en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

史忠生,男,1978年生。博士,高级工程师,主要从事裂谷盆地石油地质与油气成藏研究。E-mail:shizs@petrochina.com.cn。

通讯作者:

程顶胜,男,1966年生。博士,教授级高工,主要从事油气地球化学研究。E-mail:chengdingsheng@petrochina.com.cn。

参考文献
Boon J J, Rijipstra W I C, De Lange F, De Leeuw J W, Yoshioka M, Shimizu Y. 1979. Black Sea sterol: A molecular fossil for dinoflagellate blooms. Nature, 277: 125~127.
参考文献
Brassell S C, Eglinton G, Mo F J. 1986. Biological marker compounds as indicators of depositional history of the Maoming oil shale. Organic Geochemistry, 10 (4-6): 927~941.
参考文献
Cheng Dingsheng, Dou Lirong, Shi Buqing, Ma Luqin, Xiao Kunye, Li Zhi. 2010. Origin of high acidity oils in the Palogueoilfield, Melut basin, Sudan. Petroleum Exploration and Development, 37 (5): 568~622 (in Chinese with English abstract).
参考文献
Cheng Dingsheng, Dou Lirong, Zhang Guangya, Liu Bang, Song Huanxin, Mao Fengjun, Yuan Shengqiang, Hu Ying. 2020. Development pattern of two types of exceptional Cretaceous source rocks in the rift systems in West and Central Africa. Acta Geologica Sinica, 94 (11): 3449~3460 (in Chinese with English abstract).
参考文献
Dou Lirong. 2005. Formation mechanism and model of oil and gas accumulations in the Melut basin, Sudan. Bulletin of Mineralogy Petrology and Geochemistry, 24 (1): 50~57 (in Chinese with English abstract).
参考文献
Dou Lirong, Pan Xiaohua, Tian Zuoji, Xiao Kunye, Zhang Zhiwei. 2006. Hydrocarbon formation and distribution of rift basins in Sudan—A comparative analysis of them with rift basins in East China. Petroleum Exploration and Development, 33 (3): 255~261 (in Chinese with English abstract).
参考文献
Dou Lirong, Xiao Kunye, Cheng Dingsheng, Shi Buqing, Li Zhi. 2007. Petroleum geology of the Melut basin and the Great Palogue Field, Sudan. Marine and Petroleum Geology, 24 (1): 129~144.
参考文献
Dou Lirong, Cheng Dingsheng, Li Maowen, Xiao Kunye, Shi Buqing, Li Zhi. 2008. Unusual high acidity oils from the Great Palogue field, Melut basin, Sudan. Organic Geochemistry, 39 (2): 210~231.
参考文献
Fu Jiamo, Xu Fenfang, Chen Deyu, Liu Dehan, Hu Chengyi, Jia Rongfen, Xu Shiping, Brassell A S, Eglinton G. 1985. Biomarker compounds of biological inputs in Maoming oil shale. Geochimica, 14 (2): 99~114 (in Chinese with English abstract).
参考文献
Fu Jiamo, Sheng Guoying, Xu Jiayou, Eglinton G, Gowar A P, Jia Rongfen, Fan Shanfa, Peng Pingan. 1990. Application of biological markers in the assessment of paleoenvironments of Chinese nonmarine sediments. Organic Geochemistry, 16 (4-6): 769~779.
参考文献
Genik G J. 1993. Petroleum geology of Cretaceous-Tertiary Rift basins in Niger, Chad, and Central African Republic. AAPG Bulletin, 77 (8): 1405~1434.
参考文献
Hao Fang, Zhou Xinhuai, Zhu Yangming, Yang Yuanyuan. 2011. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Baybasin, China. Organic Geochemistry, 42 (4): 323~339.
参考文献
Huang Difan, Li Jinchao, Zhang Dajiang. 1990. Maturation sequence of continental crude oils in hydrocarbon basins in China and its significance. Organic Geochemistry, 16 (1-3): 521~529.
参考文献
Kolaczkowska E, Slougui N E, Watt D S, Maruca R E, Moldowan J M. 1990. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Organic Geochemistry, 16 (4-6): 1033~1038.
参考文献
McHargue T R, Heidrick T L, Livingston J K. 1992. Tectonostratigraphic development of the interior Sudan rifts, Central Africa. Tectonophysics, 213 (1-2): 187~202.
参考文献
Mei Bowen, Liu Xijiang. 1980. The distribution of isoprenoid alkanes in China's crude oil and its relation with the geologic environment. Oil & Gas Geology, 1 (2): 99~115 (in Chinese with English abstract).
参考文献
Moldowan J M, Seifert W K, Gallegos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69 (8): 1255~1268.
参考文献
Ni Chunhua, Bao Jianping, Liang Shiyou. 2009. Overall evaluation by multi-parameters on maturity of crude oil from the Bozhong sag, the Bohai Bay basin. Petroleum Geology and Experiment, 31 (4): 399~408 (in Chinese with English abstract).
参考文献
Peters K E, Moldowan J M. 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. New Jersy: Prentice Hall, Englewood Cliffs.
参考文献
Peters K E, Fraser T H, Amris W, Rustanto B, Hermanto E. 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin, 83 (12): 1927~1942.
参考文献
Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth Hisory. Cambridge: Cambridge University Press, 1155.
参考文献
Philp R P, Gilbert T D. 1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10 (1-3): 73-84.
参考文献
Philp R P, Fan P, Lewis C A, Zhu H, Wang H. 1991. Geochemical characteristics of oils from the Chaidamu, Shanganning and Jianghan basins, China. Journal of Southeast Asian Earth Science, 5 (1-4): 351~358.
参考文献
Seifert W K, Moldowan J M. 1980. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, 12: 229~237.
参考文献
Shen Zhongmin, Zhou Guangjia. 1999. Bio-marker characteristics of indication environments of low-mature oil generation. Journal of Chengdu University of Technology (Science & Technology Edition), 26 (4): 396~401 (in Chinese with English abstract).
参考文献
Shi Zhongsheng, Xue Luo, Niu Huiyun, Wang Guolin, Chen Bintao, He Weiwei, Ma Lun. 2017. Accumulation conditions of far-source lithologic reservoirs and exploration strategy in Melut basin, Central Africa. China Petroleum Exploration, 22 (6): 41~49 (in Chinese with English abstract).
参考文献
Shi Zhongsheng, Fang Lehua, Xue Luo, Wang Guolin, He Weiwei, Ma Lun. 2019. Analogy between Melut basin of Central Africa and rift basins of East China and implication. Earth Science, 44 (2): 587~602 (in Chinese with English abstract).
参考文献
Tao Shizhen, Wang Chuanyuan, Du Jianguo, Liu Leica, Chen Zhi. 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Marine Petroleum Geology, 67 (6): 460~467.
参考文献
Tong Xiaoguang, Xu Zhiqiang, Shi Buqing, Dou Lirong, Xiao Kunye. 2006. Petroleum geologic property and reservoir-forming pattern of Melut basin in Sudan. Acta Petrolei Sinica, 27 (2): 1~10 (in Chinese with English abstract).
参考文献
Wang Guolin, Shi Zhongsheng, Zhao Yanjun, Chen Bintao, Xue Luo. 2018. Lithologic reservoir forming conditions and its exploration implication in northern Melut basin, South Sudan. Lithologic Reservoirs, 30 (4): 37~45 (in Chinese with English abstract).
参考文献
Xiao Hong, Li Meijun, Yang Zhe, Zhu Zhili. 2019. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments. Geochimica, 48 (2): 161~170 (in Chinese with English abstract).
参考文献
Zhao Wenzhi, Zou Caineng, Wang Zecheng, Li jianzhong, Li Ming, Niu Jiayu. 2004. The intension and signification of “Sag-wide Oil-Bearing Theory” in the hydrocarbon-rich depression with terrestrial origin. Petroleum Exploration and Development, 31 (2): 5~13 (in Chinese with English abstract).
参考文献
Zhu Yangming. 1997. Geochemical characteristics of terrestrial oils of the Tarim basin. Acta Sedimentologica Sinica, 15 (2): 26~30 (in Chinese with English abstract).
参考文献
Zhu Yangming, Zhang Chunming, Zhang Min, Mei Bowen, Jin Diwei, Xiao Qianhua. 1997. The effect of oxidation reduction nature of depositional environments on the formation of diasteranes. Acta Sedimentologica Sinica, 15 (4): 104~108 (in Chinese with English abstract).
参考文献
Zhu Yangming, Mei Bowen. 1998. Geochemical characteristics of Mesozoic coal seam in Tarim basin. Xinjiang Petroleum Geology, 19 (1): 27~31 (in Chinese with English abstract).
参考文献
Zumberge J E. 1987. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach. Geochimica et Cosmochimica Acta, 51 (6): 1625~1637.
参考文献
程顶胜, 窦立荣, 史卜庆, 马陆琴, 肖坤叶, 李志. 2010. 苏丹Melut盆地Palogue油田高酸值原油成因. 石油勘探与开发, 37(5): 568~622.
参考文献
程顶胜, 窦立荣, 张光亚, 刘邦, 宋换新, 刘计国, 毛凤军, 袁圣强, 胡瑛. 2020. 中西非裂谷盆地白垩系两类优质烃源岩发育模式. 地质学报, 94(11): 3449~3460.
参考文献
窦立荣. 2005. 苏丹迈卢特盆地油气成藏机理和成藏模式. 矿物岩石地球化学通报, 24(1): 50~57.
参考文献
窦立荣, 潘校华, 田作基, 肖坤叶, 张志伟. 2006. 苏丹裂谷盆地油气藏的形成与分布: 兼与中国东部裂谷盆地对比分析. 石油勘探与开发, 33(3): 255~261.
参考文献
傅家谟, 徐芬芳, 陈德玉, 刘德汉, 胡成一, 贾蓉芬, 徐世平, Brassell A S, Eglinton G. 1985. 茂名油页岩中生物输入的标志化合物. 地球化学, 14(2): 99~114.
参考文献
梅博文, 刘希江. 1980. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系. 石油与天然气地质, 1(2): 99~115.
参考文献
倪春华, 包建平, 梁世友. 2009. 渤海湾盆地渤中凹陷原油成熟度的多参数综合评价. 石油实验地质, 31(4): 399~408.
参考文献
沈忠民, 周光甲. 1999. 低成熟石油生成环境的生物标志化合物特征. 成都理工学院学报(自然科学版), 26(4): 396~401.
参考文献
史忠生, 薛罗, 牛慧贇, 王国林, 陈彬滔, 何巍巍, 马轮. 2017. 中非Melut盆地远源岩性油藏成藏条件与勘探对策. 中国石油勘探, 22(6): 41~49.
参考文献
史忠生, 方乐华, 薛罗, 王国林, 何巍巍, 马轮. 2019. 中非Melut盆地与我国东部裂谷盆地的类比及意义. 地球科学, 44(2): 587~602.
参考文献
童晓光, 徐志强, 史卜庆, 窦立荣, 肖坤叶. 2006. 苏丹迈卢特盆地石油地质特征及成藏模式. 石油学报, 27(2): 1~10.
参考文献
王国林, 史忠生, 赵艳军, 陈彬滔, 薛罗. 2018. 南苏丹Melut盆地北部地区岩性油藏成藏条件及勘探启示. 岩性油气藏, 30(4): 37~45.
参考文献
肖洪, 李美俊, 杨哲, 朱志立. 2019. 不同环境烃源岩和原油中 C19~C23三环萜烷的分布特征及地球化学意义. 地球化学, 48(2): 161~170.
参考文献
赵文智, 邹才能, 汪泽成, 李建忠, 李明, 牛嘉玉. 2004. 富油气凹陷“满凹含油”论—内涵与意义. 石油勘探与开发, 31(2): 5~13.
参考文献
朱扬明. 1997. 塔里木盆地陆相原油的地球化学特征. 沉积学报, 15(2): 26~30.
参考文献
朱扬明, 张春明, 张敏, 梅博文, 金迪威, 肖乾华. 1997. 沉积环境的氧化还原性对重排甾烷形成的作用. 沉积学报, 15(4): 104~108.
参考文献
朱扬明, 梅博文. 1998. 塔里木盆地中生界煤层的地球化学特征. 新疆石油地质, 19(1): 27~31.
目录contents

