色,具有金属光泽,灰黑色条痕,不透明。密度为6.128 g/cm3,无解理,脆性,具有贝壳状断口,莫氏硬度为6.5(Shi Nicheng et al.,2012)。

  • 3.4 雅鲁矿(yarlongite)

  • 雅鲁矿(图5d)于2007年经国际新矿物和矿物命名委员会批准成为新矿物,其名源于雅鲁藏布江缝合带,雅鲁矿是过渡族金属元素的碳化物,其碳原子以4为基准得到的经验化学分子式为:(Cr4.14Fe3.79Ni0.76Σ8.79C4,简化的化学式为:(Cr4Fe4Ni)Σ9C4或(Cr,Fe,Ni)Σ9C4,六方晶系,空间群:P63/mc。晶胞参数为: a=1.8839±0.0002 nm,b=1.8839±0.0002 nm,c=0.4496±0.0009 nm,V=0.7457±0.0002 nm3Z=6(施倪承等,2009)。雅鲁矿中除C成分相对稳定外,其他金属原子变化较大。晶体结构中Fe、Cr、Ni分别占据了不同的位置(图6d)。Fe、Cr、Ni 总量为 9,配位数接近于12,形成带折皱的堆积层与平的堆积层的互层结构。C原子的配位数为6,在 Fe、Cr、Ni 等金属原子间充填构成配位多面体,该配位多面体以共顶点或共棱方式相互连接构成了一种新型的金属碳化物结构。雅鲁矿的平均化学组成为:40.60%Fe,41.38%Cr,8.54%Ni,9.22%C(施倪承等,2009)。

  • 雅鲁矿为不规则粒状结构,粒径约0.02~0.06 mm,其矿物集合体赋存于豆荚状铬铁矿中。矿物颜色为深灰色,金属光泽,黑色条痕,不透明;性脆,一组完全解理,贝壳状断口,密度为7.19 g/cm3,莫氏硬度为5.5~6(施倪承等,2009)。

  • 3.5 藏布矿(zangboite)

  • 藏布矿(图5e)于2007年经国际新矿物和矿物命名委员会批准成为新矿物,同雅鲁矿,藏布矿的命名也是源自雅鲁藏布江缝合带。藏布矿是一种硅化物,其化学式为TiFeSi2,与其他类型的FeSi合金矿物密切共生。藏布矿属于斜方晶系(图6e),空间群为Pbam,晶胞参数为:a=0.86053±0.001 nm,b=0.95211±0.0011 nm,c=0.76436±0.0009 nm,V=0.62625±0.0013 nm3Z=12(Li Guowu et al.,2009)。藏布矿晶体结构中Fe、Si原子构成{FeSi6}八面体,中间形成孔隙, Ti原子充填于晶体的孔隙中。藏布矿的理想化学组成为:34.92%Fe,35.13%Si,29.95%Ti。五条最强的粉晶衍射线为:(晶面间距d(单位nm)(Iobs/I0)):2.1291(232)(100), 2.0251(042)(65), 2.2318(312)(50),1.9155(004)(57),及3.8358(002)(50)(Li Guowu et al.,2009)。

  • 藏布矿形状不规则,多为板状结构,粒经0.02~0.15 mm,矿物集合体赋存于罗布莎豆荚状铬铁矿中。颜色呈深灰色,具有金属光泽,条痕为黑色,不透明。密度为5.31 g/cm3,性脆,无解理,贝壳状断口,莫氏硬度为5.5(Li Guowu et al.,2009)。

  • 3.6 曲松矿(qusongite)

  • 曲松矿(图5f)于2007年经国际新矿物和矿物命名委员会批准成为新矿物,以西藏曲松县来定名。曲松矿是钨的碳化物(图6f),化学式为WC,含有少量Cr、Ni、Ti等元素。曲松矿属于六方晶系,空间群为P6¯m2,晶胞参数为a=0.2902±0.0001 nm,c=0.2831±0.0001 nm,ca=0.9775,V=0.0 2005±0.0001 nm3Z=1。C原子充填在由W金属原子组成的三方配位多面体之中,C的配位数为6。化学组成为:92.07%~94.48 %,平均含量为93.44%;6.01%~6.16%的C,平均含量为6.07%(Fang Qingsong et al.,2009)。

  • 曲松矿为不规则粒状或板状结构,大小不一,粒径小至4~8 μm,大至0.3 mm,对称型62 m。曲松矿为深灰色,金属光泽,条痕为黑色,不透明;计算密度为15.84 g/cm3,性脆,无解理,贝壳状断口,莫氏硬度为7.5~8(Fang Qingsong et al.,2009)。

  • 3.7 自然钛(titanium)

  • 自然钛(图5g)是在罗布莎铬铁矿中发现的纯金属(图6g),化学式为Ti,六方晶系,空间群为P63/mmc,晶胞参数为:a=0.2950±0.0002 nm,c=0.4686±0.0001 nm,V=0.03532±0.0005 nm3Z=2,晶体内部完全由Ti原子充填(Fang Qingsong et al.,2013)。自然钛的理想化学组成为:99.23%~100%Ti。五条最强粉晶衍射线为(晶面间距d(单位nm)(Iobs/I0)):0.2569(010)(32),0.2254(011)(100), 0.1730(012)(16),0.1478(110)(21),及 0.09464(121)(8)(Fang Qingsong et al.,2013)。

  • 自然钛为不规则形状,粒径0.1~0.6 mm,常与蓝晶石、柯石英等共生。自然钛颜色呈银灰色,具有金属光泽,条痕为灰黑色,不透明,具有延展性,计算密度为4.503 g/cm3,无解理,锯齿状断口,莫氏硬度为4(Fang Qingsong et al.,2013)。

  • 3.8 巴登珠矿(badengzhuite)

  • 巴登珠矿(图7b、c)于2019年经国际新矿物和矿物命名委员会批准,是以藏族地质科学家巴登珠教授级高级工程师来命名的矿物,以显示他对西藏蛇绿岩带研究和铬铁矿勘探的重大贡献。巴登珠矿的化学式为TiP,属于六方晶系(图8a),空间群为P63/mmc,晶胞参数为:a=0.349±0.0007 nm,c=1.170±0.0023 nm,V=0.124±0.0003 nm3Z=4。巴登珠矿晶体结构中,Ti原子位于晶格中心,两个Ti原子连接成一个高次轴,沿主轴方向7个P原子与Ti连接在一起,结构基本与合成TiP一致,为Ti的配位八面体。通过两次能谱质量分析,分别得到巴登珠矿的化学组成为:60.56%Ti,39.44%P,62.74%Ti,37.26%P(Xiong Fahui et al.,2020)。

  • 图7 西藏罗布莎蛇绿岩新矿物扫描电子显微镜图

  • Fig.7 New mineral SEM images in Luobusa ophiolite, Tibet

  • (a)—文吉矿(Ti10(Si,P,□)7)及康金拉矿(Ti11(Si,P)10);(b)—巴登珠矿(TiP)和志琴矿(TiSi2);(c)—四种新矿物集合体;(d)—巴登珠矿(TiP)和志琴矿(TiSi2);(e)—青松矿(BN);(f)—经绥矿(TiB2)(据Shi Nicheng et al.,2012Dobrzhinetskaya et al.,2014Xiong Fahui et al.,20202021修改)

  • (a) —wenjiite (Ti10 (Si, P, □) 7) and kangjinlaite (Ti10 (Si, P, □) 7) ; (b) —badengzhuite (TiP) and zhiqinite (TiSi2) ; (c) —four new minerals aggregates; (d) —badengzhuite (TiP) and zhiqinite (TiSi2) ; (e) —qingsongite (BN) ; (f) —jingsuite (TiB2) (after Shi Nicheng et al., 2012; Dobrzhinetskaya et al., 2014; Xiong Fahui et al., 2020, 2021)

  • 图8 西藏罗布莎新矿物晶体结构图

  • Fig.8 Crystal structure diagram of new minerals in Luobusa ophiouite, Tibet

  • (a)—巴登珠矿(TiP);(b)—志琴矿(TiSi2);(c)—文吉矿(Ti10(Si,P,□)7);(d)—康金拉矿(Ti11(Si,P)10);(e)—青松矿(BN);(f)—经绥矿(TiB2)(据Dobrzhinetskaya et al.,2014Xiong Fahui et al.,20202021修改)

  • (a) —badenzhuite (TiP) ; (b) —zhiqinite (TiSi2) ; (c) —wenjiite (Ti10 (Si, P, □) 7) ; (d) —kangjinlaite (Ti11 (Si, P) 10) ; (e) —qingsongite (BN) ; (f) —jingsuite (TiB2) (after Dobrzhinetskaya et al., 2014; Xiong Fahui et al., 2020, 2021)

  • 巴登珠矿不透明,球状结构,直径约0.5 μm,包裹在志琴矿聚集体中。矿物颗粒极小,其物理性质难以测定,计算出的矿物密度为4.233 g/cm3Xiong Fahui et al.,2020)。

  • 3.9 志琴矿(zhiqinite)

  • 志琴矿(图7b、c)于2019年经国际新矿物和矿物命名委员会批准,以许志琴院士来命名。志琴矿化学式为TiSi2,斜方晶系(图8b),空间群为Fddd,晶胞参数为:a=0.818±0.0016 nm,b=0.485±0.001 nm,c=0.842±0.0017 nm,V=0.334±0.0012 nm3Z=8。晶体结构中Ti原子与10个Si原子连接。四次能谱质量分析得到志琴矿的化学组成范围为:39.58%~44.79%Ti;55.21%~60.42%Si(Xiong Fahui et al.,2020)。

  • 志琴矿与巴登珠矿从同一Ti-Si-P熔体中结晶,包裹在巴登珠矿外围,颗粒极小,不透明,计算密度为4.136 g/cm3,莫氏硬度为4~5,板状结构(Xiong Fahui et al.,2020)。

  • 3.10 文吉矿(wenjiite)

  • 文吉矿(图7a)与康金拉矿、巴登珠矿、志琴矿和一种含K的辉锑矿物共同组成球状包裹体。文吉矿(wenjiite)是以纪念我国著名地质学家、中国地质科学院地质研究所白文吉研究员来命名,于2019年经国际新矿物和矿物命名委员会批准成为新矿物,其化学式为(Ti0.93Cr0.03Mn0.01Fe0.01V0.0210(Si0.79P0.216.51,可简写为Ti10(Si,P,□)7。文吉矿为六方晶系(图8c),空间群为P63/mcm,晶胞参数为:a=0.730±0.001 nm,c=0.509±0.001 nm,V=0.235±0.0006 nm3ZX=1。文吉矿的平均化学组成为:21.67%Si,6.24%P,66.39%Ti,1.37%V,2.20%Cr,0.97%Mn,1.17%Fe,计算密度为4.762 g/cm3(Xiong Fahui et al.,2022)。

  • 文吉矿为Ti-Si-P三元体系下的产物,分布在康金拉矿外围,其成因与Ti-Si-P熔体冷却过程中的结晶作用相关(Xiong Fahui et al.,2022)。

  • 3.11 康金拉矿(kangjinlaite)

  • 康金拉矿(图7a)与文吉矿、巴登珠矿、志琴矿和一种含K的辉锑矿物共同组成球状包裹体。康金拉矿(kangjinlaite)其名源于罗布莎矿区的康金拉矿体,于2019年经国际新矿物和矿物命名委员会批准成为新矿物,其化学式为(Ti10.65V0.03Cr0.13Mn0.06Fe0.14Σ11.01(Si7.43P2.55Σ9.99,可简写为Ti11(Si,P)10。康金拉矿为四方晶系(图8d),空间群为I4/mmm,晶胞参数:a=0.94±0.0002 nm,c=1.35±0.0003 nm,V=1.21±0.005 nm3Z=4,与Ho11Ge10型化合物具有相同结构。康金拉矿的平均化学组成为: 25.56%Si,9.68%P,62.35%Ti,0.21%V,0.83%Cr,0.42%Mn,0.95%Fe,计算密度为4.538 g/cm3(Xiong Fahui et al.,2022)。

  • 同文吉矿,康金拉矿亦为Ti-Si-P三元体系下的产物,康金拉矿包裹在文吉矿中,其成因与Ti-Si-P熔体冷却过程中的结晶作用相关(Xiong Fahui et al.,2022b)。

  • 3.12 青松矿(qingsongite)

