en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

车东,男,1992年生。博士研究生,矿产普查与勘探专业。E-mail:809340226@qq.com。

通讯作者:

王建平,男,1972年生。教授,博士生导师,主要从事矿床学与矿床地球化学研究。E-mail:jpwang@cugb.edu.cn。

参考文献
Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683~684.
参考文献
Brown P E. 1989. FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74(11~12): 1390~1393.
参考文献
Chaussidon M, Lorand J P. 1990. Sulphur isotope composition of orogenic spinel iherzolite massifs from Ariege: An ion microprobe study. Geochimica et Cosmochimica Acta, 54: 2835~2846.
参考文献
Chen Yongqing, Zhou Ding, Guo Lingfen. 2014. Genetic study on the Huaaobaote Pb-Zn-Ag polymetallic deposit in Inner Mongolia: Evidence from fluid inclusions and S, Pb, H, O isotopes. Journal of Jilin University (Earth Science Edition), 44 (5): 1478~1491 (in Chinese with English abstract).
参考文献
Chen Zhensheng, Zhang Ligang. 1992. Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geologic significance. Acta Geologica Sinica, 66(2): 158~169 (in Chinese with English abstract).
参考文献
Chiaradia M, Fontbote L, Paladines A. 2004. Metal sources in mineral deposits and crustal rocks of Ecuador (1°N~4°S): A lead isotope synthesis. Economic Geology, 99(6): 1085~1106.
参考文献
Ding Junying, Ni Pei. 2007. Melting and dissolution behaviors of frozen synthefic fluid inclusion for the system NaCl-CaCl2-H2O. Acta Petrologica Sinica, 23(9): 2039~2044 (in Chinese with English abstract).
参考文献
Drummond S E, Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80: 124~147.
参考文献
Ishihara S, Wang Pingan, Kajiwara Y, Watanabe Y. 2003. Origin of sulfur in some magmatic-hydrothermal ore deposits of South China. Bulletin of the Geological Survey of Japan, 54(3-4): 161~169.
参考文献
Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1-2): 181~193.
参考文献
Jian Ping, Liu Dunyi, Krner A, Windley B F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permianintraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169~190.
参考文献
Jiang Sihong, Nie Fengjun, Liu Yifei, Yun Fei. 2010. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia. Mineral Deposits, 28(1): 101~112 (in Chinese with English abstract).
参考文献
Jiang Sihong, Zhang Lili, Liu Yifei, Liu Chunhua, Kang Huan, Wang Fengxiang. 2018. Metallogeny of Xing-Meng orogenic belt and some related problems. Mineral Deposits, 37(4): 671~711 (in Chinese with English abstract).
参考文献
Kamona A F, Lévêque J, Friedrich G, Haack U. 1999. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufilian fold belt of Central Africa. Mineralium Deposita, 34(3): 273~283.
参考文献
Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28: 1787~1816.
参考文献
Li Yongsheng, Zhang Banglu, Gong Fanying, Du Zezhong, Zhen Shimin. 2021. Genesis of the giant Kangjiawan lead zinc ore denosit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope. Acta Petrologica Sinica, 37(6): 1847~1866 (in Chinese with English abstract).
参考文献
Liu Huaijin, Zhang Xuzhu, Niu Xingguo, Xu Hui, Wen Haichen, Li Yuan. 2021. Metallogenic model of Zhalagamu copper polymetallic deposit in Inner Mongolia. The first National Mineral Exploration Conference. Beijing: Science Press, 914~917 (in Chinese with English abstract).
参考文献
Liu Jianming, Liu Jiajun, Gu Xuexiang. 1997. Basin fluids and their related ore deposits. Acta Petrologica et Mineralogica, 16(4): 54~65 (in Chinese with English abstract).
参考文献
Liu Ruibin, Liu Zhenjiang, Mi Kuifeng, Li Chunfeng, Wang Jianping. 2019. The characteristics of ore-forming fluid and mineralization mechanism in the Huzhagaitu porphyry Mo deposit, Inner Mongolia. Acta Geologica Sinica, 93(9): 2330~2347 (in Chinese with English abstract).
参考文献
Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 1~274 (in Chinese with English abstract).
参考文献
Macfarlane A W, Marcet P, LeHuray A P, Petersen U. 1990. Lead isotope provinces of the central Andes inferred from ores and crustal rocks. Economic Geology, 85(8): 1857~1880.
参考文献
Mao Shide, Duan Zhenhao, Zhang Dehui, Shi Lanlan, Chen Yali, Li Jing. 2011. Thermodynamic modeling of binary CH4-H2O fluid inclusions. Geochimica et Cosmochimica Acta, 75(20): 5892~5902.
参考文献
Mei Xiujie, Pang Xucheng, Feng Yaju, Liu Zhenghao, Wang Peiyu, Zong Jing. 2014. Analysis of geochemical characteristics of volcanic rocks in Daban area, Inner Mongolia. Journal of Henan Polytechnic University(Natural Science) , 33(1): 3777~3779 (in Chinese with English abstract).
参考文献
Moncada D, Baker D, Bodnar R. 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District México. Ore Geology Reviews, 89, 143~170.
参考文献
Nie Fengjun, Cao Yi, Ding Chengwu, Liu Yifei. 2014. Preliminary discussions on the rejuvenated metallogenesis of the Da Hinggan-Mongolia Paleozoic orogenic belt as deduced from the studies on Sn, W and Mo-polymetallic deposits occurring within the Xilinhot and Ergun Massifs. Acta Petrologica Sinica, 30(7): 2063~2080 (in Chinese with English abstract).
参考文献
Ohmoto H, Rye R O. 1979. Isotopes of sulfur and carbon, In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits (2nd Edition). New York: Wiley, 509~567.
参考文献
Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551~578.
参考文献
Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. USA Malden: Springer Science & Business Media, 102~124.
参考文献
Prokofiev V Y, Garofalo P S, Bortnikov N S, Kovalenker V A, Zorina L D, Grichuk D V, Selektor S L. 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology, 105: 395~416.
参考文献
Roedder E. 1984. Fluid Inclusions. Canada Nova Scotia: Mineralogical Society of American, 644~645.
参考文献
Rye R O, Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review. Economic Geology, 69(6): 826~842.
参考文献
Sakai H. 1968. Isotopic properties of sulfur compounds in hydrothermal processes. Geochemical Journal, 2(1): 29~49.
参考文献
Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633~677.
参考文献
Shao Jielian, Mei Jianming. 1986. On the study of typomorphicc characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance. Minerals and Rocks, 6(3): 103~110 (in Chinese with English abstract) .
参考文献
Shen Cunli, Gao Youku, Zhang Tianping, Yang Zhanzhong, Chen Wang, Jia Wen, Bai Liqin. 2009a. Discovery of the Hanshanlinchang Cu-Ag-Sn polymetallic deposit and its significance for prospecting, Inner Mongolia. Mineral Exploration, 4(5): 475~484 (in Chinese with English abstract).
参考文献
Shen Cunli, Zhang Mei, Yu Xiqing, Cheng Wenguo, Gao Weiyu, Zhou Wenchan. 2009b. New progresses in exploration of molybdenum deposits and analysis of mineralization prospect in Inner Mongolia. Geology and Exploration, 46(6): 561~575 (in Chinese with English abstract).
参考文献
Shen Cunli, Liu Yutang, Gao Yueyuan, Wang Rui, Wu Zhenlin, Xu Hui, Yang Wenhua, Bai Liqin. 2016. Geological characteristics of Zhalageamu copper poly-metallogenic deposit and implications for its discovery in Xilinhaote region, Inner Mongolia. Mineral Exploration, 7(3): 380~389 (in Chinese with English abstract).
参考文献
Shi Defeng. 2007. The geological feature and metallogenic model of Maodeng polymetallic ore deposit. Master degree thesis of Central South University (in Chinese with English abstract).
参考文献
Simmons S F. White N C, John D. 2005. Geological characteristics of epithermal precious and base metal deposits. USA Littleton: Society of Economic Geologists, 485~522.
参考文献
Su Meixia, Zhao Wentao, Zhang Huicong, Sun Huiling, Li Hongwei, Fan Yali. 2014. Geophysical characteristics of the suture zone between North China and Siberian plates. Geophysical and Geochemical Exploration, 38(5): 949~955 (in Chinese with English abstract).
参考文献
Wang Guozheng, Zhang Jingliang, Tian Zhenzhao, Zou Jiawei. 2012. Geological characteristics and genesis of silver polymetallic deposit in Youfangxi, Inner Mongolia. Mineral Resources and Geology, 26(2): 101~107 (in Chinese with English abstract).
参考文献
Wang Xinyu, Zhu Xinyou, Zhu Zhengkun, Zang Wenshuan, Zhou Zhiguang, Yao Tu, Yan Pengchen. 2020. A discussion on the genesis of the Wulanbaiqi Pb-Zn deposit, Inner Mongolia: Evidence from fluid inclusions, S-Pb isotopes and trace elements of ore minerals. Acta Petrologica Sinica, 36(7): 2232~2248 (in Chinese with English abstract).
参考文献
Wu Qixin. 2018. Geological and geochemical characteristics and genenis of the Zhalageamu copper deposit, Inner Mongolia. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229~272.
参考文献
Xiao Rongge, Yuan Zhenlei, Liu Jingdang, Fei Hongcai, Ge Zhenhua, Zhang Mingyan. 2004. The formation and evolution of regional ore-forming fluid. Earth Science Frontiers, 11(2) : 461~469 (in Chinese with English abstract).
参考文献
Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of Three Permo-Triassic collage systems in Central Asia: Oroclines, sutures and terminal accretion. Annual Review of Earth and Plane-tary Sciences, 43(1): 477~507.
参考文献
Xu Bei, Zhao Pan, Bao Qingzhong, Zhou Yongheng, Wang Yanyang, Luo Zhiwen. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB). Acta Petrologica Sinica, 30(7): 1841~1857 (in Chinese with English abstract).
参考文献
Xu Hui. 2020. Geological characteristics and genesis of Zhalageamu coppper polymetallic ore in Xilinhot, Inner Mongolia. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
参考文献
Yang Xiuqing, Li Houmin, Li Lixing, Ma Yubo, Chen Jing, Liu Mingjun, Yao Tong, Chen Weishi, Yao Liangde. 2014. Characteristics of fluid inclusion, S, H and O isotope of iron deposit in Anshan-Benxi Area, Liaoning Province. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).
参考文献
Zartman R E, Doe B R. 1981. Plumbotectonics—the model Tectonophysics. Tectonophysics, 75: 135~162.
参考文献
Zeng Qingdong, Liu Jianming, Jia Changshun, Wan Zhimin, Yu Changming, Ye Jie and Liu Hongtao. 2007. Sedimentary exhalative origin of the Baiyinnuoer zinc-lead deposit, Chifeng, Inner Mongolia: Geological and sulfur isotope evidence. Journal of Jilin University (Earth Science Edition), 37(4): 659~667 (in Chinese with English abstract).
参考文献
Zhang Dehui. 1997. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the processes of hydrothermal deposits. Advance in Earth Sciences, 12(5): 547~552 (in Chinese with English abstract).
参考文献
Zhang Mei, Zhai Yusheng, Shen Cunli, Liu Yonghui, Yang Shuai-shi, Zhai Degao, Yao Meijuan, Wang Jianping, Wang Shouguang, Gao Zhengxi, Zhang Ling. 2011. Metallogenic system of copper polymetallic deposits in the middle-southern part of Da Hinggan mountains. China Geoscience, 25(5): 819~831 (in Chinese with English abstract).
参考文献
Zhang Tianping, Niu Xingguo, Song Junwei, Dong Hailong, Xue Fuhong. 2018. Geochemical and geophysical characteristics and prospecting prediction of Zalageamu copper polymetallic ore in Xilinhot of Inner Mongolia. Mineral Exploration, 9(6): 1258~1265 (in Chinese with English abstract).
参考文献
Zheng Yongfei. 2001. Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits. Mineral Deposits, 20(1): 57~70, 85 (in Chinese with English abstract).
参考文献
Zhu Bingquan. 1998. Theory and Application of Isotope Systems in Earth Sciences: On the Evolution of Chinese Continental Crust. Beijing: Science Press, 1~330 (in Chinese with English abstract).
参考文献
陈永清, 周顶, 郭令芬. 2014. 内蒙古花敖包特铅锌银多金属矿床成因探讨: 流体包裹体及硫、铅、氢、氧同位素证据. 吉林大学学报(地球科学版), 44(5): 1478~1491.
参考文献
陈振胜, 张理刚. 1992. 热液体系氢、氧同位素分馏机制及其地质意义. 地质学报, 66(2): 158~169.
参考文献
丁俊英, 倪培. 2007. NaCl-CaCl2-H2O体系人工合成流体包裹体及其冷冻后的熔融行为研究. 地质调查研究, 23(9): 2039~2043.
参考文献
江思宏, 聂凤军, 刘翼飞, 云飞. 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究. 矿床地质, 28(1): 101~112.
参考文献
江思宏, 张莉莉, 刘翼飞, 刘春花, 康欢, 王丰翔. 2018. 兴蒙造山带成矿规律及若干科学问题. 矿床地质, 37(4): 671~711.
参考文献
李永胜, 张帮禄, 公凡影, 杜泽忠, 甄世民. 2021. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据. 岩石学报, 37(6): 1845~1866.
参考文献
刘怀金, 张旭柱, 牛兴国, 许辉, 温海成, 李源.2021.内蒙古扎拉格阿木铜多金属矿成矿模式.首届全国矿产勘查大会论集.北京: 科学出版社, 914~917.
参考文献
刘建明, 刘家军, 顾雪祥. 1997. 沉积盆地中的流体活动及其成矿作用. 岩石矿物学杂志, 16(4): 54~65.
参考文献
刘瑞斌, 柳振江, 宓奎峰, 李春风, 王建平. 2019. 内蒙古呼扎盖吐钼矿床成矿流体特征及成矿机制. 地质学报, 93(9): 2330~2347.
参考文献
卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1~274.
参考文献
梅秀杰, 庞绪成, 冯亚举, 刘正好, 王佩玉, 宗静. 2014. 内蒙古大板地区火山岩的地球化学特征. 河南理工大学学报(自然科学版), 33(1): 3777~3779.
参考文献
聂凤军, 曹毅, 丁成武, 刘冀飞. 2014. 论兴蒙造山带叠生成矿作用-以锡林浩特和额尔古纳地块为例. 岩石学报, 30(17): 2064~2078.
参考文献
邵洁涟, 梅建明. 1986. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义. 矿物岩石, 6(3): 103~110.
参考文献
石得凤. 2007. 内蒙古锡林浩特市毛登多金属矿区地质特征及成矿模式研究. 中南大学硕士学位论文.
参考文献
沈存利, 高有库, 张天平, 杨占忠, 陈旺, 贾文, 白丽琴. 2009a. 内蒙古罕山林场铜银锡多金属矿床的发现及意义. 矿产勘查, 4(5): 475~484.
参考文献
沈存利, 张梅, 于玺卿, 程文国, 高维裕, 周文川. 2009b. 内蒙古钼矿找矿新进展及成矿远景分析. 地质与勘探, 46(6): 561~575.
参考文献
沈存利, 刘玉堂, 高月元, 王瑞, 伍振林, 许辉, 杨文华, 白丽琴. 2016. 内蒙古扎拉格阿木铜多金属矿床地质特征及发现启示. 矿产勘查, 7(3): 380~389.
参考文献
苏美霞, 赵文涛, 张慧聪, 孙会玲, 李红威, 范亚丽. 2014. 华北板块与西伯利亚板块缝合带之地球物理特征. 物探与化探, 38(5): 949~950.
参考文献
王国政, 张金良, 田振召, 邹佳伟. 2012. 内蒙古油房西银多金属矿床地质特征及成因探讨. 矿产与地质, 26(2): 101~107.
参考文献
王新雨, 祝新友, 朱政坤, 臧文栓, 周志广, 姚图, 闫鹏程. 2020. 内蒙古乌兰拜其铅锌矿床成因探讨: 流体包裹体及矿石矿物 S-Pb 同位素、微量元素证据. 岩石学报, 36(7): 2232~2248.
参考文献
吴起鑫. 2018. 内蒙古扎拉格阿木铜矿床地质地球化学特征及成因研究. 中国地质大学(北京)硕士学位论文.
参考文献
肖荣阁, 原振雷, 刘敬党, 费红彩, 葛振华, 张明燕. 2004. 区域成矿流体的形成与演化. 地学前缘, 11(2): 461~469.
参考文献
徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841~1857.
参考文献
许辉. 2020. 内蒙古锡林浩特市扎拉格阿木铜多金属矿地质特征及成因. 中国地质大学(北京)硕士学位论文.
参考文献
杨秀清, 李厚民, 李立兴, 马玉波, 陈靖, 刘明军, 姚通, 陈伟十, 姚良德. 2014. 辽宁鞍山-本溪地区铁矿床流体包裹体和硫、氢、氧同位素特征研究. 地质学报, 88(10)1917~1931.
参考文献
曾庆栋, 刘建明, 贾长顺, 万志民, 于昌明, 叶杰, 刘红涛. 2007. 内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因: 地质和硫同位素证据. 吉林大学学报(地球科学版), 37(4): 659~667.
参考文献
张德会. 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展, 12(5): 547~552.
参考文献
张梅, 翟裕生, 沈存利, 刘永慧, 杨帅师, 翟德高, 要梅娟, 王建平, 王守光, 高征西, 张玲. 2011. 大兴安岭中南段铜多金属矿床成矿系统. 现代地质, 25(5): 819~831.
参考文献
张天平, 牛兴国, 宋俊威, 董海龙, 薛富红. 2018. 内蒙古扎拉格阿木铜多金属矿地球化学、地球物理特征与找矿预测. 矿产勘查, 9(6): 1258~1265.
参考文献
郑永飞. 2001. 稳定同位素体系理论模式及其矿床地球化学应用. 矿床地质, 20(1): 57~70, 85.
参考文献
朱炳泉. 1998. 地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化. 北京: 科学出版社, 1~330.
目录contents