    摘要

    为了明确Melut盆地北部不同地区原油母质来源、沉积环境及亲缘关系,采用饱和烃色谱及色谱-质谱方法,开展了盆地北部不同地区原油地球化学特征分析及对比。研究表明,盆地北部各地区原油正构烷烃无明显奇偶优势,Ts/Tm值1.36~3.47、C31升藿烷22S/(22S+22R)比值0.54~0.60、αααC2920S/(20S+20R)与 C29αββ/(ααα+αββ)比值大于0.4,总体表现为成熟原油;伽马蜡烷指数普遍小于0.1,C21三环萜烷具有明显优势,Pr/Ph值0.97~2.31,均值1.61,指示其烃源岩形成于弱还原-弱氧化的淡水湖相环境;生油母质为II~III型混合型。不同地区原油母质来源及成熟度有差异:Moleeta次凹东坡原油为单峰后峰态分布,高碳数正构烷烃含量占优势,C24TeT/C23TT平均值大于1,具有明显的陆源高等植物贡献,原油成熟度较低,发育重质—中质油;Jamous次凹深洼区原油为前峰优势的双峰态分布,C24TeT/C23TT值小于1,生烃母质除有陆源高等植物贡献外,水生生物也有重要贡献,原油成熟度较高,发育中质—轻质油;Palogue油田位于两个生烃次凹之间,具有混源特征;AYT(Abyat)油田原油主要来自Jamous次凹深洼区,同时有原地烃源岩的生烃贡献。Jamous次凹斜坡中部翘倾断裂带的发育,将次凹分割成两个次级断陷,为斜坡东部AYT地区烃源岩的发育提供了构造条件。翘倾断裂带使Jamous次凹斜坡中部抬升变浅,局部发育弱氧化环境下的浅水砂泥互层沉积。

    Abstract

    In order to clarify the source, depositional environment and genetic relationship of crude oils in different areas in the northern Melut basin, the geochemical characteristics of crude oils in different areas were analyzed and correlated by means of saturated hydrocarbon chromatography and chromatography-mass spectrometry. The results showed that the n-alkanes of crude oils in the northern Melut basin have no obvious odd-even predominance, the Ts/Tm values range from 1.36 to 3.47, the C31 hopane 22S/(22S+22R) ratios are from 0. 54 to 0. 60, and the ratios of αααC2920S/(20S+20R) and C29αββ/(ααα+αββ) are more than 0.4, all of which indicated that the crude oils in the northern Melut basin are mature oils. The gammacerane index is generally less than 0.1, the C21 tricyclic terpanes have obvious predominance, and the values of Pr/Ph range from 0.97 to 2.31, with an average value of 1.61, all of which indicated that the source rocks of these crude oils were formed in the environment of weak reduction-oxidization freshwater lacustrine and developed type II-III organic matter. The source and maturity of crude oils in different areas in the northern Melut basin are different. The crude oils in the eastern slope of the Moleeta sub-sag have a unimodal and post-peak distribution of n-alkane, with a predominance of high carbon number n-alkane and an average value of C24TeT/C23TT being more than 1, which showed that the source rocks of these oils are dominated by terrestrial higher plants. The maturity of crude oil is low, and the heavy-medium oils are generally developed in the eastern slope of the Moleeta sub-sag. The crude oils in the deep area of the Jamous sub-sag have a bimodal distribution of n-alkane, with a pre-peak predominance, and the value of C24TeT/C23TT is less than 1. In addition to the contribution of terrestrial higher plants, the aquatic organisms also have an important contribution to the source rocks. The maturity of crude oil is relatively high, and the medium-light oils are generally developed in the deep area of the Jamous sub-sag. The Palogue oilfield is located between the two hydrocarbon-generating sub-sags and has the characteristics of mixed sources. The crude oils of the AYT oilfield mainly comes from the deep area of the Jamous sub-sag, and also has the contribution of local source rocks. The tilting fault zone in the middle part of the eastern slope of the Jamous sub-sag divided the sub-sag into two secondary faulted depressions, which provided the structural conditions for the deposition of local source rocks in the AYT(Abyat) area. Meanwhile, the tilting fault zone uplifted and shallowed the middle part of the Jamous sub-sag slope, where the shallow-water sandstone and mudstone interbeds locally developed in a weak oxidization environment.

