en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨静,女,1984年生。副研究员,从事同位素热年代学研究。E-mail:yangjing_822822@163.com。

参考文献
Brown R W. 1991. Backstacking apatite fission-track stratigraphy: A method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology, 19(1): 74~77.
参考文献
Cao Kai, Bernet M, Wang Guocan, Beek P V D, Wang An, Zhang Kexin, Enkelmann E. 2013. Focused Pliocene-Quaternary exhumation of the eastern Pamir domes, western China. Earth and Planetary Science Letters, 363(2): 16~26.
参考文献
Chang Jian, Glorie Stijn, Qiu Nansheng, Kyoungwon Min, Yao Xiao, Wei Xu. 2021. Late Miocene (10~6 Ma) rapid exhumation of the Chinese South Tianshan: implications for the timing of aridification in the Tarim Basin. Geophysical Research Letters, 48: e2020GL090623.
参考文献
Chen Zhengle, Han Fengbin, Yang Nong, Wang Pingan, Gong Hongliang, Shao Fei, Tang Xiangsheng, Xu Jinshan, Zhou Yonggui, Wang Yong. 2012. Topographic erosive diversities of the Xiangshan uranium ore-field, Jiangxi province and its implications for ore-preservation: Evidences from fission track dating of apatite. Chinese Journal of Geophysics, 55(7): 2371~2384(in Chinese with English abstract).
参考文献
Cogné N, Chew D M, Donelick R A, Ansberque C. 2020. LA-ICP-MS apatite fission track dating: A practical zeta-based approach. Chemical Geology, 531: 119302.
参考文献
Crowley K D, Ahern J L, Naeser C W. 1985. Origin and epeirogenic history of the Williston Basin: Evidence from fission-track analysis of apatite. Geology, 13(9): 620~623.
参考文献
Deng Bin, Liu Shugen, Li Zhiwu, Jansa L F, Liu Shun, Wang Guozhi, Sun Wei. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98~115.
参考文献
Donelick R A, Sullivan P B O, Ketcham R A. 2005. Apatite fission-track analysis. Reviews in Mineralogy & Geochemistry, 58(1): 49~94.
参考文献
Enkelmann E, Jonckheere R. 2003. Correction factors for systematic errors related to the track counts in fission-track dating with the external detector method. Radiation Measurements, 36(1): 351~356.
参考文献
Fitzgerald P G, Gleadow A J W. 1988. Fission-track geochronology, tectonics and structure of the transantarctic mountains in northern Victoria land, Antarctica. Chemical Geology Isotope Geoscience, 73(2): 169~198.
参考文献
Galbraith R. 1981. On statistical models for fission track counts. Mathematical Geology, 13(6): 471~478.
参考文献
Gallagher K, Brown R, Johnson C. 1998. Fission track analysis and its applications to geological problems. Annual review of earth and Planetary Sciences, 26(1): 519~572.
参考文献
Gleadow A, Duddy I, Green P F, Lovering J. 1986. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4): 405~415.
参考文献
Gleadow A J, Belton D X, Kohn B P, Brown R W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry, 48(1): 579~630.
参考文献
Gleadow A J W, Harrison M, Kohn B P, Lugo-Zazueta R, Phillips D. 2015. The Fish Canyon tuff: A new look at an old low-temperature thermochronology standard. Earth and Planetary Science Letters, 424: 95~108.
参考文献
Green P F, Duddy I R, Gleadow A J, Lovering J F. 1989. Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser N D, McCulloh T H, eds. Thermal History of Sedimentary Basins, Berlin: Springer, 181~195.
参考文献
Green P F, Machado V. 2017. Pre-rift and synrift exhumation, post-rift subsidence and exhumation of the onshore Namibe Margin of Angola revealed from apatite fission track analysis. Geological Society, London, Special Publications, 438(1): 99~118.
参考文献
Hadler J C, Iunes P J, Tello C A, Chemale F, Kawashita K, Curvo E A C, Santos F G S, Gasparini T E, Moreira P A F P, Guedes S. 2009. Experimental study of a methodology for fission-track dating without neutron irradiation. Radiation Measurements, 44(s9-10): 955~957.
参考文献
Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207(10): 135~145.
参考文献
Hasebe N, Carter A, Hurford A J, Arai S. 2009. The effect of chemical etching on LA-ICP-MS analysis in determining uranium concentration for fission-track chronometry. Geological Society, London, Special Publications, 324(1): 37~46.
参考文献
Hasebe N, Tamura A, Arai S. 2013. Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating. Island Arc, 22(22): 280~291.
参考文献
Hu Shengbiao, Kohn B P, Raza A, Wang Jiyang, Gleadow A J W. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology. Tectonophysics, 420(3-4): 409~429.
参考文献
Hurford A J. 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, 80(2): 171~178.
参考文献
Hurford A J, Green P F. 1983. The zeta age calibration of fission-track dating. Chemical Geology, 41: 285~317.
参考文献
Jaffey A, Flynn K, Glendenin L, Bentley W T, Essling A. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4(5): 1889.
参考文献
Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics, 343(s1-2): 111~134.
参考文献
Kohn B P, Green P F. 2002. Low temperature thermochronology: from tectonics to landscape evolution. Tectonophysics, 349: 1~4.
参考文献
Lei Yongliang, Jia Chengzao, Li Benliang, Wei Guoqi, Chen Zhuxin. 2012. Meso-Cenozoic tectonic events recorded by apatite fission track in the northern Longmen-Micang mountains region. Acta Geologica Sinica-English Edition, 86(1): 153~165.
参考文献
Li Guangwei. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications. Acta Geologica Sinica, 95(1): 214~226(in Chinese with English abstract).
参考文献
Li Qingyang, Pan Baotian, Hu Xiaofei, Hu Zhenbo, Li Fuqiang, Yang Shunzhi. 2013. Apatite fission track constraints on the pattern of faulting in the north Qilian Mountain. Journal of Earth Science, 24(4): 569~578.
参考文献
Li Tianyi, Zhou Yan, Fang Shi, He Sheng, He Zhiliang, Fan Dehua. 2013. A new method for apatite fission track dating—the laser-ICPMS method. Oil & Gas Geology, 34(4): 550~557(in Chinese with English abstract).
参考文献
Lin Xu, Zheng Dewen, Sun Jimin, Windley B F, Tian Zhonghua, Gong Zhijun, Jia Yingying. 2015. Detrital apatite fission track evidence for provenance change in the Subei basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene. Journal of Asian Earth Sciences, 111: 302~311.
参考文献
Liu Jianhui, Zhang Peizhen, Lease R O, Zheng Dewen, Wan Jinglin, Wang Weitao, Zhang Huiping. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281~296.
参考文献
Liu Wenhao, Zhang Jun, Sun Teng, Wang Jian. 2014. Application of apatite U-Pb and fission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China. Journal of Geochemical Exploration, 138: 22~32.
参考文献
McDowell F W, McIntosh W C, Farley K A. 2005. A precise 40Ar-39Ar reference age for Durango apatite (U-Th)/He and fission-track dating standard. Chemical Geology, 214(3): 249~263.
参考文献
Pang Jianzhang, Zheng Dewen, Wan Jinglin, Li Daming, Zhang Peizhen, Yang Jing. 2013. Insufficient thermalization effects on determining fission-track ages. Science China Earth Sciences, 56(7): 1233~1241.
参考文献
Pang Jianzhang, Zheng Dewen, Ma Yan, Wang Ying, Wu Ying, Wan Jinglin, Yu Jingxing, Li Youjuan, Wang Yizhou. 2017. Combined apatite fission-track dating, chlorine and REE content analysis by LA-ICPMS. Science Bulletin, 62(22): 1497~1500.
参考文献
Pang Jiangzhang, Yu Jingxing, Zheng Dewen, Wang Weitao, Ma Yan, Wang Yizhou, Li Chuanyou, Wang Ying. 2019. Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3): 1018~1032.
参考文献
Pearce N J G, Westgate J A, Perkins W T. 1996. Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: Quantitative and single internal standard-multi-element methods. Quaternary International, 34(6): 213~227.
参考文献
Qiu Nansheng, Jiang Guang, Mei Qinghua, Chang Jian, Wang Shengjun, Wang Jiyang. 2011. The Paleozoic tectonothermal evolution of the Bachu Uplift of the Tarim Basin, NW China: Constraints from (U-Th)/He ages, apatite fission track and vitrinite reflectance data. Journal of Asian Earth Sciences, 41(6): 551~563.
参考文献
Qiu Nansheng, Chang Jian, Li Jiawei, Li Wenzheng, Yun Lu, Li Huili. 2012. New evidence on the Neogene uplift of South Tianshan: Constraints from the (U-Th)/He and AFT ages of borehole samples of the Tarim basin and implications for hydrocarbon generation. International Journal of Earth Sciences, 101(6): 1625~1643.
参考文献
Qiu Nansheng, Liu Shuai. 2018. Uplift and denudation in continental area of China linked to climate effects: Evidence from apatite and zircon fission track data. Scientific Reports, 8: 9546.
参考文献
Shen Chuanbo, Donelick R A, O'Sullivan P B, Jonckheere R, Yang Zhao, She Zhenbing, Miu Xiangliang, Ge Xiang. 2012. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan basin, Yangtze block, central China. Sedimentary Geology, 281: 194~207.
参考文献
Soares C J, Guedes S, Hadler J C, Mertz-Kraus R, Zack T, Iunes P J. 2014. Novel calibration for LA-ICP-MS-based fission-track thermochronology. Physics & Chemistry of Minerals, 41(1): 65~73.
参考文献
Tagami T. 2005. Zircon fission-track thermochronology and applications to fault studies. Reviews in Mineralogy and Geochemistry, 58(1): 95~122.
参考文献
Tian Yuntao, Kohn B P, Hu Shengbiao, Gleadow A J. 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: Implications for crustal dynamics. Geophysical Research Letters, 42(1): 29~35.
参考文献
Vermeesch P. 2009. Radial Plotter: a java application for fission track, luminescence and other radial plots. Radiation Measurements, 44: 409~410.
参考文献
Vermeesch P. 2017. Statistics for LA-ICP-MS based fission track dating. Chemical Geology, 456: 19~27.
参考文献
Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.
参考文献
Wang Yizhou, Zheng Dewen, Pang Jianzhang, Zhang Huiping, Wang Weitao, Yu Jingxing, Zhang Zhuqi, Zheng Wenjun, Zhang Peizhen, Li Youjuan. 2018. Using slope-are and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan Plateau. Geomorphology, 308(1): 118~128.
参考文献
Xiang Dunfeng, Zhang Zhiyong, Xiao Wenjiao, Zhu Wenbin, Zheng Dewen, Li Guangwei, Zheng Bihai, Song Dongfang, Han Chunming, Pang Jianzhang. 2018. Episodic Meso-Cenozoic denudation of Chinese Tianshan: Evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar basin margin, NW China. Journal of Asian Earth Sciences, 175: 199~212.
参考文献
Xu Yadong, Zhang Kexin, Yang Yongfeng, Wang Guocan, Luo Mansheng, Ji Junliang, Song Bowen. 2018. Neogene evolution of the north-eastern Tibetan Plateau based on sedimentary, paleoclimatic and tectonic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 512: 33~45.
参考文献
Yoshioka T, Tsuruta T, Iwano H, Danhara T. 2005. Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1): 386~395.
参考文献
Yuan Wanming, Zhang Aikui, Tian Chengsheng, Feng Xing, Hao Nana, Feng Yunlei, Chen Xueqin. 2019. The tectonic events in Halongxiuma district, East Kunlun Mountains, Qinghai-Tibet Plateau: Evidence from fission track thermochronology. Radiation Measurements, 123: 63~68.
参考文献
Yuan Wanming, Shi Zhen, Zhu Xiaoyong. 2020. New zircon fission track analysis constraints on tectonic-mineralization epochs in the Ganzi-Litang gold belt, eastern Qinghai-Tibet plateau. Ore Geology Reviews, 119: 103383.
参考文献
Zheng Dewen, Zhang Peizhen, Wan Jinglin, Yuan Daoyang, Li Chuanyou, Yin Gongming, Zhang Guangliang, Wang Zhicai, Min Wei, Chen Jie. 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 248(1): 198~208.
参考文献
Zheng Dewen, Wang Weitao, Wan Jinglin, Yuan Daoyang, Liu Caicai, Zheng Wenjun, Zhang Huiping, Pang Jianzhang, Zhang Peizhen. 2017. Progressive northward growth of the northern Qilian Shan-Hexi Corridor (northeastern Tibet) during the Cenozoic. Lithosphere, 9(3): 408~416.
参考文献
Zhou Zuyi, Xu Changhai, Reiners P W, Yang Fengli, Donelick R A. 2003. Late Cretaceous-Cenozoic exhumation history of Tiantangzhai region of Dabieshan Orogen: Constraints from (U-Th)/He and fission track analysis. Chinese Science Bulletin, 48(11): 1151~1156.
参考文献
Zhu Wenbin, Shu Liangshu, Wan Jinglin, Sun Yan, Wang Feng, Zhao Zhongyan. 2006. Fission-track evidence for the exhumation history of Bogda-Harlik mountains, xinjiang since the Cretaceous. Acta Geologica Sinica, 80(1): 16~22(in Chinese with English abstract).
参考文献
陈正乐, 韩凤彬, 杨农, 王平安, 宫红良, 邵飞, 唐湘生, 徐金山, 周永贵, 王永. 2012. 江西相山铀矿田地貌剥蚀特征及其控矿意义——磷灰石裂变径迹证据. 地球物理学报, 55(7): 2371~2384.
参考文献
李广伟. 2021. 构造地貌与低温热年代学若干问题探讨. 地质学报, 95(1): 214~226.
参考文献
李天义, 周雁, 方石, 何生, 何治亮, 樊德华. 2013. 磷灰石裂变径迹年龄测试分析新方法——激光剥蚀-ICPMS法. 石油与天燃气地质, 34(4): 550~557.
参考文献
朱文斌, 舒良树, 万景林, 孙岩, 王锋, 赵忠岩. 2006. 哈尔里克山白垩纪以来剥露历史的裂变径迹证据. 地质学报, 80(1): 16~22.
目录contents