    摘要

    扎拉格阿木铜矿床位于锡林浩特地块北缘,矿体赋存于二叠系砂质板岩和角砾岩中,受NE向断裂控制,为中温热液脉型铜矿床。本文通过流体包裹体和C-H-O-S-Pb同位素地球化学研究手段,来探讨扎拉格阿木铜矿成矿机制。成矿热液期存在5个成矿阶段:钾长石阶段、石英-绢云母阶段、石英-黄铁矿阶段、石英-多金属硫化物阶段、石英-方解石阶段。其中石英-多金属硫化物阶段为主成矿阶段,本阶段主要发育富液相、富气相、含子矿物包裹体。富液相包裹体均一温度与盐度分别为:138~289℃和2.06%~16.11%NaCleq;含子矿物包裹体均一温度与盐度分别为:320~374℃和32.68%~39.81%NaCleq,包裹体气体成分除少量CO2以外,均为H2O。 H-O同位素分析得出,石英中的δO18值为-8.5‰~6.5‰,流体的δD值为-116‰~-98‰,暗示早阶段成矿流体主要为岩浆热液,晚阶段伴有大气降水混入。C-O同位素分析表明,δ13C值为-10.1‰~-6.9‰,δ18OSMOW介于2.5‰~11.7‰,在δ18O-δ13C 图上数据点落在岩浆水与大气水的中间区域。矿石硫化物δ34S值介于-4.5‰~1.5‰,指示具有幔源岩浆硫的特征。矿石硫化物Pb同位素208Pb/204Pb、207Pb/204Pb和206Pb/204Pb比值分别为38.034~38.609、15.497~15.655和18.141~18.446,推测Pb具有地幔来源的特点并伴有地壳或造山带Pb混入。成矿过程中伴随着流体沸腾作用,成矿物质沉淀受早期形成的岩浆热液与后加入大气降水混合的影响。

    Abstract

    The Zhalageamu copper deposit is located on the north margin of the Xilinhot Block. As a mesothermal hydrothermal vein copper deposit, the ore bodies are hosted in the Permian sandy slate and breccia and controlled by NE trending faults. In this paper, the metallogenic mechanism of the Zhalageamu copper deposit is discussed by means of fluid inclusions and C-H-O-S-Pb isotopic geochemical methods. There are five metallogenic stages in the ore-forming hydrothermal period: potassium stage, quartz-sericite stage, quartz-pyrite stage, quartz-polymetallic sulfide stage, quartz-calcite stage. Among them, the quartz-polymetallic sulfide stage is the main ore-forming stage, and mainly develops liquid-rich, gas-rich, and mineral-bearing inclusions. The homogenization temperatures and salinities of liquid-rich inclusions range from 138℃ to 289℃, and 2.06%NaCleq to 16.11%NaCleq, respectively. The homogenization temperatures and salinities of mineral-bearing inclusions range from 320℃ to 374℃ and 32.68%NaCl eq to 39.81%NaCleq, respectively. The gases in inclusions are mainly composed of H2O with small amount of CO2. The H-O isotopic analysis shows that the δ18O of quartz varies from -8.5‰ to 6.5‰, and the δD of the fluid varies from -116‰ to -98‰, which indicates that the ore-forming fluids in the early stage are mainly magmatic hydrothermal fluids with meteoric water mixed in the late period. The C-O isotopic analysis shows that the δ13C from -10.1‰ to -6.9‰, and the δD of the fluid varies from 2.5‰ to 11.7‰, are plotted in the zone between magmatic water and meteoric water in the δ18O-δ13C diagram. The δ34S of the ore sulfides ranges from -4.5‰ to 1.5‰, indicating the characteristics of mantle-derived magmatic sulfur. 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ratios of ore sulfides are 38.034 to 38.609, 15.497 to 15.655, and 18.141 to 18.446, indicating the characteristics of mantle origin and is accompanied by the mixing of Pb in the crust or orogen. The mineralization process is accompanied by fluid boiling, and the precipitation of the metallogenic material is influenced by the mixing of the magmatic hydrothermal fluid formed in the early stage and the later addition of meteoric water.

  • 扎拉格阿木铜矿床位于兴蒙造山带中的北造山带内,锡林浩特地块北缘(王国政等,2012)。矿区位于大兴安岭中南段锡林浩特-霍林郭勒多金属成矿亚带,区内发现拜仁达坝、毛登、维拉斯托、白音查干等多金属矿床,被认为是寻找Cu、Pb、Zn等多金属矿的有利地段(聂凤军等,2014)。依据内蒙古地区成矿三级区带划分原则(沈存利等,2009a2009b; 2016),矿区位于乌力吉-锡林浩特Cu-Au-Fe-Mo-W-Ni-Mn成矿带东端,与大兴安岭中南部Pb-Zn-Cu-Ag多金属成矿带西端相临,位于两个三级成矿带结合部位。区内除位于东北部的毛登小型铜(锡)矿外,未发现其他金属矿床。因此,扎拉格阿木铜矿的发现是本区找矿的重大突破(沈存利等,2016)。张天平等(2018)通过地球物理数据分析,认为本区存在高极化率异常、相对低的视电阻率和高重力异常,并为深部矿产勘查圈定重点区域。沈存利等(2016)许辉(2020)通过对扎拉格阿木铜矿床矿石构造观察分析,认为该矿床的成因类型为热液型铜矿。但是,前人对扎拉格阿木铜矿成矿流体性质、来源、演化特征及矿质沉淀机理等方面未进行系统研究。本文基于系统的野外样品采集和室内显微观察,对扎拉格阿木铜矿床展开流体包裹体岩相学分析、显微测温以及C-H-O-S-Pb同位素研究,分析成矿流体性质及演化过程,探讨成矿物质来源和矿质沉淀机制,为下一步找矿勘查工作提供理论依据。

  • 1 区域地质背景

  • 研究区大地构造位置位于兴蒙造山带内(图1a)索伦缝合带以北,二连浩特-贺根山蛇绿岩带南侧(梅秀杰等,2014苏美霞等,2014)的北造山带内(图1b),位于锡林浩特地块北缘。属于大兴安岭中南段锡林浩特-霍林郭勒多金属成矿亚带。该区古生代岩浆活动强烈而频繁,为内生金属矿床形成提供了优越条件,是寻找Cu、Pb、Zn等多金属矿的有利地段(聂凤军等,2014)。区内出露地层为志留系徐尼乌苏组浅变质岩、二叠系大石寨组火山-沉积岩及第四系。地层总体呈NEE至NE向不连续分布。NE向褶皱和断裂构成本区构造主体(王国政等,2012)。区内主要褶皱构造为锡林浩特复背斜。NEE向逆断层包括F1、F2、F3、 F4和 F5共5条逆断层。区内韧性剪切带发育,走向约60°,连续性好(图1c),韧性剪切带内岩石存在塑性变形。区域岩浆岩以侏罗纪、二叠纪、石炭纪的中酸性侵入岩为主,多呈岩基产出,分布于区域东南部。喷出岩主要为气孔状玄武岩,分布在矿区西南部。