  • Melut盆地为非洲陆上裂谷盆地,中非裂谷系第二大沉积盆地,具有丰富的油气资源。中国石油天然气集团公司于2000年11月进入Melut盆地勘探,成为中国石油、也是中国油公司海外第一个以完整沉积盆地为对象的风险勘探项目。通过采取科学合理的勘探策略和技术手段,在盆地北部快速发现并探明了Palogue世界级大油田(窦立荣等,20052006; 童晓光等,2006),石油可采储量达9亿桶(Dou Lirong et al.,2007)。此后,不到十年的时间里,在盆地北部又相继发现了Moleeta、Hammal、Gumry、Abyat、Teng等多个大中型油田(王国林等,2018; 史忠生等,2019),证实了盆地北部为大型富油凹陷。目前,经过20余年的勘探,盆地北部已进入成熟勘探阶段,需要开展油气成因、来源等基础性研究工作,以深化油气富集规律认识,指导油气勘探持续取得突破。

  • Melut盆地北部发育多个生烃次凹,油田分布广泛,不同地区原油品质差异较大、亲缘关系复杂,既有原油重度(API)大于34°的轻质油,也有API介于20°~34°的中质油,还有API小于20°的重质油。开展不同地区原油地球化学特征及亲缘关系研究,对认识盆地北部油气富集规律,预测潜在的油气聚集区,以及深化盆地石油地质认识具有重要意义。目前,Melut盆地公开发表的有关原油地球化学方面的研究成果较少,主要为Palogue油田高酸值原油成因方面的一些研究(窦立荣等,2007,2008; 程顶胜等,2010),针对盆地北部不同地区原油地球化学特征的系统分析与对比研究鲜有报道。针对这一问题,笔者对Melut盆地北部不同地区多个油田进行系统采样,运用饱和烃色谱及色谱-质谱定量分析盆地北部原油地球化学特征,研究原油生油母质类型、沉积环境及成熟度等信息,并开展不同地区原油的对比分析,梳理不同油田的亲缘关系,以深化盆地北部油气富集规律的认识。

  • 1 研究区概况

  • Melut盆地位于中非剪切带东段南侧南苏丹境内,面积33000 km2,为中非剪切带走滑扭动作用下形成的陆内裂谷盆地(McHargue et al.,1992; Genik,1993; 程顶胜等,2020)。盆地北部已证实发育富油凹陷,资源丰度达72.5×104 t/km2史忠生等,2017),远大于国内富油凹陷40×104 t/km2的资源丰度标准(赵文智等,2004),集中了盆地90%以上的油气发现。盆地中南部受地表沼泽与火山岩影响,勘探程度较低。Melut盆地为中生代裂谷盆地,从早白垩世至今经历了3期裂陷与1期坳陷(图1a)。盆地主力烃源岩为早白垩世裂陷Ⅰ幕沉积的Al Renk组半深湖—深湖相暗色泥岩,凹陷中心厚度达1000 m(史忠生等,2017),有机质丰度最高达3.24%,平均2.08%,有机质类型以Ⅱ~III型为主,生烃潜力(S1 +S2)达19.53 mg/g,普遍进入生油高峰,为一套好—优质烃源岩(Dou Lirong et al.,2007; 程顶胜等,2020)。盆地主力成藏组合为古近纪裂陷Ⅲ幕初期沉积的Samma和Yabus组砂岩储层与古近纪中后期沉积的Adar组区域泥岩盖层形成的源上储盖组合,白垩系烃源岩内部及附近形成的近源成藏组合,受埋深对储层物性的影响,仅局部有勘探发现。

  • Melut盆地北部发育Jamous、Moleeta、Ruman三个生烃次凹,油气发现主要分布在Jamous次凹与Moleeta次凹的东部斜坡与次凹内部(图1b),Palogue油田位于Jamous次凹与Moleeta次凹之间,为两个次凹之间的鼻状隆起构造油藏。本次研究重点对Moleeta次凹东部斜坡油田、Palogue油田、Jamous次凹深洼区油田及Jamous次凹东坡AYT油田的原油样品进行地球化学分析,研究不同地区原油的地球化学特征,并探讨油田间原油的亲缘关系。

  • 2 试验方法

  • 本次研究共采集原油样品30个,其中Moleeta次凹东斜坡5个,Palogue油田15个,AYT油田5个,Jamous次凹深洼区5个(图1b)。分析测试由中国科学院地质与地球物理研究所兰州油气资源研究中心完成,对原油样品进行了族组分分离、饱和烃气相色谱及色谱-质谱分析。原油族组分分离采用柱层析法,将原油样品用石油醚沉淀去掉沥青质后,可溶部分用氧化铝和硅胶依次充填色层柱(硅胶∶氧化铝 = 4∶1,色层柱内径1 cm,柱长12 cm),之后分别用正己烷、二氯甲烷、甲醇做洗脱剂,获得饱和烃、芳烃、非烃馏分。饱和烃馏分用美国安捷伦公司色谱(6890N)-质谱(5973N)联用仪进行分析鉴定。色谱条件:30 m×0.32 mm的HP-5型弹性石英毛细管柱,固定相涂膜厚度0.25 μm,载气为99.999%高纯氦气。升温程序:起始温度为80℃,以4℃/min升温至295℃,然后恒温30 min。MSD离子源为EI源,离子源温度为230℃,电离电压70 eV。

  • 图1 Melut盆地北部地层柱状图(a)及构造单元(b)

  • Fig.1 Comprehensive column (a) and structure units (b) of the north Melut basin

  • 3 不同地区原油地球化学特征

  • 3.1 原油物性

  • Melut盆地北部原油主要发育在古近系Yabus组及Samma组砂岩储层内,少部分发育于白垩系Galhak组与Melut组,如PAL S-7/8井、AYT S-2井等。分析显示,盆地北部原油API重度介于15.6°~42.6°之间,不同地区差异明显,但总体上以中质油为主(API重度值20°~34°),部分地区发育重质油(API重度值小于20°)和轻质油(API重度值大于34°)。原油普遍高含蜡、高酸值、低含硫,根据窦立荣等(窦立荣等,2006; Dou Lirong et al.,2008)与程顶胜等(2010)的研究,盆地北部Yabus组原油含蜡量普遍大于25%,原油总酸值较高,最高达10.40 mg/g,硫的含量较低,普遍小于0.2%,凝固点较高,大部分在39~42℃。

  • 3.2 饱和烃色谱特征

  • Melut盆地北部地区原油饱和烃色谱分布具有一定的相似性,但在一些参数方面存在差异,反映盆地北部不同地区原油母质类型、沉积环境、成熟度等存在一定差异。

  • 3.2.1 正构烷烃

  • 正构烷烃是油气的主要烃类组成,其碳数分布范围、峰型、主峰碳数等是判断油气母质类型、沉积环境及成熟度的重要指标。盆地北部不同地区原油正构烷烃的碳数分布范围基本一致,最低碳数正构烷烃为nC12,最高碳数正构烷烃在 nC36~nC39之间; 色谱基线较平直,原油未遭受明显生物降解。正构烷烃奇偶优势不明显,CPI值1.02~1.12,OEP值0.98~1.15,均小于1.2,接近1.0,显示为成熟原油。然而,北部不同地区原油正构烷烃的峰型特征、主峰碳位置、ΣnC21-nC22+值存在一定差异。

  • 一般认为,低碳数正构烷烃与低等水生生物来源有关,主要是碳数低于nC21的同系物,且以nC15nC17nC19为主峰。而高碳数正构烷烃则与高等植物来源有关,主要碳数在nC22以上,且以nC27nC29nC31为主峰的正构烷烃,混合型母质来源则介于两者之间,呈双峰型分布(傅家谟等,1985; Peters et al.,1999)。Moleeta次凹东坡原油正构烷烃均呈单峰后峰型分布,主峰碳nC27(图2),ΣnC21-nC22+值0.27~0.46,nC21+22/nC28+29值0.54~0.88,原油以高碳数正构烷烃为主,反映Moleeta次凹生烃母质具有明显的陆源高等植物贡献,且原油演化程度不高,API值普遍小于20°,以重质油为主,部分为中质油。

  • 与Moleeta次凹东坡原油不同,Jamous次凹深洼区原油整体呈双峰态分布特征,前主峰碳数在nC15~nC17,后主峰碳数在nC23~nC26,且前主峰碳正构烷烃相对含量大于或等于后主峰碳(图2),ΣnC21-nC22+值0.8~0.98,nC21+22/nC28+29值1.12~1.44,低碳数正构烷烃含量相对较高,反映低等水生生物对Jamous次凹生油母质的贡献较大,且原油成熟度较高,API值普遍大于20°,部分大于34°,以中质油为主,部分为轻质油。

  • AYT油田位于Jamous次凹东部斜坡高部位,为一背斜构造油田,是Jamous次凹油气运聚的有利指向区(图3),其原油饱和烃色谱特征与Jamous次凹深洼区原油相似度大,也呈前峰优势的双峰态分布,主峰碳数相同或相近,前主峰碳数nC15~nC17,后主峰碳数nC23~nC25nC21+22/nC28+29比值接近,分别为1.03~1.45与1.12~1.44,低碳数正构烷烃含量相对较高,原油API度也相近,均发育中质油和轻质油(表1),推测AYT油田的原油主要来自Jamous次凹深洼区。另外,研究发现AYT油田个别样品饱和烃色谱为单峰后峰态分布,如AYT-1井1437 m样品主峰碳数nC27(图2),nC21+22/nC28+29值0.94,小于1,高碳数正构烷烃含量占优势,不同于AYT油田其他原油样品及Jamous次凹深洼区原油样品的色谱特征。盆地结构研究显示,AYT油田低部位发育次级小断陷,下白垩统区域主力烃源层Al Renk组在次级小断陷内厚度变厚,有发育局部烃源岩的构造-沉积条件。该次级断陷邻近东侧盆缘区,具有陆源高等植物输入的有利条件,是AYT油田潜在的供烃区。因此,推测AYT油田的原油具有混源特征。