  • 青松矿(qingsongite)是以纪念我国著名地质学家、中国地质科学院地质研究所方青松研究员来命名,于2013年经国际新矿物和矿物命名委员会批准成为新矿物,其化学式为BN。青松矿(图7e)极小,粒径100 nm~1 mm之间,常与蓝晶石和柯石英等矿物共生。一般为无色、透明,有时掺杂杂质为黄色或橙色,计算密度为3.46 g/cm3,莫氏硬度9~10,有一组完全解理{011}(Dobrzhinetskaya et al.,2014)。

  • 晶体结构为立方晶系(图8e),空间群:F4¯3m;其晶胞参数为:a=0.361±0.0045 nm,Z=4。以N原子为顶点形成四面体,B原子充填在四面体的孔隙中。青松矿的化学组成为:47.90%~49.20% B,50.8%~52.10% N。六条粉晶衍射线为(晶面间距d(单位nm)(Iobs/I0)):2.088(100,111),1.808(8,200),1.277(20,220),1.0903(10,311),0.9040(3,400),0.8296(8,331)(Dobrzhinetskaya et al.,2014)。

  • 3.13 经绥矿(jingsuite)

  • 经绥矿采自罗布莎蛇绿岩康金拉11号豆荚状铬铁矿矿体,其化学式为TiB2,于2018年经国际新矿物和矿物命名委员会批准成为新矿物,它以杨经绥院士来命名。经绥矿(图7f)常与TiN-TiC固溶体、Ti10(Si,P,□)7等共生,形成一个板状共生体,粒径约10~50 μm左右,推测经绥矿为黑色,不透明(Xiong Fahui et al.,2021)。

  • 经绥矿属于六方晶系(图8f),空间群为P6/mmm,晶胞参数为:a=0.2902±0.0001 nm,c=0.2831±0.0001 nm, ca=0.9775,V=0.02005±0.0001 nm3Z=1。其晶体结构与合成TiB2相似,在ac面上Ti原子和B原子交替排列,一个Ti原子连接六个B原子形成六边形结构。在化学组成上为61.87%B,1.53%C,36.62%Ti(Xiong Fahui et al.,2021)。

  • 3.14 Arsenotučkite

  • Arsenotučekite(图9a)是在希腊Othrys 蛇绿岩东部Tsangli铬铁矿发现的一种新矿物,于2019年经国际新矿物和矿物命名委员会批准成为新矿物,其化学式为Ni18Sb3AsS16,四方晶系(图10a),空间群为I4/mmm,晶胞参数为:a=0.97856±0.0003 nm,c=1.07582±0.0006 nm,V=1.0302±0.0006 nm3Z=2(Zaccarini et al.,2020)。晶体结构是沿c轴呈堆积层状分布,由三个不同的Ni配位多面体为主导,形成一个八面体和两个立方体。其理想的化学组成为:52.58% Ni,18.17% Sb, 3.73% As,25.52% S。粉晶衍射线数据暂不可知(Zaccarini et al.,2020)。

  • Arsenotučekite为他形—半自形颗粒,粒径5~10 μm,以单相颗粒形式存在,或与镍黄铁矿、蛇纹石、辉砷镍矿、绿泥石等伴生。具有金属光泽,计算密度为7.085 g/cm3。在正交偏光,它呈乳黄色,多色性很弱;在反射偏光中,各向异性旋转色调从淡蓝色变化到棕色(Zaccarini et al.,2020)。

  • 3.15 Tsikourasite

  • Tsikourasite(图9b)是在希腊Othrys 蛇绿岩中部Agios Stefanos矿体发现的一种新型磷化物,该矿物是为了致敬文莱达鲁萨兰国大学矿物学教授Basilios Tsikouras而命名的,于2018年经国际新矿物和矿物命名委员会批准成为新矿物,其化学式为Mo3Ni2P 1+x,立方晶系(图10b),空间群为F43m,晶胞参数为a=1.0846±0.0002 nm,Z=16。Tsikourasite的晶体结构与monipite(MoNiP)、polekhovskyite(MoNiP2)以及合成MoNiP2相似,但不同的是其他矿物均为六方晶系,而tsikourasite为立方晶系。Tsikourasite晶体中有大量的金属键(Ni-Ni、Mo-Mo和Ni-Mo等),但事实上每个金属原子只能连接2~3个P原子,这就形成了12个或6个金属原子分别围绕在P1或P2原子周围的一种结构。其化学组成的平均值为:7.97%P、0.67%S、14.13%V、14.37%Fe、7.59%Co、23.9%Ni、44.16%Mo(Zaccarini et al.,2019)。

  • Tsikourasite颗粒极小,以孤立的单相出现,粒径从几μm到80 μm,常与磷化镍和铝矾石以及未确定矿物(如镍镁橄榄石或镍钠辉石和钒的硫化物)等共生。性脆,金属光泽,不透明;计算密度可达9.182 g/cm3。在正交偏光中,呈黄白色,无双反射、各向异性和多色性。

  • 图9 希腊Othrys蛇绿岩新矿物扫描电子显微镜图

  • Fig.9 New mineral SEM images of Othrys ophiolite, Greece

  • (a)—新矿物arsenotučekite(Ni18Sb3AsS16);(b)—新矿物tsikourasite(Mo3Ni2P1+x);(c)—新矿物eliopoulosite(V7S8);(d)—新矿物grammatikopoulosite(NiVP);(e)—新矿物tsikourasite(Mo3Ni2P1+x)、grammatikopoulosite(NiVP);(f)—矿物集合体(据Zaccarini et al.,20192020; Bindi et al.,2020a2020b); Atc—arsenotučekite; Eli—eliopoulosite; Elp—eliopoulosite; Grm—grammatikopoulosite; Tsk—tsikourasite; VS—V的硫化物; Aw—铁镍矿; Npd—磷化镍; Chr—铬尖晶石; Epx—树脂

  • (a) —arsenotučekite (Ni18Sb3AsS16) ; (b) —tsikourasite (Mo3Ni2P1+x) ; (c) —eliopoulosite (V7S8) ; (d) —grammatikopoulosite (NiVP) ; (e) —tsikourasite (Mo3Ni2P1+x) , grammatikopoulosite (NiVP) ; (f) —mineral aggregate (after Zaccarini et al., 2019, 2020; Bindi et al., 2020a, 2020b) ; Atc—arsenotučekite; Eli—eliopoulosite; Elp—eliopoulosite; Grm—grammatikopoulosite; Tsk—tsikourasite; VS—V-sulphide; Aw—awaruite; Npd—nickelphosphide; Chr—chromite; Epx—epoxy

  • 图10 希腊Othrys蛇绿岩中新矿物晶体结构图

  • Fig.10 Crystal structure diagram of new minerals in Othrys ophiolite, Greece

  • (a)—新矿物arsenotučekite(Ni18Sb3AsS16);(b)—新矿物tsikourasite(Mo3Ni2P1+x);(c)—新矿物eliopoulosite(V7S8);(d)—新矿物grammatikopoulosite(NiVP)(据Zaccarini et al.,20192020; Bindi et al.,2020a2020b

  • (a) —arsenotučekite (Ni18Sb3AsS16) ; (b) —tsikourasite (Mo3Ni2P1+x) ; (c) —eliopoulosite (V7S8) ; (d) —grammatikopoulosite (NiVP) (after Zaccarini et al., 2019, 2020; Bindi et al., 2020a, 2020b)

  • 3.16 Eliopoulosite

  • Eliopoulosite(图9c)于2019年经国际新矿物和矿物命名委员会批准成为新矿物,它是在希腊Othrys蛇绿岩中部Agios Stefanos铬铁矿发现的一种新型硫化物,矿物的命名是为了致敬希腊地质与矿产勘探研究所教授Demetrios Eliopoulos对希腊蛇绿岩、地幔矿物的巨大贡献。Eliopoulosite的化学式为(V6.55Ni0.19Fe0.12Co0.07Mo0.04Σ6.97S8.03,由于Ni、Fe、Co、Mo等元素含量过少,化学式可简化为V7S8,三方晶系(图10c),空间群为P3221,晶胞参数为:a=0.6689±0.0003 nm,c=1.7403±0.0006 nm,V=0.6744±0.0005 nm,Z=3。晶体结构表现出V原子与S原子配位,NiAs型亚晶胞的12层超结构。S原子占据了四个理想的位置,而V原子四个(V1,V2,V3,V4)占据了V的75%,剩下两个V(V5,V6)原子则相应的充填V并且固定。Eliopoulosite的平均化学组成为:58.16%V,41.84%S(Bindi et al.,2020a)。

  • Eliopoulosite颗粒很小,约5~80 μm,多为他形或半自形晶,由多相颗粒组成,常与磷化镍、方铅矿等共生,不透明,计算密度为4.54 g/cm3。在反射偏光中,eliopoulosite呈灰褐色,没有内反射、双反射和多色性(Bindi et al.,2020a)。

  • 3.17 Grammatikopoulosite

  • Grammatikopoulosite(图9d)是在豆荚状铬铁矿中发现的一种新的磷化物,赋存于希腊中部Othrys蛇绿岩的地幔序列中,于2019年经国际新矿物和矿物命名委员会批准成为新矿物,该矿物是为了表彰加拿大SGS公司的地球科学家Tassos Grammatikopoulos对希腊经济矿物学的突出贡献而命名。矿物化学式为(Ni0.57Co0.32Fe0.11Σ1.00(V0.63Mo0.26Co0.11Σ1.00(P0.98S0.02Σ1.00,可简化为(Ni,Co)(V,Mo)P,理想化学式为NiVP,斜方晶系(图10d),空间群是Pnma,晶胞参数为:a=0.58893±0.0008 nm,b=0.35723±0.0004 nm, c=0.68146±0.0009 nm,V=0.14337±0.0003 nm3Z=4。晶体结构内部金属原子可以形成配位多面体:沿b轴形成共链的M-P4的配位四面体,或者沿a轴形成“之”字形配位多面体。Grammatikopoulosite的理想化学组成为:41.74%Ni,36.23%V,22.03% P(Bindi et al.,2020b)。

  • Grammatikopoulosite矿物颗粒极小,粒径5~80 μm,常与磷化镍、方铅矿、菱锌矿以及一种未定名的V-S化物共生。金属光泽,不透明;计算密度为7.085 g/cm3。在正交偏光中呈黄白色,弱双反射,轻微多色性以及各向异性(Bindi et al.,2020b)。

  • Eliopoulosite、tsikourasite及grammatikopoulosite在同一样品中发现,可以认为它们是在相同的物理化学条件(即强烈的还原环境)下形成的。其成因推测有两种假设:① 蛇纹石化作用过程中铬铁矿的低温变化;② 铬铁矿在深部地幔与还原流体的高温反应(Bindi et al.,2020b)。

  • 4 讨论

  • 4.1 豆荚状铬铁矿中新矿物形成的构造背景特征

  • 罗布莎地幔橄榄岩主要为方辉橄榄岩和纯橄岩,其中方辉橄榄岩约占罗布莎岩体的50%~70%,多呈暗绿色、绿色,主要由橄榄石、斜方辉石及少量单斜辉石组成,副矿物为铬尖晶石和磁铁矿(熊发挥等,20132014)。纯橄岩分为透镜状和薄壳状,透镜状纯橄岩产于方辉橄榄岩中,两者有明显的接触界线;薄壳状纯橄岩在铬铁矿外围以外壳形式存在,与铬铁矿之间有明显的接触界线(李金阳等,2012)。地球化学特征表明罗布莎橄榄岩以高Mg为主,MgO含量高于原始地幔,CaO、Al2O3含量低于原始地幔,而二辉橄榄岩中的含量略高于方辉橄榄岩中的含量,且二辉橄榄岩与深海地幔橄榄岩类似,亏损的方辉橄榄岩和纯橄岩可对比于俯冲型地幔橄榄岩(徐向珍等,2009)。另外,方辉橄榄岩和纯橄岩具有右倾型稀土元素特征,地幔橄榄岩中微量元素Nb、Ta、Th等含量都要远高于原始地幔,Ti、Y、Yb要低于原始地幔值,这是由于在部分熔融过程中不相容元素(Nb、Ta、Th等)进入熔体被带走而亏损,相容元素(Sc、Ni、Cr、Co等)进入矿物晶格而富集,揭示了罗布莎地幔橄榄岩形成于多阶段不同构造背景的特征,具有MOR型洋中脊部分熔融,SSZ环境流体改造过程(Xu Xiangzhen et al.,2011郭国林等,2011熊发挥等,20132014Xiong Fahui et al.,2015)。