    摘要

    磷灰石裂变径迹定年作为揭示岩石低温热年代学的一种重要方法,能够有效重塑地壳浅部约3~5 km内数百万年以来的热演化历史,已经被广泛应用于地球科学的相关研究中。依托于中国地质科学院地质力学研究所建立的裂变径迹实验室,同时采用外探测器法和LA-ICP-MS/FT法对国际上普遍使用的Durango磷灰石进行了测定,得到2个Durango磷灰石外探测器法年龄为:32.9±1.6 Ma、31.9±2.3 Ma;7个Durango磷灰石LA-ICP-MS/FT法年龄为:31.97±0.82 Ma、30.9±1.5 Ma、32.3±1.4 Ma、30.6±1.1 Ma、30.7±1.4 Ma、29.7±1.9 Ma、31.1±1.3 Ma,两种方法测得的年龄均与国际推荐值在误差范围内一致;此外,我们也应用这两种方法对采集于天山的花岗岩样品18HS-5进行了测试,年龄分别为126.7±3.8 Ma、126.4±3.6 Ma,两种方法得到的年龄在误差范围内一致。实验对比分析表明,实验流程可靠,可推广测试。

    Abstract

    Apatite fission track dating, as an important method to reveal low temperature thermochronological evolution of rocks, can effectively reconstruct the thermal evolution history of millions of years in the upper crust of 3~5 km, and has been widely used in the related research of earth science. In this study, a measurement procedure was established at the fission track dating laboratory of Institute of Geomechanics, Chinese Academy of Geological Sciences. We measured the age of internationally widely used Durango apatite by the external detector and LA-ICP-MS/FT methods. The ages obtained by external detector method are 32.9±1.6 Ma and 31.9±2.3 Ma; and those obtained by LA-ICP-MS/FT method are 31.97±0.82 Ma, 30.9±1.5 Ma, 32.3±1.4 Ma, 30.6±1.1 Ma, 30.7±1.4 Ma, 29.7±1.9 Ma and 31.1±1.3 Ma. The ages measured by two methods are consistent with the international recommended values with uncertainties. In addition, we also used these two methods to analyze the 18HS-5 granite samples collected from the Tianshan Mountains, with ages of 126.7±3.8 Ma and 126.4±3.6 Ma, respectively. The ages obtained by the two methods are consistent within the error range. The results indicate that the experimental procedure by our laboratory is reliable and the method can be used.