  • 图2 Melut盆地北部原油饱和烃气相色谱

  • Fig.2 Gas chromatography of saturated hydrocarbons of crude oils in the northern Melut basin

  • 图3 过Jamous次凹及AYT油田盆地结构剖面(剖面位置见图1b)

  • Fig.3 Basin framework profile across Jamous sub-sag and AYT oilfield (see Fig.1b for location)

  • Palogue油田原油的正构烷烃总体上呈后峰分布,主峰碳数多为nC27,ΣnC21-nC22+值小于0.6,nC21+22 /nC28+29值小于1.0,高碳数正构烷烃含量占优势,原油API值普遍小于30°,主要发育重质油和中质油,与Moleeta次凹东坡原油具有很好的对比性。同时,个别原油样品呈前峰优势的双峰态分布,如PAL S-3井1329 m样品(图2),前主峰碳数nC16,后主峰碳数nC23,ΣnC21-nC22+值1.01,nC21+22/nC28+29值1.36,低碳数正构烷烃含量占优势,原油API值也高达30.5°,与Jamous次凹深洼区原油具有较好的对比性,推测Palogue油田的原油具有混源特征,Moleeta与Jamous两个生烃次凹对Palogue构造的成藏均有贡献。

  • 表1 Melut盆地北部原油饱和烃色谱参数

  • Table1 Gas chromatographic parameters of saturated hydrocarbons of crude oils in the northern Melut basin

  • 注:CPI={(nC25+nC27+nC29+nC31+nC33)[1/(nC24+nC26+nC28+nC30+nC32)+1/(nC26+nC28+nC30+nC32+nC34)]}/2; OEP=(nC25+6×nC27+nC29)/(4×nC26+4×nC28)。

  • 3.2.2 类异戊二烯烷烃

  • 原油中最常见的链状生物标志物是C14~C20类异戊二烯烷烃,因其具有较好的稳定性,在一定程度上可以反映生油母质的沉积环境或性质(Peters et al.,1993)。最常用的类异戊二烯烷烃是姥鲛烷(Pr)和植烷(Ph),其相对含量在一定程度上反映生烃有机质的沉积环境。通常情况下,Pr/Ph<0.5为强还原沉积环境,Pr/Ph=0.5~1.0为还原环境,Pr/Ph=1.0~2.0时,反映弱还原-弱氧化环境,Pr/Ph>2,则反映氧化环境,当Pr/Ph>3时,则为强氧化环境(梅博文等,1980; 沈忠民等,1999)。北部地区原油样品的Pr/Ph值在0.97~2.31之间(表1),平均值1.61,表明其生油母质的沉积环境总体为弱还原-弱氧化的过渡环境。

  • 类异戊二烯烷烃与相邻正构烷烃的相对丰度,在一定程度上可以反映原油的沉积环境与成熟度,Pr/nC17与Ph/nC18通常被用来研究生烃母质类型、沉积环境与原油成熟度(Peters et al.,1999)。Melut盆地北部不同地区原油样品Pr/nC17与Ph/nC18的交汇图显示(图4),盆地北部不同地区原油样品的母质类型相似,主要为II~III型混合型母质,沉积环境为氧化-还原过渡环境。同时,Pr/nC17与Ph/nC18的相对关系还可以表征成熟度,随原油成熟度的增高,Pr/nC17与Ph/nC18值逐渐降低。图4显示,Moleeta次凹东坡原油成熟度最低,Jamous次凹深洼区由于烃源岩埋深跨度大,原油成熟度变化区间大,但总体上大于Moleeta次凹东坡原油成熟度,这与钻探揭示的Moleeta次凹东坡原油API值普遍小于20°,主要发育重质—中质油,而Jamous次凹深洼区原油API值普遍大于20°,发育中质—轻质油相一致。Jamous次凹东坡AYT油田原油成熟度与Jamous次凹深凹陷原油成熟度相近,Palogue油田原油成熟度介于Jamous次凹深洼区与Moleeta次凹东坡原油成熟度之间,这与饱和烃色谱揭示的AYT油田原油主要来自Jamous次凹深洼区、Palogue油田原油为Moleeta次凹与Jamous次凹深洼区混源的认识相吻合。

  • 图4 Melut盆地北部原油Pr/nC17与Ph/nC18交汇图

  • Fig.4 The relationship between Pr/nC17 and Ph/nC18 of crude oils in the northern Melut basin

  • 3.3 萜烷类化合物

  • Melut盆地北部不同地区原油萜烷类化合物的分布特征总体表现为,三环萜烷含量低,五环三萜烷含量高(图5a)。其中,五环三萜烷碳数分布为C27~C35,以C30藿烷和C29降藿烷含量最高,其次为C27三降藿烷(Ts、Tm),而C30重排藿烷和伽马蜡烷含量较低。

  • 三环萜烷中不同碳数的萜烷含量对沉积环境具有一定指示意义,海相及咸水湖相烃源岩及原油中以C23三环萜烷为主(Tao Shizhen et al.,2015),淡水湖相烃源岩及相关原油中常以C21三环萜烷为主(朱扬明,1997),而浅水沉积环境有利于低碳数三环萜烷(C19和C20)的形成(Zumberge et al.,1987),典型的煤及煤成油中富含C19三环萜烷,C23及以上碳数的三环萜烷含量极低(朱扬明等,1998)。Melut盆地北部不同地区原油中的三环萜烷均以C21三环萜烷为主(图5b),利用肖洪等(2019)的C19+20三环萜烷、C21三环萜烷及C23三环萜烷相对含量与沉积环境判识图版研究显示(图6),Melut盆地北部原油形成于淡水湖相。此外,许多学者认为,丰富的C24四环萜烷常与陆源母质相联系(Philp et al.,1986)。Melut盆地北部原油C24四环萜烷/C23三环萜烷(C24TeT/C23TT)与C24四环萜烷/C26三环萜烷(C24TeT/C26TT)比值总体较高,分别为0.42~1.38(均值0.99)及0.67~1.57(均值0.98),说明陆源有机质对北部原油生烃母质的贡献较大。同时,不同地区原油中的C24TeT/C23TT和C24TeT/C26TT比值有差异。总体上,Jamous次凹东坡AYT油田与次凹深洼区油田原油的C24TeT/C23TT比值偏小,而Moleeta次凹东坡油田原油的比值偏大(表2),反映陆源有机质对Moleeta次凹生烃母质的贡献更显著。

  • 图5 Melut盆地北部原油m/z 191(萜烷)与m/z 217(甾烷)质量色谱图

  • Fig.5 Mass chromatogram of m/z 191 (terpane) and m/z 217 (sterane) of crude oils in the northern Melut basin

  • 表2 Melut盆地北部原油萜甾类生物标志化合物参数

  • Table2 Biomarker parameters of terpanes and steranes of crude oils in the northern Melut basin

  • 注:TeT—四环萜烷; TT—三环萜烷; Dia—重排甾烷; ST—甾烷; 4-MSI—4-甲基甾烷指数(4-甲基甾烷/C29甾烷)。

  • 高含量的伽马蜡烷常常指示烃源岩沉积时分层水体的存在,一般为高盐度分层水体的表征(Peters et al.,2005)。伽马蜡烷指数(伽马蜡烷/C30藿烷)在淡水环境下通常小于0.1,微咸水环境下通常大于0.3,半咸水环境下,该指数为0.3~0.7,而在咸水环境下,通常大于0.7(Moldowan et al.,1985; Philp et al.,1991)。Melut盆地北部不同地区原油样品的伽马蜡烷指数均较低,分布范围为0.04~0.12(表2),平均值0.08,表明盆地北部原油形成于淡水环境,这与三环萜烷研究揭示的盆地北部原油来源于淡水湖相的认识一致。尽管盆地北部原油的伽马蜡烷含量总体较低,但不同地区有一定差异,表现为Jamous次凹深洼区原油伽马蜡烷指数大于Moleeta次凹东坡原油,说明Jamous次凹生烃母质的水体盐度高于Moleeta次凹。Jamous次凹东坡AYT油田区由于有原地生油岩及Jamous次凹深洼区双重油源,部分原油样品伽马蜡烷指数较低,如AYT-1(1437 m)样品,伽马蜡烷指数只有0.05,低于Jamous次凹深洼区原油,其饱和烃色谱也为单峰后峰态分布,主峰碳nC27(表1)不同于Jamous次凹深洼区前峰优势的双峰态分布。Palogue油田原油的伽马蜡烷指数介于Moleeta次凹东坡与Jamous次凹深洼区原油之间。