  • 罗布莎辉长岩多侵入于地幔橄榄岩中,主要分为两类:辉长-辉绿岩脉和角闪辉长岩,辉长岩脉中存在结晶分异后期形成的巨晶或伟晶辉长岩,角闪辉长岩中角闪石发生页理化,部分角闪石具有堆晶结构,未发生强烈的变形(张畅等,2014)。对辉长岩脉、角闪辉长岩中的锆石进行SIMS U-Pb定年,得到的谐和年龄分别为128.3±0.9 Ma(MSWD=0.56)和130.9±1.3 Ma(MSWD= 1.2),为早白垩世,稀土元素配分图和Sr-Nd-Hf同位素组成显示其岩浆均来自亏损地幔端元(张畅等,2014)。

  • 表1 罗布莎及Othrys蛇绿岩17种新矿物基本数据

  • Table1 Basic data of new minerals of 17 metallic compounds in Luobusa and Othrys ophiolites

  • 罗布莎辉绿岩通常以岩脉形式产出,规模不等,常见于超基性岩中,个别有切穿铬铁矿体的现象,表明其形成晚于超基性岩和铬铁矿矿体。通过对辉绿岩中的锆石进行SHRIMP U-Pb同位素定年确定了罗布莎蛇绿岩形成的年龄为162.9 Ma(钟立峰等,2006)。以罗布莎辉绿岩U-Pb同位素定年、罗布莎蛇绿岩地球化学及矿物地球化学特征为依托,可以初步限制罗布莎微米级新矿物形成的构造背景特征。

  • Othrys蛇绿岩是Dinaric-Hellenic蛇绿岩带的主要岩体之一,地处希腊中东部,向东南-西北方向展布约500 km,主要由Vourinos、Pindos和Albanides地块组成(Economou et al.,1986)。新矿物多产于Othrys东部和西部矿区,赋存在块状或豆荚状铬铁矿中,东Othrys蛇绿岩与伸展构造(弧后盆地或MORB)相关,而西Othrys蛇绿岩则形成于超俯冲带(SSZ)环境(Mitsis et al.,2001Dijkstra et al.,2003),东西部地区的超镁铁质岩石的地球化学和铬铁矿的铂族元素组成存在部分差异,表明研究区存在较大的地幔非均质性(Tsikouras et al.,2016)。Othrys蛇绿岩体蚀变严重,由蚀变地幔橄榄岩(蛇纹岩)和辉长岩堆积岩、席状岩脉、枕状熔岩和沉积盖层组成(Mitsis et al.,2001Bindi et al.,2020a2020b)。该地区由三种玄武岩组成:① 碱性板内玄武岩,多产于蛇绿混杂岩中,与大洋中脊、洋陆转换带相关;② 普通大洋中脊玄武岩(N-MORB);③ 低钾拉斑玄武岩(Bortolotti et al.,2008)。

  • 东Othrys蛇绿岩的地壳部分被认为是多次构造运动叠加形成,具有MORB地球化学特征,其地幔橄榄岩指示MOR型地幔,中等亏损,类似于深海橄榄岩;玄武岩具有大洋中脊(MOR)和岛弧的亲和性(Mitsis et al.,2001Saccani et al.,2004)。东Othrys蛇绿岩及Vourinos地幔橄榄岩(位于西Othrys蛇绿岩体中)样品显示LREE富集(相对于MREE)。该区域地幔橄榄岩以方辉橄榄岩为主,玄武岩Ti含量较高,而且高钛玄武岩与MORB幔源约20%的部分熔融一致(Photiades et al.,2003),这与其熔融模型的部分熔融程度高度一致(Barth et al.,2008)。

  • 位于西Othrys蛇绿岩体的 Ano Agoriani 矿区(Domokos以西8 km)为超俯冲(SSZ)环境,以具有岛弧和玻安质熔体亲和性的镁铁质层序为特征,高度亏损。地幔橄榄岩以二辉橄榄岩为主,由镁质橄榄石、顽火辉石、透辉石组成,并含有少量的铬尖晶石、斜长石。另外,辉长岩和辉绿岩以岩脉的形式侵入到地幔橄榄岩中,并且含有2~20 cm辉石晶体的辉石岩、伟晶辉长岩(Barth et al.,2008)。

  • 以上为两地蛇绿岩岩石学特征,通过比较二者异同,可以揭示出罗布莎蛇绿岩及Othrys蛇绿岩均存在MOR构造背景加以SSZ环境改造的特征。

  • 豆荚状铬铁矿按矿物化学成分可分为高铝(Al#为20~60)和高铬(Cr#为60~80)两类(Thayer et al.,1970)。从图11a中可以看出罗布莎铬铁矿与Othrys铬铁矿均属于高Cr型铬铁矿,其中罗布莎铬铁矿Cr#相对Othrys铬铁矿更高,而Othrys铬铁矿具有相对更高的Mg#;图11b反映了罗布莎铬铁矿具玻安质熔体反应特征,而Othrys铬铁矿则具有更大的TiO2的含量范围,两地尖晶石数据见表2。除此之外,两者的矿物化学特征均表明既有深海地幔橄榄岩又有弧前地幔橄榄岩特征(图11a,b),指示了其演化过程,即早期的洋中脊(MOR)环境,以及后期的俯冲带(SSZ)环境。因铬尖晶石的形成受地幔的部分熔融程度、压力等条件的控制,所以通过铬尖晶石的Cr#和Mg#的增减趋势,可以间接地判断铬铁矿寄主岩石的部分熔融程度、构造地质背景以及形成压力等条件。据此可以推断两地微米级矿物的形成存在构造背景、熔融程度等差异。

  • 除尖晶石外,两地蛇绿岩中其他矿物学特征及蛇绿岩的地球化学、同位素特征亦可成为判别其构造背景特征的标志:罗布莎地幔橄榄岩中的橄榄石均属镁橄榄石,其Fo值介于90.0~98.3之间;而斜方辉石主要出现在方辉橄榄岩和致密块状铬铁矿中,前者以粒状结构为主,后者多以包裹体形式存在(熊发挥等,2013Xiong Fahui et al.,2015)。罗布莎蛇绿岩中的地幔橄榄岩包括上层贫Cpx(单斜辉石)的方辉橄榄岩和下层富Cpx的方辉橄榄岩,二者分别呈U型和勺型稀土分配模式,富Cpx方辉橄榄岩中的单斜辉石比深海橄榄岩中的单斜辉石具有更强的主量和稀土元素亏损特征,而贫Cpx方辉橄榄岩中的单斜辉石颗粒较之两者亏损程度更大(Zhang Pengfei et al.,2021)。铬铁矿和富Cpx方辉橄榄岩的Cr#最高和最低分别可达80%和20%,贫Cpx方辉橄榄岩中的Cr#居中(Zhang Pengfei et al.,2021)。

  • 图11 罗布莎蛇绿岩和Othrys蛇绿岩中铬尖晶石的Mg#-Cr#图解(a)和TiO2 vs.Cr#图解(b), Mg#=100Mg/(Mg+Fe2+);Cr#=100Cr/(Cr+Al)(据Irvine,1965Barnes et al.,1988

  • Fig.11 Mg# vs. Cr# diagram (a) and Cr# vs. TiO2 diagram (b) of Cr-spinel of Luobusa ophiolite and Othrys ophiolite, Mg#=100Mg/ (Mg+Fe2+) ; Cr#=100Cr/ (Cr+Al) (after Irvine, 1965Barnes et al., 1988)

  • Othrys蛇绿岩中存在少量异剥钙榴岩,它们中的矿物组合为地幔橄榄岩的演化提供重要信息(Tsikouras et al.,20092013)。对异剥钙榴岩中的单斜辉石、绿帘石和石榴子石进行化学分析:确定单斜辉石均为透辉石,具有高CaO和低Na2O的特征;绿帘石根据不同的产出状态决定了Fe含量的不同,存在贫Fe、富Fe绿帘石;粗粒石榴子石Fe3+含量较高,部分不含MgO(Tsikouras et al.,2009)。在稀土元素方面,REE绝对丰度较低,LREE轻微富集(相对MREE),呈正斜率和平坦的重稀土配分模式,有明显的Eu正异常(Bébien et al.,1980Barth et al.,2008Tsikouras et al.,2009)。

  • Re-Os同位素特征显示罗布莎地幔橄榄岩和浸染状铬铁矿主要为残余相,并且地幔橄榄岩与铬铁矿中的Re、Os含量呈正相关(熊发挥,2013)。另外,罗布莎地幔橄榄岩中Fe-Mg同位素组成较为均一,地幔橄榄岩中铬尖晶石与橄榄石之间存在明显的Fe-Mg同位素分馏,并且主要受控于结晶分异和Fe-Mg交换(苏本勋等,2018b)。而对于Othrys蛇绿岩来说,通过分析Othrys蛇绿岩铬铁矿中硫钌矿包裹体,证明其铬铁矿中Re-Os发生了分馏,分馏过程中Os/Re同位素比值的变化可以用来揭示硫逸度的波动情况(Garuti et al.,1999a)。

  • 罗布莎蛇绿岩与Othrys蛇绿岩体具有相似的地质构造背景,均为古大洋的残留物。从岩石组合方面来说,二者的岩石学特征总体趋于相同,均主要由地幔橄榄岩和堆晶岩组成,并含有少量被肢解的火山岩、硅质岩等混杂岩。罗布莎蛇绿岩被认为是具有MORB型环境,而后经过多次流体改造,出现SSZ型特征;而Othrys蛇绿岩的地幔剖面也记录了无水MOR型熔融和有水SSZ型熔融(Barth et al.,2008),两者相似的构造背景说明,豆荚状铬铁矿的产生是一个多阶段的过程,每个阶段所处不同的物理化学条件都可能形成新矿物。但是,两者的矿物学、地球化学及同位素特征存在一定差异:① 罗布莎蛇绿岩中以镁橄榄石为主,斜方辉石在方辉橄榄岩中赋存较多;而Othrys蛇绿岩中以二辉橄榄岩为主,透辉石占主要成分(Tsikouras et al.,2009)。② 地球化学特征显示罗布莎铬铁矿中的CaO、Al2O3含量低于原始地幔值,而Othrys蛇绿岩中地幔橄榄岩富集CaO,贫SiO2,Cr和Ni元素也相对富集。③ 罗布莎地幔橄榄岩具有右倾型稀土元素特征,Othrys蛇绿岩铬铁矿REE绝对丰度较低,LREE相对MREE富集,呈正斜率和平坦的重稀土配分模式,有明显的Eu正异常(Barth et al.,2008)。综上两者在矿物、地球化学特征等方面具有明显的不同,罗布莎地区新矿物大多以Fe、Ti的硅化物或碳化物为主,而Othrys蛇绿岩赋存的新矿物多含镍化物。正是因为这些背景、环境的差异,才揭示出不同的物理化学条件下微米级矿物的不同成因。

  • 表2 希腊Othrys蛇绿岩与罗布莎蛇绿岩铬尖晶石部分数据对比

  • Table2 Comparison of chromium spinel data between Othrys ophiolite and Luobusa ophiolite

  • 注:Mg#=100Mg/(Mg+Fe2+);Cr#=100Cr/(Cr+Al)。

  • 4.2 豆荚状铬铁矿中新矿物成因

  • 罗布莎矿、林芝矿、那曲矿、藏布矿、雅鲁矿、曲松矿、自然钛及其伴生金属化合物的化学特征及形成条件与深部地幔活动相关,其形成于强还原的环境,而与地幔橄榄岩的浅成环境不符,因此,它们不太可能是从罗布莎铬铁矿熔体中直接结晶出来的,可能是源于地幔源的捕虏体,在海底扩张过程中被一股向上的流体并入铬铁矿中(白文吉等,2006施倪承等,2009Li Guowu et al.,200920122015Shi Nicheng et al.,2012Fang Qingsong et al.,2013)。近年来随着蛇绿岩地幔橄榄岩和铬铁矿中陆续发现金刚石和柯石英等深部成因矿物(白文吉等,2007杨经绥等,2013),也间接证实了这些微米级矿物源于深部地幔的可能。

  • 前人对罗布莎铬铁矿中发现的微米级矿物、各种自然金属及合金的成因提出的解释为含有外来矿物的地幔岩被后来的玻安质熔体运移,铬铁矿沉淀后,运往浅层,并在熔体中部分熔融,不溶性残留物并入铬铁矿,并最终结晶形成新矿物(Li Guowu et al.,2012)。在此过程中,罗布莎铬铁矿充当一个重要的地幔矿物的储存库(白文吉等,20012002杨经绥等,2013)。早年对西藏罗布莎蛇绿岩中简单氧化物的成因研究已初步证明此类微米级矿物源于深部地幔强还原环境的可能性。在罗布莎蛇绿岩的地幔橄榄岩相内出现较丰富的SiO2矿物,在基性-超基性岩这种现象看上去是不合理的,在二氧化硅不饱和环境中这种自由SiO2不可能与上地幔橄榄石共生。然而如果自由SiO2形成于下地幔,后被岩浆作用带入上地幔,这样就可以合理解释了(白文吉,2007)。