  • 图1 中亚造山带主要构造分区图(a,据Jahn et al.,2000修改)、兴蒙造山带中西部地质示意图(b,据Xiao Wenjiao et al.,2015修改)和扎拉格阿木铜矿区域地质简图(c,据沈存利等,2016修改)

  • Fig.1 Simplified sketch map of the Central Asian orogenic belt showing major tectonic sub-divisions of Central Asia (a, modified after Jahn et al.,2000) , geological sketch map of the central western Xing-Meng orogenic belt (b, modified after Xiao Wenjiao et al.,2015) and simplified regional geological map of the Zhalageamu copper deposit (c, modified after Shen Cunli et al.,2016

  • 2 矿床地质

  • 矿区内出露地层为二叠系下统大石寨组砂质板岩、志留系中统徐尼乌苏组碳质板岩和第四系沉积物(张梅等,2011)。矿区构造位置处于锡林浩特复背斜南翼,NEE向逆断层发育,断层角砾岩呈棱角状广泛分布。区内韧性剪切带连续分布,带内岩石发生强烈塑性变形。矿区内花岗闪长岩广泛发育,岩体内可见闪长玢岩脉(图2a)

  • 赋矿层为二叠系大石寨组砂质板岩。矿化带长度超过1 km,宽70~190 m,NE走向,倾向SE,倾角60°~75°(图2a)。赋矿围岩为砂质板岩和角砾岩,矿化与构造裂隙相关。矿区内共圈出了9条矿体,矿体赋存于砂质板岩中的断裂带内(图2a、b)。在不同的赋矿层位可见到明显的断层角砾岩(图2c~e),且角砾棱角明显,均一程度差。矿体片理较发育,硅化、褐铁矿化较强,地表多处出现孔雀石化。

  • 矿床金属矿物主要以他形粒状、交代结构的黄铜矿和自形、半自形粒状黄铁矿为主;其次为包含结构、固溶体分离结构及压碎结构的毒砂、闪锌矿、方铅矿和磁黄铁矿;局部出现磁铁矿、铜蓝、斑铜矿等,次生矿物为孔雀石。非金属矿物主要为石英、钾长石、斜长石,次为绢云母、绿泥石、方解石,可见少量白云母和透闪石。矿石构造主要有脉状构造、网脉状构造、角砾状构造和块状构造等。

  • 根据脉体间穿插关系和矿物共生特点,将成矿期次分为热液期和表生期,具体成矿阶段划分如下:

  • (1)热液期: ① 钾长石阶段(Ⅰ阶段)——以石英、钾长石为主,存在少量斜长石、白云母等矿物。钾长石多与石英伴生,本阶段未见金属硫化物(图3a)。石英呈现他形粒状变晶结构,其在手标本上呈烟灰—灰白色(图3b)。② 石英-绢云母阶段(Ⅱ阶段)——以石英、绢云母为主,绢云母呈微晶鳞片状,多与石英、长石伴生,成定向分布 (图3c),本阶段可见零星自形黄铁矿。③ 石英-黄铁矿阶段(Ⅲ阶段)——为成矿早期阶段,矿物组合以黄铁矿和石英为主。该阶段石英呈灰白色,他形粒状且粒度较大。黄铁矿含量较上一阶段明显增多,呈脉状、团块状(图3d),本阶段可见少量黄铜矿。④ 石英-多金属硫化物阶段(Ⅳ阶段)——为成矿主要阶段,矿石矿物主要为黄铜矿、方铅矿、闪锌矿、毒砂、黄铁矿、磁黄铁矿等。黄铜矿常呈致密块状出现(图3e),部分黄铜矿呈固溶体分离结构分布于闪锌矿晶体中(图3f)。方铅矿呈亮铅灰色,结晶颗粒较粗大,粒径一般为1~2 mm(图3g)。黄铁矿多呈半自形—他形粒状,被交代分布于黄铜矿裂隙中(图3h)。毒砂常呈脉状、块状分布(图3e、g),常见毒砂矿物晶体被黄铜矿交代(图3i)。脉石矿物主要为石英、绿泥石(图3j)。⑤ 石英-方解石阶段(Ⅴ阶段)——为成矿后期阶段,矿石矿物主要为黄铜矿、毒砂;脉石矿物为石英、方解石、萤石等。多呈脉状产出,常见不含矿方解石脉切穿早期次的矿脉(图3k),含黄铜矿的石英、萤石矿脉(图3l),含毒砂和黄铜矿的石英、方解石脉(图3m),含黄铜矿的方解石、萤石脉(图3n)等脉体出现。

  • (2)表生期:脉石矿物主要为高岭土(图3o),矿石矿物为蓝铜矿、孔雀石等。

  • 综上所述,将具体成矿期次及其矿物组合列于图4。

  • 3 样品采集和分析方法

  • 本次研究基于扎拉格阿木铜矿床的岩芯样品的系统采集,分别包括0号、7号、11号、15号、19号共5条勘探线中的zk005-01、zk704-12、zk705-08、zk707-10、zk707-11、zk707-13、zk1102-01、zk1506-03、zk1507-19、zk1507-21、zk1508-02、zk1508-09、zk1508-12、zk1907-02样品,取得包裹体测试样品41件,H-O 同位素样品17件,C-O 同位素样品8件,S-Pb同位素样品20件。

  • 包裹体测温和激光拉曼光谱分析分别在中国地质大学(北京)流体包裹体实验室和激光拉曼实验室完成。包裹体测温仪器为MDSG 600型冷热台,可测温度为-196~+600℃,精度为±1℃。拉曼光谱分析仪器型号为 LabRAMHR 800,扫描范围100~4200 cm-1。同位素分析测试在核工业北京地质研究院进行,H-O测试所用质谱仪型号为 FinneganMAT253,分析精度:±0.2‰;C-O同位素测试分析,采用 GasBenchⅡ-MAT253联机分析的方法,最终输出结果为相对 V-PDB 值,分析误差范围为±0.1‰;S同位素采用测试仪器为MAT-251质谱仪,采用V-CDT国际标准,分析精度优于±0.2‰;Pb同位素采用 Phoenix 热表面电离质谱仪进行同位素测试,测试精度优于±2‰。

  • 图2 扎拉格阿木矿区地质略图(a,据沈存利等,2016,修改)、扎拉格阿木铜矿15号线剖面图 (b,据内蒙古有色地质勘查局四队内部勘查资料)和角砾岩样品图(c,d,e)

  • Fig.2 Geological map of the Zhalageamu copper deposit (a, modified after Shen Cunli et al.,2016) , geological cross-section along the No.15 exploration line of the Zhalageamu copper deposit (b, modified after exploration data of No.4 Geological Party of Inner Mongolia Autonomous Region Nonferrous Geological Bureau) and breccia samples (c, d, e)

  • 图3 扎拉格阿木铜矿岩/矿石标本及镜下照片

  • Fig.3 Photographs and photomicrographs of samples from the Zhalageamu copper deposit

  • (a)—石英-钾长石脉(Ⅰ 阶段);(b)—块状硅化石英(Ⅰ 阶段);(c)—石英-黄铁矿脉(Ⅲ 阶段)切穿含绢云母石英脉(Ⅱ 阶段);(d)—黄铁矿-石英脉(Ⅲ 阶段);(e)—块状黄铜矿(Ⅳ 阶段);(f)—黄铜矿固溶体分离结构(Ⅳ 阶段);(g)—毒砂-方铅矿-黄铜矿块状矿石(Ⅳ阶段);(h)—半自形、他形黄铁矿(Ⅳ 阶段);(i)—黄铜矿交代毒砂(Ⅳ 阶段);(j)—绿泥石 (Ⅳ 阶段);(k)—方解石脉(Ⅴ 阶段)切穿含毒砂石英脉(Ⅲ 阶段)及早期石英脉(Ⅰ 阶段);(l)—石英-黄铁矿-萤石脉(Ⅴ 阶段);(m)—黄铜矿-毒砂-石英-方解石脉(Ⅴ阶段);(n)—含黄铜矿萤石-方解石脉(Ⅴ阶段);(o)—高岭石化;Ccp—黄铜矿;Py—黄铁矿;Po—磁黄铁矿;Apy—毒砂;Sp—闪锌矿;Ser—绢云母; Gn—方铅矿;Cal—方解石;Fl—萤石;Kln—高岭石;Kfs—钾长石;Qtz—石英

  • (a) —quartz-potassium feldspar vein (stage Ⅰ) ; (b) —siliconized quartz (stage Ⅰ) ; (c) —sericite containing quartz vein (stageⅡ) cut by quartz-pyrite vein (stage Ⅲ) ; (d) —pyrite-quartz vein (stageⅢ) ; (e) —massive chalcopyrite (stage Ⅳ) ; (f) —solid solution separation structure of chalcopyrite (stage Ⅳ) ; (g) —arsenopyrite-galena-chalcopyrite massive ore (stage Ⅳ) ; (h) —hemi—hedromorphic pyrite (stage Ⅳ) ; (i) —arsenopyritem metasomatism of chalcopyrite (stage Ⅳ) ; (j) —chlorite (stage Ⅳ) ; (k) —early quartz vein (stage Ⅰ) cut by arsenopyrite-quartz vein (stage Ⅲ) , arsenopyrite-quartz vein and early quartz vein cut by calcite vein (stage Ⅴ) ; (l) —quartz-pyrite-fluorite vein (stage Ⅴ) ; (m) —chalcopyrite-arsenopyrite-quartz-calcite vein (stage Ⅴ) ; (n) —chalcopyrite-fluorite-calcite vein (stage Ⅴ) ; (o) —kaolinization; Ccp—chalcopyrite; Py—pyrite; Po—pyrrhotite; Apy—arsenopyrite; Sp—sphalerite; Ser—sericite; Gn—galena; Cal—calcite; Fl—fluorite; Kln—kaolinite; Kfs—potassium feldspar; Qtz—quartz

  • 4 分析结果

  • 4.1 流体包裹体类型

  • 本文选取采自扎拉格阿木铜矿床钻孔岩芯样品中30件代表不同成矿阶段的流体包裹体片。通过显微镜下观察、分析得出,矿床中原生包裹体大量发育,另可见体积较小,沿裂隙呈线状分布的次生包裹体。原生包裹体体积相对较大,形态众多,分布具有无规律和不定向的特点。根据常温下原生包裹体的显微相态特征,可将扎拉格阿木铜矿床中的包裹体划分为四种类型:① 富液相包裹体(L型),由气液两相组成,长轴长5~43 μm,形态呈不规则形、椭圆形,气液比介于6%~25%,均以气相消失达到均一。② 富气相NaCl-H2O型包裹体(V型),气液两相组成,长轴长5~24 μm,形态呈不规则形,气液比多在50%以上,存在少数纯气相包裹体。③ 含子矿物多相包裹体(S型),由液相、气相和固相子矿物组成,长轴长5~28 μm,形态呈不规则形、椭圆形,气液比介于4%~20%。根据子矿物类型划分为含透明子矿物包裹体(S1型)和含不透明子矿物包裹体(S2型)。④ 富气相CO2-H2O-NaCl型流体包裹体(C型),由气相CO2、液相CO2和液相H2O组成,长轴长4~18 μm,形态呈椭圆形,气液比介于5%~30%。

  • 图4 扎拉格阿木铜矿床矿化期次划分

  • Fig.4 Mineral sequence and ore-forming stages of the Zhalageamu copper deposit

  • 石英-黄铁矿阶段发育包裹体以L型(图5a)、V型(图5b、c)、S1型(图5d)为主,此阶段气液比较大,长轴长度为8~28 μm,少数长度超过40 μm。

  • 石英-多金属硫化物阶段发育包裹体以L型、S1型(图5e、f)为主,其次为V型(图5g)、S2型(图5h)包裹体,气液比较石英-黄铁矿阶段减小,长轴长度为7~24 μm。

  • 石英-方解石阶段发育包裹体以L型为主、可见少量C型(图5i)包裹体,体积较小,包裹体长轴长度为5~17 μm。

  • 4.2 均一温度和盐度

  • 基于包裹体岩相学分析,选取不同成矿期次流体包裹体进行均一温度测试(丁俊英和倪培,2007),结果列于表1,绘制均一温度频率直方图(图6a~c)。借助冰点温度和透明子矿物熔化温度分别计算气-液两相包裹体和含子矿物包裹体对应盐度(Bodnar,1993丁俊英和倪培,2007),绘制盐度频率直方图(图6 d~f)。