  • 图6 Melut盆地北部原油C19+20TT、C21TT与C23TT 相对百分含量与沉积环境判识(图版据肖洪等,2019

  • Fig.6 Percentage of C19+20TT, C21TT and C23TT of crude oils and depositional environment identification in the northern Melut basin (plate after Xiao Hong et al., 2019)

  • Ⅰ—海相/咸水湖相烃源岩和原油; Ⅱ—淡水湖相烃源岩和原油; Ⅲ—沼泽相烃源岩和原油; Ⅳ—河流/三角洲相烃源岩和原油

  • Ⅰ—marine or saline lake source rocks and crude oil; Ⅱ—freshwater lacustrine source rocks and crude oil; Ⅲ—marsh source rock and crude oil; Ⅳ—river or delta source rock and crude oil

  • 根据Seifert et al.(1980)的研究,C31升藿烷22S/(22S+22R)比值可用于成熟度的研究,在热演化过程中该值从0增加到0.6左右。其中,比值在0.5~0.54为低成熟,比值在0.57~0.62为成熟或过成熟。Melut盆地北部原油样品C31升藿烷22S/(22S+22R)比值在0.54~0.6(表2),说明盆地北部原油均为成熟原油。此外,Ts/Tm也是表征有机质及原油成熟度的常用指标。由于Ts的热稳定性比Tm高,随着成熟度的增加,Tm会向Ts转化,导致Ts/Tm比值增加(Kolaczkowska et al.,1990)。研究显示,成熟原油的Ts/Tm 值>1,高熟原油可达4.3(倪春华等,2009)。Melut盆地北部原油样品的Ts/Tm值为1.36~3.47,显示为成熟原油,这与C31升藿烷22S/(22S+22R)指标揭示的原油成熟度相一致。此外,从不同地区Ts/Tm值的分布来看(图7),Moleeta次凹东坡原油的Ts/Tm值小于Jamous次凹深洼区及东坡AY T油田原油的Ts/Tm值,说明Jamous次凹原油成熟度大于Moleeta次凹,而Palogue油田原油的Ts/Tm值介于两者之间。

  • 图7 Melut盆地北部原油Ts/Tm与C30藿烷/C30 莫烷参数特征

  • Fig.7 Characteristics of Ts/Tm and C30 hopane/C30 moretane of crude oils in the northern Melut basin

  • 3.4 甾烷类化合物

  • 甾烷类化合物是原油中重要的一类生物标志物,可用于原油生油母质类型、沉积环境、成熟度的研究。盆地北部原油样品甾烷分布特征总体相似,检测出的甾烷化合物包括规则甾烷、重排甾烷、4-甲基甾烷及少量的孕甾烷(图5c)。研究表明,规则甾烷中C27甾烷通常来源于低等水生生物和藻类,C29甾烷主要来源于陆生高等植物(Moldowan et al.,1985; Peters et al.,2005)。北部地区原油规则甾烷构成中,C29甾烷占优势,平均相对含量49%,C27和C28甾烷含量相当,分别为27%和24%(表2),ααα20R构型的 C27、C28和 C29甾烷呈反“L”型分布(图5c),说明陆源高等植物对北部地区原油生烃母质的贡献明显,同时含有低等水生生物和藻类贡献。

  • 甾烷异构化参数可用来反应原油成熟度(Peters et al.,2005),有机质在向原油演化的过程中,随着成熟度的增加甾烷类化合物将由ααα-20R生物构型向更加稳定的ααα-20S地质构型转化,同时ααα构型也会向更加稳定的αββ构型转化。因此,αααC2920S/(20S+20R)值和C29αββ/(ααα+αββ)值可以指示原油的成熟度。Huang Difan et al.(1990)研究认为,αααC2920S/(20S+20R)和C29αββ/(ααα+αββ)在0.25以下为未熟油,0.25~0.4为低熟油,大于0.4为成熟油。Melut盆地北部原油样品αααC2920S/(20S+20R)为0.42~0.65,平均值0.55,C29αββ/(ααα+αββ)为0.28~0.52,平均值0.44,显示盆地北部不同地区的原油均为成熟原油(图8),这与C31升藿烷22S/(22S+22R)及Ts/Tm等地化指标研究的结果相一致。

  • 图8 Melut盆地北部原油αααC2920S/(20S+20R)与 C29αββ/(ααα+αββ)关系图(图版据Huang Difan et al.,1990

  • Fig.8 The relationship between αααC2920S/ (20S+20R) and C29αββ/ (ααα+αββ) of crude oils in the northern Melut basin (the plate after Huang Difan et al., 1990)

  • 朱扬明等(1997)的研究表明,重排甾烷的形成不完全受热演化控制,与岩石中黏土矿物的组成关系也不密切,主要与沉积环境的氧化还原性有关。在Pr/Ph小于0.5的缺氧强还原地层中,由于甾烯碳骨架的酸性重排作用受到抑制,所形成的重排甾烷很少。随着Pr/Ph值增加,沉积环境变为弱氧化—氧化时,重排甾烷含量显著增高,表明在成岩作用过程中沉积物中的含氧性是重排甾烷形成的主要因素。Hao Fang et al.(2011)通过对渤海海域湖相烃源岩的研究认为,C27重排甾烷/C27甾烷(C27Dia/C27ST)值可以作为指示湖泊水体化学环境变化的指标,研究表明低C27Dia/C27ST值反映碱性还原环境,高值反映酸性氧化环境。Melut盆地北部原油样品Pr/Ph值为0.97~2.31,平均1.61,表明生油母质形成于弱还原-弱氧化环境,在原油中检测出较为丰富的重排甾烷,C27Dia/C27ST值为0.34~0.86,均值0.52。其中,Moleeta次凹东坡原油C27Dia/C27S比值为0.34~0.54,均值0.43,低于Jamous次凹东坡及深洼区原油的0.40~0.86(均值0.60),说明Jamous次凹生烃母质形成时的沉积环境比Moleeta次凹更偏氧化性。

  • 4-甲基甾烷既可由甲藻(或沟鞭藻)形成,也可由细菌产生(Boon et al.,1979; 傅家谟等,1985),淡水湖泊相4-甲基甾烷主要来源于沟鞭藻(傅家谟等,1985; Brassell et al.,1986),其含量高低与沉积水体的盐度有关,淡水或微咸水环境下生油岩生成的原油具有更高的4-甲基甾烷含量(Fu Jiamo et al.,1990)。伽马蜡烷指数与三环萜烷研究显示,Melut盆地北部各次凹均为淡水湖相沉积,原油样品中检测出较为丰富的4-甲基甾烷(图5c),其中Jamous次凹深洼区及东坡AYT油田原油4-甲基甾烷指数(4-MSI)平均值0.58,高于Moleeta次凹东坡原油的0.50,说明沟鞭藻对Jamous次凹生油母质的贡献更大,这与C24四环萜烷/C23三环萜烷研究揭示的陆源有机质对Moleeta次凹生烃母质的贡献大于Jamous次凹相吻合。

  • 4 盆地北部不同地区原油地球化学特征对比启示

  • 通过对盆地北部不同地区原油地球化学特征的分析与对比,明确了不同地区原油地球化学特征及亲缘关系,同时对原油母质特征、沉积环境及烃源岩发育情况等有了更深入的理解和认识。研究表明,尽管盆地北部原油生烃母质的有机质类型表现为Ⅱ/Ⅲ型混合型,但不同次凹原油地球化学特征有一定差异。Moleeta次凹东坡原油饱和烃色谱均为单峰后峰态分布,主峰碳数nC27,高碳数正构烷烃含量占优势,C24TeT/C23TT平均值大于1,具有明显的陆源高等植物贡献; 而Jamous次凹深洼区原油为前峰优势的双峰态型分布,具有混源特征,前主峰碳数nC15~nC17,后主峰碳数nC23~nC26,前主峰碳正构烷烃含量大于或等于后主峰碳正构烷烃含量,C24TeT/C23TT值小于1,原油生烃母质除有陆源高等植物贡献外,水生生物也有重要贡献,4-甲基甾烷指数均值达0.58。Palogue油田位于两个生烃次凹之间,饱和烃色谱揭示原油具有混源特征。