  • 同样的,近年来发现的青松矿、巴登珠矿、志琴矿、经绥矿及其超高压矿物伴生矿物如柯石英、金刚石和碳硅石等据推测也源于深部地幔。Yang et al.(2004,2007)在分选的锇铱合金中发现了原位的金刚石包裹体,Dobrzhinetskaya(2014)在柯石英中发现了青松矿(BN),Xiong et al.(2020,2021)先后在铬铁矿中发现巴登珠矿、志琴矿及经绥矿新矿物,这些超高压新矿物的发现证实了地幔橄榄岩和铬铁矿的形成深度可达地幔过渡带(>410 km),并且根据柯石英具有斯石英假象等现象指示形成压力至少在10 GPa以上(Yang et al.,2007)。巴登珠矿(TiP)、志琴矿(TiSi2)、康金拉矿(Ti11(Si,P)10)和文吉矿(Ti10(Si,P,□)7),这四种高度还原的含钛矿物共同构成了一个直径为20 μm的球体,从而推测它是从同一Ti-Si-P熔体中结晶出来的。幔源CH4、H2流体与浅岩石圈(深度30~100 km)玄武岩岩浆的相互作用,在低于铁-钨矿缓冲液对应的6个氧逸度单元以上的条件下,会导致捕获这些金属熔体的刚玉沉淀。部分熔体结晶出超还原性的Ti-P-Si矿物相(Xiong Fahui et al.,2020)。不仅如此,Griffin et al.(2016)和Xiong et al.(2017)提出了一种高度还原的且与超高压矿物无关的金属间化合物相模型,这种高度还原相模型可以应用于罗布莎蛇绿岩。这个模型设想了幔源CH4+H2流体从深部上地幔快速折返到浅岩石圈(深度30~100 km)过程中,与先前俯冲的地幔楔体内的玄武质岩浆的相互作用,折返作用导致了刚玉的沉淀。虽然在罗布莎铬铁矿中发现的高度还原金属间化合物的类似物大部分是在常压下合成的,但Li et al.(2013)提出了在高达~52 GPa的压力下可以合成TiSi2,这意味着巴登珠矿(TiP)、志琴矿(TiSi2)、经绥矿(TiB2)等矿物可能是在可达~5 GPa的压力下形成的(Xiong Fahui et al.,2020)(图12)。据此,根据不同的温压条件,青松矿率先结晶,含钛矿物(如巴登珠矿、志琴矿、经绥矿、文吉矿、康金拉矿)在高达~5 GPa压力下结晶析出,这为铬铁矿中发现新矿物提供了新的证据(Griffin et al.,2016Xiong Fahui et al.,20202021)。结合前人的研究,进而推测出多种影响深部地幔矿物成因条件,如下:

  • 首先,Dobrzhinetskaya et al.(2014)论述了豆荚状铬铁矿的深部上地幔起源,以N、C同位素特征来限制铬铁矿中所携带的矿物组成。例如,在高度还原的环境下,来自地幔的N分别与Ti和B结合成陨氯钛矿和青松矿,小部分C位于陨氯钛矿中。含有青松矿和陨氯钛矿包裹体的柯石英-蓝晶石碎片(图13a)在俯冲折返过程中发生了相变,其中高含量的SiO2和Al2O3证明了其物质来源于地壳的可能性,这也间接证明了这些地幔矿物是地壳物质发生了深俯冲而后折返形成。在此过程中,Yang et al.(2007)提出至少需要2.8~4 GPa的最低压力才可产生这种矿物组合,然而随着柯石英中斯石英假象的发现,推测其形成压力>9 GPa(Dobrzhinetskaya et al.,2014)。

  • 图12 罗布莎蛇绿岩温-压演化模式图(据Griffin et al.,2016b;Xiong Fahui et al.,20202021

  • Fig.12 Pressure-temperature diagram summarizing evolution of the Luobusa ophiolite (after Griffin et al., 2016b;Xiong Fahui et al., 2020, 2021)

  • 其次,在对Ti-Si-P三元体系研究的基础上,Xiong et al.(2020)推测出文吉矿、康金拉矿、志琴矿和巴登珠矿四种矿物按降温顺序依次冷却结晶(图13b),其认为康金拉矿是被包裹熔融在文吉矿中,随着温度的降低发生了一系列化学作用(图13c),并且康金拉矿端元的温度上限是低于1920℃的(Xiong Fahui et al.,2022)。Ti-Si-P三元体系中矿物的结晶温度要比二元系低(Xiong Fahui et al.,2020),可见P对Ti-Si体系的影响可达数百摄氏度,并因此使得志琴矿的结晶温度在1100~1300℃间,远低于同质熔融志琴矿的1500℃(图13d),符合上地幔标准。这一观点以温度为条件,论证了豆荚状铬铁矿中新矿物的结晶与其密不可分,同时也证明了同一种矿物在不同体系下结晶温度也存在差异。

  • 图13 罗布莎铬铁矿新矿物扫描电子显微镜图及Ti-Si-P三元体系相变图

  • Fig.13 New mineral SEM images of Luobusa chromitite and plot of compounds in the ternary Ti-Si-P system

  • (a)—斯石英-蓝晶石电镜图像;(b)—Ti-Si-P三元系统图;(c)—#5358箔电镜图像;(d)—Ti-Si二元系温度相变图(据Xiong et al.,2020修改)

  • (a) —coesite-kyanite electron microscope diagram; (b) —plot of compounds in the ternary Ti-Si-P system; (c) —electron microscope diagram in foil no.5358; (d) —plot of compounds in the binary Ti-Si system (modified after Xiong et al., 2020)

  • 与此相似,Othrys蛇绿岩中新矿物的形成条件也为深部地幔矿物的产生提供了新的见解。Arsenotučekite以部分取代镍黄铁矿边缘及不规则发育的颗粒形式出现,局部与绿泥石共生,表明其在较低的温度下结晶析出。关于其成因目前有两种假设:① 形成于成矿晚期的热液阶段,锑和含锑溶液与岩浆硫化物(如镍黄铁矿)反应,或寄主橄榄岩、蛇纹岩作用形成;② 硫化物是从热液中沉淀出来的,也可能是其寄主岩石蛇纹岩化产生,金属元素则来自寄主岩石(Zaccarini et al.,2020)。而eliopoulosite、tsikourasite、grammatikopoulosite三种矿物更是在同一样品中被发现,并且三种矿物出自同一矿物相,因此可以认为它们是在相同的化学物理条件下形成的(亏损环境)(Bindi et al.,2019)。前人对Othrys蛇绿岩的几种新矿物所处的还原环境成因做出了一系列假设:① 蛇纹石化过程中铬铁矿的低温变化;② 地幔深部对流,铬铁矿与还原性流体的一系列反应;③ 造山活动后地表的闪电电击形成的闪电熔岩;④ 陨石撞击。尽管在之前的报道中证实了陨石中含S,但是在对整个Othrys蛇绿岩取样时,所得样品中辉绿岩和陨石的含量微乎其微,故排除陨石成因,研究区也未有大规模的闪电轰击(Bindi et al.,2020a2020b),故前两种假设更加可靠。

  • 在Othrys和Gerakini-Ormylia(希腊)以及Alapaevsk(俄罗斯)蛇绿岩铬铁矿中发现的含磷矿物与高度还原的矿物相(如蛇纹石)成因密切相关,通常形成于蛇纹石化作用。相似的是,grammatikopoulosite也与铁镍矿和其他还原相有关,可能推测出其为低温蛇纹石化作用的成因。与此同时在Alapaevsk(俄罗斯)蛇绿岩铬铁矿富含蛇纹石的基质中发现了原位Ni-Fe-P,从而在一定程度上支持这一假说的真实性(Ifandi et al.,2018; Bindi et al.,2020a)。

  • 为了验证此观点,根据Sabatier反应所提供的CH4的形成是出现在150℃之下的洋壳或者陆壳蛇纹石化作用过程,证明在幔源岩石的蚀变过程中,可以在低温低压条件下产生还原条件。Xiong et al.(2017)提出了在低压(<3 GPa)相中富含CH4和H2的幔源流体与玄武岩熔体的相互作用可以使浅层岩石圈中的地幔橄榄岩(包括豆荚状铬铁矿)达到还原条件,导致超高压矿物体系中岩浆的脱Si、Al2O3的过饱和及富Ti刚玉的快速生长,并提出在此过程fO2可低至IW-11(Xiong Qing et al.,2017)。Guo et al.(2016)提出当熔体的硫逸度(fS2)很高时,S分别与大量PGE元素及贱金属元素结合生成PGM和BMS矿物(贱金属硫化物),其包裹在铬铁矿内部,此时铬铁矿母熔体具有很高的硫逸度,达到硫饱和状态。豆荚状铬铁矿中PGM的结晶温度一般在700~1300℃之间,由于地幔温度变化极为缓慢,因此影响PGM析出的决定因素为硫逸度(fS2),当熔体硫逸度达到饱和时,PGE与S结合成铂族矿物(郭国林等,2016),反映硫逸度对铬铁矿赋存新矿物的影响。这成为eliopoulosite(V7S8)、grammatikopouloite(NiVP)和tsikourasite(Mo3Ni2P1+x)低温低压还原条件成因的有力证据。

  • 不难看出,不管是罗布莎蛇绿岩铬铁矿还是希腊Othrys蛇绿岩中赋存的新矿物都是在还原条件下产生的。区别在于,罗布莎铬铁矿新矿物成因更偏向于地幔源,被上升流体携带并最终在豆荚状铬铁矿中结晶;Othrys蛇绿岩新矿物的产生与地幔橄榄岩在还原环境下的低温蛇纹石化过程结晶相关。两地不同构造背景下的新生矿物在矿物组成上亦有区别,这两种成因特征的新矿物从侧面反映出不同环境条件下均可孕育出新生矿物,而条件的差异导致新矿物种类的差异。

  • 4.3 豆荚状铬铁矿中微米级新矿物的指示意义

  • 本文通过对比研究二十世纪以来西藏罗布莎和希腊Othrys蛇绿岩铬铁矿中的微米级新矿物,针对其构造背景、化学成分和晶体结构等不同条件来探究豆荚状铬铁矿中微米级矿物成因的关键因素。根据物理化学和地球化学特征分析,罗布莎蛇绿岩铬铁矿中的新矿物产生可能的设想是深俯冲之后,在折返过程中与岩浆发生一系列反应所形成,可以归因于B、Si、P等元素在高度还原的环境下,导致亲铁元素偏析至金属熔体之中,从而使这些元素在金属熔体相中富集,而不是硅酸盐熔体之中。对于这些新的矿物体系,例如Ti-Fe-Si体系,像Ti、FeTiSi2以及TiSi2等包裹体颗粒在其液相线附近(<1300℃)的温度条件下从金属熔体中结晶出来(Xiong Fahui et al.,2021)。结合豆荚状铬铁矿形成的所历经地幔深部(地幔柱)、洋中脊和俯冲带环境等多阶段过程,可得:蛇绿岩存在地壳沉积物,并随深俯冲到地幔过渡带附近,在这个位置完成最初元素的结合;随后铬铁矿浆在地幔柱的驱动下,运移到过渡带冷凝固结,并有强还原性流体介入,物质上移过程中,早期携带的超高压矿物发生相变,高压相中铬铁矿出溶新矿物(Xiong Fahui et al.,20202021)。

  • 相较于罗布莎蛇绿岩豆荚状铬铁矿近年来发现的新矿物,希腊Othrys蛇绿岩中的微米级矿物更偏向于蛇纹化石过程中的还原作用结晶所产生。Bindi et al.(2020b)根据已有的化学组成和矿物共生组合表明,其成因可能为地幔橄榄岩中的磷化物及其伴生矿物在还原环境下的低温蛇纹石化过程结晶,与其类似成因还有俄罗斯富蛇纹石基质的Alapaevsk铬铁矿。

  • 纵使两地豆荚状铬铁矿包裹体赋存的新矿物在构造地质背景、物理化学条件以及成因模式上具有明显的差异,但也证实了豆荚状铬铁矿中微米级矿物的产生途径并非唯一,是一种打破瓶颈探究深部地幔矿物的新思路,即不同物理化学条件下,地幔橄榄岩与岩浆发生部分熔融和岩石-熔体反应作用,均会结晶出新矿物,其化学组成、物理化学性质以及晶体结构等方面存在差异。无论是海底或者陆地蛇纹石化作用过程中的变化,还是在金属熔体体系中结晶出的新矿物及其伴生矿物,都是属于豆荚状铬铁矿与地幔中的高温还原流体反应或是豆荚状铬铁矿及其寄主蛇纹岩、地幔橄榄岩与地表的相互作用。这就说明铬铁矿中所包含的多种微米级矿物是揭示地幔物质组成的重要窗口,其成因意义证实了豆荚状铬铁矿的形成经历了多阶段过程及不同反应过程中外界条件的不同,最终会析出不同类型的新矿物。这是从新的视角去理解研究豆荚状铬铁矿中微米级矿物的成因。

  • 5 结论

  • (1)在豆荚状铬铁矿中发现的多个含壳源物质的微米级新矿物,证实了深部地幔中陆壳物质的存在,对揭示壳幔循环过程意义非凡。

  • (2)西藏及希腊两地的微米级新矿物都是在相对还原条件下产生的,产生还原机制的不同影响了矿物的晶体结构和化学组成,深部地幔流体作用与低温蚀变过程等不同成因特征决定了矿物种类的异同。

  • (3)微米级新矿物的产生是一个多阶段的过程:地壳物质深俯冲至地幔过渡带附近,物质发生聚集,后被流体携带折返较浅的位置,不同种类的矿物在此过程逐步结晶,铬铁矿则承担了新生矿物赋存的“载体”。

  • 致谢:非常感谢中国科学院青藏高原研究所史仁灯研究员的邀稿。论文撰写过程与中国地质科学院地质所杨胜标博士进行了有益讨论,中国地质大学(武汉)郑建平教授和浙江大学夏群科教授对本文提出了很多建设性意见,一并致以诚挚的谢意。

  • 参考文献

    • Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277~295.