  • 图5 扎拉格阿木铜矿床不同成矿阶段流体包裹体显微照片

  • Fig.5 Photomicrographs of the fluid inclusions from different mineralization stages in the Zhalageamu copper deposit

  • (a)—Ⅲ阶段黄铁矿-石英脉中富液相包裹体;(b)—Ⅲ阶段石英脉中纯气相包裹体;(c)—Ⅲ阶段黄铁矿-石英脉中富气相包裹体;(d)—Ⅲ阶段黄铁矿-石英脉中含透明子矿物包裹体;(e)—Ⅳ阶段黄铜矿-石英脉中含透明子矿物包裹体;(f)—Ⅳ阶段黄铜矿-毒砂-石英脉中含透明子矿物包裹体;(g)—Ⅳ阶段黄铜矿-石英脉中富气相包裹体;(h)—Ⅳ阶段黄铜矿-毒砂-石英脉中含不透明子矿物包裹体;(i)—Ⅴ阶段黄铜矿-毒砂-方解石脉中CO2-H2O-NaCl型包裹体;VH2O—气相水;LH2O—液相水;VCO2—气相CO2LCO2—液相CO2;S1—透明子矿物;S2—不透明子矿物

  • (a) —rich-liquid inclusions in the pyrite-quartz veins (stage Ⅲ) ; (b) —pure gas fluid inclusions in the quartz veins (stage Ⅲ) ; (c) —gas-rich inclusions in the pyrite-quartz veins (stage Ⅲ) ; (d) —including transparent daughter minerals inclusions in the pyrite-quartz veins (stage Ⅲ) ; (e) —including transparent daughter minerals inclusions in the chalcopyrit (e) —quartz veins (stage Ⅳ) ; (f) —including transparent daughter minerals inclusions in the chalcopyrite-arsenopyrite-quartz veins (stageⅣ) ; (g) —gas-rich inclusions in the chalcopyrite-quartz veins (stage Ⅳ) ; (h) —including opaque daughter minerals inclusions in the chalcopyrite-arsenopyrite-quartz veins (stageⅣ) ; (i) —rich-vapor phase CO2-H2O-NaCl type inclusions in the chalcopyrite-arsenopyrite-calcite veins (stage Ⅴ) ; VH2O—vapor phase H2O; LH2O—liquid phase H2O; VCO2—vapor phase CO2; LCO2—liquid phase C2O; S1—transparent daughter mineral; S2—opaque daughter mineral

  • 石英-黄铁矿阶段(Ⅲ阶段)L型包裹体均一温度206~361℃,峰值为280~300℃,冰点温度-14.2~-3.8℃,对应的盐度范围8.05%~23.36%NaCleq,盐度峰值为12%~16%NaCleq。S1型包裹体的均一温度均316~424℃,峰值为340~360℃,通过子矿物熔化温度计算出的盐度主要介于39.46%~51.26%NaCleq之间,盐度峰值为44%~48%NaCleq,在不断升温过程中,包裹体中的透明子矿物晚于气泡消失;V型包裹体随温度不断升高最终均一为气相,均一温度为309~392℃,未测得冰点温度。

  • 图6 扎拉格阿木铜矿床流体包裹体均一温度、盐度直方图

  • Fig.6 Histogram showing homogenization temperature and salinity of fluid inclusions in the Zhalageamu copper deposit

  • 石英-多金属硫化物阶段(Ⅳ阶段)L型包裹体均一到液相,均一温度介于138~289℃之间,峰值为180~200℃,冰点温度-10.1~-1.7℃,盐度介于2.06%~16.11%NaCleq之间,峰值为8%~12%NaCleq。S1型包裹体的均一温度为320~374℃,峰值为320~340℃,通过子矿物熔化温度计算得到的盐度介于32.68%~39.81%NaCleq之间,峰值为32%~36%NaCleq;V型包裹体最终均一为气相,均一温度在274~304℃之间,未测得冰点温度。

  • 石英-方解石阶段(Ⅴ阶段)L型包裹体最终均一为液相,均一温度为124~243℃之间,峰值为160~180℃,冰点温度-14.4~-1.2℃,盐度为1.56%~18.12%NaCleq之间,盐度峰值为4%~8%NaCleq。

  • 通过均一温度直方图(图6a~c)得出,从热液成矿期Ⅲ阶段到Ⅴ阶段,均一温度逐渐降低。测温数据峰值明显,连续性较好,表明成矿过程中流体具有连续演化的特点。在盐度直方图中(图6d~f),石英-黄铁矿阶段(Ⅲ阶段)和石英-多金属硫化物阶段(Ⅳ阶段)均表现出高盐度和低盐度两个区间,并且整体上三个成矿阶段的高盐度和低盐度峰值区间均呈现降低的趋势。

  • 4.3 流体压力与密度

  • 使用Mao Shide et al.(2011)研发的模型程序(Calculation Site of Geochem-Model.org)对NaCl-H2O包裹体进行密度与压力的计算,其结果与Flincor程序(Brown,1989)输出结果相同。使用Flincor程序对S1型包裹体密度与压力进行计算,结果见表1。

  • 表1 扎拉格阿木铜矿床流体包裹体显微测温结果

  • Table1 Micro-thermometric data of fluid inclusions from the Zhalageamu copper deposit

  • 石英-黄铁矿阶段流体的最小捕获压力在16.2~29.1 MPa之间,流体密度在0.73~1.24 g/cm3之间,平均1.00 g/cm3。石英-多金属硫化物阶段成矿压力在10.6~23.9 MPa之间,流体密度在0.72~1.08 g/cm3之间,平均为0.94 g/cm3。石英-方解石阶段成矿压力在8.2~15.7 MPa之间,流体密度在0.82~1.04 g/cm3之间,平均为0.91 g/cm3。从以上三个成矿阶段来看,随着成矿温度下降,成矿流体密度和压力同样呈现出降低的趋势。矿床成矿压力在8.2~29.1 MPa之间(表1),利用邵洁链等(1986)计算方法,估算成矿深度为0.28~1.08 km,表现为内生成矿作用的特点。

  • 4.4 流体包裹体激光拉曼分析

  • 分别对石英-黄铁矿阶段(Ⅲ阶段)(图7a)、石英-多金属硫化物阶段(Ⅳ阶段)(图7b、c)、石英-方解石阶段(Ⅴ阶段)(图7d)流体包裹体样品进行拉曼光谱测试分析表明:包裹体气相成分主要为H2O和CO2

  • 图7 扎拉格阿木铜矿床流体包裹体激光拉曼图谱

  • Fig.7 Laser Raman spectra of fluid inclusions from the Zhalageamu copper deposit

  • 4.5 H-O同位素特征

  • 对成矿流体的来源、性质和运移的研究是分析成矿过程的重要环节(杨秀清等,2014),常借助成矿流体中水的H、O同位素组成分析流体性质。扎拉格阿木铜矿床H-O同位素组成中(表2),成矿流体的δD的值分布范围为-116‰~-98‰,δ18O的值分布范围为-8.5‰~6.5‰,随成矿作用进行δ18O的值逐渐降低。借助H-O同位素图解投图(图8)得出,成矿早期流体主要来源于岩浆水,随着成矿作用的进行δ18O的含量在图解中表现出向雨水线靠近的趋势,表明成矿作用后期的成矿流体可能存在大气降水混入。

  • 图8 扎拉格阿木铜矿床H-O同位素图解

  • Fig.8 Diagram of hydrogen-oxygen isotopic compositions in different ore-forming stages in the Zhalageamu copper deposit

  • 在地质作用过程中,不同性质的流体混合对成矿流体的演化具有重要意义。在岩浆活动作用的区域,岩浆热液为成矿流体的形成提供了热源(肖荣阁等,2004)。将不同成矿阶段石英中H、O同位素数据投点到水-岩交换过程H、O同位素演化模式图中(图9),可得出其组成与我国内蒙古地区的大气降水的演化曲线(陈振胜和张理刚,1992)表现出高度一致性,数据表明演化过程中水与岩石比值变化较大,体现了随成矿过程的进行,大气降水不断加入的特点。

  • 4.6 C-O同位素特征

  • 扎拉格阿木铜矿床中C-O同位素测试数据见表3,方解石的δ13C值为-10.1‰~-6.9‰,平均值为-9.4‰,δ13C值变化范围较小,比较集中;δ18OSMOW值分布范围是2.5‰~11.7‰,平均值为5.38‰,极差为9.2‰,δ18O值的变化范围较大,表明O同位素组成可能较为复杂(Keith,1964),进一步暗示流体中可能发生混合。将扎拉格阿木铜矿床中方解石的δ18OSMOW和δ13CPDB数据,投点到C-O同位素图解(图10)。结果显示,数据多落于地幔多相体系和大气水影响的区域内,综合认为成矿过程受岩浆热液和大气水的影响。

  • 图9 热液体系水-岩交换过程中氢、氧同位素组成演化模式图(底图据陈振胜和张理刚,1992

  • Fig.9 The evolutional model of H and O isotope compositions of meteoric and magmatic water during water rock interactions in hydrothermal system (modified after Chen Zhensheng and Zhang Ligang, 1992)

  • 表2 扎拉格阿木铜矿床不同成矿阶段石英中H-O同位素组成

  • Table2 H-O isotopic composition of quartz in different ore-forming stages in the Zhalageamu copper deposit

  • 表3 扎拉格阿木铜矿床方解石C-O同位素组成(‰)

  • Table3 C and O isotopic compositions (‰) of calcite from the Zhalageamu copper deposit

  • 图10 扎拉格阿木铜矿中方解石δ18OSMOW13CPDB 图解(底图根据刘建明等,1997

  • Fig.10 δ18OSMOW13CPDB diagram of calcite in the Zhalageamu copper deposit (modified from Liu Jianming et al.,1997)

  • 4.7 S同位素特征

  • 本研究选取扎拉格阿木铜矿床Ⅲ、Ⅳ、Ⅴ成矿阶段中20件金属硫化物矿石样品,进行S同位素研究,分析结果见表4。由S同位素组成的直方图(图11)可知,金属硫化物的δ34S值变化范围较窄,在-4.5‰~-1.5‰之间,均值为-1.72‰,具有塔式分布特点。

  • 4.8 Pb同位素特征

  • 选取扎拉格阿木铜矿床不同成矿阶段(Ⅲ阶段、Ⅳ阶段、Ⅴ阶段)20件金属硫化物矿石样品,进行Pb同位素研究,分析结果见表5。其中206Pb/204Pb、207Pb/204Pb和208Pb/204Pb变化范围分别是18.141~18.446、15.497~15.655和38.034~38.609,平均值依次为18.324、15.572、38.303。不同样品之间铅同位素组成差别较小,组成稳定。

  • 表4 扎拉格阿木矿床硫化物硫同位素组成

  • Table4 Sulfur isotopic compositions of sulfide separates from the Zhalageamu copper deposit

  • 5 讨论

  • 5.1 成矿流体

  • H-O同位素示踪是矿床地球化学重要研究方法之一,可将不同源区的流体进行区分(郑永飞,2001Pirajno,2009)。扎拉格阿木铜矿床不同成矿阶段样品H-O同位素数据存在明显差异,同一成矿阶段的H-O同位素数据差异较小。在δD和δ18O图解上,三个成矿阶段的成矿流体δD和δ18O值投影点落入岩浆水与大气降水区域之间(图8)。随着成矿作用的进行,成矿流体δ18O值逐渐向大气降水线靠近,指示成矿早期以岩浆水为主,在成矿晚期演化过程中伴随有大气降水的混入。流体包裹体盐度-温度双变量协和图(图12)显示,从成矿早阶段到晚阶段呈现明显的线性演化趋势,从高温、高盐度向低温、低盐度方向演化,暗示成矿过程中流体发生了大规模的混合作用。综上所述,成矿混合流体为早期的岩浆热液伴有晚期的大气降水混入。在本次包裹体岩相学观察中发现,石英-黄铁矿阶段富液相、富气相和含子矿物包裹体异相共存,且测温结果得出的均一温度相差不大,但均一方式不同,盐度明显表现出两个峰值(图12阴影部分),说明流体存在沸腾作用(Wilkinson,2001;Simmons et al.,2005;Prokofiev et al.,2010Moncada et al.,2017)。流体沸腾会改变原有成矿体系的温度和压力,大气降水的加入改变流体的氧逸度和pH值。因此,流体混合和流体沸腾是本矿床矿质沉淀的主要机制。