  • 盆地北部现今构造显示(图1b),Jamous次凹埋深与规模大于Moleeta次凹,原油API度、Ts/Tm、Pr/nC17与Ph/nC18交会图等也均显示(表1; 图4、7)Jamous次凹原油成熟度大于Moleeta次凹原油成熟度,但反映原油生烃母质沉积环境的Pr/Ph、C27Dia/C27S等参数指示Jamous次凹深洼区原油生烃母质形成时沉积环境的还原性要弱于Moleeta次凹,表现为Jamous次凹深洼区原油的Pr/Ph平均值(1.88)、最大值(2.18),及C27Dia/C27S平均值(0.52)、最大值(0.59)均大于Moleeta次凹东坡原油(Pr/Ph平均值1.41、最大值1.94; C27Dia/C27S平均值0.43、最大值0.54),两个次凹生烃母质形成时的沉积环境与次凹现今埋深与规模不相符。盆地结构研究揭示,Jamous次凹东部斜坡并不是单斜构造,斜坡中部发育一大型翘倾断裂带(图3),该断裂带将Jamous次凹分割成两个次级断陷,控制了包括Al Renk组烃源层在内的早期断陷沉积,同时翘倾断裂带使Jamous次凹斜坡中部抬升变浅,仅次凹低部位发育暗色泥岩沉积,翘倾断裂带上发育弱氧化环境下的棕色、浅灰色泥岩与砂岩互层浅水沉积,如Mish G-1井(图3)。晚白垩世—古近纪时期,Jamous次凹在裂陷II幕和III幕两期裂陷的作用下,沉积了巨厚的上白垩统—古近系地层,使得Jamous次凹现今的埋藏深度和规模超过Moleeta次凹,原油成熟度大于Moleeta次凹原油成熟度。

  • 5 结论

  • (1)Melut盆地北部不同地区原油母质类型相似,主要为II~III型混合型母质,Pr/Ph值0.97~2.31,平均值1.61,C21三环萜烷含量占明显优势,伽马蜡烷指数普遍小于0.1,揭示其烃源岩形成于弱氧化-弱还原的淡水湖相环境。

  • (2)成熟度地球化学参数显示,盆地北部各地区原油均为成熟原油,表现为:不同地区原油正构烷烃奇偶优势不明显,Ts/Tm值1.36~3.47,均大于1; C31升藿烷22S/(22S+22R)比值0.54~0.6,处于成熟原油区间; αααC2920S/(20S+20R)与C29αββ/(ααα+αββ)比值均大于0.4,指示为成熟原油。其中,Jamous次凹深洼区及东部斜坡AYT油田原油成熟度相对较高,Moleeta次凹东坡原油成熟度相对较低,Palogue油田原油成熟度介于二者之间。

  • (3)盆地北部各地区原油规则甾烷中C29甾烷占优势,C27、C28和 C29甾烷呈反“L”型分布,陆源高等植物对原油生烃母质贡献显著,同时含有低等水生生物和藻类贡献。其中,Moleeta次凹东坡原油为单峰后峰态分布,具有明显的陆源高等植物贡献; Jamous次凹深洼区原油为前峰优势的双峰态型分布,生烃母质除有陆源高等植物贡献外,水生生物也有重要贡献; Palogue油田位于两个生烃次凹之间,具有混源特征。

  • (4)AYT油田原油主要来自Jamous次凹深洼区,同时有原地生油岩的生烃贡献。Jamous次凹斜坡中部翘倾断裂带的发育,将Jamous次凹分割成两个次级断陷,为AYT油田区原地烃源岩的发育提供了构造条件; 同时翘倾断裂带的发育,使Jamous次凹斜坡中部抬升变浅,局部发育弱氧化环境下的浅水砂泥互层沉积。

  • 参考文献

    • Boon J J, Rijipstra W I C, De Lange F, De Leeuw J W, Yoshioka M, Shimizu Y. 1979. Black Sea sterol: A molecular fossil for dinoflagellate blooms. Nature, 277: 125~127.

    • Brassell S C, Eglinton G, Mo F J. 1986. Biological marker compounds as indicators of depositional history of the Maoming oil shale. Organic Geochemistry, 10 (4-6): 927~941.

    • Cheng Dingsheng, Dou Lirong, Shi Buqing, Ma Luqin, Xiao Kunye, Li Zhi. 2010. Origin of high acidity oils in the Palogueoilfield, Melut basin, Sudan. Petroleum Exploration and Development, 37 (5): 568~622 (in Chinese with English abstract).

    • Cheng Dingsheng, Dou Lirong, Zhang Guangya, Liu Bang, Song Huanxin, Mao Fengjun, Yuan Shengqiang, Hu Ying. 2020. Development pattern of two types of exceptional Cretaceous source rocks in the rift systems in West and Central Africa. Acta Geologica Sinica, 94 (11): 3449~3460 (in Chinese with English abstract).

    • Dou Lirong. 2005. Formation mechanism and model of oil and gas accumulations in the Melut basin, Sudan. Bulletin of Mineralogy Petrology and Geochemistry, 24 (1): 50~57 (in Chinese with English abstract).

    • Dou Lirong, Pan Xiaohua, Tian Zuoji, Xiao Kunye, Zhang Zhiwei. 2006. Hydrocarbon formation and distribution of rift basins in Sudan—A comparative analysis of them with rift basins in East China. Petroleum Exploration and Development, 33 (3): 255~261 (in Chinese with English abstract).

    • Dou Lirong, Xiao Kunye, Cheng Dingsheng, Shi Buqing, Li Zhi. 2007. Petroleum geology of the Melut basin and the Great Palogue Field, Sudan. Marine and Petroleum Geology, 24 (1): 129~144.

    • Dou Lirong, Cheng Dingsheng, Li Maowen, Xiao Kunye, Shi Buqing, Li Zhi. 2008. Unusual high acidity oils from the Great Palogue field, Melut basin, Sudan. Organic Geochemistry, 39 (2): 210~231.

    • Fu Jiamo, Xu Fenfang, Chen Deyu, Liu Dehan, Hu Chengyi, Jia Rongfen, Xu Shiping, Brassell A S, Eglinton G. 1985. Biomarker compounds of biological inputs in Maoming oil shale. Geochimica, 14 (2): 99~114 (in Chinese with English abstract).

    • Fu Jiamo, Sheng Guoying, Xu Jiayou, Eglinton G, Gowar A P, Jia Rongfen, Fan Shanfa, Peng Pingan. 1990. Application of biological markers in the assessment of paleoenvironments of Chinese nonmarine sediments. Organic Geochemistry, 16 (4-6): 769~779.

    • Genik G J. 1993. Petroleum geology of Cretaceous-Tertiary Rift basins in Niger, Chad, and Central African Republic. AAPG Bulletin, 77 (8): 1405~1434.

    • Hao Fang, Zhou Xinhuai, Zhu Yangming, Yang Yuanyuan. 2011. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Baybasin, China. Organic Geochemistry, 42 (4): 323~339.

    • Huang Difan, Li Jinchao, Zhang Dajiang. 1990. Maturation sequence of continental crude oils in hydrocarbon basins in China and its significance. Organic Geochemistry, 16 (1-3): 521~529.

    • Kolaczkowska E, Slougui N E, Watt D S, Maruca R E, Moldowan J M. 1990. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Organic Geochemistry, 16 (4-6): 1033~1038.

    • McHargue T R, Heidrick T L, Livingston J K. 1992. Tectonostratigraphic development of the interior Sudan rifts, Central Africa. Tectonophysics, 213 (1-2): 187~202.

    • Mei Bowen, Liu Xijiang. 1980. The distribution of isoprenoid alkanes in China's crude oil and its relation with the geologic environment. Oil & Gas Geology, 1 (2): 99~115 (in Chinese with English abstract).

    • Moldowan J M, Seifert W K, Gallegos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69 (8): 1255~1268.

    • Ni Chunhua, Bao Jianping, Liang Shiyou. 2009. Overall evaluation by multi-parameters on maturity of crude oil from the Bozhong sag, the Bohai Bay basin. Petroleum Geology and Experiment, 31 (4): 399~408 (in Chinese with English abstract).

    • Peters K E, Moldowan J M. 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. New Jersy: Prentice Hall, Englewood Cliffs.

    • Peters K E, Fraser T H, Amris W, Rustanto B, Hermanto E. 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin, 83 (12): 1927~1942.

    • Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth Hisory. Cambridge: Cambridge University Press, 1155.

    • Philp R P, Gilbert T D. 1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10 (1-3): 73-84.

    • Philp R P, Fan P, Lewis C A, Zhu H, Wang H. 1991. Geochemical characteristics of oils from the Chaidamu, Shanganning and Jianghan basins, China. Journal of Southeast Asian Earth Science, 5 (1-4): 351~358.

    • Seifert W K, Moldowan J M. 1980. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, 12: 229~237.

    • Shen Zhongmin, Zhou Guangjia. 1999. Bio-marker characteristics of indication environments of low-mature oil generation. Journal of Chengdu University of Technology (Science & Technology Edition), 26 (4): 396~401 (in Chinese with English abstract).

    • Shi Zhongsheng, Xue Luo, Niu Huiyun, Wang Guolin, Chen Bintao, He Weiwei, Ma Lun. 2017. Accumulation conditions of far-source lithologic reservoirs and exploration strategy in Melut basin, Central Africa. China Petroleum Exploration, 22 (6): 41~49 (in Chinese with English abstract).

    • Shi Zhongsheng, Fang Lehua, Xue Luo, Wang Guolin, He Weiwei, Ma Lun. 2019. Analogy between Melut basin of Central Africa and rift basins of East China and implication. Earth Science, 44 (2): 587~602 (in Chinese with English abstract).