    • Bébien J. 1980. Magmatismes basiques dits “orogeniques” et “anorogeniques” et teneurs entro 2: Les associations “isotitanees” et “anisotitanfes”. Journal of Volcanology & Geothermal Research, 8(2-4): 337~342.

    • Barth M G, Mason P R, Davies G R, Dijkstra A H, Drury M R. 2003. Geochemistry of the Othris ophiolite, Greece: Evidence for refertilization? Journal of Petrology, 44(10): 1759~1785.

    • Barth M G, Mason P, Davies G R, Drury M R. 2008. The Othris ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge. Lithos, 100(1-4): 234~254.

    • Bao Peisheng, Wang Xibin, Peng Genyong, Chen Fangyuan. 1999. Chromite Deposits in China. Beijing: Science Press, 38: 1127~1130 (in Chinese with English abstract).

    • Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—Questioning about the rock/ melt interaction metallogeny. Geological Bulletin Of China, 28(12): 1741~1761(in Chinese with English abstract).

    • Barnes S, Boyd R, Korneliussen A, Nilsson L, Often M, Pedersen R B. 1988. The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: Examples from Norway. Springer Netherlands, Geo-Platinum, Elsevier: 113~143.

    • Bortolotti V, Chiari M, Marcucci M, Photiades A, Principi G, Saccani E. 2008. New geochemical and age data on the ophiolites from the Othrys area (Greece): Implication for the Triassic evolution of the Vardar ocean. Ofioliti, 33: 135~151.

    • Bai Wenji, Yang Jingsui, Robinson P, Fang Qingsong, Zhang Zhongming, Yan Binggang, Hu Xufeng. 2001. Study of diamonds from chromitites in the Luobusa ophiolite, Tibet. Acta Geologica Sinica, 75(3): 404~409 (in Chinese with English abstract).

    • Bai Wenji, Yang Jingsui, Fang Qingsong, Yan Binggang, Zhang Zhongming. 2002. Ultra-high pressure minerals: FeO, Fe, FeSi, Si and SiO2 assemblage from ophiolite in Tibet and its earth dynamic significance. Acta Geoscientia Sinica, 23(5): 395~402 (in Chinese with English abstract).

    • Bai Wenji, Shi Nicheng, Fang Qingsong, Li Guowu, Yang Jingsui, Xiong Ming, Rong He. 2006. Luobusaite: A new mineral. Acta Geologica Sinica, 80(10): 1487~1490(in Chinese with English abstract).

    • Bai Wenji, Shi Nicheng, Yangjingsui, Fang Qingsong, Ren Yufeng, Rong He, Li Guowu, Ma Zhesheng. 2007. An assemblage of simple oxide minerals from ophiolitic podiform chromitites in Tibet and their ultrahigh pressure origin. Acta Geologica Sinica, 81(11): 1538~1549(in Chinese with English abstract).

    • Bindi L, Zaccarini F, Bonazzi P, Grammatikopoulos T, Garuti G. 2020a. Eliopoulosite, V7S8, a new sulfide from the podiform chromitite of the Othrys ophiolite, Greece. Minerals, 10(3): 245.

    • Bindi L, Zaccarini F, Ifandi E, Tsikouras B, Mauro D. 2020b. Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, (10): 131.

    • Dijkstra A H, Barth M G, Drury M R, Mason P R, Vissers R L. 2003. Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othrisperidotite massif (Greece). Geochemistry, Geophysics, Geosystems, 4(8): 1~24.

    • Dickey J S. 1976. A hypothesis of origin for podiform chromite deposits. In: Chromium: Its Physicochemical Behavior and Petrologic Significance. Oxford: Pergamon Press, 1061~1074.

    • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387~411.

    • Dobrzhinetskaya L F, Wirth R, Yang Jingsui, Hutcheon I D, Weber P K, Ii H W G. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233~19238.

    • Dobrzhinetskaya L F, Wirth R, Yang J S, Green H W, Hutcheon I D, Weber P K, Grew E S. 2014. Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth's mantle. American Mineralogist, 99(4): 764~772.

    • Economou M. 1986. Chromite deposits of Greece. Chromites, 129~159.

    • Fang Qingsong, Bai Wenji, Yang Jingsui, Xu Xiangzhen, Li Guowu, Shi Nicheng, Xiong Ming, Rong He. 2009. Qusongite (WC): A new mineral. American Mineralogist, 94: 387~390.

    • Fang Qingsong, Bai Wenji, Yang Jingsui, Rong He, Shi Nicheng, Li Guowu, Xiong Ming, Ma Zhesheng. 2013. Titanium, Ti, a new mineral species from Luobusha, Tibet, China. Acta Geologica Sinica (English Edition), 87(5): 1275~1280.

    • Garuti G, Zaccarini F, Economou-Eliopoulos M. 1999a. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os-Ru fractionation in ophiolitic upper mantle of the Balkan peninsula. Mineralium Deposita, 34(3): 312~319.

    • Garuti G, Zaccarini F, Moloshag V P, Alimov V. 1999b. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: An example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Canadian Mineralogist, 37: 1099~1115.

    • Guo Guolin, Yang Jingsui, Robinson P T, Liu Xiaodong, Xu Xiangzhen, Xiong Fahui. 2016. Platinum-group mineral (PGM) and Base-metal sulphide (BMS) inclusions in chromitites of the Zedang ophiolite, southern Tibet, China and their petrogenetic significance. Acta Geologica Sinica (English Edition), 90(3): 900~912.

    • Guo Guolin, Yang Jingsui, Liu Xiaodong, Xu Xiangzhen, Wu Yong. 2016. In situ research on PGM in Luobusa ophiolitic chromitites, Tibet: Implications for the crystallization of the chromite. Acta Petrologica Sinica, 32(12): 3673~3684(in Chinese with English abstract).

    • Grebby S, Cunningham D, Naden J, Tansey K. 2010. Lithological mapping of the Troodos ophiolite, Cyprus, using airborne lidar topographic data. Remote Sensing of Environment, 114(4): 713~724.

    • Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, Gonzalez-Jimenez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O'Reilly S Y. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655~684.

    • Hagemann J W, Rothfus J A. 1983. Polymorphism and transformation energetics of saturated monoacid triglycerides from differential scanning calorimetry and theoretical modeling. Journal of the American Oil Chemists' Society, 60(6): 1123~1131.

    • Ifandi E, Zaccarini F, Tsikouras B, Grammatikopoulos T, Hatzipanagiotou K. 2018. First occurrences of Ni-V-Co phosphides in chromitite from the agios stefanos mine, Othrys ophiolite, Greece. Ofioliti, 43(2): 131~145.

    • Irvine T N. 1965. Chromian spinel as a petrogenetic indicator: Part 1. theory. CanadianJournal of Earth Sciences, 2(6): 648~672.

    • Li C Y, Yu Z H, Liu H Z, Lü T Q. 2013. The crystallographic stability and anisotropic compressibility of C54-type TiSi2 under high pressure. Journal of Physics and Chemistry of Solids, 74(9): 1291~1294.

    • Li Guowu, Fang Qingsong, Shi Nicheng, Bai Wenji, Yang Jingsui, Xiong Ming, Ma Zhesheng, Rong He. 2009. Zangboite, TiFeSi2, a new mineral species from Luobusa, Tibet, China, and its crystal structure. The Canadian Mineralogist, 47(5): 1265~1274.

    • Li Guowu, Bai Wenji, Shi Nicheng, Fang Qingsong, Xiong Ming, Yang Jingsui, Ma Zhesheng, Rong He. 2012. Linzhiite, FeSi2, a redefined and revalidated new mineral species from Luobusha, Tibet, China. European Journal of Mineralogy, 24(6): 1047~1052.

    • Li Guowu, Shi Nicheng, Bai Wenji, Fang Qingsong, Xiong Ming. 2015. Seven new intermetallic minerals found in Luobusa, Tibet, China. Acta Mieralogica Sinica, (1): 13~18 (in Chinese with English abstract).

    • Li Jinyang, Yang Jingsui, Ba Dengzhu, Xu Xiangzhen, Meng Fancong, Li Tianfu. 2012. Origin of different dunites in the Luobusa ophiolite, Tibet. Acta Petrologica Sinica, 28(6): 1829~1845(in Chinese with English abstract).

    • Melcher F, Grum W, Simon G, Thalhammer T V, Stumpfl E F. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. Journal of Petrology, 38(10): 1419~1458.

    • Mitsis I, Economou-Eliopoulos M. 2001. Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece. American Mineralogist, 86(10): 1143~1150.

    • Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters, 203(1): 235~243.

    • Ohnenstetter D, Watkinson D H, Talkington R W. 1986. Cryptic compositional variation in laurite and enclosing chromite from the bird river sill, Manitoba. Economic Geology, 81(5): 1159~1168.

    • Photiades A, Saccani E, Tassinari R. 2003. Petrogenesis and tectonic setting of volcanic rocksfrom the subpelagonian ophiolitic mélange in the agoriani area (Othris, Greece). Ofioliti, 28(2): 121~135.

    • Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 16(1): 77~94.

    • Proenza J, Gervilla F, Melgarejo J, Bodinier J L. 1999. Al- andCr-rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94(4): 547~566.

    • Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1~67.

    • Reyntjens S, Puers R. 2001. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 1157(11): 287~300.

    • Saccani E, Photiades A. 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, 73(3-4): 229~253.

    • Shi Nicheng, Bai Wenji, Li Guowu, Xiong Ming, Fang Qingsong, Yang Jingsui, Ma Zhesheng, Rong He. 2009. Yarlongite: anew metallic carbide mineral. Acta Geologica Sinica, 83(1): 25~30(in Chinese with English abstract).

    • Shi Nicheng, Bai Wenji, Li Guowu, Xiong Ming, Yang Jingsui, Ma Zhesheng, Rong He. 2012. Naquite, FeSi, a new mineral species from Luobusa, Tibet, western China. Acta Geologica Sinica (English Edition), 86(3): 533~538.

    • Shi Rendeng. 2005. Comment on theprogress in and problems on ophiolite study. Geological Review, 51(6): 681~693(in Chinese with English abstract).

    • Spence J, Crewe A V. 2003. High-resolution electron microscopy. Physics Today, 34(9).

    • Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, CuiMengmeng, Peng Qingshan. 2018a. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37(6): 1035~1046(in Chinese with English abstract).

    • Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan. 2018b. Potential applications of Fe and Mg isotopes in genesis of chromite deposits in ophiolites. Earth Sciences, 43(4): 1011~1024.

    • Su Benxun, Liu Xia, Chen Chen, Xiao Yan, Zhou Meifu, Bai Yang, Zhang Pengfei. 2021. A new model for chromitite formation in ophiolites: fluid immiscibility. Science China Earth Sciences, 64(2): 220~230 (in Chinese).