  • 磷灰石裂变径迹定年是目前低温热年代学领域重要的定年方法之一,具有低的径迹部分退火带(60~120℃),对低温热事件的敏感性使得其能够有效地重塑中—上地壳上部古地温演化过程,定量化地为沉积盆地构造热演化、沉积物源分析、新生带构造隆升、断裂带活动性及油气勘探等提供精细年代学依据(Crowley et al.,1985; Fitzgerald et al.,1988; Green et al.,19892017; Brown,1991; Jolivet et al.,2001; Kohn et al.,2002; Zhou Zuyi et al.,2003; Tagami,2005; Hu Shengbiao et al.,2006; Zheng Dewen et al.,20062017; 朱文斌等,2006; Qiu Nansheng et al.,201120122018; 陈正乐等,2012; Lei Yongliang et al.,2012; Shen Chuanbo et al.,2012; Cao Kai et al.,2013; Deng Bin et al.,2013; Li Qingyang et al.,2013; 李天义等,2013; Liu Jianhui et al.,2013; Pang Jianzhang et al.,20132017,2019; Liu Wenhao et al.,2014; Lin Xu et al.,2015; Tian Yuntao et al.,2015; Wang Yizhou et al.,2018; Wang Yadong et al.,2018; Xiang Dunfeng et al.,2018; Xu Yadong et al.,2018; Yuan Daoyang et al.,2019,2020; Chang Jian et al.,2021; 李广伟,2021)。裂变径迹定年是建立在238U自发辐射损伤效应基础上的一种同位素测年方法,通过对矿物某一内表面的裂变径迹密度和238U含量的测定,计算矿物的裂变径迹年龄(Hurford et al.,1983; Gleadow et al.,19862002; Green et al.,1989)。目前,该方法主要包括外探测器法和激光剥蚀-电感耦合等离子质谱法(LA-ICP-MS/FT)。外探测器法(EDM),其原理是利用云母外探测器间接地测试磷灰石中238U含量。在矿物颗粒表面加盖的云母片并经过热中子照射形成诱发径迹,通过统计外探测器上的径迹数据得到235U含量,然后根据自然体系中238U和235U含量的比值关系(238U/235U=7.2527×10-3)间接计算颗粒中238U含量(Hurford et al.,19831990; Gleadow et al.,19862002; Gallagher et al.,1998; Donelick et al.,2005)。因此,通过统计颗粒上的自发径迹和对应云母片上的诱发径迹,利用Zeta法计算得到年龄。该方法的实验流程和年龄计算方程及对应参数均比较成熟,是目前各个裂变径迹实验室最常用的测试方法。但是这种方法由于照射的因素,存在中子通量检测困难、238U裂变常数确定不够准确、矿物颗粒向白云母片注入诱发径迹的系数不准确、反应堆中子热化不充分等因素而影响年龄的准确性,同时辐射安全造成辐照的周期长等问题(Jaffey et al.,1971; Enkelmann et al.,2003; Hasebe et al.,2004; Yoshioka et al.,2005; 李天义等,2013; Pang Jianzhang et al.,2013)。

  • 直接测定矿物中的U含量是摆脱外探测器法中热中子辐照束缚的有效途径。近年来,随着激光剥蚀技术和质谱仪器的发展,新一代仪器的稳定性、灵敏度和分辨率等大幅提高,使得如磷灰石等低铀矿物中铀含量的直接测量成为可能,这为裂变径迹定年技术中238U的直接测定提供了基础。因此,这就衍生出一种新的裂变径迹定年法——激光质谱法(LA-ICP-MS/FT):即在磷灰石矿物表面进行自发径迹密度统计后,直接在矿物表面对应区域进行激光剥蚀后直接测定U的含量。LA-ICP-MS测试过程中还能同时获得磷灰石单矿物中多种微量元素含量:如Mg、Cl、Mn、Fe、Y、Ce等元素,它既可以为磷灰石裂变径迹退火过程提供重要参数,也可以有效甄别磷灰石的火山岩或沉积岩物源属性等(Hasebe et al.,200420092013; Donelick et al.,2005; Soares et al.,2014; Gleadow et al.,2015; Cogné et al.,2020)。因此,由于该方法不需要经过热中子辐照,因此大大地缩短了测试的周期,降低了人为因素的影响,未来很有可能成为裂变径迹定年的最主要方法。Hasebe et al.(2004)首次利用该方法进行了裂变径迹定年的测试分析,用LA-ICP-MS技术直接进行238U含量的测试,并采用年龄“绝对”校正方法,建立了相应的年龄计算方程。实验结果表明LA-ICP-MS/FT能得到较好的年龄结果,但也存在一些问题如激光剥蚀的深度难以准确控制等。Hasebe et al.(2009)证实了蚀刻过程对于LA-ICP-MS方法测量U含量不会产生很大的影响。这就为磷灰石裂变径迹LA-ICP-MS/FT法定年奠定了基础。Hadler et al.(2009)通过对外探测器法U含量与LA-ICP-MS测得的U含量之间的对应关系对年龄进行校正。Soares et al.(2014)采用与样品基质相匹配的磷灰石标样作为外标,获得更为精确的年龄。随后,为了让测试更加准确,Hasebe et al.(2013)建立了LA-ICP-MS/FT测试方法的Zeta法测试流程,并给出了年龄计算公式。通过测试标样获得代表裂变径迹统计习惯、激光及ICP-MS仪器的状态及系统误差在内的参数Zeta,并用来校正样品的年龄。同时Vermeesch(2017)也给出了LA-ICP-MS/FT测定方法的Zeta法的年龄计算公式,并给出了免费的计算软件IsoplotR。这种Zeta方法需要每批样品或者每隔一段时间测试一次标样来重新计算Zeta值,来监测实验室激光和ICP-MS的任何变化。Cogné et al.(2020)采用一种新的计算Zeta值的方法来提高LA-ICP-MS/FT法的精度。该方法通过LA-ICP-MS测定一系列标样(80~100个标样)得到一个单一的高精度的初级Zeta(ζICP)值与238U/43Ca比,其与后续LA-ICP-MS测量标样的值相对比引入一个Zeta分馏因子,用此分馏因子校正样品的238U/43Ca,然后再计算年龄。因此,这十多年来,裂变径迹LA-ICP-MS/FT法得到了快速的发展。

  • 目前,国内各裂变径迹实验室采用的主要测试方法为外探测器法,但是近年来鉴于裂变径迹定年较好的理论基础、实践经验和实验设备条件,有的裂变径迹实验室相继建立了裂变径迹LA-ICP-MS/FT方法的实验流程,如中国地震局地质研究所、中国科学院地球化学研究所。笔者所在的中国地质科学院地质力学研究所近期引进了蔡司Axio Imager M2m及Coherent 193nm准分子激光剥蚀系统和安捷伦7900电感耦合等离子体质谱仪,为裂变径迹LA-ICP-MS/FT法测试提供了条件。本次工作应用外探测器法和LA-ICP-MS/FT法对国际上普遍使用的Durango磷灰石标样进行了测试,详细描述了本实验室建立的两种裂变径迹测试流程,对比分析两种方法获得的年龄,均与国际推荐年龄在误差范围内一致。此外,为了更好地对两种方法的测试结果进行评估,本次研究也选取了采集于天山的一个花岗岩中磷灰石样品进行了测试,两种方法获得的年龄在误差范围内一致。以上,充分表明本实验室建立的实验流程准确可靠。

  • 1 实验方法及流程

  • 1.1 样品制备

  • 将Durango磷灰石均匀撒在镶样桶内,注入调制好的司特尔冷凝胶,注胶完成后抽真空10 min,然后在干燥环境下静置24 h,之后进行研磨与抛光,粗研磨阶段使用1000~1200目的砂纸进行粗磨,研磨到绝大部分颗粒露出(颗粒的1/3处)。抛光使用Struers MD-Dac 抛光布搭配9 μm、3 μm、1 μm 钻石抛光液(Force 设定5 N)依次抛光,获得光滑、平整,边界清晰的矿物表面。将样品块在切割机上切割成大小为1.4 cm ×1.4 cm,厚度为1 mm左右的样品薄片。将样品薄片放置在21℃的5.5 mol/L硝酸溶液中蚀刻20 s,完成自发径迹样品的制备。

  • 在样品蚀刻之后,在样品靶表面上加盖低铀云母片,并用塑封使磷灰石样品与云母片紧邻,随后将塑封好的样品打包并加插IRMM540标准玻璃对反应堆通道中热中子通量进行监测,然后送俄勒冈州立大学放射研究中心核反应堆进行热中子照射。辐照完成后,待辐射剂量达到安全水平后将样品取回,对每个样品片的三个角分别钻一个孔,以便径迹统计时建立自发径迹和诱发径迹的镜像关系。然后对加盖的云母片进行蚀刻,在20℃温度条件下,将云母片在40%的氢氟酸溶液中蚀刻40 min,完成诱发径迹样品的制备。

  • 1.2 自发裂变径迹和诱发裂变径迹的统计

  • 蚀刻后的磷灰石样品靶和云母片在蔡司Axio Imager M2m裂变径迹测量分析系统下进行自发径迹、Dpar值和诱发径迹密度统计。优先选择满足矿物面平行于矿物结晶c轴、径迹分布均匀的颗粒进行统计,圈定面积避开裂缝等,记录选定的矿物颗粒坐标信息并拍摄照片,以便在相同的颗粒上进行激光剥蚀238U含量测定。拍照后可在窗口点击自发径迹位置,窗口会标记出已经记录下的自发径迹,防止重复计数。计数完成后,可在统计径迹的区域绘制多边形,测量面积。然后切换到镜像样品位置,继续测量,可将统计自发径迹的多边形镜像复制过来,保证测量区域相同,然后对诱发径迹进行统计。