  • 表5 扎拉格阿木铜矿床金属硫化物中铅同位素组成及特征值

  • Table5 Lead isotopic composition and some characteristic values of sulfides in the Zhalageamu copper deposit

  • 注:闪锌矿、方铅矿数据来源于本项目组,吴起鑫(2018),其余数据来源于本文;△β和△γ为与同时代原始地幔铅的相对偏差。

  • 图11 扎拉格阿木铜矿床硫同位素组成直方图

  • Fig.11 The histogram of sulfur isotopic compositions in the Zhalageamu copper deposit

  • 图12 扎拉格阿木铜矿床流体包裹体均一温度-盐度双变量图

  • Fig.12 The double variable figure of the homogenization temperature and salinity of the fluid inclusions in the Zhalageamu copper deposit

  • 图13 扎拉格阿木铜矿床及邻区多金属矿床硫同位素组成分布图(白音诺尔数据引自曾庆栋等,2007;拜仁达坝数据引自江思宏等,2010;花敖包特数据引自陈永清等,2014; 毛登数据引自石得凤,2007

  • Fig.13 S isotope distribution of the Zhalageamu deposit and polymetallic deposits in adjacent areas (the data of Baiyinnuoer deposit is from Zeng Qingdong et al.,2007;the data of Bairendaba deposit is from Jiang Sihong et al., 2010;the data of Huaaobaote deposit is from Chen Yongqing et al.,2007;the data of Maodeng deposit is from Shi Defeng,2007

  • 5.2 成矿物质来源

  • 5.2.1 硫的来源

  • 硫元素广泛分布在各种金属矿床中。硫化物中硫同位素组成常因分馏作用发生变化,温度或者氧化还原反应常影响分馏作用的发生。在矿床研究中借助硫同位素组成分析,可以为成矿物质来源的判定提供依据(Ohmoto,1972Ohmoto and Rye,1979)。硫化物的S同位素组成是追踪成矿流体中S元素来源最有效的方法(Seal,2006),并常用于矿床成因研究(Sakai,1968)。

  • 扎拉格阿木铜矿床中矿石硫化物的δ34S值为-4.5‰~-1.5‰,均值为-1.7‰(图11)。石英-黄铁矿阶段的黄铁矿δ34S值最高,为-0.6‰~1.5‰。石英-多金属硫化物阶段中硫化物的S同位素组成较为集中,闪锌矿和方铅矿、毒砂、黄铜矿δ34S值分别为-2.1‰~-0.2‰、-3.5‰~-3.4‰、-2.6‰~-1.9‰和-2.3‰~-1.1‰,整体分布存在相互重叠现象,并表现为δ34S闪锌矿>δ34S黄铜矿>δ34S毒砂>δ34S方铅矿,此特征与S同位素在热液矿物体系中的平衡结晶顺序一致。表明当硫化物沉淀时,该热液体系中的S同位素达到了平衡(Rye and Ohmoto,1974Ohmoto and Rye,1979郑永飞,2001)。δ34S最大值为1.5‰,δ34S峰值分布在-2‰~-1‰之间,与幔源硫(-3‰<δ34S<3‰)(Chaussidon et al.,1990)范围大致吻合。

  • 由于共生矿物对之间本身存在硫同位素分馏效应,因此对石英-多金属硫化物阶段和石英-方解石阶段中毒砂的硫同位素进行对比。石英-多金属硫化物阶段毒砂的S同位素组成(δ34S值为-2.6‰~-1.9‰)明显比石英-方解石阶段毒砂的S同位素重(δ34S值为-4.5‰~-3.2‰),结合方解石C-O同位素的数据,成矿流体中的硫可能在幔源硫的基础上混入成矿晚阶段的大气降水,使得从岩浆分异出来的早期成矿流体被氧化,因此残余流体中相对富集32S(Ishihara et al.,2003),从而导致晚期形成的硫化物δ34S值偏低(李永胜等,2021)。此外,扎拉格阿木铜矿床S同位素组成,与邻区典型幔源硫来源的多金属矿床中S同位素范围较为一致(图13),如拜仁达坝多金属矿床-4‰<δ34S<2‰(江思宏等,2010),花敖包特矿床-3.6‰<δ34S<1.2‰(陈永清等,2014)等。综合以上特征,认为扎拉格阿木铜矿床中的硫主要来自幔源岩浆。

  • 5.2.2 铅的来源

  • 铅元素在物质迁移以及沉淀过程中几乎不会因物理、化学条件的改变发生分馏作用。但是放射性U、Th 衰变反应会引起铅组成变化,另外一系列的内生或外生成矿作用可以使 U/Pb、Th/Pb比值发生变化。因此,岩石和矿物中的Pb同位素的组成及变化可以用来研究成矿物质来源和矿床成因(Macfarlane et al .,1990Chiaradia et al .,2004)。

  • 扎拉格阿木铜矿床的Pb同位素组成变化范围不大,表明Pb来源较为稳定。μ(238U/204Pb)值范围可以大致指示铅的来源(上地壳铅μ>9.58,幔源铅μ<9.58)。由表5可知,扎拉格阿木铜矿床中的铅同位素9.34<μ<9.57,平均值9.42,均低于9.58。表明扎拉格阿木铜矿床中的铅主要来源于地幔。矿石样品的ω为35.62~37.62,ω均值为36.18,绝大多数样品低于平均地壳铅的ω值(36.84)(Kamona et al.,1999),以上均表现出铅地幔来源的特征。

  • 然而从Zartman and Doe(1981)建立的Zartman铅构造模式图解(图14a、b)中看,金属硫化物中Pb同位素数值大多数落于地幔和造山带的增长线之间,表明扎拉格阿木铜矿成矿物质除了幔源铅的特点,还呈现出造山带铅加入的特征。朱炳泉(1998)通过对不同时代及成因的铅同位素进行分析研究,提出矿石铅同位素的△γ-△β成因分类图解。将扎拉格阿木铜矿床铅同位素特征参数值投影到矿石铅的△γ-△β成因分类图解(图15)中,绝大多数数据落在与岩浆作用有关的上地壳与地幔混合的俯冲带铅同位素源区内,少部分样品数据落于造山带源区内,表明扎拉格阿木铜矿床的成矿物质可能经历了与俯冲造山作用有关的壳幔物质混合。综合邻区矿床,如毛登铜(锡)矿床、拜仁达坝多金属矿床等也均表现出壳幔混染特征,即Pb同位素以幔源岩浆来源为主,并有造山带或上地壳铅混入的特征。

  • 图14 扎拉格阿木铜矿床铅同位素构造模式图(底图据 Zartman et al.,1981

  • Fig.14 Diagram showing evolutionary tectonic settings of Pb isotope from Zhalageamu copper deposit (modified from Zartman et al.,1981)

  • 5.3 成矿动力学背景

  • 扎拉格阿木铜矿床位于大兴安岭中南段锡林浩特-霍林郭勒多金属成矿亚带,该亚带上分布拜仁达坝、毛登、白音查干等多金属矿床,是寻找Cu、Pb、Zn等多金属矿的有利地段(王新雨等,2020)。

  • 矿区内出露的上二叠统大石寨组砂质板岩和角砾岩是主要的赋矿围岩,区域内自华力西期到燕山期均有构造岩浆活动。通过对矿区与成矿密切相关的岩体进行锆石U-Pb 定年,石英闪长岩、花岗闪长斑岩测定结果为270~261 Ma,属于中二叠世;花岗斑岩和石英闪长玢岩测定结果为255 Ma,属于晚二叠世末期(刘怀金等,2021),表明矿区存在两期岩浆活动。古亚洲洋构造体系内的大多数矿床形成时期位于500~210 Ma之间,以斑岩型、热液型等矿床类型为主,Cu作为主要矿种,其次为Pb-Zn矿,形成构造环境主要以岛弧及古亚洲洋闭合后的碰撞与伸展作用为主(江思宏等,2018)。二叠纪时期兴蒙造山带具有多次伸展作用发生,形成了包括被动裂谷带、主动裂谷带、索伦山蛇绿岩带等多种岩石-构造单元。早—中二叠世沉积类型多变,陆内裂谷具有沉积建造与火山岩建造均发育的被动裂谷特点,说明与伸展背景有关。该时期火山岩的典型代表是大石寨组(290~270 Ma)火山岩,广泛分布。索伦山蛇绿岩代表中二叠世的伸展环境,反映了继早二叠世大石寨期伸展过程之后的又一次岩浆作用( Jian Ping et al.,2010徐备等,2014)。而晚二叠世古亚洲洋闭合,发育的火成岩建造组合具有主动裂谷特点。北造山带内晚二叠世同碰撞-后碰撞花岗岩( Jian Ping et al.,2010徐备等,2014),同样也识别出混杂岩、岛弧岩浆岩和前陆盆地等几个构造单元。二叠纪末索伦山期在软流圈上涌造成的主动裂谷背景下,形成了陆缘型蛇绿岩或基性岩-超基性岩组合。伸展造山作用导致区域内地壳厚度减薄并影响热流补给,导致深部岩浆上侵(王新雨等,2020)。另外,伸展作用成因的构造和岩浆活动,为成矿元素的富集提供了赋矿空间、热源和矿源。根据扎拉格阿木铜矿床与成矿作用关系密切的岩体的定年结果,推测该矿床形成于伸展造山构造背景。

  • 图15 扎拉格阿木铜矿床铅同位素的Δβ-Δγ 成因分类图解(底图据朱炳泉等,1998

  • Fig.15 Δβ-Δγ diagram of genetic classification of ore lead isotopes from Zhalageamu copper deposit (modified from Zhu Bingquan et al.,1998)

  • 上地壳与地幔混合的俯冲带铅:(a)—岩浆作用;(b)—沉积作用

  • Mixed lead of the upper crust and mantle subduction zones: (a) —magmatism; (b) —sedimentation

  • 5.4 矿床成因分析

  • 前人研究发现,温度、压力变化、水岩反应和流体混合作用等因素常影响金属元素的富集状态,因而可以导致热液矿床中成矿物质的沉淀(Roedder,1984卢焕章等,2004)。扎拉格阿木铜矿床中S、Pb同位素数据均表现为来自于地幔岩浆特征,表明矿床的形成与造山作用过程中深部岩浆作用关系密切。矿床中石英-黄铁矿阶段(Ⅲ阶段)不同类型流体包裹体的均一温度差别较小,盐度差别很大,表明沸腾作用的发生。沸腾作用导致流体中气体散失,成矿元素浓度升高,压力骤减,使得黄铁矿发生沉淀(Roedder,1984Drummond and Ohmoto,1985)。随着成矿作用的进行(Ⅳ阶段、Ⅴ阶段),伴随大气降水加入,成矿流体的pH值升高、Cl-的浓度下降,导致含金属元素硫化物的溶解度降低(张德会,1997刘瑞斌等,2019),最终Cu、Pb、Zn等元素以硫化物形式沉淀。

  • 扎拉格阿木铜矿床中矿石以脉状、网脉状、角砾状等为主,具有明显多期热液成矿作用特征。砂质板岩和角砾岩为赋矿围岩,花岗闪长岩蚀变作用明显,网脉状矿化显著,可能为成矿岩体。二叠系大石寨组砂质板岩中韧性剪切带发育,并呈NE向分布于矿区北部二叠纪花岗闪长岩岩体中(聂凤军等,2014)。矿体总体走向与区域内构造方向相同。含角砾岩脉体中角砾棱角明显,均一程度差,表现为近源角砾的特征,具有张裂隙特点。伴随深部含矿岩体的上升侵位,使得断裂构造再次发育,含矿热液沿韧性剪切带和张性断裂充填交代,导致矿体形成。另外扎拉格阿木铜矿床虽有围岩蚀变出现,但未见斑岩型矿床的典型蚀变分带的特征,综上所述,认为矿床成因类型为中温热液脉型铜矿床。

  • 6 结论

  • (1)扎拉格阿木铜矿床成矿热液期可划分为5个阶段:钾长石阶段(Ⅰ阶段)、石英-绢云母阶段(Ⅱ阶段)、石英-黄铁矿阶段(Ⅲ阶段)、石英-多金属硫化物阶段(Ⅳ阶段)、石英-方解石阶段(Ⅴ阶段),其中Ⅳ阶段为主成矿阶段。成矿流体性质具有阶段性演化特征,均一温度和盐度从早阶段到晚阶段呈现逐渐降低的趋势。成矿过程中流体发生沸腾作用。

  • (2)扎拉格阿木铜矿床流体包裹体类型分为4种,分别为富液相包裹体(L型)、富气相包裹体(V型)、含子矿物多相包裹体(S型)和含CO2三相包裹体(C型)。包裹体液相成分主要为H2O-NaCl,气相成分以H2O为主,部分还含有CO2。主成矿阶段的流体属于中温、中—高盐度、低密度的H2O-NaCl体系,与中温热液成矿系统流体特征相一致。

  • (3)扎拉格阿木铜矿床C-H-O同位素数据表明,成矿流体以岩浆来源为主,成矿晚期有大气降水的混入。S-Pb同位素数据表明成矿物质来源于地幔岩浆,并表现出地壳或造山带物质混入的特征。即深部岩浆活动提供主要成矿物质来源,深部岩浆上升侵位过程中与围岩发生反应,使得围岩中部分物质参与成矿。矿床类型为与岩浆活动有关的中温热液脉型铜矿床。

  • 参考文献

    • Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683~684.