    • Tao Shizhen, Wang Chuanyuan, Du Jianguo, Liu Leica, Chen Zhi. 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Marine Petroleum Geology, 67 (6): 460~467.

    • Tong Xiaoguang, Xu Zhiqiang, Shi Buqing, Dou Lirong, Xiao Kunye. 2006. Petroleum geologic property and reservoir-forming pattern of Melut basin in Sudan. Acta Petrolei Sinica, 27 (2): 1~10 (in Chinese with English abstract).

    • Wang Guolin, Shi Zhongsheng, Zhao Yanjun, Chen Bintao, Xue Luo. 2018. Lithologic reservoir forming conditions and its exploration implication in northern Melut basin, South Sudan. Lithologic Reservoirs, 30 (4): 37~45 (in Chinese with English abstract).

    • Xiao Hong, Li Meijun, Yang Zhe, Zhu Zhili. 2019. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments. Geochimica, 48 (2): 161~170 (in Chinese with English abstract).

    • Zhao Wenzhi, Zou Caineng, Wang Zecheng, Li jianzhong, Li Ming, Niu Jiayu. 2004. The intension and signification of “Sag-wide Oil-Bearing Theory” in the hydrocarbon-rich depression with terrestrial origin. Petroleum Exploration and Development, 31 (2): 5~13 (in Chinese with English abstract).

    • Zhu Yangming. 1997. Geochemical characteristics of terrestrial oils of the Tarim basin. Acta Sedimentologica Sinica, 15 (2): 26~30 (in Chinese with English abstract).

    • Zhu Yangming, Zhang Chunming, Zhang Min, Mei Bowen, Jin Diwei, Xiao Qianhua. 1997. The effect of oxidation reduction nature of depositional environments on the formation of diasteranes. Acta Sedimentologica Sinica, 15 (4): 104~108 (in Chinese with English abstract).

    • Zhu Yangming, Mei Bowen. 1998. Geochemical characteristics of Mesozoic coal seam in Tarim basin. Xinjiang Petroleum Geology, 19 (1): 27~31 (in Chinese with English abstract).

    • Zumberge J E. 1987. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach. Geochimica et Cosmochimica Acta, 51 (6): 1625~1637.

    • 程顶胜, 窦立荣, 史卜庆, 马陆琴, 肖坤叶, 李志. 2010. 苏丹Melut盆地Palogue油田高酸值原油成因. 石油勘探与开发, 37(5): 568~622.

    • 程顶胜, 窦立荣, 张光亚, 刘邦, 宋换新, 刘计国, 毛凤军, 袁圣强, 胡瑛. 2020. 中西非裂谷盆地白垩系两类优质烃源岩发育模式. 地质学报, 94(11): 3449~3460.

    • 窦立荣. 2005. 苏丹迈卢特盆地油气成藏机理和成藏模式. 矿物岩石地球化学通报, 24(1): 50~57.

    • 窦立荣, 潘校华, 田作基, 肖坤叶, 张志伟. 2006. 苏丹裂谷盆地油气藏的形成与分布: 兼与中国东部裂谷盆地对比分析. 石油勘探与开发, 33(3): 255~261.

    • 傅家谟, 徐芬芳, 陈德玉, 刘德汉, 胡成一, 贾蓉芬, 徐世平, Brassell A S, Eglinton G. 1985. 茂名油页岩中生物输入的标志化合物. 地球化学, 14(2): 99~114.

    • 梅博文, 刘希江. 1980. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系. 石油与天然气地质, 1(2): 99~115.

    • 倪春华, 包建平, 梁世友. 2009. 渤海湾盆地渤中凹陷原油成熟度的多参数综合评价. 石油实验地质, 31(4): 399~408.

    • 沈忠民, 周光甲. 1999. 低成熟石油生成环境的生物标志化合物特征. 成都理工学院学报(自然科学版), 26(4): 396~401.

    • 史忠生, 薛罗, 牛慧贇, 王国林, 陈彬滔, 何巍巍, 马轮. 2017. 中非Melut盆地远源岩性油藏成藏条件与勘探对策. 中国石油勘探, 22(6): 41~49.

    • 史忠生, 方乐华, 薛罗, 王国林, 何巍巍, 马轮. 2019. 中非Melut盆地与我国东部裂谷盆地的类比及意义. 地球科学, 44(2): 587~602.

    • 童晓光, 徐志强, 史卜庆, 窦立荣, 肖坤叶. 2006. 苏丹迈卢特盆地石油地质特征及成藏模式. 石油学报, 27(2): 1~10.

    • 王国林, 史忠生, 赵艳军, 陈彬滔, 薛罗. 2018. 南苏丹Melut盆地北部地区岩性油藏成藏条件及勘探启示. 岩性油气藏, 30(4): 37~45.

    • 肖洪, 李美俊, 杨哲, 朱志立. 2019. 不同环境烃源岩和原油中 C19~C23三环萜烷的分布特征及地球化学意义. 地球化学, 48(2): 161~170.

    • 赵文智, 邹才能, 汪泽成, 李建忠, 李明, 牛嘉玉. 2004. 富油气凹陷“满凹含油”论—内涵与意义. 石油勘探与开发, 31(2): 5~13.

    • 朱扬明. 1997. 塔里木盆地陆相原油的地球化学特征. 沉积学报, 15(2): 26~30.

    • 朱扬明, 张春明, 张敏, 梅博文, 金迪威, 肖乾华. 1997. 沉积环境的氧化还原性对重排甾烷形成的作用. 沉积学报, 15(4): 104~108.

    • 朱扬明, 梅博文. 1998. 塔里木盆地中生界煤层的地球化学特征. 新疆石油地质, 19(1): 27~31.

  • 参考文献

    • Boon J J, Rijipstra W I C, De Lange F, De Leeuw J W, Yoshioka M, Shimizu Y. 1979. Black Sea sterol: A molecular fossil for dinoflagellate blooms. Nature, 277: 125~127.

    • Brassell S C, Eglinton G, Mo F J. 1986. Biological marker compounds as indicators of depositional history of the Maoming oil shale. Organic Geochemistry, 10 (4-6): 927~941.

    • Cheng Dingsheng, Dou Lirong, Shi Buqing, Ma Luqin, Xiao Kunye, Li Zhi. 2010. Origin of high acidity oils in the Palogueoilfield, Melut basin, Sudan. Petroleum Exploration and Development, 37 (5): 568~622 (in Chinese with English abstract).

    • Cheng Dingsheng, Dou Lirong, Zhang Guangya, Liu Bang, Song Huanxin, Mao Fengjun, Yuan Shengqiang, Hu Ying. 2020. Development pattern of two types of exceptional Cretaceous source rocks in the rift systems in West and Central Africa. Acta Geologica Sinica, 94 (11): 3449~3460 (in Chinese with English abstract).

    • Dou Lirong. 2005. Formation mechanism and model of oil and gas accumulations in the Melut basin, Sudan. Bulletin of Mineralogy Petrology and Geochemistry, 24 (1): 50~57 (in Chinese with English abstract).

    • Dou Lirong, Pan Xiaohua, Tian Zuoji, Xiao Kunye, Zhang Zhiwei. 2006. Hydrocarbon formation and distribution of rift basins in Sudan—A comparative analysis of them with rift basins in East China. Petroleum Exploration and Development, 33 (3): 255~261 (in Chinese with English abstract).

    • Dou Lirong, Xiao Kunye, Cheng Dingsheng, Shi Buqing, Li Zhi. 2007. Petroleum geology of the Melut basin and the Great Palogue Field, Sudan. Marine and Petroleum Geology, 24 (1): 129~144.

    • Dou Lirong, Cheng Dingsheng, Li Maowen, Xiao Kunye, Shi Buqing, Li Zhi. 2008. Unusual high acidity oils from the Great Palogue field, Melut basin, Sudan. Organic Geochemistry, 39 (2): 210~231.

    • Fu Jiamo, Xu Fenfang, Chen Deyu, Liu Dehan, Hu Chengyi, Jia Rongfen, Xu Shiping, Brassell A S, Eglinton G. 1985. Biomarker compounds of biological inputs in Maoming oil shale. Geochimica, 14 (2): 99~114 (in Chinese with English abstract).

    • Fu Jiamo, Sheng Guoying, Xu Jiayou, Eglinton G, Gowar A P, Jia Rongfen, Fan Shanfa, Peng Pingan. 1990. Application of biological markers in the assessment of paleoenvironments of Chinese nonmarine sediments. Organic Geochemistry, 16 (4-6): 769~779.

    • Genik G J. 1993. Petroleum geology of Cretaceous-Tertiary Rift basins in Niger, Chad, and Central African Republic. AAPG Bulletin, 77 (8): 1405~1434.