  • 1.3 U含量测量

  • 实验室进行U含量测量的仪器为中国地质科学院地质力学研究所现有的Coherent 193nm激光剥蚀系统和Agilent 7900 型四极杆电感耦合等离子质谱仪,具体仪器型号参数如表1所示。GeoLas HD 193nm激光剥蚀系统是美国Coherent公司设计生产的用于激光剥蚀的重要设备,与其他激光剥蚀相比,该仪器的优势是激光能量密度高,匀化系统好,最大激光输出能量≥100 mJ,剥蚀点最大能量密度≥20 J/cm2,剥蚀束斑尺寸1~350 μm,剥蚀频率1~50 Hz。Agilent 7900 是安捷伦公司最新型号的四极杆电感耦合等离子体质谱仪,适用于各种常规样品的元素分析、同位素分析等,有灵敏度高、检出限低、分析速度高、动态线性范围广、谱线干扰少、多元素同时检测等优点。该仪器配备新型正交检测系统(ODS),可提供高达11个数量级的动态范围,从亚纳克/升级到百分级浓度,并且能有效提高增益并降低噪音,从而提高信噪比。该仪器配备八级杆碰撞反应池系统(ORS)充入高纯He气可极大地消除分子、离子的干扰,采用新型接口设计和优化的扩展级真空系统,极大地提高了离子传输效率。配备的双曲面四极杆质量分析器在采集过程中连续扫描质量范围,在0.1 s内可采集0~260之间全部的质量数。

  • 首先,将Durango磷灰石和标准玻璃NIST610、NIST612(Pearce et al.,1996)制作成直径2.54 cm的圆形树脂靶,对其表面进行抛光,作为监测样品靶。将已进行径迹统计的样品放置于激光剥蚀的法兰盘中,并固定在测试之前用酒精擦拭表面,去除可能存在的污染。在实验测试过程中选取32 μm的激光束斑进行单点剥蚀,脉冲频率为5 Hz,激光能量密度为5.0 J/cm2。剥蚀后,剥蚀物以高纯He和少量高纯N2混合气作为载气,进入ICP-MS进行电离并测量。实验在测试过程中待测元素为43Ca、35Cl、204Pb、206Pb、207Pb、208Pb、232Th和238U。ICP-MS采用跳峰方式采集数据,设定待测元素的积分时间。

  • 样品测试采用的是内标双外标联用的方法,测试顺序是每测定8个样品点后测定1个Durango磷灰石和2个标准玻璃NIST610及612。该方法不仅可以对仪器灵敏度飘移、元素分馏进行校正,还可以监测仪器的状态。每个分析点设置的气体背景信号采集时间为25 s,清洗管道、样品池的时间为25 s,激光剥蚀时间为50 s。选用不同铀浓度的标准玻璃作为外标,选用标准玻璃和磷灰石中都含有的常量元素43Ca作为内标,进行单颗粒磷灰石中238U浓度的计算。

  • 1.4 剥蚀深度测量

  • 激光剥蚀之后,我们对一个Durango磷灰石样品DUR-17的剥蚀深度进行了测量。实验是在中国科学院理化技术研究所的白光干涉实验室采用的白光干涉三维技术进行的测量,该方法根据白光干涉条纹明暗度以及干涉条纹出现的位置解析出被测样品的相对高度,可用于形貌的观察和测量,是目前精度非常高的测量方法之一,可达到纳米级。

  • 2 实验数据处理

  • 2.1 外探测器法

  • 外探测器法裂变径迹年龄的计算公式如下(Hurford,1983):

  • t=1/λD×ln1+λDζρsρi/ρd

  • 其中,λD为总衰变常数(8.51×10-17 a-1); ρs是自发径迹密度(单位为cm-2),ρi是诱发径迹密度(单位为cm-2),ρd是标准铀玻璃对应的外探测器的诱发径迹密度(单位为cm-2); t为年龄(单位为a); ζ为Zeta值,其计算公式为:

  • ζ=expλDtstd-1/λDρs/ρistdρd

  • 其中,tstd为标准样品的年龄(单位为a)。

  • 对于Zeta(ζ)值:本次实验利用墨西哥Durango深成岩磷灰石和美国FCT凝灰岩磷灰石标样,通过多样品,多个颗粒,多次测试对笔者个人Zeta(ζ)值进行了标定,标定的值为302±10,具体标定过程参考Hurford et al.(1983,1990)。将统计获得的自发径迹密度和诱发径迹密度等代入到年龄公式中,即可得到裂变径迹年龄。

  • 2.2 LA-ICP-MS/FT法

  • LA-ICP-MS/FT法裂变径迹年龄计算公式如下(Hasebe et al.,2004):

  • t=1/λD×ln1+λDερs/238U

  • 其中,λD为总衰变常数(1.55125×10-10 a-1); ρs是自发径迹密度(单位为cm-2),238U是由LA-ICP-MS测得的磷灰石颗粒的238U浓度(单位为μg/g)。其中ε值的计算公式为:

  • ε=M/NAdλfRapqAp×10-6

  • 其中,M238U的原子量(238 g/mol); λf为自发衰变常数(8.51×10-17 a-1); NA为阿伏伽德罗常数(6.0221×1023 mol-1); qAp为与实验室相关的参数,设为1; d为矿物密度,磷灰石的密度为3.19 g/cm3; Rap为自发径迹记录效率,其值为径迹长度的二分之一(7.5×10-4 cm)(Hasebe et al.,2004); 本实验室ε值计算结果为1940。

  • 使用LA-ICP-MS对磷灰石的238U进行测定,样品被剥蚀后由高纯He、Ar和N2作为载气进入ICP-MS进行电离和测试。采用标准玻璃NIST610和NIST612作为外标,43Ca作为内标,获得的数据导入iolite4.0进行处理。选取信号平坦尽量宽的一段来计算元素含量,处理后得到238U含量。因此,将自发径迹密度和238U浓度代入到年龄公式中,即可得到裂变径迹年龄。两种方法得到的磷灰石裂变径迹单颗粒年龄的Radialplotter图均通过Radialplotter.jar获得(Vermeesch,2009)。

  • 3 实验结果

  • 3.1 外探测器法Durango磷灰石标样的裂变径迹年龄结果

  • 外探测器法测得的2个Durango磷灰石标样的裂变径迹分析结果如表1和图1所示,其年龄分别为:32.9±1.6 Ma、31.9±2.3 Ma,与国际推荐值31.4±0.2 Ma(Hurford,1990; McDowell et al.,2005)在误差范围内基本一致。外探测器法获得Durango磷灰石标样的年龄均通过了卡方检验(P(χ2)>5%,表1与图1)。

  • 3.2 LA-ICP-MS/FT法Durango磷灰石标样的裂变径迹年龄结果

  • LA-ICP-MS/FT法测得的7个Durango磷灰石标样的裂变径迹分析结果如表2所示。其中进行外探测器法测试的2个样品DUR-21、DUR-23也进行了LA-ICP-MS法测试(如图1所示)。7个年龄分别为:31.97±0.82 Ma、30.9±1.5 Ma、32.3±1.4Ma、30.6±1.1 Ma、30.7±1.4 Ma、29.7±1.9 Ma、31.1±1.3 Ma,与国际推荐值31.4±0.2 Ma(Hurford,1990; McDowell et al.,2005)在误差范围内基本一致。LA-ICP-MS/FT法获得Durango磷灰石标样的年龄均通过了卡方检验(P(χ2)>5%,图1,表2)。

  • 表1 外探测器法测得的Durango磷灰石及天山样品18HS-5磷灰石裂变径迹年龄

  • Table1 Fission track ages of Durango apatite and 18HS-5 apatite by using the external detector method

  • 注:外探测器法:n为测试单颗粒数目; ρsρi为自发裂变径迹和诱发裂变径迹密度; NsNi为自发裂变径迹和诱发裂变径迹条数; P(χ2)为卡方检验概率(Galbraith,1981); 中值年龄为通过Radial Plotter计算获得的裂变径迹年龄。

  • 图1 外探测器法(a、c、e)与LA-ICP-MS/FT法(b、d、f)测得的Durango磷灰石标样DUR-21、DUR-23及天山样品18HS-5的年龄雷达图

  • Fig.1 Durango apatite DUR-21、DUR-23 and Tianshan sample18HS-5 fission track ages shown as Radialplotter by using the external detector method (a, c, e) and LA-ICP-MS/FT method (b, d, f)

  • 表2 LA-ICP-MS法测得的Durango磷灰石及18HS-5磷灰石裂变径迹年龄

  • Table2 Fission track ages of Durango apatite and 18HS-5 apatite by using the LA-ICP-MS method