    • Brown P E. 1989. FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74(11~12): 1390~1393.

    • Chaussidon M, Lorand J P. 1990. Sulphur isotope composition of orogenic spinel iherzolite massifs from Ariege: An ion microprobe study. Geochimica et Cosmochimica Acta, 54: 2835~2846.

    • Chen Yongqing, Zhou Ding, Guo Lingfen. 2014. Genetic study on the Huaaobaote Pb-Zn-Ag polymetallic deposit in Inner Mongolia: Evidence from fluid inclusions and S, Pb, H, O isotopes. Journal of Jilin University (Earth Science Edition), 44 (5): 1478~1491 (in Chinese with English abstract).

    • Chen Zhensheng, Zhang Ligang. 1992. Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geologic significance. Acta Geologica Sinica, 66(2): 158~169 (in Chinese with English abstract).

    • Chiaradia M, Fontbote L, Paladines A. 2004. Metal sources in mineral deposits and crustal rocks of Ecuador (1°N~4°S): A lead isotope synthesis. Economic Geology, 99(6): 1085~1106.

    • Ding Junying, Ni Pei. 2007. Melting and dissolution behaviors of frozen synthefic fluid inclusion for the system NaCl-CaCl2-H2O. Acta Petrologica Sinica, 23(9): 2039~2044 (in Chinese with English abstract).

    • Drummond S E, Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80: 124~147.

    • Ishihara S, Wang Pingan, Kajiwara Y, Watanabe Y. 2003. Origin of sulfur in some magmatic-hydrothermal ore deposits of South China. Bulletin of the Geological Survey of Japan, 54(3-4): 161~169.

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1-2): 181~193.

    • Jian Ping, Liu Dunyi, Krner A, Windley B F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permianintraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169~190.

    • Jiang Sihong, Nie Fengjun, Liu Yifei, Yun Fei. 2010. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia. Mineral Deposits, 28(1): 101~112 (in Chinese with English abstract).

    • Jiang Sihong, Zhang Lili, Liu Yifei, Liu Chunhua, Kang Huan, Wang Fengxiang. 2018. Metallogeny of Xing-Meng orogenic belt and some related problems. Mineral Deposits, 37(4): 671~711 (in Chinese with English abstract).

    • Kamona A F, Lévêque J, Friedrich G, Haack U. 1999. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufilian fold belt of Central Africa. Mineralium Deposita, 34(3): 273~283.

    • Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28: 1787~1816.

    • Li Yongsheng, Zhang Banglu, Gong Fanying, Du Zezhong, Zhen Shimin. 2021. Genesis of the giant Kangjiawan lead zinc ore denosit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope. Acta Petrologica Sinica, 37(6): 1847~1866 (in Chinese with English abstract).

    • Liu Huaijin, Zhang Xuzhu, Niu Xingguo, Xu Hui, Wen Haichen, Li Yuan. 2021. Metallogenic model of Zhalagamu copper polymetallic deposit in Inner Mongolia. The first National Mineral Exploration Conference. Beijing: Science Press, 914~917 (in Chinese with English abstract).

    • Liu Jianming, Liu Jiajun, Gu Xuexiang. 1997. Basin fluids and their related ore deposits. Acta Petrologica et Mineralogica, 16(4): 54~65 (in Chinese with English abstract).

    • Liu Ruibin, Liu Zhenjiang, Mi Kuifeng, Li Chunfeng, Wang Jianping. 2019. The characteristics of ore-forming fluid and mineralization mechanism in the Huzhagaitu porphyry Mo deposit, Inner Mongolia. Acta Geologica Sinica, 93(9): 2330~2347 (in Chinese with English abstract).

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 1~274 (in Chinese with English abstract).

    • Macfarlane A W, Marcet P, LeHuray A P, Petersen U. 1990. Lead isotope provinces of the central Andes inferred from ores and crustal rocks. Economic Geology, 85(8): 1857~1880.

    • Mao Shide, Duan Zhenhao, Zhang Dehui, Shi Lanlan, Chen Yali, Li Jing. 2011. Thermodynamic modeling of binary CH4-H2O fluid inclusions. Geochimica et Cosmochimica Acta, 75(20): 5892~5902.

    • Mei Xiujie, Pang Xucheng, Feng Yaju, Liu Zhenghao, Wang Peiyu, Zong Jing. 2014. Analysis of geochemical characteristics of volcanic rocks in Daban area, Inner Mongolia. Journal of Henan Polytechnic University(Natural Science) , 33(1): 3777~3779 (in Chinese with English abstract).

    • Moncada D, Baker D, Bodnar R. 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District México. Ore Geology Reviews, 89, 143~170.

    • Nie Fengjun, Cao Yi, Ding Chengwu, Liu Yifei. 2014. Preliminary discussions on the rejuvenated metallogenesis of the Da Hinggan-Mongolia Paleozoic orogenic belt as deduced from the studies on Sn, W and Mo-polymetallic deposits occurring within the Xilinhot and Ergun Massifs. Acta Petrologica Sinica, 30(7): 2063~2080 (in Chinese with English abstract).

    • Ohmoto H, Rye R O. 1979. Isotopes of sulfur and carbon, In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits (2nd Edition). New York: Wiley, 509~567.

    • Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551~578.

    • Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. USA Malden: Springer Science & Business Media, 102~124.

    • Prokofiev V Y, Garofalo P S, Bortnikov N S, Kovalenker V A, Zorina L D, Grichuk D V, Selektor S L. 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology, 105: 395~416.

    • Roedder E. 1984. Fluid Inclusions. Canada Nova Scotia: Mineralogical Society of American, 644~645.

    • Rye R O, Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review. Economic Geology, 69(6): 826~842.

    • Sakai H. 1968. Isotopic properties of sulfur compounds in hydrothermal processes. Geochemical Journal, 2(1): 29~49.

    • Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633~677.

    • Shao Jielian, Mei Jianming. 1986. On the study of typomorphicc characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance. Minerals and Rocks, 6(3): 103~110 (in Chinese with English abstract) .

    • Shen Cunli, Gao Youku, Zhang Tianping, Yang Zhanzhong, Chen Wang, Jia Wen, Bai Liqin. 2009a. Discovery of the Hanshanlinchang Cu-Ag-Sn polymetallic deposit and its significance for prospecting, Inner Mongolia. Mineral Exploration, 4(5): 475~484 (in Chinese with English abstract).

    • Shen Cunli, Zhang Mei, Yu Xiqing, Cheng Wenguo, Gao Weiyu, Zhou Wenchan. 2009b. New progresses in exploration of molybdenum deposits and analysis of mineralization prospect in Inner Mongolia. Geology and Exploration, 46(6): 561~575 (in Chinese with English abstract).

    • Shen Cunli, Liu Yutang, Gao Yueyuan, Wang Rui, Wu Zhenlin, Xu Hui, Yang Wenhua, Bai Liqin. 2016. Geological characteristics of Zhalageamu copper poly-metallogenic deposit and implications for its discovery in Xilinhaote region, Inner Mongolia. Mineral Exploration, 7(3): 380~389 (in Chinese with English abstract).

    • Shi Defeng. 2007. The geological feature and metallogenic model of Maodeng polymetallic ore deposit. Master degree thesis of Central South University (in Chinese with English abstract).

    • Simmons S F. White N C, John D. 2005. Geological characteristics of epithermal precious and base metal deposits. USA Littleton: Society of Economic Geologists, 485~522.

    • Su Meixia, Zhao Wentao, Zhang Huicong, Sun Huiling, Li Hongwei, Fan Yali. 2014. Geophysical characteristics of the suture zone between North China and Siberian plates. Geophysical and Geochemical Exploration, 38(5): 949~955 (in Chinese with English abstract).

    • Wang Guozheng, Zhang Jingliang, Tian Zhenzhao, Zou Jiawei. 2012. Geological characteristics and genesis of silver polymetallic deposit in Youfangxi, Inner Mongolia. Mineral Resources and Geology, 26(2): 101~107 (in Chinese with English abstract).

    • Wang Xinyu, Zhu Xinyou, Zhu Zhengkun, Zang Wenshuan, Zhou Zhiguang, Yao Tu, Yan Pengchen. 2020. A discussion on the genesis of the Wulanbaiqi Pb-Zn deposit, Inner Mongolia: Evidence from fluid inclusions, S-Pb isotopes and trace elements of ore minerals. Acta Petrologica Sinica, 36(7): 2232~2248 (in Chinese with English abstract).

    • Wu Qixin. 2018. Geological and geochemical characteristics and genenis of the Zhalageamu copper deposit, Inner Mongolia. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229~272.

    • Xiao Rongge, Yuan Zhenlei, Liu Jingdang, Fei Hongcai, Ge Zhenhua, Zhang Mingyan. 2004. The formation and evolution of regional ore-forming fluid. Earth Science Frontiers, 11(2) : 461~469 (in Chinese with English abstract).

    • Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of Three Permo-Triassic collage systems in Central Asia: Oroclines, sutures and terminal accretion. Annual Review of Earth and Plane-tary Sciences, 43(1): 477~507.

    • Xu Bei, Zhao Pan, Bao Qingzhong, Zhou Yongheng, Wang Yanyang, Luo Zhiwen. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB). Acta Petrologica Sinica, 30(7): 1841~1857 (in Chinese with English abstract).

    • Xu Hui. 2020. Geological characteristics and genesis of Zhalageamu coppper polymetallic ore in Xilinhot, Inner Mongolia. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Li Lixing, Ma Yubo, Chen Jing, Liu Mingjun, Yao Tong, Chen Weishi, Yao Liangde. 2014. Characteristics of fluid inclusion, S, H and O isotope of iron deposit in Anshan-Benxi Area, Liaoning Province. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).

    • Zartman R E, Doe B R. 1981. Plumbotectonics—the model Tectonophysics. Tectonophysics, 75: 135~162.

    • Zeng Qingdong, Liu Jianming, Jia Changshun, Wan Zhimin, Yu Changming, Ye Jie and Liu Hongtao. 2007. Sedimentary exhalative origin of the Baiyinnuoer zinc-lead deposit, Chifeng, Inner Mongolia: Geological and sulfur isotope evidence. Journal of Jilin University (Earth Science Edition), 37(4): 659~667 (in Chinese with English abstract).

    • Zhang Dehui. 1997. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the processes of hydrothermal deposits. Advance in Earth Sciences, 12(5): 547~552 (in Chinese with English abstract).

    • Zhang Mei, Zhai Yusheng, Shen Cunli, Liu Yonghui, Yang Shuai-shi, Zhai Degao, Yao Meijuan, Wang Jianping, Wang Shouguang, Gao Zhengxi, Zhang Ling. 2011. Metallogenic system of copper polymetallic deposits in the middle-southern part of Da Hinggan mountains. China Geoscience, 25(5): 819~831 (in Chinese with English abstract).

    • Zhang Tianping, Niu Xingguo, Song Junwei, Dong Hailong, Xue Fuhong. 2018. Geochemical and geophysical characteristics and prospecting prediction of Zalageamu copper polymetallic ore in Xilinhot of Inner Mongolia. Mineral Exploration, 9(6): 1258~1265 (in Chinese with English abstract).

    • Zheng Yongfei. 2001. Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits. Mineral Deposits, 20(1): 57~70, 85 (in Chinese with English abstract).

    • Zhu Bingquan. 1998. Theory and Application of Isotope Systems in Earth Sciences: On the Evolution of Chinese Continental Crust. Beijing: Science Press, 1~330 (in Chinese with English abstract).