    • Sudraud P. 1988. Focused-ion-beam milling, scanning-electron microscopy, and focused droplet deposition in a single microcircuit surgery tool. Journal of Vacuum Science & Technology, 6(1): 234~238.

    • Tang Xu, Li Jinhua. 2021. Transmission electron microscopy: New advances and applications for earth and planetary sciences. Earth Science, 46(4): 1374~1415(in Chinese with English abstract).

    • Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guelman-soridag district, Turkey. Economic Geology, 59(8): 1497~1524.

    • Thayer T P. 1970. Chromite segregations as petrogenetic indicators. Geological Society of South Africa Special Publications, 380~390.

    • Tsikouras B, Karipi S, Rigopoulos I, Perraki M, Pomonis P, Hatzipanagiotou K. 2009. Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos, 113(3-4): 540~554.

    • Tsikouras B, Karipi S, Hatzipanagiotou K. 2013. Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (central Greece). Lithos, 175: 16~29.

    • Tsikouras B, Ifandi E, Karipi S, Grammatikopoulos T A, Hatzipanagiotou K. 2016. Investigation of platinum group minerals (PGM) from Othrys chromitites (Greece) using superpanning concentrates. Minerals, 6(3): 94.

    • Vincent R, Midgley P A. 1994. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53(3): 271~282.

    • Wang Cunzhi, Jiang Yang, Xing Guangfu. 2011. Recent situation of researches on ophiolites and some problems concerning the ophiolites in south China. Resources Survey & Environment, 32(4): 235~246.

    • Wang Hengsheng. 1983. Chromite deposits and their genesis in China. Science Press (in Chinese).

    • Wirth R. 2004. Focused ion beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16(6): 863~876.

    • Wirth R, Kaminsky F, Matsyuk S, Schreiber A. 2009. Unusual micro- and nano-inclusions in diamonds from the Juina area, brazil. Earth and Planetary Science Letters, 286(1-2): 292~303.

    • Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits—A case study of the Luobosa chromite deposit, Tibet. Chinese Journal of Geology, 22(2): 166~181. (in Chinese with English abstract).

    • Xiao Xuchang, Wang Fangguo. 1984. An introduction to the ophiolite of China. Bulletin of the Chinese Academy of Geological Sciences, 9: 19~30(in Chinese).

    • Xiong Fahui. 2013. Multi-stage formation of the podiform chromitite. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromitite. Geology in China, 40(3): 820~839(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Ba Dengzhu, Liu Zhao, Xu Xiangzhen, Feng Guangying, Niu Xiaolu, Xu Jifeng. 2014. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet. Acta Petrologica Sinica, 30(8): 2137~2163(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Robinson P T, Xu Xiangzhen, Liu Zhao, Li Yuan, Li Jinyang, Chen Songyong. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2): 525~542.

    • Xiong Fahui, Xu Xiangzhen, Mugnaioli E, Gemmi M, Yang Jingsui. 2020. Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: Is this evidence for super-reduced mantle-derived fluids? European Journal of Mineralogy, 32: 557~574.

    • Xiong Fahui, Zoheir B, Wirth R, Milushi I, Qiu Tian, Yang Jingsui. 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398: 106305.

    • Xiong Fahui, Xu Xiangshen, Mugnaioli E, Gemmi M, Robinson P T. 2022a. Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron. American Mineralogist, 107(1): 43~53.

    • Xiong Fahui, Xu Xiangzhen, Mugnaioli E, Gemmi M, Wirth R, Yang Jingsui, Grew E S. 2022b. Wenjiite, Ti10(Si, P, □)7, and kangjinlaite, Ti11(Si, P)10, new minerals in the ternary Ti-P-Si system from the Luobusa ophiolite, Tibet, China. American Mineralogist, doi. org/10. 2138/am-2022-8226.

    • Xiong Qing, Griffin W L, Huang Jinxiang, Gain S E M, Toledo V, Pearson N J, O'Reilly S Y. 2017. Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from mount carmel. European Journal of Mineralogy, 29(4): 557~570.

    • Xu Xiangzhen. 2009. Origin of the Kangjinla podiform chromite deposit and mantle peridotite, southern Tibet. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Xu Xiangzhen, Yang Jingsui, Ba Dengzhu, Guo Guolin, Robinson P T, Li Jinyang. 2011. Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, southern Tibet. Journal of Asian Earth Sciences, 42(4): 553~568.

    • Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green II H W. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875~878.

    • Yang Jingsui, Bai Wenji, Fang Qingsong, Rong He. 2008. Ultra-high pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 12 (in Chinese with English abstract).

    • Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, Rong He, Li Yuan, Xiong Fahui, Liang Fenghua, Liu Zhao, Liu Fei, Li Jinyang, Li Zhaoli, Chen Songyong, Guo Guolin, Robinson P. 2013. Ophiolite-type diamond and deep genesis of chromitite. Acta Geoscientica Sinica, 34(6): 11 (in Chinese with English abstract).

    • Yang Jingsui, Robinson P T, Xu Xiangzhen, Xiong Fahui, Lian Dongyang. 2018. Diamond in oceanic peridotites and chromitites: evidence for deep recycled mantle in the global ophiolite record. Acta Geologica Sinica (English Edition), 92(sup. 2): 42.

    • Yuan Peng, Du Peixin, Zhou Junming, Wang Shun. 2019. Insights into the geological and resource significance of aluminosilicate nanominerals. Acta Petrologica Sinica, 35(1): 164~176 (in Chinese with English abstract).

    • Zaccarini F, Bindi L, Ifandi, Elena. 2019. Tsikourasite, Mo3Ni2P1+x(x<0. 25), a new phosphide from the chromitite of the othrys ophiolite, Greece. Minerals, 9(4): 248.

    • Zaccarini F, Bindi L, Tsikouras B, Grammatikopoulos T, Stanley C J, Garuti G. 2020. Arsenotuč ekite, Ni18Sb3AsS16, a new mineral from the Tsangli chromitites, Othrys ophiolite, Greece. Mineralogy and Petrology, 114(5): 435~442.

    • Zhang Chang, Liu Chuanzhou, Wu Fuyuan, Zhang Liangliang, Ji Weiqiang, Wang Jiangang, Yang Liuyang. 2014. Formation age and origin of gabbro in Luobusa ophiolite, southern Tibet. 2014 China Joint Academic Meeting of Geosciences—Topic 34: Essays on Geological Evolution and Mineralization of the Tethys-Qinghai-Xizang Plateau.

    • Zhang Pengfei, Uysal I, Zhou Meifu, Su Benxun, Avc1 E. 2016. Subduction initiation for the formation of high-Cr chromitites in the Kop ophiolite, NE Turkey. Lithos, 260: 345~355.

    • Zhang Pengfei, Zhou Meifu, Yumul G P, Wang Yan. 2021. Geodynamic setting of high-Cr chromite mineralization in nascent subduction zones: Li isotopic and REE constraints from the Zambales ophiolite, Philippines. Lithos, 384-385: 105975.

    • Zhong Lifeng, Xia Bin, Zhou Guoqing, Zhang Yuquan, Wang Ran, Wei Dongliang, Yang Qingzhi. 2006. SHRIMP age determination of the diabase in luobusa ophiolite, southern Xizang (Tibet). Geological Review, 52(2): 224~229.

    • Zhou Meifu, Robinson P, Bai Wenji. 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita, 29(1): 98~101.

    • Zhou Meifu, Robinson P T, Malpas J, Li Zijin. 1996. Podiform chromitites in the Luobusa ophiolite (southerntibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3~21.

    • Zhou Meifu, Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92(2): 259~262.

    • Zhou Meifu, Sun Min, Keays R R, Kerrich R W. 1998. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677~688.

    • Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615~639.

    • Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262~283.

    • 鲍佩声, 王希斌, 彭根永, 陈方远. 1999. 中国铬铁矿床. 北京: 科学出版社, 38, 1127~1130.

    • 鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28(12): 1741~1761.

    • 白文吉, 杨经绥, Robinson P, 方青松, 张仲明, 颜秉刚, 胡旭峰. 2001. 西藏罗布莎蛇绿岩铬铁矿中金刚石的研究. 地质学报, 75(3): 404~409.

    • 白文吉, 杨经绥, 方青松, 颜秉刚, 张仲明. 2002. 西藏蛇绿岩的超高压矿物: FeO, Fe, FeSi, Si和SiO2组合及其地球动力学意义. 地球学报, 23(5), 23(5): 395~402.

    • 白文吉, 施倪承, 方青松, 李国武, 杨经绥, 熊明, 戎合. 2006. 新矿物: 罗布莎矿. 地质学报, 80(10): 1487~1490.

    • 白文吉, 施倪承, 杨经绥, 方青松, 任玉峰, 戎合, 李国武, 马喆生. 2007. 西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其超高压成因. 地质学报, 81(11): 1538~1549.

    • 郭国林, 徐向珍, 李金阳. 2011. 西藏普兰地幔橄榄岩中尖晶石内的钙长石包裹体及其成因. 岩石学报, 27(11), 27(11): 3197~3206.

    • 郭国林, 杨经绥, 刘晓东, 徐向珍, 武勇. 2016. 西藏罗布莎铬铁矿中的原位铂族矿物研究: 铬铁矿结晶环境的指示. 岩石学报, 32(12): 3673~3684.

    • 李国武, 施倪承, 白文吉, 方青松, 熊明. 2015. 西藏罗布莎铬铁矿中发现的七种金属互化物新矿物. 矿物学报, (1): 13~18.

    • 李金阳, 杨经绥, 巴登珠, 徐向珍, 孟繁聪, 李天福. 2012. 西藏罗布莎蛇绿岩中不同产出的纯橄岩及成因探讨. 岩石学报, 28(6): 1829~1828.

    • 施倪承, 白文吉, 李国武, 熊明, 方青松, 杨经绥, 马喆生, 戎合. 2009. 雅鲁矿: 一种金属碳化物新矿物. 地质学报, 83(1): 25~30.

    • 史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考. 地质论评, 51(6): 681~693.

    • 苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018a. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37(6): 1035~1046.

    • 苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山. 2018b. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43(4): 1011~1024.

    • 苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型: 流体不混溶作用. 中国科学: 地球科学, 51(2): 250~260.

    • 唐旭, 李金华. 2021. 透射电子显微镜技术新进展及其在地球和行星科学研究中的应用. 地球科学, 46(4): 1374~1415.

    • 王存智, 姜杨, 邢光福. 2011. 蛇绿岩研究现状及华南蛇绿岩问题. 资源调查与环境, 32(4): 235~246.

    • 王恒升. 1983. 中国铬铁矿床及成因. 科学出版社.

    • 王希斌, 鲍佩声. 1987. 豆荚状铬铁矿床的成因——以西藏自治区罗布莎铬铁矿床为例. 地质科学, 22(2): 166~181.

    • 熊发挥. 2013. 豆荚状铬铁矿的形成过程. 中国地质科学院博士学位论文.

    • 熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 2014. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论. 岩石学报, 30(8): 2137~2163.

    • 熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 820~839.

    • 肖序常, 王方国. 1984. 中国蛇绿岩概论. 中国地质科学院院报, 9: 19~30.

    • 徐向珍. 2009. 藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究. 中国地质科学院博士学位论文.

    • 杨经绥, 白文吉, 方青松, 戎合. 2008. 西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述). 地球学报, 29(3): 263~274.

    • 杨经绥, 徐向珍, 张仲明, 戎合, 李源, 熊发挥, 梁风华, 刘钊, 刘飞, 李金阳, 李兆丽, 陈松永, 郭国林, Robinson P. 2013. 蛇绿岩型金刚石和铬铁矿深部成因. 地球学报, 34(6): 643~653.

    • 袁鹏, 杜培鑫, 周军明, 王顺. 2019. 铝硅酸盐纳米矿物的地质意义和资源价值再认识. 岩石学报, 35(1): 164~176.

    • 张畅, 刘传周, 吴福元, 张亮亮, 纪伟强, 王建刚, 杨刘杨. 2014. 藏南罗布莎蛇绿岩中辉长岩的形成时代与成因. 2014 年中国地球科学联合学术年会——专题 34: 特提斯—青藏高原地质演化与成矿论文集.

    • 钟立峰, 夏斌, 周国庆, 张玉泉, 王冉, 韦栋梁, 杨之青. 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224~229.

  • 参考文献

    • Arai S, Miura M. 2016. Formation and modification of chromitites in the mantle. Lithos, 264: 277~295.

    • Bébien J. 1980. Magmatismes basiques dits “orogeniques” et “anorogeniques” et teneurs entro 2: Les associations “isotitanees” et “anisotitanfes”. Journal of Volcanology & Geothermal Research, 8(2-4): 337~342.