  • 注:LA-ICP-MS/FT法:n为测试单颗粒数目; ρs为自发裂变径迹密度; Ns为自发裂变径迹条数; U为平均铀浓度; P(χ2)为卡方检验概率(Galbraith,1981); 中值年龄为通过RadialPlotter计算获得的裂变径迹年龄。

  • 图2 白光干涉测量DUR-17剥蚀坑的三维形貌图(a)、二维平面图(b)、XY方向剖面图(c)

  • Fig.2 Three-dimensional topography (a) , the two-dimensional plane topography (b) , X and Y cross-section (c) of ablated trench of sample DUR-17 by white light interference measuring technique

  • 3.3 外探测器法和LA-ICP-MS/FT法测得的实际样品的裂变径迹年龄结果

  • 外探测器法测得的18HS-5磷灰石的裂变径迹分析结果为126.7±3.8 Ma(表1,图1); LA-ICP-MS/FT法测得的18HS-5磷灰石的裂变径迹分析结果为126.4±3.6 Ma(表2,图1)。两种方法得到的18HS-5的年龄在误差范围内一致,并且两种方法得到的年龄均通过了卡方检验(P(χ2)>5%)。

  • 3.4 剥蚀深度

  • 我们对DUR-17样品中的三个颗粒进行了剥蚀深度测量,剥蚀深度都在18 μm左右。其中一个颗粒的剥蚀坑的三维形貌图、二维平面图及通过剥蚀坑中心的XY方向剖面图(图2)。通过图2a、b可以明显的看出剥蚀坑的三维形貌及其平面形貌,显示剥蚀坑的底部较为平坦。通过剥蚀坑的中心的X方向和Y方向的剖面图显示剥蚀深度ΔZ在18 μm左右(图2b、c)。

  • 4 讨论

  • 外探测器法和LA-ICP-MS/FT法是目前进行裂变径迹定年最主要的两种方法。通过外探测器法和LA-ICP-MS/FT法的定年结果对比,发现这两种方法获得的表观年龄基本一致,表明建立实验流程的可靠性,但是也存在一些问题。传统的外探测器法:通过对样品进行热中子辐射来间接获得矿物的U含量,其优势是外探测器上的径迹位置和磷灰石径迹位置呈镜像对应,统计的面积也一致。实验流程和年龄计算方程及对应参数均比较成熟,是目前各个裂变径迹实验室最常用的实验方法,但存在人为测量径迹密度的误差、辐射周期长、辐射安全、中子热化不充分等问题。要尽量消除人为测量径迹密度的误差,需要各个实验室进行严格的测试人员培训,尽量统一实验标准(Li,2021)。笔者通过多种磷灰石标样、多样品、多颗粒、多次测试的方式对个人的Zeta值进行标定,减少径迹统计时的误差; 对于中子热化不充分的问题,除严格限制辐照样品的通道位置,同时在样品增加标准样品(调整ζ值)以及通过两种标准玻璃对比监控方法可提高实验结果的准确性(Pang Jianzhang et al.,2013)。LA-ICP-MS/FT法:统计矿物颗粒表面自发径迹密度和长度之后,通过LA-ICP-MS直接测定磷灰石矿物颗粒中U含量,目前裂变径迹实验室应用较多的是“绝对值法”计算矿物年龄。该方法的Zeta法测试流程及年龄和对应的实验参数计算公式,目前还处于不断的探索中。虽然该方法缩短了样品测试分析的周期,减少人为因素对测试结果的误差,提高样品测试结果的精度,但也存在一些问题:① 激光剥蚀深度:在径迹统计过程中,统计的自发径迹密度由抛光面上部及下部约半个径迹长度空间范围内所含的U裂变形成,由于抛光面上部已经被抛掉,我们只能测量抛光面下部的U含量,那么多大的剥蚀深度能更好地代表矿物颗粒的U含量还有待进一步确定(Hasebe et al.,2004; 李天义等,2013)。在传统的外探测器法中,云母外探测器上记录的径迹是颗粒抛光面以下10 μm范围(大概是半个裂变径迹长度)内的铀衰变产生的,这种方法假设抛掉的部分和抛光下部的U含量没有显著变化,即在20 μm范围内分带作用的影响不大(Hasebe et al.,2004)。Hasebe et al.(2004)的实验中对激光剥蚀的深度一般取25±5 μm,部分较小的颗粒可能被击穿。因此,在本实验室测试过程中激光剥蚀的深度控制在20 μm左右。在此次激光剥蚀之后,我们应用白光干涉仪对此次实验样品的剥蚀坑深度进行了测量,深度范围在18 μm左右,剥蚀坑的底部较为平坦。对于不同的剥蚀深度如何影响矿物的裂变径迹年龄还需要进一步的实验研究,如通过设置不同的激光参数,对比不同剥蚀深度测定的U含量的差别及精度,优化LA-ICP-MS分析测试的参数等。② 磷灰石颗粒中U含量分布不均匀:磷灰石颗粒内部U含量分布的不均匀,会对磷灰石单颗粒的年龄产生较大的影响。激光剥蚀的直径是32 μm,其剥蚀面积远小于自发径迹统计的面积,激光剥蚀的U含量测量结果与实际U含量可能存在差异(李天义等,2013; Pang Jianzhang et al.,2017; Vermeesch,2017)。因此,针对这个影响,本实验室在统计径迹密度时尽可能选取自发径迹密度分布均匀的颗粒进行测试; 其次是可以采用增加激光剥蚀数量求其平均值方法来增加结果的精确性。③ 与磷灰石成分相似、剥蚀转化效率相似的标准样品的选取(李天义等,2013):由于外标(NIST标准玻璃)与磷灰石矿物的激光剥蚀速率存在差异,可能会导致基体效应,造成实验结果的误差较大。因此,未来实验室会进一步选取化学成分相似、剥蚀转化效率相近的标准样品作为外标,或者通过实验来评估基体效应的影响程度,进一步提高测试结果的准确性。

  • 5 结论

  • 磷灰石裂变径迹定年是同位素热年代学中重要的测年手段之一。本文报道了中国地质科学院地质力学裂变径迹实验室成功建立磷灰石裂变径迹外探测器法和LA-ICP-MS/FT法的一个实例。对国际上普遍使用的Durango磷灰石进行了测定,得到2个Durango磷灰石外探测器法年龄和7个Durango磷灰石LA-ICP-MS/FT法年龄两种方法测得的年龄均与国际推荐值在误差范围内一致; 此外,我们同时采用外探测器法和LA-ICP-MS/FT法对采集于天山的花岗岩样品18HS-5进行了测试,两种方法得到的年龄在误差范围内一致。以上均表明建立实验流程的可靠性。裂变径迹外探测器法和LA-ICP-MS/FT法的建立丰富了实验室测试方法,也对将来开展磷灰石U-Pb和裂变径迹双法测年实验流程的探索具有借鉴意义。

  • 参考文献

    • Brown R W. 1991. Backstacking apatite fission-track stratigraphy: A method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology, 19(1): 74~77.

    • Cao Kai, Bernet M, Wang Guocan, Beek P V D, Wang An, Zhang Kexin, Enkelmann E. 2013. Focused Pliocene-Quaternary exhumation of the eastern Pamir domes, western China. Earth and Planetary Science Letters, 363(2): 16~26.

    • Chang Jian, Glorie Stijn, Qiu Nansheng, Kyoungwon Min, Yao Xiao, Wei Xu. 2021. Late Miocene (10~6 Ma) rapid exhumation of the Chinese South Tianshan: implications for the timing of aridification in the Tarim Basin. Geophysical Research Letters, 48: e2020GL090623.

    • Chen Zhengle, Han Fengbin, Yang Nong, Wang Pingan, Gong Hongliang, Shao Fei, Tang Xiangsheng, Xu Jinshan, Zhou Yonggui, Wang Yong. 2012. Topographic erosive diversities of the Xiangshan uranium ore-field, Jiangxi province and its implications for ore-preservation: Evidences from fission track dating of apatite. Chinese Journal of Geophysics, 55(7): 2371~2384(in Chinese with English abstract).

    • Cogné N, Chew D M, Donelick R A, Ansberque C. 2020. LA-ICP-MS apatite fission track dating: A practical zeta-based approach. Chemical Geology, 531: 119302.

    • Crowley K D, Ahern J L, Naeser C W. 1985. Origin and epeirogenic history of the Williston Basin: Evidence from fission-track analysis of apatite. Geology, 13(9): 620~623.

    • Deng Bin, Liu Shugen, Li Zhiwu, Jansa L F, Liu Shun, Wang Guozhi, Sun Wei. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98~115.

    • Donelick R A, Sullivan P B O, Ketcham R A. 2005. Apatite fission-track analysis. Reviews in Mineralogy & Geochemistry, 58(1): 49~94.

    • Enkelmann E, Jonckheere R. 2003. Correction factors for systematic errors related to the track counts in fission-track dating with the external detector method. Radiation Measurements, 36(1): 351~356.