    • 陈永清, 周顶, 郭令芬. 2014. 内蒙古花敖包特铅锌银多金属矿床成因探讨: 流体包裹体及硫、铅、氢、氧同位素证据. 吉林大学学报(地球科学版), 44(5): 1478~1491.

    • 陈振胜, 张理刚. 1992. 热液体系氢、氧同位素分馏机制及其地质意义. 地质学报, 66(2): 158~169.

    • 丁俊英, 倪培. 2007. NaCl-CaCl2-H2O体系人工合成流体包裹体及其冷冻后的熔融行为研究. 地质调查研究, 23(9): 2039~2043.

    • 江思宏, 聂凤军, 刘翼飞, 云飞. 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究. 矿床地质, 28(1): 101~112.

    • 江思宏, 张莉莉, 刘翼飞, 刘春花, 康欢, 王丰翔. 2018. 兴蒙造山带成矿规律及若干科学问题. 矿床地质, 37(4): 671~711.

    • 李永胜, 张帮禄, 公凡影, 杜泽忠, 甄世民. 2021. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据. 岩石学报, 37(6): 1845~1866.

    • 刘怀金, 张旭柱, 牛兴国, 许辉, 温海成, 李源.2021.内蒙古扎拉格阿木铜多金属矿成矿模式.首届全国矿产勘查大会论集.北京: 科学出版社, 914~917.

    • 刘建明, 刘家军, 顾雪祥. 1997. 沉积盆地中的流体活动及其成矿作用. 岩石矿物学杂志, 16(4): 54~65.

    • 刘瑞斌, 柳振江, 宓奎峰, 李春风, 王建平. 2019. 内蒙古呼扎盖吐钼矿床成矿流体特征及成矿机制. 地质学报, 93(9): 2330~2347.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1~274.

    • 梅秀杰, 庞绪成, 冯亚举, 刘正好, 王佩玉, 宗静. 2014. 内蒙古大板地区火山岩的地球化学特征. 河南理工大学学报(自然科学版), 33(1): 3777~3779.

    • 聂凤军, 曹毅, 丁成武, 刘冀飞. 2014. 论兴蒙造山带叠生成矿作用-以锡林浩特和额尔古纳地块为例. 岩石学报, 30(17): 2064~2078.

    • 邵洁涟, 梅建明. 1986. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义. 矿物岩石, 6(3): 103~110.

    • 石得凤. 2007. 内蒙古锡林浩特市毛登多金属矿区地质特征及成矿模式研究. 中南大学硕士学位论文.

    • 沈存利, 高有库, 张天平, 杨占忠, 陈旺, 贾文, 白丽琴. 2009a. 内蒙古罕山林场铜银锡多金属矿床的发现及意义. 矿产勘查, 4(5): 475~484.

    • 沈存利, 张梅, 于玺卿, 程文国, 高维裕, 周文川. 2009b. 内蒙古钼矿找矿新进展及成矿远景分析. 地质与勘探, 46(6): 561~575.

    • 沈存利, 刘玉堂, 高月元, 王瑞, 伍振林, 许辉, 杨文华, 白丽琴. 2016. 内蒙古扎拉格阿木铜多金属矿床地质特征及发现启示. 矿产勘查, 7(3): 380~389.

    • 苏美霞, 赵文涛, 张慧聪, 孙会玲, 李红威, 范亚丽. 2014. 华北板块与西伯利亚板块缝合带之地球物理特征. 物探与化探, 38(5): 949~950.

    • 王国政, 张金良, 田振召, 邹佳伟. 2012. 内蒙古油房西银多金属矿床地质特征及成因探讨. 矿产与地质, 26(2): 101~107.

    • 王新雨, 祝新友, 朱政坤, 臧文栓, 周志广, 姚图, 闫鹏程. 2020. 内蒙古乌兰拜其铅锌矿床成因探讨: 流体包裹体及矿石矿物 S-Pb 同位素、微量元素证据. 岩石学报, 36(7): 2232~2248.

    • 吴起鑫. 2018. 内蒙古扎拉格阿木铜矿床地质地球化学特征及成因研究. 中国地质大学(北京)硕士学位论文.

    • 肖荣阁, 原振雷, 刘敬党, 费红彩, 葛振华, 张明燕. 2004. 区域成矿流体的形成与演化. 地学前缘, 11(2): 461~469.

    • 徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841~1857.

    • 许辉. 2020. 内蒙古锡林浩特市扎拉格阿木铜多金属矿地质特征及成因. 中国地质大学(北京)硕士学位论文.

    • 杨秀清, 李厚民, 李立兴, 马玉波, 陈靖, 刘明军, 姚通, 陈伟十, 姚良德. 2014. 辽宁鞍山-本溪地区铁矿床流体包裹体和硫、氢、氧同位素特征研究. 地质学报, 88(10)1917~1931.

    • 曾庆栋, 刘建明, 贾长顺, 万志民, 于昌明, 叶杰, 刘红涛. 2007. 内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因: 地质和硫同位素证据. 吉林大学学报(地球科学版), 37(4): 659~667.

    • 张德会. 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展, 12(5): 547~552.

    • 张梅, 翟裕生, 沈存利, 刘永慧, 杨帅师, 翟德高, 要梅娟, 王建平, 王守光, 高征西, 张玲. 2011. 大兴安岭中南段铜多金属矿床成矿系统. 现代地质, 25(5): 819~831.

    • 张天平, 牛兴国, 宋俊威, 董海龙, 薛富红. 2018. 内蒙古扎拉格阿木铜多金属矿地球化学、地球物理特征与找矿预测. 矿产勘查, 9(6): 1258~1265.

    • 郑永飞. 2001. 稳定同位素体系理论模式及其矿床地球化学应用. 矿床地质, 20(1): 57~70, 85.

    • 朱炳泉. 1998. 地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化. 北京: 科学出版社, 1~330.

  • 参考文献

    • Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683~684.

    • Brown P E. 1989. FLINCOR: A microcomputer program for the reduction and investigation of fluid inclusion data. American Mineralogist, 74(11~12): 1390~1393.

    • Chaussidon M, Lorand J P. 1990. Sulphur isotope composition of orogenic spinel iherzolite massifs from Ariege: An ion microprobe study. Geochimica et Cosmochimica Acta, 54: 2835~2846.

    • Chen Yongqing, Zhou Ding, Guo Lingfen. 2014. Genetic study on the Huaaobaote Pb-Zn-Ag polymetallic deposit in Inner Mongolia: Evidence from fluid inclusions and S, Pb, H, O isotopes. Journal of Jilin University (Earth Science Edition), 44 (5): 1478~1491 (in Chinese with English abstract).

    • Chen Zhensheng, Zhang Ligang. 1992. Hydrogen and oxygen isotope fractionation mechanism in the hydrothermal system and its geologic significance. Acta Geologica Sinica, 66(2): 158~169 (in Chinese with English abstract).

    • Chiaradia M, Fontbote L, Paladines A. 2004. Metal sources in mineral deposits and crustal rocks of Ecuador (1°N~4°S): A lead isotope synthesis. Economic Geology, 99(6): 1085~1106.

    • Ding Junying, Ni Pei. 2007. Melting and dissolution behaviors of frozen synthefic fluid inclusion for the system NaCl-CaCl2-H2O. Acta Petrologica Sinica, 23(9): 2039~2044 (in Chinese with English abstract).

    • Drummond S E, Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80: 124~147.

    • Ishihara S, Wang Pingan, Kajiwara Y, Watanabe Y. 2003. Origin of sulfur in some magmatic-hydrothermal ore deposits of South China. Bulletin of the Geological Survey of Japan, 54(3-4): 161~169.

    • Jahn B M, Wu Fuyuan, Chen Bin. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1-2): 181~193.

    • Jian Ping, Liu Dunyi, Krner A, Windley B F, Shi Yuruo, Zhang Wei, Zhang Fuqin, Miao Laicheng, Zhang Liqao, Tomurhuu D. 2010. Evolution of a Permianintraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos, 118(1-2): 169~190.

    • Jiang Sihong, Nie Fengjun, Liu Yifei, Yun Fei. 2010. Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia. Mineral Deposits, 28(1): 101~112 (in Chinese with English abstract).

    • Jiang Sihong, Zhang Lili, Liu Yifei, Liu Chunhua, Kang Huan, Wang Fengxiang. 2018. Metallogeny of Xing-Meng orogenic belt and some related problems. Mineral Deposits, 37(4): 671~711 (in Chinese with English abstract).

    • Kamona A F, Lévêque J, Friedrich G, Haack U. 1999. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogenesis in the Damaran-Lufilian fold belt of Central Africa. Mineralium Deposita, 34(3): 273~283.

    • Keith M L, Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28: 1787~1816.

    • Li Yongsheng, Zhang Banglu, Gong Fanying, Du Zezhong, Zhen Shimin. 2021. Genesis of the giant Kangjiawan lead zinc ore denosit in Hunan Province: Evidences from fluid inclusion, H-O and S isotope. Acta Petrologica Sinica, 37(6): 1847~1866 (in Chinese with English abstract).

    • Liu Huaijin, Zhang Xuzhu, Niu Xingguo, Xu Hui, Wen Haichen, Li Yuan. 2021. Metallogenic model of Zhalagamu copper polymetallic deposit in Inner Mongolia. The first National Mineral Exploration Conference. Beijing: Science Press, 914~917 (in Chinese with English abstract).

    • Liu Jianming, Liu Jiajun, Gu Xuexiang. 1997. Basin fluids and their related ore deposits. Acta Petrologica et Mineralogica, 16(4): 54~65 (in Chinese with English abstract).

    • Liu Ruibin, Liu Zhenjiang, Mi Kuifeng, Li Chunfeng, Wang Jianping. 2019. The characteristics of ore-forming fluid and mineralization mechanism in the Huzhagaitu porphyry Mo deposit, Inner Mongolia. Acta Geologica Sinica, 93(9): 2330~2347 (in Chinese with English abstract).

    • Lu Huanzhang, Fan Hongrui, Ni Pei, Ou Guangxi, Shen Kun, Zhang Wenhuai. 2004. Fluid Inclusions. Beijing: Science Press, 1~274 (in Chinese with English abstract).

    • Macfarlane A W, Marcet P, LeHuray A P, Petersen U. 1990. Lead isotope provinces of the central Andes inferred from ores and crustal rocks. Economic Geology, 85(8): 1857~1880.

    • Mao Shide, Duan Zhenhao, Zhang Dehui, Shi Lanlan, Chen Yali, Li Jing. 2011. Thermodynamic modeling of binary CH4-H2O fluid inclusions. Geochimica et Cosmochimica Acta, 75(20): 5892~5902.

    • Mei Xiujie, Pang Xucheng, Feng Yaju, Liu Zhenghao, Wang Peiyu, Zong Jing. 2014. Analysis of geochemical characteristics of volcanic rocks in Daban area, Inner Mongolia. Journal of Henan Polytechnic University(Natural Science) , 33(1): 3777~3779 (in Chinese with English abstract).

    • Moncada D, Baker D, Bodnar R. 2017. Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District México. Ore Geology Reviews, 89, 143~170.

    • Nie Fengjun, Cao Yi, Ding Chengwu, Liu Yifei. 2014. Preliminary discussions on the rejuvenated metallogenesis of the Da Hinggan-Mongolia Paleozoic orogenic belt as deduced from the studies on Sn, W and Mo-polymetallic deposits occurring within the Xilinhot and Ergun Massifs. Acta Petrologica Sinica, 30(7): 2063~2080 (in Chinese with English abstract).

    • Ohmoto H, Rye R O. 1979. Isotopes of sulfur and carbon, In: Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits (2nd Edition). New York: Wiley, 509~567.

    • Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5): 551~578.

    • Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. USA Malden: Springer Science & Business Media, 102~124.

    • Prokofiev V Y, Garofalo P S, Bortnikov N S, Kovalenker V A, Zorina L D, Grichuk D V, Selektor S L. 2010. Fluid inclusion constraints on the genesis of gold in the Darasun district (eastern Transbaikalia), Russia. Economic Geology, 105: 395~416.

    • Roedder E. 1984. Fluid Inclusions. Canada Nova Scotia: Mineralogical Society of American, 644~645.

    • Rye R O, Ohmoto H. 1974. Sulfur and carbon isotopes and ore genesis: A review. Economic Geology, 69(6): 826~842.

    • Sakai H. 1968. Isotopic properties of sulfur compounds in hydrothermal processes. Geochemical Journal, 2(1): 29~49.

    • Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633~677.

    • Shao Jielian, Mei Jianming. 1986. On the study of typomorphicc characteristics of mineral inclusion in the gold deposits from volcanic terrain in Zhejiang and its genetic and prospecting significance. Minerals and Rocks, 6(3): 103~110 (in Chinese with English abstract) .

    • Shen Cunli, Gao Youku, Zhang Tianping, Yang Zhanzhong, Chen Wang, Jia Wen, Bai Liqin. 2009a. Discovery of the Hanshanlinchang Cu-Ag-Sn polymetallic deposit and its significance for prospecting, Inner Mongolia. Mineral Exploration, 4(5): 475~484 (in Chinese with English abstract).

    • Shen Cunli, Zhang Mei, Yu Xiqing, Cheng Wenguo, Gao Weiyu, Zhou Wenchan. 2009b. New progresses in exploration of molybdenum deposits and analysis of mineralization prospect in Inner Mongolia. Geology and Exploration, 46(6): 561~575 (in Chinese with English abstract).

    • Shen Cunli, Liu Yutang, Gao Yueyuan, Wang Rui, Wu Zhenlin, Xu Hui, Yang Wenhua, Bai Liqin. 2016. Geological characteristics of Zhalageamu copper poly-metallogenic deposit and implications for its discovery in Xilinhaote region, Inner Mongolia. Mineral Exploration, 7(3): 380~389 (in Chinese with English abstract).

    • Shi Defeng. 2007. The geological feature and metallogenic model of Maodeng polymetallic ore deposit. Master degree thesis of Central South University (in Chinese with English abstract).

    • Simmons S F. White N C, John D. 2005. Geological characteristics of epithermal precious and base metal deposits. USA Littleton: Society of Economic Geologists, 485~522.

    • Su Meixia, Zhao Wentao, Zhang Huicong, Sun Huiling, Li Hongwei, Fan Yali. 2014. Geophysical characteristics of the suture zone between North China and Siberian plates. Geophysical and Geochemical Exploration, 38(5): 949~955 (in Chinese with English abstract).

    • Wang Guozheng, Zhang Jingliang, Tian Zhenzhao, Zou Jiawei. 2012. Geological characteristics and genesis of silver polymetallic deposit in Youfangxi, Inner Mongolia. Mineral Resources and Geology, 26(2): 101~107 (in Chinese with English abstract).

    • Wang Xinyu, Zhu Xinyou, Zhu Zhengkun, Zang Wenshuan, Zhou Zhiguang, Yao Tu, Yan Pengchen. 2020. A discussion on the genesis of the Wulanbaiqi Pb-Zn deposit, Inner Mongolia: Evidence from fluid inclusions, S-Pb isotopes and trace elements of ore minerals. Acta Petrologica Sinica, 36(7): 2232~2248 (in Chinese with English abstract).

    • Wu Qixin. 2018. Geological and geochemical characteristics and genenis of the Zhalageamu copper deposit, Inner Mongolia. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1-4): 229~272.

    • Xiao Rongge, Yuan Zhenlei, Liu Jingdang, Fei Hongcai, Ge Zhenhua, Zhang Mingyan. 2004. The formation and evolution of regional ore-forming fluid. Earth Science Frontiers, 11(2) : 461~469 (in Chinese with English abstract).

    • Xiao Wenjiao, Windley B F, Sun Shu, Li Jiliang, Huang Baochun, Han Chunming, Yuan Chao, Sun Min, Chen Hanlin. 2015. A tale of amalgamation of Three Permo-Triassic collage systems in Central Asia: Oroclines, sutures and terminal accretion. Annual Review of Earth and Plane-tary Sciences, 43(1): 477~507.

    • Xu Bei, Zhao Pan, Bao Qingzhong, Zhou Yongheng, Wang Yanyang, Luo Zhiwen. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB). Acta Petrologica Sinica, 30(7): 1841~1857 (in Chinese with English abstract).

    • Xu Hui. 2020. Geological characteristics and genesis of Zhalageamu coppper polymetallic ore in Xilinhot, Inner Mongolia. Master degree thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).

    • Yang Xiuqing, Li Houmin, Li Lixing, Ma Yubo, Chen Jing, Liu Mingjun, Yao Tong, Chen Weishi, Yao Liangde. 2014. Characteristics of fluid inclusion, S, H and O isotope of iron deposit in Anshan-Benxi Area, Liaoning Province. Acta Geologica Sinica, 88(10): 1917~1931 (in Chinese with English abstract).

    • Zartman R E, Doe B R. 1981. Plumbotectonics—the model Tectonophysics. Tectonophysics, 75: 135~162.

    • Zeng Qingdong, Liu Jianming, Jia Changshun, Wan Zhimin, Yu Changming, Ye Jie and Liu Hongtao. 2007. Sedimentary exhalative origin of the Baiyinnuoer zinc-lead deposit, Chifeng, Inner Mongolia: Geological and sulfur isotope evidence. Journal of Jilin University (Earth Science Edition), 37(4): 659~667 (in Chinese with English abstract).

    • Zhang Dehui. 1997. Some new advances in ore-forming fluid geochemistry on boiling and mixing of fluids during the processes of hydrothermal deposits. Advance in Earth Sciences, 12(5): 547~552 (in Chinese with English abstract).

    • Zhang Mei, Zhai Yusheng, Shen Cunli, Liu Yonghui, Yang Shuai-shi, Zhai Degao, Yao Meijuan, Wang Jianping, Wang Shouguang, Gao Zhengxi, Zhang Ling. 2011. Metallogenic system of copper polymetallic deposits in the middle-southern part of Da Hinggan mountains. China Geoscience, 25(5): 819~831 (in Chinese with English abstract).

    • Zhang Tianping, Niu Xingguo, Song Junwei, Dong Hailong, Xue Fuhong. 2018. Geochemical and geophysical characteristics and prospecting prediction of Zalageamu copper polymetallic ore in Xilinhot of Inner Mongolia. Mineral Exploration, 9(6): 1258~1265 (in Chinese with English abstract).

    • Zheng Yongfei. 2001. Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits. Mineral Deposits, 20(1): 57~70, 85 (in Chinese with English abstract).

    • Zhu Bingquan. 1998. Theory and Application of Isotope Systems in Earth Sciences: On the Evolution of Chinese Continental Crust. Beijing: Science Press, 1~330 (in Chinese with English abstract).

    • 陈永清, 周顶, 郭令芬. 2014. 内蒙古花敖包特铅锌银多金属矿床成因探讨: 流体包裹体及硫、铅、氢、氧同位素证据. 吉林大学学报(地球科学版), 44(5): 1478~1491.

    • 陈振胜, 张理刚. 1992. 热液体系氢、氧同位素分馏机制及其地质意义. 地质学报, 66(2): 158~169.

    • 丁俊英, 倪培. 2007. NaCl-CaCl2-H2O体系人工合成流体包裹体及其冷冻后的熔融行为研究. 地质调查研究, 23(9): 2039~2043.

    • 江思宏, 聂凤军, 刘翼飞, 云飞. 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究. 矿床地质, 28(1): 101~112.

    • 江思宏, 张莉莉, 刘翼飞, 刘春花, 康欢, 王丰翔. 2018. 兴蒙造山带成矿规律及若干科学问题. 矿床地质, 37(4): 671~711.

    • 李永胜, 张帮禄, 公凡影, 杜泽忠, 甄世民. 2021. 湖南康家湾大型隐伏铅锌矿床成因探讨: 流体包裹体、氢氧同位素及硫同位素证据. 岩石学报, 37(6): 1845~1866.

    • 刘怀金, 张旭柱, 牛兴国, 许辉, 温海成, 李源.2021.内蒙古扎拉格阿木铜多金属矿成矿模式.首届全国矿产勘查大会论集.北京: 科学出版社, 914~917.

    • 刘建明, 刘家军, 顾雪祥. 1997. 沉积盆地中的流体活动及其成矿作用. 岩石矿物学杂志, 16(4): 54~65.

    • 刘瑞斌, 柳振江, 宓奎峰, 李春风, 王建平. 2019. 内蒙古呼扎盖吐钼矿床成矿流体特征及成矿机制. 地质学报, 93(9): 2330~2347.

    • 卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体. 北京: 科学出版社, 1~274.

    • 梅秀杰, 庞绪成, 冯亚举, 刘正好, 王佩玉, 宗静. 2014. 内蒙古大板地区火山岩的地球化学特征. 河南理工大学学报(自然科学版), 33(1): 3777~3779.

    • 聂凤军, 曹毅, 丁成武, 刘冀飞. 2014. 论兴蒙造山带叠生成矿作用-以锡林浩特和额尔古纳地块为例. 岩石学报, 30(17): 2064~2078.

    • 邵洁涟, 梅建明. 1986. 浙江火山岩区金矿床的矿物包裹体标型特征研究及其成因与找矿意义. 矿物岩石, 6(3): 103~110.

    • 石得凤. 2007. 内蒙古锡林浩特市毛登多金属矿区地质特征及成矿模式研究. 中南大学硕士学位论文.

    • 沈存利, 高有库, 张天平, 杨占忠, 陈旺, 贾文, 白丽琴. 2009a. 内蒙古罕山林场铜银锡多金属矿床的发现及意义. 矿产勘查, 4(5): 475~484.

    • 沈存利, 张梅, 于玺卿, 程文国, 高维裕, 周文川. 2009b. 内蒙古钼矿找矿新进展及成矿远景分析. 地质与勘探, 46(6): 561~575.

    • 沈存利, 刘玉堂, 高月元, 王瑞, 伍振林, 许辉, 杨文华, 白丽琴. 2016. 内蒙古扎拉格阿木铜多金属矿床地质特征及发现启示. 矿产勘查, 7(3): 380~389.

    • 苏美霞, 赵文涛, 张慧聪, 孙会玲, 李红威, 范亚丽. 2014. 华北板块与西伯利亚板块缝合带之地球物理特征. 物探与化探, 38(5): 949~950.

    • 王国政, 张金良, 田振召, 邹佳伟. 2012. 内蒙古油房西银多金属矿床地质特征及成因探讨. 矿产与地质, 26(2): 101~107.

    • 王新雨, 祝新友, 朱政坤, 臧文栓, 周志广, 姚图, 闫鹏程. 2020. 内蒙古乌兰拜其铅锌矿床成因探讨: 流体包裹体及矿石矿物 S-Pb 同位素、微量元素证据. 岩石学报, 36(7): 2232~2248.

    • 吴起鑫. 2018. 内蒙古扎拉格阿木铜矿床地质地球化学特征及成因研究. 中国地质大学(北京)硕士学位论文.

    • 肖荣阁, 原振雷, 刘敬党, 费红彩, 葛振华, 张明燕. 2004. 区域成矿流体的形成与演化. 地学前缘, 11(2): 461~469.

    • 徐备, 赵盼, 鲍庆中, 周永恒, 王炎阳, 罗志文. 2014. 兴蒙造山带前中生代构造单元划分初探. 岩石学报, 30(7): 1841~1857.

    • 许辉. 2020. 内蒙古锡林浩特市扎拉格阿木铜多金属矿地质特征及成因. 中国地质大学(北京)硕士学位论文.

    • 杨秀清, 李厚民, 李立兴, 马玉波, 陈靖, 刘明军, 姚通, 陈伟十, 姚良德. 2014. 辽宁鞍山-本溪地区铁矿床流体包裹体和硫、氢、氧同位素特征研究. 地质学报, 88(10)1917~1931.

    • 曾庆栋, 刘建明, 贾长顺, 万志民, 于昌明, 叶杰, 刘红涛. 2007. 内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因: 地质和硫同位素证据. 吉林大学学报(地球科学版), 37(4): 659~667.

    • 张德会. 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展, 12(5): 547~552.

    • 张梅, 翟裕生, 沈存利, 刘永慧, 杨帅师, 翟德高, 要梅娟, 王建平, 王守光, 高征西, 张玲. 2011. 大兴安岭中南段铜多金属矿床成矿系统. 现代地质, 25(5): 819~831.

    • 张天平, 牛兴国, 宋俊威, 董海龙, 薛富红. 2018. 内蒙古扎拉格阿木铜多金属矿地球化学、地球物理特征与找矿预测. 矿产勘查, 9(6): 1258~1265.

    • 郑永飞. 2001. 稳定同位素体系理论模式及其矿床地球化学应用. 矿床地质, 20(1): 57~70, 85.

    • 朱炳泉. 1998. 地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化. 北京: 科学出版社, 1~330.