    • Barth M G, Mason P R, Davies G R, Dijkstra A H, Drury M R. 2003. Geochemistry of the Othris ophiolite, Greece: Evidence for refertilization? Journal of Petrology, 44(10): 1759~1785.

    • Barth M G, Mason P, Davies G R, Drury M R. 2008. The Othris ophiolite, Greece: A snapshot of subduction initiation at a mid-ocean ridge. Lithos, 100(1-4): 234~254.

    • Bao Peisheng, Wang Xibin, Peng Genyong, Chen Fangyuan. 1999. Chromite Deposits in China. Beijing: Science Press, 38: 1127~1130 (in Chinese with English abstract).

    • Bao Peisheng. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—Questioning about the rock/ melt interaction metallogeny. Geological Bulletin Of China, 28(12): 1741~1761(in Chinese with English abstract).

    • Barnes S, Boyd R, Korneliussen A, Nilsson L, Often M, Pedersen R B. 1988. The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: Examples from Norway. Springer Netherlands, Geo-Platinum, Elsevier: 113~143.

    • Bortolotti V, Chiari M, Marcucci M, Photiades A, Principi G, Saccani E. 2008. New geochemical and age data on the ophiolites from the Othrys area (Greece): Implication for the Triassic evolution of the Vardar ocean. Ofioliti, 33: 135~151.

    • Bai Wenji, Yang Jingsui, Robinson P, Fang Qingsong, Zhang Zhongming, Yan Binggang, Hu Xufeng. 2001. Study of diamonds from chromitites in the Luobusa ophiolite, Tibet. Acta Geologica Sinica, 75(3): 404~409 (in Chinese with English abstract).

    • Bai Wenji, Yang Jingsui, Fang Qingsong, Yan Binggang, Zhang Zhongming. 2002. Ultra-high pressure minerals: FeO, Fe, FeSi, Si and SiO2 assemblage from ophiolite in Tibet and its earth dynamic significance. Acta Geoscientia Sinica, 23(5): 395~402 (in Chinese with English abstract).

    • Bai Wenji, Shi Nicheng, Fang Qingsong, Li Guowu, Yang Jingsui, Xiong Ming, Rong He. 2006. Luobusaite: A new mineral. Acta Geologica Sinica, 80(10): 1487~1490(in Chinese with English abstract).

    • Bai Wenji, Shi Nicheng, Yangjingsui, Fang Qingsong, Ren Yufeng, Rong He, Li Guowu, Ma Zhesheng. 2007. An assemblage of simple oxide minerals from ophiolitic podiform chromitites in Tibet and their ultrahigh pressure origin. Acta Geologica Sinica, 81(11): 1538~1549(in Chinese with English abstract).

    • Bindi L, Zaccarini F, Bonazzi P, Grammatikopoulos T, Garuti G. 2020a. Eliopoulosite, V7S8, a new sulfide from the podiform chromitite of the Othrys ophiolite, Greece. Minerals, 10(3): 245.

    • Bindi L, Zaccarini F, Ifandi E, Tsikouras B, Mauro D. 2020b. Grammatikopoulosite, NiVP, a new phosphide from the chromitite of the Othrys ophiolite, Greece. Minerals, (10): 131.

    • Dijkstra A H, Barth M G, Drury M R, Mason P R, Vissers R L. 2003. Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othrisperidotite massif (Greece). Geochemistry, Geophysics, Geosystems, 4(8): 1~24.

    • Dickey J S. 1976. A hypothesis of origin for podiform chromite deposits. In: Chromium: Its Physicochemical Behavior and Petrologic Significance. Oxford: Pergamon Press, 1061~1074.

    • Dilek Y, Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4): 387~411.

    • Dobrzhinetskaya L F, Wirth R, Yang Jingsui, Hutcheon I D, Weber P K, Ii H W G. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233~19238.

    • Dobrzhinetskaya L F, Wirth R, Yang J S, Green H W, Hutcheon I D, Weber P K, Grew E S. 2014. Qingsongite, natural cubic boron nitride: The first boron mineral from the Earth's mantle. American Mineralogist, 99(4): 764~772.

    • Economou M. 1986. Chromite deposits of Greece. Chromites, 129~159.

    • Fang Qingsong, Bai Wenji, Yang Jingsui, Xu Xiangzhen, Li Guowu, Shi Nicheng, Xiong Ming, Rong He. 2009. Qusongite (WC): A new mineral. American Mineralogist, 94: 387~390.

    • Fang Qingsong, Bai Wenji, Yang Jingsui, Rong He, Shi Nicheng, Li Guowu, Xiong Ming, Ma Zhesheng. 2013. Titanium, Ti, a new mineral species from Luobusha, Tibet, China. Acta Geologica Sinica (English Edition), 87(5): 1275~1280.

    • Garuti G, Zaccarini F, Economou-Eliopoulos M. 1999a. Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os-Ru fractionation in ophiolitic upper mantle of the Balkan peninsula. Mineralium Deposita, 34(3): 312~319.

    • Garuti G, Zaccarini F, Moloshag V P, Alimov V. 1999b. Platinum-group minerals as indicators of sulfur fugacity in ophiolitic upper mantle: An example from chromitites of the Ray-Iz ultramafic complex, Polar Urals, Russia. Canadian Mineralogist, 37: 1099~1115.

    • Guo Guolin, Yang Jingsui, Robinson P T, Liu Xiaodong, Xu Xiangzhen, Xiong Fahui. 2016. Platinum-group mineral (PGM) and Base-metal sulphide (BMS) inclusions in chromitites of the Zedang ophiolite, southern Tibet, China and their petrogenetic significance. Acta Geologica Sinica (English Edition), 90(3): 900~912.

    • Guo Guolin, Yang Jingsui, Liu Xiaodong, Xu Xiangzhen, Wu Yong. 2016. In situ research on PGM in Luobusa ophiolitic chromitites, Tibet: Implications for the crystallization of the chromite. Acta Petrologica Sinica, 32(12): 3673~3684(in Chinese with English abstract).

    • Grebby S, Cunningham D, Naden J, Tansey K. 2010. Lithological mapping of the Troodos ophiolite, Cyprus, using airborne lidar topographic data. Remote Sensing of Environment, 114(4): 713~724.

    • Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, Gonzalez-Jimenez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O'Reilly S Y. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications. Journal of Petrology, 57(4): 655~684.

    • Hagemann J W, Rothfus J A. 1983. Polymorphism and transformation energetics of saturated monoacid triglycerides from differential scanning calorimetry and theoretical modeling. Journal of the American Oil Chemists' Society, 60(6): 1123~1131.

    • Ifandi E, Zaccarini F, Tsikouras B, Grammatikopoulos T, Hatzipanagiotou K. 2018. First occurrences of Ni-V-Co phosphides in chromitite from the agios stefanos mine, Othrys ophiolite, Greece. Ofioliti, 43(2): 131~145.

    • Irvine T N. 1965. Chromian spinel as a petrogenetic indicator: Part 1. theory. CanadianJournal of Earth Sciences, 2(6): 648~672.

    • Li C Y, Yu Z H, Liu H Z, Lü T Q. 2013. The crystallographic stability and anisotropic compressibility of C54-type TiSi2 under high pressure. Journal of Physics and Chemistry of Solids, 74(9): 1291~1294.

    • Li Guowu, Fang Qingsong, Shi Nicheng, Bai Wenji, Yang Jingsui, Xiong Ming, Ma Zhesheng, Rong He. 2009. Zangboite, TiFeSi2, a new mineral species from Luobusa, Tibet, China, and its crystal structure. The Canadian Mineralogist, 47(5): 1265~1274.

    • Li Guowu, Bai Wenji, Shi Nicheng, Fang Qingsong, Xiong Ming, Yang Jingsui, Ma Zhesheng, Rong He. 2012. Linzhiite, FeSi2, a redefined and revalidated new mineral species from Luobusha, Tibet, China. European Journal of Mineralogy, 24(6): 1047~1052.

    • Li Guowu, Shi Nicheng, Bai Wenji, Fang Qingsong, Xiong Ming. 2015. Seven new intermetallic minerals found in Luobusa, Tibet, China. Acta Mieralogica Sinica, (1): 13~18 (in Chinese with English abstract).

    • Li Jinyang, Yang Jingsui, Ba Dengzhu, Xu Xiangzhen, Meng Fancong, Li Tianfu. 2012. Origin of different dunites in the Luobusa ophiolite, Tibet. Acta Petrologica Sinica, 28(6): 1829~1845(in Chinese with English abstract).

    • Melcher F, Grum W, Simon G, Thalhammer T V, Stumpfl E F. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. Journal of Petrology, 38(10): 1419~1458.

    • Mitsis I, Economou-Eliopoulos M. 2001. Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece. American Mineralogist, 86(10): 1143~1150.

    • Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits. Earth and Planetary Science Letters, 203(1): 235~243.

    • Ohnenstetter D, Watkinson D H, Talkington R W. 1986. Cryptic compositional variation in laurite and enclosing chromite from the bird river sill, Manitoba. Economic Geology, 81(5): 1159~1168.

    • Photiades A, Saccani E, Tassinari R. 2003. Petrogenesis and tectonic setting of volcanic rocksfrom the subpelagonian ophiolitic mélange in the agoriani area (Othris, Greece). Ofioliti, 28(2): 121~135.

    • Pearce J A, Lippard S J, Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 16(1): 77~94.

    • Proenza J, Gervilla F, Melgarejo J, Bodinier J L. 1999. Al- andCr-rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94(4): 547~566.

    • Robertson A H F. 2002. Overview of the genesis and emplacement of Mesozoic ophiolites in the eastern Mediterranean Tethyan region. Lithos, 65(1-2): 1~67.

    • Reyntjens S, Puers R. 2001. A review of focused ion beam applications in microsystem technology. Journal of Micromechanics and Microengineering, 1157(11): 287~300.

    • Saccani E, Photiades A. 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting. Lithos, 73(3-4): 229~253.

    • Shi Nicheng, Bai Wenji, Li Guowu, Xiong Ming, Fang Qingsong, Yang Jingsui, Ma Zhesheng, Rong He. 2009. Yarlongite: anew metallic carbide mineral. Acta Geologica Sinica, 83(1): 25~30(in Chinese with English abstract).

    • Shi Nicheng, Bai Wenji, Li Guowu, Xiong Ming, Yang Jingsui, Ma Zhesheng, Rong He. 2012. Naquite, FeSi, a new mineral species from Luobusa, Tibet, western China. Acta Geologica Sinica (English Edition), 86(3): 533~538.

    • Shi Rendeng. 2005. Comment on theprogress in and problems on ophiolite study. Geological Review, 51(6): 681~693(in Chinese with English abstract).

    • Spence J, Crewe A V. 2003. High-resolution electron microscopy. Physics Today, 34(9).

    • Su Benxun, Bai Yang, Chen Chen, Liu Xia, Xiao Yan, Tang Dongmei, Liang Zi, CuiMengmeng, Peng Qingshan. 2018a. Petrological and mineralogical investigations on hydrous properties of parental magmas of chromite deposits. Bulletin of Mineralogy, Petrology and Geochemistry, 37(6): 1035~1046(in Chinese with English abstract).

    • Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan. 2018b. Potential applications of Fe and Mg isotopes in genesis of chromite deposits in ophiolites. Earth Sciences, 43(4): 1011~1024.

    • Su Benxun, Liu Xia, Chen Chen, Xiao Yan, Zhou Meifu, Bai Yang, Zhang Pengfei. 2021. A new model for chromitite formation in ophiolites: fluid immiscibility. Science China Earth Sciences, 64(2): 220~230 (in Chinese).

    • Sudraud P. 1988. Focused-ion-beam milling, scanning-electron microscopy, and focused droplet deposition in a single microcircuit surgery tool. Journal of Vacuum Science & Technology, 6(1): 234~238.

    • Tang Xu, Li Jinhua. 2021. Transmission electron microscopy: New advances and applications for earth and planetary sciences. Earth Science, 46(4): 1374~1415(in Chinese with English abstract).

    • Thayer T P. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Guelman-soridag district, Turkey. Economic Geology, 59(8): 1497~1524.

    • Thayer T P. 1970. Chromite segregations as petrogenetic indicators. Geological Society of South Africa Special Publications, 380~390.

    • Tsikouras B, Karipi S, Rigopoulos I, Perraki M, Pomonis P, Hatzipanagiotou K. 2009. Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos, 113(3-4): 540~554.

    • Tsikouras B, Karipi S, Hatzipanagiotou K. 2013. Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (central Greece). Lithos, 175: 16~29.