    • Fitzgerald P G, Gleadow A J W. 1988. Fission-track geochronology, tectonics and structure of the transantarctic mountains in northern Victoria land, Antarctica. Chemical Geology Isotope Geoscience, 73(2): 169~198.

    • Galbraith R. 1981. On statistical models for fission track counts. Mathematical Geology, 13(6): 471~478.

    • Gallagher K, Brown R, Johnson C. 1998. Fission track analysis and its applications to geological problems. Annual review of earth and Planetary Sciences, 26(1): 519~572.

    • Gleadow A, Duddy I, Green P F, Lovering J. 1986. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4): 405~415.

    • Gleadow A J, Belton D X, Kohn B P, Brown R W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry, 48(1): 579~630.

    • Gleadow A J W, Harrison M, Kohn B P, Lugo-Zazueta R, Phillips D. 2015. The Fish Canyon tuff: A new look at an old low-temperature thermochronology standard. Earth and Planetary Science Letters, 424: 95~108.

    • Green P F, Duddy I R, Gleadow A J, Lovering J F. 1989. Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser N D, McCulloh T H, eds. Thermal History of Sedimentary Basins, Berlin: Springer, 181~195.

    • Green P F, Machado V. 2017. Pre-rift and synrift exhumation, post-rift subsidence and exhumation of the onshore Namibe Margin of Angola revealed from apatite fission track analysis. Geological Society, London, Special Publications, 438(1): 99~118.

    • Hadler J C, Iunes P J, Tello C A, Chemale F, Kawashita K, Curvo E A C, Santos F G S, Gasparini T E, Moreira P A F P, Guedes S. 2009. Experimental study of a methodology for fission-track dating without neutron irradiation. Radiation Measurements, 44(s9-10): 955~957.

    • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207(10): 135~145.

    • Hasebe N, Carter A, Hurford A J, Arai S. 2009. The effect of chemical etching on LA-ICP-MS analysis in determining uranium concentration for fission-track chronometry. Geological Society, London, Special Publications, 324(1): 37~46.

    • Hasebe N, Tamura A, Arai S. 2013. Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating. Island Arc, 22(22): 280~291.

    • Hu Shengbiao, Kohn B P, Raza A, Wang Jiyang, Gleadow A J W. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology. Tectonophysics, 420(3-4): 409~429.

    • Hurford A J. 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, 80(2): 171~178.

    • Hurford A J, Green P F. 1983. The zeta age calibration of fission-track dating. Chemical Geology, 41: 285~317.

    • Jaffey A, Flynn K, Glendenin L, Bentley W T, Essling A. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4(5): 1889.

    • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics, 343(s1-2): 111~134.

    • Kohn B P, Green P F. 2002. Low temperature thermochronology: from tectonics to landscape evolution. Tectonophysics, 349: 1~4.

    • Lei Yongliang, Jia Chengzao, Li Benliang, Wei Guoqi, Chen Zhuxin. 2012. Meso-Cenozoic tectonic events recorded by apatite fission track in the northern Longmen-Micang mountains region. Acta Geologica Sinica-English Edition, 86(1): 153~165.

    • Li Guangwei. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications. Acta Geologica Sinica, 95(1): 214~226(in Chinese with English abstract).

    • Li Qingyang, Pan Baotian, Hu Xiaofei, Hu Zhenbo, Li Fuqiang, Yang Shunzhi. 2013. Apatite fission track constraints on the pattern of faulting in the north Qilian Mountain. Journal of Earth Science, 24(4): 569~578.

    • Li Tianyi, Zhou Yan, Fang Shi, He Sheng, He Zhiliang, Fan Dehua. 2013. A new method for apatite fission track dating—the laser-ICPMS method. Oil & Gas Geology, 34(4): 550~557(in Chinese with English abstract).

    • Lin Xu, Zheng Dewen, Sun Jimin, Windley B F, Tian Zhonghua, Gong Zhijun, Jia Yingying. 2015. Detrital apatite fission track evidence for provenance change in the Subei basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene. Journal of Asian Earth Sciences, 111: 302~311.

    • Liu Jianhui, Zhang Peizhen, Lease R O, Zheng Dewen, Wan Jinglin, Wang Weitao, Zhang Huiping. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281~296.

    • Liu Wenhao, Zhang Jun, Sun Teng, Wang Jian. 2014. Application of apatite U-Pb and fission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China. Journal of Geochemical Exploration, 138: 22~32.

    • McDowell F W, McIntosh W C, Farley K A. 2005. A precise 40Ar-39Ar reference age for Durango apatite (U-Th)/He and fission-track dating standard. Chemical Geology, 214(3): 249~263.

    • Pang Jianzhang, Zheng Dewen, Wan Jinglin, Li Daming, Zhang Peizhen, Yang Jing. 2013. Insufficient thermalization effects on determining fission-track ages. Science China Earth Sciences, 56(7): 1233~1241.

    • Pang Jianzhang, Zheng Dewen, Ma Yan, Wang Ying, Wu Ying, Wan Jinglin, Yu Jingxing, Li Youjuan, Wang Yizhou. 2017. Combined apatite fission-track dating, chlorine and REE content analysis by LA-ICPMS. Science Bulletin, 62(22): 1497~1500.

    • Pang Jiangzhang, Yu Jingxing, Zheng Dewen, Wang Weitao, Ma Yan, Wang Yizhou, Li Chuanyou, Wang Ying. 2019. Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3): 1018~1032.

    • Pearce N J G, Westgate J A, Perkins W T. 1996. Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: Quantitative and single internal standard-multi-element methods. Quaternary International, 34(6): 213~227.

    • Qiu Nansheng, Jiang Guang, Mei Qinghua, Chang Jian, Wang Shengjun, Wang Jiyang. 2011. The Paleozoic tectonothermal evolution of the Bachu Uplift of the Tarim Basin, NW China: Constraints from (U-Th)/He ages, apatite fission track and vitrinite reflectance data. Journal of Asian Earth Sciences, 41(6): 551~563.

    • Qiu Nansheng, Chang Jian, Li Jiawei, Li Wenzheng, Yun Lu, Li Huili. 2012. New evidence on the Neogene uplift of South Tianshan: Constraints from the (U-Th)/He and AFT ages of borehole samples of the Tarim basin and implications for hydrocarbon generation. International Journal of Earth Sciences, 101(6): 1625~1643.

    • Qiu Nansheng, Liu Shuai. 2018. Uplift and denudation in continental area of China linked to climate effects: Evidence from apatite and zircon fission track data. Scientific Reports, 8: 9546.

    • Shen Chuanbo, Donelick R A, O'Sullivan P B, Jonckheere R, Yang Zhao, She Zhenbing, Miu Xiangliang, Ge Xiang. 2012. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan basin, Yangtze block, central China. Sedimentary Geology, 281: 194~207.

    • Soares C J, Guedes S, Hadler J C, Mertz-Kraus R, Zack T, Iunes P J. 2014. Novel calibration for LA-ICP-MS-based fission-track thermochronology. Physics & Chemistry of Minerals, 41(1): 65~73.

    • Tagami T. 2005. Zircon fission-track thermochronology and applications to fault studies. Reviews in Mineralogy and Geochemistry, 58(1): 95~122.

    • Tian Yuntao, Kohn B P, Hu Shengbiao, Gleadow A J. 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: Implications for crustal dynamics. Geophysical Research Letters, 42(1): 29~35.

    • Vermeesch P. 2009. Radial Plotter: a java application for fission track, luminescence and other radial plots. Radiation Measurements, 44: 409~410.

    • Vermeesch P. 2017. Statistics for LA-ICP-MS based fission track dating. Chemical Geology, 456: 19~27.

    • Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.

    • Wang Yizhou, Zheng Dewen, Pang Jianzhang, Zhang Huiping, Wang Weitao, Yu Jingxing, Zhang Zhuqi, Zheng Wenjun, Zhang Peizhen, Li Youjuan. 2018. Using slope-are and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan Plateau. Geomorphology, 308(1): 118~128.

    • Xiang Dunfeng, Zhang Zhiyong, Xiao Wenjiao, Zhu Wenbin, Zheng Dewen, Li Guangwei, Zheng Bihai, Song Dongfang, Han Chunming, Pang Jianzhang. 2018. Episodic Meso-Cenozoic denudation of Chinese Tianshan: Evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar basin margin, NW China. Journal of Asian Earth Sciences, 175: 199~212.

    • Xu Yadong, Zhang Kexin, Yang Yongfeng, Wang Guocan, Luo Mansheng, Ji Junliang, Song Bowen. 2018. Neogene evolution of the north-eastern Tibetan Plateau based on sedimentary, paleoclimatic and tectonic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 512: 33~45.

    • Yoshioka T, Tsuruta T, Iwano H, Danhara T. 2005. Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1): 386~395.