    • Hao Fang, Zhou Xinhuai, Zhu Yangming, Yang Yuanyuan. 2011. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Baybasin, China. Organic Geochemistry, 42 (4): 323~339.

    • Huang Difan, Li Jinchao, Zhang Dajiang. 1990. Maturation sequence of continental crude oils in hydrocarbon basins in China and its significance. Organic Geochemistry, 16 (1-3): 521~529.

    • Kolaczkowska E, Slougui N E, Watt D S, Maruca R E, Moldowan J M. 1990. Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. Organic Geochemistry, 16 (4-6): 1033~1038.

    • McHargue T R, Heidrick T L, Livingston J K. 1992. Tectonostratigraphic development of the interior Sudan rifts, Central Africa. Tectonophysics, 213 (1-2): 187~202.

    • Mei Bowen, Liu Xijiang. 1980. The distribution of isoprenoid alkanes in China's crude oil and its relation with the geologic environment. Oil & Gas Geology, 1 (2): 99~115 (in Chinese with English abstract).

    • Moldowan J M, Seifert W K, Gallegos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69 (8): 1255~1268.

    • Ni Chunhua, Bao Jianping, Liang Shiyou. 2009. Overall evaluation by multi-parameters on maturity of crude oil from the Bozhong sag, the Bohai Bay basin. Petroleum Geology and Experiment, 31 (4): 399~408 (in Chinese with English abstract).

    • Peters K E, Moldowan J M. 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. New Jersy: Prentice Hall, Englewood Cliffs.

    • Peters K E, Fraser T H, Amris W, Rustanto B, Hermanto E. 1999. Geochemistry of crude oils from eastern Indonesia. AAPG Bulletin, 83 (12): 1927~1942.

    • Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth Hisory. Cambridge: Cambridge University Press, 1155.

    • Philp R P, Gilbert T D. 1986. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry, 10 (1-3): 73-84.

    • Philp R P, Fan P, Lewis C A, Zhu H, Wang H. 1991. Geochemical characteristics of oils from the Chaidamu, Shanganning and Jianghan basins, China. Journal of Southeast Asian Earth Science, 5 (1-4): 351~358.

    • Seifert W K, Moldowan J M. 1980. The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, 12: 229~237.

    • Shen Zhongmin, Zhou Guangjia. 1999. Bio-marker characteristics of indication environments of low-mature oil generation. Journal of Chengdu University of Technology (Science & Technology Edition), 26 (4): 396~401 (in Chinese with English abstract).

    • Shi Zhongsheng, Xue Luo, Niu Huiyun, Wang Guolin, Chen Bintao, He Weiwei, Ma Lun. 2017. Accumulation conditions of far-source lithologic reservoirs and exploration strategy in Melut basin, Central Africa. China Petroleum Exploration, 22 (6): 41~49 (in Chinese with English abstract).

    • Shi Zhongsheng, Fang Lehua, Xue Luo, Wang Guolin, He Weiwei, Ma Lun. 2019. Analogy between Melut basin of Central Africa and rift basins of East China and implication. Earth Science, 44 (2): 587~602 (in Chinese with English abstract).

    • Tao Shizhen, Wang Chuanyuan, Du Jianguo, Liu Leica, Chen Zhi. 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China. Marine Petroleum Geology, 67 (6): 460~467.

    • Tong Xiaoguang, Xu Zhiqiang, Shi Buqing, Dou Lirong, Xiao Kunye. 2006. Petroleum geologic property and reservoir-forming pattern of Melut basin in Sudan. Acta Petrolei Sinica, 27 (2): 1~10 (in Chinese with English abstract).

    • Wang Guolin, Shi Zhongsheng, Zhao Yanjun, Chen Bintao, Xue Luo. 2018. Lithologic reservoir forming conditions and its exploration implication in northern Melut basin, South Sudan. Lithologic Reservoirs, 30 (4): 37~45 (in Chinese with English abstract).

    • Xiao Hong, Li Meijun, Yang Zhe, Zhu Zhili. 2019. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments. Geochimica, 48 (2): 161~170 (in Chinese with English abstract).

    • Zhao Wenzhi, Zou Caineng, Wang Zecheng, Li jianzhong, Li Ming, Niu Jiayu. 2004. The intension and signification of “Sag-wide Oil-Bearing Theory” in the hydrocarbon-rich depression with terrestrial origin. Petroleum Exploration and Development, 31 (2): 5~13 (in Chinese with English abstract).

    • Zhu Yangming. 1997. Geochemical characteristics of terrestrial oils of the Tarim basin. Acta Sedimentologica Sinica, 15 (2): 26~30 (in Chinese with English abstract).

    • Zhu Yangming, Zhang Chunming, Zhang Min, Mei Bowen, Jin Diwei, Xiao Qianhua. 1997. The effect of oxidation reduction nature of depositional environments on the formation of diasteranes. Acta Sedimentologica Sinica, 15 (4): 104~108 (in Chinese with English abstract).

    • Zhu Yangming, Mei Bowen. 1998. Geochemical characteristics of Mesozoic coal seam in Tarim basin. Xinjiang Petroleum Geology, 19 (1): 27~31 (in Chinese with English abstract).

    • Zumberge J E. 1987. Prediction of source rock characteristics based on terpane biomarkers in crude oils: A multivariate statistical approach. Geochimica et Cosmochimica Acta, 51 (6): 1625~1637.

    • 程顶胜, 窦立荣, 史卜庆, 马陆琴, 肖坤叶, 李志. 2010. 苏丹Melut盆地Palogue油田高酸值原油成因. 石油勘探与开发, 37(5): 568~622.

    • 程顶胜, 窦立荣, 张光亚, 刘邦, 宋换新, 刘计国, 毛凤军, 袁圣强, 胡瑛. 2020. 中西非裂谷盆地白垩系两类优质烃源岩发育模式. 地质学报, 94(11): 3449~3460.

    • 窦立荣. 2005. 苏丹迈卢特盆地油气成藏机理和成藏模式. 矿物岩石地球化学通报, 24(1): 50~57.

    • 窦立荣, 潘校华, 田作基, 肖坤叶, 张志伟. 2006. 苏丹裂谷盆地油气藏的形成与分布: 兼与中国东部裂谷盆地对比分析. 石油勘探与开发, 33(3): 255~261.

    • 傅家谟, 徐芬芳, 陈德玉, 刘德汉, 胡成一, 贾蓉芬, 徐世平, Brassell A S, Eglinton G. 1985. 茂名油页岩中生物输入的标志化合物. 地球化学, 14(2): 99~114.

    • 梅博文, 刘希江. 1980. 我国原油中异戊间二烯烷烃的分布及其与地质环境的关系. 石油与天然气地质, 1(2): 99~115.

    • 倪春华, 包建平, 梁世友. 2009. 渤海湾盆地渤中凹陷原油成熟度的多参数综合评价. 石油实验地质, 31(4): 399~408.

    • 沈忠民, 周光甲. 1999. 低成熟石油生成环境的生物标志化合物特征. 成都理工学院学报(自然科学版), 26(4): 396~401.

    • 史忠生, 薛罗, 牛慧贇, 王国林, 陈彬滔, 何巍巍, 马轮. 2017. 中非Melut盆地远源岩性油藏成藏条件与勘探对策. 中国石油勘探, 22(6): 41~49.

    • 史忠生, 方乐华, 薛罗, 王国林, 何巍巍, 马轮. 2019. 中非Melut盆地与我国东部裂谷盆地的类比及意义. 地球科学, 44(2): 587~602.

    • 童晓光, 徐志强, 史卜庆, 窦立荣, 肖坤叶. 2006. 苏丹迈卢特盆地石油地质特征及成藏模式. 石油学报, 27(2): 1~10.

    • 王国林, 史忠生, 赵艳军, 陈彬滔, 薛罗. 2018. 南苏丹Melut盆地北部地区岩性油藏成藏条件及勘探启示. 岩性油气藏, 30(4): 37~45.

    • 肖洪, 李美俊, 杨哲, 朱志立. 2019. 不同环境烃源岩和原油中 C19~C23三环萜烷的分布特征及地球化学意义. 地球化学, 48(2): 161~170.

    • 赵文智, 邹才能, 汪泽成, 李建忠, 李明, 牛嘉玉. 2004. 富油气凹陷“满凹含油”论—内涵与意义. 石油勘探与开发, 31(2): 5~13.

    • 朱扬明. 1997. 塔里木盆地陆相原油的地球化学特征. 沉积学报, 15(2): 26~30.

    • 朱扬明, 张春明, 张敏, 梅博文, 金迪威, 肖乾华. 1997. 沉积环境的氧化还原性对重排甾烷形成的作用. 沉积学报, 15(4): 104~108.

    • 朱扬明, 梅博文. 1998. 塔里木盆地中生界煤层的地球化学特征. 新疆石油地质, 19(1): 27~31.