    • Tsikouras B, Ifandi E, Karipi S, Grammatikopoulos T A, Hatzipanagiotou K. 2016. Investigation of platinum group minerals (PGM) from Othrys chromitites (Greece) using superpanning concentrates. Minerals, 6(3): 94.

    • Vincent R, Midgley P A. 1994. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53(3): 271~282.

    • Wang Cunzhi, Jiang Yang, Xing Guangfu. 2011. Recent situation of researches on ophiolites and some problems concerning the ophiolites in south China. Resources Survey & Environment, 32(4): 235~246.

    • Wang Hengsheng. 1983. Chromite deposits and their genesis in China. Science Press (in Chinese).

    • Wirth R. 2004. Focused ion beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16(6): 863~876.

    • Wirth R, Kaminsky F, Matsyuk S, Schreiber A. 2009. Unusual micro- and nano-inclusions in diamonds from the Juina area, brazil. Earth and Planetary Science Letters, 286(1-2): 292~303.

    • Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits—A case study of the Luobosa chromite deposit, Tibet. Chinese Journal of Geology, 22(2): 166~181. (in Chinese with English abstract).

    • Xiao Xuchang, Wang Fangguo. 1984. An introduction to the ophiolite of China. Bulletin of the Chinese Academy of Geological Sciences, 9: 19~30(in Chinese).

    • Xiong Fahui. 2013. Multi-stage formation of the podiform chromitite. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Liu Zhao. 2013. Multi-stage formation of the podiform chromitite. Geology in China, 40(3): 820~839(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Ba Dengzhu, Liu Zhao, Xu Xiangzhen, Feng Guangying, Niu Xiaolu, Xu Jifeng. 2014. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet. Acta Petrologica Sinica, 30(8): 2137~2163(in Chinese with English abstract).

    • Xiong Fahui, Yang Jingsui, Robinson P T, Xu Xiangzhen, Liu Zhao, Li Yuan, Li Jinyang, Chen Songyong. 2015. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2): 525~542.

    • Xiong Fahui, Xu Xiangzhen, Mugnaioli E, Gemmi M, Yang Jingsui. 2020. Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: Is this evidence for super-reduced mantle-derived fluids? European Journal of Mineralogy, 32: 557~574.

    • Xiong Fahui, Zoheir B, Wirth R, Milushi I, Qiu Tian, Yang Jingsui. 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites: Implications for a mantle convection genesis of the Bulqiza ophiolite. Lithos, 398: 106305.

    • Xiong Fahui, Xu Xiangshen, Mugnaioli E, Gemmi M, Robinson P T. 2022a. Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron. American Mineralogist, 107(1): 43~53.

    • Xiong Fahui, Xu Xiangzhen, Mugnaioli E, Gemmi M, Wirth R, Yang Jingsui, Grew E S. 2022b. Wenjiite, Ti10(Si, P, □)7, and kangjinlaite, Ti11(Si, P)10, new minerals in the ternary Ti-P-Si system from the Luobusa ophiolite, Tibet, China. American Mineralogist, doi. org/10. 2138/am-2022-8226.

    • Xiong Qing, Griffin W L, Huang Jinxiang, Gain S E M, Toledo V, Pearson N J, O'Reilly S Y. 2017. Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from mount carmel. European Journal of Mineralogy, 29(4): 557~570.

    • Xu Xiangzhen. 2009. Origin of the Kangjinla podiform chromite deposit and mantle peridotite, southern Tibet. Doctoral dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).

    • Xu Xiangzhen, Yang Jingsui, Ba Dengzhu, Guo Guolin, Robinson P T, Li Jinyang. 2011. Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, southern Tibet. Journal of Asian Earth Sciences, 42(4): 553~568.

    • Yang Jingsui, Dobrzhinetskaya L, Bai Wenji, Fang Qingsong, Robinson P T, Zhang Junfeng, Green II H W. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875~878.

    • Yang Jingsui, Bai Wenji, Fang Qingsong, Rong He. 2008. Ultra-high pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 12 (in Chinese with English abstract).

    • Yang Jingsui, Xu Xiangzhen, Zhang Zhongming, Rong He, Li Yuan, Xiong Fahui, Liang Fenghua, Liu Zhao, Liu Fei, Li Jinyang, Li Zhaoli, Chen Songyong, Guo Guolin, Robinson P. 2013. Ophiolite-type diamond and deep genesis of chromitite. Acta Geoscientica Sinica, 34(6): 11 (in Chinese with English abstract).

    • Yang Jingsui, Robinson P T, Xu Xiangzhen, Xiong Fahui, Lian Dongyang. 2018. Diamond in oceanic peridotites and chromitites: evidence for deep recycled mantle in the global ophiolite record. Acta Geologica Sinica (English Edition), 92(sup. 2): 42.

    • Yuan Peng, Du Peixin, Zhou Junming, Wang Shun. 2019. Insights into the geological and resource significance of aluminosilicate nanominerals. Acta Petrologica Sinica, 35(1): 164~176 (in Chinese with English abstract).

    • Zaccarini F, Bindi L, Ifandi, Elena. 2019. Tsikourasite, Mo3Ni2P1+x(x<0. 25), a new phosphide from the chromitite of the othrys ophiolite, Greece. Minerals, 9(4): 248.

    • Zaccarini F, Bindi L, Tsikouras B, Grammatikopoulos T, Stanley C J, Garuti G. 2020. Arsenotuč ekite, Ni18Sb3AsS16, a new mineral from the Tsangli chromitites, Othrys ophiolite, Greece. Mineralogy and Petrology, 114(5): 435~442.

    • Zhang Chang, Liu Chuanzhou, Wu Fuyuan, Zhang Liangliang, Ji Weiqiang, Wang Jiangang, Yang Liuyang. 2014. Formation age and origin of gabbro in Luobusa ophiolite, southern Tibet. 2014 China Joint Academic Meeting of Geosciences—Topic 34: Essays on Geological Evolution and Mineralization of the Tethys-Qinghai-Xizang Plateau.

    • Zhang Pengfei, Uysal I, Zhou Meifu, Su Benxun, Avc1 E. 2016. Subduction initiation for the formation of high-Cr chromitites in the Kop ophiolite, NE Turkey. Lithos, 260: 345~355.

    • Zhang Pengfei, Zhou Meifu, Yumul G P, Wang Yan. 2021. Geodynamic setting of high-Cr chromite mineralization in nascent subduction zones: Li isotopic and REE constraints from the Zambales ophiolite, Philippines. Lithos, 384-385: 105975.

    • Zhong Lifeng, Xia Bin, Zhou Guoqing, Zhang Yuquan, Wang Ran, Wei Dongliang, Yang Qingzhi. 2006. SHRIMP age determination of the diabase in luobusa ophiolite, southern Xizang (Tibet). Geological Review, 52(2): 224~229.

    • Zhou Meifu, Robinson P, Bai Wenji. 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle. Mineralium Deposita, 29(1): 98~101.

    • Zhou Meifu, Robinson P T, Malpas J, Li Zijin. 1996. Podiform chromitites in the Luobusa ophiolite (southerntibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3~21.

    • Zhou Meifu, Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92(2): 259~262.

    • Zhou Meifu, Sun Min, Keays R R, Kerrich R W. 1998. Controls on platinum-group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts. Geochimica et Cosmochimica Acta, 62(4): 677~688.

    • Zhou Meifu, Robinson P T, Malpas J, Edwards S J, Qi Liang. 2005. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615~639.

    • Zhou Meifu, Robinson P T, Su Benxun, Gao Jianfeng, Li Jianwei, Yang Jingsui, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262~283.

    • 鲍佩声, 王希斌, 彭根永, 陈方远. 1999. 中国铬铁矿床. 北京: 科学出版社, 38, 1127~1130.

    • 鲍佩声. 2009. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说. 地质通报, 28(12): 1741~1761.

    • 白文吉, 杨经绥, Robinson P, 方青松, 张仲明, 颜秉刚, 胡旭峰. 2001. 西藏罗布莎蛇绿岩铬铁矿中金刚石的研究. 地质学报, 75(3): 404~409.

    • 白文吉, 杨经绥, 方青松, 颜秉刚, 张仲明. 2002. 西藏蛇绿岩的超高压矿物: FeO, Fe, FeSi, Si和SiO2组合及其地球动力学意义. 地球学报, 23(5), 23(5): 395~402.

    • 白文吉, 施倪承, 方青松, 李国武, 杨经绥, 熊明, 戎合. 2006. 新矿物: 罗布莎矿. 地质学报, 80(10): 1487~1490.

    • 白文吉, 施倪承, 杨经绥, 方青松, 任玉峰, 戎合, 李国武, 马喆生. 2007. 西藏蛇绿岩豆荚状铬铁矿中简单氧化物矿物组合及其超高压成因. 地质学报, 81(11): 1538~1549.

    • 郭国林, 徐向珍, 李金阳. 2011. 西藏普兰地幔橄榄岩中尖晶石内的钙长石包裹体及其成因. 岩石学报, 27(11), 27(11): 3197~3206.

    • 郭国林, 杨经绥, 刘晓东, 徐向珍, 武勇. 2016. 西藏罗布莎铬铁矿中的原位铂族矿物研究: 铬铁矿结晶环境的指示. 岩石学报, 32(12): 3673~3684.

    • 李国武, 施倪承, 白文吉, 方青松, 熊明. 2015. 西藏罗布莎铬铁矿中发现的七种金属互化物新矿物. 矿物学报, (1): 13~18.

    • 李金阳, 杨经绥, 巴登珠, 徐向珍, 孟繁聪, 李天福. 2012. 西藏罗布莎蛇绿岩中不同产出的纯橄岩及成因探讨. 岩石学报, 28(6): 1829~1828.

    • 施倪承, 白文吉, 李国武, 熊明, 方青松, 杨经绥, 马喆生, 戎合. 2009. 雅鲁矿: 一种金属碳化物新矿物. 地质学报, 83(1): 25~30.

    • 史仁灯. 2005. 蛇绿岩研究进展、存在问题及思考. 地质论评, 51(6): 681~693.

    • 苏本勋, 白洋, 陈晨, 刘霞, 肖燕, 唐冬梅, 梁子, 崔梦萌, 彭青山. 2018a. 铬铁矿床母岩浆含水性的岩石矿物学探讨. 矿物岩石地球化学通报, 37(6): 1035~1046.

    • 苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山. 2018b. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43(4): 1011~1024.

    • 苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型: 流体不混溶作用. 中国科学: 地球科学, 51(2): 250~260.

    • 唐旭, 李金华. 2021. 透射电子显微镜技术新进展及其在地球和行星科学研究中的应用. 地球科学, 46(4): 1374~1415.

    • 王存智, 姜杨, 邢光福. 2011. 蛇绿岩研究现状及华南蛇绿岩问题. 资源调查与环境, 32(4): 235~246.

    • 王恒升. 1983. 中国铬铁矿床及成因. 科学出版社.

    • 王希斌, 鲍佩声. 1987. 豆荚状铬铁矿床的成因——以西藏自治区罗布莎铬铁矿床为例. 地质科学, 22(2): 166~181.

    • 熊发挥. 2013. 豆荚状铬铁矿的形成过程. 中国地质科学院博士学位论文.

    • 熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 2014. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论. 岩石学报, 30(8): 2137~2163.

    • 熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 820~839.

    • 肖序常, 王方国. 1984. 中国蛇绿岩概论. 中国地质科学院院报, 9: 19~30.

    • 徐向珍. 2009. 藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究. 中国地质科学院博士学位论文.

    • 杨经绥, 白文吉, 方青松, 戎合. 2008. 西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述). 地球学报, 29(3): 263~274.

    • 杨经绥, 徐向珍, 张仲明, 戎合, 李源, 熊发挥, 梁风华, 刘钊, 刘飞, 李金阳, 李兆丽, 陈松永, 郭国林, Robinson P. 2013. 蛇绿岩型金刚石和铬铁矿深部成因. 地球学报, 34(6): 643~653.

    • 袁鹏, 杜培鑫, 周军明, 王顺. 2019. 铝硅酸盐纳米矿物的地质意义和资源价值再认识. 岩石学报, 35(1): 164~176.

    • 张畅, 刘传周, 吴福元, 张亮亮, 纪伟强, 王建刚, 杨刘杨. 2014. 藏南罗布莎蛇绿岩中辉长岩的形成时代与成因. 2014 年中国地球科学联合学术年会——专题 34: 特提斯—青藏高原地质演化与成矿论文集.

    • 钟立峰, 夏斌, 周国庆, 张玉泉, 王冉, 韦栋梁, 杨之青. 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224~229.