    • Yuan Wanming, Zhang Aikui, Tian Chengsheng, Feng Xing, Hao Nana, Feng Yunlei, Chen Xueqin. 2019. The tectonic events in Halongxiuma district, East Kunlun Mountains, Qinghai-Tibet Plateau: Evidence from fission track thermochronology. Radiation Measurements, 123: 63~68.

    • Yuan Wanming, Shi Zhen, Zhu Xiaoyong. 2020. New zircon fission track analysis constraints on tectonic-mineralization epochs in the Ganzi-Litang gold belt, eastern Qinghai-Tibet plateau. Ore Geology Reviews, 119: 103383.

    • Zheng Dewen, Zhang Peizhen, Wan Jinglin, Yuan Daoyang, Li Chuanyou, Yin Gongming, Zhang Guangliang, Wang Zhicai, Min Wei, Chen Jie. 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 248(1): 198~208.

    • Zheng Dewen, Wang Weitao, Wan Jinglin, Yuan Daoyang, Liu Caicai, Zheng Wenjun, Zhang Huiping, Pang Jianzhang, Zhang Peizhen. 2017. Progressive northward growth of the northern Qilian Shan-Hexi Corridor (northeastern Tibet) during the Cenozoic. Lithosphere, 9(3): 408~416.

    • Zhou Zuyi, Xu Changhai, Reiners P W, Yang Fengli, Donelick R A. 2003. Late Cretaceous-Cenozoic exhumation history of Tiantangzhai region of Dabieshan Orogen: Constraints from (U-Th)/He and fission track analysis. Chinese Science Bulletin, 48(11): 1151~1156.

    • Zhu Wenbin, Shu Liangshu, Wan Jinglin, Sun Yan, Wang Feng, Zhao Zhongyan. 2006. Fission-track evidence for the exhumation history of Bogda-Harlik mountains, xinjiang since the Cretaceous. Acta Geologica Sinica, 80(1): 16~22(in Chinese with English abstract).

    • 陈正乐, 韩凤彬, 杨农, 王平安, 宫红良, 邵飞, 唐湘生, 徐金山, 周永贵, 王永. 2012. 江西相山铀矿田地貌剥蚀特征及其控矿意义——磷灰石裂变径迹证据. 地球物理学报, 55(7): 2371~2384.

    • 李广伟. 2021. 构造地貌与低温热年代学若干问题探讨. 地质学报, 95(1): 214~226.

    • 李天义, 周雁, 方石, 何生, 何治亮, 樊德华. 2013. 磷灰石裂变径迹年龄测试分析新方法——激光剥蚀-ICPMS法. 石油与天燃气地质, 34(4): 550~557.

    • 朱文斌, 舒良树, 万景林, 孙岩, 王锋, 赵忠岩. 2006. 哈尔里克山白垩纪以来剥露历史的裂变径迹证据. 地质学报, 80(1): 16~22.

  • 参考文献

    • Brown R W. 1991. Backstacking apatite fission-track stratigraphy: A method for resolving the erosional and isostatic rebound components of tectonic uplift histories. Geology, 19(1): 74~77.

    • Cao Kai, Bernet M, Wang Guocan, Beek P V D, Wang An, Zhang Kexin, Enkelmann E. 2013. Focused Pliocene-Quaternary exhumation of the eastern Pamir domes, western China. Earth and Planetary Science Letters, 363(2): 16~26.

    • Chang Jian, Glorie Stijn, Qiu Nansheng, Kyoungwon Min, Yao Xiao, Wei Xu. 2021. Late Miocene (10~6 Ma) rapid exhumation of the Chinese South Tianshan: implications for the timing of aridification in the Tarim Basin. Geophysical Research Letters, 48: e2020GL090623.

    • Chen Zhengle, Han Fengbin, Yang Nong, Wang Pingan, Gong Hongliang, Shao Fei, Tang Xiangsheng, Xu Jinshan, Zhou Yonggui, Wang Yong. 2012. Topographic erosive diversities of the Xiangshan uranium ore-field, Jiangxi province and its implications for ore-preservation: Evidences from fission track dating of apatite. Chinese Journal of Geophysics, 55(7): 2371~2384(in Chinese with English abstract).

    • Cogné N, Chew D M, Donelick R A, Ansberque C. 2020. LA-ICP-MS apatite fission track dating: A practical zeta-based approach. Chemical Geology, 531: 119302.

    • Crowley K D, Ahern J L, Naeser C W. 1985. Origin and epeirogenic history of the Williston Basin: Evidence from fission-track analysis of apatite. Geology, 13(9): 620~623.

    • Deng Bin, Liu Shugen, Li Zhiwu, Jansa L F, Liu Shun, Wang Guozhi, Sun Wei. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98~115.

    • Donelick R A, Sullivan P B O, Ketcham R A. 2005. Apatite fission-track analysis. Reviews in Mineralogy & Geochemistry, 58(1): 49~94.

    • Enkelmann E, Jonckheere R. 2003. Correction factors for systematic errors related to the track counts in fission-track dating with the external detector method. Radiation Measurements, 36(1): 351~356.

    • Fitzgerald P G, Gleadow A J W. 1988. Fission-track geochronology, tectonics and structure of the transantarctic mountains in northern Victoria land, Antarctica. Chemical Geology Isotope Geoscience, 73(2): 169~198.

    • Galbraith R. 1981. On statistical models for fission track counts. Mathematical Geology, 13(6): 471~478.

    • Gallagher K, Brown R, Johnson C. 1998. Fission track analysis and its applications to geological problems. Annual review of earth and Planetary Sciences, 26(1): 519~572.

    • Gleadow A, Duddy I, Green P F, Lovering J. 1986. Confined fission track lengths in apatite: A diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology, 94(4): 405~415.

    • Gleadow A J, Belton D X, Kohn B P, Brown R W. 2002. Fission track dating of phosphate minerals and the thermochronology of apatite. Reviews in Mineralogy and Geochemistry, 48(1): 579~630.

    • Gleadow A J W, Harrison M, Kohn B P, Lugo-Zazueta R, Phillips D. 2015. The Fish Canyon tuff: A new look at an old low-temperature thermochronology standard. Earth and Planetary Science Letters, 424: 95~108.

    • Green P F, Duddy I R, Gleadow A J, Lovering J F. 1989. Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser N D, McCulloh T H, eds. Thermal History of Sedimentary Basins, Berlin: Springer, 181~195.

    • Green P F, Machado V. 2017. Pre-rift and synrift exhumation, post-rift subsidence and exhumation of the onshore Namibe Margin of Angola revealed from apatite fission track analysis. Geological Society, London, Special Publications, 438(1): 99~118.

    • Hadler J C, Iunes P J, Tello C A, Chemale F, Kawashita K, Curvo E A C, Santos F G S, Gasparini T E, Moreira P A F P, Guedes S. 2009. Experimental study of a methodology for fission-track dating without neutron irradiation. Radiation Measurements, 44(s9-10): 955~957.

    • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford A J. 2004. Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology, 207(10): 135~145.

    • Hasebe N, Carter A, Hurford A J, Arai S. 2009. The effect of chemical etching on LA-ICP-MS analysis in determining uranium concentration for fission-track chronometry. Geological Society, London, Special Publications, 324(1): 37~46.

    • Hasebe N, Tamura A, Arai S. 2013. Zeta equivalent fission-track dating using LA-ICP-MS and examples with simultaneous U-Pb dating. Island Arc, 22(22): 280~291.

    • Hu Shengbiao, Kohn B P, Raza A, Wang Jiyang, Gleadow A J W. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology. Tectonophysics, 420(3-4): 409~429.

    • Hurford A J. 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, 80(2): 171~178.

    • Hurford A J, Green P F. 1983. The zeta age calibration of fission-track dating. Chemical Geology, 41: 285~317.

    • Jaffey A, Flynn K, Glendenin L, Bentley W T, Essling A. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C, 4(5): 1889.

    • Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Roger F, Tapponnier P, Malavieille J, Arnaud N, Wu C. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics, 343(s1-2): 111~134.

    • Kohn B P, Green P F. 2002. Low temperature thermochronology: from tectonics to landscape evolution. Tectonophysics, 349: 1~4.

    • Lei Yongliang, Jia Chengzao, Li Benliang, Wei Guoqi, Chen Zhuxin. 2012. Meso-Cenozoic tectonic events recorded by apatite fission track in the northern Longmen-Micang mountains region. Acta Geologica Sinica-English Edition, 86(1): 153~165.

    • Li Guangwei. 2021. A brief review of key issues in tectonic geomorphology and low temperature thermochronology applications. Acta Geologica Sinica, 95(1): 214~226(in Chinese with English abstract).

    • Li Qingyang, Pan Baotian, Hu Xiaofei, Hu Zhenbo, Li Fuqiang, Yang Shunzhi. 2013. Apatite fission track constraints on the pattern of faulting in the north Qilian Mountain. Journal of Earth Science, 24(4): 569~578.

    • Li Tianyi, Zhou Yan, Fang Shi, He Sheng, He Zhiliang, Fan Dehua. 2013. A new method for apatite fission track dating—the laser-ICPMS method. Oil & Gas Geology, 34(4): 550~557(in Chinese with English abstract).

    • Lin Xu, Zheng Dewen, Sun Jimin, Windley B F, Tian Zhonghua, Gong Zhijun, Jia Yingying. 2015. Detrital apatite fission track evidence for provenance change in the Subei basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene. Journal of Asian Earth Sciences, 111: 302~311.

    • Liu Jianhui, Zhang Peizhen, Lease R O, Zheng Dewen, Wan Jinglin, Wang Weitao, Zhang Huiping. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281~296.

    • Liu Wenhao, Zhang Jun, Sun Teng, Wang Jian. 2014. Application of apatite U-Pb and fission-track double dating to determine the preservation potential of magnetite-apatite deposits in the Luzong and Ningwu volcanic basins, eastern China. Journal of Geochemical Exploration, 138: 22~32.

    • McDowell F W, McIntosh W C, Farley K A. 2005. A precise 40Ar-39Ar reference age for Durango apatite (U-Th)/He and fission-track dating standard. Chemical Geology, 214(3): 249~263.

    • Pang Jianzhang, Zheng Dewen, Wan Jinglin, Li Daming, Zhang Peizhen, Yang Jing. 2013. Insufficient thermalization effects on determining fission-track ages. Science China Earth Sciences, 56(7): 1233~1241.

    • Pang Jianzhang, Zheng Dewen, Ma Yan, Wang Ying, Wu Ying, Wan Jinglin, Yu Jingxing, Li Youjuan, Wang Yizhou. 2017. Combined apatite fission-track dating, chlorine and REE content analysis by LA-ICPMS. Science Bulletin, 62(22): 1497~1500.

    • Pang Jiangzhang, Yu Jingxing, Zheng Dewen, Wang Weitao, Ma Yan, Wang Yizhou, Li Chuanyou, Wang Ying. 2019. Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38(3): 1018~1032.

    • Pearce N J G, Westgate J A, Perkins W T. 1996. Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: Quantitative and single internal standard-multi-element methods. Quaternary International, 34(6): 213~227.

    • Qiu Nansheng, Jiang Guang, Mei Qinghua, Chang Jian, Wang Shengjun, Wang Jiyang. 2011. The Paleozoic tectonothermal evolution of the Bachu Uplift of the Tarim Basin, NW China: Constraints from (U-Th)/He ages, apatite fission track and vitrinite reflectance data. Journal of Asian Earth Sciences, 41(6): 551~563.

    • Qiu Nansheng, Chang Jian, Li Jiawei, Li Wenzheng, Yun Lu, Li Huili. 2012. New evidence on the Neogene uplift of South Tianshan: Constraints from the (U-Th)/He and AFT ages of borehole samples of the Tarim basin and implications for hydrocarbon generation. International Journal of Earth Sciences, 101(6): 1625~1643.

    • Qiu Nansheng, Liu Shuai. 2018. Uplift and denudation in continental area of China linked to climate effects: Evidence from apatite and zircon fission track data. Scientific Reports, 8: 9546.

    • Shen Chuanbo, Donelick R A, O'Sullivan P B, Jonckheere R, Yang Zhao, She Zhenbing, Miu Xiangliang, Ge Xiang. 2012. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan basin, Yangtze block, central China. Sedimentary Geology, 281: 194~207.

    • Soares C J, Guedes S, Hadler J C, Mertz-Kraus R, Zack T, Iunes P J. 2014. Novel calibration for LA-ICP-MS-based fission-track thermochronology. Physics & Chemistry of Minerals, 41(1): 65~73.

    • Tagami T. 2005. Zircon fission-track thermochronology and applications to fault studies. Reviews in Mineralogy and Geochemistry, 58(1): 95~122.

    • Tian Yuntao, Kohn B P, Hu Shengbiao, Gleadow A J. 2015. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: Implications for crustal dynamics. Geophysical Research Letters, 42(1): 29~35.

    • Vermeesch P. 2009. Radial Plotter: a java application for fission track, luminescence and other radial plots. Radiation Measurements, 44: 409~410.

    • Vermeesch P. 2017. Statistics for LA-ICP-MS based fission track dating. Chemical Geology, 456: 19~27.

    • Wang Yadong, Zheng Jianjing, Zheng Youwei. 2018. Mesozoic-Cenozoic exhumation history of the Qimen Tagh Range, northeastern margins of the Tibetan Plateau: Evidence from apatite fission track analysis. Gondwana Research, 58: 16~26.

    • Wang Yizhou, Zheng Dewen, Pang Jianzhang, Zhang Huiping, Wang Weitao, Yu Jingxing, Zhang Zhuqi, Zheng Wenjun, Zhang Peizhen, Li Youjuan. 2018. Using slope-are and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan Plateau. Geomorphology, 308(1): 118~128.

    • Xiang Dunfeng, Zhang Zhiyong, Xiao Wenjiao, Zhu Wenbin, Zheng Dewen, Li Guangwei, Zheng Bihai, Song Dongfang, Han Chunming, Pang Jianzhang. 2018. Episodic Meso-Cenozoic denudation of Chinese Tianshan: Evidence from detrital apatite fission track and zircon U-Pb data, southern Junggar basin margin, NW China. Journal of Asian Earth Sciences, 175: 199~212.

    • Xu Yadong, Zhang Kexin, Yang Yongfeng, Wang Guocan, Luo Mansheng, Ji Junliang, Song Bowen. 2018. Neogene evolution of the north-eastern Tibetan Plateau based on sedimentary, paleoclimatic and tectonic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 512: 33~45.

    • Yoshioka T, Tsuruta T, Iwano H, Danhara T. 2005. Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1): 386~395.

    • Yuan Wanming, Zhang Aikui, Tian Chengsheng, Feng Xing, Hao Nana, Feng Yunlei, Chen Xueqin. 2019. The tectonic events in Halongxiuma district, East Kunlun Mountains, Qinghai-Tibet Plateau: Evidence from fission track thermochronology. Radiation Measurements, 123: 63~68.

    • Yuan Wanming, Shi Zhen, Zhu Xiaoyong. 2020. New zircon fission track analysis constraints on tectonic-mineralization epochs in the Ganzi-Litang gold belt, eastern Qinghai-Tibet plateau. Ore Geology Reviews, 119: 103383.

    • Zheng Dewen, Zhang Peizhen, Wan Jinglin, Yuan Daoyang, Li Chuanyou, Yin Gongming, Zhang Guangliang, Wang Zhicai, Min Wei, Chen Jie. 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 248(1): 198~208.

    • Zheng Dewen, Wang Weitao, Wan Jinglin, Yuan Daoyang, Liu Caicai, Zheng Wenjun, Zhang Huiping, Pang Jianzhang, Zhang Peizhen. 2017. Progressive northward growth of the northern Qilian Shan-Hexi Corridor (northeastern Tibet) during the Cenozoic. Lithosphere, 9(3): 408~416.

    • Zhou Zuyi, Xu Changhai, Reiners P W, Yang Fengli, Donelick R A. 2003. Late Cretaceous-Cenozoic exhumation history of Tiantangzhai region of Dabieshan Orogen: Constraints from (U-Th)/He and fission track analysis. Chinese Science Bulletin, 48(11): 1151~1156.

    • Zhu Wenbin, Shu Liangshu, Wan Jinglin, Sun Yan, Wang Feng, Zhao Zhongyan. 2006. Fission-track evidence for the exhumation history of Bogda-Harlik mountains, xinjiang since the Cretaceous. Acta Geologica Sinica, 80(1): 16~22(in Chinese with English abstract).

    • 陈正乐, 韩凤彬, 杨农, 王平安, 宫红良, 邵飞, 唐湘生, 徐金山, 周永贵, 王永. 2012. 江西相山铀矿田地貌剥蚀特征及其控矿意义——磷灰石裂变径迹证据. 地球物理学报, 55(7): 2371~2384.

    • 李广伟. 2021. 构造地貌与低温热年代学若干问题探讨. 地质学报, 95(1): 214~226.

    • 李天义, 周雁, 方石, 何生, 何治亮, 樊德华. 2013. 磷灰石裂变径迹年龄测试分析新方法——激光剥蚀-ICPMS法. 石油与天燃气地质, 34(4): 550~557.

    • 朱文斌, 舒良树, 万景林, 孙岩, 王锋, 赵忠岩. 2006. 哈尔里克山白垩纪以来剥露历史的裂变径迹证据. 地质学报, 80(1): 16~22.